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ABSTRACT 

 

COMPARISON OF GUIDANCE NAVIGATION AND CONTROL DESIGN METHODS 
 FOR A 3-DOF MISSILE  

 
Kocadal, Tuğrul 

Master of Science, Mechanical Engineering 
Supervisor: Prof. Dr. Eşref A. Eşkinat 

Co-Supervisor: Asst. Prof. Dr. Anna Prach 
 

August 2024, 127 pages 
 

Guidance Navigation and Control (GNC) is the most crucial component of the missiles, 

which makes them one of the critical military implements; without this system, there 

is no difference from an uncontrolled object flying in the air and not knowing where to 

go. For this reason, designing a GNC system for a missile is researched in this work. The 

primary objective of this thesis is to design different Guidance Navigation Control 

algorithms for an air-to-air tactical missile.  Three distinct  GNC algorithms are utilized:  

Proportional Navigation (PN) with a seeker, Proportional Navigation (PN), and 

Proportional Navigation with Zero Effort Miss (ZEM). Inertial Navigation System (INS) 

and a Proportional-Integral-Derivative (PID) controller are applied to a nonlinear 

missile. Target and missile dynamic model are created and it is simulated in the 

Simulink. Situations where the missile with integrated GNC systems hit the target were 

determined in these simulations. The obtained results show the effectiveness of the 

algorithms and  it is aimed to compare and find the algorithm that gives the best results. 

These findings will guide future research. 

Keywords: Interception, GNC, PN, Seeker, PID. 
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ÖZ 

 

COMPARISON OF GUIDANCE NAVIGATION AND CONTROL DESIGN METHODS 
 FOR A 3-DOF MISSILE  

 
Kocadal, Tuğrul 

Yüksek Lisans., Makine Mühendisliği 
Tez Yöneticisi: Prof. Dr. Eşref A. Eşkinat 

Ortak Tez Yöneticisi:  Asst. Prof. Dr. Anna Prach 
 

Ağustos 2024, 127 sayfa 
 

Güdüm Seyrüsefer ve Kontrol (GSK) sistemi füzelerin en önemli birleşenedir, bu da 

onları kritik askeri araçlardan biri yapar. Bu sistemin olmadığı durumda, füzenin havada 

uçan nereye gideceğini bilmeyen kontrolsüz bir cisimden farkı yoktur. Bundan dolayı, bu 

çalışmada füze için bir GSK sisteminin tasarlanması araştırılmıştır.  Bu tezin ana amacı, 

havadan havaya atılan taktik bir füze için birbirinden farklı GSK algoritmaları tasarlamak 

ve simüle etmektir. Üç farklı GSK algoritması kullanılmıştır: Arayıcı ile orantısal 

seyrüsefer (OS), orantısal seyrüsefer (OS) ve sıfır çaba hatası (SÇH) ile oransal seyrüsefer 

(OS). Eylemsiz seyrüsefer sistemi (ESS) ve PID kontrolcüsü doğrusal olmayan bir füze 

modeline uygulanmıştır.  Füze ve hedef dinamik modellerini oluşturulmuş ve SİMULİNK 

ortamında simülasyonlar yapılmıştır. Bu simülasyonlara GSK sistemleri entegre edilerek 

füzenin hedefi vurduğu durumlar belirlenmiştir. Elde edilen sonuçlar algoritmaların 

verimliliğini göstermektedir. Bu sayede karşılaştırma yapılarak algoritmalar arasında en 

iyi sonuç verenin bulunması amaçlanmıştır. Bu bulgular gelecekteki araştırmalar için yol 

gösterici olacaktır. 

Anahtar Kelimeler:  Çarpışma, GKS, OS, Arayıcı, PID. 

 

 



x 
 

 

 

 

 

 

 

 

 

 

 

To my Parents, Family, and Friends with my Acquaintances at METU NCC, my second 

home… 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

ACKNOWLEDGMENTS 

 

I would like to express my sincere gratitude to Prof. Dr. Eşref A. Eşkinat and Assist. Prof. 

Dr. Anna Prach for their unwavering direction, support, and invaluable expertise in the 

field that guided me throughout my research progress.  I would also like to thank the 

jury members during the thesis defence.  

 

I would like to thank the Department of Mechanical Engineering (MECH) at the Middle 

East Technical University, Northern Cyprus Campus (NCC), for the opportunity to pursue 

my Master’s degree successfully. Additionally, I am appreciative of the Aerospace 

Engineering Department for the valuable experience I gained through my role as a 

teaching assistant. 

 

To all the academic and staff members at the Middle East Technical University, Northern 

Cyprus Campus, I express my sincere appreciation for your multitude of contributions. 

Additionally,  my special thanks to you, Cem Yıldırım, Can Marazlı, Alpay Pilli, Selim 

Sergey, Sameer Noman, İlker Öner, Şebnem Akdoğan, Candan Koroğlu, Cahit Tatlı and 

Serkan Serkanat, who made my life at METU more bearable and fun.  

 

Lastly, I want to express my gratitude to my parents, brother and sister-in-law, and other 

family members for their tremendous support and encouragement during this journey. 

I would also like to thank my valuable friends who were always there for me and rushed 

to help me whenever I was in trouble. Additionally, to all my current and prospective 

colleagues whose lives I have had the privilege to touch, even in the slightest way… 



xii 
 

TABLE OF CONTENTS 

 

ABSTRACT ...................................................................................................................... vii 

ÖZ .................................................................................................................................... ix 

ACKNOWLEDGMENTS ..................................................................................................... xi 

TABLE OF CONTENTS...................................................................................................... xii 

LIST OF TABLES ............................................................................................................... xv 

LIST OF FIGURES ............................................................................................................ xvi 

LIST OF SYMBOLS .......................................................................................................... xix 

LIST OF ABBREVIATIONS ............................................................................................... xxi 

CHAPTERS 

1. INTRODUCTION .......................................................................................................1 

1.1 Problem Statement ..........................................................................................2 

1.2 Objective of the Study .....................................................................................2 

1.3 Significance of the Study .................................................................................3 

1.4 Scope and Limitations ......................................................................................3 

1.5 Structure of Thesis ...........................................................................................3 

2. LITERATURE REVIEW ................................................................................................5 

2.1 Guidance, Navigation and Control System ......................................................5 

2.1.1 Navigation Systems ..................................................................................6 

2.1.2 Guidance Systems ....................................................................................7 

2.1.3 Control Systems .......................................................................................8 

2.2 Mathematical Model .......................................................................................9 

2.3 Control Strategies for a Missile ......................................................................10 

3. MATHEMATICAL MODELLING ................................................................................12 

3.1 Reference Coordinate System........................................................................12 

3.1.1 Earth Fixed (Inertial) Coordinate System ...............................................13 

3.1.2 Body Fixed Coordinate System ..............................................................14 



xiii 
 

3.1.3 Wind Coordinate System ....................................................................... 14 

3.1.4 Kinematics and Transformation Matrix ................................................. 14 

3.2 Equations of Motion ...................................................................................... 16 

3.2.1 Theory of Coriolis Usage for Vector Derivation ..................................... 17 

3.2.2 Translational Equations of Motion ........................................................ 18 

3.2.3 Rotational Equations of Motion ............................................................ 20 

3.2.4 The Three Degrees of Freedom (3-DOF) Assumption ........................... 22 

3.2.5 Aerodynamic Forces and Moments Acting on the Missile ................... 24 

3.3 Model Characteristics and Configuration ...................................................... 29 

3.4 Linearization .................................................................................................. 31 

3.4.1 State Space ............................................................................................ 34 

3.4.2 Aerodynamic Stability Derivatives ........................................................ 37 

3.5 Numerical Example of Linearization in a Trim Point ..................................... 39 

3.6 Actuator Model ............................................................................................. 41 

3.7 Atmosphere Model ....................................................................................... 43 

4. GUIDANCE NAVIGATION AND CONTROL ALGORITHMS ........................................ 45 

4.1 Missile Target Interception Scenario ............................................................. 45 

4.2 Guidance Navigation and Controller Algorithms .......................................... 46 

4.2.1 Navigation System ................................................................................. 46 

4.2.2 Navigational Guidance .......................................................................... 47 

4.2.3 Open Loop Responses of Navigational Guidance Algorithms ............... 54 

4.2.4 Controller .............................................................................................. 56 

5. DYNAMIC MODELLING AND SIMULATION ............................................................ 59 

5.1 Linear Missile Model with a Controller ......................................................... 59 

5.1.1 Overall Transfer Function: ..................................................................... 60 

5.1.2 Pole Placement ...................................................................................... 62 

5.2 Nonlinear Model Closed Loop System .......................................................... 63 

6. RESULTS ................................................................................................................. 65 



xiv 
 

6.1 Case 1 .............................................................................................................66 

6.1.1 Proportional Navigation + Seeker ..........................................................67 

6.1.2 Proportional Navigation .........................................................................71 

6.1.3 Proportional Navigation with ZEM ........................................................75 

6.2 Case 2 .............................................................................................................79 

6.2.1 Proportional Navigation + Seeker ..........................................................80 

6.2.2 Proportional Navigation .........................................................................84 

6.2.3 Proportional Navigation with ZEM ........................................................88 

6.3 Case 3 .............................................................................................................92 

6.3.1 Proportional Navigation + Seeker ..........................................................93 

6.3.2 Proportional Navigation .........................................................................95 

6.3.3 Proportional Navigation with ZEM ........................................................97 

6.4 Case 4 .............................................................................................................99 

6.4.1 Proportional Navigation + Seeker ..........................................................99 

6.4.2 Proportional Navigation ...................................................................... 101 

6.4.3 Proportional Navigation with ZEM ..................................................... 103 

6.5 Limitations .................................................................................................. 106 

7. DISCUSSION ........................................................................................................ 108 

8. CONCLUSION ...................................................................................................... 114 

REFERENCES ................................................................................................................ 117 

APPENDICES ................................................................................................................ 119 

A. Linearization ................................................................................................... 119 

B. Aerodynamical Stability Derivatives ............................................................... 123 

 

 

 



xv 
 

LIST OF TABLES 

 

TABLES 

Table 3. 1: Aerodynamical Polynomial Coefficient ........................................................ 27 
Table 3. 2: Physical Characteristics of the missile. [15] ................................................. 30 
Table 3. 3: Aerodynamical Equations Parameters ......................................................... 37 
Table 3. 4: Aerodynamical Stability Derivative  Equations ............................................ 38 
Table 3. 5: Numerical parameters for linearization. ...................................................... 40 
Table 3. 6: Actuator parameters. ................................................................................... 42 
Table 3. 7: Atmosphere model parameters. .................................................................. 43 

Table 4. 1: Proportional Navigation Parameters ........................................................... 49 

Table 6. 1: Numerical parameters for case one. ........................................................... 66 
Table 6. 2: Numerical parameters for case two. ........................................................... 80 
Table 6. 3: Numerical parameters for case four ............................................................ 92 
Table 6. 4: Numerical parameters for case five. ............................................................ 99 
Table 6. 5: Case analysis for z-separation target velocity. ........................................... 106 
Table 6. 6: Case analysis for x-separation target velocity. ........................................... 106 

Table B. 1: Aerodynamical Stability Derivative  Equations .......................................... 127 
 

 

 

 

 

 

 

 

 

 

 

 



xvi 
 

LIST OF FIGURES 

 

FIGURES 

Figure 3. 1: Reference Coordinate Frames [3] ...............................................................13 
Figure 3. 2:  Dynamic model of the missile ...................................................................17 
Figure 3. 3: Aerodynamical Coefficients Plot in x-direction ...........................................28 
Figure 3. 4: Aerodynamical Coefficients Plot in z-direction ...........................................28 
Figure 3. 5: Aerodynamical Pitch Moment Coefficients Plot .........................................29 
Figure 3. 6: AIM9-Sidewinder Missile [24]. ...................................................................30 
Figure 3. 7: Forces acting on the missile model. ...........................................................39 
Figure 3. 8: Actuator model block diagram. ..................................................................42 

Figure 4. 1: Missile Target Interception Scenario ..........................................................46 
Figure 4. 2: Missile Target Interception Scenario with Parameters ...............................48 
Figure 4. 3: Seeker and Proportional Navigation Angles. ..............................................53 
Figure 4. 4: Navigational guidance response of open loop simulation when fin 

deflection is minus ten degrees. ....................................................................................54 
Figure 4. 5:  Navigational guidance response of open loop simulation when fin 

deflection is zero degrees. .............................................................................................55 
Figure 4. 6:  Navigational guidance response of open loop simulation when fin 

deflection is ten degrees. ..............................................................................................55 
Figure 4. 7: PI Block Diagram .........................................................................................57 
Figure 4. 8: PI block diagram with rate feedback. .........................................................58 

Figure 5. 1: Controller with a linear missile model. .......................................................60 
Figure 5. 2: Nonlinear model closed loop block diagram. .............................................64 

Figure 6. 1: Missile Target interception case one scenario............................................66 
Figure 6. 2: Missile Target Interception Animation. ......................................................67 
Figure 6. 3: Demanded vs Measured Acceleration. .......................................................68 
Figure 6. 4:  Missile Target Trajectory. ...........................................................................68 
Figure 6. 5: Missile Target Relative Separation. .............................................................69 
Figure 6. 6: Change of Angle of Attack...........................................................................69 
Figure 6. 7: Change of Fin Deflection. ............................................................................70 
Figure 6. 8: Change of Mach Number. ...........................................................................70 
Figure 6. 9: Missile Target Interception Animation. ......................................................71 
Figure 6. 10: Demanded vs Measured Acceleration. .....................................................72 
Figure 6. 11: Missile Target Trajectory. ..........................................................................72 



xvii 
 

Figure 6. 12: Missile Target Relative Separation. .......................................................... 73 
Figure 6. 13: Change of Angle of Attack. ....................................................................... 73 
Figure 6. 14: Change of Fin Deflection. ......................................................................... 74 
Figure 6. 15: Change of Mach Number ......................................................................... 74 
Figure 6. 16: Missile Target Interception Animation. .................................................... 75 
Figure 6. 17: Demanded vs Measured Acceleration. .................................................... 76 
Figure 6. 18: Missile Target Trajectory. .......................................................................... 76 
Figure 6. 19: Missile Target Relative Separation. .......................................................... 77 
Figure 6. 20: Change of Angle of Attack. ....................................................................... 77 
Figure 6. 21: Change of Fin Deflection. ......................................................................... 78 
Figure 6. 22: Change of Mach Number.......................................................................... 78 
Figure 6. 23: Missile Target interception case two scenario. ........................................ 79 
Figure 6. 24: Missile Target Interception Animation. .................................................... 81 
Figure 6. 25: Demanded vs Measured Acceleration. .................................................... 81 
Figure 6. 26:  Missile Target Trajectory. ......................................................................... 82 
Figure 6. 27: Missile Target Relative Separation. .......................................................... 82 
Figure 6. 28: Change of Angle of Attack. ....................................................................... 83 
Figure 6. 29: Change of Fin Deflection. ......................................................................... 83 
Figure 6. 30: Change of Mach Number.......................................................................... 84 
Figure 6. 31: Missile Target Interception Animation. .................................................... 85 
Figure 6. 32: Demanded vs Measured Acceleration. .................................................... 85 
Figure 6. 33:  Missile Target Trajectory. ......................................................................... 86 
Figure 6. 34: Missile Target Relative Separation. .......................................................... 86 
Figure 6. 35: Change of Angle of Attack. ....................................................................... 87 
Figure 6. 36: Change of Fin Deflection. ......................................................................... 87 
Figure 6. 37: Change of Mach Number.......................................................................... 88 
Figure 6. 38: Missile Target Interception Animation. .................................................... 89 
Figure 6. 39: Demanded vs Measured Acceleration. .................................................... 89 
Figure 6. 40:  Missile Target Trajectory. ......................................................................... 90 
Figure 6. 41: Missile Target Relative Separation. .......................................................... 90 
Figure 6. 42: Change of Angle of Attack. ....................................................................... 91 
Figure 6. 43: Change of Fin Deflection. ......................................................................... 91 
Figure 6. 44: Change of Mach Number.......................................................................... 92 
Figure 6. 45: Missile Target Interception Animation. .................................................... 93 
Figure 6. 46: Demanded vs Measured Acceleration. .................................................... 94 
Figure 6. 47:  Missile Target Trajectory. ......................................................................... 94 



xviii 
 

Figure 6. 48: Missile Target Interception Animation. ....................................................95 
Figure 6. 49: Demanded vs Measured Acceleration. .....................................................96 
Figure 6. 50:  Missile Target Trajectory. .........................................................................96 
Figure 6. 51: Missile Target Interception Animation. ....................................................97 
Figure 6. 52: Demanded vs Measured Acceleration. .....................................................98 
Figure 6. 53:  Missile Target Trajectory. .........................................................................98 
Figure 6. 54: Demanded vs Measured Acceleration. .................................................. 100 
Figure 6. 55:  Missile Target Trajectory. ...................................................................... 100 
Figure 6. 56: Change of Fin Deflection. ....................................................................... 101 
Figure 6. 57: Demanded vs Measured Acceleration. .................................................. 102 
Figure 6. 58:  Missile Target Trajectory. ...................................................................... 102 
Figure 6. 59: Change of Fin Deflection. ....................................................................... 103 
Figure 6. 60: Demanded vs Measured Acceleration. .................................................. 104 
Figure 6. 61:  Missile Target Trajectory. ...................................................................... 104 
Figure 6. 62: Change of Fin Deflection. ....................................................................... 105 
Figure 6. 63: Limitation of the missile according to the target velocity and x-direction 

relative separation. ..................................................................................................... 107 
Figure 6. 64: Limitation of the missile according to the target velocity and z-direction 

relative separation ...................................................................................................... 107 

Figure 7. 1: Acceleration response to a pulse function. [15] ...................................... 109 
Figure 7. 2: Acceleration response to a pulse function.[11] ....................................... 109 
Figure 7. 3: Acceleration response to a pulse function. ............................................. 110 
 

 

 

 

 

 

 

 

 



xix 
 

LIST OF SYMBOLS 

 

SYMBOLS 

𝐶𝑚 Aerodynamic coefficients in pitch moment 

𝐶𝑥 Aerodynamic coefficients in x-direction 

𝐶𝑧 Aerodynamic coefficients in z-direction 

𝛼 Angle of attack 

𝜔 Angular Speed 

D Drag Force 

𝛿𝑒 Fin/Elevator Deflection 

X Forces in x-direction 

Z Forces in z-direction 

𝑔 Gravitational Acceleration 

L Lift Force  

𝑀 Mach  Number 

𝐼 Moment of Inertia 

�̇� Pitch Acceleration 

𝜃 Pitch Angle/ Attitude 

M Pitch Moment 

𝑞 Pitch Rate 

�̇� Roll Acceleration 

𝜙 Roll Angle 

𝐿 Roll Moment 

𝑝 Roll Rate 

𝑢 Speed in x-direction 

𝑣 Speed in y-direction 

𝑤 Speed in z-direction 



xx 
 

𝑎 Speed of Sound 

�̇� Yaw Acceleration 

𝜓 Yaw Angle 

𝑁 Yaw Moment 

𝑟 Yaw Rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxi 
 

LIST OF ABBREVIATIONS 

 

ABBREVIATIONS 

c.g Centre of Gravity 

c.p  Centre of Pressure 

CFD Computational Fluid Dynamics 

EOM Equation of Motion 

GPS Global Positioning System 

GNC  Guidance Navigation and Control 

INS  Inertial Navigation System 

LOS Line of Sight 

LQR Linear Quadratic Regulator 

MPC Model Predictive Control 

PD Proportional Derivative 

PI Proportional Integral 

PID  Proportional Integral Derivative  

PN Proportional Navigation 

6-DOF  Six Degrees of Freedom 

3-DOF Three Degrees of Freedom 

ZEM Zero Effort Miss 

 





 
 

 

 

 

 

 

 

 

 

 





1 
 

 

CHAPTER 1 

 

1. INTRODUCTION 

 

 

Missile systems have various usage areas, such as military, defence, aerospace, and 

space exploration.  Military and defence systems are among the most used areas of 

missiles. They have been either used for attacking or defending against opponents. For 

this reason, missiles are indispensable and are the leading equipment for wars.  

