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Theoretical and Numerical Results

Abstract In this paper, we consider a system of Klein-Gordon equations with vari-
able exponents. The first part of the manuscript is devoted to the proof of the blow
up of solutions with negative initial energy under suitable conditions on variable ex-
ponents and initial data. The theoretical part is supported by numerical experiments
based on P1-finite element method in space and the BDF and the Generalized-alpha
methods in time illustrated in the second part. The numerical and analytical results
of the blow up solutions agree with each other.
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1. Introduction. In this work, we consider the following initial bound-
ary problem

utt −∆u+m2
1u+ |ut|p(x)−1 ut = f1 (u, v) , in Ω, t > 0,

vtt −∆v +m2
2v + |vt|r(x)−1 vt = f2 (u, v) , in Ω, t > 0,

u (x, t) = v (x, t) = 0, on ∂Ω, t ≥ 0,
u (x, 0) = u0 (x) , v (x, 0) = v0 (x) ,
ut (x, 0) = u1 (x) , vt (x, 0) = v1 (x)

in Ω,

(1)

where Ω is a bounded and regular domain of Rn, (n = 1, 2, 3), with a smooth
boundary ∂Ω, f1 (u, v) and f2 (u, v) are the source terms defined by{

f1 (u, v) = a |u+ v|2(q(·)+1) (u+ v) + b |u|q(·) u |v|q(·)+2 ,

f2 (u, v) = a |u+ v|2(q(·)+1) (u+ v) + b |u|q(·)+2 |v|q(·) v,
(2)

where m1 and m2 are positive constants, a and b are non-negative constants;
and p (·) , r (·) and q (·) are given continuous functions on Ω satisfying some
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conditions to be specified later. We recall that the log-Hölder continuity con-
dition for any function m (·) is

|m (x)−m (y)| ≤ − A

log |x− y|
, for all x, y ∈ Ω, with |x− y| < δ, (3)

where 0 < δ < 1 and A > 0. By the definition of f1 (u, v) and f2 (u, v) , one
can easily verify that

uf1 (u, v) + vf2 (u, v) = 2 (q (x) + 2)F (u, v) , ∀ (u, v) ∈ R2, (4)

where

F (u, v) =
1

2 (q (x) + 2)

[
a |u+ v|2(q(x)+2) + 2b |uv|q(x)+2

]
.

The exponents p (·) , r (·) and q (·) are measurable functions on Ω satisfiy-
ing 

2 ≤ p1 ≤ p (x) ≤ p2 ≤ p∗,
2 ≤ r1 ≤ r (x) ≤ r2 ≤ r∗,
2 ≤ q1 ≤ q (x) ≤ q2 ≤ q∗,

where 
p1 = ess infx∈Ω p (x) , p2 = ess supx∈Ω p (x) ,
r1 = ess infx∈Ω r (x) , r2 = ess supx∈Ω r (x) ,
q1 = ess infx∈Ω q (x) , q2 = ess supx∈Ω q (x) ,

and {
2 ≤ p∗, r∗, q∗ <∞ if n = 1, 2,
2 ≤ p∗, r∗, q∗ ≤ 6 if n = 3.

The system with variable exponents we deal with is a very general system:

• The problems with variable exponents arises in many branches in sci-
ences such as nonlinear elasticity theory, image processing and elec-
trorheological fluids [5, 7, 21].

• The coupled nonlinear Klein-Gordon equation which models the motion
of charged mesons in an electromagnetic field is investigated [22].

Consider a problem of a single Klein-Gordon equation of the form

utt −∆u+m2u+ |ut|p(x)−2 ut = |u|q(x)−2 u. (5)

Pişkin [19] proved the global nonexistence of solutions. When m = 0, (5)
is reduced to the following wave equation

utt −∆u+ |ut|p(x)−2 ut = |u|q(x)−2 u.

Messaoudi et al. [10] studied the existence and blow up of solutions.
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In the absence of the m2
1u and m2

2v terms (m1 = m2 = 0) the problem
(1) reduces to the following form{

utt −∆u+ |ut|p(x)−1 ut = f1 (u, v) ,

vtt −∆v + |vt|r(x)−1 vt = f2 (u, v) .
(6)

Messaoudi and Talahmeh [9] studied the blow up of solutions of the system
(6).

