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Abstract
Objective. This study aims to assess the sensitivity of epicardial potential-based electrocar
diographic imaging (ECGI) to the removal or interpolation of bad leads. Approach.We utilized
experimental data from two distinct centers. Langendorff-perfused pig (n= 2) and dog (n= 2)
hearts were suspended in a human torso-shaped tank and paced from the ventricles. Six different
bad lead configurations were designed based on clinical experience. Five interpolation methods
were applied to estimate the missing data. Zero-order Tikhonov regularization was used to solve
the inverse problem for complete data, data with removed bad leads, and interpolated data. We
assessed the quality of interpolated ECG signals and ECGI reconstructions using several metrics,
comparing the performance of interpolation methods and the impact of bad lead removal versus
interpolation on ECGI.Main results. The performance of ECG interpolation strongly correlated
with ECGI reconstruction. The hybrid method exhibited the best performance among
interpolation techniques, followed closely by the inverse-forward and Kriging methods. Bad leads
located over high amplitude/high gradient areas on the torso significantly impacted ECGI
reconstructions, even with minor interpolation errors. The choice between removing or
interpolating bad leads depends on the location of missing leads and confidence in interpolation
performance. If uncertainty exists, removing bad leads is the safer option, particularly when they
are positioned in high amplitude/high gradient regions. In instances where interpolation is
necessary, the inverse-forward and Kriging methods, which do not require training, are
recommended. Significance. This study represents the first comprehensive evaluation of the
advantages and drawbacks of interpolating versus removing bad leads in the context of ECGI,
providing valuable insights into ECGI performance.
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1. Introduction

Electrocardiographic imaging (ECGI) has emerged as a powerful tool for non-invasive cardiac mapping,
offering insights into cardiac electrical activity and enabling valuable pre-procedure diagnosis and guidance
for cardiac ablation procedures (Cluitmans et al 2015, Cluitmans 2018, Bergquist et al 2021). However, the
presence of bad leads (BLs)-leads with incomplete or erroneous data-can compromise the accuracy of ECGI.
This study explores the impact of handling BLs by either removing them or employing interpolation
methods. Through the evaluation of ECG interpolation and ECGI reconstruction performances, we provide
a comprehensive analysis of the benefits and risks associated with these approaches, shedding light on their
significance in the field of ECGI.

In ECGI, BSP measurements are recorded by multi-electrode acquisition systems. The number of
electrodes in these systems normally ranges from 32 to 219, covering the front and back of the
torso (Hoekema et al 1999). However, when the ECGI solutions are applied in the electrophysiology (EP)
laboratory, the safety of the patient is rightly placed above the need for a large number of good contact
signals for ECGI reconstructions. This has led to the acquisition of highly valuable data sets in patients in
which large portions of the torso are missing electrical data due to the simultaneous placement of CARTO
reference electrodes and defibrillator patches (Nademanee et al 2019, Stoks et al 2023). There is a lack of
literature and consensus on how to handle these missing/bad BSP leads in the ECGI reconstructions, which is
one of the major challenges in adopting ECGI into real-time clinical applications.

Researchers have explored methods to optimize the selection of BSP leads, reducing the number of leads
while maintaining diagnostic accuracy (Barr et al 1971, Lux et al 1978, 1979, Finlay et al 2006, 2008b,
Gharbalchi No et al 2020, Onak et al 2022), or interpolating missing leads (Barr et al 1971, Lux et al 1978,
1979, Castells et al 2007, Donnelly et al 2008). Such methods have been implemented to replace
missing/broken leads for ECGI reconstructions (Burnes et al 1998, Sapp et al 2012).

Burnes et al proposed the inverse-forward (IF) method, a field-compatible approach for interpolating
missing leads (1998). They compared the ECGI performance of the IF method with linear and Laplacian
interpolation, ultimately favoring the IF method for its superior accuracy, particularly for interpolating
larger regions. Bear et al compared the ECGI performance of removing the BLs versus reconstructing the
missing leads using linear interpolation (2015). Their findings demonstrated that the removal of BLs led to
more accurate ECGI reconstructions (Bear et al 2015). Ghodrati et al evaluated interpolating missing leads
by Laplacian interpolation and Bayesian estimation in contrast to lead removal (2007). They highlighted that
in the absence of prior information, simply dropping the missing leads outperformed Laplacian
interpolation. In Rababah et al (2018), Laplacian interpolation outperformed the principle component
analysis (PCA)-based method in estimating the missing data in BSPs. In a follow-up study, a hybrid method
combining both interpolation methods led to a more accurate estimation of the missing leads when
compared to employing each method individually (Rababah et al 2019). Finally, Rababah et al explored the
impact of interpolating or eliminating low-amplitude ECG leads on ECGI performance and determined that
interpolation has the potential to enhance reconstruction accuracy (2019, 2021). However, these studies
evaluated only limited aspects of handling missing or BLs. Moreover, the conflicting results seen in these
different studies demonstrate the need for a more comprehensive investigation to determine the optimal
approach for ECGI. This study aims to fill this gap in the literature by presenting a thorough analysis and
comparison of various interpolation methods and the removal of BLs using data from two centers,
encompassing a diverse dataset.

In a preliminary study, our group investigated several interpolation methods and discussed their
potential use instead of lead removal for a single dataset (Dogrusoz et al 2019). In this expanded research, we
conduct a thorough evaluation of interpolation performance using data from different centers, including
Langendorff-perfused pig and dog hearts. We generate six distinct configurations of BLs and employ five
interpolation methods to rectify the missing data. We solve the inverse problem by the zero-order Tikhonov
regularization, employing three distinct datasets: the complete data, data after lead removal, and the
interpolated data. We assess the accuracy of interpolated ECG signals and the resultant ECGI
reconstructions, specifically focusing on interpolation accuracy and the consequences of lead removal versus
interpolation for ECGI performance.

