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ABSTRACT

GPCC AND GPCP PRECIPITATION PRODUCTS AND GRACE AND
GRACE-FO TERRESTRIAL WATER STORAGE OBSERVATIONS FOR
THE ASSESSMENT OF DROUGHT RECOVERY TIMES

Cakan, Cagatay
Master of Science, Civil Engineering
Supervisor : Prof. Dr. M. Tugrul Yilmaz

October 2024, 94 pages

Accurate precipitation observations are essential for understanding hydrological
processes. Most precipitation products rely on station-based observations,
necessitating additional independent data for validation. This study evaluates the
accuracy of the Global Precipitation Climatology Center (GPCC) and Global
Precipitation Climatology Project (GPCP) precipitation products by estimating
hydrological drought recovery time (DRT) from terrestrial water storage anomalies
(TWSA) and precipitation observations across five Koppen-Geiger climate zones.
Precipitation datasets (GPCC Full Data Monthly Product v2022 and GPCP v3.2) and
TWSA datasets (JPL mascon and G3P) from Gravity Recovery and Climate
Experiment (GRACE) and GRACE Follow-On (GRACE-FO) satellite missions
were used for DRT estimates. Two methods, storage deficit and required
precipitation amount, were applied to calculate DRT. Results show GPCC and GPCP
provide similar mean DRTs and consistencies. DRT estimations using G3P (12.1) is
2.8 months less than JPL mascon (14.9). Conversely, G3P exhibited 4.0% higher
consistency than JPL mascon. The equatorial zone showed the lowest mean DRT

and highest consistency, while the polar zone showed the highest mean DRT and



lowest consistency. These findings offer the information required for precipitation
and TWSA product accuracy by investigating hydrological drought, which aids in

comprehending meteorological and hydrological processes.

Keywords: GPCC, GPCP, GRACE, GRACE-FO, Drought Recovery Time
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0z

KURAKLIKTAN KURTULMA SURESI iCIN GPCP VE GPCC YAGIS
URUNLERI VE GRACE VE GRACE-FO KARASAL SU DEPOLAMA
GOZLEMLERI

Cakan, Cagatay
Yiiksek Lisans, Insaat Miihendisligi
Tez Yoneticisi: Prof. Dr. M. Tugrul Yilmaz

Ekim 2024, 94 sayfa

Hassas yagis gézlemleri, hidrolojik siireclerin anlagilmasi i¢in gereklidir. Cogu yagis
iirlindi, istasyon tabanli gézlemlere dayanmakta olup, dogrulama i¢in ek bagimsiz
verilere ihtiya¢ duyar. Bu calisma, bes farkli Koppen-Geiger iklim bolgesinde
karasal su depolama anomalileri (TWSA) ve yagis gozlemlerinden hidrolojik
kuraklik toparlanma siiresi (DRT) tahmin ederek Global Precipitation Climatology
Center (GPCC) ve Global Precipitation Climatology Project (GPCP) yagis
iirtinlerinin dogrulugunu degerlendirmektedir. DRT tahminleri i¢in yagis veri setleri
(GPCC Full Data Monthly Product v2022 ve GPCP v3.2) ile Gravity Recovery and
Climate Experiment (GRACE) ve GRACE Follow-On (GRACE-FO) uydu
gorevlerinden elde edilen TWSA veri setleri (JPL mascon ve G3P) kullanilmistir. Tki
yontem, depolama agig1 ve gereken yagis miktari, DRT hesaplamalart icin
uygulanmistir. Sonuglar, GPCC ve GPCP firiinlerinin benzer ortalama DRT
tahminleri ve tutarliliklar sagladigin1 gostermektedir. G3P kullanilarak yapilan DRT
tahminleri (12.1), JPL mascon iiriiniine (14.9) kiyasla 2.8 ay daha azdir. Buna
karsilik, G3P, JPL mascon iiriine gore %4.0 daha yiiksek bir tutarlilik sergilemistir.
Ekvatoral bolge en diisiik ortalama DRT ve en yiiksek tutarlilig1 gosterirken, polar

vii



bolge en yiiksek ortalama DRT ve en diisiik tutarliligi gostermistir. Bu bulgular,
meteorolojik ve hidrolojik siireclerin anlagilmasma katki saglayan hidrolojik
kuraklik arastirmalar1 yoluyla yagis ve TWSA iiriinlerinin dogrulugu icin gerekli

bilgileri sunmaktadir.

Anahtar Kelimeler: GPCC, GPCP, GRACE, GRACE-FO, Kurakliktan Kurtulma

Stresi

viii



To my family,



ACKNOWLEDGMENTS

This thesis represents a milestone in my academic career. It would not have been
possible without the support, guidance, and encouragement of many individuals and

group members.

| would like to express my deepest gratitude to my supervisor, Prof. Dr. Mustafa
Tugrul Yilmaz, for his continuous guidance, support, patience, and immense
knowledge. His guidance helped me throughout the research and writing of this
thesis. Looking back, I am glad I chose this field, and | would like to thank him for

that as well.

I would like to extend my special thanks to Dr. Elmas Sinem Ince van der Wal for
her support on this project topic. Her guidance has been crucial in shaping my

academic journey.

I would also like to thank my office mates Ali Cem Catal, Ali Serkan Bayar, Ali Ulvi
Galip Senocak, Aysu Arik, Beril Aydin, Berkin Glimiis, Numan Burak Barkis, and
Ruhi Deniz Yal¢in for our informative and enjoyable conversations. Their support

played a crucial role in helping me overcome various challenges.

I would like to express my heartfelt gratitude to my friends, Baris Oztas, Ilgin Basara,
Semin Atasoy, and Yigit Yusuf Colak (Numerical Guys), for their unwavering
friendship. Although we are now in different places, | will always cherish our

conversations at Mesire.

I would like to express my deepest gratitude to irem Baym for her unwavering
support and encouragement throughout my life. Her help with every challenge I’ve

faced has been invaluable.

Finally, and most importantly, | would like to thank my family for their
unconditional love and support. I am grateful to my mother, Rukiye Cakan, for

always encouraging me and wanting to help me pursue through challenging and



lengthy tasks; to my father, Selahattin Cakan, who has endless faith in me for the
things | want to achieve; and to my grandmother, Hayris, for being a constant source

of support on the other end of the phone whenever | faced difficulties.

Xi



TABLE OF CONTENTS

ABSTRACT e v
OZ o vii
ACKNOWLEDGMENTS ...t X
TABLE OF CONTENTS ... Xii
LIST OF TABLES ...ttt XV
LIST OF FIGURES ... .ottt e XVii
LIST OF ABBREVIATIONS ... XXi
LIST OF SYMBOLS ...t XXiii
CHAPTERS
1 INTRODUCTION ...ttt 1
2 DATASET AND METHODOLOGY .....coiiiiiiiiiieniie e nie e 7
2.1 DataSEE ... 8
211 GPCC and GPCP PrecCipitation ...........ccoovveiieiieienene e 8
2.1.2 GRACE and GRACE TWS......ci e 11
2.2 Water Balance EQUALION ...........ccooveieiiriiieic e 13
2.3 Deviation of Storage (ATWSA) ... 14
2.4  Cumulative Detrended Precipitation Anomaly (CAPA) ........c.ccceevevnenen. 15
2.5  Relationship between cdPA and dTWSA..........cccooe e 16
2.6 DRT ESHMAIONS ....cveiiiiiiiiiiitesieie et 18
2.6.1 DRT Estimation based on Storage DefiCit ...........ccccocevveiiveiiiiennnn, 19
2.6.2 DRT Estimation based on Required Precipitation Amount ............ 20
2.7 ACCUIaCY ANAIYSIS.....cciuieiiiiiiie et 22

xii



2.7.1 Consistency in DRT EStIMations...........ccccovevvevieieiiie e cieseeins 22

2.7.2 Calculated SEAtiStICS .........ooveiviirieieirie e 23
2.8  Koppen-Geiger Climate Classification ............cccoovevviieiiene e, 24
2.9 PixXel Size EffECt.......cciiiieiieiii e 26
2.10 Difference from Previous StUY .........ccccceriiiiiiinininiieeceese e 27

RESULTS ottt ettt anbeesnee s 29
3.1  Relationship between cdPA and dTWSA ... 29
3.2  The cdPA and dTWSA for Each Climate Zone.........cccccoevevencicnnnnnn. 35

3.2.1 Equatorial Zone (A) ......ooeiiiiiiiieeee e 35

3.2.2 AT ZONE (B) ..ot s 38

3.2.3 Warm Temperate Zone (C) ....coveoverenieiiieniseeieiee s 40

3.24 SNOW ZONE (D) ..ttt 42

3.25 POIAr ZONE (E) ..vveveiieiie ettt 44
3.3 Storage Deficit AMOUNT ........ccoovieiieiececeee e 46
3.4 Required Precipitation AMOUNT ..........ccoeiieiiiieieece e 47

3.5  The Storage Deficit and Required Precipitation Amount for an Example

Regions in Each ClIMate ZONe..........ccoouiiiieiiiiieeseeeee e 50
3.5.1 Equatorial Zone (A) ..o 50
3.5.2 AT ZONE (B) ettt s 52
3.5.3 Warm Temperate ZOne (C) ....oovevvereneieiiiiseeieieee s 54
354 SNOW ZONE (D) ..ttt 56
3.55 POIAr ZONE (E) ...eviviieiiiieieeeee e 58

3.6 DRT EStMALIONS. .....ccuiiiiieiiiitiitiseseee e 60

3.7 Consistency in DRT EStIMAtiONS .........ccccvviiiieiieiiiesic e 72

Xiii



4  SUMMARY AND CONCLUSION .....ccccoiiiiiiiiiiiiie e

REFERENCES
APPENDICES

A. 1 Limit

B.  TIME SEHES OF TWSA ..ot

C. Spatial Distribution of the Precipitation Gauge............cccovvveverieieereiiernnn

Xiv



LIST OF TABLES

TABLES

Table 2.1. Detailed information regarding the precipitation and TWS datasets....... 8
Table 2.2. Detailed Information for the Subzones of Koppen-Geiger Climate

Classification (Rubel et al., 2017).....cccooeiiiiieecieieee e 25
Table 2.3. Masked-out Criteria used in the present Study...........cccccevvveverivereennene 18
Table 2.4. The details of the DRT eStimations .........cccccvvevininieniininenese e 19
Table 2.5. Consistency Categories in DRT EStIMations..........ccccceevvereeieiverennnnn 23

Table 3.1. The Correlation Coefficients of Coupled Products with and without
PIXEl SIZ8 EFFECT. ...t 30
Table 3.2. The B1 Values of Coupled Products with and without Pixel Size Effect33
Table 3.3. Correlation Coefficient of All Products for an Example Region in the
Equatorial Zone (A) in South America (55.75°W 5.75°S) .cooviiiiiniiiiieiieeee, 37
Table 3.4. The B1 values for Different Precipitation and TWSA Products for an
Example Region in the Equatorial Zone (A) in South America (55.75°W 5.75°S) 37
Table 3.5. Correlation Coefficient of All Products for an Example Region in the
Arid Zone (B) in Australia (133.75°E 23.75°S) o.vvereereieririosssosssseeseessesssesnennes 39
Table 3.6. The By values for Different Precipitation and TWSA Products for an
Example Region in the Arid Zone (B) in Australia (133.75°E 23.75°S)......ccccvenue. 40
Table 3.7. Correlation Coefficient of All Products for an Example Region in the
Warm Temperate Zone (C) in Europe (5.75° W, 40.75° S) oo, 41
Table 3.8. The By values for Different Precipitation and TWSA Products for an
Example Region in the Warm Temperate Zone (C) in Europe (5.75° W, 40.75° S)

Table 3.9. Correlation Coefficient of All Products for an Example Region in the
Snow Zone (D) in North America (90.75° W, 45.75° N) c..coiiieiiiiiieieieeseeeiee 43

XV



Table 3.10. The B1 values for Different Precipitation and TWSA Products for an

Example Region in the Example Region in the Snow Zone (D) in North America

(90.75°% W, 45.75% Nttt 44
Table 3.11. Correlation Coefficient of All Products for an Example Region in the
Polar Zone (E) in Asia (85.75° E, 36.25° N)....vviuiueeeeeseeseeeeeeseeseeeessees e 45

Table 3.12. The B1 values for Different Precipitation and TWSA Products for an
Example Region in the Example Region in the Polar Zone (E) in Asia (85.75° E,

R I 5 N YOO 46
Table 3.13. The mean DRT Estimations based on Storage Deficit of Coupled
Products with and without Pixel Size EffeCt ..........c.ccooviniiienenieneeie 64

Table 3.14. The mean DRT Estimations based on Required Precipitation Amount

of Coupled Products with and without Pixel Size Effect..........ccccccevvvviiiiviiviinnnn, 64
Table 3.15. The spatial correlation of the DRT estimations based on both methods

using all coupled ProUUCES ..........ccieiiieieci e 65
Table 3.16. Mean DRT and SE for the Consistency Categories .........c.ccccevvevennen. 74

