
Aerospace Science and Technology 155 (2024) 109597

Contents lists available at ScienceDirect

Aerospace Science and Technology

journal homepage: www.elsevier.com/locate/aescte

Relative position estimation using modulated magnetic field for close 

proximity formation flight

Takuma Shibata a,∗, Halil Ersin Söken b, Shin-ichiro Sakai c

a Department of Mechanical, Aerospace and Materials Engineering, Muroran Institute of Technology, 27-1, Mizumoto-cho, 050-8585, Muroran, Japan
b Aerospace Engineering Department, Middle East Technical University, Cankaya, Ankara, 06800, Turkey
c Japan Aerospace Exploration Agency/Institute of Space and Astronautical Science, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, 252-5210, Japan

A R T I C L E I N F O A B S T R A C T

Communicated by Jayaram Sanjay

Keywords:

Relative position estimation

Spacecraft formation flight

Close proximity operation

AC magnetic field

This paper presents a method to estimate relative position vectors between spacecraft equipped with magnetic 
coils and magnetic field sensors for close proximity operation. Filters can segregate a magnetic field with a 
particular frequency if spacecraft drive their coils with this specific frequency. The proposed method utilizes the 
amplitude of the magnetic field with a particular frequency to estimate relative position vectors. The method 
consists of an initial position estimator and a sequential position estimator, which is an unscented Kalman filter. 
The initial position estimator provides a coarse estimate for the relative position vectors using the segregated 
magnetic field. Relation between the magnetic field and relative position vector is derived analytically in this 
article for the initial position estimator. The unscented Kalman filter refines the estimation accuracy by initializing 
the filter with the estimate by the initial position estimator. It is shown that a spacecraft can conduct relative 
position vector estimation using the magnetic field of a target spacecraft, provided that a few conditions clarified 
in the article are satisfied. Finally, the proposed estimators are evaluated numerically via simulations.
1. Introduction

In recent years, large satellites have been used for astronomy and 
Earth observation, and they have been producing noteworthy results. 
The larger the optical equipment, the higher target resolution images 
can be acquired. However, cost and development time for large space-

craft is a primary concern. Moreover, if the spacecraft fails, the whole 
mission fails. As a solution to this problem, Formation Flight (FF), 
specifically with small satellites, has been studied as a breakthrough in 
space technologies. FF technologies have been already demonstrated by 
GRACE [1,2], GRAIL [3], Tandem-X and TerraSAR-X [4,5], and PRISMA 
[6,7] missions in space. In many of these FF missions, thrusters control 
the relative orbit between satellites. As to the other methods, Electro-

magnetic Formation Flight (EMFF) [8–13] has been studied. Compared 
with the FF using thrusters, whose mission term is limited by fuel, EMFF 
have the potential to be used for a longer duration.

Accurate relative position estimation is essential to control the rel-

ative orbit, especially for close proximity formation flight. GPS is one 
of the options to determine the relative orbit [14,15]. In the PRISMA 
mission, carrier-phase differential GPS (CDGPS) was employed and 
achieved a relative position error of a few centimeters [16]. For CDGPS, 

* Corresponding author.

however, all satellites should receive signals from the same GNSS satel-

lites. In addition to the GPS technique, vision-based methods are power-

ful in determining the relative position and attitude [17,18]. However, 
the target satellite should be in the image sensor’s field of view (FoV). 
Also the illumination conditions must be favorable and stable, which 
is difficult to have in space. Moreover, laser range finders are also a 
considerable option to measure the relative position with high accuracy 
[19]. However, to get measurements, the spacecraft should hit the laser 
beams to the target spacecraft in formation, which imposes strict con-

straints on relative rotational and translational motions similar to the 
vision-based methods.

As a specialized method for the EMFF, the relative position can 
be estimated with millimeter accuracy by measuring the frequency-

multiplexed magnetic fields [20]. The approach uses induced voltage 
by the other coils driven with multiple frequencies for relative position 
and attitude estimation. This method applies to a telescope comprising 
mirror segment satellites whose relative positions are adjusted using the 
EMFF technique. This approach was evaluated with the condition that 
all satellites have three magnetic coils driven with different frequen-

cies. Although an experiment is conducted to evaluate this method, it 
is tested in a region where the induced voltages are accurately known 
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with respect to the relative position and attitude. This approach cannot 
solve the real-time relative position and attitude estimation problem. 
Using a look-up table is proposed as the solution. However, it is not 
suitable for real-time operation as also mentioned by the authors. In ad-

dition to the above method, position and attitude estimation using the 
magnetic field has been studied for local positioning systems in robotics 
[21,22] and medical fields [23]. In the Ref. [21], a method to estimate 
relative position and attitude using the magnetic field is proposed. Al-

though this method enables a full 6-degrees-of-freedom pose estimation, 
it only works for small angles. In addition, Ref. [22] presents a method 
to estimate the location of a robot by measuring the magnetic field. This 
study analytically derives the relation between the absolute position and 
the magnetic field. By measuring the magnetic field by multiple mag-

netic field sensors (MFSs) at known locations, localization of the robot 
is achieved in the same way as the GPS functions. In another study, a 
method to position MFS in the patient’s body is studied for surgery, [23]. 
By using two magnetic coils at a known location, the attitude and loca-

tion of MFS in the patient’s body can be estimated to increase the success 
rate of the surgery. These above methods are effective, but the locations 
of magnetic coils or MFSs should be accurately known. Therefore, mul-

tiple spacecraft should cooperate to estimate a target spacecraft position 
when these methods are applied.

This paper investigates a method to estimate the position vector of 
an orbiting target spacecraft for proximity formation flight by using two 
MFSs. In comparison with [20], the proposed method can provide a so-

lution of relative position using the measured magnetic field. A target 
can be found even if the position is completely unknown initially. In ad-

dition, this method works when the relative position between spacecraft 
dynamically changes and does not require a fixed formation. Last, the 
proposed method is easy to apply on a spacecraft system using the MFSs, 
which are technically not complex equipment. The MFSs measure the 
Alternating Current (AC) magnetic field modulated with specific single-

frequencies for all spacecraft in the formation to estimate the relative 
position vector. The modulation frequencies are unique in the forma-

tion, and this uniqueness serves for identifying each spacecraft. When 
the other spacecraft is orbiting in close proximity, MFSs on the space-

craft can measure collective sum of all the frequency components for 
the magnetic field. Our approach to segregating the magnetic field with 
a target frequency employs the Band-Pass Filter (BPF). Due to sampling 
frequency of the MFS, available frequencies are limited for the BPF. 
Therefore, a single-frequency is given to each spacecraft in this study. 
Using the amplitude of the magnetic field filtered by the BPF, the rela-

tive position vector is estimated using the proposed method consisting of 
two different estimators for initial and sequential position estimations. 
For the initial position estimator, the relation between the magnetic field 
and relative position vectors is analytically derived in this paper. The se-

quential position estimator uses an Unscented Kalman Filter (UKF). The 
proposed method is evaluated by numerical simulation, and the perfor-

mance and limitations of the proposed method are discussed. We assume 
that the proposed method is applied to the EMFF. However, it is com-

patible with any FF method if the spacecraft has coils and MFSs.