2. Methods

2.1. Experimental data sets
This study utilized four experimental data sets from two distinct torso tank setups: one at IHU-LIRYC
(Bordeaux, France) and the other at the CRVTI/SCI Institutes (Salt Lake City, Utah). These same data sets
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Table 1. Number (#) and percentage (%) of removed leads for all bad lead configurations in all datasets.

Bord-1 Bord-2 Utah-1&2

# % # % # %

BL1 15 11.7 20 15.6 19 9.9
BL2 12 9.4 17 13.3 19 9.9
BL3 13 10.2 18 14.1 21 10.9
BL4 15 11.7 20 15.6 13 6.8
BL5 17 13.3 20 15.6 38 19.8
BL6 57 44.5 60 46.9 77 40.1

were previously employed in Bear et al (2021), which offers a more detailed account. Here is a brief overview
of these setups.

2.1.1. Bordeaux setup
Two data sets from IHU-LIRYC involved Langendorff-perfused pig hearts suspended in a human-shaped
torso-tank (Bear et al 2018). These experimental procedures were approved by the Directive 2010/63/EU of
the European Parliament on the protection of animals used for scientific purposes and the local ethical
committee. Simultaneous recordings of epicardial electrograms were made using a 108-electrode epicardial
array (inter-electrode spacing of 9.9± 2.2mm), along with ECGs from 128 electrodes (inter-electrode
spacing of 66± 24mm) embedded in the tank surface. These recordings were made during right ventricular
(RV) pacing with a 2048Hz sampling rate (BioSemi, the Netherlands). Afterward, 3D fluoroscopy (Artis,
Siemens) was used to determine the positions of the electrodes in relation to the tank.

2.1.2. Utah setup
Two data sets from the CRVTI/SCI Institutes employed Langendorff-perfused canine hearts, also suspended
in a human-shaped torso-tank (Shome and MacLeod 2007, Bergquist et al 2021). Arterial blood was supplied
from a second canine under deep anesthesia. These experimental procedures were approved by the
Institutional Animal Care and Use Committee of the University of Utah and conformed to the Guide for the
Care and Use of Laboratory Animals protocol number 17-04 016 approved on 05/17/2017. Recordings
included epicardial electrograms from a 247-electrode epicardial sock (inter-electrode spacing of
6.5±1.3mm) and ECGs from 192 electrodes (inter-electrode spacing of 40.2±16.8mm) embedded in the
tank surface. These recordings were made during RV pacing at a 1000 Hz sampling rate, utilizing a custom
acquisition and multiplexing system. After the experiments, a three-dimensional mechanical digitizer
(Microscribe from Immersion Corp.) was used to locate landmarks on the tank and electrode array,
providing reference points for sock geometry registration within the torso tank (Bergquist et al 2019). Signal
processing was carried out using PFEIFER, an open-source software tool designed for processing time series
data from electrocardiographic experiments (Rodenhauser et al 2018).

All ECG signals from both systems were initially filtered using a bandpass filter (0.5–150Hz cut-off
frequencies), and a notch filter at the line frequency.

2.2. BL configurations
In this study, we created six BL configurations to simulate realistic clinical scenarios. These scenarios
included two defibrillation patch setups (BL1 and BL2), the presence of CARTO reference electrodes (BL3),
and missing electrodes on the shoulders (BL4) and torso sides (BL5). BL6 represents a worst-case scenario,
combining all configurations. All BL setups incorporated tank signals that were either absent or of
suboptimal quality (approximately 3±2 channels), and these problematic leads were excluded from the
inverse calculations when using the complete lead set (FULL). For detailed statistics on the number and
percentage of removed leads in the various datasets, please refer to table 1. Sample BL configurations are
presented in figure 1 for the Bordeaux tank.

2.3. Interpolationmethods
We used five common interpolation methods to replace the BLs, chosen for their widespread use in ECG and
EGM interpolation across international research centers:

Laplacian interpolation (LAP) (Oostendorp et al 1989): this method implements an approximation of the
surface Laplacian operator as the interpolation kernel which minimizes the Laplacian over the torso surface.

Inverse distance square interpolation (IDS) (Shepard 1968): here, the missing lead is estimated as the
weighted sum of the available leads, with weights equal to the inverse of the square of the Euclidian distance
between the target and the available leads.
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Figure 1. All BL configurations for the Bordeaux tank. Black dots represent the leads removed (i.e. bad leads) out of the full set
(white dots). (A) BL1, front, (B) BL2, front, (C) BL3, front and back, (D) BL4, front, (E) BL5, front, (F) BL6 (combination of all
BLs), front and back.

Kriging method (KRI) (Cressie 1990, van Beers and Kleijnen 2003): this method estimates missing ECG
leads through linear combinations of available BSP data, considering spatial proximity. It aims to provide the
best linear unbiased estimate, optimizing estimation by accounting for spatial correlation.

IF method (Burnes et al 1998): this method is a modification of the method of fundamental solutions
(MFS) for ECG inverse problems (Wang and Rudy 2006). It inversely reconstructs signals on an arbitrary
interior surface from available BSP data and then employs them in a forward model to compute missing ECG
leads.

A hybrid method (HYB) (Rababah et al 2019): this method combines Laplacian and PCA interpolation
methods. At each missed electrode, this method exploits the first beat of the ECG recordings and the
Laplacian interpolation to estimate the ECG recordings of the following beats.

2.4. Forward and Inverse problems
Torso measurements (yk ∈ RM) can be expressed in terms of the EGMs (xk ∈ RN) as:

yk = Axk +nk, k= 1,2, . . .,T (1)

where k is the time instant, nk ∈ RM models the measurement noise, and A ∈ RM×N is the forward transfer
matrix, which is computed using the boundary element method (BEM) for a homogeneous torso (Barr et al
1977), as detailed in Bear et al (2021).

