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ABSTRACT 

 

GPCC AND GPCP PRECIPITATION PRODUCTS AND GRACE AND 

GRACE-FO TERRESTRIAL WATER STORAGE OBSERVATIONS FOR 

THE ASSESSMENT OF DROUGHT RECOVERY TIMES 

 

 

 

Çakan, Çağatay 

Master of Science, Civil Engineering 

Supervisor : Prof. Dr. M. Tuğrul Yılmaz 

 

 

 

October 2024, 94 pages 

 

Accurate precipitation observations are essential for understanding hydrological 

processes. Most precipitation products rely on station-based observations, 

necessitating additional independent data for validation. This study evaluates the 

accuracy of the Global Precipitation Climatology Center (GPCC) and Global 

Precipitation Climatology Project (GPCP) precipitation products by estimating 

hydrological drought recovery time (DRT) from terrestrial water storage anomalies 

(TWSA) and precipitation observations across five Köppen-Geiger climate zones. 

Precipitation datasets (GPCC Full Data Monthly Product v2022 and GPCP v3.2) and 

TWSA datasets (JPL mascon and G3P) from Gravity Recovery and Climate 

Experiment (GRACE) and GRACE Follow-On (GRACE-FO) satellite missions 

were used for DRT estimates. Two methods, storage deficit and required 

precipitation amount, were applied to calculate DRT. Results show GPCC and GPCP 

provide similar mean DRTs and consistencies. DRT estimations using G3P (12.1) is 

2.8 months less than JPL mascon (14.9). Conversely, G3P exhibited 4.0% higher 

consistency than JPL mascon. The equatorial zone showed the lowest mean DRT 

and highest consistency, while the polar zone showed the highest mean DRT and 
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lowest consistency. These findings offer the information required for precipitation 

and TWSA product accuracy by investigating hydrological drought, which aids in 

comprehending meteorological and hydrological processes. 

 

Keywords: GPCC, GPCP, GRACE, GRACE-FO, Drought Recovery Time 
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ÖZ 

 

 

KURAKLIKTAN KURTULMA SÜRESİ İÇİN GPCP VE GPCC YAĞIŞ 

ÜRÜNLERİ VE GRACE VE GRACE-FO KARASAL SU DEPOLAMA 

GÖZLEMLERİ 

 

 

Çakan, Çağatay 

Yüksek Lisans, İnşaat Mühendisliği 

Tez Yöneticisi: Prof. Dr. M. Tuğrul Yılmaz 

 

 

Ekim 2024, 94 sayfa 

 

Hassas yağış gözlemleri, hidrolojik süreçlerin anlaşılması için gereklidir. Çoğu yağış 

ürünü, istasyon tabanlı gözlemlere dayanmakta olup, doğrulama için ek bağımsız 

verilere ihtiyaç duyar. Bu çalışma, beş farklı Köppen-Geiger iklim bölgesinde 

karasal su depolama anomalileri (TWSA) ve yağış gözlemlerinden hidrolojik 

kuraklık toparlanma süresi (DRT) tahmin ederek Global Precipitation Climatology 

Center (GPCC) ve Global Precipitation Climatology Project (GPCP) yağış 

ürünlerinin doğruluğunu değerlendirmektedir. DRT tahminleri için yağış veri setleri 

(GPCC Full Data Monthly Product v2022 ve GPCP v3.2) ile Gravity Recovery and 

Climate Experiment (GRACE) ve GRACE Follow-On (GRACE-FO) uydu 

görevlerinden elde edilen TWSA veri setleri (JPL mascon ve G3P) kullanılmıştır. İki 

yöntem, depolama açığı ve gereken yağış miktarı, DRT hesaplamaları için 

uygulanmıştır. Sonuçlar, GPCC ve GPCP ürünlerinin benzer ortalama DRT 

tahminleri ve tutarlılıklar sağladığını göstermektedir. G3P kullanılarak yapılan DRT 

tahminleri (12.1), JPL mascon ürününe (14.9) kıyasla 2.8 ay daha azdır. Buna 

karşılık, G3P, JPL mascon ürüne göre %4.0 daha yüksek bir tutarlılık sergilemiştir. 

Ekvatoral bölge en düşük ortalama DRT ve en yüksek tutarlılığı gösterirken, polar 
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bölge en yüksek ortalama DRT ve en düşük tutarlılığı göstermiştir. Bu bulgular, 

meteorolojik ve hidrolojik süreçlerin anlaşılmasına katkı sağlayan hidrolojik 

kuraklık araştırmaları yoluyla yağış ve TWSA ürünlerinin doğruluğu için gerekli 

bilgileri sunmaktadır. 

