
GEOGRAPHY OF SYMPLECTIC LEFSCHETZ FIBRATIONS
AND RATIONAL BLOWDOWNS

R. İNANÇ BAYKUR, MUSTAFA KORKMAZ, AND JONATHAN SIMONE

Abstract. We produce simply connected, minimal, symplectic Lefschetz fibrations realizing all
the lattice points in the symplectic geography plane below the Noether line. This provides a sym-
plectic extension of the classical works populating the complex geography plane with holomorphic
Lefschetz fibrations. Our examples are obtained by rationally blowing down Lefschetz fibrations
with clustered nodal fibers, the total spaces of which are potentially new homotopy elliptic sur-
faces. Similarly, clustering nodal fibers on higher genera Lefschetz fibrations on standard rational
surfaces, we get rational blowdown configurations that yield new constructions of small symplec-
tic exotic 4–manifolds. We present an example of a construction of a minimal symplectic exotic
CP2# 5CP2 through this procedure applied to a genus–3 fibration.

1. Introduction

The symplectic geography problem, inspired by the study of compact complex algebraic surfaces
by Persson et. al. [38, 39, 50], asks which pairs of integers (a, b) can be realized as the holomorphic
Euler characteristic χh = a and the first Chern number c21 = b of a closed minimal symplectic
4–manifold [22, 28]. It is well-known that these invariants depend only on the underlying homotopy
type of the 4–manifold X, satisfying the identities χh = 1

4
(χ + σ) and c21 = 2χ + 3σ, where

χ and σ are the Euler characteristic and the signature of X. Both coordinates are positive for
minimal simply connected 4–manifolds of general type, which are usually the focus of the geography
problem.

In the case of compact complex algebraic surfaces, the geography plane was populated almost
exclusively by surfaces that are the total spaces of singular fibrations over complex curves [38,
39, 50, 8, 9, 43, 40], where most lattice points in the region 8a ≥ b ≥ 2a − 6 are realized by
minimal holomorphic Lefschetz fibrations; see e.g. [50]. The associated invariants of a compact
complex surface of general type satisfy both the Bogomolov-Miayoka-Yau inequality 9χh ≥ c21 and
the Noether inequality c21 ≥ 2χh − 6.

Perhaps the most striking difference between the complex and symplectic geography is that the
Noether inequality fails for symplectic 4–manifolds [22, 14, 1, 41]. However, in this case, there are
only sporadic examples realizing lattice points in the region 2a−6 ≥ b > 0 as Lefschetz fibrations,
which were suggested by Fintushel and Stern in [16]; see Remark 8. The families of examples
we produce in our first theorem will in particular contain minimal simply-connected Lefschetz
fibrations populating this entire region. The interested reader can refer to Remark 11 for a further
discussion on the geography of symplectic Lefschetz fibrations.

Before we formulate the theorem, let us recall the rational blowdown operation. The rational
blowdown is performed by cutting out a regular neighborhood of a configuration of spheres, called
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Figure 1. The lattice points in the shaded region R are populated by our minimal
simply-connected symplectic Lefschetz fibrations.

a plumbing, embedded in an ambient 4–manifold and replacing it with a rational homology 4–ball.
Since the rational blowdown was introduced by Fintushel-Stern in [15] and generalized by Park
in [34], it has been used to construct many exotic 4–manifolds; e.g. [45, 35, 36, 37, 52, 33], most
of which are symplectic due to Symington [47], [48]. The appeal of this construction, along with
other similar symplectic cut-and-paste operations (e.g. [23, 42]), is that the fundamental group
and Seiberg-Witten invariant calculations are relatively routine. The first step in this process
is locating a suitable configuration of spheres in some 4–manifold. Partially because there is a
well-known classification of singular fibers on elliptic fibrations, elliptic fibrations have been the
most popular starting place to search for plumbings that can be symplectically rationally blown
down (e.g. most of the above referenced articles start with elliptic fibrations). More recently,
Akhmedov and Sakallı utilized the classification of singular fibers on certain holomorphic genus–2
Lefschetz fibrations for rational blowdowns [3].

In this article, our starting point will be genus g > 1 Lefschetz fibrations on rational surfaces
and homotopy elliptic surfaces, corresponding to positive factorizations in the mapping class group
Mod(Σg). The particular positive factorizations we use allow us to cluster nodal singularities and
obtain some extremal configurations for our rational blowdown procedures. Thus, our first set of
results will be on clustering nodal singularities in genus–g Lefschetz fibrations on CP2#(4g+5)CP2;
see Lemmas 4 and 6. Coupling these ideas with twisted fiber sums, for each g ≥ 2, we construct
minimal symplectic genus–g Lefschetz fibrations (Zg+1, fg+1), where Zg+1 is a homotopy elliptic
surface E(g + 1). These will contain 2g + 2 disjoint embedded symplectic (−4)–spheres on the
fibers we can then rationally blow down to get our first result. Consider the region

R = {(a, b) ∈ Z2 | a ≥ 3 and 0 < b ≤ 2a}
shown in Figure 1. We have:

Theorem 1. For each point (a, b) ∈ R, there exists a minimal simply-connected non-spin sym-
plectic genus g = a − 1 Lefschetz fibration (Za,b, fa,b) satisfying χh(Za,b) = a and c21(Za,b) = b
obtained from (Za, fa) by rationally blowing down b many (−4)–spheres contained in the fibers.
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Similar to the regular blowdown, each time we rationally blow down a (−4)-sphere, c21 increases by
one whereas χh does not change. So, we see that the portion of the geography plane highlighted
in Figure 1 is populated by Za,b as we vary (a, b) ∈ R.

Curiously, the homotopy elliptic surfaces Zg+1 we build are not diffeomorphic to well-known
homotopy elliptic surfaces obtained from E(g + 1) by logarithmic transforms or knot surgery on
an elliptic fiber for any g > 3; we show this in Proposition 7. The symplectic 4–manifolds Za,b
with 0 < b < a− 3 are moreover interesting in connection to a conjecture of Fintushel and Stern
on the number of basic classes recently proven by Feehan and Leness [13]; see Remark 10.

Although there are known exotic symplectic 4–manifolds in the homeomorphism classes of
CP2#mCP2 for as small as m = 2 [2] (also see [20]), to date, the smallest symplectic exotic
4–manifold produced using the rational blowdown operation is an exotic CP2#5CP2 [32] (also see
[37, 19] for examples that are not known to be symplectic). Despite the first breakthroughs in
constructions of small exotic rational surfaces all being via rational blowdowns [35, 45, 37, 19],
and a massive amount of literature on applications of rational blowdowns and their generalizations
over two decades, the following question is still open:

Question 2. Is there an exotic CP2#mCP2 with m < 5 that can be obtained from a standard
rational surface via rational blowdowns? If so, what is the smallest such m?