XVi



LIST OF FIGURES

FIGURES

Figure 2.1. Flow chart of this theSiS..........c.coiiiiiiiic e 7
Figure 2.2. The spatial distribution of the temporal mean GPCC precipitation
dataset from 2002 10 2020........cuerueruerierieriisiinieie e 9
Figure 2.3. The spatial distribution of the temporal mean GPCP precipitation
dataset from 2002 t0 2020.........cccueieereeieiie et 10
Figure 2.4. The time series of the global mean monthly precipitation dataset
obtained from GPCC and GPCP.........ccciiiiiiiiiieiee e 10
Figure 2.5. The time series of the global mean monthly TWSA dataset obtained
TrOM G3P ANU JPL...ceiceicceee ettt ene e 12
Figure 2.6. Koppen-Geiger Climate Classification (Rubel et al., 2017)................. 25

Figure 2.7. Koppen-Geiger Climate Classification (A, Equatorial; B, Arid; C,
Warm temperate; D, Snow; and E, Polar Climate Zones) (Rubel et al., 2017) ...... 26
Figure 2.8. Area Weights Of the PIXelS ..........ccooviiiiiiiiiiiiieee s 27
Figure 3.1. The spatial distributions of p between dTWSA and cdPA. (a) p obtained
from G3P&GPCP. The differences in p obtained from (b) G3P&GPCC, (c)
JPL&GPCP, (d) JPL&GPCC relative t0 G3P&GPCP. .......cccooveevreeieereceeee, 32
Figure 3.2. The spatial distributions of 1 between dTWSA and cdPA. (a) B1
obtained from G3P&GPCP. The differences in 1 obtained from (b) G3P&GPCC,
(c) JPL&GPCP, (d) JPL&GPCC relative to G3P&GPCP. ........ccccevevveiiiieiiiens 34
Figure 3.3. Time series of (a) dTWSA derived from both TWS products (G3P and
JPL); and (b) cdPA derived from both precipitation products (GPCC and GPCP),
each in an example region in the Equatorial zone (A) in South America (55.75° W,
T A R TSRS 36
Figure 3.4. Time series of (a) dTWSA derived from both TWS products (G3P and
JPL); and (b) cdPA derived from both precipitation products (GPCC and GPCP),

XVii



each in an example region in the Arid zone (B) in Australia (113.75° E, 23.75° S)

Figure 3.5. Time series of (a) dTWSA derived from both TWS products (G3P and
JPL); and (b) cdPA derived from both precipitation products (GPCC and GPCP),
each in an example region in the Warm Temperate Zone (C) in Europe (5.75° W,
40.75% S) ettt ettt 41
Figure 3.6. Time series of (a) dTWSA derived from both TWS products (G3P and
JPL); and (b) cdPA derived from both precipitation products (GPCC and GPCP),
each in an example region in the Snow Zone (D) in North America (90.75° W,
A5.75% N) 1ottt ettt n ettt en et 43
Figure 3.7. Time series of (a) dTWSA derived from both TWS products (G3P and
JPL); and (b) cdPA derived from both precipitation products (GPCC and GPCP),
each in an example region in the Polar Zone (E) in Asia (85.75° E, 36.25° N)......45
Figure 3.8. Display of mean storage deficit amount obtained from dTWSA. (a)
DRT obtained from G3P&GPCP. The differences in DRT relative to G3P&GPCP
for (b) G3P&GPCC, (c) JPL&GPCP, and (d) JPL&GPC........ccccvvvvrercreeeiene, 48
Figure 3.8. Display of mean required precipitation amount obtained from cdPA and
dTWSA. (a) DRT obtained from G3P&GPCP. The differences in DRT relative to
G3P&GPCP for (b) G3P&GPCC, (c) JPL&GPCP, and (d) JPL&GPCC............... 49
Figure 3.10. The time series of storage deficit amount, required precipitation
amount, and observed precipitation amount using (a) obtained from G3P&GPCP,
(b) G3P&GPCC, (c) JPL&GPCP, and (d) JPL&GPCC, each in an example region
in the Equatorial zone (A) in South America (55.75° W, 5.75° S). oo o1
Figure 3.11. The time series of storage deficit amount, required precipitation
amount, and observed precipitation amount using (a) obtained from G3P&GPCP,
(b) G3P&GPCC, (c) JPL&GPCP, and (d) JPL&GPCC, each in an example region
in the Arid Zone (B) in Australia (113.75° E, 23.75° S) cviiiiiiiiieeceece 53
Figure 3.12. The time series of storage deficit amount, required precipitation

amount, and observed precipitation amount using (a) obtained from G3P&GPCP,

XViii



(b) G3P&GPCC, (¢) JPL&GPCP, and (d) JPL&GPCC, each in an example region
in the Warm Temperate Zone (C) in Europe (5.75° W, 40.75° N).....ccceevvvvveieennnne 55
Figure 3.13. The time series of storage deficit amount, required precipitation
amount, and observed precipitation amount using (a) obtained from G3P&GPCP,
(b) G3P&GPCC, (¢) JPL&GPCP, and (d) JPL&GPCC, each in an example region
in the Snow Zone (D) in North America (90.75° W, 45.75° N) ...ccocvvieiiinnninennns 57
Figure 3.14. The time series of storage deficit amount, required precipitation
amount, and observed precipitation amount using (a) obtained from G3P&GPCP,
(b) G3P&GPCC, (¢) JPL&GPCP, and (d) JPL&GPCC, each in an example region
in the Polar Zone (E) in Asia (85.75° E, 36.25° N) coovviiiiiiiniiie e 59
Figure 3.15. Display of mean DRT estimations based on storage deficit obtained
from cdPA and dTWSA. (a) DRT obtained from G3P&GPCP. The differences in
DRT relative to G3P&GPCP for (b) G3P&GPCC, (c) JPL&GPCP, and (d)
JPLEGPCC ...ttt ettt sttt r e 62
Figure 3.16. Display of mean DRT estimations based on required precipitation
amount obtained from cdPA and dTWSA. (a) DRT obtained from G3P&GPCP.
The differences in DRT relative to G3P&GPCP for (b) G3P&GPCC, (c)
JPL&GPCP, and (d) JPL&GPCC ......cveiieieiee e 63
Figure 3.17. Display of the standard error of DRT estimations based on the storage
deficit obtained from cdPA and dTWSA (a) Standard error obtained from
G3P&GPCP. Differences in standard error relative to G3P&GPCP for (b)
G3P&GPCC, (c) JPL-mascon&GPCP, and (d) JPL-mascon&GPCC.................... 67
Figure 3.18. Display of the standard error of DRT estimations based on the
required precipitation amount obtained from cdPA and dTWSA (a) Standard error
obtained from G3P&GPCP. Differences in standard error relative to G3P&GPCP
for (b) G3P&GPCC, (¢) JPL-mascon&GPCP, and (d) JPL-mascon&GPCC ........ 68
Figure 3.19. The means of DRT estimations based on (a) storage deficit and (b)
required precipitation amount for the Képpen-Geiger main climate zones using all
the TWS-precipitation coupled products. (A, Equatorial; B, Arid; C, Warm

Temperate; D, Snow; and E, Polar Climate Zones)........c.ccccevvveiieeiieiieeviie e 70

XiX



Figure 3.20. Standard error for average DRT estimations based on (a) storage
deficit and (b) required precipitation amount for various climate zones from two
different dTWSA (i.e., G3P and JPL-mascon) and two different cdPA (i.e., GPCP
and GPCC) products calculated for Equatorial (A); Arid (B); Warm Temperates
(C); Snow (D); and Polar (E) as given by the Kdppen-Geiger classification ......... 71
Figure 3.21. Display of the consistency in DRT estimations obtained from all
TWS-precipitation coupled products (a) G3P-GPCC, (b) G3P-GPCP, (c) JPL-
GPCC, () JPL-GPCP. ...t 73
Figure 3.22. The percentage of DRT estimations whose consistency is category 1
for the Koppen-Geiger main climate zones using all the TWS-precipitation coupled
products (A, Equatorial; B, Arid; C, Warm Temperate; D, Snow; and E, Polar
CHMALE ZONES) ..ttt ettt bbbttt 75

XX



LIST OF ABBREVIATIONS

ABBREVIATIONS

cdPA
CLIMAT
CwC

cP

CPA

DLR
DRT
dTWSA
ERPA
ESA

ET

G3P
GDAP
GEWEX
GFz
GPCC
GPCC FDM

GPCP
GRACE
GRACE-FO
GTS

GW

JPL
mascons
NASA

Cumulative Detrended Precipitation Anomaly
Monthly Climate Reports

Canopy Surface Water Storage

Cumulative Precipitation

Cumulative Precipitation Anomaly

German Aerospace Center

Drought Recovery Time

Deviation of Storage

Estimated Required Precipitation Amount
European Space Agency

Evapotranspiration

Global Gravity-based Groundwater Project
GEWEX Data and Assessment Panel (GDAP
Global Water and Energy Experiment
German Research Center for Geosciences
Global Precipitation Climatology Center
Global Precipitation Climatology Center Full Data Monthly
Product

Global Precipitation Climatology Project
Gravity Recovery and Climate Experiment
Gravity Recovery and Climate Experiment Follow On
Global Telecommunication Systems
Groundwater Storage

Jet Propulsion Laboratory

Mass Concentration blocks

National Aeronautics and Space Administration

XXi



SE

SH

SM
SPEI
SPI
SRI
SSI
SWE
SYNOP
TWS
TWSA
WMO
WCRP

Precipitation

Runoff

Standard Error

Spherical Harmonics

Soil Moisture Content in the Soil Layers
Standardized Precipitation Evapotranspiration Index
Standardized Precipitation Index
Standardized Runoff Index
Standardized Streamflow Index

Snow Depth Water Equivalent

Synoptic Weather Reports

Terrestrial Water Storage

Terrestrial Water Storage Anomaly
World Meteorological Organization

World Climate Research Program

XXii



LIST OF SYMBOLS

SYMBOLS

p  Correlation Coefficient
Bo Intercept in Regression Coefficient

B1  Slope in Regression Coefficient

XXiil






CHAPTER 1

INTRODUCTION

A crucial component of the global water cycle is precipitation, which provides fresh
water to inland regions and thus enables vegetation to flourish. Terrestrial
ecosystems and climate zones are defined by the average amounts of precipitation
and the corresponding temporal distribution of rainfall events (Bayar et al., 2023;
Lai et al., 2018). However, an abnormally high or low amount of precipitation can
have disastrous effects on the biosphere, agriculture, and human societies. The
monitoring of extreme events such as droughts (Barker et al., 2016; Lai et al., 2019;
Wu et al., 2023; Xu et al., 2015) and floods (Belabid et al., 2019; Harris et al., 2007;
Maggioni & Massari, 2018), as well as short, medium and long-term precipitation
forecasts (Akbari Asanjan et al., 2018; Senocak et al., 2023) are a central objective

of hydrometeorological research.

The most common method for monitoring precipitation is using in-situ rain gauge
data (Barker et al., 2016; Wehbe et al., 2017; Wei et al., 2019). Nonetheless, gauge
station distribution is frequently uneven and sparse, especially in complicated terrain
where stations might not be accessible (Wang et al., 2017). In contrast, significant
progress has been made with satellite-based precipitation products obtained from
remote sensing devices, which offer a viable alternative to ground-based
precipitation observations with varying spatiotemporal resolutions (Bai et al., 2019;
Prakash et al., 2015; Wang et al., 2017; Wu et al., 2023). The Global Precipitation
Climatology Center (GPCC) and Global Precipitation Climatology Project (GPCP)
are two commonly used precipitation products with global coverage (Adler et al.,
2003; Sun et al., 2018a). GPCC provides in-situ station precipitation observations,

while GPCP offers blended observations, combining in-situ station and satellite data.



GPCC and GPCP precipitation products have often been evaluated against a variety
of atmospheric reanalysis data as well as with one another (e.g., Prakash et al., 2015).
There has been good agreement between GPCC and GPCP at regional sizes,
especially in the tropics GPCP (Negron Juarez et al., 2009; Sun et al., 2018b).
Furthermore, a comparison of the GPCC and GPCP revealed consistency in the
spatial distribution of the climatology of annual and seasonal rainfall across West
Africa (Lamptey, 2008). Despite the regional similarities found, there are also
distinct differences. In comparison to station-based precipitation data in China,
GPCC performed better than GPCP (Wang et al., 2017). Additionally, GPCC
indicated greater spatiotemporal representativeness of precipitation patterns in Iran
(Darand & Khandu, 2020) and exhibited better performance in the Sahel region
based on statistical error metrics (Ali et al., 2005). These studies generally compared
precipitation products with in-situ measurements to assess their quality.
Nevertheless, as both datasets rely on observations from in-situ stations, evaluating
precipitation products against in-situ stations becomes inappropriate. Additionally,
precipitation products may use other datasets to enhance their results, which can
introduce bias when validating these products against one another. Therefore, using
other independent variables (without precipitation) could be more effective for
evaluating precipitation products. Consequently, independent evaluations, separate
from in-situ station observations, may be necessary for products that rely on ground-
based data, such as GPCC and GPCP.