Although missiles were used before, it can be said that the actual usage of guided 

missiles started during World War II (WW2).  During and after World War II, innovations 

in missiles proceeded. Thanks to the guidance navigation and control (GNC) systems, 

the missile and the target can easily intercept each other by ensuring accurate 

trajectory follow, thus increasing the target hitting rate. This shows how GNC is crucial 

for the missiles. During this period, not only was GNC developed, but other things 

related to the missiles, such as propulsion and launching systems, were also 

established.  As a result, different types of missiles with various properties have been 

developed and classified differently according to type, launching, range, propulsion 

systems and guidance systems [1]–[3]. 
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1.1 Problem Statement 

 

In modern warfare, although continuous advancements have been proceeded, 

especially in the development of the supersonic missile systems, the dominance of 

operational missiles remain subsonic and may have trouble to effectively counter target 

with high speeds and manoeuvrability. Increasing sophistication of these targets 

demands further enhancement of missile speed and manoeuvrability. However, as the 

speed of the missile increase, the complexity of the flight proportionally grows, which 

ends up with the development of the more advanced guidance, navigation and control 

(GNC) systems. This research aims to address these challenges by developing and 

validating GNC algorithms tailored for supersonic missiles, thereby improving their 

accuracy and reliability in engaging fast, agile targets under dynamic flight conditions. 

 

1.2 Objective of the Study 

 

The primary objectives of this study are to design three different navigation and 

guidance algorithms for higher speeds that improve target missile interception 

accuracy. This is possible by providing suitable command, developing a powerful and 

effective controller that will quickly implement commands from navigation and 

guidance, and keep the system stable at the same time. Lastly, with the comparison of 

the data obtained from three different GNC systems, a decision made for which GNC 

algorithm is the most suitable for these kind of missile systems among them.  
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1.3 Significance of the Study 

 

This research contributes to the field of missile technology by providing a comparison 

between three different GNCs. During this comparison, the responses of each GNC 

system will be investigated, and their performance characteristics will be found. 

According to these performance characteristics, the limitations of guidance navigation 

and control systems will be revealed. Aligned with these limitations, the analysis will 

elucidate which GNC system operates with optimal performance under specific 

conditions. The findings could be applied in the new faster systems, i.e. Mach > 1, to 

improve the effectiveness and reliability of missile operations, potentially leading to 

more successful missions and bringing strategic advantages.  

 

1.4 Scope and Limitations  

 

This research concentrates on three-degree-of-freedom (3-DOF) missile models and 

does not extend to more degrees of freedom. Furthermore, no actual testing is involved 

in the study; all of it is done through theoretical and visualized simulations (MATLAB 

Simulink). These limitations define the scope of the study and ensure that it is both 

manageable and relevant to the state of technology today. 

 

1.5 Structure of Thesis 

 

The thesis is organized as follows: Chapter 2 provides a comprehensive literature review 

on GNC systems for missiles. Chapter 3 details the mathematical model of the used 

missile. Chapter 4 presents the guidance navigation and control algorithms. Chapter 5 

represents the dynamic modelling and simulations, while chapter 6 gives the results 
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obtained throughout the simulations and chapter 7 provides their discussions. Lastly, 

chapter 8 concludes the thesis. This structure ensures a logical progression from 

background research to presenting original findings and their implications. 
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CHAPTER 2 

 

2. LITERATURE REVIEW 

 

 

This chapter presents a literature review of guidance navigation and control systems 

used in missiles. It starts by explaining the GNC systems, and investigating each 

component individually to determine their purposes, and why a GNC system is 

important for missiles. Additionally, it shows different mathematical models developed 

before and which GNC algorithms have been used in similar research, providing the 

advantages and disadvantages of their strategies and conclusions.   

 

2.1 Guidance, Navigation and Control System 

 

GNC is the critical system of the missile to have a successful missile target interception. 

As explicitly implied by its name, GNC has three parts: guidance, navigation, and control 

systems, which are gathered together to form a system called GNC. Each part has a 

specific role. This system, as a whole,  provides an input to the missile dynamics, which 

will be explained in chapter three, and ensures a smooth path for the missile to follow 

and makes the target and missile interception possible [4]. 

 

 

 



6 
 

2.1.1 Navigation Systems  

 

Navigation systems are one of the components of the GNC system, which provide 

position velocity and attitude of the missile with respect to the reference coordinate 

frame by using high-accuracy gyroscopes and accelerometers [4]. Since gyroscopes and 

accelerometers are carried within the missile, this navigational system is called an 

inertial navigation system (INS). This navigational system depends on gyros and 

accelerometers to obtain accelerations and integrate them in order to find the velocity 

and position of the missile. The INS system, integrated into the missile, offers 

dependable global navigation in all conditions without needing ground-based 

navigational aids. Thus, this system plays a massive role in the whole GNC system by 

providing all the dynamical parameters of the vehicle for the guidance part of the 

system [3], [5].  

 

Additionally, there is a system called the Global Positioning System (GPS), which also 

provides the vehicle's position around the Earth by using external sources, i.e. satellites 

in all weather conditions around or near the Earth within the atmosphere [6].  By 

combining GPS and INS, the performance of the navigation system can be enhanced by 

taking into account the strengths of both systems. In the GPS/INS system, INS provides 

the position, velocity and acceleration of the vehicle, while GPS also provides the 

position of the vehicle as well; by comparing two positional data, drift errors can be 

corrected and create a more robust and reliable navigation system [3], [4]. 

 

Alternative navigation aids, such as terrain counter matching, are used on top of an 

inertial navigation system for position correction, similar to the GPS. Instead of using 

satellites, this system uses an already created terrain map of the area and compares 
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the actual instant terrain by using sensors on board and matching them to find the exact 

location of the vehicle [7]. Although it is an effectively working system, the fact that it 

requires previously prepared data can be shown as a minor disadvantage. 

 

2.1.2 Guidance Systems 

 

The guidance system is another component of the GNC system, which is a matter of 

finding the appropriate compensation network to place in series with the plant in order 

to accomplish an intercept. In other words, guidance calculates the motion variables, 

i.e. demanded accelerations and puts them in series to flow the desired trajectory to 

have the missile target interception by providing these data to the controller [1], [3], 

[4],[8]. One of the guidance used in ancient times is called Parallel Navigation (PN). This 

navigational algorithm assumes a constant bearing angle, which is measured clockwise 

from north, and a constant speed for both the tracker and target. By using geometry 

and knowing the position and speed of the target, the tracker’s velocity can be 

estimated easily and ensures that the target and pursuer meet. Moreover, this 

algorithm is the basic start-up algorithm, which makes it possible to create more 

advanced guidance systems [1].  

 

One of the most commonly used guidance algorithms is proportional navigation 

guidance because of its success rate and effectiveness. This algorithm creates 

acceleration commands perpendicular to the instantaneous missile target line of sight 

(LOS), which is proportional to the closing velocity and line of sight rate [1], [2], [4]. In 

order to make this navigation guidance system, which has a high success rate, even 

more powerful, some additions can be made to make the system more efficient. One 

of these additions is using a seeker, which is a sensor that tracks the target and gives 
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the information, like position and speed, to the proportional navigation guidance to 

rearrange the commands in order to create the most accurate trajectory for the 

interception [2], [4].  

 

Zero Effort Miss (ZEM) is the distance that the missile misses the target if no further 

command is performed. This technique can be integrated together with the PN to 

continuously adjust the missile’s trajectory to minimize the zero effort miss (ZEM), 

which effectively improves the interception accuracy and makes the guidance algorithm 

more robust through real-time adjustments [2].   

 

2.1.3 Control Systems 

 

 The control system is the last component of the GNC system, which is used in order to 

stabilize and guide the missile by controlling the pitch, roll and yaw motions via either 

control surfaces or thrust vectoring.  The working principle of the control system is that 

it takes the demanded acceleration command coming from the guidance stem and 

creates a controlling input for the missile in order to follow the desired trajectory to 

make the target and missile interception happen [3], [4], [8]. One of the most 

commonly used controllers is Proportional Integral and Derivative (PID) controller, 

because of its simplicity and robustness. In some cases, different variants of PID 

controllers like Proportional Integral (PI), Proportional Derivative (PD), and simple 

proportional controllers might have been used depending on the requirements of the 

missile systems [9]. In particular scenarios, the PID controller might not meet the 

requirements in order to follow the desired acceleration. In these cases, rate feedback 

can be used to increase the effectiveness of the controller [10].  
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In some situations, the PID controller’s gains might work adequately for all the flight 

conditions because of their variations. Therefore,  these gains should be adjusted 

according to the variable flight conditions and parameters such as Mach number, angle 

of attack, sideslip angle, etc. In such a case, a gain scheduling controller comes in handy. 

This controller adjusts the PID gains by using flight parameters in order to make the 

missile work in all weather conditions and ensure a smooth trajectory for missile target 

interception [11].  

 

There are also controllers, which are known as optimal controllers i.e. Linear Quadratic 

Regulator (LQR), Model Predictive Control (MPC). The Linear Quadratic Regulator (LQR) 

is an ideal control technique that balances state and control input efforts by minimising 

a cost function for linear systems. It can also handle more complex dynamical 

behaviours than a PID controller [12]. On the other hand, MPC solves the optimization 

problem at each step to calculate the control inputs that will optimize the objective 

function for the future horizon, and this controller works for both linear and non-linear 

stems, which makes it more powerful and versatile than the other controllers [13].  

 

2.2 Mathematical Model 

 

The mathematical model of missiles involves a comprehensive set of equations and 

reference frames to describe the missile’s dynamics, control and guidance system. In 

order to identify the missile’s motion with respect to itself or the Earth, inertial 

reference frames and body axis reference frames are used.  The core of the 

mathematical model depends on the Equation of Motions (EOM), which is derived from 

Newton’s second law.  In addition to the EOM, kinematic equations are used to identify 

the velocities and angular rates of the missile. Aerodynamical forces and moments are 
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the other crucial parameters for the missile dynamics. GNC algorithm are the other 

factor that plays a role in the missile dynamics and has an enrolment in the 

mathematical model [2], [14]. In addition, while doing the simulation and modelling in 

this thesis, three different journal articles were used besides the above two sources. As 

mentioned in the upper part of the paragraph, these three references also provide step-

by-step instructions on how to make a mathematical model of the missile in order to 

be used in the modelling and simulation in MATLAB Simulink [11], [15], [16]. 

 

2.3 Control Strategies for a Missile 

 

Various control and guidance algorithms can be used to control the missile. As 

explained in the previous paragraph, different navigation algorithms with multiple 

guidance algorithms and various controllers can be used. To illustrate, an initial 

navigation system (INS), proportional navigation (PN), and a Proportional Integral 

Derivative (PID) controller can be gathered together to create a Guidance Navigation 

and Control (GNC) system. Similarly, a completely different GNC algorithm can be 

obtained by adding a seeker to the guidance system and a Global Positioning System 

(GPS) to the navigation system and keeping the PID the same. Thus, many combinations 

can be done to have a working GNC system, but the primary objective has to meet the 

requirements of the missile system. At the same time, the system should respond to 

the target’s dynamics in order to have proper trajectory and interception.  

 

In order to understand different control strategies that are applied in the missiles, a 

master’s thesis was reviewed [18]. This thesis uses a six-degree-of-freedom (6-DOF) 

tactical missile; while designing the missile, 6-DOF motional and kinematic equations 

with aerodynamic forces and moments were used. In order to calculate aerodynamical 
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forces and moments, aerodynamical coefficients were required, and these coefficients 

were obtained by Missile DATCOM in this thesis. As a GNC algorithm, an inertial 

navigation system with proportional navigation (PN) and linear quadratic regulator 

(LQR) was used.  

 

In another thesis [17],  a control strategy for a powered reusable rocket booster landing 

case was created, similar to the previous thesis equation of motions, kinematic 

equations, and aerodynamic forces and moments were used to develop the missile 

model, but in this case, a 3-DOF model was created. In this thesis, there is no GNC 

system since navigation and guidance systems were not used because it assumed that 

the location of the landing area is known and given as input directly to the controller. 

However, as a controller, three different controllers, PID, LQR, and MPC, were used, and 

their comparisons were made. As a result, the findings clearly demonstrated which 

controller operates most efficiently under the given conditions. 
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CHAPTER 3 

 

3. MATHEMATICAL MODELLING 

 

 

This section describes the fundamental aspects of mathematical modelling, focusing on 

its application to missile dynamics. In the beginning, coordinate frames and the 

transformation between them are expressed, which are crucial for accurately 

describing the missile’s motion in different coordinate systems than the missile's 

behaviour during its flight. The mathematical model created for the missile brought 

about three degrees of freedom (3DOF) rigid body dynamics providing position and 

attitude of the missile by considering the forces: thrust, aerodynamical forces and 

gravity. Lastly, a comprehensive linearization of the nonlinear equations of motion, 

illustrated with a detailed numerical example, is shown, which is helpful in the stability 

and controllability analysis. To begin with, reference coordinate frames are handled.  

 

3.1 Reference Coordinate System 

 

A reference coordinate system is a rigid body or a set of rigidly connected points used 

to describe objects' position, orientation, and movement in the atmosphere. It provides 

a point of origin and a set of axes for making measurements, and it is widely used in 

areas such as physics, astronomy, engineering and navigation for consistent and 

accurate descriptions [3]. There are various reference coordinate systems, but two of 

them are the most used ones, which are the Body Fixed Coordinate system and Earth 

Fixed Coordinate system, which is shown in Fig 3.1. 
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1.  

Figure 3. 1: Reference Coordinate Frames [3] 

 

3.1.1 Earth Fixed (Inertial) Coordinate System 

 

The Earth Fixed Coordinate is a cartesian coordinate system [𝑋𝐸 , 𝑌𝐸 , 𝑍𝐸] which is at a 

location where the horizontal (X-axis) displacement relative to the missile's position is 

zero, but there is a vertical (Z-axis) displacement, indicating an altitude difference 

between the missile and the Earth-fixed frame. In this study, the missile is assumed to 

be moving longitudinally, meaning moving in the X and Z axis of the inertial coordinate 

system and rotating around the 𝑌𝐸 [3].  
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3.1.2 Body Fixed Coordinate System  

 

The Body Fixed Coordinate is a cartesian coordinate system [𝑋𝐵, 𝑌𝐵, 𝑍𝐵] which is 

attached to the missile’s centre of mass, where its centre donated by (𝑂𝐵) , and as the 

missile moves and rotates, it moves and rotates with itself. Coordinate system’s 𝑋𝐵 axis 

is along with the nose of the missile, 𝑍𝐵 axis point towards downwards, in the plane of 

symmetry and 𝑌𝐵 axis completes the right hand coordinate system [3].  

 

3.1.3 Wind Coordinate System  

 

The Wind Coordinate is a cartesian coordinate system [𝑋𝑤, 𝑌𝑤, 𝑍𝑤] attached to the 

missile’s centre of pressure, where its centre donated by (𝑂𝑤),  and as the missiles 

moves and rotates, it does not rotate with the missile. Coordinate system’s 𝑋𝑤 axis is 

along with the wind direction, along with the freestream (𝑉∞⃗⃗ ⃗⃗ ) vector, 𝑍𝑤 axis point 

towards downwards perpendicular to the velocity direction and 𝑌𝑤 axis completes the 

right-hand coordinate system [3].  

 

3.1.4 Kinematics and Transformation Matrix 

 

A missile position and velocity are defined by using an inertial reference frame 

coordinate system. However, the attitude of a missile is defined as the angle between 

the horizontal axis of the earth fixed reference frame and the X-axis of the boy 

coordinate system (𝑋𝐵). As a result, a coordinate transformation is required in order to 

relate all the missile’s motions and parameters with respect to the inertial reference 

coordinate system [3].  The velocity vectors of the missile with respect to the inertial 

coordinate system and body axis coordinate system  are:  
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 �⃗� (𝐸) = [
�̇�
�̇�
�̇�
] , �⃗� (𝐵) = [

𝑢
𝑣
𝑤

], (3.1) 

  

 

Similarly, the position of the missile is written in the inertial axis as:  

 

 𝑂𝐼 = [
𝑥
𝑦
𝑧
], (3.2) 

  

The variables defined in one coordinate system are transformed into another 

coordinate system using the transformation matrices. In this model, the transformation 

between the body axis and inertial reference coordinate frame is needed. In order to 

do that, either a transformation matrix from the body axis to an inertial reference frame 

coordinate system or vice versa is used [3], [14].  