In principle, by expanding our view to higher genus Lefschetz fibrations, we open the door to
finding larger configurations of spheres that can be rationally blown down, leading to possibly
smaller exotic 4-manifolds. Adapting this approach, we tackled this problem and we discovered
many new constructions of examples right on the border. To illustrate, we will present a rela-
tively simple construction, where we will start with a particular genus–3 Lefschetz fibration on
CP2#17CP2. We construct this Lefschetz fibration by refactoring the monodromy associated to
the hyperelliptic Lefschetz fibration on CP2#17CP2 by clustering nodes; see Lemma 6. After
some blow-ups and one blow-down, we find a fairly simple configuration of spheres embedded in
CP2#32CP2 that can be rationally blown down. We then prove the following.

Theorem 3. There exists a minimal symplectic exotic CP2#5CP2 obtained by rationally blowing
down a blow-up of a genus–3 Lefschetz fibration on a standard rational surface.

Peculiarly, yet another reason for us to choose this example is that only a slight potential
improvement of the positive factorization we employed in the proof of this theorem would result
in an exotic CP2#4CP2; see Remark 16. In fact, we expect the answer to the existence part of
Question 2 to be yes, despite our own efforts thus far falling short, noting that our investigation
has mostly focused on configurations in low genera fibrations.

Our paper is organized as follows. In Section 2, we construct positive factorizations for Lefschetz
fibrations with clusters of nodes; see Lemmas 4 and 6. We use these factorizations to then prove
Theorem 1 and Proposition 7 in Section 3, and Theorem 3 in Section 4. Throughout the article,
any 4–manifold we consider will be compact, connected, smooth, oriented and without boundary,
unless explicitly stated otherwise.

Acknowledgements. R.I.B. was supported by the NSF grant DMS-2005327. M. K. thanks UMass
Amherst for their generous support and wonderful research environment during this project.
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2. Clustering nodes in higher genera Lefschetz fibrations

Let Σm
g denote a compact connected orientable surface of genus g with m boundary components

and let Mod(Σm
g ) be its mapping class group, the group of isotopy classes of orientation-preserving

diffeomorphisms of Σm
g that restrict to identity on the boundary ∂Σm

g . We write Σg for Σ0
g. For a

simple closed curve c on Σm
g , we denote the positive (right-handed) Dehn twist along c by tc. The

conjugation of a group element ψ by φ, namely φψ φ−1, will be written as ψφ. A conjugate of a
positive Dehn twist satisfies tφc = tφ(c), so it is also a positive Dehn twist, for any φ ∈ Mod(Σm

g ).

The reader should not confuse the power tkc of a Dehn twist with the conjugate element tφc , which
can be differentiated by k always denoting an integer and φ a mapping class.

Let c1, . . . , c2g+1 denote the curves on Σg depicted in Figure 2 and let us set ti = tci for a
short-hand notation. The element

h = t1t2 · · · t2gt2g+1t2g+1t2g · · · t2t1 ,

is the hyperelliptic involution on Σg, which fixes each ci setwise. We thus obtain a positive
factorization of a genus–g Lefschetz fibration from h2 = 1, which is known to be a genus–g
hyperelliptic Lefschetz fibration on CP2#(4g + 5)CP2.

c1 c3 c5 c2g+1

c2 c4 c6 c2g

Figure 2. Curves on Σg.

Lemma 4. For any integers p, q ≥ 0 and g ≥ 1 satisfying p + q = 4g + 4, there are positive
factorizations in Mod(Σg) of the form

tp1 · t
q
3 ·Dp,q,g = 1 ,

where Dp,q,g is a product of 4g positive Dehn twists, and ti = tci for ci as in Figure 2.

Proof. The statement will follow from a sequence of manipulations in Mod(Σg):

1 = h2

= h · (t1t2 · · · t2g+1t2g+1 · · · t2t1)
= t1t2 · · · t2g+1 · h · t2g+1 · · · t2t1 ,
= t1t2 · · · t2g+1 · (t1t2 · · · t2g+1t2g+1 · · · t2t1) · t2g+1 · · · t2t1 ,
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which follows from h fixing every ci and therefore commuting with every tci . Since t1 commutes
with tj for all j > 2, the two t1 elements on the ends of the factorization (t1t2 · · · t2g+1t2g+1 · · · t2t1)
in the middle of the last equation above can be moved outward to the third and third-to-last
positions, obtaining the equation

= t1(t2t1)t3 · · · t2g+1 · (t2 · · · t2g+1t2g+1 · · · t2) · t2g+1 · · · t3(t1t2)t1
Iterating the same step for each ti, for i = 1, . . . , 2g, yields the next equality:

= t1(t2t1)(t3t2) · · · (t2g+1t2g)t2g+1 · t2g+1(t2gt2g+1) · · · (t2t3)(t1t2)t1
After a cyclic permutation we can bring t1 on the left to the far right, recalling that the whole
product is equal to the identity. Applying a sequence of braid relations titi+1ti = ti+1titi+1 we can
then carry each t2g+1 in the middle of the factorization all the way to the right to derive

= (t2t1)(t3t2) · · · (t2g+1t2g)t2g+1 · t2g+1(t2gt2g+1) · · · (t2t3)(t1t2) · t21
= (t2t1)(t3t2) · · · (t2g+1t2g) · (t2gt2g+1) · · · (t2t3)(t1t2) · t41

Now, conjugating t1 with t2, we can move t2 on the far left to the second position to obtain

= tt21 t2(t3t2) · · · (t2g+1t2g) · (t2gt2g+1) · · · (t2t3)(t1t2) · t41
Using braid relations again, we then carry this t2 first to the very center as t2g+1 and then to far
right as t1 as follows

= tt21 (t3t2) · · · (t2g+1t2g) · t2g+1 · (t2gt2g+1) · · · (t2t3)(t1t2) · t41
= tt21 (t3t2) · · · (t2g+1t2g) · (t2gt2g+1) · · · (t2t3)(t1t2) · t51

Repeating the same steps this time for the leftmost t3 we obtain

= tt21 t
t3
2 (t4t3) · · · (t2g+1t2g) · (t2gt2g+1) · · · (t2t3)(t1t2) · t61

Iterate the same sequence of modifications for each ti+1 that appears in a pair (ti+1ti) (each grouped
in separate parentheses) on the left half of the factorization, for i = 1, 2, . . . , 2g + 1, in this order.
Then repeat for each ti that appear in pairs (titi+1) on the right half of the factorization, for
i = 2g, . . . , 2, 1, in this order. We obtain