2. Dynamics with AC driven magnetic field

EMFF spacecraft can apply magnetic force to only specific spacecraft 
in the formation by driving their magnetic coils with specific frequen-

cies. This technique, which is called the grouping method in this paper, 
has been discussed and studied so far in [24,25]. Thanks to this group-

ing method, it can be assumed that disturbance force and torque caused 
by our proposed method do not greatly affect the formation control.

Considering spacecraft ℙ ∈ {1,2,3,4, ...,𝑁} are orbiting nearby, 
spacecraft 𝑞 attempts to form a group with spacecraft 𝕊 = {𝑠|𝑠 ∈ ℙ, 𝑠 ≠
𝑞}. The spacecraft 𝑞 achieves this by driving the coils to generate the 
2

following magnetic moment vector:
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𝑴𝑞 =
[
𝑀𝑥𝑞,𝑀𝑦𝑞,𝑀𝑧𝑞

]𝑇
=
∑
𝑠∈𝕊

𝒎𝑞→𝑠sin(𝜔𝑠𝑡+ 𝜙𝑞)
(1)

where, 𝒎𝑞→𝑠 =
[
𝑚𝑥,𝑚𝑦,𝑚𝑧

]𝑇
𝑞→𝑠

is amplitude of the magnetic moment 
vector along each axis, 𝜔𝑠 is the angular frequency assigned to target 
spacecraft 𝑠, 𝜙𝑞 is the phase shift, and 𝑡 is time. Generating the magnetic 
moment vector mixing components with angular frequencies of space-

craft 𝑠, the spacecraft 𝑞 can apply the magnetic force and torque to the 
spacecraft 𝑠. The magnetic field at spacecraft 𝑠 is given as

𝑩𝑞 =
𝜇0

4𝜋𝑟3
𝑞𝑠

{
−𝑴𝑞 +

3
(
𝑴𝑞 ⋅ 𝒓𝑞𝑠

)
𝑟2
𝑞𝑠

𝒓𝑞𝑠

}
(2)

where, left superscript  stands for the spacecraft 𝑞 fixed frame system, 
𝑩𝑞 is magnetic field vector generated by the spacecraft 𝑞, 𝒓𝑞𝑠 is relative 
position vector from the spacecraft 𝑞 to spacecraft 𝑠, and 𝑟𝑞𝑠 is the norm 
of the relative position vector 𝒓𝑞𝑠, which is 𝑟𝑞𝑠 = ||𝒓𝑞𝑠||. Using the Eq. (1)

together with the Eq. (2), the total magnetic force 𝑭̄ 𝑞→𝑠 in one cycle time 
Δ𝑡 = 𝑡𝑓 − 𝑡0 = 2𝜋∕𝜔𝑠 that is applied on the spacecraft 𝑠 by the spacecraft 
𝑞 can be given as [26]

𝑭̄ 𝑞→𝑠Δ𝑡 = 𝒇 𝑞→𝑠

𝑡𝑓

∫
𝑡0

sin(𝜔𝑠𝑡+ 𝜙𝑠)sin(𝜔𝑞𝑡+ 𝜙𝑞)𝑑𝑡 (3)

where, 𝒇 𝑞→𝑠 is the magnitude of the magnetic force vector exerted on 
spacecraft 𝑠 by spacecraft 𝑞. The total magnetic force is finally expressed 
as follows:

𝑭̄ 𝑞→𝑠 =
⎧⎪⎨⎪⎩
𝒇 𝑞→𝑠

2
cos(𝜙𝑠 −𝜙𝑞) if 𝜔𝑠 = 𝜔𝑞

𝟎 otherwise
(4)

Similar to the magnetic force, the total magnetic torque 𝑻 𝑞→𝑠 on the 
spacecraft 𝑠 by the spacecraft 𝑞 in one cycle time Δ𝑡 is expressed as

𝑻̄ 𝑞→𝑠Δ𝑡 = 𝝉𝑞→𝑠

𝑡𝑓

∫
𝑡0

sin(𝜔𝑠𝑡+𝜙𝑠)sin(𝜔𝑞𝑡+𝜙𝑞)𝑑𝑡. (5)

The Eq. (5) is finally solved as

𝑻̄ 𝑞→𝑠 =
⎧⎪⎨⎪⎩
𝝉𝑞→𝑠

2
cos(𝜙𝑠 − 𝜙𝑞) if 𝜔𝑠 = 𝜔𝑞

𝟎 otherwise
(6)

The total force and torque in one cycle time are expressed similarly. 
As seen in Eq. (4) and Eq. (6), the magnetic force and torque between 
spacecraft 𝑞 and 𝑠 exist only if the angular frequency 𝜔𝑞 matches to 
𝜔𝑠. Otherwise, averaging over one complete cycle cancels the force and 
torque. In addition, the magnetic force and torque decrease by phase 
shift error between coils driven by the spacecraft 𝑞 and 𝑠. The clocks on 
formation spacecraft should be synchronized so that phase shift error is 
minimized and there is no torque and force loss. Our proposed method 
utilizes the property of the grouping method such that the magnetic 
force and torque do not affect the formation control by driving their 
magnetic coils with different frequencies.

3. Segregation of magnetic field with a specific single-frequency

Our proposed method aims to estimate relative position vector be-

tween spacecraft in formation by measuring the modulated magnetic 
field with specific single-frequency. It is assumed that multiple space-

craft are orbiting in close proximity with respect to spacecraft 𝑞 as shown 
in Fig. 1. Spacecraft 𝑞 operates the magnetic coils with the additional 

sinusoidal components in Eq. (1) as
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Fig. 1. EMFF spacecraft generating magnetic moment vector with specific fre-

quency for controlling and informing the position to the other spacecraft.