In [17], Pişkin studied the following system of nonlinear Klein-Gordon
equations with constant exponents{

utt −∆u+m2
1u+ |ut|p−1 ut = f1 (u, v) ,

vtt −∆v +m2
2v + |vt|r−1 vt = f2 (u, v) .

He proved the blow up of the solutions within finite time with negative initial
energy. Also, in [18] he studied the lower bounds for blow up time.

Recently, problems with variable exponents have been handled carefully
in several papers. In particular, some results relating to the local existence,
global existence, blow up and stability have been found in [1, 2, 4, 15, 20, 23].

On the other, numerical studies of the blow up of the solutions for non-
linear models of hyperbolic and elliptic equations have been paid much at-
tention in recent years. The finite time blow-up solutions for the nonlinear
Klein-Gordon equation is considered by Korpusov et al. in [8] where they
proved that numerical analysis of the blow-up of the solution with an initial
positive energy enables to ameliorate the analytical estimate. Besides, Mes-
saoudi and his colleagues have recent works with numerical approaches: the
existence and blow up for nonlinear damped equation [10], blow up and nu-
merical analysis of biharmonic coupled system with variable exponents [11]
and the coupled systems of nonlinear hyperbolic equations with variable ex-
ponents [12] are the most relevant articles to the current work.

In this paper, we prove the blow up of the solutions of the system (1). The
rest of our work is organized as follows: In section 2, we present some lemmas,
definition and theorem. In section 3, we state and prove our main result.
Section 4 is devoted to the numerical study of the governing system with
particular initial data in accordance with the first part. Numerical solutions
and the energy of the system at the blow-up time are analyzed in the final
part of the paper.

2. Preliminaries. In this part, we state some results about the variable
exponents Lebesgue spaces (Lp(x) (Ω)) and Sobolev spaces (W 1,p(x) (Ω)), (see
[3, 7, 16]).

Let p : Ω → [1,∞] be a measurable function, where Ω is a domain of Rn.
We define the variable exponent Lebesgue space by

Lp(x) (Ω) =
{
u : Ω −→ R; u measurable in Ω : ϱp(·) (λu) <∞, for some λ > 0

}
,
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where
ϱp(·) (u) =

∫
Ω

1

p (x)
|u (x)|p(x) dx

is a modular. Equipped with the following Luxembourg-type norm

∥u∥p(·) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u (x)λ

∣∣∣∣p(x) dx ≤ 1

}
,

Lp(·) (Ω) is a Banach space.
We also define the variable-exponent Sobolev space W 1,p(·) (Ω) as

W 1,p(·) (Ω) =
{
u ∈ Lp(·) (Ω) such that ∇u exists and |∇u| ∈ Lp(·) (Ω)

}
.

Lemma 2.1 (Poincaré Inequality) Let Ω be a bounded domain of Rn and q (·)
satisfies (3), and 1 ≤ q1 ≤ q (x) ≤ q2 <∞, where

q1 = ess inf
x∈Ω

q (x) , q2 = ess sup
x∈Ω

q (x) .

Then
∥u∥q(·) ≤ C ∥∇u∥q(·) , for all u ∈W

1,q(·)
0 (Ω) ,

where the positive constant C depending on q1, q2 and Ω only.

Lemma 2.2 If 1 < q1 ≤ q (x) ≤ q2 <∞ holds, then

min
{
∥w∥q1q(·) , ∥w∥

q2
q(·)

}
≤ ϱq(·) (w) ≤ max

{
∥w∥q1q(·) , ∥w∥

q2
q(·)

}
,

for any w ∈ Lq(·) (Ω) .

Lemma 2.3 [9]. There exist two constants c0 and c1 such that

c0
2 (q (x) + 2)

[
|u|2(q(x)+2) + |v|2(q(x)+2)

]
≤ F (u, v) ≤ c1

2 (q (x) + 2)

[
|u|2(q(x)+2) + |v|2(q(x)+2)

]
.