 

 𝐿𝐸𝐵 = [
cos 𝜃 0 sin 𝜃

0 1 0
−sin 𝜃 0 cos 𝜃

], (3.3) 

  

 

 𝐿𝐵𝐸 = 𝐿𝐸𝐵
−1 = [

cos 𝜃 0 sin 𝜃
0 1 0

−sin 𝜃 0 cos 𝜃
]

−1

, (3.4) 

  

 

 𝐿𝐵𝑊 = [
cos 𝛼 0 − sin 𝑎

0 1 0
sin 𝛼 0 cos 𝛼

], (3.5) 
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 𝐿𝑊𝐵 = 𝐿𝐵𝑊
−1 = [

cos 𝛼 0 − sin 𝑎
0 1 0

sin 𝛼 0 cos 𝛼
]

−1

.  (3.6) 

  

 

Using this transformation matrices, velocity components on coordinates can be 

obtained easily. 

 

 �⃗� (𝐸) = �⃗� (𝐵) ×  𝐿𝐸𝐵 ⟹ [
�̇�
�̇�
�̇�
] =  [

cos 𝜃 0 sin 𝜃
0 1 0

−sin 𝜃 0 cos 𝜃
] × [

𝑢
𝑣
𝑤

]  (3.7) 

  

 

Since there is no velocity in the 𝑌𝐵 direction, 𝑣 = 0. Thus, velocity components become:  

 

 �̇� = 𝑢 𝑐𝑜𝑠𝜃 + 𝑤 𝑠𝑖𝑛𝜃  (3.8) 

  

 �̇� = −𝑢 𝑠𝑖𝑛𝜃 + 𝑤 𝑐𝑜𝑠𝜃  (3.9) 

  

3.2 Equations of Motion 

 

The mathematical model defines the position and attitude of the missile using rigid 

body dynamics with using Newton’s second law for forces and moments separately. In 

real life, missiles’ has six degree of freedom (6-DOF) of motion, but in this study for 

simplicity a 3-DOF missile model has been used as illustrated in Fig. 3.2. Weight, 

aerodynamical forces and thrust are the forces that act on the missile [3].  
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1.  

Figure 3. 2:  Dynamic model of the missile 

 

3.2.1 Theory of Coriolis Usage for Vector Derivation 

 

The Coriolis theorem should be used when the derivative of a vector is expressed as 

components of a rotating frame (body-fixed) with respect to a non-rotating frame 

(earth-fixed or inertial). For finding the derivative of vector �⃗�  in an earth fixed 

coordinate system with respect to the time, theorem is expressed as [3], [19]:  

 

 
𝑑�⃗⃗� 

𝑑𝑡
|
𝐸

=
𝑑�⃗⃗� 

𝑑𝑡
|
𝐵

+ �⃗⃗� 𝐵 × �⃗� 𝐵 (3.10) 

 

where 𝜔𝐵⃗⃗ ⃗⃗  ⃗ is the angular velocity of the rotating coordinate system, i.e. body coordinate 

system with respect to the non-rotating frame, earth fixed coordinate frame.  
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 �⃗⃗� 𝐵 = [
𝑝
𝑞
𝑟
] , (3.11) 

 

3.2.2 Translational Equations of Motion 

 

Applying Newton’s second law of motion for the forces, at the centre of gravity (c.g) , 

these equations are obtained [3], [19].  

 

 ∑𝐹 = 𝑚𝑎 = 𝑚
𝑑�⃗⃗� 

𝑑𝑡
|
𝐼
= 𝑚(

𝑑�⃗⃗� 

𝑑𝑡
|
𝐵

+ �⃗⃗� 𝐵 × �⃗� 𝐵) . (3.12) 

 

There are three forces acting on the missile body which are [𝑋, 𝑌, 𝑍] and they indicate 

the sum of the forces acting on the missile in x ,y and z directions respectively. 

 

 𝐹𝐵
⃗⃗⃗⃗ = [

𝑋
𝑌
𝑍
] , (3.13) 

  

 

There is also gravitational acceleration force acting on the missile, and it needs to be 

considered in the calculations by applying the earth coordinate frame to the body axis 

frame transformation matrix. As a result, sum of the forces become:  

 

 ∑𝐹 =  𝐹𝐵
⃗⃗⃗⃗ + 𝐿𝐵𝐸 [

0
0

𝑚𝑔
] , (3.14) 
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Using equation 3.1, derivative of the velocity component can be written as:  

 

 
𝑑�⃗⃗� 

𝑑𝑡
|
𝐵

= [
�̇�
�̇�
�̇�

] , (3.15) 

  

 

 

The 2nd law of Newton can be written as :  

 

 ∑𝐹 =  [
𝑋
𝑌
𝑍
] + 𝐿𝐵𝐸 [

0
0

𝑚𝑔
] = 𝑚 {[

�̇�
�̇�
�̇�

] + [
𝑝
𝑞
𝑟
] × [

𝑢
𝑣
𝑤

]} . (3.16) 

  

Expanding the matrices and rearranging, simplified equations can be obtained as:  

 

 �̇� = 𝑟𝑣 − 𝑞𝑤 +
𝑋

𝑚
− 𝑔𝑠𝑖𝑛𝜃 , (3.17) 

  

 

 �̇� = 𝑝𝑤 − 𝑟𝑢 +
𝑌

𝑚
+ 𝑔𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 , (3.18) 

  

 

 �̇� = 𝑞𝑢 − 𝑝𝑣 +
𝑍

𝑚
+ 𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 . (3.19) 
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3.2.3 Rotational Equations of Motion 

 

Applying Newton’s second law of motion for the moments, denoted by G, at the centre 

of the gravity (c.g) , these equations are obtained [3], [19] .  

 

 𝛴𝐺 𝐵 = [
𝐿
M
𝑁

] , (3.20)  

 

where 𝐿,𝑀,𝑁 denotes the moments action on x, y and z directions respectively.  �⃗⃗� 𝐵 is 

the angular momentum acting in body axis and has an equation of :  

 

 �⃗⃗� 𝐵 = 𝐼𝐵�⃗⃗� 𝐵 , (3.21)  

 

where 𝐼𝐵 represents the inertia matrix and �⃗⃗� 𝐵 represents the angular velocity defined 

at eq. 3.11. Inertia matrix 𝐼𝐵 is donated as:  

 

 𝐼𝐵 = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧

−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

] , (3.22)  

 

 

where  

 𝐼𝑥𝑥 = ∫ (𝑦2 + 𝑧2) ⅆ𝑚 , (3.23)  

 

 𝐼𝑦𝑦 = ∫ (𝑥2 + 𝑧2) ⅆ𝑚 , (3.24)  
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 𝐼𝑧𝑧 = ∫ (𝑥2 + 𝑦2) ⅆ𝑚 , (3.25)  

 

 𝐼𝑥𝑦 = ∫ (𝑥𝑦)ⅆ𝑚 , (3.26)  

 

 𝐼𝑦𝑧 = ∫ (𝑦𝑧) ⅆ𝑚 , (3.27) 

 

 𝐼𝑥𝑧 = ∫ (𝑥𝑧) ⅆ𝑚 , (3.28) 

 

Relation between �⃗⃗� 𝐵 and 𝐺 𝐵:  

 

 𝛴𝐺 𝐵 =
𝑑𝐻𝐵⃗⃗ ⃗⃗ ⃗⃗ 

𝑑𝑡
|
𝐼
 , (3.29) 

 

 
𝑑𝐻𝐵⃗⃗ ⃗⃗ ⃗⃗ 

𝑑𝑡
|
𝐼
= �̇�𝐵 + �⃗⃗� 𝐵 × �⃗⃗� 𝐵 , (3.30) 

 

 �̇�𝐵 =
𝑑

𝑑𝑡
(𝐼𝐵�⃗⃗� 𝐵) = 𝐼�̇��⃗⃗� 𝐵 + 𝐼𝐵�⃗⃗� ̇𝐵 , (3.31) 

 

From eq. 3.11. it can be found as:  

 

 �⃗⃗� ̇𝐵 = [
�̇�
�̇�
�̇�

] , (3.32) 
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The moment equation can be represented as:  

 

 𝛴𝐺 𝐵 = 𝐼�̅��⃗⃗� ̇𝐵 + �⃗⃗� 𝐵 × �⃗⃗� 𝐵 , (3.33) 

 

 [
𝐿
𝑀
𝑁

] = 𝐼𝐵 ⋅ [
�̇�
�̇�
�̇�

] + [
𝑃
𝑞
𝑟
] × (𝐼𝐵 ⋅ [

𝑃
𝑞
𝑟
]) , (3.34) 

 

 [
𝐿
M
𝑁

] = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧

−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

] ⋅ [
�̇�
�̇�
�̇�

] + [
𝑃
𝑞
𝑟
] × ([

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧

−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

] ⋅ [
𝑃
𝑞
𝑟
]) . (3.35) 

 

Expanding the matrices and rearranging them, simplified equations can be obtained as: 

𝐿 = 𝐼𝑥𝑥�̇� − 𝐼𝑥𝑧(�̇� + 𝑝𝑞) − (𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑞𝑟 − 𝐼𝑦𝑧(𝑞
2 − 𝑟2) − 𝐼𝑥𝑦(�̇� − 𝑟𝑝) ,  (3.36) 

 

M = 𝐼𝑦𝑦�̇� − 𝐼𝑥𝑧(𝑟
2 − 𝑝2 ) − (𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑟𝑝 − 𝐼𝑥𝑦(�̇� + 𝑞𝑟) − 𝐼𝑦𝑧(�̇� − 𝑝𝑞) ,  (3.37) 

 

𝑁 = 𝐼𝑧𝑧�̇� − 𝐼𝑥𝑧(�̇� − 𝑞𝑟) − (𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑝𝑞 − 𝐼𝑥𝑦(𝑝
2 − 𝑞2) − 𝐼𝑦𝑧(�̇� + 𝑟𝑝) ,  (3.38) 

 

 

3.2.4 The Three Degrees of Freedom (3-DOF) Assumption 

 

Whenever a missile is launched, it experiences a six degrees of freedom motion in the 

flight condition similar to an aircraft’s flight condition. During this flight, it might fly at 

a flight level, climb, descent, or manoeuvre. This means the missile could have any 
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configuration where all the translational and rotational components of accelerations 

and velocities may be included.  

 

During most of the flight, the missile flies at a constant velocity, altitude and attitude 

with the same heading. This flight condition is known as a trim condition, in other 

words, when the sum of the forces and moments acting on the missile is zero. In such 

a flight condition, if a laterally symmetrical missile is launched, there should be no 

lateral motion as long as there is no lateral disturbance.  As a result, the missile should 

act in the longitudinal direction, eliminating only two rotational and one translational 

degree of freedom and having three degrees of freedom motion. There is always some 

lateral movement due to the perturbations and coupling, but this is only an assumption 

longitudinally, which is actually a startup point.  

 

In the three degrees of freedom (3-DOF) assumption, motion is restricted into two 

dimensions with two forces and a pitching moment. In this research, the missile is 

restricted to travel in the longitudinal directions meaning that no force or moment is 

acting on the lateral direction. The missile motion is limited to travel only in the x-

direction and z-direction and rotates around the pitch axis in the body axis coordinate 

frame.  

 

By applying these conditions to the translational and rotational equations of motions 

with the assumption of plane of symmetry 𝐼𝑥𝑦 = 𝐼𝑦𝑧 = 0 and 𝐼𝑥𝑧 ≈ 0, which can be 

neglected, equations become as [3], [19]:  

 

 �̇� =
𝑋

𝑚
− 𝑞𝑤 − 𝑔𝑠𝑖𝑛𝜃 , (3.39) 
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 �̇� =
𝑍

𝑚
+ 𝑢𝑞 + 𝑔𝑐𝑜𝑠𝜃 , (3.40) 

 

 �̇� =
𝑀

𝐼𝑦𝑦
 , (3.41) 

 

 𝑞 = �̇� . (3.42) 

 

Where forces defined as:  

 

 𝑋 = 𝑋𝑎𝑒𝑟𝑜 + 𝑇, (3.43) 

where 𝑇 is Thrust. 

 𝑍 = 𝑍𝑎𝑒𝑟𝑜 , (3.44) 

 

 M = M𝑎𝑒𝑟𝑜 . (3.45) 

 

 

3.2.5 Aerodynamic Forces and Moments Acting on the Missile 

 

The missile has a propulsive force acting on the x-axis along the body axis, and there 

are controller fins located at the end of the missile in order to control the missile 

movement. Consequently, forces acting on the missile are aero-propulsive forces, and 

the moment is only aerodynamical. These forces and moments are drag, lift and  pitch 

moments, and they are defined in the wind reference frame as [3], [19]–[21]:  
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 𝐷 = 𝑋𝑎𝑒𝑟𝑜 =
1

2
𝜌𝑉2𝑆(𝐶𝑥), (3.46) 

 

 𝐿 = 𝑍𝑎𝑒𝑟𝑜 =
1

2
𝜌𝑉2𝑆(𝐶𝑧) , (3.47) 

 

 M𝑎𝑒𝑟𝑜 =
1

2
𝜌𝑉2𝑆ⅆ𝑟𝑒𝑓(𝐶𝑚). (3.48) 

 

In these aerodynamical forces and moments, aerodynamical coefficients play a massive 

role in the design process and optimising the missile performance, stability, and control, 

ensuring efficient and successful interception. These coefficients 𝐶𝑥, 𝐶𝑧 , and 𝐶𝑚 

quantify  the aerodynamical forces and moments acting on the missile proportional to 

the size, speed and atmospheric conditions.  

 

3.2.5.1 Aerodynamical Coefficients 

 

In order to calculate aerodynamical coefficients, there are several ways that can be 

followed. The first one is to use a wind tunnel experiment using a small, scaled model 

of the missile and measure the forces and moments directly for different conditions. 

This method provides highly accurate results on aerodynamical behaviour. Secondly, a 

computational flight dynamics (CFD) program can be used to obtain data without 

needing a physical model. These programs solve the fluid flow equations around the 

missile for different regimes by using numerical methods. Lastly,  Missile DATCOM, 

which is a software, can be used for calculations. This program uses empirical and semi-

empirical methods to estimate aerodynamic behaviour based on the missile’s geometry 

and flight conditions, providing a quick and cost-effective aerodynamical analysis. 

Overall, a real-life experiment, a wind tunnel test, provides the most accurate results 
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compared to the CFD analysis, which provides more reasonable results than the Missile 

DATCOM [20], [21].  

 

In this thesis, a polynomial model was utilized to estimate the aerodynamical coefficient 

of the missile, which is based on the AIM-9 Sidewinder geometry [15], [22], [23]. 

Instead of conducting a wind tunnel experiment, computational fluid dynamics (CFD) 

simulation or utilizing tools such as Missile DATCOM, aerodynamical behaviours was 

approximated by this polynomial model sourced from existing literature. This 

polynomial model for aerodynamical coefficients (𝐶𝑥, 𝐶𝑧 , 𝐶𝑚) is represented as the 

functions of key flight parameters, including Mach number, angle of attack, pitch rate, 

and fin deflection (𝑀, 𝛼, 𝑞, 𝛿𝑒). By applying established model, it was possible to avoid 

direct aerodynamical analysis while still achieving a realistic representation of the 

missile’s aerodynamical characteristics, which is suitable for guidance, navigation and 

control (GNC) analysis conducted in this study. With this polynomial representation, the 

aerodynamical forces and moments acting on the missile throughout its flight envelope 

can be calculated easily and accurately [11], [15], [16].  The polynomial representation 

of the coefficients is:  

 

 𝐶𝑥 = 𝑎𝑎 , (3.49) 

 

 𝐶𝑧 = 𝑎𝑛𝛼
3 + 𝑏𝑛𝛼|𝛼| + 𝑐𝑛 (2 −

𝑀

3
) 𝛼 + ⅆ𝑛𝛿𝑒 , (3.50) 

 

 𝐶𝑚 = 𝑎𝑚𝛼3 + 𝑏𝑚𝛼|𝛼| + 𝑐𝑚 (−7 +
8𝑀

3
) 𝛼 + ⅆ𝑚𝛿𝑒 + 𝑒𝑚𝑞 . (3.51) 
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Where The polynomial coefficients are summarized in Table 3.1: 

 

Table 3. 1: Aerodynamical Polynomial Coefficient 

Normal Force Pitch Moment 

𝑎𝑛 = 19.373 𝑎𝑚 = 40.44 

𝑏𝑛 = −31.023 𝑏𝑚 = −64.015 

𝑐𝑛 = −9.717 𝑐𝑚 = 2.922 

ⅆ𝑛 = −1.948 ⅆ𝑚 = −11.803 

𝑎𝑎 = −0.3 𝑒𝑚 = −1.719 

 

Using this polynomial aerodynamical model, lookup tables have been created for each 

aero dynamical coefficient by defining the working range for Mach number (𝑀) from 2 

to 4 in the increments of 0.5 and the angle of attack (𝛼) from -20 to 20 in the increment 

of 1. This tables include the calculated data for aerodynamical coefficients for each 

combination of 𝑀 and 𝛼 within the specified ranges. The figures 3.3 - 3.5 shows the 

variation of aerodynamical coefficients for this Mach number (𝑀)  and angle of attack 

(𝛼)  ranges.  
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Figure 3. 3: Aerodynamical Coefficients Plot in x-direction 

 

Figure 3. 4: Aerodynamical Coefficients Plot in z-direction 
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Figure 3. 5: Aerodynamical Pitch Moment Coefficients Plot 

 

3.3 Model Characteristics and Configuration 

 

The model characteristics of the missile are composed of various different physical 

parameters, which are critical to the aerodynamical performance and structural design 

of the missile. One of the key physical parameters is surface are (𝑆) ,which is 

determined by the length (𝑙) and the diameter (ⅆ𝑟𝑒𝑓) of the missile, and has a great 

effect on the missile’s drag, lift and stability. The other one is that moment of inertia 

(𝐼𝑦𝑦) ,which indicates the resistance of the missile in the rotational motion and has an 

influence on manoeuvrability and control. Additionally, the missile’s working range is 

defined by the Mach Number (2 to 4) and angle of attack (-20 to 20), and aerodynamical 

coefficients have been calculated and validated for this flight envelope.   
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Table 3. 2: Physical Characteristics of the missile. [15] 

Symbol Name Value 

𝑆 Reference Area 0.0409 𝑚2 

ⅆ𝑟𝑒𝑓 Reference Diameter 0.2286 𝑚 

𝑙 Length 3.02 𝑚 

𝐼𝑦𝑦 Moment of Inertia 247.44 𝑘𝑔𝑚2 

𝑚 Mass 204.023 𝑘𝑔 

𝑔 Gravity 9.81
𝑘𝑔 𝑚

𝑠2
 

 

As missile configuration, it has four fins and canards as it seen in figure down below (fig 

3.6). Canards are located at the front of the missile and they have a triangular shape, 

while fins are located at the end of the missile and they have a trapezoidal shape. All 

canards and fins are located at the same direction.  