= tt21 t
t3
2 t

t4
3 · · · t

t2g+1

2g · tt2g2g+1 · · · tt23 tt12 · t
4g+4
1

Finally we observe that (tt23 t
t1
2 )t1 = t3(t

t2
3 t

t1
2 ) by braid relations. For p+ q = 4g + 4, repeating this

q times we get

= tt21 t
t3
2 t

t4
3 · · · t

t2g+1

2g · tt2g2g+1 · · · tt34 · t
q
3 · (tt23 tt12 ) · tp1

= tt21 t
t3
2 t

t4
3 · · · t

t2g+1

2g · tt2g2g+1 · · · tt34 · t
t2t

q
3

3 t
t1t

q
3

2 · tq3 · t
p
1

= tp1 · t
q
3 ·Dp,q,g

where the very last equation is obtained by cyclic permutation and also that tp1 and tq3 commute
with each other. �
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Remark 5. We expect that the positive factorizations t4g+4
1 D = 1 in Mod(Σg) we obtained

above to be optimal for any g ≥ 2, that is, one cannot perturb the given Lefschetz fibration on
X := CP2# (4g + 5)CP2 to cluster identical nodes (i.e. with isotopic vanishing cycles) on a single
singular fiber. In fact, a cluster corresponding to the tk1 factor yields a chain of k− 1 (−2)-spheres
which span a negative-definite subspace of V of H2(X;R) for the intersection form QX . Moreover,
for the symplectic regular fiber F , we have [F ] 6= 0 in H2(X;R) and [F ] ∈ V ⊥, the orthogonal
complement of V with respect to QX . Because QX |V ⊥ is nondegenerate, there is an additional
class in V ⊥ with negative square. Hence 4g + 4 = b−(X) ≥ k, which demonstrates that we are
at most one off from clustering the maximal number of nodes. Generally, we conjecture that for
a fiber sum indecomposable (see e.g. [4] for the definition) genus g ≥ 2 Lefschetz fibration, the
maximal number of nodes one can cluster like this is 4g + 4, realized by the fibrations we get on
the rational surface CP2# (4g + 5)CP2. Note that this number is 4g + 5 when g = 1.

We will now construct a particular positive factorization for a genus–3 Lefschetz fibration. In
this case, for the rational blowdown configurations we desire to get, it will be essential to identify
some sections as well. We will thus produce a positive factorization of the boundary multi-twist
tδ1tδ2 in Mod(Σ2

3). (See e.g. [6] for how boundary twists yield sections.)

c1 c3 c5 c7
c2

c4 c6

a

b

δ1

δ2

Figure 3. Curves on Σ2
3.

Lemma 6. There is a positive factorization in Mod(Σ2
3)

(t141 tatbt4t6) · (t1t3t5t7)t
−1
2 t5t

−1
6 ·D6 = tδ1tδ2 ,

where D6 is a product of 6 positive Dehn twists, ti = tci, and ci, a, b, c, δj are as in Figure 3.

Proof. The statement will follow from a sequence of manipulations this time in Mod(Σ2
3). We start

with the well-known 7–chain relation:

tδ1tδ2 = (t7 · · · t2t1)8

= (t7 · · · t2t1)(t7 · · · t2t1)(t7 · · · t2t1)(t7 · · · t2t1)(t7 · · · t2t1)(t7 · · · t2t1)(t7 · · · t2t1)(t7 · · · t2t1)

Note that ti(t7 · · · t2t1) = (t7 · · · t2t1)ti+1 for each i = 1, . . . , 6. We can thus move the t1 in the
first parentheses over the next six (t7 · · · t2t1) factors, so it becomes t7. We then move the t1 in
the second parentheses over the next five (t7 · · · t2t1) factors, so it becomes t6. Repeating this for
each t1 in the first six parentheses, we get:

= (t7 · · · t3t2)7 · (t1t2 · · · t6t7 · t7t6 · · · t2t1)
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By the same method, we can now move t2 factors to arrive at the factorization

= (t7t6t5t4t3)
6 · (t2t3 · · · t6t7 · t7t6 · · · t3t2) · (t1t2 · · · t6t7 · t7t6 · · · t2t1)

Using the 5–chain relation to substitute (t7t6t5t4t3)
6 with tatb, and braid relations to rewrite the

rest of the factorization, we obtain

= (tatb) · (t1t2 · · · t6t7 · t1t2 · · · t5t6 · t6t5 · · · t2t1 · t7t6 · · · t2t1)
We can then use commutativity relations to rearrange the factorization into

= (tatbt1) · (t2t1)(t3t2)(t4t3)(t5t4)(t6t5)(t7t6) · (t6t7)(t5t6)(t4t5)(t3t4)(t2t3)(t1t2)t1
Now, employing the same argument we had in the proof of Lemma 4, through a sequence of
conjugations and braid relations, we can cluster t1s on the right we obtain

= (tatbt1) · tt21 · tt32 · tt43 · tt54 · tt65 · tt76 · tt67 · tt56 · tt45 · tt34 · tt23 · tt12 · t131
We then bring all the t1 factors together by cyclic permutation of t131 and the commutativity of
the remaining t1 factor with tatb, which yields

= (t141 tatb) · t
t2
1 · tt32 · tt43 · tt54 · tt65 · tt76 · tt67 · tt56 · tt45 · tt34 · tt23 · tt12

Next carry the tt45 factor all the way to the right (note that it commutes with tt12 ) to obtain

= (t141 tatb) · t
t2
1 · tt32 · tt43 · tt54 · tt65 · tt76 · tt67 · tt56 · (tt34 tt23 )t

t4
5 · tt12 · tt45

By cyclic permutation and commutativity of tt45 with t141 tatb, we can then carry the tt45 factor and
place it in the first cluster to obtain

= (t141 tatbt
t4
5 ) · tt21 · tt32 · tt43 · tt54 · tt65 · tt76 · tt67 · tt56 · (tt34 tt23 )t

t4
5 · tt12

By moving away the Dehn twists in between by conjugations, we create a second cluster as follows

= (t141 tatbt
t4
5 ) · (tt32 tt65 tt76 tt56 tt12 ) ·D′6

where D′6 denotes the product of the remaining six positive Dehn twists. Here tt32 and tt65 commute,
so we can move the latter into the first cluster to get