 

Anahtar Kelimeler: GPCC, GPCP, GRACE, GRACE-FO, Kuraklıktan Kurtulma 

Süresi 
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CHAPTER 1  

1 INTRODUCTION  

A crucial component of the global water cycle is precipitation, which provides fresh 

water to inland regions and thus enables vegetation to flourish. Terrestrial 

ecosystems and climate zones are defined by the average amounts of precipitation 

and the corresponding temporal distribution of rainfall events (Bayar et al., 2023; 

Lai et al., 2018). However, an abnormally high or low amount of precipitation can 

have disastrous effects on the biosphere, agriculture, and human societies.  The 

monitoring of extreme events such as droughts (Barker et al., 2016; Lai et al., 2019; 

Wu et al., 2023; Xu et al., 2015) and floods (Belabid et al., 2019; Harris et al., 2007; 

Maggioni & Massari, 2018), as well as short, medium and long-term precipitation 

forecasts (Akbari Asanjan et al., 2018; Senocak et al., 2023) are a central objective 

of hydrometeorological research. 

 

The most common method for monitoring precipitation is using in-situ rain gauge 

data (Barker et al., 2016; Wehbe et al., 2017; Wei et al., 2019). Nonetheless, gauge 

station distribution is frequently uneven and sparse, especially in complicated terrain 

where stations might not be accessible (Wang et al., 2017). In contrast, significant 

progress has been made with satellite-based precipitation products obtained from 

remote sensing devices, which offer a viable alternative to ground-based 

precipitation observations with varying spatiotemporal resolutions (Bai et al., 2019; 

Prakash et al., 2015; Wang et al., 2017; Wu et al., 2023). The Global Precipitation 

Climatology Center (GPCC) and Global Precipitation Climatology Project (GPCP) 

are two commonly used precipitation products with global coverage (Adler et al., 

2003; Sun et al., 2018a). GPCC provides in-situ station precipitation observations, 

while GPCP offers blended observations, combining in-situ station and satellite data. 

 



 

 

2 

GPCC and GPCP precipitation products have often been evaluated against a variety 

of atmospheric reanalysis data as well as with one another (e.g., Prakash et al., 2015). 

There has been good agreement between GPCC and GPCP at regional sizes, 

especially in the tropics GPCP (Negrón Juárez et al., 2009; Sun et al., 2018b). 

Furthermore, a comparison of the GPCC and GPCP revealed consistency in the 

spatial distribution of the climatology of annual and seasonal rainfall across West 

Africa (Lamptey, 2008). Despite the regional similarities found, there are also 

distinct differences. In comparison to station-based precipitation data in China, 

GPCC performed better than GPCP (Wang et al., 2017). Additionally, GPCC 

indicated greater spatiotemporal representativeness of precipitation patterns in Iran 

(Darand & Khandu, 2020) and exhibited better performance in the Sahel region 

based on statistical error metrics (Ali et al., 2005). These studies generally compared 

precipitation products with in-situ measurements to assess their quality. 

Nevertheless, as both datasets rely on observations from in-situ stations, evaluating 

precipitation products against in-situ stations becomes inappropriate. Additionally, 

precipitation products may use other datasets to enhance their results, which can 

introduce bias when validating these products against one another. Therefore, using 

other independent variables (without precipitation) could be more effective for 

evaluating precipitation products. Consequently, independent evaluations, separate 

from in-situ station observations, may be necessary for products that rely on ground-

based data, such as GPCC and GPCP. 

 

Drought monitoring is essential because drought is one of the most devastating 

natural disasters, characterized by a significant decline in a region's water resources 

over an extended period. The effects of the drought might be catastrophic for human 

health, agriculture, irrigation, water supplies, and ecosystems (AghaKouchak et al., 

2015; Ding et al., 2020; Mishra & Singh, 2010; Patz et al., 2014; Piao et al., 2010). 

The frequency, severity, and recovery time of droughts are defined by using drought 

indices, such as the standardized precipitation index (SPI, Mckee et al., 1993)), the 

standardized precipitation evapotranspiration index (SPEI, Vicente-Serrano et al., 
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2010), the standardized runoff index (SRI, Shukla & Wood, 2008), and the 

standardized streamflow index (SSI, Vicente-Serrano et al., 2012). SPI utilizes solely 

precipitation data to define drought characteristics, whereas SPEI depends on 

precipitation and evapotranspiration data. SSI utilizes the runoff data from the land 

surface, whereas SRI depends on streamflow in river channels (Lai et al., 2019). 