Corollary 2.4 [9]. There exist two constants c0 and c1 such that

c0 [ϱ (u) + ϱ (v)] ≤
∫
Ω
F (u, v) dx ≤ c1 [ϱ (u) + ϱ (v)] . (7)
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Definition 2.5 (Weak solution). A pair of functions (u, v) is said to be
weak solution of (1) on [0, T ] , T > 0, if

(u, v) ∈ L∞ ((0, T ) , H1
0 (Ω)

)
,

ut ∈ L∞ ((0, T ) , L2 (Ω)
)
∩ Lp(·)+1 (Ω× (0, T )) ,

vt ∈ L∞ ((0, T ) , L2 (Ω)
)
∩ Lr(·)+1 (Ω× (0, T ))

with
u (·, 0) = u0, v (·, 0) = v0, ut (·, 0) = u1, vt (·, 0) = v1

and (u, v) satisfies∫
Ω
utϕ+

∫ t

0

∫
Ω
∇u∇ϕ+

∫ t

0

∫
Ω
m2

1uϕ+

∫ t

0

∫
Ω
|ut|p(·)−1 utϕ =

∫ t

0

∫
Ω
f1ϕ,∫

Ω
vtψ +

∫ t

0

∫
Ω
∇v∇ψ +

∫ t

0

∫
Ω
m2

2vψ +

∫ t

0

∫
Ω
|vt|r(·)−1 utψ =

∫ t

0

∫
Ω
f2ψ,

for all ϕ ∈ H1
0 (Ω) ∩ Lp(·)+1 (Ω) , ψ ∈ H1

0 (Ω) ∩ Lr(·)+1 (Ω) , and all t ∈ [0, T ] .

We state the following theorem which can be obtained by exploiting the
Faedo-Galerkin method and using the similar arguments as in [2, 13, 14].

Theorem 2.6 (Local existence). Assume that p (·) , r (·) , q (·) ∈ C
(
Ω
)
,satisfy

(3) and, for all x ∈ Ω, {
p (x) ≥ 0, if n = 1, 2,
p (x) = 0, if n = 3,

(8)

{
r (x) ≥ 0, if n = 1, 2

2 ≤ r (x) ≤ 6, if n = 3,
(9)

{
q (x) ≥ 2, if n = 1, 2,
2 ≤ q (x) ≤ 6, if n = 3,

(10)

and (u0, u1),(v0, v1) ∈ H1
0 (Ω) × L2 (Ω). Then (1) has a unique weak local

solution
(u, v) ∈ L∞ ((0, T ) , H1

0 (Ω)
)
,

ut ∈ L∞ ((0, T ) , L2 (Ω)
)
∩ Lp(·)+1 (Ω× (0, T )) ,

vt ∈ L∞ ((0, T ) , L2 (Ω)
)
∩ Lr(·)+1 (Ω× (0, T )) ,

for T > 0.
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3. Blow up
In this part, we state and prove our main result. For this purpose, we

define energy functional of (1) as

E (t) =
1

2

(
∥ut∥2 + ∥vt∥2 + ∥∇u∥2 + ∥∇v∥2

)
+

1

2

(
m2

1 ∥u∥
2 +m2

2 ∥v∥
2
)
−
∫
Ω
F (u, v) dx.

(11)

Lemma 3.1 E (t) energy functional is nonincreasing function.

Proof Multiplying the first equation of (1) by ut and the second equation
by vt, integrating over Ω, using integration by parts and summing up the
product results, we obtain

E′ (t) = −
∫
Ω
|ut|p(x)+1 dx−

∫
Ω
|vt|r(x)+1 dx ≤ 0. (12)

Lemma 3.2 [9]. Suppose that (8) holds. Then, we have the following inequal-
ities:

[ϱ (u) + ϱ (v)]
s

2(q1+2) ≤ C
[
∥∇u∥2 + ∥∇v∥2 + ϱ (u) + ϱ (v)

]
, (13)

∥u∥s2(q1+2) ≤ C
[
∥∇u∥2 + ∥∇v∥2 + ∥ut∥2(q1+2)

2(q1+2) + ∥vt∥2(q1+2)
2(q1+2)

]
, (14)

∥v∥s2(q1+2) ≤ C
[
∥∇u∥2 + ∥∇v∥2 + ∥ut∥2(q1+2)

2(q1+2) + ∥vt∥2(p1+2)
2(q1+2)

]
, (15)∫

Ω
|u|p(x)+1 dx ≤ c1

[
(ϱ (u) + ϱ (v))

p1+1
2(q1+2) + (ϱ (u) + ϱ (v))

p2+1
2(q1+2)

]
, (16)∫

Ω
|u|r(x)+1 dx ≤ c2

[
(ϱ (u) + ϱ (v))

r1+1
2(q1+2) + (ϱ (u) + ϱ (v))

r2+1
2(q1+2)

]
, (17)

for any u, v ∈ H1
0 (Ω) and 2 ≤ s ≤ 2 (q1 + 2) , with C > 1, c1 > 0 and c2 > 0

are constants.