= (t141 tatbt
t4
5 t

t6
5 ) · (tt12 tt32 tt56 tt76 ) ·D′6

In the next step, we repeatedly make use of the following observation: if x and y intersect at one
point, then the braid relation txtytx = tytxty implies that t−1y txty = txtyt

−1
x , and in turn, we have

t
t−1
y
x = ttxy . So we can rewrite the last factorization as

= (t141 tatbt
t−1
5
4 t

t−1
5
6 ) · (tt

−1
2
1 t

t−1
2
3 t

t−1
6
5 t

t−1
6
7 ) ·D′6

Since t141 tatb commutes with t−15 , t1t3 commutes with t−16 , and t5t7 commutes with t−12 , we obtain

= (t141 tatbt4t6)
t−1
5 · (t1t3t5t7)t

−1
2 t−1

6 ·D′6
We can conjugate this expression with t5 to obtain:

= (t141 tatbt4t6) · (t1t3t5t7)t5t
−1
2 t−1

6 ·D6.

Finally, noting that t5 commutes with t−12 , the factorization in the statement of the lemma follows.
�
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3. Geography of minimal symplectic Lefschetz fibrations

Consider the genus g ≥ 2 Lefschetz fibration on CP2#(4g+5)CP2 corresponding to the positive
factorization t2g+2

1 · t2g+2
3 · Dg = 1 in Mod(Σg) derived in Lemma 4, where Dg := D2g+2,2g+2,g.

Performing an untwisted fiber sum of this fibration with itself is known to yield the complex surface
E(g + 1). (To see it note that this fibration on CP2#(4g + 5)CP2, after a small perturbation, is
isomorphic to a holomorphic fibration and the untwisted fiber sum of two copies can be realized
as a double branched cover ramified along two copies of the regular fiber.)

Instead, we are interested in the result of a twisted fiber sum, which yields a homotopy E(g+1).
After a global conjugation, the monodromy factorization of the above fibration can be written as

Ag · t2g+2
a1
· t2g+2
a3

= 1 , and also as t2g+2
b1
· t2g+2
b3
·Bg = 1 in Mod(Σg) ,

where a1, a3, b1, b3 are the curves shown in Figure 4 and Ag and Bg are each products of 4g positive
Dehn twists. Then, let (Zg+1, fg+1) denote the Lefschetz fibration with monodromy factorization

Ag · t2g+2
a1
· t2g+2
a3
· t2g+2
b1
· t2g+2
b3
·Bg = 1 in Mod(Σg) ,

which is a twisted fiber sum of two copies of the fibration we had on CP2#(4g + 5)CP2.

We claim that Zg+1 is simply-connected. One way to see this is the following: our Lefschetz

fibration on CP2#(4g + 5)CP2, after a small perturbation, becomes isomorphic to the standard
holomorphic Lefschetz fibration, which has many sections; see e.g. [49]. Therefore, by Seifert Van-
Kampen, the complement of the regular fiber in the simply-connected 4-manifold CP2#(4g+5)CP2

is necessarily simply-connected, and in turn, the twisted fiber sum Zg+1 obtained by gluing the
two complements is also simply-connected.

Easy Euler characteristic and signature calculations show that we have χ(Zg+1) = 12g + 12 =
χ(E(g + 1)) and σ(Zg+1) = −8g − 8 = σ(E(g + 1)). Moreover, the fiber sum Zg+1 is minimal by
[51] (also see [4]). When g is even, Zg+1 is certainly not spin, for instance by Rokhlin’s theorem.
On the other hand, when g is odd, with some extra care, one can show that Zg+1 is spin using the
spin criterion for monodromy factorizations of Lefschetz fibrations in [46, 5]. (Here the twisting
matters; one may for instance take the second positive factorization in the fiber sum as the image of
the first factorization under the obvious hyperelliptic involution, followed by a cyclic permutation.)
Hence by Freedman [21], Zg+1 is homeomorphic to E(g + 1) for all g ≥ 2.

a1 a3

b1 b3

Figure 4. Lantern curves in the twisted fiber sum (Zg+1, fg+1).

We will next show that Zg+1 is not diffeomorphic to E(g + 1). A natural followup question
is whether it is diffeomorphic to a well-known homotopy elliptic surface in the literature. Recall
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that a homotopy E(n) obtained by logarithmic transformations for relatively prime p, q ≥ 1 is
denoted by E(n)p,q, and the one obtained by knot surgery along a generic elliptic fiber is denoted
by E(n)K . While any E(n)p,q is symplectic, E(n)K is symplectic if and only if K is fibered, and
when that is the case, E(n)K admits a genus 2l + (n− 1) Lefschetz fibration [15, 17, 18].

Proposition 7. If g > 3, then Zg+1 is not diffeomorphic to E(g + 1)p,q for any p, q ≥ 1 or
E(g + 1)K for any knot K. In particular, Zg+1 is not diffeomorphic to E(g + 1).

Proof. Let K denote the canonical class of Zg and let S denote an embedded symplectic sphere
with square −4. By the adjunction equality, 〈K,S〉 = −χ(S)−[S]2 = 2. Suppose Zg = E(g+1)p,q.
Then K = ((g+ 1)pq− p− q)f , where f is a primitive class such that pqf = F is the elliptic fiber
class in E(g + 1). Thus 2 = 〈K,S〉 = ((g + 1)pq − p − q)f · S. Thus (g + 1)pq − p − q ∈ {1, 2}.
Now since pq − p− q ≥ −1 and pq ≥ 1 for all integers p, q ≥ 1, we necessarily have that g ≤ 3.

Next suppose Zg+1 = E(g + 1)K . If K is not a fibered knot, then E(g + 1)K does not admit
a symplectic structure [17], so Zg1 could not be diffeomorphic to it. Assume K is a fibered knot
of genus l ≥ 0. We first claim that the canonical class must be of the form K = (2l + g − 1)F ,
where F is the elliptic fiber class of E(g+ 1) and l is the genus of K. Let Σ denote a generic fiber
of the symplectic Lefschetz fibration on E(g + 1)K , which has genus 2l + g and square 0. From
the construction, we know that F is a bisection of this fibration and F ·Σ = 2. By the adjunction
equality, 〈K,Σ〉 = 2(2l + g) − 2 = 4l + 2g − 2. By [17], SWE(g+1)K = SWE(g+1) ·∆K(t2), where
t = exp (F ) and ∆K is the symmetrized Alexander polynomial of K; consequently, the canonical
class K must be of the form mF for some integer m. Thus we have 4l + 2g − 2 = m〈F,Σ〉 = 2m
and so m = 2l + g − 1, as claimed. Finally, 2 = 〈K,S〉 = (2l + g − 1)F · S, which implies g ≤ 3.