Meteorological droughts are caused by inadequate precipitation, while hydrological 

droughts arise from insufficient water storage (Behrangi et al., 2015; Keyantash & 

Dracup, 2002; Thomas et al., 2014). Complex hydrological models use precipitation 

data to determine hydrological drought using SSI and SRI (Lai et al., 2018; 

Madadgar & Moradkhani, 2014). As an alternative, without the need for complex 

hydrological models, the water storage deficiency might shed light on hydrological 

drought (Thomas et al., 2014). It solely relies on measurements of water stored on or 

below the ground and is used to estimate drought recovery time (DRT). Even the 

amount of precipitation needed to fill any storage deficiency may be predicted by 

combining precipitation and terrestrial water storage (TWS) observations (Singh et 

al., 2021). 

The satellite mission Gravity Recovery and Climate Experiment (GRACE), 

conducted by the National Aeronautics and Space Administration (NASA) and the 

German Aerospace Center (DLR) from 2002 until 2017, enabled measurements of 

TWS (Springer et al., 2017). In order to extend the data record further up to the 

present, NASA and the German Research Center for Geosciences (GFZ) have been 

operating GRACE Follow-On (GRACE-FO), the successor to GRACE, since 2018. 

The measurement of irregularities in the orbits of two identical twin satellites trailing 

each other at a distance of approximately 200 km in a polar orbit, initially 490 km in 

altitude, yields terrestrial water storage anomalies (TWSA), which comprise all 

subsurface and surface water balance components (Wahr et al., 2004). The 

comparison of data obtained at different times allows for the computation of 

temporal changes in the Earth's gravity field. Variations in TWS are reflected in the 

remaining signal on monthly-to-interannual scales after atmospheric, oceanic, and 

geophysical factors have been subtracted. Spherical harmonic (SH) or mass 
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concentration (mascons) are two different solutions includes the ready-to-use TWS 

data from the GRACE and GRACE-FO missions are provided. Hydrological model 

validation (Döll et al., 2024) and the relationship between interannual fluctuations in 

TWS and large-scale climate modes (Pfeffer et al., 2023) have both been 

accomplished using GRACE-based TWS. Assimilation of GRACE data into land-

surface algorithms was even attempted (Eicker et al., 2014; Tangdamrongsub et al., 

2021). Thus, GRACE and GRACE-FO datasets are currently the most frequently 

used in global TWS. 

 

An independent evaluation of precipitation products by drought monitoring could be 

performed using GRACE and GRACE-FO TWS products as an alternative to 

evaluations using hydrological models (Beck et al., 2017; Gebrechorkos et al., 2024). 

The precipitation product assessment was conducted by drought monitoring using 

indices like SPI and SPEI in previous studies (Golian et al., 2019; Wei et al., 2019, 

2021). However, in order to fully comprehend the utility of precipitation products, 

more independent evaluation studies utilizing critical parameters, such as TWS, that 

include all components of the surface and subsurface water balance are still required. 

This is particularly important for monitoring hydrological droughts since the spatial 

variability across different climate zones and globally has yet to be thoroughly 

explored. 

 

The Köppen-Geiger Climate Classification system is extensively used for regional 

climate zonation by various disciplines, such as climate research, physical 

geography, hydrology, agriculture, biology, and education (Bayar et al., 2023; 

Kottek et al., 2006). It utilizes the temperature and precipitation datasets to define 

the limits of the climatic zones (Kottek et al., 2006). 

 

The goal of this study is to independently assess and compare the GPCC and GPCP 

precipitation products by utilizing the GRACE and GRACE-FO dataset (e.g., G3P, 

which is spherical harmonics, and JPL mascon, which is mascon solutions) in 
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perspective of evaluating drought characteristic. The evaluation of precipitation 

products using TWS products as an independent variable has not yet been conducted. 

The current study evaluates the applicability of the GPCC and GPCP precipitation 

products for global hydrological applications. The evaluation covers different 

climate zones, as described by the Köppen-Geiger classification. The evaluation was 

conducted by estimating DRT based on TWSA and needed precipitation amount. 

The comparative analysis in this study allows for a basis for comprehending the 

connection between hydrological drought and global precipitation products through 

DRT estimates. 
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CHAPTER 2  

2 DATASET AND METHODOLOGY 

The flow chart of this thesis are shown in Figure 2.1. First, the dTWSA and cdPA 

parameters were calculated to estimate DRT values. The calculation of dTWSA is 

explained in Section 2.3, while the calculation of cdPA is explained in Section 2.4. 