Drought monitoring is essential because drought is one of the most devastating
natural disasters, characterized by a significant decline in a region's water resources
over an extended period. The effects of the drought might be catastrophic for human
health, agriculture, irrigation, water supplies, and ecosystems (AghaKouchak et al.,
2015; Ding et al., 2020; Mishra & Singh, 2010; Patz et al., 2014; Piao et al., 2010).
The frequency, severity, and recovery time of droughts are defined by using drought
indices, such as the standardized precipitation index (SPI, Mckee et al., 1993)), the

standardized precipitation evapotranspiration index (SPEI, Vicente-Serrano et al.,



2010), the standardized runoff index (SRI, Shukla & Wood, 2008), and the
standardized streamflow index (SSI, Vicente-Serrano et al., 2012). SP1 utilizes solely
precipitation data to define drought characteristics, whereas SPEI depends on
precipitation and evapotranspiration data. SSI utilizes the runoff data from the land
surface, whereas SRI depends on streamflow in river channels (Lai et al., 2019).
Meteorological droughts are caused by inadequate precipitation, while hydrological
droughts arise from insufficient water storage (Behrangi et al., 2015; Keyantash &
Dracup, 2002; Thomas et al., 2014). Complex hydrological models use precipitation
data to determine hydrological drought using SSI and SRI (Lai et al., 2018;
Madadgar & Moradkhani, 2014). As an alternative, without the need for complex
hydrological models, the water storage deficiency might shed light on hydrological
drought (Thomas et al., 2014). It solely relies on measurements of water stored on or
below the ground and is used to estimate drought recovery time (DRT). Even the
amount of precipitation needed to fill any storage deficiency may be predicted by
combining precipitation and terrestrial water storage (TWS) observations (Singh et
al., 2021).

The satellite mission Gravity Recovery and Climate Experiment (GRACE),
conducted by the National Aeronautics and Space Administration (NASA) and the
German Aerospace Center (DLR) from 2002 until 2017, enabled measurements of
TWS (Springer et al., 2017). In order to extend the data record further up to the
present, NASA and the German Research Center for Geosciences (GFZ) have been
operating GRACE Follow-On (GRACE-FO), the successor to GRACE, since 2018.
The measurement of irregularities in the orbits of two identical twin satellites trailing
each other at a distance of approximately 200 km in a polar orbit, initially 490 km in
altitude, yields terrestrial water storage anomalies (TWSA), which comprise all
subsurface and surface water balance components (Wahr et al., 2004). The
comparison of data obtained at different times allows for the computation of
temporal changes in the Earth's gravity field. Variations in TWS are reflected in the
remaining signal on monthly-to-interannual scales after atmospheric, oceanic, and

geophysical factors have been subtracted. Spherical harmonic (SH) or mass



concentration (mascons) are two different solutions includes the ready-to-use TWS
data from the GRACE and GRACE-FO missions are provided. Hydrological model
validation (Dall et al., 2024) and the relationship between interannual fluctuations in
TWS and large-scale climate modes (Pfeffer et al., 2023) have both been
accomplished using GRACE-based TWS. Assimilation of GRACE data into land-
surface algorithms was even attempted (Eicker et al., 2014; Tangdamrongsub et al.,
2021). Thus, GRACE and GRACE-FO datasets are currently the most frequently
used in global TWS.

An independent evaluation of precipitation products by drought monitoring could be
performed using GRACE and GRACE-FO TWS products as an alternative to
evaluations using hydrological models (Beck et al., 2017; Gebrechorkos et al., 2024).
The precipitation product assessment was conducted by drought monitoring using
indices like SPI and SPEI in previous studies (Golian et al., 2019; Wei et al., 2019,
2021). However, in order to fully comprehend the utility of precipitation products,
more independent evaluation studies utilizing critical parameters, such as TWS, that
include all components of the surface and subsurface water balance are still required.
This is particularly important for monitoring hydrological droughts since the spatial
variability across different climate zones and globally has yet to be thoroughly

explored.

The Koppen-Geiger Climate Classification system is extensively used for regional
climate zonation by various disciplines, such as climate research, physical
geography, hydrology, agriculture, biology, and education (Bayar et al., 2023;
Kottek et al., 2006). It utilizes the temperature and precipitation datasets to define
the limits of the climatic zones (Kottek et al., 2006).

The goal of this study is to independently assess and compare the GPCC and GPCP
precipitation products by utilizing the GRACE and GRACE-FO dataset (e.g., G3P,

which is spherical harmonics, and JPL mascon, which is mascon solutions) in



perspective of evaluating drought characteristic. The evaluation of precipitation
products using TWS products as an independent variable has not yet been conducted.
The current study evaluates the applicability of the GPCC and GPCP precipitation
products for global hydrological applications. The evaluation covers different
climate zones, as described by the Képpen-Geiger classification. The evaluation was
conducted by estimating DRT based on TWSA and needed precipitation amount.
The comparative analysis in this study allows for a basis for comprehending the
connection between hydrological drought and global precipitation products through
DRT estimates.






CHAPTER 2

DATASET AND METHODOLOGY

The flow chart of this thesis are shown in Figure 2.1. First, the dTWSA and cdPA
parameters were calculated to estimate DRT values. The calculation of dTWSA is
explained in Section 2.3, while the calculation of cdPA is explained in Section 2.4.
Then, the DRT values is calculated based on storage deficit method, described in
Section 2.6.1. Also, the DRT values is calculated based on required precipitation
amount method, described in Section 2.6.2. Then, the consistency of the DRT
estimation methods is calculated, described in Section 2.7.1. Finally, the DRT
estimations and consistency in DRT estimations presented for Koppen-Geiger
Climate Classification, described in Section 2.8. Additionally, the effect of the area
of the pixel is investigated for parameters (dTWSA and cdPA) and DRT estimations,
described in Section 2.9.

moving average filter linear trend
Parameters

subtract the temporal smoothing 3-month removing
temporal mean integration moving average filter linear trend

DRT
Estimations

Figure 2.1. Flow chart of this thesis



2.1 Dataset

In this study, two distinct precipitation datasets (GPCC and GPCP) and two different
TWS datasets (G3P and JPL mascon) were utilized. Detailed information regarding

these datasets is provided in Table 2.1.

Table 2.1. Detailed information regarding the precipitation and TWS datasets

Type Name Spatial Temporal  Spatial Temporal

Resolution Resolution Coverage  Coverage

Precipitation GPCC 0.5° Monthly ~ 90° N/S 1981-2020
Precipitation GPCP 0.5° Monthly ~ 90°N/S  1979-present

TWS G3P 0.5° Monthly ~ 90° N/S 2002-2020
TWS JPL mascon 0.5° Monthly ~ 90°N/S  2002-present

2.1.1 GPCC and GPCP Precipitation

Although most precipitation products do not provide long-term global coverage for
latitudes up to 90° N/S, GPCC and GPCP offer precipitation data for high latitudes.
The GPCC was established by the World Meteorological Organization (WMO) in
1989 and combines monthly precipitation data over land from global
telecommunication systems (GTS), synoptic weather reports (SYNOP), and monthly
climate reports (CLIMAT). Various precipitation products with different
spatiotemporal resolutions, including the Full Data Monthly Product (GPCC FDM),
the Monitoring Product, and the First Guess Monthly Product, are provided by
GPCC. Among these products, the GPCC FDM v2022 (Schneider et al., 2022) is
suitable for water cycle studies (Schneider et al., 2014). For these reasons, it was
utilized to investigate the relationship between precipitation and TWS for further
analyses in this thesis. Monthly precipitation data with 0.5° spatial resolution is
available from 1891 to 2020 for GPCC FDM product. It can be downloaded from
the Deutscher Wetterdienst (German Meteorological Service) website
(https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-



https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2022_doi_download.html

monthly v2022 doi_download.html). The spatial distribution of the mean

precipitation dataset obtained from GPCC was illustrated in Figure 2.2.
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Figure 2.2. The spatial distribution of the temporal mean GPCC precipitation dataset
from 2002 to 2020

The GPCP was managed by the World Climate Research Program (WCRP) under
the Global Water and Energy Experiment (GEWEX) Data and Assessment Panel
(GDAP) and blends gauge observation and satellite precipitation data to set up global
precipitation estimates. The latest version of the GPCP precipitation product, GPCP
v3.2 Satellite-Gauge (SG) Combined Data (Huffman et al., 2023), was used in this
thesis. The GPCP v3.2 dataset provides monthly precipitation data with 0.5 spatial
resolution from 1979 to the present. The spatial distribution of the mean precipitation
dataset obtained from GPCC is illustrated in Figure 2.3. It is available from the
Goddard Earth  Sciences Data and Information  Services Center

(https://disc.gsfc.nasa.gov/datasets/ GPCPMON 3.2/summary). Moreover, the time

series of the mean precipitation dataset obtained from GPCC and GPCP are given in
Figure 2.4.


https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2022_doi_download.html
https://disc.gsfc.nasa.gov/datasets/GPCPMON_3.2/summary
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Figure 2.3. The spatial distribution of the temporal mean GPCP precipitation dataset
from 2002 to 2020
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Figure 2.4. The time series of the global mean monthly precipitation dataset obtained
from GPCC and GPCP

10



212 GRACE and GRACE TWS

GRACE and GRACE-FO measure the change in terrestrial water storage (TWS) by
Earth's gravity field variations. The TWS data is available from GRACE and
GRACE-FO spherical harmonics and mascon solutions. TWS anomalies are
composed of the sum of the anomalies in snow, ice, surface water, soil moisture, and
groundwater (Eq 2.1). In this study, the GRACE and GRACE-FO Level 3 products
of G3P (spherical harmonics, Giintner et al., 2023) and JPL Release 6 (mascon,
Watkins et al., 2015; Wiese et al., 2023) TWS products were utilized to estimate
water storage deficit and examine the relationship between precipitation and TWS
changes. The Level 3 products include all correction of the geophysical, smoothing
and filtering the gravity field, and provide ready-to-use data as mass anomalies of
water. Negative changes show mass losses, while positive changes show an increase
in mass amount. Thus, it aids in our observation of the water flows and their temporal

variations.
ATWS = AGW — ASM — ACWC — ASWE (2.1)

where ATWS is the change in total water storage, AGW is the change in groundwater
storage, ASM is the change in soil moisture content in soil layers, ASWE is the
change in snow depth water equivalent, and ACWC is the change in canopy surface

water storage.

The G3P dataset provides a monthly TWS dataset at a higher spatial resolution (0.5°)
than the other spherical harmonic solutions (1.0°) from April 2002 to December
2020. The G3P TWS dataset (Giintner et al., 2023) is available from the GFZ
Information System and Data Center (ftp://isdcftp.gfz-potsdam.de).

The monthly JPL mascon (from now on abbreviated as JPL) TWS dataset spans from
April 2002 to the present at a spatial resolution of 0.5°, like G3P. The JPL TWS data
(Watkins et al., 2015; Wiese et al., 2023) is acquired from the Virtual Directories of
Earth Data CMR (https://cmr.earthdata.nasa.gov/virtual-
directory/collections/C2536962485-POCLOUD/temporal/2002/04/16). The time
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series of the mean TWSA dataset obtained from G3P and JPL are demonstrated in

Figure 2.5.

Because of the satellite battery issues, both G3P and JPL TWS datasets have missing
monthly data, especially after 2011. The missing monthly data in the time series were
filled with the average of previous and subsequent two months, an average of four
months (Andrew et al., 2017; Long et al., 2015). Except for the missing data due to
the satellite battery problems, a time gap between the GRACE and GRACE-FO
missions is missing, spanning from July 2017 (the end of the GRACE mission) to
May 2018 (the launch of the GRACE-FO mission). This time gap has been left

missing.
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Figure 2.5. The time series of the global mean monthly TWSA dataset obtained from
G3P and JPL

Both G3P and JPL have a baseline to calculate the anomalies. G3P TWS dataset
represents anomalies relative to a long-term mean from April 2002 to December
2020. In contrast, the JPL TWS dataset utilizes a long-term mean from January 2004
to December 2009 as the baseline. The differences in TWSA time series, especially
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after 2010 (Figure 2.4), could arises from the baseline difference between TWSA

products.

The baseline of the JPL TWSA should be matched with that of G3P TWSA to
maintain consistency in the time series comparisons. (Humphrey et al., 2023;
Monthly Mass Grids - Global Mascons (JPL RL06.1_v03) | Data Portal - GRACE
Tellus, n.d.). Thus, the baseline of the JPL TWSA was changed from 2004-2009 to
2002-2020 in this study. First, the average for each grid point from April 2002 to
December 2020 is calculated to align the baseline of the JPL TWSA (Eq. 2.2).

total month

Z TWSAyymp (2.2)

mb=1

1

ref (TWSA)yxy =

where ref (TWSA),., is the reference value of TWSA, x and y refer to the horizontal
and vertical grid locations over the study area, TWSA, , 1 is the TWSA value, mb

refers to the month since beginning of the analysis, and total month is the total
numbers of month in the analyses. Then, reference value is subtracted from each
TWSA in the datasets to calculate the TWSA value according to the new baseline
(b(TWSA)) as follows:

b(TWSA) .y mp = TWSAyymp — ref (TWSA),,, (2.3)

2.2  Water Balance Equation

The water balance equation establishes a close relationship between TWS

fluctuations and precipitation.
ds/dt =P —ET — R (2.4)

where ds/dt is the storage change over time, which is TWSA in this study, P is
precipitation, ET is evapotranspiration, and R is streamflow, contains both surface
and subsurface water. These values are expressed in millimeters of equivalent water

height per month (mm/month).
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Any change in storage over time (ds/dt) must be driven by water fluxes. These
fluxes can be vertical, such as P or ET, occurring between the surface and the
atmosphere. Alternatively, they can be horizontal, occurring at or below the Earth's
surface, and are collectively referred to as R. Gravity missions directly observe
TWSA relative to a long-term mean value. Thus, these observations can provide

insights into water fluxes across various timescales.