If we take p = q = 1 for E(g + 1)p,q or K the unknot for E(g + 1)K , we get back the standard
E(g+1). So the arguments above show in particular that Zg+1 is not diffeomorphic to E(g+1). �

The monodromy factorization of (Zg+1, fg+1) can be rewritten as

(1) Ag · (ta1ta3tb1tb3)2g+2 ·Bg = 1 in Mod(Σg) ,

where a1, a3, b1, b3 can be seen to create a lantern configuration; see Figure 4. Equivalently, clus-
tering the corresponding four nodes on the same singular fiber we get a symplectic (−4)-sphere
contained in the regular fiber. By [11], lantern substitution along this configuration will provide
a new positive factorization for a symplectic Lefschetz fibration that would be obtained from the
former by rationally blowing down the corresponding (−4)-sphere. As the above monodromy
factorization shows, there are 2g + 2 of these (−4)–spheres in Zg+1.

Set a = g − 1. For each pair of integers (a, b) with a ≥ 3 and 0 < b ≤ 2a, let (Za,b, fa,b)
denote the symplectic Lefschetz fibration obtained by rationally blowing down b of the above
(−4)–spheres in (Za, fa). All Za,b are minimal by [10] and we have χh(Za,b) = χh(Za) = a and
c21(Za,b) = c21(Za) + b = b. Thus the collection

{Za,b | a ≥ 3 and 0 < b ≤ 2a}

of minimal symplectic 4-manifolds fills the region of the geography plane R in Figure 1.

The claim that Za,b is non-spin follows from the following observation: Each time we apply a
lantern substitution along a ta1ta3tb1tb3 subfactor in the monodromy factorization, we get a new
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vanishing cycle that separates the pairs {a1, b1} and {a3, b3}. This is a separating curve, and after
a small perturbation of the fibration, we get a reducible fiber that contains a genus–1 (and a genus
g − 1) fiber component with self-intersection −1. Hence, the intersection form of the ambient
manifold has to be odd.

It remains to show that Za,b are all simply-connected. This is fairly easy to when b < 2a.
Recall that if {vj} are the vanishing cycles of a genus–g Lefschetz fibration (X, f) with a section,
the fundamental group of X is equal to π1(Σg) /N where N is the subgroup of π1(Σg) normally
generated by {vj}. Therefore, the vanishing cycles of the Lefschetz fibration we started with on

the simply-connected 4–manifold CP2# (4g + 5)CP2 should normally generate all of π1(Σg). In
turn, the vanishing cycles in the factor Agta1ta3 (or in tb1tb3Bg) would alone normally generate all
of π1(Σg). But observe that until we make substitutions along all ta1ta3tb1tb3 factors, the original

collection of the vanishing cycles for the Lefschetz fibration on CP2# (4g+ 5)CP2 (obviously after
a global conjugation) are still part of the monodromy, which implies that Za,b we get for b < 2a is
simply-connected. For the remaining b = 2a case, one can similarly check that there are still an
abundant collection of vanishing cycles in Za,2a that normally generate the fundamental group of
the fiber. (In fact, it suffices to observe that if we remove a1 and a3 from the collection, but add
c3, which is one of the curves we get after the lantern substitution, the vanishing cycles in hand
still kill the entire fundamental group of the fiber.)

This concludes the proof of Theorem 1.

Remark 8. There is at least one more example we can quickly cook up in the region R below
the Noether line. Consider the genus–3 Lefschetz fibration on CP2#17CP2 with monodromy
factorization:

(t1t2t3t4t5t5t6t
2
7t6t5t4t3t2t1)

2 = 1 in Mod(Σ3) ,

where ti = tci and ci are as shown in Figure 2. This factorization can be re-written as

(t1t3t5t7)
4D = in Mod(Σ3) ,

where D is a product of positive Dehn twists. Applying one lantern substitution along the factor
t1t3t5t7 results in a genus–3 Lefschetz fibration, the total space of which can be shown to be
CP2#16CP2. If we now take the fiber sum of these two fibrations, we get a genus–3 Lefschetz
fibration whose total space is a minimal [51, 4] symplectic 4–manifold with χh = 4 and c21 = 1,
violating the Noether inequality.

The only other examples of relatively minimal Lefschetz fibrations in the literature we know of
which realize some lattice points in the region below the Noether line (and above c21 = 0) are the
ones described by Fintushel and Stern in [16]. By taking fiber sums of two different holomorphic
genus–g Lefschetz fibrations on rational surfaces, they get examples on the line c21 = χh−3 for any
χh > 3 with χh 6≡ 0 (mod 3). Provided one determines the topological invariants that are only
implicitly expressed in [16], one can obtain more examples following their construction scheme,
but still with several limitations in the way of populating a large region; for example, one needs
to have g = 1

2
(p − 1)(q − 2) = 1

2
(p′ − 1)(q′ − 2) for pairs of relatively prime positive integers p, q

and p′, q′ with {p, q} 6= {p′, q′}. In particular, for every prime g, there is only one lattice point
with χh = g + 1 realized by this construction.
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Moreover, a common aspect of all these sporadic examples is that they are fiber sums. In
contrast, we suspect that most (perhaps all) of our examples (Za,b, fa,b) with a > 4 and b > 0 are
fiber sum indecomposable, and not diffeomorphic to any of these other examples.

Remark 9. Recall that Zg+1 is a homotopy E(g+1) for all a ≥ 3; in particular, Zg+1 is spin when
g + 1 is even. However, we can populate all lattice points on the line c21 = 0 (with χh ≥ 3) with
non-spin minimal simply connected symplectic genus–g Lefschetz fibrations as well. This can be
achieved by using a different twisted fiber sum than the one used to form Zg+1. Let (Yg+1, hg+1)
denote the Lefschetz fibration with monodromy factorization

Ag · t2g+2
a1
· t2g+2
a3
· t2g+2

1 · t2g+2
3 ·Dg = 1 in Mod(Σg) ,

where Ag · t2g+2
a1
· t2g+2
a3

= 1 and t2g+2
1 · t2g+2

3 ·Dg = 1 are the monodromy factorizations described
previously. Rewriting this monodromy as (ta1ta3t3) ·D = 1, where D is a product of positive Dehn
twists, it is clear that there is a fiber containing a sphere with self-intersection −3, implying that
the intersection form of Yg+1 is odd.