 

 

Figure 3. 6: AIM9-Sidewinder Missile [24].  
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3.4 Linearization 

 

The missile model, which is used in this study, is a non-linear model with a single input 

and single output. Thus, a linear model is derived besides the non-linear model in order 

to decrease the complexity of the controller design and make the stability analysis 

possible. Therefore, using Taylor series expansion, the nonlinear equations are 

linearized by using steady level flight assumption [19], [25].  The linear model is only 

valid in the vicinity of an equilibrium point, but this point is a very small margin for the 

missile because of fast dynamical changes [25]. Using plenty of equilibrium points, the 

linear model’s response and stability can be checked.  In order to make the linearization 

possible, the nonlinear equation of motions (3.39), (3.40), (3.41), (3.42) are used. 

 

The  variables of the trim conditions are 𝑢 = 𝑢0, 𝑤 = 𝑤0, 𝜃 = 𝜃0, �̇� = �̇� = �̇� = 0, 𝑞0 =

0, ∆𝑞 = 𝑞, ∆�̇� = �̇�, 𝛼 ≠ 0, 𝜃 ≠ 0.   

Linearization of equation of motions, using Taylor series expansion [19], [25] (see 

Appendix A) :  

 

∆�̇� =
∆𝑋

𝑚
− 𝑤0𝑞 − 𝑔𝑐𝑜𝑠𝜃0∆𝜃,   (3.52) 

 

 ∆�̇� =
∆𝑍

𝑚
+ 𝑢0∆𝑞 − 𝑔𝑠𝑖𝑛𝜃0∆𝜃, (3.53) 

 

 ∆�̇� =
∆𝑀

𝐼𝑦𝑦
, (3.54) 

 

 ∆�̇� = ∆𝑞. (3.55) 
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In the steady state assumption, the angle of attack (𝛼) and pitch angle (𝜃) is small, so 

small angle assumption is used to further simplify the linearized equations (3.52), 

(3.53).  

∆�̇� =
∆𝑋

𝑚
− 𝑔∆𝜃,   (3.56) 

 

 �̇� =
∆𝑍

𝑚
+ ∆𝑞. (3.57) 

 

These aero propulsive forces are functions of 𝑢, 𝑤, 𝑞, 𝛼, 𝜃, and 𝛿𝑐, so they need to be 

expanded and written in terms of these variables. Additionally, in the condition of 

pitching missile only control variable 𝛿𝑐 is the elevator, so it can be represented as 𝛿𝑒. 

As a result, these forces are expressed as [10]:  

 

 ∆𝑋 = 𝑋𝑢∆𝑢 + 𝑋𝛼∆𝛼 + 𝑋𝛿𝑒
∆𝛿𝑒 (3.58) 

 

 ∆𝑍 =
𝑍𝑢

𝑉
∆𝑢 +

𝑍𝛼

𝑉
∆𝛼 + 𝑍𝛿𝑒

∆𝛿𝑒 (3.59) 

 

 ∆𝑀 = 𝑀𝑢∆𝑢 + 𝑀𝛼∆𝛼 + 𝑀𝑞∆𝑞 + 𝑀𝛿𝑒
∆𝛿𝑒 (3.60) 

 

By putting these equations into the previous equations ,which are eq.  3.54, 3.55, 

3.56, 3.57, updated linearized version can be obtained as [10] :  

 ∆�̇� =
𝑋𝑢

𝑚
∆𝑢 +

𝑋𝛼

𝑚
∆𝛼 +

𝑋𝛿𝑒

𝑚
∆𝛿𝑒 − 𝑔∆𝜃, (3.61) 
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 ∆�̇� =
𝑍𝑢

𝑚𝑉
 ∆𝑢 +

𝑍𝛼

𝑚𝑉
∆𝛼 +

𝑍𝛿𝑒

𝑚𝑉
∆𝛿𝑒 + ∆𝑞, (3.62) 

 

 ∆�̇� = �̇� =
𝑀𝑢

𝐼𝑦𝑦
∆𝑢 +

𝑀𝛼

𝐼𝑦𝑦
∆𝛼 +

𝑀𝑞

𝐼𝑦𝑦
∆𝑞 +

𝑀𝛿𝑒

𝐼𝑦𝑦
∆𝛿𝑒 , (3.63) 

 

 ∆�̇� = ∆𝑞. (3.64) 

 

𝑋𝑢 =
𝜕𝑋

𝜕𝑢
, 𝑋𝛼 =

𝜕𝑋

𝜕𝛼
, 𝑍𝑢 =

𝜕𝑍

𝜕𝑢
, 𝑍𝛼 =

𝜕𝑍

𝜕𝛼
, 𝑀𝑢 =

𝜕𝑀

𝜕𝑢

𝑀𝛼 =
𝜕𝑀

𝜕𝛼
, 𝑀𝑞 =

𝜕𝑀

𝜕𝑞
, 𝑋𝛿𝑒

=
𝜕𝑋

𝜕𝛿𝑒
, 𝑍𝛿𝑒

=
𝜕𝑍

𝜕𝛿𝑒
, 𝑀𝛿𝑒

=
𝜕𝑀

𝜕𝛿𝑒

 (3.65) 

 

In this linearized equations of motion, step size or delta (∆) values are determined by 

considering small perturbations, often ranging between 0.1% and 1% of the state 

variables, around the trim point. Expanding the nonlinear equations around the trim 

point, and keeping the first order terms, which are proportional to these small 

deviations. Therefore, the choice of the step size is crucial, as it must be sufficiently 

small to ensure the higher order terms  can be neglected to accurately approximate the 

nonlinear model with linearized one. The appropriate step size is often determined 

empirically or based on the sensitivity of the system to perturbations, ensuring the 

linear model remains valid [10], [19], [25]. These linearized equations can be 

represented in the matrix form to obtain the state space representation. In this case, 

the state vector become as [∆𝑢 ∆𝛼 𝑞 ∆𝜃]𝑇.  
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3.4.1 State Space 

 

The obtained linearized equations are represented in the matrix form to obtain the 

state space, which is a state of dynamical set of physical quantities. State space has a 

representation of:  

 �̇� = 𝐴𝑥 + 𝐵𝑢 , (3.66) 

 

 𝑦 = 𝐶𝑥 + 𝐷𝑢 . (3.67) 

 

In this representation, x represents the state vector, u is the input, and y is the output. 

A is the state matrix, B is the input matrix, C is the output matrix, and D is the 

feedthrough matrix [14], [19], [25].  

 

In many cases the coupling of the change in the velocity ∆𝑢 normal to the longitudinal 

axis into the equations for angle of attack (𝛼) and pitch rate (𝑞) is negligible, so 

𝑋𝑢, 𝑍𝑢, 𝑀𝑢 are insignificant. Additionally, the pitch angle usually not of interest, hence 

the differential equation �̇� = 𝑞 can be omitted [10].  In this case the equation 3.62 and 

3.63 are further simplified as:  

 ∆�̇� =
𝑍𝛼

𝑚𝑉
∆𝛼 +

𝑍𝛿𝑒

𝑚𝑉
∆𝛿𝑒 + ∆𝑞 , (3.68) 

 

 �̇� =
𝑀𝛼

𝐼𝑦𝑦
∆𝛼 +

𝑀𝑞

𝐼𝑦𝑦
∆𝑞 +

𝑀𝛿𝑒

𝐼𝑦𝑦
∆𝛿𝑒 .  (3.69) 

 

In these equations 𝛿𝑒 is the control input, which is elevator deflection. On the other 

hand, the output is dependent on the missile guidance laws which are generally 



35 
 

expressed in terms of the component of acceleration normal to the  velocity vector of 

the missile, in proportional navigation, for example, it is desired that this acceleration 

is to be proportional to the initial line-of-sight rate. As a result, the output of interest in 

a typical missile is the normal component of the acceleration 𝑎𝑁 [10]. In the planar 

case:  

 

 𝑎𝑁 ≅ −𝑉�̇� , (3.68) 

 

Where 𝛾 is the flight path angle and 𝑉 is the missile velocity. However, 𝛾 = 𝜃 − 𝛼, so 

�̇� = 𝑞 − �̇�. Therefore, the normal acceleration can be expressed as:  

 

 𝑎𝑁 ≅ 𝑍𝛼𝛼 + 𝑍𝛿𝑒
𝛿𝑒 , (3.69) 

 

Using this algorithm to the final linearization equation, this form is obtained:  

 

 𝑥 = [ ∆𝛼 𝑞 ]T , (3.70) 

 

 𝐴 = [

𝑍𝛼

𝑚𝑉
1

𝑀𝛼

𝐼𝑦

𝑀𝑞

𝐼𝑦

] , (3.71) 

 

 𝐵 = [

𝑍𝛿𝑒

𝑚𝑉
𝑀𝛿𝑒

𝐼𝑦

]  , (3.72) 
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 𝑢 = 𝛿𝑒 , 𝑦 = 𝑎𝑁 and 𝑞  , (3.73) 

 

 𝐶 = [
𝑧𝛼 0
0 1

] , (3.74) 

 

 𝐷 = [
𝑍𝛿𝑒

0
] . (3.75) 

 

The transfer function (𝐻1) from input 𝑢 = 𝛿𝑒 to the output 𝑦 = 𝑎𝑁 is given by: 

 

 𝐻1(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 (3.76) 

 

 𝐻1(𝑠) = [𝑍𝛼0] [
𝑠 −

𝑍𝛼

𝑚𝑉
−1

−
𝑀𝛼

𝐼𝑦
𝑠 −

𝑀𝑞

𝐼𝑦

]

−1

[

𝑍𝛿𝑒

𝑚𝑉
𝑀𝛿𝑒

𝐼𝑦

] + 𝑍𝛿𝑒
 (3.77) 

 

 𝐻1(𝑠) =
𝑍𝛼((𝑠−

𝑀𝑞

𝐼𝑦
)
𝑍𝛿𝑒
𝑚𝑉

+
𝑀𝛼
𝐼𝑦

 
 𝑀𝛿𝑒
𝐼𝑦 

  )

(𝑠−
𝑍𝛼
𝑚𝑉

) (𝑠−
𝑀𝑞

𝐼𝑦
)−

𝑀𝛼
𝐼𝑦

+ 𝑍𝛿𝑒
 (3.78) 

 

 

The transfer function (𝐻2) from input 𝑢 = 𝛿𝑒 to the output 𝑦 = 𝑞 is given by: 

 

 𝐻2(𝑠) = [1 0] [
𝑠 −

𝑍𝛼

𝑚𝑉
−1

−
𝑀𝛼

𝐼𝑦
𝑠 −

𝑀𝑞

𝐼𝑦

]

−1

[

𝑍𝛿𝑒

𝑚𝑉
𝑀𝛿𝑒

𝐼𝑦

] (3.79) 

 𝐻2(𝑠) = 
(𝑠−

𝑀𝑞

𝐼𝑦
)
𝑍𝛿𝑒
𝑚𝑉

+
𝑀𝛼
𝐼𝑦

 
 𝑀𝛿𝑒
𝐼𝑦 

(𝑠−
𝑍𝛼
𝑚𝑉

) (𝑠−
𝑀𝑞

𝐼𝑦
)−

𝑀𝛼
𝐼𝑦

 (3.80) 
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3.4.2 Aerodynamic Stability Derivatives 

 

The aerodynamical derivatives, represented at eq. 3.65, are known as aerodynamic 

stability derivatives, and they are most often obtained through experiments or CFD 

analysis. However, there is a way to calculate these derivatives, and this method is 

called an empirical method. In this method, forces and moments partial derivatives are 

taken, and aerodynamical stability derivatives can be obtained by applying a trim 

condition [19], [26] (see Appendix B). 

Aerodynamical forces and moments:  

 𝑋 =
1

2
𝜌𝑉2𝑆(𝐶𝑥) (3.46) 

 

 𝑍 =
1

2
𝜌𝑉2𝑆(𝐶𝑧) (3.47) 

 

 M =
1

2
𝜌𝑉2𝑆ⅆ𝑟𝑒𝑓(𝐶𝑚) (3.48) 

Where 

Table 3. 3: Aerodynamical Equations Parameters 

Parameter Explanation 

𝜌 (𝑘𝑔/𝑚3) Air density 

𝑉 (𝑚/𝑠2 ) Velocity of the missile 

𝛿𝑒 (𝑟𝑎ⅆ) Fin deflection of the missile 

𝑎 (𝑚/𝑠 ) Speed of sound 

𝑀 Mach number 

𝐶𝑥   Aerodynamical coefficient of missile in  x direction 

𝐶𝑧(𝛼,𝑀, 𝛿𝑒)   
Aerodynamical coefficient of missile in z direction where it is 

function of angle of attack ,Mach number and fin deflection(𝛿𝑒). 

𝐶𝑚(𝛼,𝑀, 𝛿𝑒 , 𝑞)   
Pitch moment coefficient of missile  where it is function of angle 
of attack, Mach number, fin deflection (𝛿𝑒) and pitch rate (𝑞) . 



 

 
 

 

Table 3. 4: Aerodynamical Stability Derivative  Equations 

 𝑋 𝑍 𝑀 

𝑢 𝜌𝑉0𝑐𝑜𝑠𝜃0 𝑆𝐶𝑥0
 

1

2
𝜌𝑉0

2𝑆 (
𝜕𝐶𝑧

𝜕𝛼
|𝑀0

∙
𝑤0

𝑉0
2 +

𝜕𝐶𝑧

𝜕𝑀
|𝛼0

∙
𝑢0

𝑎𝑉0
 )

+ 𝜌𝑉0𝑐𝑜𝑠𝜃0 𝑆(𝐶𝑧0
)  

1

2
𝜌𝑉0

2𝑆ⅆ𝑟𝑒𝑓 (
𝜕𝐶𝑚

𝜕𝛼
|𝑀0

∙
𝑤0

𝑉0
2  +

𝜕𝐶𝑚

𝜕𝑀
|𝛼0

∙
𝑢0

𝑎𝑉0
)

+ 𝜌𝑉0𝑐𝑜𝑠𝜃0 𝑆ⅆ𝑟𝑒𝑓(𝐶𝑚0
)  

𝛼 0 
1

2
𝜌𝑉0

2𝑆 (
𝜕𝐶𝑧

𝜕𝛼
|𝑀0

)  𝑀𝛼 =
1

2
𝜌𝑉0

2𝑆ⅆ𝑟𝑒𝑓 (
𝜕𝐶𝑚

𝜕𝛼
|𝑀0

) 

𝑞 0 0 
1

2
𝜌𝑉0

2𝑆ⅆ𝑟𝑒𝑓 (𝐶𝑚𝑞
) 

𝛿𝑒 0 
1

2
𝜌𝑉0

2𝑆𝐶𝑧𝛿𝑒
  

1

2
𝜌𝑉0

2𝑆ⅆ𝑟𝑒𝑓𝐶𝑚𝛿𝑒
 

 

    3
8 
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3.5 Numerical Example of Linearization in a Trim Point  

 

In this part, a numerical example of the linearization is done and represented in state 

space form. In order to do the linearization, a trim condition is needed be found under 

the assumption of a steady level flight where there is no acceleration or altitude gain. 

In order to find the trim angle of attack (𝛼𝑡𝑟𝑖𝑚) equation of motion need to be solved 

for the specified Mach number which is 𝑀 = 3.  

 

Figure 3. 7: Forces acting on the missile model.  

 

Sum of the forces in z-direction must be equal to the zero at the trim condition. 

Additionally, there is no fin deflection (𝛿𝑒 = 0°) and thrust force (𝑇) is constant 

throughout the flight. Before getting to the calculation, atmospheric and missile 

parameters are needed which are represented in the table (Table 3.5) down below. 
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Table 3. 5: Numerical parameters for linearization. 

Parameters Numerical Values 

𝑀0 3 

𝑎 328 𝑚/𝑠 

𝑚 204.0277 𝑘𝑔 

𝑆 0.0409 𝑚2 

𝜌 0.9 𝑘𝑔/𝑚3 

𝑔 9.81 𝑘𝑔𝑚/𝑠2 

𝑇 10000 𝑁 

 

 

Using these parameters and equilibrium equation in z-direction, angle of attack for trim 

(𝛼𝑡𝑟𝑖𝑚) can be calculated as:  

 

 𝑚𝑔 = 𝐿 + 𝑇𝑠𝑖𝑛(𝛼𝑡𝑟𝑖𝑚), (3.81) 

 

 𝐿 =
1

2
𝜌𝑉2𝑆(𝐶𝑧), (3.82) 

 

Where aerodynamical coefficient in z direction (𝐶𝑧) is:  

 

 𝐶𝑧 = 19.373𝛼3 + 31.0230𝛼2 − 9.717 (2 −
𝑀

3
) 𝛼 , (3.83) 

 

 204.0277 × 9.81 = 10000 × sin( 𝛼𝑡𝑟𝑖𝑚) + 0.5 × 0.9 × (3 × 328)2 × 0.0409 ×

(19.373𝛼𝑡𝑟𝑖𝑚 
3 + 31.0230𝛼𝑡𝑟𝑖𝑚

2 − 9.717 (2 −
𝑀

3
) 𝛼𝑡𝑟𝑖𝑚) , (3.84) 
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 𝛼𝑡𝑟𝑖𝑚 = −0.01180 𝑟𝑎ⅆ = −0.68° . (3.85) 

 

Using these parameters, state space representation of the linearized model can be 

obtained at the trim point (𝛼0 = −0.68°,𝑀 = 3) as :  

 

 [
�̇�
�̇�
] = [

−0.9268 1
23.5127 −28.3014

] [
∆𝛼 
𝑞

] + [
−0.1729

−194.3232
] [∆𝛿𝑒] , (3.86) 

 

 [
𝑎𝑁

𝑞 ] = [
𝑍𝛼 0
0 1

] [
𝛼
𝑞] + [

𝑍𝛿𝑒

0
] . (3.87) 

 

 

3.6 Actuator Model 

 

The actuator is a mechanical component, i.e. a small engine, that takes an input signal 

and converts it to the physical action. Actuators in missiles are the responsible 

components for moving or controlling the control surfaces, such as fins, by using the 

input signal [1], [2].    In this missile model,  a second-order nonlinear actuator model 

is used in order to reflect the real-world behaviour of the actuators, including effects 

such as saturation and rate limits. In the figure down (Figure 3.8) the actuator model 

block diagram is given:  
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Figure 3. 8: Actuator model block diagram. 