Theorem 3.3 Suppose that (3),(8), (9) and (10) hold. Assume further that

2 (q1 + 1) ≥ max {p2 + 1, r2 + 1} (18)

and
E (0) < 0.

Then the solution of problem (1) blows up in finite time.
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Proof SetH (t) := −E (t) , then E (0) < 0 and (12) givesH (t) ≥ H (0) > 0.
By the definition of H (t) and (7), we have

H (t) = −1

2

[
∥ut∥2 + ∥vt∥2 + ∥∇u∥2 + ∥∇v∥2

]
− 1

2

[
m2

1 ∥u∥
2 +m2

2 ∥v∥
2
]
+

∫
Ω
F (u, v) dx

≤
∫
Ω
F (u, v) dx

≤ c1 [ϱ (u) + ϱ (v)] .

(19)

We define

Ψ(t) = H1−α (t) + ε

∫
Ω
(uut + vvt) dx (20)

for ε small to be chosen later and

0 < α ≤ min

{
q1 + 1

2 (q1 + 2)
,
2 (q1 + 2)− (p2 + 1)

2m2 (q1 + 2)
,
2 (p1 + 2)− (r2 + 1)

2r2 (q1 + 2)

}
.

(21)
Differentiating Ψ(t) with respect to t, and using (1) and (4), we obtain

Ψ′ (t) = (1− α)H−α (t)H ′ (t) + ε
(
∥ut∥22 + ∥vt∥22

)
− ε

(
∥∇u∥2 + ∥∇v∥2

)
− ε

(
m2

1 ∥u∥
2 +m2

2 ∥v∥
2
)

+ 2ε

∫
Ω
(q (x) + 2)F (u, v) dx

− ε

∫
Ω
u |ut|p(x)−1 utdx− ε

∫
Ω
v |vt|r(x)−1 vtdx.

(22)

By using the definition of H (t), it follows that

−εq1 (1− ξ)H (t) =
εq1 (1− ξ)

2

(
∥ut∥2 + ∥vt∥2

)
+
εq1 (1− ξ)

2

(
∥∇u∥2 + ∥∇v∥2

)
+
εq1 (1− ξ)

2

(
m2

1 ∥u∥
2 +m2

2 ∥v∥
2
)

−εq1 (1− ξ)

∫
Ω
F (u, v) dx,

where 2 < η < 2 (q1 + 2) . Adding and subtracting −εq1 (1− ξ)H (t) from
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the right-hand side of (22), we obtain

Ψ′ (t) ≥ (1− α)H−α (t)H ′ (t) + ε

(
q1 (1− ξ)

2
+ 1

)(
∥ut∥22 + ∥vt∥22

)
+ ε

(
q1 (1− ξ)

2
− 1

)(
∥∇u∥2 + ∥∇v∥2

)
+ εq1 (1− ξ)H (t)

+ ε

(
q1 (1− ξ)

2
− 1

)[
m2

1 ∥u∥
2 +m2

2 ∥v∥
2
]

+ ε (2 (q1 + 2)− q1 (1− ξ))

∫
Ω
F (u, v) dx

− ε

∫
Ω

[
u |ut|p(x)−1 ut + v |vt|r(x)−1 vt

]
dx.

(23)

By using (7), we have

Ψ′ (t) ≥ (1− α)H−α (t)H ′ (t) + εβ
[
H (t) + ∥ut∥22 + ∥vt∥22

+ ∥∇u∥2 + ∥∇v∥2 +m2
1 ∥u∥

2 +m2
2 ∥v∥

2 + ϱ (u) + ϱ (v)
]

− ε

∫
Ω

[
u |ut|p(x)−1 ut + v |vt|r(x)−1 vt

]
dx

(24)

where

β = min

{
q1 (1− ξ) ,

(
q1(1−ξ)

2 + 1
)
,
(
q1(1−ξ)

2 − 1
)
,

c0 (2 (q1 + 2)− q1 (1− ξ))

}
> 0.

To estimate the last term in (24), we use the Young inequality. It follows that∫
Ω
|ut|p(x) |u| dx

≤ 1

p1 + 1

∫
Ω
δ
p(x)+1
1 |u|p(x)+1 dx+

p2
p1 + 1

∫
Ω
δ
− p(x)+1

p(x)

1 |ut|p(x)+1 dx.