In this thesis, the relationship between the combined ET + R fluxes and precipitation
is assumed to be linear and stationary (Singh et al., 2021). Following this assumption,
the possible variations in precipitation can be deduced by using the changes in
TWSA. By comparing two storage measurements taken 30 days apart, the typical
interval for GRACE solutions, quantitative information about the precipitation

occurring during this time period can be derived.

2.3  Deviation of Storage (dTWSA)

Determining the timescales for drought recovery requires an understanding of the
extent of water deficiencies. The variability in TWSA data can be used to infer these
water deficiencies directly (Thomas et al., 2014). Long-term processes like
groundwater extraction and/or glacier mass accumulation can affect variations in
water storage. The TWSA data were detrended for each grid in order to reduce the
influence of the long-term factors in this study. Eliminating the linear trend isolates
the deviations from the long-term trend. These deviations are referred to as
deviations of storage (dTWSA, Singh et al., 2021). The deviations represent the

anomalies.
ATWSAyymp = TWSAxymp — trend(TWSA)x_y (2.5)

where dTWSA, ,, mp is the deviation of storage, x and y refers to the horizontal and
vertical grid locations over the study area, mb refers to the month since beginning of
the analysis, TWSA, mp is the TWSA value, and trend(TWSA),,, is the linear

trend of the TWSA, all given in mm equivalent water height per month (mm/month).
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2.4  Cumulative Detrended Precipitation Anomaly (cdPA)

The precipitation anomalies (PA) were calculated by subtracting the temporal mean
precipitation of the grid for the period between April 2002 and December 2020 (the
reference period) from the precipitation.

PAyymp = Pxymp — Pry (2.6)

where PA, ,, mpis the precipitation anomaly value, x and y refer to the horizontal and
vertical grid locations over the study area, mb refers to the month since beginning of
the analysis, Py, n, is the precipitation value and K,y is the temporal mean
precipitation value. To ensure compatibility between the precipitation data and
TWSA, a temporal integration of the precipitation anomaly data is performed in this

study, resulting in cumulative precipitation (cPA) data.
CPAy ymp = PAxymp + CPAx ymp—1 (2.7)

where cPA, , m; is the cumulative precipitation anomaly value, x and y refer to the
horizontal and vertical grid locations over the study area, mb refers to the month
since beginning of the analysis. In this thesis, the cumulative precipitation anomalies
(cPA) were smoothed using a 3-month moving average filter, applied with the filter
function from the stats package in R, resulting in smoothed cumulative precipitation
anomalies (ScPA). (Singh et al., 2021). This procedure effectively reduced noise and
short-term variations in the cPA. The scPA were then detrended to separate short-
term fluctuations from long-term trends, resulting in the cumulative detrended
precipitation anomalies (cdPA). This additional step reduced the long-term effects
in precipitation patterns.

cdPAyymp = SCPAyymp — trend(scPA),, (2.8)

where cdPA, , mp is the cumulative detrended precipitation anomaly value, x and y
refer to the horizontal and vertical grid locations over the study area, mb refers to the

month since beginning of the analysis, scPA,, . is the smoothed cumulative
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precipitation anomaly value trend(scPA),, is the trend of the smoothed

cumulative precipitation anomaly, all given in mm equivalent water height per month

(mm/month).

2.5  Relationship between cdPA and dTWSA

The amount of precipitation required to balance a water storage deficit can be
estimated using the water balance equation, with the assumption of stationary and
linear relationship between ET+R flux and precipitation. By establishing a direct
connection between changes in TWSA and precipitation dynamics, this method
provides an invaluable tool for comprehending water resources management. To
estimate the amount of precipitation needed based on water deficiency, a linear

relationship between cdPA and dTWSA was constructed as follows:

cdPAyymp = Po,, + Br,, * ATWSAyymp + £ (2.9)

where o, , is the intercept, x and y refer to the horizontal and vertical grid locations
over the study area, P, is the slope, and ¢ represents the residual errors of the fit.

The cdPA and dTWSA are both in mm/month.

Given that cdPA and dTWSA are measured in the same units, a 1 value of 1
indicates that cdPA is equal to dTWSA and variations in precipitation is same as the
differences in storage. In contrast, a f1 value greater than 1 suggests that a portion
of local precipitation is immediately lost through processes like evapotranspiration
(ET) and runoff (R), without contributing to local storage. This implies that the
decrease in precipitation amount can be attributed to other hydrological processes
(e.g., ET and R) and is only partially reflected in the variability of storage data in
these regions. Regions where B1 is less than 1 imply that the storage deficit can be
addressed with less precipitation than is actually required. In other words, there needs
to be either further input from outside that coincides with local rain events, which
would cause an underestimation of the amount of precipitation needed based only on

storage fluctuations (Singh et al., 2021).
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Based on the research conducted by Singh et al. (2021), we have computed the
correlation coefficient (px,y) between cdPA and dTWSA and the maximum drought
length for each pixel (globe, spatial resolution of 0.5°, 259200 pixels) using 19 years
of monthly data (i.e., from 2002 to 2020), in addition to regression analyses (i.e., Po
and B1). In this case, a positive correlation between cdPA and dTWSA is anticipated,
meaning that increases (decreases) in storage changes should result from positive
(negative) precipitation anomalies. If storage change increases (decreases) in the
presence of a negative (positive) precipitation anomaly, this indicates a weak or no
linear relationship between cdPA and dTWSA. Correspondingly, in the study of
Singh et al. (2021), regions with a weak or no linear association between the two
variables (i.e., p <0, B1 < 1, and maximum drought period < 5 months) were removed
from the global analyses since these regions were considered as being unsuitable for
the further analysis. A considerable linear relationship may still exist in some pixels
with B1 values slightly less than 1, although sampling mistakes may result in
fluctuations around 1, and random variability may also lead some pixels to exhibit
marginal differences. Therefore, while Singh et al. (2021) masked out regions where
B1 was less than 1, this thesis applies a t-test for statistical significance to determine
the threshold for B1. The Im function in R was used to calculate p-value, which shows
the significance threshold of B1 values. Figure Al illustrates the spatial distributions
of the p-values of the B1 for each TWS-precipitation product. The insignificant 1
values (p-value>0.05) were excluded in this thesis along with regions with maximum
drought length < 5 months. The masked-out criteria used to classify regions based

on their suitability for further analysis are listed in Table 2.2.
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Table 2.2. Masked-out Criteria used in the present study

Criteria o ]
Criteria in this study Singh et al. (2021)
Number
1 - p<0
2 p-value of B1 > 0.05 Bl <1
3 maximum drought length < 5 maximum drought length < 5
months months

2.6 DRT Estimations

TWSA datasets from G3P and JPL and precipitation datasets from GPCC and GPCC
will be utilized in DRT estimations. We quantify DRT using two different estimation
methods, closely adhering to the methodology provided by Singh et al. (2021),
described in Section 2.10. Using solely on GRACE and GRACE-FO TWSA dataset,
the first approach, relied on storage deficit, estimates DRT as the length of TWSA
residuals from its climatology. The second approach uses the required precipitation
amount, which is determined by combining the precipitation and TWSA datasets.
According to this method, a drought is assumed to end when the absolute required
precipitation amount (Section 2.6.2) exceeds the precipitation observations. Thus,
the precipitation (GPCC and GPCP) and the TWSA (G3P and JPL) products and two
DRT estimation methods (storage deficit and required precipitation amount) will be
utilized in further analyses for various climate zones as defined by the Koppen-
Geiger climate classification. The details of the DRT estimations are explained in
Table 2.3. Precipitation products (GPCC and GPCP) are used in DRT-1, DRT-2,
DRT-3, and DRT-4 for excluding regions, with exclusion criteria provided in Table
2.2.
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Table 2.3. The details of the DRT estimations

Estimation TWSA Precipitation Product Estimation Method
No. Product
DRT-1 G3P - | GPCP (excluding regions) Storage Deficit
DRT-2 G3P -/ GPCC (excluding regions) Storage Deficit
DRT-3 JPL - | GPCP (excluding regions) Storage Deficit
DRT-4 JPL - /| GPCC (excluding regions) Storage Deficit
DRT-5 G3P GPCP Required Precipitation
Amount
DRT-6 G3P GPCC Required Precipitation
Amount
DRT-7 JPL GPCP Required Precipitation
Amount
DRT-8 JPL GPCC Required Precipitation
Amount

2.6.1 DRT Estimation based on Storage Deficit

Drought features can be better understood by examining how TWSA deviates from
its climatology. A reference point by averaging the TWSA values for each month
over the course of the time series is established in order to compute this deviation.
For instance, a reference point for February would be calculated by the average of
all February TWSA values in the dataset. The climatology for that particular month
was reflected by this average monthly TWSA.

1 total year
TWSA, )y = ————— Z TWSA 2 10
Y total year ) Ly myy ( )
yy=

where TWSA, ,,  is the mean TWSA value, x and y refer to the horizontal and

vertical grid locations over the study area, m refers the month, TWSA is the

xX,ymyy
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TWSA, vy refers to the year, and total year is the total number of year of the
datasets. Then, the corresponding monthly climatology value was subtracted from
each TWSA data point to determine the deviation of each TWSA data point from the
climatology, resulting in residuals.

ATWSAyymyy = TWSAyx ymyy — TWSAL, (2.11)

where dTWSA, ,myy is the deviation of the TWSA value x and y refer to the

horizontal and vertical grid locations over the study area, m refers to the month, and
yy refers to the year.

Deficits in water storage are indicated by negative residuals of TWSA from its
climatology (Thomas et al., 2014). Long-term below-average water storage periods
were identified as drought occurrences when persistent negative residuals persisted
for more than three consecutive months (Singh et al., 2021). If these periods lasted
less than three consecutive months, the negative residuals were not considered a
drought (Singh et al., 2021). However, if a new phase of negative residuals began
within a month after a prior drought recovery, it was regarded as a continuation of
the same drought (Singh et al., 2021). This approach ensured a consistent record of
drought events over time, allowing to create a comprehensive inventory of drought
recovery periods for each grid point. DRT estimations were derived from the storage
deficit method. This method examined the duration of negative residuals (indicating
lower-than-usual storage values) of dTWSA at each grid and time, providing insights
into the patterns and severity of drought occurrences over time (Detailed information
about the differences in between this thesis and Singh et al. (2021) are given in
Section 2.10).

2.6.2 DRT Estimation based on Required Precipitation Amount

Drought characteristics are also investigated by observing precipitation amount. The
cdPA can be used to analyze each grid's drought characteristics. For this purpose, the
second method, DRT estimation based on the required precipitation amount, is
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employed for this purpose. The linear relationship between dTWSA and cdPA (Eq.
2-9) vyields the required precipitation amount to fill the storage deficit. The cdPA
terms gives the required precipitation amount, while dTWSA is the storage
deficiency. The climatology of precipitation was used to calculate the absolute
required precipitation amount in this study. A reference point by averaging the
precipitation values for each month throughout the time series is established in order
to compute the absolute required precipitation amount from both precipitation
products (GPCC and GPCP) using the time series from April 2002 to December
2020. For instance, a reference point for February was calculated by the average of
all February precipitation values in the dataset. The climatology for that particular

month was reflected by this average monthly precipitation.

1 total year
P, = Z P 2.12
Y total year ) Lymyy ( )
Yy=

where m is the mean P value, x and y refer to the horizontal and vertical grid
locations over the study area, m refers to the month, P, ,, ,,, ,,, is the P value, yy refers
to the year, and total year is the total number of year in the datasets. Then, the
corresponding monthly climatology value was added to the estimated required
precipitation amount, obtained from the linear relationship between cdPA and

dTWSA, to calculate the absolute required precipitation amount for each grid.

where dTWSA, , my is the deviation of the TWSA value x and y refer to the
horizontal and vertical grid locations over the study area, m refers to the month, and

yy refers to the year.
ARPAy ymyy = ERPAyymyy + Prym (2.13)

where ARPA is the absolute required precipitation amount, x and y refer to

xX,y,myy
the horizontal and vertical grid locations over the study area, m refers to the month,
and yy refers to the year, and ERPA, ,, ., is the estimated required precipitation

amount. The duration over which the observed precipitation amount surpassed the

21



absolute required precipitation amount for any given time and location was analyzed
to estimate DRT (Singh et al., 2021). This method allows for an extensive evaluation

of DRT dynamics across various locations and periods.