One may wonder if we can as well generate spin symplectic Lefschetz fibrations in the region
R, and this too is possible by varying our construction and using the spin substitution techniques
developed in [5]. In this case, we would instead start with a twisted fiber sum (Y ′g+1, f

′
g+1) on the

c21 = 0 line with a monodromy factorization

t4g+4
a5
· t4g+4
b5
·D′g = 1 in Mod(Σg) ,

for g ≥ 3 and odd, where {a5, b5} is the next pair of curves one can imagine in Figure 4, which
cobound a subsurface Σ2

2 of Σg. One can then perform 5-chain substitions along each ta5tb5 factor
to create the desired examples; cf. the proof of Theorem A in [5].

Remark 10. Let X be a simply-connected, almost complex 4–manifold of Seiberg-Witten simple
type. Fintushel and Stern conjectured that if the characteristic numbers of X satisfy 0 ≤ c21 ≤
χh − 3 then X has at least χh − c21 − 2 Seiberg-Witten basic classes. This conjecture was first
confirmed for 4–manifolds of superconformal simple type in a physics paper [27], and was later
completely proved by Feehan and Leness in [13]. Note that any symplectic X is of Seiberg-Witten
simple type by work of Taubes. Moreover, in [12] Feehan and Leness, building on the examples
in [14] with c21 = χh − 3, observed that there are non-minimal symplectic 4–manifolds at all the
lattice points with 0 ≤ c21 < χh − 3 for which the bound on the number of basic classes is sharp.
While it is beyond the scope of our work here, it would be interesting to determine if the same
can be true for minimal examples, and in particular seeing if the number of basic classes of Za,b
with 0 ≤ b < a− 3 is a− b− 2.

Remark 11. Although there is an extensive literature on the geography of (semi-stable) holo-
morphic fibrations on compact complex surfaces, the situation in the symplectic case has not been
understood well, at least until very recently; see e.g. [44, 30]. The recent works of [29, 7] showed
the existence of simply-connected Lefschetz fibrations violating Xiao’s famous slope inequality,
which is always satisfied by holomorphic fibrations. Most recently, it was established in [5] that
there are simply-connected Lefschetz fibrations with positive signatures—whereas it is still not
known if such examples exist in the holomorphic case. Our examples in this article demonstrate
further contrast between the geography of complex and symplectic Lefschetz fibrations.
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4. A Minimal Symplectic Exotic CP2#5CP2

Consider the Lefschetz fibration with monodromy factorization

(t141 tatbt4t6) · (t1t3t5t7)t
−1
2 t5t

−1
6 ·D6 = 1 in Mod(Σ3)

given by Lemma 6. This fibration includes two singular fibers given by the clusters t141 tatbt4t6 and

(t1t3t5t7)
t−1
2 t5t

−1
6 , along with the two (−1)-sections corresponding to the boundary components δ1

and δ2 in Figure 3. The first singular fiber F1 is comprised of a string of 15 transversely intersecting
embedded (−2)-spheres and an immersed (−2)-sphere that transversely intersects the first and
last (−2)-spheres of the string. The second singular fiber F2 is comprised of two (−4)-spheres
intersecting each other transversely four times. The (−1)-sections intersect F1 in the first and
fifteenth (−2)-spheres and intersect F2 in each of the (−4)-spheres. This configuration is depicted
schematically in Figure 5a.

Starting with this configuration of spheres, we will perform 16 blowups and a single blowdown
to locate a plumbing P symplectically embedded CP2#32CP2 that can be symplectically ratio-
nally blown down to a symplectic exotic CP2#5CP2. To prove that the blown down manifold X
is homeomorphic to CP2#5CP2, we will apply Freedman’s Theorem. To prove X is not diffeo-
morphic to CP2#5CP2, we will consider its symplectic Kodaira dimension. To this end, we first
need to understand the homology classes of the fibers and sections of our Lefschetz fibration on
CP2#17CP2.

(a) Configuration of spheres in CP2#17CP2 (b) Homology classes

Figure 5

Proposition 12. Let {h, e1, . . . , e17} denote the standard basis of H2(CP2#17CP2). The homology
classes of the configuration of spheres in Figure 5a are the homology classes shown in Figure 5b.

Proof. To determine these homology classes, we first symplectically blow down the configuration
of spheres in CP2#17CP2 16 times. Upon doing so, the ambient 4-manifold is either CP2#CP2

or S2 × S2. We first show that it is the latter. Starting with the configuration shown in the first
diagram of Figure 6, blow down the two −1-sections to obtain the next diagram in the figure.
Starting with either green −1-sphere, sequentially blow down seven times. Then repeat starting
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Figure 6. Blowing down to S2 × S2

with the other green −1-sphere. The result will be the configuration of spheres A, B, C, and D
depicted in the last diagram. With abuse of notation, let A, B, C, and D denote both the spheres
and their homology classes. It is clear that A2 = 12, B2 = 0, C2 = D2 = 4, B · C = B ·D = 1,
and C · D = 4. Note that when we blew down the green −1-spheres in the second diagram, we
introduced triple points. We then sequentially blow down at these triple points six times each.
Thus we have that A · C = A ·D = 7.

Suppose this configuration lives in CP2#CP2 and let {h, e} be the standard basis forH2(CP2#CP2).
Then its canonical class is K = PD(−3h + e). Let B = xh + ye. Then B2 = x2 − y2 = 0 and
〈−K,B〉 = 3x + y. Moreover, by the adjunction equality, 〈−K,B〉 = B2 + 2− 2g(B) = 2. Com-
bining these equations, we find that x = 1, y = −1 and so B = h − e. A similar computation
shows that C = 2h. This implies that C ·B = 2, which is not the case. Thus the configuration of
spheres must be in S2 × S2.