We chose the zero-order Tikhonov regularization (Tikhonov and Arsenin 1977) due to its widespread use
in the ECGI applications by major research centers to enhance the relevance and applicability of our findings
to clinical settings, where standardized methods are crucial for consistency and reliability (Sapp et al 2012,
Cluitmans et al 2017, Wang et al 2018, Bear et al 2019, Duchateau et al 2019, Molero et al 2023). Omitting
the time index in equation (1) for simplicity, the solution can be expressed as:

x̂= argmin
x

{
∥Ax− y∥22 +λ2 ∥x∥22

}
(2)

where λ is the regularization parameter. Initially, a different λ(k) value was determined at each time instant k
using the L-curve method (Hansen and Johnston 2001). Then, the median of these λ(k) values over time
were computed and defined as the final λ value for all time instants.

The inverse problem was addressed in three distinct scenarios: (1) using all measured BSPs except for the
identified ‘true’ BLs (FULL), (2) employing the row deletion method proposed in Ghodrati et al (2007) to
remove BLs and exclude them from inverse computations (RMV), and (3) substituting the BLs with
interpolated signals.

2.5. Evaluationmetrics
Five interpolation methods were applied to reconstruct the missing leads in six BL-configurations.
Considering FULL (same for all BL) and RMV reconstructions, we obtained a total of 37 different EGM
reconstructions for each data set (36 interpolation/RMV+ FULL). The various data sets included from 13 to
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31 beats. Since the smallest data set (Utah-2) consisted of 13 paced beats, we utilized only the initial 13 beats
from the remaining datasets for uniformity.

Interpolation methods were evaluated for their accuracy in reconstructing both the ECGs at the specified
BLs and the corresponding ECGI reconstruction of cardiac potentials.

2.5.1. ECG interpolation
The morphology of the interpolated ECGs was compared to the corresponding measured ECG leads using
Pearson’s correlation (CC). The error in the interpolated leads with respect to the measured leads was
evaluated using the relative error (RE) metric. Both metrics were computed over the QRS region.

2.5.2. ECGI reconstruction
The morphology of the reconstructed EGMs in each lead was evaluated using the temporal CC compared to
the sock data. The errors in these reconstructions were compared using the RE metric. The fidelity of the
reconstructed isopotential maps at each time instant was evaluated using the spatial CC.

2.5.3. Activation time (AT) reconstruction and localization error (LE)
ATs of the sock electrodes were defined as the time at which the derivative (dV/dt) is minimum. While this
simple method was sufficiently accurate for the measured EGMs, it lacked accuracy in the reconstructions.
Thus we considered two spatiotemporal (ST) AT estimation methods. Both methods start by computing the
temporal-only ATs using the standard minimum derivative approach. The first method is called the ST
smoothing method, in which spatial smoothing is applied to the temporal AT estimates over the heart surface
using a regularization operator (Erem et al 2014). The second method is the spatially coherent (SC) method
proposed in Duchateau et al (2017). This method utilizes another ST approach that combines estimated time
delays between neighboring electrograms with the standard temporal-only AT estimates.

Ground truth and reconstructed ATs were compared using Pearson’s CC and the mean absolute error
(MAE, ms). The pacing site was defined as the node with the earliest AT. The LE (mm) was calculated as the
Euclidean distance between the sock (ground truth) and ECGI pacing sites.

2.5.4. Statistical tests
Statistical analysis of the ECG and ECGI metrics corresponding to different interpolation methods was
conducted using the Wilcoxon rank sum test (p< 0.05 defined as significant) with Bonferroni adjustment.

Our comprehensive analysis involved four datasets with 13 beats each, six BL configurations, five
interpolation methods, and various ECG and ECGI metrics. To summarize these results, we proposed a
ranking system based on statistical comparisons. For the interpolated ECG comparisons, for each data set,
each BL configuration, each interpolation method, and each beat, median values of the temporal CC and RE
were calculated over all interpolated leads. Similarly, for ECGI and AT evaluations, we obtained median or
mean values of metrics for each reconstruction over all leads or time instances. These computations resulted
in mean or median value vectors of length equal to the number of beats.

For each ECG and ECGI metric, dataset, and BL configuration, we constructed comparison tables from
the statistical tests. These tables, as shown in the top panels of figures 2 and 3, facilitated method
comparisons. A ‘1’ indicated that the method in the row significantly increased the metric compared to the
method in the column, ‘-1’ signified the opposite, and ‘0’ meant no significant difference.

We obtained similar tables for each dataset and BL configuration. Interpolation methods were ranked
based on how often they significantly increased or decreased the metric, with respect to (a) each BL
configuration across all datasets (blue), (b) each dataset across all BL configurations (green), and (c) overall
performance across all datasets and BL configurations (red) as depicted in the bottom panels of figures 2
and 3.

The boxplot distributions of all metrics and the ranking tables for each metric are included in the
supplementary document. The results of these rankings are presented and discussed in sections 3.3.1
and 3.3.2.

3. Results

3.1. Evaluation of the interpolated ECGs
We obtained boxplot distributions of median temporal CC (medCC-ECG) and median temporal RE
(medRE-ECG) for all BL configurations and all data sets. All plots are available in the supplementary
document.

Almost all medCC-ECG values were above 0.98, with the exception of IDS in a few cases (0.93− 0.96)
and LAP in Utah-1, BL1 (0.95), demonstrating the successful recovery of ECG morphologies by the
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Figure 2. Illustration of ranking steps for comparing different interpolation methods for reconstructing the bad lead ECG signals.
A detailed description for constructing these tables is presented in section 2.5. The top panel shows the median temporal CC
comparison table for Bord-1, BL1. The bottom panel displays the combined rankings of the methods for all data sets and BL
configurations, based on the number of times a method significantly increased or decreased the given metric.

interpolation methods. IDS had the lowest CC values for most data sets and for most BL configurations. IF,
KRI, and the HYB were the best methods, showing similar accuracy, and the order of preference depending
on both the data set and the BL configuration. Though the LAP method is often among the best methods, it
performed the poorest for Utah-1, BL1, with a reduction of up to 6.2% in CC compared to the other
methods including IDS.