2.7  Accuracy Analysis

2.7.1 Consistency in DRT Estimations

By analyzing the differences in the timing acquired from both approaches, the
consistency (degree of agreement) between the two DRT estimations was measured.
Here, the consistency was defined as the absolute time difference between the two
DRT estimation methods, as illustrated in Table 2.4. For instance, the region was
classified as consistent category 1 if the absolute time difference between the two
approaches was within two months. In contrast, if the absolute time difference
between the two methods was more than nine months, the region was classified as
consistency category 4 (i.e., very poor consistency). The consistency between the
two methods was measured by comparing the absolute differences between the DRT
estimates for each TWS-precipitation product. With this investigation, the
dependability and robustness of the DRT estimations are better understood.
Essentially, it assisted us in determining the degree to which the two approaches
converged on comparable DRT values for the same areas. In general, DRT
estimation values cannot be directly validated via ground observations, these drought
related characteristics are only estimated utilizing ancillary observations like
precipitation and TWS. Accordingly, in the absence of direct validation, consistency
between different and independent methodologies may imply the real skill of these

methodologies in estimation of DRT.
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Table 2.4. Consistency Categories in DRT Estimations

Consistency category Time difference (months)

1 (very good consistency) 1-2
2 (good consistency) 3-4
3 (poor consistency) 5-8
4 (very poor consistency 9+

27.2 Calculated Statistics

The degree of uncertainty related to the means of the datasets were measured by
using standard deviation (SD) and standard error (SE). A lower SE value, which is
frequently attained with less fluctuation in the data, denotes a more accurate estimate
of the mean DRT across each pixel (Lee et al., 2015). For every pixel and climate
zone, respectively, the values of SD and SE were computed individually using the

following formulas:

Ny,y

Z (DRTx,y,i - .ux,y)z (2.14)

Y =1

SDy, =

where DRT, ., ; is the i-th DRT value in the dataset, x and y refer to the horizontal

Vil
and vertical grid locations over the study area, p, ,, is the mean DRT, and n,,, is the

number of the DRT values.

SD
SEy, = —= (2.15)

A/ Ny y

where SDy,y is the standard deviation of DRT, x and y refer to the horizontal and

vertical grid locations over the study area, and n,,, is the number of the DRT values.

To evaluate the degree of uncertainty surrounding the mean values of the datasets,
confidence intervals (CIs) are utilized in addition to SD and SE (Altman & Bland,
2005; Curran-Everett, 2008; Lee et al., 2015). With a certain degree of confidence
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(in this study, 95%) Cls offer a range of values that are likely to contain the true

population mean as follows:
Cley = My ¥ Z*SEy, (2.16)

where pxy IS the mean DRT, x and y refer to the horizontal and vertical grid locations
over the study area, and SE is the standard error of DRT. Here, a normal distribution
assumption is made with the selection Z = 1.96. However, the sensitivity of the
results for this assumption and alternative t-distribution scenario results are not
investigated in this thesis study. Overall, this normal distribution assumption would

underestimate the uncertainty of mean DRT.

2.8 Koppen-Geiger Climate Classification

In this study, the Koéppen-Geiger Climate Classification dataset was prepared by
Rubel et al. (2017) and covers the years 1986-2010 at a spatial resolution of 0.083°.
There exist 5 main climate zones and 31 subtypes included in the Képpen-Geiger
Climate Classification was prepared by Rubel et al. (2017). Figure 2.6 illustrates the
31 subtypes, while Figure 2.7 depicts the 5 main climate zones. In this study, the
Koppen-Geiger climate classification dataset (spatial resolution of 0.083°) was
regridded to be consistent with TWS and precipitation data used in this study (spatial
resolution of 0.5°) by utilizing bilinear interpolation. This thesis concentrated on the
five main Koppen-Geiger climate categories, which are equatorial, arid, warm
temperate, snow, and polar, as depicted in Figure 2.7. The Képpen-Geiger Climate
Classification dataset utilized in the present study is acquired from https://koeppen-
geiger.vu-wien.ac.at/present.ntm. The detailed information for the subzones of

Koppen-Geiger climate classification is shown in Table 2.5.
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Figure 2.6. Koppen-Geiger Climate Classification (Rubel et al., 2017)

Table 2.5. Detailed Information for the Subzones of Koppen-Geiger Climate
Classification (Rubel et al., 2017)

Main Climates Precipitation Temperature
A: equatorial W: desert h: hot arid
B: arid S: steppe k: cold arid
C: warm temperate f: fully humid a: hot summer
D: snow Ss: summer dry b: warm summer
E: polar w: winter dry c: cool summer
m: moonsoonal d: extremely continental

F: polar frost
T: polar tundrta
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Figure 2.7. Képpen-Geiger Climate Classification (A, Equatorial; B, Arid; C, Warm
temperate; D, Snow; and E, Polar Climate Zones) (Rubel et al., 2017)

29 Pixel Size Effect

This study utilized the gridded TWSA and precipitation datasets to estimate the mean
DRT. The pixel sizes are constant across the datasets; however, the pixel sizes
become smaller when moving from the equator to the poles. Area weights were
calculated based on the area of the pixels and are shown in Figure 2.8. These area
weights were used in the analysis to investigate whether the pixel size effect impacts
the results. Here, the area weights are calculated by taking the ratio of the area of any
pixel on the globe against the area of a pixel over equator. This implies the area

weights would be near 1 around equator and near 0 around poles.
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2.10 Difference from Previous Study

This study follows the methodology of Singh et al. (2021), but with some differences.
Singh et al. (2021) used one TWSA dataset (JPL mascon) and one precipitation
dataset (GPCP), while this study utilizes two TWSA datasets (G3P and JPL mascon)
and two precipitation datasets (GPCC and GPCP). The spatial resolution of the JPL
mascon, used by Singh et al. (2021), is 0.5°, which is the same resolution as the
TWSA products used in this study. However, Singh et al. (2021) used the GPCP
precipitation product with a spatial resolution of 2.5°, which was regridded using
bilinear interpolation. In contrast, this study uses the updated GPCP precipitation
product with a spatial resolution of 0.5°, and the GPCC product also has a spatial

resolution of 0.5°. Thus, both datasets in this study have the same spatial resolution.

To calculate the cdPA in Singh et al. (2021), the precipitation anomaly was first
obtained, then smoothed using a 3-month moving average, and the linear trend was
removed. Finally, the detrended data was integrated over time to obtain the cdPA.
Conversely, in this study, the precipitation data was first integrated over time to
obtain cumulative precipitation data. The cumulative precipitation anomaly data was
then derived, smoothed using a 3-month moving average, and the linear trend was
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removed to obtain the cdPA. The calculation procedure for this thesis was revised to
first convert the units of the precipitation dataset into storage units. This change
ensures consistency between precipitation and storage data, enabling a more similar
process like GRACE.

Also, the exclusion criteria for Bz in this study differ from those in the study of Singh
et al. (2021). While Singh et al. (2021) excluded pixels if p1 was less than 1, this

study excludes pixels have insignificant 1 values.

Singh et al. (2021) provided results for one global drought event in January 2016,
whereas this study offers mean DRT estimations from different coupled products

across five Koppen-Geiger climate zones and globally.
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CHAPTER 3

RESULTS

3.1  Relationship between cdPA and dTWSA

Figure 3.1a shows the spatial distribution of correlation coefficients between
dTWSA and cdPA for a selected data combination of dTWSA from G3P and cdPA
from GPCP (hereafter referred to as G3P&GPCP). Since the G3P&GPCP coupled
product has the highest global average correlation coefficient (0.31), the coupled
product was chosen to display the actual values in the following figures. The
correlation coefficients of the other coupled products are presented in Table 3.1.
Additionally, the impact of pixel size was examined to understand how the
correlation coefficient changes from the equator to the poles (Table 3.1). Our
findings indicate that pixel sizes did not significantly affect the correlation
coefficients, as the difference in the mean correlation coefficient whether or not the
pixel size effect was considered, is 0.05. High correlations were observed over
Australia (0.55), South America (0.46) and south Africa (p>0.47), regions with
significant fluctuations in water storage (See Appendix B) and dense in situ
observation networks (Figure C1). Compared to the other areas (~10% of grids in
the non-polar regions), polar regions (~70% of grids in the polar regions) had higher
negative correlations, where the reduction in water storage occurs both during and
after the melting season without any direct association with the incoming
precipitation. From October/November onwards, temperatures are usually below
0°C and any precipitation accumulates on the surface as the snowpack. From
March/April onwards, temperatures are sufficiently high again that melting can
occur at larger scales so that the TWS starts to drop again. Melting therefore results
in lateral surface discharge of water and thereby a reduction of TWS. Similar

negative correlations were observed in Central Asia and Northern Africa's arid
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regions, where water storage fluctuations are low (See Appendix B), and GRACE
measurements are most likely driven by measurement noise. The overall
measurement accuracy of GRACE (or GRACE measurement accuracy for short)
slightly varies with latitude due to its polar orbit, resulting in more observations per
unit area at the poles than at the equator each month. Additionally, there is a minor
dependency on coastal proximity, as aliasing artifacts tend to be more pronounced
near the sea compared to inland regions. Consequently, the relative accuracy of
GRACE is primarily influenced by signal magnitudes: in regions with large signals
(such as the Amazon), the signal-to-noise ratio (SNR) exceeds 1, allowing
TWSvariations to be accurately observed. In contrast, in areas with smaller signals
(such as deserts), the SNR is less than 1, meaning the GRACE data is predominantly
noise.

Table 3.1. The Correlation Coefficients of Coupled Products with and without
Pixel Size Effect

Mean p without Pixel Mean p with Pixel
Coupled Product ) )
Size Effect Size Effect
G3P&GPCP 0.31 0.36
G3P&GPCC 0.28 0.34
JPL&GPCP 0.30 0.36
JPL&GPCC 0.28 0.34

Furthermore, the spatial distributions of p differences for the remaining
combinations against the findings acquired for G3P&GPCP are illustrated in Figures
3.1b-d. Differences were observed in arid climate zones when swapping the TWS
product from G3P to JPL (Figure 3.1c). These regions typically exhibit less
fluctuations in TWS than non-arid regions, resulting in a low signal-to-noise ratio in
GRACE and GRACE-FO observations (Figure B6). In such areas, processing
preferences, such as the spatially variable a priori constraints (Watkins et al., 2015)
applied in the mascon, have a greater effect. The standard deviation of the differences
in Figure 3.1c (0.14) is smaller than that of the difference in Figure 3.1d (0.21). Thus,

30



correlations are reduced by the switching of the precipitation product from GPCP to
GPCC (Figures 3.1c and 3.1d) to a considerably greater extent in more regions,
especially over locations with less dense in situ networks (Figure C1). Higher
correlations obtained using GPCP as a precipitation product validate the additional
value of satellite observations in areas that would otherwise lack data (e.g., the
Congo Basin in central Africa). Nonetheless, several places where GPCC matches
GRACE and GRACE-FO more closely than GPCP, indicating that systematic
deficiencies in satellite data may also deteriorate the TWS-precipitation coupled
product in some regions. Despite the differences mentioned above, precipitation and
storage, as measured by satellite gravimetry, have an average correlation of 0.30.
The significance threshold for the correlation is 0.14, based on the number of
temporally available TWS data points. Therefore, an average correlation of 0.30 is
considered both significant and substantial, suggesting that GRACE and GRACE-
FO observations should be utilized more frequently in extensive
hydrometeorological studies. This calculation includes all pixels, even those with
negative correlations. Consequently, the average correlations remain above the

significance threshold, even when pixels with negative correlations are included.
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Figure Hata! Basvuru kaynagi bulunamadi.a depicts the spatial distributions of 1
(Eq. 2-8), larger than 0, for G3P&GPCP. The 1 values were below 0 in the particular
areas of North America, North Africa, and Northeastern Asia. The relationship
between TWSA and precipitation is less dependable in these regions since factors
other than precipitation likely affected TWSA values. The majority of regions having
polar climates (i.e., Képpen-Geiger Climate Zone E) displayed B1 values less than
zero, suggesting a weak relationship between cdPA and dTWSA in these regions. A
contrasting pattern was found between the arid zones, which was similar to the
correlation coefficient analysis. The arid areas of North America (Zone B) exhibited
a pattern more comparable to the arid regions in Australia. The percentage of
excluded areas was higher in the arid regions in Africa than in Australia and North
America. Also, the 1 values were lower in the remaining arid areas of North Africa.
Furthermore, the mean B values of all coupled products are shown in Table 3.2.
Similar to correlation analysis, the effect of the pixel area was investigated to get an
idea of how the B1 values change from the equator to the poles. The results, aligned
with the correlation coefficient analysis, show that the pixel areas do not greatly
impact the B; values, as minor differences, less than 6%, exist in the mean B values

whether or not the effect of the pixel areas was considered.

Table 3.2. The B1 Values of Coupled Products with and without Pixel Size Effect

Mean 1 without Pixel Mean 1 with Pixel
Coupled Product ) )
Size Effect Size Effect
G3P&GPCP 1.33 1.44
G3P&GPCC 1.27 1.38
JPL&GPCP 1.39 1.43
JPL&GPCC 1.34 1.39
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Moreover, the spatial distributions of 1 differences for the remaining combinations
against the findings acquired for G3P&GPCP are illustrated in Figures Hata!
Basvuru kaynagi bulunamadi.b-d. When swapping the TWS product from G3P to
JPL (Figure Hata! Basvuru kaynagi bulunamadi.c), the pixel area-weighted mean
B1 difference is -0.01. Thus, the B1 values are mostly similar for the mascon solutions
and for the spherical harmonics. Using the JPL instead of G3P revealed more
locations with 1 bigger than 3 in the warm temperate climate (Zone E) of Europe.
Switching the precipitation product from GPCP to GPCC also showed a fairly similar
effect, that the B, values were usually smaller for the in-situ observations than for the
blended precipitation product. Also, JPL&GPCC showed the greatest overall decline
in B1 values against G3P&GPCP (-0.15). Specifically, in the snow zones of Asia and
the arid zones of Australia, utilizing GPCP revealed more locations with B1 closer to
1 than GPCC. This indicates that when utilizing GPCP as opposed to GPCC, there
may be less need for extra variables to explain the relationship between precipitation

anomalies and TWS variations in these regions.