Let s and f denote the standard section and fiber generators of H2(S
2×S2). The canonical class

is K = PD(−2s− 2f). Let A = xs+ yf . Then A2 = 2xy = 12 and 〈−K,A〉 = 2x+ 2y. Moreover,
since the homology class of A can be represented by a genus 2 surface, the adjunction equality
gives us 〈−K,A〉 = 10. Combining these equations, we easily see that (x, y) = (2, 3) or (3, 2). We
may assume the former so that A = 2s + 3f . Now let B = xs + yf . A similar argument shows
that (x, y) = (0, 1) or (1, 0). Since A ·B = 2, we must have the former and so B = f . Continuing
in this way, we see that C = D = s+ 2f .
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Figure 7. Blowing up S2 × S2 to recover the homology classes of the original
Lefschetz fibration configuration

Now that we know the homology classes of A, B, C, and D, we will reverse the blowdown
process via blowups to recover the original configuration of spheres in CP2#17CP2 along with
their homology classes. This blowup process is shown in Figure 7. The first diagram shows the
configuration of spheres A, B, C, D in S2 × S2. Consider the intersection between A, B, and C,
which is marked by a red point. We blow up this point seven times and call the exception spheres
d1, . . . , d7. The resulting configuration is shown in the second diagram of Figure 7. Next, blow up
seven times in the same way starting at the red point in the second diagram to obtain the third
diagram and call the new exceptional spheres d9, . . . , d15. Finally, blow up at the final two red
points to obtain the fourth diagram, which is the original configuration of spheres provided by the
Lefschetz fibration. Call these last two exceptional spheres d8 and d16. The homology classes of
the spheres in this final configuration is shown in the fourth diagram of Figure 7.

Let {h, e1, . . . , e17} be the standard basis for H2(CP2#17CP2). By performing the change of
basis f 7→ h − e1, s 7→ h − e2, d1 7→ h − e1 − e2, and di → ei+1 for all 2 ≤ i ≤ 16, we obtain the
homology classes shown in Figure 5b. �
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Figure 8. Sixteen blowups and one blowdown.
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(a) The linear plumbing P

Sphere Homology Class Sphere Homology Class
u1 e27 − e28 u15 e12 − e13
u2 e26 − e27 u16 e11 − e12
u3 e25 − e26 u17 e10 − e11
u4 e24 − e25 u18 e2 − e10
u5 e23 − e24 u19 h− e1 − e2 − e3
u6 e22 − e23 − e30 u20 e3 − e4
u7 e21 − e22 u21 e4 − e5
u8 e20 − e21 u22 e5 − e6
u9 e19 − e20 u23 e6 − e7

u10 4h− 2e1 −
8∑
i=2

ei −
16∑
i=10

ei − 2e18 − 2e19 −
29∑
i=20

ei u24 e7 − e8

u11 e16 − e17 u25 e8 − e29

u12 e15 − e16 u26 2h− e1 −
8∑
i=3

ei −
33∑
i=31

ei

u13 e14 − e15 u27 3h− 2e1 − e2 −
17∑
i=10

ei −
33∑
i=31

ei

u14 e13 − e14

(b) The homology classes of u1, . . . , u27

Figure 9. The plumbing P and its homology classes

Let P be the linear plumbing with weights

(−2, . . . ,−2︸ ︷︷ ︸
5

,−3,−2, . . . ,−2︸ ︷︷ ︸
3

,−20,−2, . . . ,−2︸ ︷︷ ︸
15

,−6,−7).

By symplectically blowing up the Lefschetz fibration on CP2#17CP2 sixteen times, and blowing
down once, we can find P symplectically embedded in CP2#32CP2. This process is shown in
Figure 8. Let u1, . . . , u27 denote the homology classes of the spheres of P , as shown in Figure 9a.
These homology classes are found explicitly in Figure 8, but for simplicity, they are recorded in
the table in Figure 9b.

The boundary of P is the lens space L(5852, 291914), which bounds a rational homology 4-ball
B, by Lisca [26]. Moreover, by Park [34] and Symington [48], P can by symplectically rationally



GEOGRAPHY OF SYMPLECTIC LEFSCHETZ FIBRATIONS AND RATIONAL BLOWDOWNS 17

blown down. Let Z = CP2#32CP2 \P and let X = Z ∪B be the result of the symplectic rational
blowdown.

Proposition 13. X is homeomorphic to CP2#5CP2.

Proof. We first show that X is simply connected. By the Seifert Van-Kampen Theorem, π1(X) =
π1(Z) ∗π1(∂P ) π1(B). Since CP2#32CP2 is simply connected, the map π1(∂P )→ π1(Z) induced by
inclusion is surjective. Moreover, the map π1(∂P ) ∼= Z5852 → π1(B) ∼= Z585 induced by inclusion
is surjective ([34]). Thus, it suffices to show that Z is simply connected. Now since π1(∂P ) is
abelian, so is π1(Z); consequently, π1(Z) ∼= H1(Z) and so it suffices to show that H1(Z) is trivial.

For 1 ≤ i ≤ 27, let µi ∈ H1(∂P ) denote the homology class of the meridian of the ith surgery
curve in the obvious surgery diagram for ∂P . Let µi denote the image of µi in H1(Z). Then
H1(∂P ) ∼= Z5852 is generated by µ1 and the elements µ1, . . . , µ10 satisfy the relations

2µ1 = µ2, 2µi = µi−1 + µi+1 for 2 ≤ i ≤ 5 and 6 ≤ i ≤ 9, and 3µ6 = µ5 + µ7.

Combining these relations, we have that µ6 = 6µ1 and µ10 = 34µ1. Since H1(∂P ) surjects onto
H1(Z), H1(Z) is generated by µ1 and satisfies the relations µ6 = 6µ1 µ10 = 34µ1.

In Z, µ6 can be represented by the equator of the exceptional sphere e30; thus µ6 = 0 and so
6µ1 = µ6 = 0. Similarly, µ1 and µ10 can be represented by circles on the exceptional sphere e29
which cobound an annulus; hence µ1 = −µ10 and so µ1 = µ10 = 34µ1, or 35µ1 = 0. Since 6 and
35 are relatively prime, we readily obtain µ1 = 0, proving that H1(Z) is trivial. Thus X is simply
connected.

Now, σ(X) = σ(CP2#32CP2)−σ(P )+σ(B) = −4 = σ(CP2#5CP2) and χ(X) = χ(CP2#32CP2)−
χ(P ) + χ(B) = χ(CP2#5CP2). Since the signatures of X and CP2#5CP2 are not divisible by 16,
both manifolds are odd. Thus, by Freedman’s theorem [21], X is homeomorphic to CP2#5CP2. �

Proposition 14. X is not diffeomorphic to CP2#5CP2.

Proof. Let KCP2#5CP2 denote the canonical class of CP2#5CP2. By Theorem D in [25], CP2#5CP2

has a unique symplectic structure up to diffeomorphism and deformation. Consequently, since the
standard symplectic structure ν on CP2#5CP2 satisfies (KCP2#5CP2) · ν < 0, CP2#5CP2 does not
admit a symplectic structure ν satisfying (KCP2#5CP2) · ν > 0. Let KX denote the canonical class
of X and let ωX denote the symplectic class of X. We will show that KX · ωX > 0, proving that
X is not diffeomorphic to CP2#5CP2.