 

Mathematical representation of the actuator model:  

 

 𝛿�̈� + 2𝜁𝜔𝑛𝛿�̇� + 𝜔𝑛
2𝛿𝑒 = 𝜔𝑛

2𝛿𝑒𝑑𝑒𝑚
 , (3.88) 

Where 

 

Table 3. 6: Actuator parameters. 

Parameters Explanation 

𝛿𝑒 Actual elevator deflection 

𝛿𝑒𝑑𝑒𝑚
 Demanded elevator deflection 

𝜔𝑛 Natural frequency of the actuator 

𝜁 Damping ratio 

𝛿𝑒𝑚𝑎𝑥
 Maximum elevator deflection 

�̇�𝑒max
 Maximum elevator rate 
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In this actuator model used numerical values are:  

 

 

𝜔𝑛 = 150 𝐻𝑧
𝜁 = 0.7

𝛿𝑒𝑚𝑎𝑥
= ±30°

�̇�𝑒max
= 500°/𝑠

 (3.89) 

 

3.7 Atmosphere Model 

 

The atmosphere model provides the speed of sound (𝑎) and air density (𝜌) using the 

altitude,  which is actually the height difference from the sea level and calculates 

continuously as the altitude changes [14], [21]. These parameters are expressed 

mathematically as:  

 

Table 3. 7: Atmosphere model parameters. 

Parameters with Numerical Values Explanation 

𝜌0 = 1.225 𝑘𝑔/𝑚3 Sea-level standard density 

𝐿 = 0.0065 𝐾/𝑚 Temperature lapse rate 

ℎ (𝑚) Altitude 

𝑇0 = 288.15 𝐾 Sea-level standard temperature 

𝑇 (𝐾) Temperature at altitude h 

𝑔 = 9.81 𝑚/𝑠2 Gravitational acceleration 

𝑅 = 287.05 𝐽/𝑘𝑔𝐾 Specific gas constant 

𝛾 = 1.4 Heat capacity ratio 
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 Air density:  𝜌 = 𝜌0 (1 −
𝐿ℎ

𝑇0
)

𝑔

𝑅𝐿
−1

 (3.90) 

 

  Temperature: 𝑇 = 𝑇0 − 𝐿ℎ (3.91) 

 

 Speed of sound: 𝑎 = √𝛾𝑅𝑇 = √𝛾𝑅(𝑇0 − 𝐿ℎ) (3.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

45 
 

CHAPTER 4 

 

4. GUIDANCE NAVIGATION AND CONTROL ALGORITHMS 

 

 

This section describes the fundamental aspects of designing the guidance, navigation 

and control algorithms of an air-to-air missile, which is launched either from a fighter 

jet or a carrier. It also explains the mathematics behind these algorithms. At the 

beginning, a missile target interception scenario was described in order to be able to 

design the GNC algorithm. After that, the navigation system algorithm, which is used in 

the missile system, is explained.  Three navigational guidance algorithms and their 

maths are processed with their open loop responses according to the fin deflections. 

Lastly, controller design is handled, and their mathematical algorithms are given with 

their block diagrams.  

 

4.1 Missile Target Interception Scenario  

 

In order to create a working guidance navigation and control algorithm (GNC), first of 

all a scenario has to be created. The scenario discussed in this article is formatted as 

follows: there is a target which flies at a constant altitude with constant speed towards 

to the missile with initial separation in x and z directions.  The main objective in this 

scenario is to create a GNC system for the missile to eliminate the altitude difference 

between the missile and target in the shortest time and distance and ensure missile 

target interception, as shown in Fig 4.1.  
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Figure 4. 1: Missile Target Interception Scenario 

 

4.2 Guidance Navigation and Controller Algorithms 

 

GNC algorithm is the most crucial system of the missile in order to have a successful 

missile and target interception [1], [2]. Different from the literature review, in this 

section, GNC, which is used for the designing of the missile, and the maths behind each 

component is expressed.  

 

4.2.1 Navigation System  

 

In designing the guidance, navigation, and control algorithms for the missile, the 

navigation system plays a vital role. In the missile designed for the simulations, the INS 

is used to accurately measure accelerations and pitch rates by using accelerometers 

and gyroscopes. Processing this initial data, the system determines the missile's 

position and velocity in real-time. These crucial parameters are then fed into the 



 

47 
 

navigational guidance subsystem, which uses them as inputs to continuously update 

and refine the missile's trajectory to enable missile target interception with high 

accuracy [1], [2], [4]. Thus, the INS system is the foundation of the GNC algorithm with 

robustness and reliability.  

 

4.2.2 Navigational Guidance  

 

There are various navigational guidance algorithms that are used in the GNC systems, 

and one of the most known ones is Proportional Navigation (PN) [2]. For this missile’s 

GNC system, three Proportional Navigation with different algorithms are used, and in 

the upcoming part of the paper, the algorithms for each navigation are investigated, 

and open loop results are presented. In addition, according to the results, a comparison 

will be made among their performance, reliability, effectiveness and robustness in the 

comparison section. The figure below, which contains important parameters, shows the 

scenario of the missile target interception, which is used in the design of navigation 

algorithms.  
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Figure 4. 2: Missile Target Interception Scenario with Parameters 

 

4.2.2.1   Proportional Navigation 

 

Proportional navigation guidance law provides acceleration directives that are 

orthogonal to the instantaneous line-of-sight between the missile and target, which is 

proportional to the line-of-sight rate and closing velocity [2]. Additionally, for this 

navigation to work correctly, the initial location of the target must be known. 

Mathematically the proportional navigation guidance can be shown as:  

 

 𝑛𝑐 = 𝑁′𝑉𝑐�̇� , (4.1) 

 

where 𝑛𝑐  is the acceleration command which is instantly perpendicular to the line of 

sight and has a unit of 𝑚/𝑠2. 𝑁′ is a constant chosen by the designer, which is known 
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as an effective navigation ratio and has a value between 3-5 usually. 𝑉𝑐 is the closing 

velocity between missile and target in 𝑚/𝑠. 𝜆 is the line of sight angle in degree and �̇� 

is the rate of change in the line of sight angle. 𝑉𝑐 and �̇� need to be calculated in order 

to calculate 𝑛𝑐.  Table 4.1 presents the proportional navigation parameters that is used 

in the calculation of the demanded acceleration [2]:  

 

Table 4. 1: Proportional Navigation Parameters 

Parameters Explanation 

𝑉𝑇 Target velocity (𝑚/𝑠) 

𝑉𝑇𝑥
, 𝑉𝑇𝑧

 Target velocity in x and z directions (𝑚/𝑠) 

𝑉𝑀𝑥
, 𝑉𝑀𝑧

 Missile velocity in x and z-directions (𝑚/𝑠 ) 

𝑉𝑇𝑀𝑥
, 𝑉𝑇𝑀𝑧

 Relative velocity components in x and z directions (𝑚) 

𝑅𝑇𝑥
, 𝑅𝑇𝑧

 Target position with respect to the inertial reference frame (𝑚) 

𝑅𝑀𝑥
, 𝑅𝑀𝑧

 Missile position with respect to the inertial reference frame (𝑚) 

𝑅𝑇𝑀𝑥
, 𝑅𝑇𝑀𝑧

 Relative distance components in x and z directions (𝑚) 

𝑅 Relative separation magnitude (𝑚) 

𝜆 Line of sight angle (° ) 

�̇� Line of sight rate (°/𝑠) 

𝑉𝑐 Closing velocity  (𝑚/𝑠) 

𝑛𝑐  Missile guidance command (𝑚/𝑠2) 

𝑎𝑧𝑑
 Demanded acceleration (𝑚/𝑠2) 

 

 

 Relative velocity in x- direction: 𝑉𝑇𝑀𝑥
= 𝑉𝑇𝑥

− 𝑉𝑀𝑥
, (4.2) 

 

 Relative velocity in z- direction: 𝑉𝑇𝑀𝑍
= 𝑉𝑇𝑧

− 𝑉𝑀𝑧
, (4.3) 
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 Relative distance in x-direction: 𝑅𝑇𝑀𝑥
= 𝑅𝑇𝑥

− 𝑅𝑀𝑥
 , (4.4) 

 

 Relative distance in z-direction:  𝑅𝑇𝑀𝑧
= 𝑅𝑇𝑧

− 𝑅𝑀𝑧
, (4.5) 

 

 Relative distance: 𝑅 = √𝑅𝑇𝑀𝑥

2 + 𝑅𝑇𝑀𝑧

2  , (4.6) 

 

 Line-of-sight angle: 𝜆 = tan−1(|𝑅𝑇𝑀𝑧
|/𝑅𝑇𝑀𝑥

) ,  (4.7) 

 

 Line-of-sight rate: �̇� =
𝑅𝑇𝑀𝑥×𝑉𝑇𝑀𝑧  − 𝑅𝑇𝑀𝑧×𝑉𝑇𝑀𝑥

𝑅2 , (4.8) 

 

 Closing velocity: 𝑉𝑐 = −(𝑅𝑇𝑀𝑥
× 𝑉𝑇𝑀𝑥

 +  𝑅𝑇𝑀𝑧
× 𝑉𝑇𝑀𝑧

)/𝑅, (4.9) 

 

 Missile guidance command: 𝑛𝑐 = 𝑁′𝑉𝑐�̇�, (4.10) 

 

 Demanded acceleration: 𝑎𝑧𝑑
= 𝑛𝑐 cos(𝜆). (4.11) 

 

Proportional navigation guidance law provides the demanded acceleration according 

to the missile and target parameters which is used as an input in the controller to create 

the desired trajectory to follow and make the missile target interception happen. 
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4.2.2.2   Proportional Navigation with Zero Effort Miss (ZEM) 

 

Zero effort miss (ZEM) is the miss distance between the missile and the target if there 

is no further adjustment is made. ZEM is integrated into the proportional navigation, 

proportional navigation with zero effort miss is obtained. This algorithm aims to 

minimize the ZEM to zero by adjusting the proportional navigation command 

continuously to adjust the trajectory of the missile in order to keep the missile on a 

collision triangle. With this integration, proportional navigation’s effectiveness and 

robustness improve, and interception accuracy increases [2]. Mathematically the 

proportional navigation with zero effort miss is :  

  

 Zero effort miss in x- direction : 𝑍𝐸𝑀𝑥 = 𝑅𝑇𝑀𝑥
+ 𝑉𝑇𝑀𝑥

𝑡𝑔𝑜 , (4.12) 

 

 Zero effort miss in z- direction : 𝑍𝐸𝑀𝑧 = 𝑅𝑇𝑀𝑧
+ 𝑉𝑇𝑀𝑧

𝑡𝑔𝑜 , (4.13) 

 

Where  𝑡𝑔𝑜 is the time to go until interception. 

 

Zero effort miss perpendicular to LOS:  𝑍𝐸𝑀𝑃𝐿𝑂𝑆 =
𝑡𝑔𝑜(𝑅𝑇𝑀𝑥𝑉𝑇𝑀𝑧−𝑅𝑇𝑀𝑧𝑉𝑇𝑀𝑥)

𝑅
 , (4.14) 

 

 Line of sight rate: �̇� =
𝑍𝐸𝑀𝑃𝐿𝑂𝑆

𝑅𝑡𝑔𝑜
 , (4.15) 

 

 Relative distance: 𝑅 = 𝑉𝑐𝑡𝑔𝑜 , (4.16) 

 

 Missile guidance command: 𝑛𝑐 =
𝑁′𝑍𝐸𝑀𝑃𝐿𝑂𝑆

𝑡𝑔𝑜
2  , (4.17) 
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 Demanded acceleration. 𝑎𝑧𝑑
= 𝑛𝑐 cos(𝜆) . (4.18) 

 

Similar to proportional navigation, this algorithm provides the acceleration and creates 

input commands for the controller. 

 

4.2.2.3   Proportional Navigation + Seeker  

 

Although, it is the same algorithm with the proportional navigation, which was covered 

previously, there is an additional component added to the navigation guidance 

algorithm, which is a seeker, that makes the algorithm the most complex among these 

algorithms. The initial position of the target does not have to be a known cause of the 

seeker. Seeker is a device integrated into the missile body that works for detecting the 

target and giving the target’s location information to the navigation guidance part of 

the missile in order to find the desired acceleration to flow the intended path [1]–[3], 

[15]. Here is both mathematical explanation of the navigation guidance method: 

 

 Sightline angle : 𝜃𝑠 = tan−1(|𝑅𝑇𝑀𝑧
|/𝑅𝑇𝑀𝑥

) , (4.19) 

 

 Look angle: 𝜎𝑙 = 𝜃𝑠 − 𝜃𝑏 , (4.20) 

 

 Dish angle: 𝜎𝑑 = 𝜃𝑏 + 𝜎𝑔 , (4.21) 
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Figure 4. 3: Seeker and Proportional Navigation Angles. 

 

This navigation guidance algorithm has two parts, which are seeker and guidance. The 

first part is the seeker part, which calculates the line rate of sightline angle with using 

the equations (4.4), (4.5), (4.6). 

 

 Closing velocity : 𝑉𝑐 = 𝑉𝑇𝑀 × �̂� , (4.22) 

 

 Unit vector along LOS : �̂� =
𝑅

|𝑅|
 , (4.23) 

 

 Sightline angle rate : 𝜃�̇� =
𝑉𝑐

𝑅
 , (4.24) 

 

The second part, which is the proportional navigation part, is where the desired 

acceleration is calculated to follow the intended course. This part takes the seeker 

outputs, which is sightline angle rate, as input and calculates the demanded 

acceleration. 
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 Demanded acceleration : 𝑎𝑧𝑑
= 𝑁′𝑉𝑐𝜃�̇� =

𝑁′𝑉𝑐
2

𝑅
 . (4.25) 

 

4.2.3 Open Loop Responses of Navigational Guidance Algorithms  

 

After creating the navigation guidance algorithms, several open loop tests has been 

done in order to find the responses of the algorithms and make comparison between 

them. Since in the missile model there is only single input, which is fin deflection (𝛿𝑒) , 

a step function as an input , which initiates at one second,  is used with the final values 

of -10, 0, and 10 indicating elevator angles as −10°, 0°, 10°. Furthermore, while 

obtaining these results, the designer coefficient (𝑁′) for proportional navigation and 

proportional navigation with zero effort miss is chosen as three (3) while proportional 

navigation with seeker as three point five (3.5).  

 

Figure 4. 4: Navigational guidance response of open loop simulation when fin 
deflection is minus ten degrees. 
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Figure 4. 5:  Navigational guidance response of open loop simulation when fin 
deflection is zero degrees. 

 

Figure 4. 6:  Navigational guidance response of open loop simulation when fin 
deflection is ten degrees. 
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The responses show that these algorithms provide different demanded accelerations 

than each other, but in terms of the trends, it is seen that they have similar behaviour. 

Moreover, while proportional navigation and proportional navigation with zero effort 

miss start immediately to provide demanded acceleration, proportional navigation with 

the seeker is constant until the seeker finds the target, and then it gives the acceleration 

command. 

 

4.2.4 Controller  

 

The main objective of these controllers is to adjust the fin deflection to guide the 

interceptor missile along the desired trajectory [3], [4], [10]. In this missile model, a 

Proportional-Integral-Derivative (PID) controller is used.  

 

4.2.4.1 Proportional Integral Derivative (PID) Controller 

 

PID controller works based on the feedback principle, which aims to increase the actual 

acceleration when the desired acceleration is higher than the actual one or vice versa.    

The PID controller has three components which are proportional (P), Integral (I), and 

Derivative (D) and each has a specific objective for the controller. The Proportional term 

represents the present and it determines how fast the system responds and  

represented by the gain 𝐾𝑝. Integral term represents the past and it determines how 

fast the steady state error eliminated and represented by 𝐾𝑖  . Derivative term 

represents the future by predicting the change to create a faster response and 

represented by 𝐾𝑑 . However, the derivative term (𝐾𝑑) is not generally used due to the 

noise creation in the signal, which is cause of oscillation, so instead proportional and 
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integral terms are used to create PI controller [9], [27], [28]. The figure below 

represents the block diagram version of the PI controller.  

 

Figure 4. 7: PI Block Diagram 

 

Mathematical representation of a PI controller [10]:  

 

 𝛿𝑒 = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡) ⅆ𝑡
𝑡

0
 , (4.26) 

 

where 𝛿𝑒 and 𝑒(𝑡)represent the fin deflection and error as a function of time, 

respectively. 

 

The performance of the controller can be improved by using rate feedback [10]. The 

figure below represents the block diagram version of the PID controller with rate 

feedback. 
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Figure 4. 8: PI block diagram with rate feedback.  

 

The control input is [10]:  

 

 𝛿𝑒 = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡) ⅆ𝑡
𝑡

0
+ 𝐾𝑞𝑞 . (4.27) 

 

where 𝛿𝑒 , 𝑒(𝑡), 𝑞 represents the fin deflection, error as a function of time, and pitch 

rate respectively.  
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CHAPTER 5 

 

5. DYNAMIC MODELLING AND SIMULATION  

 

 

This section explains the dynamic modelling and simulation analysis for the used air to 

air missile. The linear model closed loop with the controller is elaborated to find the 

gains of the controller. The nonlinear missile model closed loop ,which used to obtain 

the results,  is explained detailly.  

 

5.1 Linear Missile Model with a Controller   

 

In this section, the linearized closed loop system with a controller is derived from the 

previously linearized model in section 3.4. In this closed loop system, the PI controller 

is implemented as a controller to continuously adjust the control input for the system.  

The main aim of the closed loop linearized model is to calculate the overall transfer 

function of the system and use it for the gain calculation of the controller via pole 

placement. The fig 5.1 represents controller with a linear missile model.  
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Figure 5. 1: Controller with a linear missile model. 

 

In this block diagram, demanded acceleration is represented as a step function, but in 

the real case, this input is provided by navigational guidance. State space matrixes are 

obtained through the linearization at the trim point and used in the linear missile model 

dynamics to provide measured acceleration and pitch rate.  