The medRE-ECG values were mostly below 0.30, with some values between 0.30− 0.50. Again, the worst
values were attained by IDS (as high as 0.73 in Bord-2 BL3; 0.40 for Bord-1 and 0.35 for Utah-2 in BL6).
Despite medCC-ECG values greater than 0.93, IDS exhibited higher reconstruction errors, indicating that
the QRS amplitudes cannot be recovered appropriately. The other interpolation methods showed variable
performances but HYB had the lowest error except in Bord-1, BL1, with KRI a close second for most data sets
and BL configurations (poor performance in Bord-1, BL1, BL5, and BL6; Bord-2, BL3; Utah-1, BL4). IF and
LAP seem very dependent on the data set and BL configuration, sometimes performing as well as KRI/HYB
but other times inaccurately. LAP did not work well for nearly every BL configuration for Utah-1, potentially
demonstrating a stronger dependence on cardiac sequence than the position of BLs.

3.2. Evaluation of the inverse reconstructions
Boxplot distributions of all ECGI and AT metrics (median temporal CC (medCC-EGM); mean temporal CC
(meanCC-EGM); median temporal RE (medRE-EGM); median spatial CC (medspatCC-EGM); CC of ATs
(CC-AT); MAE in AT values (MAE-AT); LE) for all BL configurations and all data sets are similarly available
in the supplementary document. Some noteworthy results are presented below.

3.2.1. ECGI performance of the interpolation methods
The medCC-EGM values were within a range of 0.63− 0.75 except in Bord-1, which were lower in general
than the other datasets (0.48− 0.67). This data set is noisier than the other three data sets. The lowest
medCC-EGM values in Bord-1 were observed in BL3 and BL6. For the three clean data sets (Bord-2, Utah-1,
Utah-2), for the most part, no interpolation method was better than simple removal, and instead could be
quite detrimental to CC in some cases (CC reduced by up to 5.4% vs 2.1% for removal). For the noisy data
set (Bord-1), the results of removal were similar to interpolation. For BL3, interpolation is substantially
worse than RMV (KRI, being the worst has∼25% decrease in median CC compared to RMV) but for BL4, it
is the opposite (KRI, being the best has∼25% increase in median CC compared to RMV). For BL4,
interpolation did recover important data that is lost with removal. IF has the best overall performance—
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Figure 3. Illustration of ranking steps for comparing different interpolation methods for reconstructing the EGMs. The layout of
this figure is similar to that in figure 2; the metric displayed is the median temporal CC of the reconstructed EGMs. Top panel
again corresponds to Bord-1, BL1. FULL and RMV are also included in this comparison.

similar to FULL. The BL6 configuration resulted in substantially reduced accuracy for the Bordeaux data sets,
but not for the Utah data sets.

Despite these high medCC-EGM values, we observed poorer performance in almost all reconstructions
based on the medRE-EGMmetric, with a range of 0.73− 0.93. Again, the Bord-1 dataset had the worst
performance (0.85− 0.93) and the two Utah datasets had the best reconstructions (0.73− 0.79 and
0.76− 0.79 for Utah-1 and Utah-2, respectively).

The high MedCC-EGM values indicate a good fidelity of the reconstruction morphologies to the ground
truth, but poor performances in terms of the MedRE-EGM values indicate that the amplitudes in the
reconstructions were not well-preserved. Thus, we took a more careful look at some individual
reconstruction performances below.

Figures 4 and 5 show in panel (A) the temporal CC distributions over the heart surfaces from two
different views (top and bottom) for Bord-1 and Utah-1, respectively, for a sample beat. Here, we selected the
noisiest (Bord-1) and a clean (Utah-1) data set to evaluate the performances under varying noise conditions.
In panel (B), sock recordings (top row) and reconstructed EGMs (bottom row) are given for 5 leads, marked
on the heart surfaces. BL6 is chosen here to demonstrate the performance for the worst-case scenario.

In Bord-1 (figure 4), top row shows a negative CC region near the base that is present in all
reconstructions. This region covered a smaller area for the interpolation methods compared to FULL and
RMV. The negative region near the apex (slightly below point 2) was seen only in LAP, IDS, and KRI but not
in FULL, RMV, IF, and HYB. Bottom row shows a large negative CC region, which covers a larger area in
FULL and RMV compared to the interpolation methods.

Illustrative nodes were selected from well-reconstructed (leads 2 and 5, high-CC) and
badly-reconstructed (leads 1, 3, and 4, low-CC) regions. In 2 and 5, the morphology of the reconstructed
beats highly matches that of the ground truth. However, different methods yield varying amplitudes, all of
which are lower than the ground truth peak-to-peak amplitude. The ground truth sock EGMs have
anomalous morphologies due to drug interventions, which makes it hard to assess the performance of the
ECGI reconstructions in 1, 3 and 4, and which could be one of the reasons why ECGI performed poorly in
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Figure 4. Sample evaluation results for Bord-1, BL6. (A) Temporal CC maps over the sock surface from two different views (top
and bottom). (B) Sock (top row) and reconstructed EGMs from five different nodes (marked on the CC maps) for all methods
(bottom row).

Figure 5. Sample evaluation results for Utah-1, BL6. Same format as the previous figure (A) Temporal CC maps over the sock
surface from two different views (top and bottom). (B) Sock and reconstructed EGMs from five different nodes (marked on the
CC maps) for all methods.

this data set. Still, one can observe that the peak-to-peak amplitudes of various reconstructions differ in
general.

In Utah-1 (figure 5), top row shows a negative CC region that is present in all interpolation-based
reconstructions. This region covered a smaller area for HYB compared to the other interpolation methods.
FULL and RMV also had a similarly badly reconstructed (low-CC) region but not as detrimental as in the
interpolation methods. The bottom row shows a low-CC region, similar in shape for all methods, but slightly
smaller in size in KRI, IF, and HYB.