3.2 The cdPA and dTWSA for Each Climate Zone

3.2.1 Equatorial Zone (A)

The time series of dTWSA obtained from both TWS products (G3P and JPL) are
illustrated in Figure 3.3a for an example region in the Equatorial Zone (A) in
Australia (55.75° W, 5.75° S, Figure Hata! Basvuru kaynag bulunamadi.a). The
time series of cdPA obtained from both precipitation products (GPCC and GPCP)
are illustrated in Figure 3.3b for the same region. The dynamics of water availability
and precipitation, as well as possible patterns of drought recovery, can be understood
by using these visualizations to track and examine variations in water storage
deviations and cdPA over time. The close agreement was found between the time
series of G3P and JPL, and GPCC and GPCP, as well as between dTWSA and cdPA

time series (average p = 0.80) for this region, as shown in Figure 3.3. The correlation
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coefficients between all products for the example region in the Equatorial Zone (A)
are shown in Table 3.3. The regression coefficients between cdPA and dTWSA using
different precipitation and TWSA products for the example region in the Equatorial

Zone (A) are presented in Table 3.4.

(a) Time Series of d-TWSA
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Figure 3.3. Time series of (a) dTWSA derived from both TWS products (G3P and
JPL); and (b) cdPA derived from both precipitation products (GPCC and GPCP),
each in an example region in the Equatorial zone (A) in South America (55.75° W,
5.75°8).
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Table 3.3. Correlation Coefficient of All Products for an Example Region in the
Equatorial Zone (A) in South America (55.75°W 5.75°S)

G3P JPL GPCC GPCP

G3P - 0.98 0.81 0.79

JPL 0.98 - 0.81 0.77

GPCC 0.81 0.81 - 0.74
GPCP 0.79 0.77 0.74 -

Table 3.4. The Bz values for Different Precipitation and TWSA Products for an
Example Region in the Equatorial Zone (A) in South America (55.75°W 5.75°S)

Products B1 value

G3P&GPCP 1.02

G3P&GPCC 1.17

JPL&GPCP 0.98

JPL&GPCC 1.15

Based on the B1 values in Table 3.4, which are around 1 for different products, the
decrease in precipitation can be directly linked to the storage deficit for the example
region in the Equatorial Zone (A) in South America (55.75°W, 5.75°S). This
suggests that changes in precipitation closely correspond to variations in terrestrial

water storage in this region.
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3.2.2 Arid Zone (B)

The time series of dTWSA obtained from both TWS products (G3P and JPL) are
illustrated in Figure 3.4a for an example region in the Arid Zone (B) in Australia
(113.75° E, 23.75° S, Figure Hata! Bagvuru kaynagi bulunamadi.a). The time
series of cdPA obtained from both precipitation products (GPCC and GPCP) are
illustrated in Figure 3.4b for the same region. The dynamics of water availability and
precipitation, as well as possible patterns of drought recovery, can be understood by
using these visualizations to track and examine variations in water storage deviations
and cdPA over time. The close agreement was found between the time series of G3P
and JPL, and GPCC and GPCP, as well as between dTWSA and cdPA time series
(average p=0.65) for this region, as shown in Figure 3.4. The correlation coefficients
between all products for the example region in the Arid Zone (B) are shown in Table
3.5. The regression coefficients between cdPA and dTWSA using different
precipitation and TWSA products for the example region in the Arid Zone (B) are
presented in Table 3.6.
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Figure 3.4. Time series of (a) dTWSA derived from both TWS products (G3P and
JPL); and (b) cdPA derived from both precipitation products (GPCC and GPCP),
each in an example region in the Arid zone (B) in Australia (113.75° E, 23.75° S)

Table 3.5. Correlation Coefficient of All Products for an Example Region in the
Arid Zone (B) in Australia (133.75°E 23.75°S)

G3P JPL GPCC GPCP
G3P - 0.88 0.67 0.66
JPL 0.88 - 0.65 0.60
GPCC 0.68 0.65 - 0.99
GPCP 0.66 0.60 0.99 -
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Table 3.6. The By values for Different Precipitation and TWSA Products for an
Example Region in the Arid Zone (B) in Australia (133.75°E 23.75°S)

Products B1 value

G3P&GPCP 3.21

G3P&GPCC 3.34

JPL&GPCP 2.53

JPL&GPCC 2.77

Based on the B1 values in Table 3.6, which are higher than 1 for different products,
the decrease in precipitation can be attributed to other hydrological processes, such
as ET and R, for the example region in the Arid Zone (B) in Australia (133.75°E,
23.75°S).

3.2.3 Warm Temperate Zone (C)

The time series of dTWSA obtained from both TWS products (G3P and JPL) are
illustrated in Figure 3.5a for an example region in the Warm Temperate Zone (C) in
Europe (5.75° W, 40.75° N). The time series of cdPA obtained from both
precipitation products (GPCC and GPCP) are illustrated in Figure 3.5b for the same
region. The dynamics of water availability and precipitation, as well as possible
patterns of drought recovery, can be understood by using these visualizations to track
and examine variations in water storage deviations and cdPA over time. The close
agreement was found between the time series of G3P and JPL, and GPCC and GPCP,
as well as between dTWSA and cdPA time series (average p = 0.69) for this region,
as shown in Figure 3.5. The correlation coefficients between all products for the

example region in the Warm Temperate Zone (C) are shown in Table 3.7. The
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regression coefficients between cdPA and dTWSA using different precipitation and

TWSA products for the example region in the Warm Temperate Zone (C) are
presented in Table 3.8.
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Figure 3.5. Time series of (a) dTWSA derived from both TWS products (G3P and
JPL); and (b) cdPA derived from both precipitation products (GPCC and GPCP),
each in an example region in the Warm Temperate Zone (C) in Europe (5.75° W,

40.75° S)

Table 3.7. Correlation Coefficient of All Products for an Example Region in the
Warm Temperate Zone (C) in Europe (5.75° W, 40.75° S)

G3P JPL GPCC GPCP
G3P - 0.89 0.69 0.66
JPL 0.89 - 0.72 0.69
GPCC 0.69 0.72 - 0.98
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GPCP 0.66 0.69 0.98 -

Table 3.8. The Bz values for Different Precipitation and TWSA Products for an
Example Region in the Warm Temperate Zone (C) in Europe (5.75° W, 40.75° S)

Products B1 value

G3P&GPCP 3.21

G3P&GPCC 3.35

JPL&GPCP 2.53

JPL&GPCC 2.77

Based on the B1 values in Table 3.8, which are higher than 1 for different products,
the decrease in precipitation can be attributed to the other hydrological processes,
such as ET and R, for the example region in the Warm Temperate Zone (C) in Europe
(5.75° W, 40.75° N).

3.24 Snow Zone (D)

The time series of dTWSA obtained from both TWS products (G3P and JPL) are
illustrated in Figure 3.6a for an example region in the Snow Zone (D) in North
America (90.75° W, 45.75° N, Figure Hata! Basvuru kaynagi bulunamadi.a). The
time series of cdPA obtained from both precipitation products (GPCC and GPCP)
are illustrated in Figure 3.6b for the same region. The dynamics of water availability
and precipitation, as well as possible patterns of drought recovery, can be understood
by using these visualizations to track and examine variations in water storage
deviations and cdPA over time. The close agreement was found between the time
series of G3P and JPL, and GPCC and GPCP, as well as between dTWSA and cdPA
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time series (average p = 0.60) for this region, as shown in Figure 3.6. The correlation

coefficients between all products for the example region in the Snow Zone (D) are

shown in Table 3.9 The regression coefficients between cdPA and dTWSA using

different precipitation and TWSA products for the example region in the Snow Zone
(D) are presented in Table 3.10.
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Figure 3.6. Time series of (a) dTWSA derived from both TWS products (G3P and
JPL); and (b) cdPA derived from both precipitation products (GPCC and GPCP),
each in an example region in the Snow Zone (D) in North America (90.75° W, 45.75°

N)

Table 3.9. Correlation Coefficient of All Products for an Example Region in the

Snow Zone (D) in North America (90.75° W, 45.75° N)

G3P JPL GPCC GPCP
G3P - 0.95 0.63 0.65
JPL 0.95 - 0.53 0.60
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GPCC 0.63 0.53 - 0.98

GPCP 0.65 0.60 0.98 -

Table 3.10. The B1 values for Different Precipitation and TWSA Products for an
Example Region in the Example Region in the Snow Zone (D) in North America
(90.75° W, 45.75° N)

Products B1 value

G3P&GPCP 2.22

G3P&GPCC 2.23

JPL&GPCP 2.66

JPL&GPCC 2.44

Based on the B1 values in Table 3.10, which are higher than 1 for different products,
the decrease in precipitation can be attributed to other hydrological processes, such
as ET and R, for the example region in the Snow Zone (D) in North America (90.75°
W, 45.75° N).

3.25 Polar Zone (E)

The time series of dTWSA obtained from both TWS products (G3P and JPL) are
illustrated in Figure 3.7a for an example region in the Polar Zone (E) in Asia (85.75°
E, 36.25° N, Figure Hata! Basvuru kaynagi bulunamadi.a). The time series of
cdPA obtained from both precipitation products (GPCC and GPCP) are illustrated in
Figure 3.7b for the same region. The dynamics of water availability and
precipitation, as well as possible patterns of drought recovery, can be understood by

using these visualizations to track and examine variations in water storage deviations
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and cdPA over time. The mean correlation coefficient between the time series of
G3P and JPL, and GPCC and GPCP, as well as dTWSA and cdPA for the example
region in the Polar Zone (E) are shown in Table 3.11. The mean correlation
coefficient between dTWSA and cdPA time series was found to be 0.42 for this
region. The regression coefficients between cdPA and dTWSA using different
precipitation and TWSA products for the example region in the Polar Zone (E) are

presented in Table 3.12.
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Figure 3.7. Time series of (a) dTWSA derived from both TWS products (G3P and
JPL); and (b) cdPA derived from both precipitation products (GPCC and GPCP),
each in an example region in the Polar Zone (E) in Asia (85.75° E, 36.25° N)

Table 3.11. Correlation Coefficient of All Products for an Example Region in the
Polar Zone (E) in Asia (85.75° E, 36.25° N)

G3P JPL GPCC GPCP
G3P - 0.62 0.48 0.48
JPL 0.62 - 0.55 0.17
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GPCC 0.48 0.55 - -0.12

GPCP 0.48 0.17 -0.12 -

Table 3.12. The B1 values for Different Precipitation and TWSA Products for an
Example Region in the Example Region in the Polar Zone (E) in Asia (85.75° E,
36.25° N)

Products B1 value

G3P&GPCP 0.25

G3P&GPCC 0.37

JPL&GPCP 0.20

JPL&GPCC 0.93

Based on the By values in Table 3.12, which are less than 1 for all products except
JPL & GPCC, the required precipitation amount may be underestimated when
considering only storage fluctuations for the example region in the Polar Zone (E) in
Asia (85.75° E, 36.25° N). For JPL&GPCC product, the variation in precipitation is

almost equal to the variation in storage for this region.

3.3  Storage Deficit Amount

DRT estimation based on storage deficit was calculated using TWSA data for storage
deficit amount. Figure Hata! Basvuru kaynagi bulunamada.a illustrates the spatial
distributions of mean storage deficit amount to calculate DRT estimations based on
storage deficit method. Moreover, Figures Hata! Basvuru kaynagi bulunamad.b-
d demonstrate the spatial distribution of the differences between G3P&GPCC and
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G3P&GPCP, JPL&GPCP, and JPL&GPCC, respectively. The mean storage deficit
amount was the highest in the Equatorial (A) zone, exceeding 125 mm for the G3P
& GPCC coupled products. In North Africa’s Arid (B) zone, the mean storage deficit
amount was the lowest, with less than 25 mm. When switching from G3P to JPL, the

mean storage deficit amount marginally increased by 8 mm.

3.4  Required Precipitation Amount

DRT estimation based on required precipitation amount was calculated using both
cdPA and TWSA data for necessary precipitation amount. Figure Hata! Basvuru
kaynagi bulunamad.a illustrates the spatial distributions of mean required
precipitation amount to calculate DRT estimations based on required precipitation
method. Moreover, Figures Hata! Basvuru kaynagi bulunamadi.b-d demonstrate
the spatial distribution of the differences between G3P&GPCC and G3P&GPCP,
JPL&GPCP, and JPL&GPCC, respectively. The mean required precipitation amount
to fill the storage deficit was the highest in the Equatorial (A) zone, exceeding 500
mm for the G3P&GPCP coupled products. In North Africa’s Arid (B) zone, the mean
required precipitation amount was less than 100 mm, while in Australia’s and North
America’s Arid (B) zones, it ranged between 100 and 200 mm for the G3P&GPCP
coupled products. When switching from GPCP to GPCC, the required precipitation
amount decreased marginally in South America, central Africa and south Asia on a
global scale (3.2 mm). Similarly, when switching from G3P to JPL, the required

precipitation amounts also marginally increased by 5 mm.
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3.5 The Storage Deficit and Required Precipitation Amount for an

Example Regions in Each Climate Zone

351 Equatorial Zone (A)

The storage deficit and required precipitation amount for an example region in the
Equatorial zone (A) in South America (55.75° W, 5.75° S, Figure Hata! Basvuru
kaynagi1 bulunamada.a) are illustrated using both TWS products (G3P and JPL) and
precipitation products (GPCC and GPCP) in Figure 3.10. Observed precipitation
amount from corresponding precipitation product is also shown in Figure 3.10.