𝑴𝑞 =
∑
𝑠∈𝕊

𝒎𝑞→𝑠sin(𝜔𝑠𝑡+ 𝜙𝑞) +𝒎E𝑞sin
(
𝜔E𝑞𝑡

)
=𝑴CO𝑞 +𝑴E𝑞

(7)

where, subscripts CO and E specify magnetic moments for control and 
position estimation respectively. These two moments can be segregated 
using the BPF in practice. The angular frequency 𝜔E𝑞 is unique to the 
formation such that it does not create disturbance force and torque in 
one complete cycle time. Substituting the Eq. (7) into Eq. (2), magnetic 
field by the spacecraft 𝑞 is expressed as a linear combination:

𝑩𝑞 =
{∑

𝑠∈𝕊
𝑩CO𝑞

(
𝒎𝑞→𝑠,𝜔𝑠

)
+𝑩E𝑞

(
𝒎E𝑞,𝜔E𝑞

)}
. (8)

Considering spacecraft 𝑝 ∈ ℙ flying nearby the spacecraft 𝑞, a MFS on a 
spacecraft 𝑞 measures total magnetic field 𝑩TOT as

𝑩TOT = 𝑩𝑞 +
∑
𝑝∈ℙ

𝑹∕ ⋅ 𝑩𝑝 + 𝑩𝑑 (9)

where, 𝑹∕ is Direction Cosine Matrix (DCM) mapping from each 
spacecraft 𝑝 fixed frame  to spacecraft 𝑞 fixed frame , and 𝑩𝑑 is 
the disturbance magnetic field due to the other components and the 
Earth’s magnetic field (assuming that the spacecraft are all in Earth or-

bit). Note that the magnetic field 𝑩𝑞 may not be calculated by using 
Eq. (2) because of relative distance between the magnetic coils and MFS 
on the spacecraft 𝑞. With the configuration, the magnetic field should 
be expressed by Biot-savart law as

𝑩 =
𝜇0𝐼𝑁

4𝜋 ∫
𝑑𝒓 ×

(
𝒓𝑚 − 𝒓′

)
|𝒓𝑚 − 𝒓′|3 (10)

where, 𝐼 is current, 𝑁 is number of turns, and 𝑑𝒓 is the infinitesimal 
wire segment, and 𝒓𝑚 is position vector of MFS with respect to center 
of the coil, and 𝒓′ is position vector of the wire segment with respect to 
the center of the coil.

Our proposed method estimates the relative position vector using the 
magnetic field modulated with a specific single-frequency. Spacecraft 𝑞
segregates magnetic field 𝑩E𝑝 by using the BPF to estimate the position 
vector of spacecraft 𝑝. Transfer function of the BPF, 𝐻(𝑠), is expressed 
as follows:

𝐻(𝑠) = 𝑂(𝑠)
𝐼(𝑠)

=
(Ω𝑓∕𝑄)𝑠

𝑠2 + (Ω𝑓∕𝑄)𝑠+Ω2
𝑓

(11)

where, Ω𝑓 is the peak frequency, and 𝑄 is q-factor. Employing the pre-

warping technique, the discretized BPF by Tustin transform is expressed 
3

as
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𝑜[𝑘] =
𝛼Ω𝑓 (𝑖[𝑘] − 𝑖[𝑘− 2]) + 2𝑄𝛽𝑜[𝑘− 1] + 𝛾𝑜[𝑘− 2]

𝛼2𝑄+ 𝛼Ω𝑓 +Ω2
𝑓
𝑄

(12)

where, 𝛼 = Ω𝑓∕tan(Ω𝑓Δ𝑡s∕2), 𝛽 = (𝛼2 − Ω2
𝑓
), 𝛾 = {𝛼Ω𝑓 −𝑄(𝛼2 + Ω2

𝑓
) }, 

and Δ𝑡s is the sampling time.

4. Initial position estimator

4.1. Relative position vector using magnetic field and moment vectors

If the relative position between two spacecraft is unknown, it is es-

timated first by a Initial Position Estimator (IPE). For the IPE, relation 
between relative position vector and magnetic field is derived in this 
section.

If the segregation is successfully accomplished by the BPF, the rela-

tive position vector is calculated. The magnetic field of spacecraft 𝑝 is 
expressed as

𝑩𝑝 =
𝜇0

4𝜋𝑟4
𝑝𝑞

(
−𝑴𝑝𝑟𝑝𝑞 + 3𝑀𝑝𝒓𝑝𝑞cos𝜃

)
(13)

where, 𝑀𝑝 = ||𝑴𝑝||, 𝐵𝑝 = ||𝑩𝑝||, and 𝜃 is an angle between the mag-

netic moment vector 𝑴𝑝 and the relative position vector 𝒓𝑝𝑞 as

𝜃 = cos−1
(𝑴𝑝 ⋅

𝒓𝑝𝑞
𝑀𝑝𝑟𝑝𝑞

)
. (14)

The norm of the magnetic field is

𝐵𝑝 = ||𝑩𝑝|| = 𝜇0𝑀𝑝

4𝜋𝑟3
𝑝𝑞

√
1 + 3cos2𝜃 (15)

The norm of the relative position vector is derived from Eq. (15) as

𝑟𝑝𝑞 = 𝑟𝑞𝑝 =
(
𝜇0𝑀𝑝

4𝜋𝐵𝑝
𝜁

)1∕3
(16)

where, 𝜁 =
√
1 + 3cos2𝜃. This Eq. (16) is similarly derived in Ref. [22]. 

Eq. (16) insists that the range can be obtained if norms of the magnetic 
moment and the magnetic field by the coil are known. Thus Eq. (16) can 
be used for target spacecraft position estimation in a similar approach 
with the GPS based positioning, if at least four spacecraft can measure 
the target magnetic field. Substituting Eq. (16) into Eq. (13), the relative 
position vector is derived as:

𝒓𝑝𝑞 =
𝑟𝑝𝑞

3cos𝜃
(𝑩𝑝𝜁 + 𝑴̂𝑝

)
(17)

where, ̂ indicates the unit vector. See Appendix A for the details of 
the analytical derivation of Eq. (16) and Eq. (17). Although Eq. (17)

expresses relation between the relative position and magnetic field vec-

tors, the equation does not hold as 𝜃 approaches to 0, for which the 
magnetic moment vector becomes parallel to the position vector. A so-

lution to avoid such singularity can be using the unit direction vector 
instead. Noting that the position vector 𝒓𝑝𝑞 of Eq. (17) consists of two 
parts, which are the magnitude and the unit direction vector parts as 
𝒓𝑝𝑞 = 𝑟𝑝𝑞 𝒓̂𝑝𝑞 , the singularity clearly exists in the latter. By normalizing 
𝒓̂𝑝𝑞 , the unit vector part is expressed without the singularity as:

 𝒓̃𝑝𝑞 =
 𝒓̂𝑝𝑞|| 𝒓̂𝑝𝑞||

=
1

3cos𝜃

( 𝑩̂𝑝𝜁 + 𝑴̂𝑝

)√{
1

3cos𝜃

( 𝑩̂𝑝𝜁 + 𝑴̂𝑝

)}2

=
 𝑩̂𝑝𝜁 + 𝑴̂𝑝√( 𝑩̂𝑝𝜁 + 𝑴̂𝑝

)2
.