Again, illustrative nodes were selected from well-reconstructed (leads 3 and 5, high-CC) and
badly-reconstructed (leads 1, 2, and 4, low-CC) regions. In 3, other than a variation in the reconstructed
EGM amplitudes, all signal morphologies had high-fidelity to sock recordings. In 5, all reconstructions had
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Figure 6. AT maps for a sample beat for Bord-1, BL6.

Figure 7. AT maps for a sample beat for Utah-1, BL6.

similar morphology, which matches the sock potential on average. However, the reconstructed EGMs had a
larger notch than was observed in the recorded EGM. In 1, all reconstructions differ from the sock beat in
amplitude and morphology; there is a reversal of polarity in the reconstructed EGMs, especially in LAP IDS,
KRI, and IF. FULL, RMV, and HYB retained the biphasic morphology of the ground truth to some extent.

3.2.2. AT estimation performance
The AT estimates of the reconstructed EGMs with both ST methods gave similar AT and LE metrics,
therefore, in the first part of this section, we only present results using the ST smoothing method of Erem
et al (2014). The differences in these methods are illustrated later in figures 8 and 9, and assessed in the
corresponding text.

In both Bordeaux data sets and in Utah-1, estimated AT maps represent the ground truth AT
distributions accurately for all inverse reconstructions. In Bord-1, almost all of the median CC-AT values are
greater than 0.90, except for LAP and HYB in BL3 (0.84) and RMV in BL4 (0.81). In Bord-2, except IDS in
BL6, all median CC-AT are also over 0.90. In Utah-1, the values range between 0.86− 0.92. Utah-2 range
falls to 0.75− 0.79, mostly due to a shift in the early AT estimates to later time instances. Median MAE-AT
values for all reconstructions range between 4.3− 8.9ms in Bord-2 and both Utah data sets. The errors in
the exact timing of activation gets worse in Bord-1, with a range of 13.0− 24.0ms.

Figures 6 and 7 show the ground truth and estimated AT distributions over the heart surfaces from two
different views (top and bottom) for Bord-1 and Utah-1, respectively, for a sample beat in the BL6
configuration. Usually differentiating one method from another was difficult visually. The ST method
inherently applies spatial smoothing on the AT maps, therefore some fine details and variations cannot be
observed with the AT maps. Reconstructed EGM AT estimations in figure 7 had better fidelity to the ground
truth AT distributions at late-activated regions (bottom view). However, early activated regions were not
represented correctly; despite a general fit to the ground truth maps, earliest ATs were estimated with a delay.

Figures 8 and 9 illustrate the beat-to-beat variation in AT estimates of representative sock leads for
Bord-1 and Utah-1, respectively. In these plots, panels A-D show EGMs and the corresponding AT estimates
for four different leads. In each panel, the top row shows the average ground truth sock EGM, with the
median sock AT (over all beats) marked with a red line. The bottom rows show all beats for the reconstructed
EGMs (FULL reconstruction shown) and the corresponding AT estimates with three different AT estimation
methods; red lines stand for the temporal min(dV/dT) approach, blue lines represent ST method (Erem et al
2014) that is also used in our evaluations, magenta lines belong to the SC method proposed in Duchateau
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Figure 8. Panels A-D: EGMs and the corresponding AT estimates for four different leads for Bord-1. For each panel, the top row
shows the average ground truth sock EGM, with the median sock AT (over all beats) marked with a red line. The bottom rows
show all beats for the FULL EGM reconstruction and the corresponding AT estimates, red-temporal AT (mindVdT),
blue-spatiotemporal (ST), magenta-spatially coherent (SC), cyan-median sock AT.

et al (2017), and cyan lines are the ground truth median sock AT. Note that despite pre-filtering, Bord-1 is
still extremely noisy, hence the reconstructed EGMs are also noisy. Utah-1 is a clean (high SNR) dataset.

Bord-1 leads that were reconstructed with less beat-to-beat variability and noise have quite stable AT
reconstructions with all three methods (figure 8, panels (A) and (B)). Furthermore, these AT reconstructions
had good fidelity to the ground truth. In panel (A), due to temporally smooth EGM reconstruction, ATs were
estimated later than the ground truth AT. When the reconstructed EGMs are noisy (figure 8, panels (C) and
(D)), there is large beat-to-beat variability of the AT estimates, which explains higher MAE-AT values with
this data set. In Utah-1 (figure 9), panels (A) and (B) had good reconstructions. In panel (C), the ground
truth had early AT, but the reconstructed EGM found the AT at a later time; although the AT estimate was
good considering the reconstructed EGMs, it was late with respect to the ground truth AT. The example in
panel (D) shows a fragmented EGM reconstruction, which in turn affects the correct timing of the AT
estimates.

3.3. Summary of statistical tests
3.3.1. Interpolated ECG leads
Combined ranking tables as shown in figure 2 were constructed for the median temporal CC (medCC-ECG)
and median temporal RE (medRE-ECG) metrics of the interpolated ECG leads. Figure 10 presents the
summary of these rankings. In the top panel, overall rankings for each metric are summarized. In the bottom
panel, detailed overall rankings are given combining all metric performances. Detailed rankings are available
in the supplementary file.

BL1 to BL6 rankings:HYB had the highest ranking for all BL configurations, and IDS was consistently the
worst. IF and KRI were the next two best methods, having the second and third rankings except in BL4, in
which IF ranked fourth after HYB, LAP, and KRI. In BL3, KRI shared the 1st ranking with HYB. LAP took
the 4th place for all BL configurations except for BL4.

Datasets:HYB ranked the first, except in Bord-1 for which it had the third place after IF and KRI. IDS
again ranked the worst. KRI ranked second except in Utah-2. IF rankings ranged from 1 to 4. LAP had the
third and fourth-best scores for the Bordeaux and Utah datasets, respectively.

Overall performance based on all datasets, BL configurations, and all ECG metrics:HYB performed the
best, IDS the worst, and KRI, IF, and LAP ranked second to fourth.