Figure 3.10a shows the storage deficit amount obtained from the G3P TWS product,
the required precipitation amount from the G3P TWS and GPCP precipitation
products, and the observed precipitation amount from the GPCP precipitation
product, thereby illustrating results from the G3P&GPCP coupled products. Figures
3.10b-d present results obtained from the G3P&GPCC, JPL&GPCP, and
JPL&GPCC coupled products, respectively.

For all coupled products, the maximum storage deficit amount was approximately
400 mm in April 2016 (Figure 3.10). The longest drought period for G3P was
observed between October 2015 and May 2017 (Figure 3.10a and 3.10b), while for
the longest drought period for JPL was observed between December 2014 and
September 2016 (Figure 3.10c and 3.10d). The drought events between 2007 and
2008, as well as between mid-2015 and mid-2017, were continuous for the G3P
product; however, they were not continuous for the JPL product. Other drought
events were observed with both products.

Furthermore, the maximum observed precipitation amount for the GPCC was around
650 mm in March 2016 (Figure 3.10b and 3.10d), however, it was not observed for
GPCP (350 mm). The maximum amount for the GPCP was around 550 mm in
February 2005 (Figure 3.10a and 3.10c) and also it was observed for GPCC (Figure
3.10b and 3.10d).
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Figure 3.10. The time series of storage deficit amount, required precipitation amount,
and observed precipitation amount using (a) obtained from G3P&GPCP, (b)
G3P&GPCC, (c) JPL&GPCP, and (d) JPL&GPCC, each in an example region in the
Equatorial zone (A) in South America (55.75° W, 5.75° S).
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3.5.2 Arid Zone (B)

The storage deficit and required precipitation amount for an example region in the
Arid Zone (B) in Australia (113.75° E, 23.75° S, Figure Hata! Basvuru kaynagi
bulunamadi.a) are illustrated using both TWS products (G3P and JPL) and
precipitation products (GPCC and GPCP) in Figure 3.11. Observed precipitation

amount from corresponding precipitation product is also shown in Figure 3.11.

Figure 3.11a shows the storage deficit amount obtained from the G3P TWS product,
the required precipitation amount from the G3P TWS and GPCP precipitation
products, and the observed precipitation amount from the GPCP precipitation
product, thereby illustrating results from the G3P&GPCP coupled products. Figures
3.11b-d present results obtained from the G3P&GPCC, JPL&GPCP, and
JPL&GPCC coupled products, respectively.

The maximum storage deficit amount was approximately 60 mm and 70 mm in
March 2008 for G3P and JPL, respectively (Figure 3.11). The longest drought period
for G3P and JPL was observed between May 2007 and February 2010 (Figure 3.11).
The drought was noted in 2013, mid-2013 and mid-2015 for the G3P TWS product,
while no drought was observed using the JPL. Other drought events were observed

with both products.

Furthermore, the maximum observed precipitation amount for the GPCC and GPCP
was around 140 mm in November 2008 and February 2010 (Figure 3.11). In general,
the observed precipitation from GPCC was aligned well with the observed

precipitation from GPCP for this grid.
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Figure 3.11. The time series of storage deficit amount, required precipitation amount,
and observed precipitation amount using (a) obtained from G3P&GPCP, (b)
G3P&GPCC, (c) JPL&GPCP, and (d) JPL&GPCC, each in an example region in the
Arid Zone (B) in Australia (113.75° E, 23.75° S)
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3.5.3 Warm Temperate Zone (C)

The storage deficit and required precipitation amount for an example region in the
Warm Temperate Zone (C) in Europe (5.75° W, 40.75° N, Figure Hata! Basvuru
kaynagi bulunamada.a) are illustrated using both TWS products (G3P and JPL) and
precipitation products (GPCC and GPCP) in Figure 3.12. Observed precipitation

amount from corresponding precipitation product is also shown in Figure 3.12.

Figure 3.12a shows the storage deficit amount obtained from the G3P TWS product,
the required precipitation amount from the G3P TWS and GPCP precipitation
products, and the observed precipitation amount from the GPCP precipitation
product, thereby illustrating results from the G3P&GPCP coupled products. Figures
3.12b-d present results obtained from the G3P&GPCC, JPL&GPCP, and
JPL&GPCC coupled products, respectively.

The maximum storage deficit amount was approximately 80 mm in May 2012 for
G3P (Figure 3.12a and 3.12b), while the maximum storage deficit amount was
around 100 mm in May 2017 for the JPL (Figure 3.12c and 3.12d). The longest
drought period was observed between December 2004 and September 2006 for G3P,
while the longest drought was observed between December 2004 and December

2009 for JPL. Other drought events were observed with both products.

Furthermore, the maximum observed precipitation amount for the GPCC and GPCP
was around 250 mm in October 2005 and December 2009 (Figure3.12). In general,
the observed precipitation from GPCC was aligned well with the observed

precipitation from GPCP for this grid.
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Figure 3.12. The time series of storage deficit amount, required precipitation amount,
and observed precipitation amount using (a) obtained from G3P&GPCP, (b)
G3P&GPCC, (c) JPL&GPCP, and (d) JPL&GPCC, each in an example region in the
Warm Temperate Zone (C) in Europe (5.75° W, 40.75° N)
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3.5.4 Snow Zone (D)

The storage deficit and required precipitation amount for an example region in the
Snow Zone (D) in North America (90.75° W, 45.75° N, Figure Hata! Basvuru
kaynagi bulunamada.a) are illustrated using both TWS products (G3P and JPL) and
precipitation products (GPCC and GPCP) in Figure 3.13. Observed precipitation

amount from corresponding precipitation product is also shown in Figure 3.13.

Figure 3.13ashows the storage deficit amount obtained from the G3P TWS product,
the required precipitation amount from the G3P TWS and GPCP precipitation
products, and the observed precipitation amount from the GPCP precipitation
product, thereby illustrating results from the G3P&GPCP coupled products. Figures
3.13b-d present results obtained from the G3P&GPCC, JPL&GPCP, and
JPL&GPCC coupled products, respectively.

The maximum storage deficit amount was approximately 200 mm and 150 mm in
December 2012 for G3P and JPL. respectively (Figure 3.13). The longest drought
period was observed between May 2011 and July 2014 for G3P (Figure 3.13a and
3.13b), while the longest drought was observed between October 2011 and July 2016
for JPL (Figure 3.13c and 3.13d). Droughts were noted in 2010 and 2017 for the G3P
TWS product, while no drought is observed using the JPL. Other drought events

were observed with both products.

Furthermore, the maximum observed precipitation amount was around 200 mm in
September 2010 for both GPCC and GPCP (Figure 3.13). In general, the observed
precipitation from GPCC was aligned well with the observed precipitation from
GPCP for this grid.
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Figure 3.13. The time series of storage deficit amount, required precipitation amount,
and observed precipitation amount using (a) obtained from G3P&GPCP, (b)
G3P&GPCC, (c) JPL&GPCP, and (d) JPL&GPCC, each in an example region in the
Snow Zone (D) in North America (90.75° W, 45.75° N)
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3.55 Polar Zone (E)

The storage deficit and required precipitation amount for an example region in the
Polar Zone (E) in Asia (85.75° E, 36.25° N, Figure Hata! Basvuru kaynag
bulunamadi.a) are illustrated using both TWS products (G3P and JPL) and
precipitation products (GPCC and GPCP) in Figure 3.13. Observed precipitation

amount from corresponding precipitation product was also shown in Figure 3.14.

Figure 3.14a shows the storage deficit amount obtained from the G3P TWS product,
the required precipitation amount from the G3P TWS and GPCP precipitation
products, and the observed precipitation amount from the GPCP precipitation
product, thereby illustrating results from the G3P&GPCP coupled products. Figures
3.14b-d present results obtained from the G3P&GPCC, JPL&GPCP, and
JPL&GPCC coupled products, respectively.

The maximum storage deficit amount was approximately 50 mm in June 2016 for
G3P (Figures 3.14a and 3.14b), while the maximum storage deficit amount was
around 20 mm in March 2010 for the JPL (Figures 3.14c and 3.14d). Also, there was
a similar drought event (20 mm) in March 2010 for G3P (Figures 3.14a and 3.14b).
The longest drought period was observed between June 2014 and March 2017 for
G3P (Figures 3.14a and 3.14b), while the longest drought was observed between
June 2014 and June 2017 for JPL (Figures 3.14c and 3.14d). The droughts were noted
before mid-2005 and at the end of 2020 for the G3P TWS product, while no drought
was observed using the JPL. In contrast, droughts were noted in 2006 and 2012 for
the JPL TWS product, while no drought was observed using the G3P TWS product.

Other drought events were observed with both products.

Furthermore, the maximum observed precipitation amount for the GPCP was around
15 mm in August 2016 (Figures 3.14a and 3.14c). The maximum amount for the
GPCC was around 35 mm in June 2010 and August 2016 (Figures 3.14b and 3.14d).
In general, the observed precipitation from GPCC was aligned well with the
observed precipitation from GPCP for this grid.
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Figure 3.14. The time series of storage deficit amount, required precipitation amount,
and observed precipitation amount using (a) obtained from G3P&GPCP, (b)
G3P&GPCC, (c) JPL&GPCP, and (d) JPL&GPCC, each in an example region in the
Polar Zone (E) in Asia (85.75° E, 36.25° N)
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3.6 DRT Estimations

Figures Hata! Basvuru kaynag bulunamadi.a and 3.16a demonstrate the spatial
distributions of mean DRT estimations based on storage deficit and required
precipitation amount methods using the G3P-GPCP coupled product, respectively.
Additionally, Figures Hata! Basvuru kaynag bulunamadib-d and 3.16b-d
illustrate the spatial distribution of the differences between G3P & GPCC and G3P
& GPCP, JPL & GPCP, and JPL & GPCC, respectively, for both approaches.
Because the DRT estimations based on the storage deficit approach only used TWS
products in the analysis, the mean DRT estimations for this method are the same in
Figures Hata! Basvuru kaynagi bulunamadi.a and Hata! Basvuru kaynag
bulunamadi.b, as well as Figures Hata! Basvuru kaynagi bulunamadi.c and
Hata! Basvuru kaynagi bulunamadi.d. The only purpose of using precipitation
products in this method (Figure Hata! Basvuru kaynag bulunamadi.) is the
exclusion of the regions that are not suitable for the analysis (Table 2.2). Thus, the
excluded regions are the only distinctions between G3P&GPCP and G3P&GPCC
(Figure Hata! Basvuru kaynag bulunamadi.b), as well as JPL&GPCP (Figure
Hata! Basvuru kaynagi bulunamadi.c) and JPL&GPCC (Figure Hata! Basvuru
kaynagi bulunamadi.d). Although precipitation products were integrated into DRT
estimations based on the required precipitation amount method, the overall spatial
patterns of mean DRT did not differ between G3P&GPCC and G3P&GPCP (Figure
3.16b) and between JPL&GPCP (Figure 3.16c¢) and JPL&GPCC (Figure 3.16d). The
mean and spatial distributions of DRT estimations using both approaches were
compatible with one another, as shown in Figures Hata! Basvuru kaynagi
bulunamadi. and 3.16.

Furthermore, the mean DRT estimations based on storage deficit and required
precipitation amount for all coupled products are shown in Table 3.13 and Table
3.14, respectively. Similar to correlation and regression analysis, the effect of the
pixel area was investigated to get an idea of how the mean DRT estimations change

from the equator to the poles. The results, aligned with the other pixel size analyses
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in this study, show that the pixel areas do not greatly impact the mean DRT
estimations, as minor differences, 0.2 months, exist in the mean DRT estimations

whether or not the effect of the pixel areas was considered.
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Table 3.13. The mean DRT Estimations based on Storage Deficit of Coupled
Products with and without Pixel Size Effect

Mean DRT without Mean DRT with
Coupled Product ) ) ) ]
Pixel Size Effect Pixel Size Effect
G3P&GPCP 12.8 125
G3P&GPCC 12.7 125
JPL&GPCP 155 15.2
JPL&GPCC 15.4 15.1

Table 3.14. The mean DRT Estimations based on Required Precipitation Amount
of Coupled Products with and without Pixel Size Effect

Mean DRT without Mean DRT with
Coupled Product ) ) ) )
Pixel Size Effect Pixel Size Effect
G3P&GPCP 10.9 11.0
G3P&GPCC 10.8 10.9
JPL&GPCP 13.1 13.2
JPL&GPCC 13.0 13.1

The highest mean DRT (50-60 months) estimations based on the storage deficit
approach were observed in Iran and Central Asia using G3P as TWS product and
GPCC and GPCP as precipitation product, as shown in Figures Hata! Basvuru
kayna@ bulunamadi.a and Hata! Bagvuru kaynagi bulunamadi.b, respectively.
Similarly, the highest mean DRT estimations were found in the same locations (Iran
and Central Asia) for the required precipitation amount methods, as shown in Figures
3.16a and 3.16b, which used G3P as the TWS product and GPCC and GPCP as the
precipitation product, respectively. The results of both DRT estimations, which used
JPL as the TWS product with GPCC and GPCP as the precipitation product, showed
that the regions with the highest mean DRT (50-60 months) were consistently
observed in Iran, southeast Australia, central Asia, and north Africa, as depicted in

Figures Hata! Basvuru kaynagi bulunamadi.c and Hata! Basvuru kaynag
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bulunamadi.d, as well as Figures 3.16¢ and 3.16d. Figures Hata! Basvuru kaynag
bulunamadi.a and 3.16a have a 0.75 spatial correlation, demonstrating a high level
of spatial correlation between the two. The spatial correlations of the other coupled
products were provided in Table 3.15.