(18)
Then, Eq. (17) is rewritten as
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𝒓𝑝𝑞 = 𝑟𝑝𝑞  𝒓̃𝑝𝑞. (19)

The relative position vector of spacecraft 𝑝 with respect to the spacecraft 
𝑞 is finally expressed as:

𝒓𝑞𝑝 =𝑹∕ ⋅ (−𝒓𝑝𝑞)
= 𝑟𝑞𝑝 𝒓̃𝑞𝑝.

(20)

As a defect, the normalization causes a sign-indefinite relative position 
vector because of the elimination of 1∕cos𝜃 term. If only one MFS mea-

sures the magnetic field with a single-frequency, therefore, this method 
cannot determine the sign of the relative position vector. Even if 1∕cos𝜃
term was not eliminated, the sign ambiguity still exists since the true 
angle 𝜃T is unknown as long as the true position vector is not known as 
shown in Eq. (14). This sign ambiguity is mainly due to the fact that the 
magnetic field values at two locations are equal, i.e. 𝑩𝑝(𝒓𝑝𝑞) =𝑩𝑝(−𝒓𝑝𝑞)
as in Eq. (2). A simple solution of this sign ambiguity is to use two 
MFSs on all spacecraft. In this case, the distance between the two MFSs 
should be larger than errors of IPE. These errors of IPE are discussed in 
Sec. 4.2. To estimate relative position vector by the IPE, segregated mag-

netic field, start timing and amplitude of modulated magnetic moment 
are required as information to solve Eq. (20).

4.2. Sensitivity analysis for relative position depending on zeta function 
𝜁(𝜃)

In the IPE process, the unknown zeta function 𝜁(𝜃) in Eq. (16) and 
(20) is a problem. A solution to this problem is that 𝜁(𝜃) = 1.5 is sub-

stituted in Eq. (16) and (20), which is the intermediate value such that 
1 ≤ 𝜁(𝜃) ≤ 2 (∀𝜃) [22]. In this section, further analysis is conducted to 
understand the effects of the zeta function 𝜁(𝜃) on the relative position 
estimation accuracy. A set of guides to preset the zeta function is dis-

cussed. Specific to this section, it is assumed that the magnetic moment 
and magnetic field are ideally acquired (e.g., there is no noise nor er-

ror in these values), so the actual effect of different zeta values can be 
evaluated.

4.2.1. Absolute position with the zeta function 𝜁(𝜃)
Introducing the subscripts T and A for true and calculated absolute 

positions respectively, the error 𝑒 is expressed using Eq. (16) as follows:

𝑒 = 𝑟A𝑝𝑞 − 𝑟T𝑝𝑞

= 𝑟T𝑝𝑞

{(
𝜁A(𝜃A)
𝜁T(𝜃T)

)1∕3
− 1

}
(21)

See Appendix B.1 for the details of the derivation of Eq. (21). From 
Eq. (21), it is seen that the error depends on 𝜁A∕𝜁T. The percent of error 
is expressed as 𝑒% = (𝑒∕𝑟T𝑝𝑞) × 100[%] with respect to the true absolute 
position. When spacecraft 𝑝 is on circular orbit around spacecraft 𝑞, the 
angle 𝜃T varies as 0 ≤ 𝜃T ≤ 2𝜋, which is 1 ≤ 𝜁T ≤ 2. If 𝜁A = 2 is preset on 
an on-board computer of the spacecraft 𝑞, the maximum and minimum 
errors occur when 𝜁T = 1 and 𝜁T = 2, respectively. Then, the maximum 
and minimum errors are calculated as 𝑒max = +0.26𝑟T𝑝𝑞 and 𝑒min = 0. 
Similarly, the errors are 𝑒max = 0 and 𝑒min = −0.21𝑟T𝑝𝑞 when 𝜁A = 1 is 
preset. If the 𝜁A = 1.44 is preset, the error occurs in 𝑒 = ±0.13𝑟T𝑝𝑞 . These 
results are shown in Fig. 2. From the analysis, the 𝜁𝐴 determines how the 
error appears. Therefore, the 𝜁𝐴 can be preset suitably for each mission.

4.2.2. Position vector with the zeta function 𝜁(𝜃)
As with the absolute position, the unit position vector has also the 

zeta function 𝜁(𝜃). The zeta function is defined 𝜁U for the unit vector 
𝒓̃𝑝𝑞 using Eq. (19) to distinguish from the 𝜁A in absolute position cal-

culation. Defining calculated position vector 𝒓C𝑝𝑞 = 𝑟A𝑝𝑞(𝜁A)𝒓U𝑝𝑞(𝜁U) to 
distinguish from the true position vector, the error for the calculated 
4

position vector 𝒆 is expressed as follows:
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Fig. 2. Calculated absolute position on true orbital plane: True orbit is black 
solid line, green region is absolute position calculated with 𝜁A = 2, and red re-

gion is absolute position calculated with 𝜁A = 1. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Absolute error of calculated position vector depending on zeta functions 
𝜁T and 𝜁U .

𝒆 = 𝒓C𝑝𝑞(𝜁A, 𝜁U) − 𝒓T𝑝𝑞(𝜁T)

= 𝑟T𝑝𝑞𝜁TΛB
𝑩̂𝑝||𝒓̂T𝑝𝑞|| + 𝑟T𝑝𝑞ΛM

𝑴̂𝑝||𝒓̂T𝑝𝑞||
= 𝑟T𝑝𝑞

(
𝜁TΛB

𝑩̂𝑝||𝒓̂T𝑝𝑞|| +ΛM
𝑴̂𝑝||𝒓̂T𝑝𝑞||

) (22)

where,

ΛB =
||𝒓̂T𝑝𝑞||||𝒓̂U𝑝𝑞|| 𝜁U𝜁T 𝑟A𝑝𝑞𝑟T𝑝𝑞

− 1 (23)

and

ΛM =
||𝒓̂T𝑝𝑞||||𝒓̂U𝑝𝑞|| 𝑟A𝑝𝑞𝑟T𝑝𝑞

− 1 (24)

See Appendix B.2 for the details of the derivation of the above error ex-

pression. Although the analytical expression of error is complex, Eq. (22)

gives a way to determine the 𝜁U. The absolute value of error 𝒆 depend-

ing on the 𝜁U and 𝜁T is shown in Fig. 3. As seen in Fig. 3, large error 
occurs when 𝜁T → 1 (𝜃T → 𝜋∕2) because the magnetic field vectors are 
measured as equal on plane perpendicular to magnetic moment vector, 
which 𝜃T = 𝜋∕2. Therefore, this proposed method does not work in the 
case that MFS is completely on the plane. The error for 𝜁T = 1 reaches 
to minimum when both 𝜁T = 𝜁U = 1. From the results, the zeta function 
𝜁U should be preset as 𝜁U = 1 although 1 ≤ 𝜁A ≤ 2. The process of IPE is 
summarized in Algorithm 1.