Individual metrics:MedCC and MedRE overall ranks were both the same as the above-mentioned overall
performance.

Note that with the exception of IDS in a few cases and LAP in one case (see section 3.1), median CC
values are above 0.98 but the median RE values show more variation among the methods. For most of the
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Figure 9. Panels A-D: EGMs and the corresponding AT estimates for four different leads for Utah-1. The description of plots is
the same as in figure 12.

Figure 10. Combined overall ECG rankings in terms of individual metrics (left) and with respect to different BL configurations
and data sets (right).

cases IF performance is similar to HYB or KRI performance, but higher median RE values of IF attained in
Bord-2, BL3 (0.45) and Utah-1, BL4 (0.32) ranks this method worse than the other two. Detailed rankings
are available in the supplementary file.

3.3.2. ECGI performance
Figure 11 shows the combined ranking tables for all ECGI and AT evaluation metrics. Metrics included in
these comparisons are median temporal CC (medCC-EGM), mean temporal CC (meanCC-EGM), median
temporal RE (medRE-EGM), median spatial CC (medspatCC-EGM), CC of ATs (CC-AT), MAE in AT values
(MAE-AT), and LE. As in figure 10, the top panel shows the overall rankings for each metric, and the bottom
panel displays the detailed overall rankings. Detailed rankings are available in the supplementary file.

Overall performance based on all datasets, BL configurations, and all ECGI metrics: Overall performances
of all ECGI metrics based on the ranking of different approaches varied among BL configurations and
datasets. When all rankings were combined, FULL had the best performance and IDS had the worst. RMV
ranked fourth with HYB (2nd) and IF (3rd) outranking LAP and KRI (both 5th) were worse than RMV.

Individual metrics: FULL had the best performance for all metrics except MAE-AT (ranks third). RMV
had the worst performance of all methods in terms of MAE-AT. Considering the ECGI metrics other than
MAE-AT:

IF was better than RMV based on MedCC and CC-AT, similar to RMV based on MeanCC and MedRE,
and worse than RMV based on MedspatCC. It ranked first along with FULL based on MedCC. These results
would suggest that IF improves the global pattern of activation and exact timing compared to RMV but is
worse in terms of the exact timing of activation compared to most interpolation methods. This could impact
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Figure 11. Combined overall ECGI and AT rankings in terms of individual metrics (left) and with respect to different BL
configurations and data sets (right).

cardiac velocity estimation. It has the second worst ranking in terms of MedspatCC after LAP, despite its best
performance in terms of MedCC. This result would imply that despite better fidelity to the sock EGMs in
each lead, potential maps at each time instant deviate from the true maps, possibly due to shifts in the correct
position of the wavefront over the heart surface. This would also explain its poor performance in terms of
MAE-AT. Its performance in terms of LE, on the other hand, is as good as the other methods (ranking after
KRI).

KRI was worse than RMV for all metrics except in MedRE and LE. Despite its lower ranking in terms of
CC-AT compared to other interpolation methods, it is still among the best in terms of MAE-AT. This is the
opposite of what we observed with IF; KRI is better than most methods in terms of capturing the exact
timing of activation. It is the best ranking method along with FULL in terms of LE, implying that it
maintains accuracy for localizing PVCs.

HYB was better than RMV based on MedCC, MeanCC, and MedRE, similar to RMV based on CC-AT,
and worse than RMV based on MedspatCC. It ranked first along with FULL based on MeanCC. Still, it is
among the best three methods including FULL and RMV in all metrics.

LAP was worse than RMV for all metrics except in MeanCC, for which both ranked the same. Along with
HYB, it is the best ranking method in terms of MAE-AT, thus capturing the exact timing of activation better
than the other methods.

IDS was worse than RMV for all metrics, and most of the time performed worse than all other
interpolation methods.

3.4. Relationship between ECG interpolation and ECGI performances
Figures 12 and 13 show the RMS value distributions over the torso (panel (B)), AT (panel (C)) and the
temporal CC (panel (E)) distributions over the heart surfaces for BL6 configuration (panel (A)). The
position of the heart with respect to the torso is also provided for reference (panel (D)). In Bord-1
(figure 12), the best ECG interpolation performances based on the temporal RE metric were by IF and HYB,
closely followed by KRI, and then LAP, with IDS coming last. Qualitatively, one can observe this performance
on the RMS plots of panel (B). Based on the temporal CC metric, the rankings from best to worst were by IF,
closely followed by HYB and LAP, with KRI and IDS sharing the last place. On visual inspection of the maps,
the worst and best performances of the methods can be observed, but despite these variations in the ranks, it
is not easy to differentiate the mid-ranking methods. In the AT reconstructions, IF was again the best in
terms of CC, but in this case, KRI had the lowest performance, with IDS 2nd, LAP, and HYB sharing the 3nd
rank. However, these differences were minor and were not clearly visible on visual inspection of the AT maps
in panel (C) (median CC-AT range is 0.92− 0.94). Rankings of the AT performance based on MAE, however
were different; KRI and HYB shared the 1st place, and IF ranked the last, LAP and IDS in between. Still, the
median MAE ranged between 14− 16ms, thus it is hard to strongly suggest that one method was better than
the others. In this example, AT reconstruction in the RMV was worse than the interpolation methods, as
observed in the maps of panel (C).

In Utah-1 (figure 13) the rankings from best to worst based on the temporal RE metric were by HYB,
KRI, IF, LAP, and finally IDS. Visual inspection of the RMS plots of panel (B) shows slight differences
between the HYB, KRI, and IF maps, while LAP and IDS maps display poor ECG interpolation performance.
In the temporal CC maps of panel (E), HYB clearly shows superior performance than the other interpolation
methods, coming next after RMV and FULL in accuracy. HYB is followed by IF and LAP, then by KRI, and
finally IDS (worst). In the AT reconstructions, HYB was again the best in terms of CC, followed by all other
interpolation methods. However, there was a small variation between the median CC values (0.86− 0.87).
Rankings of the AT performance based on MAE were again different; this time HYB came after the other
methods with a very small difference in the median MAE values (∼0.5ms).