(25)

Similarly, we have∫
Ω
|vt|r(x) |v| dx

≤ 1

r1 + 1

∫
Ω
δ
r(x)+1
2 |v|r(x)+1 dx+

r2
r1 + 1

∫
Ω
δ
− r(x)+1

r(x)

2 |vt|r(x)+1 dx,

(26)

where δ1, δ2 > 0 are constants depending on the time t and specified later.
Let us choose δ1 and δ2 so that

δ
− p(x)+1

p(x)

1 = k1H
−α (t) and δ

− r(x)+1
r(x)

2 = k2H
−α (t) ,
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for a large constant k1 and k2 to be specified later, and substituting in (25)
and (26), respectively, we get∫

Ω
|ut|p(x) |u| dx

≤ k−p1
1

p1 + 1

∫
Ω
|u|p(x)+1Hαp(x) (t) dx+

p2k1
p1 + 1

H−α (t)H ′ (t) ,

(27)

and ∫
Ω
|vt|r(x) |v| dx

≤ k−r1
2

r1 + 1

∫
Ω
|v|r(x)+1Hαr(x) (t) dx+

r2k1
r1 + 1

H−α (t)H ′ (t) .

(28)

Combining (24), (27) and (28) gives

Ψ′ (t) ≥
[
(1− α)− ε

p2k1
p1 + 1

− ε
r2k1
p1 + 1

]
H−α (t)H ′ (t)

+ εβ
[
H (t) + ∥ut∥22 + ∥vt∥22 + ∥∇u∥2 + ∥∇v∥2

+m2
1 ∥u∥

2 +m2
2 ∥v∥

2 + ϱ (u) + ϱ (v)
]

− εk−p1
1

p1 + 1

∫
Ω
|u|p(x)+1Hαp(x) (t) dx

− εk−r1
2

r1 + 1

∫
Ω
|v|r(x)+1Hαr(x) (t) dx.

(29)

From (16), (17) and (19), we have∫
Ω
|u|p(x)+1Hαp(x) (t) dx

≤ C ′
[
(ϱ (u) + ϱ (v))

p1+1
2(q1+2)

+αp2 + (ϱ (u) + ϱ (v))
p2+1

2(q2+2)
+αp2

]
.

(30)

We then use Lemma 3.2 for

s = (p2 + 1) + 2αp2 (q1 + 2) ≤ 2 (q1 + 2) ,

and
s = (p1 + 1) + 2αp2 (q1 + 2) ≤ 2 (q1 + 2) ,

to deduce from (30) that∫
Ω
|u|p(x)+1Hαp(x) (t) dx ≤ C

[
∥∇u∥2 + ∥∇v∥2 + ϱ (u) + ϱ (v)

]
. (31)
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Similarly∫
Ω
|v|r(x)+1Hαr(x) (t) dx ≤ C

[
∥∇u∥2 + ∥∇v∥2 + ϱ (u) + ϱ (v)

]
. (32)

Combining (31), (32) and (29), it follows that

Ψ′ (t) ≥
[
(1− α)− ε

p2k1
p1 + 1

− ε
r2k2
r1 + 1

]
H−α (t)H ′ (t)

+ ε

(
β − k−p1

1

p1 + 1
C − k−r2

2

r2 + 1
C

)
×
[
H (t) + ∥ut∥22 + ∥vt∥22 + ∥∇u∥2

+ ∥∇v∥2 +m2
1 ∥u∥

2 +m2
2 ∥v∥

2 + ϱ (u) + ϱ (v)
]
.

(33)

Let us choose k1, k2 large enough so that

γ = β − k−p1
1

p1 + 1
C − k−r2

2

r2 + 1
C > 0,

and picking ε small enough such that

(1− α)− ε
p2k1
p1 + 1

− ε
r2k2
r1 + 1

≥ 0,

and

Ψ(0) = H1−α (0) + ε

∫
Ω
(u0u1 + v0v1) dx+

ε

2

[
∥∇u0∥2 + ∥∇v0∥2

]
> 0.

Hence (33) takes the form

Ψ′ (t)

≥γε
[
H (t) + ∥ut∥22 + ∥vt∥22 + ∥∇u∥2 + ∥∇v∥2 + ϱ (u) + ϱ (v)

]
≥γε

[
H (t) + ∥ut∥22 + ∥vt∥22 + ∥∇u∥2 + ∥∇v∥2 +m2

1 ∥u∥
2 +m2

2 ∥v∥
2
]
.