4.2.3. A method to update 𝜁(𝜃) for accurate initial position estimation

Even if the initial position vector that is calculated using Eq. (20) is 

a rough estimate, the UKF that is used next minimizes the errors. How-
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Fig. 4. Absolute error of calculated position vector with updated 𝜁 ′T with 𝜁A = 1.44 and 𝜁U = 1.0: (X-Z plane: top right), (Y-Z plane: top left), (X-Y plane: bottom 
right), (relation between spacecraft 𝑝 (orange dot) and position of spacecraft 𝑞 (Blue lines): bottom left).
ever, large initial errors make the UKF converge in long time and the 
sign ambiguity may not be solved quickly even if two MFSs are used. 
To reduce the calculation error, 𝜁A and 𝜁U can be updated with a better 
estimate as 𝜁 ′T. The 𝜁 ′T is estimated by using the calculated position vec-

tor, which the IPE outputs in the first iteration 𝒓C𝑞𝑝, and the magnetic 
moment vector 𝑴𝑝 by using Eq. (14) as

𝜁 ′T =

√√√√√1 + 3

(𝑴𝑝 ⋅ 𝒓C𝑞𝑝

𝑀𝑝𝑟C𝑞𝑝

)2

.

(25)

This process corresponds to line 9 ∼ line 11 in Algorithm 1. Assuming 
that the magnetic moment vector and the magnetic field vector can be 
acquired ideally, absolute error for the calculated position vector with 
𝜁 ′T as ||𝒓C𝑝𝑞−𝒓T𝑝𝑞|| occurs as shown in Fig. 4. The unit magnetic moment 
vector is 𝑴̂𝑝 = [0, 1, 0]𝑇 shown as an arrow in Fig. 4 (bottom right). The 
black line in Fig. 4 shows the location where the proposed method does 
not work because the magnetic field vectors within the plane perpen-

dicular to the magnetic moment vector of the spacecraft 𝑝 are equal. As 
seen in Fig. 4, ±10.2[%] error should be taken into account as the max-

imum in the IPE process using Eq. (19) with the updated zeta function, 
which the preset zeta functions are 𝜁A = 1.44 and 𝜁U = 1.0. In actual op-

eration, this error in the initial position estimate will be larger due to 
the magnetic sensor errors and other factors, which are not accounted in 
this section. Thus the estimate by the IPE for the relative position must 
be refined using the UKF.

5. Sequential position estimator using the unscented Kalman 
filter

Once the initial relative position is estimated, an Unscented Kalman 
Filter (UKF) is run for sequential position estimation. Nonlinear state 
and observation equations are given as follows:{

𝑿̇ = 𝒇 (𝑿,𝒖) +𝒘𝑟

𝒀 = 𝒉
(
𝑿,𝒘𝑏

) (26)

where, 𝑿 ∈ ℝ𝑛 and 𝒀 ∈ ℝ𝑚 are states and measurements. The process 
noise 𝒘𝑟 ∼ 𝑵(0, 𝜎2

𝑟
) and measurement noise 𝒘𝑏 ∼ 𝑵(0, 𝜎2

𝑏
) are white 
5

Gaussian noise with covariances 𝜎2
𝑟

and 𝜎2
𝑏

respectively. The functions 
Algorithm 1 Algorithm for initial position estimation.

Input: Magnetic field 𝑩TOT, Magnetic dipole vector 𝑴𝑝, and DCM 𝑹∕
Output: Relative position vector 𝒓C𝑞𝑝

Initialisation :

1: Set 𝜁A to 1.0 ∼ 2.0 and 𝜁U = 1.0
OBC process :

2: Segregate target magnetic field 𝑩𝑝(𝜔𝑝) from 𝑩TOT using BPF according 
to Eq. (12)

3: if 𝑩𝑝(𝜔𝑝) ≥𝒘𝑏 then

4: Compute 𝑴𝑝 =𝑹∕ ⋅ 𝑴𝑝

5: Compute 𝐵𝑝 = ||𝑩𝑝(𝜔𝑝)||
6: Compute 𝑀𝑝 = ||𝑴𝑝||
7: Compute 𝑟𝑞𝑝 according to Eq. (16) using 𝜁A
8: Compute 𝒓𝑞𝑝 according to Eq. (20) using 𝜁A and 𝜁U
9: Compute 𝜁 ′T according to Eq. (25)

10: Update 𝜁A ← 𝜁 ′T and 𝜁U ← 𝜁 ′T
11: Compute 𝒓𝑞𝑝 according to Eq. (20)

12: else

13: 𝒓𝑞𝑝 =NaN
14: end if

15: return 𝒓𝑞𝑝

Algorithm 2 Algorithm for sequential position estimation.

Input: Initial relative state vector 𝑿0 = [𝒓𝑞𝑝, 𝒗𝑞𝑝0], where 𝒗𝑞𝑝0 = 𝟎, and co-

variance matrix 𝑷 0, 𝑩TOT
Output: 𝑿̃

Initialisation :

1: Generate sigma points  =
[
𝜒0, 𝜒𝑖∈{1,2,3...2𝑛}

]
2: Calculate weights 𝑊𝑖

Begin :

3: Process time update of predicted states

4: Update sigma points

5: Process time update of predicted observation

6: Segregate target magnetic field modulated 𝑩𝑝

(
𝜔𝑝

)
from 𝑩TOT using BPF 

according to Eq. (12)

7: Update 𝑿̃ by observation update

8: return 𝑿̃

𝑓 ∶ℝ𝑛 →ℝ𝑛 and ℎ ∶ℝ𝑛 →ℝ𝑚 represent nonlinear dynamics and obser-
vation models. Employing Hill-Clohessy-Wiltshire (HCW) equation [27], 
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Table 1

Numerical simulation condition.