12



Physiol. Meas. 45 (2024) 095012 Y Serinagaoglu Dogrusoz et al

Figure 12. Sample maps for Bord-1, BL6. (A) BL6 configuration, frontal view. (B) RMS value distribution over the torso for the
ground truth and the interpolated ECGs. Only the missing leads show the interpolated RMS value, the measured leads have the
ground truth RMS. (C) AT isochrone maps. (D) Position of the heart with respect to the torso. (E) Temporal CC distribution over
the sock.

Figure 13. Sample maps for Utah-1, BL6. Panel descriptions are the same as in figure 12.

3.4.1. Summary of statistical tests
The relationship between overall ECG reconstruction performance and overall ECGI performance of all
interpolation methods was presented in figure 14. Here, the summary of statistical tests in sections 3.3.1
and 3.3.2 are combined. Since ECG reconstructions do not have a corresponding performance, FULL and
RMV rankings were removed from the overall ECGI performance and only the interpolation methods were
ranked among themselves. HYB ranked the first and IDS ranked the last for both reconstructions. Overall IF,
KRI, and LAP performances were different for each reconstruction:

• KRI ranked second for ECG reconstruction but came the 4th for ECGI.
• Although IF ranked third in terms of ECG reconstructions, it was the second best for ECGI.
• LAP ranked the 4th in terms of ECG reconstructions but it had the 3rd rank for ECGI.
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Figure 14. Relationship between overall ECG reconstruction and ECGI performances of all interpolation methods.

4. Discussion

In this study, we explored how interpolating or removing BLs affects EGM reconstructions in ECGI. We used
four different experimental data from two centers. Six BL configurations were designed based on clinical
experience. The more common scenario where only one or two leads present abnormal data is not addressed
in this study, since the surrounding good leads provide sufficient information due to the spatial correlation
and redundancy in the lead system (Ghodrati et al 2007, Gharbalchi No et al 2020). This means that while
interpolation accuracy will be high, removing the single electrode will also have little to no impact on the
inverse solution and the computational cost required to interpolate these signals would probably not be
worthwhile. The removal of these few leads would be preferable to including those BLs in the inverse
calculation. BL6 configuration was included in this study to mimic extreme conditions in the EP laboratory
where both CARTO and defibrillation electrodes are attached to the patients and some leads have poor signal
quality. As such, we were able to determine the viability of using these limited data sets for ECGI in
combination with interpolation or BL removal.

EGMs were reconstructed using the complete (full) data, BLs-removed data, and interpolated data with
five different interpolation methods, by applying zero-order Tikhonov regularization. Results presented in
this study show that there is no single approach for handling BLs that stands out for all datasets and all BL
configurations. Rather, different approaches were more successful compared to others based on the BL
configuration or dataset. Performances of the methods also vary in terms of different metrics. Moreover, the
removal of the BLs, even in the extreme BL6 scenario, did not significantly degrade the ECGI reconstructions.

4.1. ECG interpolation performance
All interpolation methods resulted in median temporal CC values above 0.9, and in most cases close to 1.00,
which signifies good fidelity of ECG morphology to ground truth in the interpolated leads. However, we
observed median temporal RE values as high as 0.6− 0.7 depending on the dataset, BL configuration, and
the interpolation method choice. In IDS, RE values were significantly higher than the other methods in most
cases, and HYB values were significantly lower, closely followed by IF and KRI in performance.

The summary of statistical tests presented in figure 10 also reflects that overall performance considering
all metrics ranks HYB as the best, KRI as the second best, closely followed by IF, and IDS as the worst method
of interpolation.

4.2. ECGI performance with interpolation or removal of BLs
When the overall statistical test evaluations of figure 11 are examined closely, it is hard to claim one
interpolation method is always superior to the others. These rankings significantly depend on the dataset, BL
configuration, and the metric used to evaluate the results.

Only after pooling all comparisons into a single ranking, one can say HYB has the second-best
performance after using all available ECG leads (FULL), closely followed by IF. However, HYB is a two-step
interpolation method, and it assumes that at least some beats with high signal quality are available from the
BLs, and these beats are used for training. These leads are not always available, especially in the CARTO
reference electrodes (BL3) or defibrillation patch (BL1 and BL2) scenarios.

IF had superior performance based on MedCC-EGM and CC-AT, however, it displayed worse
performance in terms of MedspatCC-EGM and MAE-AT. This suggests that IF improves the global pattern
of activation, but is worse in terms of exact timing of activation compared to most interpolation methods.
This could impact cardiac velocity estimation with this method. Still, IF has the second-best performance in
the overall evaluations after HYB, thus, it could be a better alternative in cases where HYB is not applicable.
KRI was better than most methods in terms of capturing the exact timing of activation, and it was the best
ranking method along with FULL in terms of LE, suggesting that it could be used for localizing PVCs.

LAP was worse than RMV for all metrics except in MeanCC, and worse than the other interpolation
methods except in MAE-AT. Thus, if interpolation has to be applied, HYB, IF, or KRI would be preferable to

14



Physiol. Meas. 45 (2024) 095012 Y Serinagaoglu Dogrusoz et al

LAP. IDS is a simple method, which can be implemented easily based on the distances between a BL and the
available leads. However, its ECGI reconstruction performance was worse than other interpolation methods
and RMV. It was only successful for Bord-1 data, considering all metrics and BL configurations (ranks the
second after IF), and for BL4 configuration considering all datasets and metrics (ranks the first). Thus,
despite its simplicity, this method would not be the best choice for interpolation of BLs.

Removal of BLs ranks the fourth best method based on the overall evaluation. However, looking at
overall evaluations based on a single metric, RMV also performs as well as the best ranking interpolation
methods (see MeanCC-EGM, MedspatCC-EGM, CC-AT).