 

5.1.1 Overall Transfer Function:  

 

The overall transfer function of the linear missile model closed loop is calculated by the 

block diagram simplification using the signals. It is needed to be found in order to find 

the controller gains through a pole placement. In this linearized model there are two 

transfer function for the linearized model, which one provides the demanded 

acceleration and the other one provides the pitch rate with the controller transfer 

function.  
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Controller Transfer Function : 

 Controller transfer function is obtained by taking the Laplace of the eq. 4.26.  

 𝛿𝑒 = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡) ⅆ𝑡
𝑡

0
, (4.26) 

 
𝛿𝑒

𝑒(𝑠)
= 𝐺𝑐 = 𝐾𝑝 +

𝐾𝑖

𝑠
 . (5.1) 

 

Measured Acceleration Transfer Function: 

This transfer function relates the measured acceleration to the input fin deflection. It is 

calculated through using the state space matrixes eq. (3.71)(3.72)(3.74)(3.75) 

 

 𝐺𝑎𝑁
(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 (5.2) 

 

 𝐺𝑎𝑁
(𝑠) = [𝑍𝛼0] [

𝑠 −
𝑍𝛼

𝑚𝑉
−1

−
𝑀𝛼

𝐼𝑦
𝑠 −

𝑀𝑞

𝐼𝑦

]

−1

[

𝑍𝛿𝑒

𝑚𝑉
𝑀𝛿𝑒

𝐼𝑦

] + 𝑍𝛿𝑒
 (5.3) 

 

 𝐺𝑎𝑁
(𝑠) =

(−𝐼𝑦𝑉𝑍𝛿𝑒𝑚)𝑠2+(𝑀𝑞𝑉𝑍𝛿𝑒𝑚)𝑠+(𝑀𝛼𝑍𝛿𝑒−𝑀𝛿𝑒𝑍𝛼)

(−𝐼𝑦𝑉𝑀)𝑠2+(𝐼𝑦𝑍𝛼+𝑀𝑞𝑉𝑚)𝑠−𝑀𝑞𝑍𝛼+𝑀𝛼𝑉𝑚
 (5.4) 

 

Pitch Rate Transfer Function:  

This transfer function relates the pitch rate to the input fin deflection. It is calculated 

through using the state space matrixes eq. (3.71)(3.72) )(3.74)(3.75). 

 

 𝐺𝑞(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 (5.5) 
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 𝐺𝑞(𝑠) = [1 0] [
𝑠 −

𝑍𝛼

𝑚𝑉
−1

−
𝑀𝛼

𝐼𝑦
𝑠 −

𝑀𝑞

𝐼𝑦

]

−1

[

𝑍𝛿𝑒

𝑚𝑉
𝑀𝛿𝑒

𝐼𝑦

] (5.6) 

 

 𝐺𝑞(𝑠) =
−(𝑀𝛿𝑒𝑉𝑚)𝑠+(𝑀𝛿𝑒𝑍𝛼−𝑀𝛼𝑍𝛿𝑒)  

(−𝐼𝑦𝑉𝑚)𝑠2+(𝐼𝑦𝑍𝛼+𝑀𝑞𝑉𝑚)𝑠+(−𝑀𝑞𝑍𝛼+𝑀𝛼𝑉𝑚) 
 (5.7) 

 

Overall Transfer Function: 

Using signals, block diagram is simplified to have an overall transfer function which 

relates the measured acceleration to the demanded acceleration.  

 

 𝐺𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑠) =
𝐺𝑐𝐺𝑎𝑁

1−𝐾𝑞𝐺𝑞+𝐺𝑐𝐺𝑎𝑁

 (5.8) 

 

5.1.2 Pole Placement 

 

Pole placement is a method used to assign the closed-loop poles of a system to desired 

location in the complex s plane. Choosing the poles appropriately, system behaviour 

can be controlled in terms of stability, damping and response speed [10]. In order to 

the pole placement, overall transfer function needs to be found at a trim condition, 

which is 𝑀 = 3  and 𝛼 = −0.0118 𝑟𝑎ⅆ.  After applying trim condition to the state 

matrices transfer functions for measured acceleration and pitch rate is calculated as: 

  

 𝐺𝑎𝑁
(𝑠) =

−34710𝑠2−982500𝑠+36970000

𝑠2+29.23𝑠+2.718
 (5.9) 
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 𝐺𝑞(𝑠) =
−194.3𝑠−184.2

𝑠2+29.23𝑠+2.718
 (5.10) 

 

Using the controller transfer function and applying the eq. (5.9)(5.10), overall transfer 

function is obtained as:  

 

 𝐺𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑠) =

−34710𝐾𝑝𝑠3−(34710𝐾𝑖+982500𝐾𝑝)𝑠2

+(−982500𝐾𝑖+36970000𝐾𝑝)𝑠+36970000𝐾𝑖

(1−34710𝐾𝑝)𝑠3+(−34710𝐾𝑖−982500𝐾𝑝−194.3𝐾𝑞+29.23)𝑠2

+(−982500𝐾𝑖+36970000𝐾𝑝−184.2𝐾𝑞+ 2.718)𝑠+3.6970000𝐾𝑖

  (5.11) 

 

After finding the overall transfer function, poles need to be chosen and they are chosen 

as 𝑝1 = −52, 𝑝2 = −18, and 𝑝3 = −0.7. Using this poles denominator can be found 

as:  

 −85.775𝑠3 − 2986.44𝑠2 + 77653.38𝑠 + 55455 (5.12) 

 

Equating this equation to the denominator of the overall transfer function, controller 

gains can be calculated as:  

 

 𝐾𝑝 = 0.0025, 𝐾𝑖 = 0.015, and 𝐾𝑞 = 0.2 (5.13) 

 

5.2 Nonlinear Model Closed Loop System 

 

The closed-loop system for the three degrees of freedom (3-DOF) nonlinear model, 

which is handled in chapter 3, is derived. This nonlinear model has been used to build 

up the closed loop system within the simulation and dynamical modelling environment. 

Fig 5.2 represents the nonlinear model:  
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Figure 5. 2: Nonlinear model closed loop block diagram. 

 

In this model subblock diagrams are introduced in the missile dynamics block to 

enhance the missile model’s fidelity. The missile dynamics block, main block, includes 

nonlinear model equations of the missile, which is discussed in section 3.2 . Target 

model provides the target position and the speed to calculate the relative distance and 

line-of-sight angle according to the missile position to be used in the guidance part . In 

the guidance block, navigational guidance algorithms, elaborated in section 4.2.2, are 

implemented to obtain the demanded acceleration with the feedback from the missile 

dynamics block. As a controller, handled in the section 4.2.4, a PI controller with pitch 

rate feedback is used to calculate the fin deflection (𝛿𝑒) that goes to the missile 

dynamics block as an input. 
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CHAPTER 6 

 

6. RESULTS  

 

 

In this section, the nonlinear model with the guidance navigation and control system 

integration, which were all handled in the previous chapters, is investigated for multiple 

different cases to see the nonlinear model system response for different GNC 

algorithms. Among these cases, three major results are presented, and the rest are 

used in order to find the limitations of the missile, which will be detailed in the 

upcoming parts. 

 

During this case simulation, three different guidance navigation and control algorithms 

are used. In all the algorithms, the navigation and controller parts are the same, but the 

only part that changes is the navigational guidance part. In all the simulations same 

controller gains, which are 𝐾𝑝 = 0.0025, 𝐾𝑖 = 0.015 and 𝐾𝑞 = 0.2, are used. After all 

the simulation results are displayed, the GNC algorithms are compared and discussed. 

These comparisons and discussions will help to determine the most effective and 

robust algorithm. 

 

For major cases, different initial conditions are given to both the target and missile for 

their velocities and positions. Hereby, this will prove that the algorithms work under 

different conditions. It is shown with different graphs for each algorithm that they work 

under these conditions. 

 



 

66 
 

 

6.1 Case 1 

 

In this case, the missile and target fly toward each other, and the target is flying at a 

constant altitude, where it is at a higher altitude than the missile, and speed. The 

missile's velocity and altitude change according to the GNC algorithm input. The initial 

separation of target and missile in the x-direction is 4500 meters, while in the z-

direction, it is -500 meters. The figure below represents the missile target interception 

for case one.  

 

Figure 6. 1: Missile Target interception case one scenario.  

 

Table 6. 1: Numerical parameters for case one. 

Parameters  Numerical Values 

𝑉𝑇 328 𝑚/𝑠 
𝑋𝑠𝑒𝑝 4500 𝑚 

𝑍𝑠𝑒𝑝 −500 𝑚 
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Using these numerical initial conditions and the case one algorithm GNC algorithms are 

obtained and presented as: 

6.1.1 Proportional Navigation + Seeker 

 

Graphical results of the proportional navigation with a seeker for case one is 

represented in this section . 

 

Figure 6.2 illustrates the missile-target interception instant using the proportional 

navigation algorithm with a seeker for Case 1. 

 

 

Figure 6. 2: Missile Target Interception Animation. 

 

Fig 6.3 depicts demanded acceleration generated by proportional navigation with a 

seeker, alongside the measured acceleration from the missile dynamics for Case 1. 
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Figure 6. 3: Demanded vs Measured Acceleration. 

 

 Fig 6.4 represents missile’s and target’s followed trajectory until interception using 

proportional navigation with a seeker for Case 1. 

 

 

Figure 6. 4:  Missile Target Trajectory. 



 

69 
 

Fig 6.5 shows missile and target separation in both x and z directions until interception 

using proportional navigation with a seeker for Case 1. 

 

Figure 6. 5: Missile Target Relative Separation. 

 

Fig 6.6 demonstrates the change of angle of attack (𝛼) of the missile until the 

interception utilizing proportional navigation with a seeker for Case 1. 

 

Figure 6. 6: Change of Angle of Attack. 
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Fig 6.7 presets the change of fin deflection(𝛿𝑒) of the missile until the interception 

utilizing proportional navigation with a seeker for Case 1. 

 

Figure 6. 7: Change of Fin Deflection. 

 

Fig 6.8 reveals the change of Mach number of the missile till the interception utilizing 

proportional navigation with a seeker for Case 1. 

 

Figure 6. 8: Change of Mach Number. 
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6.1.2 Proportional Navigation 

 

Graphical results of the proportional navigation for case one is demonstrated in this 

section. 

Figure 6.9 illustrates the missile-target interception instant using the simple 

proportional navigation algorithm for Case 1. 

 

 

 

Figure 6. 9: Missile Target Interception Animation. 

 

 

Fig 6.10 depicts demanded acceleration generated by proportional navigation, 

alongside the measured acceleration from the missile dynamics for Case 1. 
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Figure 6. 10: Demanded vs Measured Acceleration. 

 

Fig 6.11 represents missile’s and target’s followed trajectory until interception using 

proportional navigation for Case 1. 

 

Figure 6. 11: Missile Target Trajectory. 
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Fig 6.12 shows missile and target separation in both x and z directions until interception 

using proportional navigation for Case 1. 

 

Figure 6. 12: Missile Target Relative Separation. 

 

Fig 6.13 demonstrates the change of angle of attack (𝛼) of the missile until the 

interception utilizing  simple proportional navigation for Case 1. 

 

Figure 6. 13: Change of Angle of Attack. 
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Fig 6.14 presets the change of fin deflection(𝛿𝑒) of the missile until the interception 

utilizing simple proportional navigation for Case 1. 

 

Figure 6. 14: Change of Fin Deflection. 

 

Fig 6.15 reveals the change of Mach number of the missile till the interception utilizing 

proportional navigation for Case 1. 

 

Figure 6. 15: Change of Mach Number 
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6.1.3 Proportional Navigation with ZEM 

 

Graphical results of the proportional navigation with zero effort miss (ZEM) for case one 

is demonstrated in this section. 

Figure 6.16 illustrates the missile-target interception instant using the simple 

proportional navigation with ZEM algorithm for Case 1. 

 

 

 

 

Figure 6. 16: Missile Target Interception Animation. 

 

 

Fig 6.17 depicts demanded acceleration generated by proportional navigation with 

ZEM, alongside the measured acceleration from the missile dynamics for Case 1. 
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Figure 6. 17: Demanded vs Measured Acceleration. 

Fig 6.18 represents missile’s and target’s followed trajectory until interception using 

proportional navigation with ZEM for Case 1. 

 

Figure 6. 18: Missile Target Trajectory. 
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Fig 6.19 shows missile and target separation in both x and z directions until interception 

using proportional navigation with ZEM for Case 1. 

 

Figure 6. 19: Missile Target Relative Separation. 

Fig 6.20 demonstrates the change of angle of attack (𝛼) of the missile until the 

interception utilizing  simple proportional navigation with ZEM for Case 1. 

 

Figure 6. 20: Change of Angle of Attack. 
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Fig 6.21 presets the change of fin deflection(𝛿𝑒) of the missile until the interception 

utilizing simple proportional navigation with ZEM for Case 1. 

 

Figure 6. 21: Change of Fin Deflection. 

 

Fig 6.22 reveals the change of Mach number of the missile till the interception utilizing 

proportional navigation with ZEM for Case 1. 

 

Figure 6. 22: Change of Mach Number. 
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6.2 Case 2 

 

Similar to the case one, in this case, the missile and target fly toward each other, and 

the target is flying at a constant altitude and speed. The only difference is the target is 

at the lower altitude than the missile. The initial separation of target and missile in the 

x-direction is  same with case one, 4500 meters, while in the z-direction it is different,  

500 meters. The figure below represents the missile target interception for case two.  

 

 

Figure 6. 23: Missile Target interception case two scenario. 
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Table 6. 2: Numerical parameters for case two. 

Parameters  Numerical Values 

𝑉𝑇 328 𝑚/𝑠 
𝑋𝑠𝑒𝑝 4500 𝑚 

𝑍𝑠𝑒𝑝 500 𝑚 

 

 

By using these numerical initial conditions and the case one algorithm GNC algorithms 

are obtained and presented as: 

 

6.2.1 Proportional Navigation + Seeker 

 

Graphical results of the proportional navigation with a seeker for case two is 

represented in this section . 

 

Figure 6.24 illustrates the missile-target interception instant using the proportional 

navigation algorithm with a seeker for Case 2. 
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Figure 6. 24: Missile Target Interception Animation. 

 

Fig 6.25 depicts demanded acceleration generated by proportional navigation with a 

seeker, alongside the measured acceleration from the missile dynamics for Case 2. 

 

Figure 6. 25: Demanded vs Measured Acceleration. 
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Fig 6.26 represents missile’s and target’s followed trajectory until interception using 

proportional navigation with a seeker for Case 2. 

 

Figure 6. 26:  Missile Target Trajectory. 

 

Fig 6.27 shows missile and target separation in both x and z directions until interception 

using proportional navigation with a seeker for Case 2. 

 

Figure 6. 27: Missile Target Relative Separation. 
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Fig 6.28 demonstrates the change of angle of attack (𝛼) of the missile until the 

interception utilizing proportional navigation with a seeker for Case 2. 

 

Figure 6. 28: Change of Angle of Attack. 

 

Fig 6.29 presets the change of fin deflection(𝛿𝑒) of the missile until the interception 

utilizing proportional navigation with a seeker for Case 2. 

 

Figure 6. 29: Change of Fin Deflection. 
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Fig 6.30 reveals the change of Mach number of the missile till the interception utilizing 

proportional navigation with a seeker for Case 2. 

 

Figure 6. 30: Change of Mach Number. 

 

6.2.2 Proportional Navigation  

 

Graphical results of the proportional navigation for case two is demonstrated in this 

section. 

Figure 6.31 illustrates the missile-target interception instant using the simple 

proportional navigation algorithm for Case 2. 
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Figure 6. 31: Missile Target Interception Animation. 

 

Fig 6.32 depicts demanded acceleration generated by proportional navigation, 

alongside the measured acceleration from the missile dynamics for Case 2. 

 

Figure 6. 32: Demanded vs Measured Acceleration. 
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Fig 6.33 represents missile’s and target’s followed trajectory until interception using 

proportional navigation for Case 2. 

 

Figure 6. 33:  Missile Target Trajectory. 

 

Fig 6.34 shows missile and target separation in both x and z directions until interception 

using proportional navigation for Case 2. 

 

Figure 6. 34: Missile Target Relative Separation. 

 



 

87 
 

Fig 6.35 demonstrates the change of angle of attack (𝛼) of the missile until the 

interception utilizing  simple proportional navigation for Case 2. 

 

Figure 6. 35: Change of Angle of Attack. 

 

Fig 6.36 presets the change of fin deflection(𝛿𝑒) of the missile until the interception 

utilizing simple proportional navigation for Case 2. 

 

Figure 6. 36: Change of Fin Deflection. 
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Fig 6.37 reveals the change of Mach number of the missile till the interception utilizing 

proportional navigation for Case 2. 

 

Figure 6. 37: Change of Mach Number. 

 

6.2.3 Proportional Navigation with ZEM 

 

Graphical results of the proportional navigation with zero effort miss (ZEM) for case two 

is demonstrated in this section. 

Figure 6.38 illustrates the missile-target interception instant using the simple 

proportional navigation with ZEM algorithm for Case 2. 

 



 

89 
 

 

Figure 6. 38: Missile Target Interception Animation.  

 

Fig 6.39 depicts demanded acceleration generated by proportional navigation with 

ZEM, alongside the measured acceleration from the missile dynamics for Case 2. 

 

Figure 6. 39: Demanded vs Measured Acceleration. 
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Fig 6.40 represents missile’s and target’s followed trajectory until interception using 

proportional navigation with ZEM for Case 2. 

 

Figure 6. 40:  Missile Target Trajectory. 

 

Fig 6.41 shows missile and target separation in both x and z directions until interception 

using proportional navigation for Case 2. 

 

Figure 6. 41: Missile Target Relative Separation. 
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Fig 6.42 demonstrates the change of angle of attack (𝛼) of the missile until the 

interception utilizing  simple proportional navigation with ZEM for Case 2. 

 

Figure 6. 42: Change of Angle of Attack. 

 

Fig 6.43 presets the change of fin deflection(𝛿𝑒) of the missile until the interception 

utilizing simple proportional navigation with ZEM for Case 2.

 

Figure 6. 43: Change of Fin Deflection. 
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Fig 6.44 reveals the change of Mach number of the missile till the interception utilizing 

proportional navigation with ZEM for Case 2. 

 

Figure 6. 44: Change of Mach Number. 