(34)

Consequently, we get

Ψ(t) ≥ Ψ(0) > 0, for all t ≥ 0.

On the other hand, thanks to the Hölder inequality and the embedding
L2(q1+2) (Ω) ↪→ L2 (Ω), we obtain∣∣∣∣∫

Ω
uutdx

∣∣∣∣ ≤ ∥u∥2 ∥ut∥2 ≤ C ∥u∥2(q1+2) ∥ut∥2 ,
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which implies ∣∣∣∣∫
Ω
uutdx

∣∣∣∣ 1
1−α

≤ C ∥u∥
1

1−α

2(q1+2) ∥ut∥
1

1−α

2 .

Similarly ∣∣∣∣∫
Ω
vvtdx

∣∣∣∣ 1
1−α

≤ C ∥v∥
1

1−α

2(q1+2) ∥vt∥
1

1−α

2 .

Young’s inequality gives∣∣∣∣∣
∫
Ω
uutdx+

∫
Ω
vvtdx

∣∣∣∣∣
1

1−α

≤ C

[
∥u∥

µ
1−α

2(q1+2) ∥ut∥
θ

1−α

2 + ∥v∥
µ

1−α

2(q1+2) ∥vt∥
θ

1−α

2

]
,

(35)

with the condition
1

µ
+

1

θ
= 1.

We take θ = 2 (1− α) , to get

µ

1− α
=

2

1− 2α
≤ 2 (q1 + 2) ,

by (30). Therefore (35) becomes∣∣∣∣∫
Ω
uutdx+

∫
Ω
vvtdx

∣∣∣∣ 1
1−α

≤ C

[
∥u∥s2(q1+2) + ∥v∥

µ
1−α

2(q1+2) + ∥ut∥22 + ∥vt∥22
]
,

where
s =

2

1− 2α
≤ 2 (q1 + 2) .

By using (14) and (15), we have∣∣∣∣∣
∫
Ω
uutdx+

∫
Ω
vvtdx

∣∣∣∣∣
1

1−α

≤ C
[
H (t) + ∥ut∥22 + ∥vt∥22 + ∥∇u∥2 + ∥∇v∥2 + ϱ (u) + ϱ (v)

]
,

(36)

for all t ≥ 0. Thus,

Ψ
1

1−α (t) =
[
H1−α(t) + ε

∫
Ω
uut + vvtdx

] 1
1−α

≤ 2
1

1−α

[
H(t) +

∣∣∣ ∫
Ω
uutdx+

∫
Ω
vvtdx

∣∣∣ 1
1−α
]

(37)

≤ C
[
H(t) + ∥ut∥22 + ∥vt∥22 + ∥∇u∥2 + ∥∇v∥2 + ϱ(u) + ϱ(v)

]



154 A blow up of solutions of Klein-Gordon system equations with variable exponent

where
(a+ b)p ≤ 2p−1 (ap + bp)

is used. By combining (34) and (37), we arrive

Ψ′ (t) ≥ ξΨ
1

1−σ (t) , (38)

where ξ is a positive constant. A simple integration of (38) over (0, t) yields

Ψ
σ

1−σ (t) ≥ 1

Ψ− σ
1−σ (0)− ξσt

1−σ

,

which implies that the solution blows up in a finite time T ∗, with

T ∗ ≤ 1− σ

ξσΨ
σ

1−σ (0)
. (39)

This completes the proof of the theorem. ■

4. Numerical Results.
This section is devoted to numerical illustrations for the solutions of the

system in Theorem 3.3. The numerical implementation is based on two ap-
proaches for the time discretization, mainly the BDF (Backward Differenti-
ation Formula) and the Generalized-α (GA) methods. Besides, a P1-finite
element method is carried out for the space discretization. For further details
on BDF and GA methods, we address the reader to the article [6] and the
reference therein. A simple introduction for Time-Dependent solvers can also
be found in the COMSOL Multiphysics Reference Manual. All of the numeri-
cal illustrations in that work are implemented by the COMSOL Multiphysics
software.