4.3. AT and LE
Temporal-only approach mindVdT for finding the AT is very sensitive to noise in the EGM
reconstructions (Cluitmans et al 2017). Preprocessing is important; a trade-off is required so that there is no
over-smoothing of the signals prior to derivative computation, while sufficient filtering is applied to avoid
assigning a noise-related minimum derivative as the AT. Spatio-temporal methods proposed (Erem et al
2014, Duchateau et al 2017) and evaluated in recent studies (Cluitmans et al 2017, Schuler et al 2022) remedy
this noise sensitivity to some extent. Here we adopted the spatio-temporal approach proposed by (Erem et al
2014), but results with the SC method (Duchateau et al 2017) were not different in terms of performance
(figures 8 and 9).

The ST AT methods regulate the AT distributions, but over-smoothing of these AT distributions may
result in missing sharp changes in the wavefront and detecting the slow/fast conducting regions. Here, we
observed similar AT distributions with different approaches due to this spatial smoothing. Having
fragmented beats as shown in figure 9(Utah-1, panel (D) example) affects the temporal-only selection of the
correct AT. The spatio-temporal methods are not always successful in fixing this problem.

Median LE values range between 0 and 44mm. Considering all datasets and BL configurations, KRI ranks
first along with FULL, suggesting that it could be preferred as the interpolation method if the ECGI aim is
PVC localization. There is no difference between the performances of the remaining methods (including
RMV). This result is expected because the spatio-temporal AT estimation method smooths the AT maps.

4.4. Relationship between ECG/ECGI interpolation performance
Statistical test summary gives similar performance of ECG and ECGI rankings for the interpolation methods
(figure 14), especially in the best/worst performing methods.

According to figures 12 and 13, the best and the worst ECG interpolation performances were achieved by
HYB and IDS, respectively. Temporal CC plots illustrating the corresponding ECGI performances were
mostly in agreement with those observations.

Overall, Bord-1 was much noisier than the other datasets, negatively impacting its ECGI performance
with all methods. Other than that, there was no noticeable pattern in the performances of the interpolation
methods that can be linked to a specific dataset. However, the locations of the missing leads were more
significant in the ECGI performance. BL1, BL2, BL3, and BL6 removed electrodes in areas of higher potential
gradient during the QRS, possibly removing the most information, significantly influencing which
interpolation method could recover the signals most effectively. The results indicate that inaccurate
interpolation at these leads deteriorates the ECGI performance (as indicated in the IDS results). The ECGI
performance of RMV is superior to IDS, indicating that even removal of several leads is preferable to
interpolating them incorrectly.

ECG morphologies are in general well-preserved by interpolation, but the amplitudes are not, as
discussed previously. Variable performances with different interpolation methods indicate that accurate
reconstruction of the ECG amplitudes is quite important for ECGI success. Thus, if interpolation is the
preferred method for dealing with the missing/bad electrodes, this should be taken into account in choosing
a method.

4.5. Limitations and future work
Despite the comprehensive evaluations presented in this study, there are still some limitations inherent in the
study.

The first limitation is the method used for solving the inverse solution. Here we chose the zero-order
Tikhonov regularization due to its widespread use in the ECGI applications by major research centers (Sapp
et al 2012, Cluitmans et al 2017, Wang et al 2018, Bear et al 2019, Duchateau et al 2019, Molero et al 2023)
rather than focusing on the ‘best’ inverse method to use in ECGI. This choice enhances the relevance and
applicability of our findings to clinical settings, where standardized methods are crucial for consistency and
reliability. However, the method’s effectiveness depends on various factors such as the method used for the
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forward matrix computation, the chosen constraint (zero, first, second order), or the regularization
parameter and how it is defined, as extensively evaluated by Karoui et al (2018).

There is recent and growing interest in applying data-driven and machine-learning techniques to ECGI
with better accuracy (Cámara-Vázquez et al 2021, Doste et al 2022, Onak et al 2022, Jiang et al 2023, Pilia
et al 2023). However, these methods also have limitations in clinical applications, especially the lack of
sufficient training data. We are currently exploring new methods to refine the accuracy and robustness of
ECGI, ultimately improving its clinical utility in diagnosing and treating cardiac conditions.

The measurement artifacts and geometrical errors can cause the minimum derivative-based AT
estimation to be inaccurate for some nodes. The ST approaches proposed in Erem et al (2014), Duchateau
et al (2017)improved the AT estimates to some extent. However, there are still incorrectly marked ATs as
illustrated in figures 8 and 13. Thus, there is still a need for a more robust AT estimation method to improve
pacing site localization performance.

Finally, the methods proposed in this study were evaluated only by using single-site (RV) paced data,
which mimics PVCs. Previous work on the optimization of reduced lead sets based on their ability to
maximize diagnostic information demonstrated the variability in the number and locations of these
optimum leads (Kornreich et al 1985, 1988, Finlay et al 2005, 2006, 2008a, 2008b, Guillem et al 2008). While
we expect the general conclusions of this study to apply to a wider variety of data including sinus rhythm or
different types of arrhythmias, more evaluations have to be carried out to recommend a specific method for
handling missing/BLs in the clinical applications of ECGI.

5. Conclusion

This study demonstrated for the first time that removing the missing/BLs from the ECGI analysis performs
comparable results with utilizing all leads. Thus, the removal of BLs would be a safer approach if one is not
confident with the interpolation performance, the BLs are located at high-amplitude/high-potential gradient
regions, or there are a significant number of missing leads.

Interpolation methods such as the IF or the Kriging method, which successfully take into account the
spatial information and correlations of the remaining BSP leads and do not require training, often result in
more accurate and reliable estimations compared to simpler interpolation methods.

These take-home messages of the study constitute a significant step towards improving the clinical utility
of ECGI in diagnosing and treating cardiac conditions, especially in real-time clinical applications.
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