Parameter Value

Orbit Altitude [km] 500

OBC Clock frequency [Hz] 10

BPF Q factor [-] 35
STT Mean [arcsec] 0

SD[arcsec] 30

Sampling frequency [Hz] 2.0

MFS Mean [nT] 0

SD [nT] 100

Sampling frequency [Hz] 10

Coil Radius [m] 0.1

Height [m] 0.1

Turn number [-] 3000

Magnetic moment [Am2] [0,10,0]𝑇
Frequency of spacecraft 𝑞 [Hz] 1.0

Frequency of spacecraft 1 [Hz] 0.5

Frequency of spacecraft 2 [Hz] 1.5

Frequency of spacecraft 3 [Hz] 2.0

Frequency of spacecraft 4 [Hz] 2.5

Fig. 5. Spacecraft orbits with respect to the spacecraft 𝑞: Black solid line, purple 
dashed line, blue dot-dashed line, and orange dots line indicate orbits of space-

craft 1, 2, 3, and 4 respectively. Green dot is the location of spacecraft 𝑞.

the relative orbit dynamics of spacecraft 𝑝 with respect to spacecraft 𝑞
is expressed as:

𝒇 (𝑿,𝒖) =
⎧⎪⎨⎪⎩
𝑥̈ = 3𝑛2𝑥+ 2𝑛𝑦̇+ 𝑢𝑥
𝑦̈ = −2𝑛𝑥̇+ 𝑢𝑦
𝑧̈ = −𝑛2𝑧+ 𝑢𝑧

(27)

where, a relative state vector is 𝑿 = [𝒓𝑞𝑝, 𝒗𝑞𝑝]𝑇 , 𝑛 =
√
𝜇0∕𝑅3 repre-

sents angular rate of circular orbits around the Earth with the radius of 
𝑅, and 𝒖 = [𝑢𝑥, 𝑢𝑦, 𝑢𝑧]𝑇 is input force. If the orbits are not circular, the 
other orbit model such as Yamanaka-Ankerson’s equation [28] should 
be applied. The observation equation is given as

𝒉(𝑿,𝒘𝑏

)
=𝑹∕ (𝜽+𝒘𝑏1) ⋅ 𝑩𝑝

(𝑴𝑝,
 𝒓𝑝𝑞

)
+𝒘𝑏2 (28)

where, 𝜽 is relative attitude between  and , 𝒘𝑏1 and 𝒘𝑏2 are the 
noise of the attitude sensor and the MFS respectively. The algorithm of 
sequential relative position estimation is shown in Algorithm 2. Reader 
may refer to [29] for standard UKF formulation.

6. Conditions for using the proposed method

The proposed method mainly consists of two parts, which are the 
IPE and the UKF. Following requirements must be fulfilled to use the 
proposed IPE and UKF.

1. Spacecraft in the formation must have a Star Tracker (STT), two 
MFSs, and magnetic coils at least.

2. Spacecraft in the formation can drive magnetic coils with an as-

signed frequency, direction and amplitude for the position vector 
6

estimation.
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Fig. 6. Spacecraft configuration in the numerical simulations.

3. Nyquist frequency of MFS should be greater than AC magnetic field 
for the position estimation. If the Nyquist frequency is below the 
magnetic field for controlling, an anti-aliasing filter should be ap-

plied.

4. On-Board Computer (OBC) clocks of all spacecraft in the formation 
are synchronized. Moreover, the spacecraft can adjust the timing of 
AC magnetic field using the established communication link.

5. Measured magnetic field must be larger than the sensor noise. Oth-

erwise, BPF cannot segregate the target AC magnetic field, espe-

cially for the IPE (see line 3 in Algorithm 1).

6. Relative attitude is known (for example, using the established com-

munication link).

7. Numerical simulation

To validate the IPE and UKF, numerical simulations are conducted 
and the results are shown in this section. In the numerical simulations, 
we consider four spacecraft 𝑝 ∈ {1,2,3,4} are flying nearby the space-

craft 𝑞 as shown in Fig. 5. Spacecraft have STT and MFSs, and drive 
their coils with the details given in Table 1. The spacecraft 𝑞 attempts 
to estimate the relative position vector of spacecraft 1 in this simula-

tion. It is assumed that all spacecraft control to maintain their attitude 
with respect to inertial frame. The magnetic field generated by coils on 
the spacecraft 𝑞 itself is calculated by using Eq. (10) with the configura-

tion as shown in Fig. 6. Spacecraft are 0.5 m cubes and MFS is located at 
𝒓𝑚 = [0.4, 0.4, 0.4]𝑇 m with respect to the spacecraft frame. In this sim-

ulation, it is assumed that sign ambiguity is solved by using two MFSs. If 
the sign ambiguity is solved using some another technique, the relative 
position vector can be estimated by using only one MFS. Normal vectors 
of magnetic coils that are placed orthogonally are along the basis vec-

tors of the spacecraft fixed frame. Centers of magnetic coils are located 
at 𝒓𝑖𝑥 = [0.25, 0, 0]𝑇 m, 𝒓𝑖𝑦 = [0, 0.25, 0]𝑇 m, and 𝒓𝑖𝑧 = [0, 0, 0.25]𝑇 m, re-

spectively. In addition, the MFS on the spacecraft 𝑞 measures also the 
Earth magnetic field, which is approximated with a magnetic dipole 
model whose magnitude is 8.0 × 1022Am2.

7.1. Results for initial position estimation

Applying the Algorithm 1 for initial relative position estimation, 
results of the estimation are shown in Fig. 7. This method enables esti-

mating the relative position vector of the spacecraft 1. IPE outputs rela-

tive position vector indicating red dots in the Fig. 7. Considering errors 
between the true orbit and the estimated position, the maximum esti-

mation errors are Δ𝒓𝑞𝑝 = [−17.4 ×10−2, −18.1 ×10−2, −16.5 ×10−2]𝑇 m 
as shown in Fig. 8. Results show that the IPE can estimate the relative 
position vector with errors approximately ±0.18 m for this simulation

condition. Although the error is large for the EMFF, the IPE enables to 
estimate the relative position vector. The shaded region indicates where 
the IPE can not determine the relative position vector due to small am-

plitude of magnetic field buried in the sensor noise mentioned in Sec. 6. 
In this numerical simulation, all spacecraft modulate and control their 

magnetic moment along 𝑦 axis with respect to the spacecraft 𝑞 fixed 
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Fig. 7. Result for the initial position estimation in half of an orbit: True orbit 
is black solid line, red dots are the estimated positions, and green dot indicates 
the spacecraft 𝑝.

Fig. 8. Position estimation errors of the initial position estimation method in 
one orbit: the estimation error is black solid lines of each axis with respect to 
spacecraft 𝑞 fixed frame, and orange shaded region is locations where the am-

plitude of magnetic field is lower than the noise of MFS.

Table 2

Parameters of UKF.