Table 3.15. The spatial correlation of the DRT estimations based on both methods
using all coupled products

Spatial p of the DRT estimations
Coupled Products
based on both methods

G3P&GPCP 0.79
G3P&GPCC 0.78
JPL&GPCP 0.76
JPL&GPCC 0.77

Central and south Africa (~45 months), central and southern South America (~40
months), west and central North America (~40 months), eastern Australia (~35
months), east Asia (~30 months), and central Europe (~35 months) were found as
the other regions that showed high DRT estimations based on both approaches and
across all the product combinations. The current study's results, which are the regions
with high DRT, are consistent with increasing worldwide aridity and drought areas
since the mid-20th century, mostly due to widespread drying in eastern Australia and
northern mid-Ilatitude regions (Dai, 2011). Based on these approaches, the drought
conditions in eastern Australia (~35 months) were more severe than in western
Australia (~20 months). The results of the current study are consistent with earlier
research that focused on tracking droughts in regions that have previously
experienced prolonged, intense, multi-month drought events. These areas include
central Europe, Iran, southeast Australia, central and western North America, and
central South America, all of which have seen more severe droughts than other
regions. Madadgar & Moradkhani (2014) observed droughts of varying intensities
in the Colorado River Basin from 2001 to 2004, totaling 48 months of drought
between 2000 and 2011. The current study's results indicate a mean DRT of
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approximately 30 months for the same region. The results of the current study
(Figures Hata! Basvuru kaynag bulunamadi.a and 3.16a) align with those of
(Boergens et al., 2020), who found that Central Europe is prone to drought and
required more than a year to recover from the extreme drought experienced during
the summers of 2018 and 20109.

Moreover, when utilizing JPL, the mean DRT estimations derived from both
approaches were higher than those obtained using G3P. In contrast, the choice of
precipitation product (GPCC or GPCP) do not impact the overall spatial patterns of
DRT estimates, as there is a close agreement between GPCC and GPCP regarding
the spatial distributions of the mean DRT estimations for both TWS products (G3P
and JPL), as shown in Figure 3.16. Standard error was used to assess the variability
and uncertainty in the DRT estimations across the regions and datasets. Figures
Hata! Bagvuru kaynagi bulunamadi. and 3.18 illustrate the spatial distributions of
the SE of DRT estimates, which were similar to the spatial distributions of the mean
DRT estimates. The regions with the highest mean DRT also exhibited the highest
SE. This indicates that regions experiencing more extended DRT periods showed

greater variability in the DRT estimates.
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Figures 3.19a and 3.19b demonstrate the mean DRT estimations derived from
storage deficit and required precipitation amounts, respectively, across the Koppen-
Geiger main climate zones, utilizing all the TWS-precipitation coupled products.
Variability in the mean DRT estimations is shown by error bars that represent the
95% confidence intervals for each zone and each TWS-precipitation coupled
product. In each zone and each coupled product, the "n" values indicate the number
of grids per coupled product. The highest mean DRT estimation was observed in the
polar (E) zone for both DRT estimation methods, with 18.9 months for storage deficit
and 16.1 months for required precipitation amount. Except for the polar (E) zone, the
arid (B) zone showed the highest mean DRT estimation for both methods, with 15.0
months for storage deficit and 13.2 months for required precipitation amount. In
contrast, the equatorial (A) zone showed the lowest mean DRT estimation for both
methods, with 10.9 months for storage deficit and 9.8 months for required
precipitation amount. Thus, these results are consistent with the earlier findings of
Van Lanen et al. (2013), particularly for the regions that experience the least and
most severe droughts. In the warm temperate (C) zone, the mean DRT derived from
storage deficit and required precipitation amount was 14.0 months and 11.7 months,
respectively; in the snow (D) zone, it was 14.8 months and 11.5 months, respectively.
Specifically, the mean DRT estimations showed less than 0.2 months variability
across all climate zones except the polar (E) zone, as evidenced by narrow 95%
confidence intervals indicating low uncertainty. The highest differences between
DRT estimations using G3P and JPL were 5.7 months for the Polar (E) zone and 3.8
months for the Arid (B) zone. In contrast, the differences in other zones are lower
than those in the Polar (E) and Arid (B) zones. For all the TWS-precipitation coupled
products, the SE for the DRT estimations derived from storage deficit and required
precipitation amount throughout the Koppen-Geiger climatic zones are illustrated in
Figures 3.20a and 3.20b, respectively. For both approaches, the highest SE was
found in the polar (E) zone, while the lowest SE varied depending on the product.

All climate zones, except the polar (E) zone, showed similar SE for GPCC and
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GPCP. The SE obtained from estimations using G3P was marginally smaller than
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On a global average, the mean DRT estimation derived from the required
precipitation amount was determined as 12.0 months, while the mean DRT
estimation derived from the storage deficit was determined as 14.1 months.
Regardless of precipitation products, the mean DRT estimations obtained from G3P
(12.1 months) are consistently lower than those obtained from JPL (14.9 months) in
each climate zone and the global average. In terms of precipitation products, DRT
estimations derived from GPCC and GPCP show similar results (13.5 months)
independent of TWS products across all climate zones and the global average. These
results indicate a close agreement between GPCC and GPCP regarding DRT
estimations and show that G3P-based DRT estimations are consistently lower than

JPL-based DRT estimations in each climate zone and the global average.

3.7  Consistency in DRT Estimations

The spatial distributions of the consistency categories, described in Table 2.4, for the
DRT estimation obtained from G3P&GPCP coupled products are illustrated in
Figure 3.21a. Moreover, the spatial distributions of the differences in consistency
categories for the DRT estimation obtained from G3P&GPCC, JPL&GPCP, and
JPL&GPCC against G3P&GPCP are demonstrated in Figure 3.21b-d, respectively.
The majority of regions were found to be in consistency category 1 (high agreement),
with a mean absolute difference of 1.9 months between DRT estimations derived
from the two approaches. Consistency results of all combinations of the products
(Figure 3.21), including different TWS (G3P vs. JPL) and precipitation (GPCC vs.
GPCP), showed similar spatial patterns. These similarities were also observed in the
mean DRT estimation obtained from all coupled products. The regions in
consistency category 4, where the time difference between DRT estimations is larger
than 9 months, had the highest mean DRT estimations and the highest standard error

of the mean DRT for both approaches, as expected (Table 3.16).
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Table 3.16. Mean DRT and SE for the Consistency Categories

Mean DRT (months)  Mean SE (months)

Category 1 12.6 4.1
Category 2 14.3 5.5
Category 3 17.2 7.7
Category 4 254 13.6

The consistency levels for the Koppen-Geiger climate zones utilizing all of the
coupled products are displayed in Figure 3.22 as a percentage of consistency
category 1 (time difference in DRT estimation of 1-2 months). With an average
consistency of 98.4%, the equatorial (A) zone had the greatest, while the polar (E)
zone had the lowest with an average consistency of 80.2%. On a global average,
consistency category 1 was achieved by 89.6% of DRT estimations. The rate of
consistency category 1 of DRT estimations obtained from G3P (90.7%) is higher
than obtained from JPL (86.8%) across all the climate zones and the global average.
In terms of the coupled products, the G3P&GPCP combination showed the highest
consistency (91.0%), while JPL&GPCP displayed the lowest (86.4%).

The selection of the precipitation product (GPCC vs. GPCP) had a minor effect on
consistency in DRT estimations with an average absolute difference of 0.3%,
provided that the identical TWS product was utilized. In contrast, G3P had higher
consistency in DRT estimation than JPL, with an average absolute difference of 4.0%
when the same precipitation product was utilized. Climate zones also impacted
consistencies in DRT estimations in addition to the selection of the products. The
polar (E) zone had the highest difference between GPCC and GPCP, with a
difference of 5.1%. In contrast, the arid (B, 0.2 months) zone and snow zone (E, 0.1
months) showed the lowest difference between the two, with a similar consistency
in DRT estimations. Similarly, in the equatorial (A) zone, G3P and JPL showed the
most similar consistency in DRT estimations, with a difference of 1.3%, while they
displayed the largest difference (7.0%) in DRT estimation consistency in the arid (B)
zone, and the polar (E) zone.
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CHAPTER 4

SUMMARY AND CONCLUSION

Satellite gravimetry measures monthly variations in TWS, which are closely related
to the amount of precipitation that fell during that time frame. Thus, the innovative
observing concept implemented with the GRACE and GRACE-FO missions offers
a unique chance to verify precipitation products' long-term consistency. Based on
the current analysis using TWS (G3P spherical harmonics and JPL) and precipitation
(GPCC and GPCP) products, a generally high correlation between the two was found
over semi-arid and even wetter climates, some parts of the equatorial, warm
temperate and snow zones. On a global average, G3P and GPCP have the best
correspondence. In general, correlation coefficients are not greatly affected by the
choice of GRACE and GRACE-FO products, with the exception of arid regions with
minimal storage fluctuations. However, when swapping precipitation products from
GPCP to GPCC, correlation coefficients of cdPA and dTWSA change, especially in
Africa and some parts of Central Asia, where there is a lack of in situ station
coverage. In addition, the impact of satellite-based precipitation information in
GPCP is relatively large because GPCC relies solely on in situ rain gauges, which

have sparse coverage.

A new method of characterizing drought using the storage deficit is made possible
by GRACE and GRACE-FO observations, which directly provide water storage
anomalies. Thus, by directly observing the temporal evolution of the storage deficit,
it is possible to determine the time needed to recover from a drought (Singh et al.,
2021). This approach allows for the assessment of both the length and severity of a
drought. It is observed that there is not much difference between the mean DRT

estimations derived from GPCC and GPCP. On average, however, the mean DRT
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estimations across the Koppen-Geiger climate zones and the globe using JPL were
2.8 months longer than those using G3P. Furthermore, the findings demonstrate that
the equatorial (A) zone had the lowest mean DRT estimation based on both methods,
while the polar (E) zone had the highest for all TWS-precipitation combinations. In
contrast, the consistency in DRT estimations using G3P was 4.0% higher than using
JPL when the same precipitation product was utilized. Furthermore, for all TWS-
precipitation combinations taken into consideration, the results showed that the
equatorial (A) zone had the highest consistency in mean DRT estimations derived

from both methods, whereas the polar (E) zone had the lowest consistency.

The close association between precipitation and TWS fluctuations highlights the
potential utility of GRACE and GRACE-FO for hydrometeorological research, as
demonstrated by the results of the current study. Its global coverage (albeit relatively
low spatial resolution) makes it possible to assess various precipitation products from
global atmospheric reanalysis and numerical weather prediction models, in addition
to combinations of varying satellite and in situ observations (as done in this study).
It can be expected that additional advancements in the quality of satellite gravimetry
solutions for hydrological studies since studies on future satellite gravity missions
and the use of more precise sensors are conducted by NASA and the European Space
Agency (ESA).

Future studies can focus on the new satellite gravity missions conducted by NASA
and ESA. These new missions are expected to have more precise sensors than
GRACE and GRACE-FO. Additionally, other precipitation products, such as various
blended products and reanalysis datasets, can be assessed from a hydrological
drought perspective using these DRT estimation methods. Moreover, the subzone of
Koppen-Geiger climate zones could be studied in the future for one coupled TWS-

precipitation product.
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B. Time Series of TWSA

The time series of the mean monthly TWSA dataset obtained from G3P and JPL
are shown in Figures B1, B2, B3, B4, and B5 for Australia, South America,
Southern Africa, Central Asia, and Northern Africa, respectively.
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Figure B1. The time series of the mean monthly TWSA dataset obtained from G3P
and JPL for Australia
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Figure B2. The time series of the mean monthly TWSA dataset obtained from G3P
and JPL for South America
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Figure B3. The time series of the mean monthly TWSA dataset obtained from G3P
and JPL for Southern Africa
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Figure B4. The time series of the mean monthly TWSA dataset obtained from G3P
and JPL for Central Asia
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Figure B5. The time series of the mean monthly TWSA dataset obtained from G3P
and JPL for Northern Africa
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The time series of the mean monthly TWSA dataset obtained from G3P and JPL for
arid and non-arid regions are shown in Figures B6a and B6b, respectively.
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Figure B6. The time series of the mean monthly TWSA dataset obtained from G3P
and JPL for (a) Arid and (b) non-arid regions

C. Spatial Distribution of the Precipitation Gauge

Figure C1 shows the spatial distribution of the average number of precipitation
gauges from 2002 to 2020, as provided by the GPCC dataset.
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Figure C1. The spatial distribution of the average number of precipitation gauges

from 2002 to 2020, as provided by the GPCC dataset.
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