 

6.3 Case 3 

 

This case is exactly same with the first case with an only difference which is the speed 

of the target. Initial separation of target and missile in the x-direction is 4500 meters 

while in the z-direction is – 500 meters. The table down below represents the initial 

conditions and target’s speed. Only three graphs are presented in this section, because 

others are similar to the case one results. 

 

Table 6. 3: Numerical parameters for case four 

Parameters  Numerical Values 

𝑉𝑇 400 𝑚/𝑠 
𝑋𝑠𝑒𝑝 4500 𝑚 

𝑍𝑠𝑒𝑝 −500 𝑚 
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6.3.1 Proportional Navigation + Seeker 

 

Graphical results of the proportional navigation with a seeker for case three is 

represented in this section .  

 

Figure 6.45 illustrates the missile-target interception instant using the proportional 

navigation algorithm with a seeker for Case 3. 

 

 

Figure 6. 45: Missile Target Interception Animation. 
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Fig 6.46 depicts demanded acceleration generated by proportional navigation with a 

seeker, alongside the measured acceleration from the missile dynamics for Case 3. 

 

Figure 6. 46: Demanded vs Measured Acceleration. 

 

Fig 6.47 represents missile’s and target’s followed trajectory until interception using 

proportional navigation with a seeker for Case 3. 

 

Figure 6. 47:  Missile Target Trajectory. 
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6.3.2 Proportional Navigation  

 

Graphical results of the proportional navigation for case three is demonstrated in this 

section. 

Figure 6.48 illustrates the missile-target interception instant using the simple 

proportional navigation algorithm for Case 3. 

 

 

 

 

Figure 6. 48: Missile Target Interception Animation. 
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Fig 6.49 depicts demanded acceleration generated by proportional navigation, 

alongside the measured acceleration from the missile dynamics for Case 3. 

 

Figure 6. 49: Demanded vs Measured Acceleration. 

 

Fig 6.50 represents missile’s and target’s followed trajectory until interception using 

proportional navigation for Case 3. 

 

Figure 6. 50:  Missile Target Trajectory. 
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6.3.3 Proportional Navigation with ZEM 

 

Graphical results of the proportional navigation with zero effort miss (ZEM) for case 

three is demonstrated in this section. 

Figure 6.51 illustrates the missile-target interception instant using the simple 

proportional navigation with ZEM algorithm for Case 3. 

 

 

 

Figure 6. 51: Missile Target Interception Animation. 
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Fig 6.52 depicts demanded acceleration generated by proportional navigation with 

ZEM, alongside the measured acceleration from the missile dynamics for Case 3. 

 

Figure 6. 52: Demanded vs Measured Acceleration. 

 

Fig 6.53 represents missile’s and target’s followed trajectory until interception using 

proportional navigation with ZEM for Case 3. 

 

Figure 6. 53:  Missile Target Trajectory. 
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6.4 Case 4 

 

This case is exactly the same as the first and third cases, with the only difference being 

the speed of the target. However, in this case, the speed of the target is taken as very 

high to push the limits of the GNC algorithms. The initial separation of target and missile 

are same. The table below represents the initial conditions and the target’s speed. In 

this section, three graphs, which are demanded vs measured acceleration, missile 

target trajectory, and fin deflection, are presented.  

 

Table 6. 4: Numerical parameters for case five. 

Parameters  Numerical Values 

𝑉𝑇 800 𝑚/𝑠 
𝑋𝑠𝑒𝑝 4500 𝑚 

𝑍𝑠𝑒𝑝 −500 𝑚 

 

6.4.1 Proportional Navigation + Seeker 

 

Graphical results of the proportional navigation with a seeker for case four is 

represented in this section .  

 

Fig 6.54 depicts demanded acceleration generated by proportional navigation with a 

seeker, alongside the measured acceleration from the missile dynamics for Case 4. 
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Figure 6. 54: Demanded vs Measured Acceleration. 

 

Fig 6.55 represents missile’s and target’s followed trajectory using proportional 

navigation with a seeker for miss case (4).  

 

Figure 6. 55:  Missile Target Trajectory. 
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Fig 6.56 presets the change of fin deflection(𝛿𝑒) of the missile utilizing proportional 

navigation with a seeker for miss case (4). 

 

Figure 6. 56: Change of Fin Deflection. 

 

6.4.2 Proportional Navigation  

 

Graphical results of the proportional navigation for case four is demonstrated in this 

section. 

 

Fig 6.49 depicts demanded acceleration generated by proportional navigation, 

alongside the measured acceleration from the missile dynamics for Case 4. 
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Figure 6. 57: Demanded vs Measured Acceleration. 

 

Fig 6.58 represents missile’s and target’s followed trajectory using simple proportional 

navigation for miss case (4).  

 

Figure 6. 58:  Missile Target Trajectory. 
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Fig 6.59 presets the change of fin deflection(𝛿𝑒) of the missile utilizing simple 

proportional navigation for miss case (4). 

 

Figure 6. 59: Change of Fin Deflection. 

 

6.4.3 Proportional Navigation with ZEM  

 

Graphical results of the proportional navigation with zero effort miss (ZEM) for case 

four is demonstrated in this section. 

 

Fig 6.60 depicts demanded acceleration generated by proportional navigation with 

ZEM, alongside the measured acceleration from the missile dynamics for Case 4. 
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Figure 6. 60: Demanded vs Measured Acceleration. 

 

Fig 6.61 represents missile’s and target’s followed trajectory using proportional 

navigation with ZEM for miss case (4).  

 

Figure 6. 61:  Missile Target Trajectory. 



 

105 
 

Fig 6.62 presets the change of fin deflection(𝛿𝑒) of the missile utilizing proportional 

navigation with ZEM for miss case (4). 

 

Figure 6. 62: Change of Fin Deflection. 

 

In this case (4), with these initial position conditions, the speed of the target is too fast 

for the Guidance Navigation and Control (GNC) algorithms in order to create the correct 

command in the shortest time to make the missile and target interception happen, in 

other words, missile misses the target in this condition as seen from the missile target 

trajectory graphs. As a result, this shows that this used missile, like all missiles, has some 

limits. To find these limits, multiple different case studies have been done, and the 

limits of the missile have been found, which will be shown in the next part. 
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6.5 Limitations 

 

A comprehensive analysis was conducted to estimate the limitations of the missile 

under various initial conditions, which are the positions and speed of the target. 

Numerous cases were simulated to assess the maximum speed at which the target 

could fly at the given separations while ensuring interception. With the data collected 

from the simulations, two tables and their graphs are created. These graphs represent 

the velocity of the target that could go up as maximum in the y-axis for the specific 

relative distance in the x-axis and they are shown down below.  

 

Table 6. 5: Case analysis for z-separation target velocity. 

Case 𝒙𝒔𝒆𝒑𝒂𝒓𝒂𝒕𝒊𝒐𝒏(𝒎) 𝒛𝒔𝒆𝒑𝒂𝒓𝒂𝒕𝒊𝒐𝒏(𝒎) 𝑽𝒕𝒈𝒕(𝒎/𝒔) 

1 4500 500 800 

2 4500 750 550 

3 4500 1000 425 

4 4500 1500 250 

 

Table 6. 6: Case analysis for x-separation target velocity. 

Case 𝒙𝒔𝒆𝒑𝒂𝒓𝒂𝒕𝒊𝒐𝒏(𝒎) 𝒛𝒔𝒆𝒑𝒂𝒓𝒂𝒕𝒊𝒐𝒏(𝒎) 𝑽𝒕𝒈𝒕(𝒎/𝒔) 

1 2500 500 0 

2 3000 500 200 

3 4000 500 500 

4 4500 500 800 
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Figure 6. 63: Limitation of the missile according to the target velocity and x-direction 

relative separation.  

 

Figure 6. 64: Limitation of the missile according to the target velocity and z-direction 

relative separation 
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CHAPTER 7 

 

7. DISCUSSION  

 

 

In this part of the thesis, the discussion and comparison of the Guidance Navigation 

and Control (GNC) algorithms are done using case analysis. This case analysis can show 

which  GNC algorithm is the best of all. In order to determine the best algorithm, some 

detailed comparisons need to be conducted. However, at first simulation validation 

needs to be done.  

Validation of simulations is one of the crucial things that needs to be done to prove the 

computational model represents the real world systems. It helps to confirm that the 

simulations results are reliable and can be used to make informed decisions. In order 

to validate the correctness of done simulations two references, which were used in 

primarily in the dynamical modelling and simulating part, can be considered. In those 

journals similar mathematical and dynamical modelling with different controller 

algorithms is used and results are presented. By comparing the open loop response 

acceleration to a pulse function the validation can be done. In the first reference 

journal, state-dependent riccati equation method is used, while in the second one a 

gain scheduled controller is used and in this thesis simulation a PID controller with pitch 

rate feedback is used as mentioned previously.  
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Figure 7. 1: Acceleration response to a pulse function. [15] 

 

 

Figure 7. 2: Acceleration response to a pulse function.[11] 
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Figure 7. 3: Acceleration response to a pulse function. 

 

By comparing these three figures (Fig 7.1, 2 and 3), it is seen that even though the 

controller algorithms are different , each of them has similar behaviour and trend for 

the pulse function in the open loop simulations. The consistency across all three figures, 

including simulation used in this thesis, demonstrates that the model accurately reflects 

the real-world system under study. This alignment with established research provides 

strong evidence that simulations are valid and reliable, confirming their suitability for 

further analysis and application in this context. 

 

After validation of the simulation, the comparison of the GNC algorithms can be done 

by comparing one of the most crucial parameters is the comparison between the 
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demanded and measured acceleration since it creates the input command and affects 

all the other parameters, such as angle of attack (𝛼), fin deflection (𝛿𝑒), missile target 

trajectory, Mach number (𝑀), and hitting angle. For a better comparison, case one is 

chosen, and the comparisons are carried out on this case. Comparing the figures 6.3, 

6.10 and 6.17, it is seen that the proportion navigational with a seeker does not provide 

any commands until the seeker finds the target, which roughly takes one second. After 

the seeker finds the target, navigational guidance provides a sharp command at first, 

then shows a downward trend. On the other hand, the proportional navigation and 

proportional navigation with ZEM show a gradually increasing trend and proportional 

navigation reaches the maximum allowable acceleration. Overall, all the GNC 

algorithms create their own commands in order to give the proper fin deflection to the 

missile to make the interception happen, but with different acceleration commands.  

 

The other crucial parameter is the fin deflection (𝛿𝑒), since it is the only input command 

for the missile, which affects the whole system and directs the missile towards the 

target. For comparison the fin deflections for the first case from all the algorithms 

figures 6.7, 6.14, and 6.21  are evaluated. Similar to the acceleration response, 

proportional navigation with a seeker provides a sharp first fin deflection and then 

gradually decreases by slowly adjusting itself. Secondly, the proportional navigation 

(PN) algorithm creates a fin command that continuously increases and reaching to 

almost −25 ° deflection at the end. Finally, proportional navigation with ZEM has a 

similar behaviour to the simple PN algorithm, with the only difference having a sharp 

increase at the end.  

 

Another parameter is the angle of attack  (𝛼), since it shows the whole behaviour of 

the missile pitching and the hitting angle et the end.  Analysing figures 6.6, 6.13, and 
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6.20, it is seen that,  angle of attack (𝛼) increases very sharply at the beginning then 

slowly decreases and has the same mirror trend with the acceleration command for 

proportional navigation with the seeker. On the contrary, simple proportional 

navigation and proportional algorithm with ZEM have similar trends with each other 

and mirror trends with their acceleration commands.    

 

Additionally, the end values of the angle of attack represent the missile's hitting angle 

to the target. From the figures 6.2, 6.9 and 6.16, it is perceived that the missile with a 

proportional navigation algorithm with seeker hits the target from almost opposite 

sides, while a simple proportional algorithm hits the target from the underside. Lastly, 

a proportional algorithm with ZEM  hits the target diagonally. These hitting angles are 

important because if the target is small, the target may be missed depending on this 

angle. 

 

The target missile trajectory is another important graph that shows how the Guidance 

Navigation and Control (GNC) algorithms work. Evaluating figures 6.4, 6.11, and 6.18, it 

is observed that each algorithm has a different trajectory. Proportional navigation with 

seeker has a constant ascent through the flight, while classical proportional and 

proportional navigation with ZEM navigations have parabolic ascent curves with a 

steeper curve for classical PN and a smoother curve for PN with ZEM.  

 

Overall, it can be said that all the guidance navigation and control (GNC) algorithms are 

working and creating successful commands for the missile dynamics for the proper 

trajectory to follow in order to have an interception with the missile. However, they are 

creating different acceleration commands which effect all the other parameters of the 

algorithms. The crucial component is the acceleration; when the accelerations are 
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investigated, it is seen that the proportional navigation algorithm with seeker creates a 

sudden big magnitude acceleration command at first, then has a decline acceleration 

throughout the flight. On the other hand, the other two algorithms have a constantly 

increasing acceleration. These acceleration trends are seen in all the other performance 

parameters as well. When all the cases and previously explained figures are investigated 

a decision can be made to choose which one of the GNC algorithms is the most effective 

and robust among them. As a result, the proportional navigation with a seeker is 

concluded as the optimal algorithm since its ability to provide the required 

acceleration, maintain effective fin deflection (𝛿𝑒) and angle of attack (𝛼) , achieving a 

precise hitting angle, and ensuring an accurate trajectory. This actually shows the 

importance of the seeker in the algorithm. Proportional navigation with zero effort miss 

(ZEM) effectively mirrors the proportional navigation with the seeker algorithm in its 

performance. It ensures robust trajectory and accurate hitting angle by adjusting its 

acceleration commands to maintain close proximity to the target even with slight 

derivations, thus achieving high accuracy and minimal miss distance. Lastly, classical 

proportional navigation effectively creates the required acceleration commands, but it 

reaches to the maximum allowable acceleration limit, which is a drawback for the 

algorithm. Although it reaches the limit, it guarantees a proper trajectory to hit the 

target, but the hitting angle is too steep compared to the others, which could be 

problematic for small targets. Additionally, not pursuing the target by turning back 

towards in case of a miss can be shown as another drawback for this algorithm. All 

these drawbacks make the simple proportional navigation the least effective and robust 

among them.  
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CHAPTER 8 

 

8. CONCLUSION 

 

 

In this study, a short-range supersonic air-to-air tactical missile is considered, which flies 

around Mach 3 and has five kilometres in the x direction and five hundred meters in 

the z direction separations with the target in order to design different guidance 

navigation and control (GNC) algorithms and validate them to find the most effective 

one among them.  Firstly, equations of motion were developed, and then three degrees 

of freedom (3-DOF) assumptions were discussed and applied to the EOM.  After the 

equation of motions, other forces, aerodynamical forces, acting on the missile were 

handled, and the ones acting on the missile were found out. Additionally, 

aerodynamical coefficients were found by using polynomial estimation and look up 

tables were created. All these equations and coefficients were then used to model the 

missile in the dynamic modelling part. 

An assessment of the missile stability was done by checking the poles of the system. In 

order to find the poles of the system, first the linearization of the equations of motion 

around a trim point was done. After that, stability derivatives were found using 

empirical equations and state space form obtained by using a trim condition. By 

checking the real parts of eigenvalues, poles, of the A matrix, the stability of the missile 

was found. According to the poles, the system is not stable, so using a closed loop 

system with a PI controller with pitch rate feedback, system brought it back to a stable 

condition.  

The primary objective, designing a guidance navigation and controller (GNC) algorithm, 

was performed after linearization. First, the navigational algorithm, the inertial 
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navigation system (INS), and then the three navigational algorithms were investigated. 

Lastly, the PI controller and its mathematical expression are given with both pitch rate 

and without pitch rate feedback.  

 

After all the equations of motion, aerodynamical forces and moment, and three 

guidance navigation and control algorithms were obtained, the dynamic modelling and 

simulation aspect of this study was delved into. Using MATLAB Simulink, the missile’s 

dynamic model with target model and GNC algorithms was created. By using this 

simulation, different case studies were carried out, and in the end, results for each case 

were obtained. After multiple cases with different initial conditions were simulated, 

missile’s limitations were found and represented graphically.  In light of these results, 

the second objective, most efficient and robust algorithm, was investigated, and a 

ranking was made among the algorithms. Thus, proportional navigation with a seeker 

is found to be the best working algorithm for this missile system, while proportional 

navigation with ZEM is the second and simple proportional navigation is the least 

efficient one.  

Future research directions could explore the integration of more advanced navigation 

guidance algorithms, such as multi-sensor fusion for seekers and adaptive observers for 

state estimation, to enhance interception performance. Investigating the application of 

advanced control strategies like Linear Quadratic Regulator (LQR) and Model Predictive 

Control (MPC) could provide insights into improving control performance and stability 

in dynamic interception scenarios and compare the advanced algorithm results with 

the obtained results to visualize if the performance of the missile will increase. 

Furthermore, developing and validating a six-degree-of-freedom (6DOF) model would 

offer a more realistic representation of missile target interactions, facilitating the 

assessment of navigation guidance algorithms and controllers in dynamic 

environments.  
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In summary, the first objective of developing and successfully implementing guidance, 

navigation, and control (GNC) algorithms for a three-degree-of-freedom missile model 

was achieved. The secondary objective, identifying the most effective GNC algorithm 

through comprehensive simulations, was also accomplished. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

117 
 

REFERENCES  

 

 

[1] R. Yanushevsky, Modern missile guidance. Florida: CRC Press, 2008. 

[2] P. Zarchan, Tactical and StrategicMissile Guidance, 6th ed., vol. 239. Atlanta, 
Georgia: AIAA, 2012. 

[3] G. M. Siouris, Missile Guidance and Control Systems. Ohio: Springer, 2004. 

[4] C.-F. Lin, Modern Navigation, Guidance, and Control Processing. New Jersey: 
Prentice Hall, 1991. 

[5] D. Titterton, J. L. Weston, I. of Electrical Engineers, A. I. of Aeronautics, and 
Astronautics, Strapdown Inertial Navigation Technology. Institution of 
Engineering and Technology, 2004. 

[6] T. A. Herring, “The Global Positioning System ,” Sci. Am., pp. 44–50, Feb. 1996. 

[7] H. C. Gong, “Development of terrain contour matching algorithm for the aided 
inertial navigation using radial basis functions,” J.Astron. Sp. Sci. , vol. 15, no. 1, 
pp. 229–234, 1998. 