Parameter Value

Initial position error 𝜎2
𝑝0 [𝑚2] 1.8 × 10−2

Initial velocity error 𝜎2
𝑣0 [𝑚2∕𝑠2] 7.2 × 10−7

Position error 𝜎2
𝑝

[𝑚2] 2.7 × 10−4

Velocity error 𝜎2
𝑣

[𝑚2∕𝑠2] 8.0 × 10−8

Observation error 𝜎2
𝑚

[𝑇 2] 1.0 × 10−12

Initial matrix 𝑷 0 diag
(
𝜎2
𝑝0, 𝜎

2
𝑝0, 𝜎

2
𝑝0, 𝜎

2
𝑣0, 𝜎

2
𝑣0, 𝜎

2
𝑣0

)
The process noise 𝑸 diag

(
𝜎2
𝑝
, 𝜎2
𝑝
, 𝜎2
𝑝
, 𝜎2
𝑣
, 𝜎2
𝑣
, 𝜎2
𝑣

)
The observation noise 𝑹 diag

(
𝜎2
𝑚
, 𝜎2
𝑚
, 𝜎2
𝑚

)

frame as in Table 1. After the IPE finds the vectors, the UKF runs for se-

quential position estimation. Applying the UKF, the proposed method 
estimates relative position vectors sequentially.

7.2. Results of sequential position estimation

From the estimated initial position vector in the IPE, the spacecraft 
𝑞 attempts to reduce the estimation error and estimate the relative po-
7

sition sequentially using the UKF. In this numerical simulation, it is 
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Table 3

Averaged ME and SEM of the UKF from the Monte Carlo simulation (300 
runs).

ME SEM(1𝜎)

Position error of X [m] 2.64 × 10−4 1.03 × 10−2

Position error of Y [m] −1.61 × 10−4 1.77 × 10−2

Position error of Z [m] 5.54 × 10−4 1.81 × 10−2

Velocity error of X [m/s] 1.82 × 10−7 3.05 × 10−5

Velocity error of Y [m/s] −4.01 × 10−7 3.28 × 10−5

Velocity error of Z [m/s] 5.76 × 10−7 3.44 × 10−5

assumed that the spacecraft 𝑞 successes to estimate the initial position 
vector with the errors Δ𝒓𝑞𝑝 by using the IPE. The parameters of UKF 
are shown in Table 2. Applying Algorithm 2, the UKF reduces the errors 
of the IPE in 200 seconds as shown in Fig. 9. The UKF can estimate the 
relative orbit velocities as in Fig. 9 as well. Mean Errors (ME) of the esti-

mated relative position in one orbit after the 200 seconds are calculated 
as [6.29 ×10−4, −6.06 ×10−4, 4.64 ×10−4]𝑇 m and MEs of the estimated 
velocity are[5.76 × 10−7, −7.48 × 10−7, 1.88 × 10−7]𝑇 m/s. In addition, 
the Standard Error of the Mean (SEM(1𝜎)) of the estimated relative po-

sition after the 200 seconds is [9.08 × 10−3, 17.6 ×10−3, 18.3 ×10−3]𝑇 m 
and SEM(1𝜎) of the estimated velocity is [2.04 ×10−5, 3.17 ×10−5, 2.67 ×
10−5]𝑇 m/s respectively. Compared to the IPE, the UKF can estimate the 
relative position vector more accurately. As seen in Fig. 9, covariances 
degrade at some locations because the BPF cannot segregate the target 
magnetic field due to low amplitude of the magnetic field. However, the 
UKF achieves errors smaller than ±3.56 ×10−2 m, which is the maximum 
error of Z axis, in the position estimation for all axes. Thus, the UKF can 
reduce the estimation error of IPE and estimate sequentially the relative 
position vector even if BPF cannot segregate the target magnetic field 
correctly. To confirm the performance of the UKF, Monte Carlo simula-

tions are conducted. In the Monte Carlo simulations, the initial position 
errors are uniformly distributed in the range of ±0.5 m. Averaged results 
for the Monte Carlo analysis with repeated 300 UKF runs are shown in 
Table 3. The estimation results converge to the actual values with errors 
shown in Table 3 even if large estimation errors for the IPE are observed. 
If the initial position vector is provided to the UKF, therefore, the rela-

tive position vector can be estimated within 5.43 × 10−2 m error (3𝜎). 
Results clearly indicate that the proposed method is a potentially new 
solution for relative position estimation which can provide centimeter 
level accuracy.

The proposed method can find the target position vector even if 
the relative position is unknown. This is the advantage of the pro-

posed method in comparison to the laser range finder, vision-based 
method, and the approach in [20]. Although our proposed method re-

quires spacecraft to establish a communication link with the target, only 
one link is enough to estimate the relative position, which is dynami-

cally changing by relative orbital motion. As shown in the numerical 
results, however, the accuracy of this proposed method is at a cen-

timeter level, although the other methods can achieve millimeter-level 
accuracy. If users require higher estimation accuracy of the proposed 
method, measurement accuracy and sampling frequency of MFSs and 
OBC clock frequencies shown in Table 1 should mainly be improved. 
Based on our experience of numerical simulation, OBC with more than 
10 Hz clock frequency should be applied for stable convergence of UKF 
from errors of IPE. It is especially recommended that the sampling fre-

quency is four times more than the modulation frequency of targets. If 
the undesired magnetic field by components on spacecraft affects the 
estimation accuracy of the proposed method, placing the MFSs at a dis-

tance using booms is one of the solutions.

8. Conclusion

The relative position estimation method by using AC magnetic field 

is proposed in this paper. The proposed method consists of two parts, 
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Fig. 9. Position estimation errors by the sequential position estimation method: red solid-line indicates estimation error of position and velocity, and black dot-dashed 

line indicates 3𝜎 standard deviation.

which are initial and sequential estimators. Compared with other meth-

ods such as those using the laser range finders and image sensors, the 
proposed method does not require attitude control to track target space-

craft. Measuring the magnetic field and establishing a communication 
link to acquire relative attitude information are sufficient. Performance 
of this proposed method is evaluated by the numerical simulations. Po-

sition vectors of spacecraft in formation are initially estimated by the 
IPE. Although this initial method contains relatively large errors, which 
is few tens of centimeters in the condition of the conducted numerical 
simulations, it enables finding the target spacecraft using only magnetic 
field and attitude information. Once the initial relative position vector 
is estimated, the UKF runs to estimate the position more accurately. The 
results of Monte Calro simulation show that the UKF can converge even 
if the IPE has large errors. Using this proposed method, relative position 
vector between spacecraft in the formation can be estimated even when 
it changes dynamically due to the relative orbital motion.
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Appendix A. Relative position vector derived from magnetic field

Dipole magnetic field is expressed as following:

𝑩 =
𝜇0

4𝜋𝑟3

{
−𝑴 + 3(𝑴 ⋅ 𝒓)

𝑟2
𝒓

}
=

𝜇0

4𝜋𝑟3
(
−𝑴 + 3𝑀𝑟cos𝜃

𝑟2
𝒓
)

=
𝜇0

4𝜋𝑟4
(−𝑴𝑟+ 3𝑀𝒓cos𝜃)

(A.1)

Then, the absolute magnetic field is derived as following:

𝐵 =
√
𝑩𝑇 ⋅𝑩

=
𝜇0

4𝜋𝑟4

√
(𝑴𝑇 ⋅𝑴)𝑟2 − 6𝑀𝑟cos𝜃(𝑴𝑇 ⋅ 𝒓) + 9𝑀2cos2𝜃(𝒓𝑇 ⋅ 𝒓)

=
𝜇0

4𝜋𝑟4
√
𝑀2𝑟2 − 6𝑀2𝑟2cos2𝜃 + 9𝑀2𝑟2cos2𝜃

=
𝜇0

4𝜋𝑟4
√
𝑀2𝑟2 + 3𝑀2𝑟2cos2𝜃

=
𝜇0𝑀

4𝜋𝑟3
√
1 + 3cos2𝜃

(A.2)

Finally, the absolute position is

𝑟 =
(
𝜇0𝑀

4𝜋𝐵

√
1 + 3cos2𝜃

)1∕3

=
(
𝜇0𝑀

4𝜋𝐵
𝜁

)1∕3
(A.3)

where, 𝜁 =
√
1 + 3cos2𝜃. Substituting Eq. (A.3) into Eq. (A.1), the mag-
netic field vector is expressed as follows:
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𝑩 = 𝐵

𝑀𝜁

{
−𝑴 + 3𝑀cos𝜃

𝑟
𝒓
}

(A.4)

The position vector is expressed from Eq. (A.4) as follows:

𝒓 = 𝑟

3𝑀cos𝜃

{
𝑀𝜁

𝐵
𝑩 +𝑴

}
= 𝑟

3cos𝜃

{
𝑩

𝐵
𝜁 + 𝑴

𝑀

}
= 𝑟

3cos𝜃
{
𝑩̂𝜁 + 𝑴̂

} (A.5)

Appendix B. Errors of position calculation

B.1. Error of absolute position calculation

Error of absolute position is expressed using Eq. (16) as

𝑒 = 𝑟A𝑝𝑞 − 𝑟T𝑝𝑞

=
(
𝜇0𝑀𝑝

4𝜋𝐵𝑝
𝜁A

)1∕3
−
(
𝜇0𝑀𝑝

4𝜋𝐵𝑝
𝜁T

)1∕3

=
(
𝜇0𝑀𝑝

4𝜋𝐵𝑝

)1∕3
𝜁
1∕3
A −

(
𝜇0𝑀𝑝

4𝜋𝐵𝑝

)1∕3
𝜁
1∕3
T

=
(
𝜇0𝑀𝑝

4𝜋𝐵𝑝

)1∕3 (
𝜁
1∕3
A − 𝜁1∕3T

)
(B.1)

From Eq. (16), 𝑀𝑝∕𝐵𝑝 is expressed as

𝑀𝑝

𝐵𝑝
=

4𝜋𝑟3T𝑝𝑞
𝜇0𝜁T

(B.2)

Substituting Eq. (B.2) into Eq. (B.1), the error is rewritten as

𝑒 =

(
𝜇0
4𝜋

4𝜋𝑟3T𝑝𝑞
𝜇0𝜁T

)1∕3

(𝜁1∕3A − 𝜁1∕3T )

= 𝑟T𝑝𝑞

{(
𝜁A
𝜁T

)1∕3
− 1

} (B.3)

B.2. Error of position vector calculation

Assuming that the magnetic dipole is correctly modeled, which 𝑴̂𝑝 =
𝑴C𝑝 =𝑴T𝑝, the error of position vector calculation 𝒆 is derived in this 
section. With an measured error and true magnetic field, measured mag-

netic field 𝑩C𝑝 is expressed Using Eq. (18), Eq. (19) and Eq. (B.3), error 
of position vector is expressed as

𝒆 = 𝑟A𝑝𝑞 𝒓̃U𝑝𝑞 − 𝑟T𝑝𝑞 𝒓̃T𝑝𝑞

= 𝑟A𝑝𝑞
𝑩̂U𝑝𝜁U + 𝑴̂𝑝||𝒓̂U𝑝𝑞|| − 𝑟T𝑝𝑞

𝑩̂T𝑝𝜁T + 𝑴̂𝑝||𝒓̂T𝑝𝑞||
= 𝑟A𝑝𝑞𝜁U

𝑩̂𝑝||𝒓̂U𝑝𝑞|| − 𝑟T𝑝𝑞𝜁T 𝑩̂𝑝||𝒓̂T𝑝𝑞|| + 𝑟A𝑝𝑞 𝑴̂𝑝||𝒓̂U𝑝𝑞|| − 𝑟T𝑝𝑞 𝑴̂𝑝||𝒓̂T𝑝𝑞||
= 𝑟A𝑝𝑞𝜁U

𝑩̂𝑝||𝒓̂T𝑝𝑞||||𝒓̂U𝑝𝑞||||𝒓̂T𝑝𝑞|| − 𝑟T𝑝𝑞𝜁T 𝑩̂𝑝||𝒓̂U𝑝𝑞||||𝒓̂U𝑝𝑞||||𝒓̂T𝑝𝑞||
+ 𝑟A𝑝𝑞

𝑴̂𝑝||𝒓̂T𝑝𝑞||||𝒓̂U𝑝𝑞||||𝒓̂T𝑝𝑞|| − 𝑟T𝑝𝑞 𝑴̂𝑝||𝒓̂U𝑝𝑞||||𝒓̂U𝑝𝑞||||𝒓̂T𝑝𝑞||
= (𝑟A𝑝𝑞𝜁U||𝒓̂T𝑝𝑞||− 𝑟T𝑝𝑞𝜁T||𝒓̂U𝑝𝑞||) 𝑩̂𝑝||𝒓̂U𝑝𝑞||||𝒓̂T𝑝𝑞||

+ (𝑟A𝑝𝑞||𝒓̂T𝑝𝑞||− 𝑟T𝑝𝑞||𝒓̂U𝑝𝑞||) 𝑴̂𝑝||𝒓̂U𝑝𝑞||||𝒓̂T𝑝𝑞||( ||𝒓̂T𝑝𝑞|| 𝜁U 𝑟A𝑝𝑞 )
𝑩̂𝑝
9

= 𝑟T𝑝𝑞𝜁T ||𝒓̂U𝑝𝑞|| 𝜁T 𝑟T𝑝𝑞 − 1 ||𝒓̂T𝑝𝑞||
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+ 𝑟T𝑝𝑞
( ||𝒓̂T𝑝𝑞||||𝒓̂U𝑝𝑞|| 𝑟A𝑝𝑞𝑟T𝑝𝑞

− 1
)

𝑴̂𝑝||𝒓̂T𝑝𝑞|| (B.4)
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