4.1. Mesh Domain and Numerical Implementation Consider the
system on a two-dimensional elliptical domain

Ω = {(x, y) : x
2

4
+ y2 < 1}

with the parameters a = 1, b = 1 with the initial-boundary conditions satis-
fying

u0(x, y) = 3
(
1− x2

4
− y2

)
,

v0(x, y) = 2
(
1− x2

4
− y2

)
,

u1(x, y) = 0,

v1(x, y) = 0.
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(a) Domain Ω (b) Triangulation for Ω

Figure 1: Mesh Domain

We take the exponent functions p(x, y) = 2, q(x, y) = 2 and r(x, y) = 2. It
can be easily checked that they satisfy the conditions given in Theorem 2.6.

Next, divide the time interval [0, T ] into N equal subintervals [tn, tn+1]
such that

tn = n∆t, n = 1, 2, · · · , N + 1,

where ∆t and n be the time step and the iteration number, respectively.
Let Un(x, y) and V n(x, y) be approximate solutions at t = tn. Using the

backward and the center difference formulas for the time-derivatives Un
t (x, y)

and Un
tt(x, y), respectively by

Un
t (x, y) =

Un(x, y)− Un−1(x, y)

∆t

and

Un
tt(x, y) =

Un+1(x, y)− 2Un(x, y) + Un−1(x, y)

∆t2
,

it follows that the discretized system takes the form

−∆Wn+1 + µWn+1 = F in Ω,

Wn+1 = 0 on ∂Ω,

where

Wn+1 = [Un+1, V n+1]T ,

∆Wn+1 = [∆Un+1,∆V n+1]T ,

µ =
1

∆t2
.

We solve the coupled system by using linear finite elements as follows:

1. The time step ∆t = 10−4 is small enough to obtain finite-time blow-up
behaviour.
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2. The triangulation of Ω consists of 12890 degrees of freedom with 3160
number of triangles. See Figure 1.

4.2. Solutions by the BDF Solver. The BDF method is a time-
dependent solver that uses backward differentiation formulas. The numerical
method in that part are based on BDF method in time and P1-finite element
method in space. The implementation of numerical tests demonstrate that
the solutions of the system blows up in a finite time.

Figure 2 shows the initial data u0 and v0. Figure 3, 4, 5, and 6 illustrate
the numerical solutions at the iteration n = 32, 46, 53, and 55, respectively. It
can be observed that at n = 56 (or at time t = 0.0056) the numerical solution
blows-up.

(a) u0(x, y) = 3
(
1− x2

4 − y2
)

(b) v0(x, y) = 2
(
1− x2

4 − y2
)

Figure 2: Initial data at t = 0

(a) U32 (b) V 32

Figure 3: Numerical solutions at t = 0.0032
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(a) U46 (b) V 46

Figure 4: Numerical solutions at t = 0.0046

(a) U53 (b) V 53

Figure 5: Numerical solutions at t = 0.0053

(a) U55 (b) V 55

Figure 6: Numerical solutions at t = 0.0055
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(a) U56 (b) V 56

Figure 7: Numerical solutions at t = 0.0056–Blow-up Time

4.3. Solutions by the Generalized-α (GA) Solver. The Generalized-
α method is also a time dependent solver. The parameter α is the term that
controls the degree of damping of high frequencies. For further details see [6].

We repeat the numerical tests by considering the GA method in time and
P1-finite element method in space. Since the figures before and at the blow
up time for the GA method are almost the same as the BDF method, we
display only the numerical illustrations for the BDF solver. The blow-up time
of the numerical solution occurs at t = 0.0062 in the GA method whereas in
the BDF method it happens at t = 0.0056. In other words, the BDF method
captures blow-up behaviour faster than the GA method.

4.4. Energy of the system
In that part we examine the relation between the numerical solutions and

the energy of the system (1). More particularly, we observe the behaviour of
the energy function E(t) defined by

E(t) =
1

2

(
∥ut∥2 + ∥vt∥2 + ∥∇u∥2 + ∥∇v∥2

)
+
1

2

(
m2

1∥u∥2 +m2
2∥v∥2

)
−
∫
Ω
F (u, v) dx

(40)

before and at blow up time by numerical approximations. In the Table 1,
the infinity norms of the numerical solutions and the energy of the system
are listed at the iteration time n = 1, 32, 46, 53, 55 and finally at n = 56
where blow up takes place. The iteration times are chosen in accordance
with the numerical results. Notice that the initial energy is negative; that is
E(t1) = −34249.9. We observe that before the blow up occurs, the energy
decreases slowly at the first iterations; then after the time t = 0.0032 it
decreases faster. This process proceeds until the blow up time t = 0.0056.
This feature can also be viewed by the Figure 8 where the graph of the energy
with respect to the time before the blow up and at the instant of the blow
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tn ∥U∥∞ ∥V ∥∞ E(tn)