[8] N. A. Shneydor, Missile guidance and pursuit: kinematics, dynamics and 
control. Elsevier, 1998. 
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 APPENDICES 

A. Linearization 

Linearization of equation of motions [10], [19], [25]:  

∆�̇� = 𝑓0 +
𝜕𝑓

𝜕𝑋
|𝑡𝑟𝑖𝑚∆𝑋 +

𝜕𝑓

𝜕𝑤
|𝑡𝑟𝑖𝑚∆𝑤 +

𝜕𝑓

𝜕𝑞
|𝑡𝑟𝑖𝑚∆𝑞 +

𝜕𝑓

𝜕𝜃
|𝑡𝑟𝑖𝑚∆𝜃,  

  

∆�̇� =
∆𝑋

𝑚
− 𝑤0𝑞 − 𝑔𝑐𝑜𝑠𝜃0∆𝜃,   (A.1) 

 

∆�̇� = 𝑓0 +
𝜕𝑓

𝜕𝑍
|𝑡𝑟𝑖𝑚∆𝑍 +

𝜕𝑓

𝜕𝑢
|𝑡𝑟𝑖𝑚∆𝑢 +

𝜕𝑓

𝜕𝑞
|𝑡𝑟𝑖𝑚∆𝑞 +

𝜕𝑓

𝜕𝜃
|𝑡𝑟𝑖𝑚∆𝜃 

 

 ∆�̇� =
∆𝑍

𝑚
+ 𝑢0∆𝑞 − 𝑔𝑠𝑖𝑛𝜃0∆𝜃, (A.2) 

 

 ∆�̇� = 𝑓0 +
𝜕𝑓

𝜕𝑀
|𝑡𝑟𝑖𝑚∆𝑀 → ∆�̇� =

∆𝑀

𝐼𝑦𝑦
, (A.3) 

 

 ∆�̇� = ∆𝑞. (A.4) 

 

Using small angle assumption, these linearized equations are further simplified.  

 

 𝑤0 = 0 (A.5) 

 

 sin(𝜃0) ≈ 𝜃0  (A.6) 
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 cos(𝜃0) ≈ 1  (A.7) 

 

 u0 = 𝑉𝑐𝑜𝑠(𝜃0) (A.8) 

When free stream velocity (𝑉∞)  is acting with the same direction of the x-axis of the 

earth reference frame pitch angle (𝜃) and angle of attack (𝛼) are same. 

 w = Vsinα →  w = Vα (A.9) 

 

 �̇� = 𝑉�̇� (A.10) 

Using these assumptions and equations linearized equations become:  

 

∆�̇� =
∆𝑋

𝑚
− 𝑔∆𝜃,   (A.11) 

 

 �̇� =
∆𝑍

𝑚
+ ∆𝑞. (A.12) 

 

 ∆�̇� =
∆𝑀

𝐼𝑦𝑦
, (A.13) 

 

 ∆�̇� = ∆𝑞. (A.14) 

 

These aerodynamical forces are functions of 𝑢,𝑤, 𝑞, 𝛼, 𝜃, and 𝛿𝑐, so they need to be 

expanded and written in terms of these variables. Additionally, in the condition of 

pitching missile only control variable 𝛿𝑐 is the elevator, so it can be represented as 𝛿𝑒. 

As a result, these forces are expressed as [10], [19], [25]:  

 

 ∆𝑋 = 𝑋𝑢∆𝑢 + 𝑋𝛼∆𝛼 + 𝑋𝛿𝑒
∆𝛿𝑒 (A.15) 
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 ∆𝑍 =
𝑍𝑢

𝑉
∆𝑢 +

𝑍𝛼

𝑉
∆𝛼 + 𝑍𝛿𝑒

∆𝛿𝑒 (A.16) 

 

 ∆𝑀 = 𝑀𝑢∆𝑢 + 𝑀𝛼∆𝛼 + 𝑀𝑞∆𝑞 + 𝑀𝛿𝑒
∆𝛿𝑒 (A.17) 

 

By putting these equations into the previous equations ,which are eq.  3.55, 3.56, 

3.57, 3.58, updated linearized version can be obtained as [19], [25] :  

 

 ∆�̇� =
1

𝑚
[𝑋𝑢∆𝑢 + 𝑋𝛼∆𝛼 + 𝑋𝛿𝑒

∆𝛿𝑒] − 𝑔∆𝜃, (A.18) 

 

 ∆�̇� =
1

𝑚
[
𝑍𝑢

𝑉
∆𝑢 +

𝑍𝛼

𝑉
∆𝛼 + 𝑍𝛿𝑒

∆𝛿𝑒] + ∆𝑞, (A.19) 

 

 ∆�̇� = �̇� =
1

𝐼𝑦𝑦
[𝑀𝑢∆𝑢 + 𝑀𝛼∆𝛼 + 𝑀𝑞∆𝑞 + 𝑀𝛿𝑒

∆𝛿𝑒], (A.20) 

 

 ∆�̇� = ∆𝑞. (A.21) 

 

Equations 3.63 and 3.64 can be simplified even more, so final version of linearization 

becomes as [19], [25], [26]:  

 

 ∆�̇� =
𝑋𝑢

𝑚
∆𝑢 +

𝑋𝛼

𝑚
∆𝛼 +

𝑋𝛿𝑒

𝑚
∆𝛿𝑒 − 𝑔∆𝜃, (A.22) 

 

 ∆�̇� =
𝑍𝑢

𝑚𝑉
 ∆𝑢 +

𝑍𝛼

𝑚𝑉
∆𝛼 +

𝑍𝛿𝑒

𝑚𝑉
∆𝛿𝑒 + ∆𝑞, (A.23) 
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 ∆�̇� = �̇� =
𝑀𝑢

𝐼𝑦𝑦
∆𝑢 +

𝑀𝛼

𝐼𝑦𝑦
∆𝛼 +

𝑀𝑞

𝐼𝑦𝑦
∆𝑞 +

𝑀𝛿𝑒

𝐼𝑦𝑦
∆𝛿𝑒 , (A.24) 

 

 ∆�̇� = ∆𝑞. (A.25) 

Where  

 

 
𝑋𝑢 =

𝜕𝑋

𝜕𝑢
, 𝑋𝛼 =

𝜕𝑋

𝜕𝛼
, 𝑍𝑢 =

𝜕𝑍

𝜕𝑢
, 𝑍𝛼 =

𝜕𝑍

𝜕𝛼
, 𝑀𝑢 =

𝜕𝑀

𝜕𝑢

𝑀𝛼 =
𝜕𝑀

𝜕𝛼
, 𝑀𝑞 =

𝜕𝑀

𝜕𝑞
, 𝑋𝛿𝑒

=
𝜕𝑋

𝜕𝛿𝑒
, 𝑍𝛿𝑒

=
𝜕𝑍

𝜕𝛿𝑒
, 𝑀𝛿𝑒

=
𝜕𝑀

𝜕𝛿𝑒

 (A.26) 
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B. Aerodynamical Stability Derivatives 

 

 Angle  of attack: 𝛼 = arctan (−𝑤/𝑢), (B.1) 

 

 Missile velocity: 𝑉 = √𝑢2 + 𝑤2, (B.2) 

 

 Missile velocity in x-direction: 𝑢 = 𝑉𝑐𝑜𝑠(𝛼) = 𝑉𝑐𝑜𝑠(𝜃), (B.3) 

 

 Mach Number: 𝑀 =
𝑉

𝑎
=

√𝑢2+𝑤2

𝑎
, (B.4) 

 

 Change in angle of attack w.r.t u: 
𝜕𝛼

𝜕𝑢
=

𝑤

𝑤2+𝑢2
=

𝑤0

𝑉0
2 , (B.5) 

 

 Change in Mach number w.r.t u: 
𝜕𝑀

𝜕𝑢
=

𝑢

𝑎 √(𝑤2+𝑢2) 
=

𝑢0

𝑎𝑉0
,  (B.6) 

 

 Change in velocity w.r.t u: 
𝜕𝑉

𝜕𝑢
=

𝑢

𝑉
= cos(𝜃), (B.7) 

 

 

 Derivation of Aerodynamical Stability Derivatives 

 

Aerodynamical statical derivatives are calculated by using empirical methods in x, z 

and pitching moment directions separately as:  
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Aerodynamical stability derivatives for force X: 

 𝑋 =
1

2
𝜌𝑉2𝑆(𝐶𝑥)  (B.8) 

 

Since 𝐶𝑥 is a constant number there is not any partial derivative term coming from 

aerodynamical coefficients, only velocity term is used and  𝑋𝑢, 𝑋𝛼, 𝑋𝛿𝑒
 becomes as :  

 

 𝑋𝑢 =
𝜕𝑋

𝜕𝑢
=

1

2
𝜌 2 𝑉

𝜕𝑉

𝜕𝑢
 𝑆𝐶𝑥 = 𝜌𝑉𝑐𝑜𝑠𝜃 𝑆𝐶𝑥 = 𝜌𝑉0𝑐𝑜𝑠𝜃0 𝑆𝐶𝑥0

 (in trim) (B.9) 

 

 𝑋𝛼 = 0, 𝑋𝛿𝑒
= 0  (in trim) (B.10) 

 

Aerodynamical stability derivatives for force Z : 

 

 𝑍 =
1

2
𝜌𝑉2𝑆(𝐶𝑧)  (B.11) 

 

Aerodynamical coefficient in z direction is function of angle of attack, Mach number 

and fin deflection , where velocity (𝑉), angle of attack (𝛼) and Mach number(𝑀) are 

functions of velocity components in x and z directions (𝑢, 𝑤).  

𝑍𝑢 =
𝜕𝑍

𝜕𝑢
=

1

2
𝜌𝑉2𝑆 (

𝜕𝐶𝑧

𝜕𝑢
) +

1

2
𝜌 2 𝑉𝑆

𝜕𝑉

𝜕𝑢
(𝐶𝑧) 

where,
𝜕𝐶𝑧

𝜕𝑢
=

𝜕𝐶𝑧

𝜕𝛼
∙
𝜕𝛼

𝜕𝑢
+

𝜕𝐶𝑧

𝜕𝑀
∙
𝜕𝑀

𝜕𝑢
+

𝜕𝐶𝑧

𝜕𝛿𝑒
∙
𝜕𝛿𝑒

𝜕𝑢
 

𝜕𝛿𝑒

𝜕𝑢
= 0, since there is no change in fin deflection as 𝑢 changes 

𝑍𝑢 =
1

2
𝜌𝑉2𝑆 (

𝜕𝐶𝑧

𝜕𝛼
∙
𝜕𝛼

𝜕𝑢
+

𝜕𝐶𝑧

𝜕𝑀
∙
𝜕𝑀

𝜕𝑢
 ) + 𝜌𝑉𝑐𝑜𝑠𝜃 𝑆(𝐶𝑧) 
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Change in aerodynamical force in z-direction with respect to speed in the x-direction 𝑢 

is represented in trim condition as:  

 

 𝑍𝑢 =
1

2
𝜌𝑉0

2𝑆 (
𝜕𝐶𝑧

𝜕𝛼
|𝑀0

∙
𝑤0

𝑉0
2 +

𝜕𝐶𝑧

𝜕𝑀
|𝛼0

∙
𝑢0

𝑎𝑉0
 ) + 𝜌𝑉0𝑐𝑜𝑠𝜃0 𝑆(𝐶𝑧0

) (in trim) (B.12) 

 

𝑍𝛼 =
𝜕𝑍

𝜕𝛼
=

1

2
𝜌𝑉2𝑆 (

𝜕𝐶𝑧

𝜕𝛼
) 

Change in aerodynamical force in z-direction with respect to angle of attack 𝛼 is 

represented in trim condition as:  

  𝑍𝛼 =
1

2
𝜌𝑉0

2𝑆 (
𝜕𝐶𝑧

𝜕𝛼
|𝑀0

) (in trim)  (B.13) 

  

𝑍𝛿𝑒 =
𝜕𝑍

𝜕𝛿𝑒
=

1

2
𝜌𝑉2𝑆 (

𝜕𝐶𝑧

𝜕𝛿𝑒
 ) 

 𝑍𝛿𝑒 =
1

2
𝜌𝑉2𝑆𝐶𝑧𝛿𝑒

  

Change in aerodynamical force in z-direction with respect to fin deflection represented 

in trim condition as:  

 𝑍𝛿𝑒
=

1

2
𝜌𝑉0

2𝑆𝐶𝑧𝛿𝑒
 (in trim)  (B.14) 

 

Aerodynamical stability derivatives for pitch moment M: 

 

 𝑀 =
1

2
𝜌𝑉2𝑆ⅆ𝑟𝑒𝑓(𝐶𝑚) (B.15) 

 

𝑀𝑢 =
𝜕𝑀

𝜕𝑢
=

1

2
𝜌𝑉2𝑆 (

𝜕𝐶𝑚

𝜕𝑢
) +

1

2
𝜌 2 𝑉

𝜕𝑉

𝜕𝑢
𝑆ⅆ𝑟𝑒𝑓(𝐶𝑚) 
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where,
𝜕𝐶𝑚

𝜕𝑢
=

𝜕𝐶𝑚

𝜕𝛼
∙
𝜕𝛼

𝜕𝑢
+

𝜕𝐶𝑚

𝜕𝑀
∙
𝜕𝑀

𝜕𝑢
+

𝜕𝐶𝑚

𝜕𝛿𝑒
∙
𝜕𝛿𝑒

𝜕𝑢
+

𝜕𝐶𝑧

𝜕𝑞
∙
𝜕𝑞

𝜕𝑢
 

𝜕𝛿𝑒

𝜕𝑢
= 0,

𝜕𝑞

𝜕𝑢
= 0, 

𝑀𝑢 =
1

2
𝜌𝑉2𝑆ⅆ𝑟𝑒𝑓 (

𝜕𝐶𝑚

𝜕𝛼
∙
𝜕𝛼

𝜕𝑢
+

𝜕𝐶𝑚

𝜕𝑀
∙
𝜕𝑀

𝜕𝑢
) + 𝜌𝑉𝑐𝑜𝑠𝜃 𝑆ⅆ𝑟𝑒𝑓(𝐶𝑚) 

Change in pitch moment with respect to speed in the x-direction 𝑢 represented in trim 

condition as:  

 

 𝑀𝑢 =
1

2
𝜌𝑉0

2𝑆ⅆ𝑟𝑒𝑓 (
𝜕𝐶𝑚

𝜕𝛼
|𝑀0

∙
𝑤0

𝑉0
2  +

𝜕𝐶𝑚

𝜕𝑀
|𝛼0

∙
𝑢0

𝑎𝑉0
) + 𝜌𝑉0𝑐𝑜𝑠𝜃0 𝑆ⅆ𝑟𝑒𝑓(𝐶𝑚0

) (in trim)

 

 (B.16) 

 

𝑀𝛼 =
𝜕𝑀

𝜕𝛼
=

1

2
𝜌𝑉2𝑆 (

𝜕𝐶𝑚

𝜕𝑤
) 

Change in pitch moment with respect to angle of attack (𝛼) in trim condition 

represented as:  

 

  𝑀𝛼 =
1

2
𝜌𝑉0

2𝑆ⅆ𝑟𝑒𝑓 (
𝜕𝐶𝑚

𝜕𝛼
|𝑀0

) (in trim) (B.17) 

 

𝑀𝑞 =
𝜕𝑀

𝜕𝑞
=

1

2
𝜌𝑉2𝑆ⅆ𝑟𝑒𝑓 (

𝜕𝐶𝑚

𝜕𝑞
) 

 

Change in pitch moment with respect to pitch rate (𝑞) in trim condition represented 

as:  

 𝑀𝑞 =
1

2
𝜌𝑉0

2𝑆ⅆ𝑟𝑒𝑓 (𝐶𝑚𝑞
) (in trim) (B.18) 
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𝑀𝛿𝑒
=

𝜕𝑀

𝜕𝛿𝑒
=

1

2
𝜌𝑉2𝑆ⅆ𝑟𝑒𝑓 (

𝜕𝐶𝑚

𝜕𝛿𝑒
) 

𝑀𝛿𝑒 =
1

2
𝜌𝑉2𝑆ⅆ𝑟𝑒𝑓𝐶𝑚𝛿𝑒

 

Change in pitch moment with respect to fin deflection (𝛿𝑒) in trim condition  

represented as:  

 

 𝑀𝛿𝑒 =
1

2
𝜌𝑉0

2𝑆ⅆ𝑟𝑒𝑓𝐶𝑚𝛿𝑒
 (in trim) (B.19) 

 

Overall, an aerodynamic stability derivatives table for trim condition has been created 

below to summarize all these processes. 

 

Table B. 1: Aerodynamical Stability Derivative  Equations 

 𝑋 𝑍 𝑀 

𝑢 𝜌𝑉0𝑐𝑜𝑠𝜃0 𝑆𝐶𝑥0
 

1

2
𝜌𝑉0

2𝑆 (
𝜕𝐶𝑧

𝜕𝛼
|𝑀0

∙
𝑤0

𝑉0
2 +

𝜕𝐶𝑧

𝜕𝑀
|𝛼0

∙
𝑢0

𝑎𝑉0
 )

+ 𝜌𝑉0𝑐𝑜𝑠𝜃0 𝑆(𝐶𝑧0
)  

1

2
𝜌𝑉0

2𝑆ⅆ𝑟𝑒𝑓 (
𝜕𝐶𝑚

𝜕𝛼
|𝑀0

∙
𝑤0

𝑉0
2  

+
𝜕𝐶𝑚

𝜕𝑀
|𝛼0

∙
𝑢0

𝑎𝑉0
)

+ 𝜌𝑉0𝑐𝑜𝑠𝜃0 𝑆ⅆ𝑟𝑒𝑓(𝐶𝑚0
)  

𝛼 0 
1

2
𝜌𝑉0

2𝑆 (
𝜕𝐶𝑧

𝜕𝛼
|𝑀0

)  
𝑀𝛼

=
1

2
𝜌𝑉0

2𝑆ⅆ𝑟𝑒𝑓 (
𝜕𝐶𝑚

𝜕𝛼
|𝑀0

) 

𝑞 0 0 
1

2
𝜌𝑉0

2𝑆ⅆ𝑟𝑒𝑓 (𝐶𝑚𝑞
) 

𝛿𝑒 0 
1

2
𝜌𝑉0

2𝑆𝐶𝑧𝛿𝑒
  

1

2
𝜌𝑉0

2𝑆ⅆ𝑟𝑒𝑓𝐶𝑚𝛿𝑒
 

 