The canonical class of CP2#32CP2 is given by K = PD(−3h +
33∑
i=1
i 6=9

ei). It is well-known that

CP2#32CP2 admits a symplectic structure compatible with K and whose cohomology class can be

represented by ω = PD(ah−
33∑
i=1
i 6=9

biei), where a > b0 > · · · > b33 and a >
33∑
i=1
i 6=9

bi (see, for example,

Lemma 5.4 in [23]). Note that K · ω = −3a+
32∑
i=1
i 6=9

bi.
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Give H2(P ) the basis {u1, . . . , u27} and give H2(P ) the hom-dual basis {γ1, . . . , γ27}. Then

K|P =
27∑
i=1

(K · ui)γi = γ6 + 18γ10 + 4γ26 + 5γ27 and

ω|P =
27∑
i=1

(ω · ui)γi =(b27 − b28)γ1 + (b26 − b27)γ2 + · · ·+ (b23 − b24)γ5+

(b22 − b23 − b30)γ6 + (b21 − b22)γ7 + · · ·+ (b19 − b20)γ9+

(4a− 2b1 −
8∑
i=2

bi −
16∑
i=10

bi − 2b18 − 2b19 −
29∑
i=20

bi)γ10+

(b16 − b17)γ11 + · · ·+ (b10 − b11)γ17 + (b2 − b10)γ18+
(a− b1 − b2 − b3)γ19 + (b3 − b4)γ20 + · · ·+ (b7 − b8)γ24 + (b8 − b29)γ25+

(2a− b1 −
8∑
i=3

bi −
33∑
i=31

bi)γ26 + (3a− 2b1 − b2 −
17∑
i=10

bi −
33∑
i=31

bi)γ27.

Let Q denote the matrix for the intersection form of P with respect to the basis {u1, . . . , u27}.
Then

K|P · ω|P = Q−1(K|P , ω|P ) =
1

585

(
− 5544a+ 3309b1 + 1082(b2 + b10 + · · ·+ b17)

+ 1153(b3 + · · ·+ b8 + b29) + 1168b18 + 601(b19 + · · ·+ b22)

+ 670(b23 + · · ·+ b28) + 516b30 + 1067(b31 + · · ·+ b33)
)

Finally, we have that

KX · ωX = (KX)|Z · (ωX)|Z = K|Z · ω|Z = K · ω −K|P · ω|P

=
1

585

(
3789a− 2724b1 − 497(b2 + b10 + · · ·+ b17)− 568(b3 + · · ·+ b8 + b29)− 583b18

− 16(b19 + · · ·+ b22)− 85(b23 + · · ·+ b28) + 69b30 − 482(b31 + · · ·+ b33)
)

>
1

585
(a−

33∑
i=1
i 6=9

bi) > 0.

�

Proposition 15. X is minimal.

Proof. Following the strategy of Ozsváth-Szabó in [31], we will show that X has a unique basic
class (up to sign), which implies that X is minimal. The following calculations were completed in
Matlab. Because the efficacy of this type of computation is well-documented (c.f. [31], [45],[23]),
we will only highlight the main steps.
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We first find the following basis for H2(Z):

A1 = h− e1 − e18 − e31, A2 = h− e1 − e18 − e32, A3 = h− e1 − e18 − e33,

A4 = 3h− 3e1 + 2e18 −
22∑
i=19

2ei − 2e30 − e31 − e32 − e33

A5 = 3e18 −
28∑
i=23

ei + e30

A6 = 36h− 21e1 − 7e2 −
8∑
i=3

8ei −
17∑
i=10

7ei + 2e18 +
28∑
i=23

ei − 8e29 − e30 − e31 − e32 − e33

Notice that A1, A2, A3 and A5 can be represented by spheres, A4 can be represented by a torus,
and A6 can be represented by a surface of genus 387 ([24]). Moreover, A2

1, A
2
2, A

2
3 = −2, A2

4 = −27,
A5 = −16, and A6 = −48.

We would like to find the number of basic classes L on X satisfying the additional criterion:
|L(Ai)| ≤ −A2

i and L(Ai) ≡ A2
i (mod 2). Such classes are called adjunctive classes. There are

9,317,700 possible adjunctive classes. If L a basic class, then by the Seiberg-Witten dimension

formula, d = L2−3σ(X)−2χ(X)
4

= L2−4
4
≥ 0 and d ≡ 0 (mod 2). Thus L2 ≥ 4 and L ≡ 4 (mod 8).

This restriction leaves us with 13,960 possible adjunctive basic classes.

Now, if L is a basic class on X, then by the gluing formula ([34]), there is a basic class L̃ on
CP2#32CP2 inducing L such that (L̃|P )2 = −27. Moreover, the set of basic classes on CP2#32CP2

inducing L contains an element L̃ such that u2i + 2 ≤ L̃P (ui) ≤ −u2i for all 1 ≤ i ≤ 27 (where
ui are the homology classes of the spheres in P shown in Figure 9b). There are 585 classes on P
satisfying these conditions. Thus we have a total of 8,166,600 classes on CP2#32CP2 that could
give rise to adjunctive basic classes on X. These are given by (L|Z , L̃|P ).

LetH = (2, 0, 0, 0, 1, 1, 0, . . . , 0) ∈ H2(CP2#32CP2;Q), written in the basis {A1, . . . , A6, u1, . . . , u27}.
Then H(ui) = 0 for all i, H2 > 0, and H · PD(h) > 0. By the wall-crossing formula, if L̃ is a
basic class on CP2#32CP2 inducing a basic class on X, then sign(L̃ ·H) 6= sign(L̃ · h). There are
1788 such classes. Finally, we find that only 2 of these 1788 classes are integral. They are ±K
(the canonical class). Consequently, X has a two adjunctive basic classes.

Finally following the argument in [31], it is easy to see that every basic class on X must be
adjunctive. Thus X has a unique basic class (up to sign). �

Remark 16. It is worth highlighting that we derived our rational blowdown configuration only

using the first two clusters in the positive factorization (t141 tatbt4t6) · (t1t3t5t7)t
−1
2 t5t

−1
6 ·D6 = tδ1tδ2

in Mod(Σ2
3), where the key point is the topological configuration of the disjoint Dehn twist curves

in each cluster. Curiously, if one can get a similar positive factorization but with another cluster,
such as a factor conjugate to (tat3t5t7), rationally blowing down a disjoint (−4)-sphere there would
yield an exotic CP2# 4CP2. In our factorization, we can find two of the desired Dehn twist factors
in D6, but not all four.
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