0.0001 2.00 3.00 −34249.9
0.0032 2.58 3.58 −39458.4
0.0046 3.85 4.85 −1.5428E + 5
0.0053 6.23 7.23 −1.7630E + 6
0.0055 18.02 19.03 −1.134E + 7
0.0056 1.4E + 6 1.4E + 6 −1.386E + 47

Table 1: Numerical values of ∥U∥∞, ∥V ∥∞ and E(tn). Blow up time t = 0.0056

up is illustrated. In order to observe energy of the system during the blow
up time, we restrict the time interval between t = 0.0040 and t = 0.0056. A
sharp decay is observed after t = 0.0050 until t = 0.0056. According to the
Table 1 and the Figure 8, just before the blow up time and during the blow
up time, a sharp drop of energy appears. In other words, at the blow up time
0.0056 a burst of the energy takes place. Hence, the results in Table 1 with
the numerical results shown in the Figures 3, 4, 5, 6, 7 are suitable with the
blow up result of the Theorem 3.3.

Figure 8: Energy between the iteration n = 40 and n = 56

4.5. An Example comparing the theoretical and the numerical
blow-up time. As a result of Theorem 3.3, we proved that the solution blows
up in a finite time T ∗ where an upper bound for this relation is displayed in
the inequality

T ∗ ≤ 1− σ

ξσΨ
σ

1−σ (0)
.

Here σ satisfies the inequality (21), ξ is a positive constant small enough and
Ψ satisfies

Ψ
σ

1−σ
(0) = Hα(0) = (−E(0))α
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where E(0) is the initial energy.
On the other hand we have numerically illustrated that based on the

BDF and GA methods, the solution blows up at a finite time t = 0.0056 and
t = 0.0062, respectively, under certain conditions and initial data.

In can be confirm that the numerical blow up time are satisfied also the-
oretically.

Choose σ = 0.3125 and ξ = 14.9 in accordance with the relation (21).
Substituting these values in (39), it follows that an upper bound for T ∗ is
0.0056; i.e. T ∗ ≤ 0.0056.

Similarly taking σ = 0.3125 with ξ = 13.43 compatible with (21), the
inequality (39) result in the numerical blow up time 0.0062 as an upper bound
for T ∗; i.e. T ∗ ≤ 0.0062.

Hence we obtained the blow up times of the BDF and GA methods both
theoretically and numerically, which implies that the numerical results are
consistent with the theoretical results of Theorem 3.3.

5. Summary. We take into account a system of the Klein-Gordon equa-
tions with variable exponents given by (1). Under suitable conditions on vari-
able exponents with a negative initial energy and initial data, we proved
analytically that the solution blows up in finite time. The second part of that
manuscript is devoted to the numerical illustration of the blow up solutions
with some initial data in accordance with the theoretical part. The numerical
methods implemented here are based on P1– finite element method in space
and on the BDF and the GA methods in time. As a result of these imple-
mentation, we observe that the numerical solutions blow up at a finite time.
The numerical and analytical results of the blow up solutions agree with each
other.
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Wybuch rozwiązań układu równań Kleina-Gordona ze zmiennym
wykładnikiem. Wyniki teoretyczne i numeryczne.

Nebi Yılmaz, Sedanur MazıGözen, Erhan Pişkin, Baver Okutmuştur

Streszczenie Praca poświęcona jest układowi równań Kleina-Gordona ze zmien-
nymi wykładnikami. W pierwszej części pokazano, że rozwiązania o ujemnej energii
początkowej uciekają do nieskończoności przy odpowiednich warunkach na wykład-
niki oraz dane początkowe. Część teoretyczną uzupełniają obliczenia numeryczne
oparte na metodzie elementu skończonego dla zmiennych przestrzennych oraz meto-
dzie różniczkowania wstecz (Backward Differentiation Formula, BDF). Wyniki nu-
meryczne i analityczne dotyczące wybuchowego charakteru rozwiązań wzajemnie
potwierdzają się.

Klasyfikacja tematyczna AMS (2020): 35B44; 35L57.

Słowa kluczowe: wybuch, równanie Kleina-Gordona, zmienny wykładnik, formuła
wstecznego różniczkowania, metoda elementów skończonych, metoda różnic skoń-
czonych.
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