Then, the DRT values is calculated based on storage deficit method, described in 

Section 2.6.1. Also, the DRT values is calculated based on required precipitation 

amount method, described in Section 2.6.2. Then, the consistency of the DRT 

estimation methods is calculated, described in Section 2.7.1. Finally, the DRT 

estimations and consistency in DRT estimations presented for Köppen-Geiger 

Climate Classification, described in Section  2.8. Additionally, the effect of the area 

of the pixel is investigated for parameters (dTWSA and cdPA) and DRT estimations, 

described in Section 2.9. 

 

Figure 2.1. Flow chart of this thesis 
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2.1 Dataset 

In this study, two distinct precipitation datasets (GPCC and GPCP) and two different 

TWS datasets (G3P and JPL mascon) were utilized. Detailed information regarding 

these datasets is provided in Table 2.1. 

Table 2.1. Detailed information regarding the precipitation and TWS datasets 

Type Name Spatial 

Resolution 

Temporal 

Resolution 

Spatial 

Coverage 

Temporal 

Coverage 

Precipitation GPCC 0.5° Monthly 90° N/S 1981-2020 

Precipitation GPCP 0.5° Monthly 90° N/S 1979-present 

TWS G3P 0.5° Monthly 90° N/S 2002-2020 

TWS JPL mascon 0.5° Monthly 90° N/S 2002-present 

2.1.1 GPCC and GPCP Precipitation 

Although most precipitation products do not provide long-term global coverage for 

latitudes up to 90° N/S, GPCC and GPCP offer precipitation data for high latitudes. 

The GPCC was established by the World Meteorological Organization (WMO) in 

1989 and combines monthly precipitation data over land from global 

telecommunication systems (GTS), synoptic weather reports (SYNOP), and monthly 

climate reports (CLIMAT). Various precipitation products with different 

spatiotemporal resolutions, including the Full Data Monthly Product (GPCC FDM), 

the Monitoring Product, and the First Guess Monthly Product, are provided by 

GPCC. Among these products, the GPCC FDM v2022 (Schneider et al., 2022) is 

suitable for water cycle studies (Schneider et al., 2014). For these reasons, it was 

utilized to investigate the relationship between precipitation and TWS for further 

analyses in this thesis. Monthly precipitation data with 0.5° spatial resolution is 

available from 1891 to 2020 for GPCC FDM product. It can be downloaded from 

the Deutscher Wetterdienst (German Meteorological Service) website 

(https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-

https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2022_doi_download.html
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monthly_v2022_doi_download.html). The spatial distribution of the mean 

precipitation dataset obtained from GPCC was illustrated in Figure 2.2.  

 

Figure 2.2. The spatial distribution of the temporal mean GPCC precipitation dataset 

from 2002 to 2020 

The GPCP was managed by the World Climate Research Program (WCRP) under 

the Global Water and Energy Experiment (GEWEX) Data and Assessment Panel 

(GDAP) and blends gauge observation and satellite precipitation data to set up global 

precipitation estimates. The latest version of the GPCP precipitation product, GPCP 

v3.2 Satellite-Gauge (SG) Combined Data (Huffman et al., 2023), was used in this 

thesis. The GPCP v3.2 dataset provides monthly precipitation data with 0.5 spatial 

resolution from 1979 to the present. The spatial distribution of the mean precipitation 

dataset obtained from GPCC is illustrated in Figure 2.3. It is available from the 

Goddard Earth Sciences Data and Information Services Center 

(https://disc.gsfc.nasa.gov/datasets/GPCPMON_3.2/summary). Moreover, the time 

series of the mean precipitation dataset obtained from GPCC and GPCP are given in 

Figure 2.4. 

https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2022_doi_download.html
https://disc.gsfc.nasa.gov/datasets/GPCPMON_3.2/summary
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Figure 2.3. The spatial distribution of the temporal mean GPCP precipitation dataset 

from 2002 to 2020 

 

Figure 2.4. The time series of the global mean monthly precipitation dataset obtained 

from GPCC and GPCP 
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2.1.2 GRACE and GRACE TWS 

GRACE and GRACE-FO measure the change in terrestrial water storage (TWS) by 

Earth's gravity field variations. The TWS data is available from GRACE and 

GRACE-FO spherical harmonics and mascon solutions. TWS anomalies are 

composed of the sum of the anomalies in snow, ice, surface water, soil moisture, and 

groundwater (Eq 2.1). In this study, the GRACE and GRACE-FO Level 3 products 

of G3P (spherical harmonics, Güntner et al., 2023) and JPL Release 6 (mascon, 

Watkins et al., 2015; Wiese et al., 2023) TWS products were utilized to estimate 

water storage deficit and examine the relationship between precipitation and TWS 

changes. The Level 3 products include all correction of the geophysical, smoothing 

and filtering the gravity field, and provide ready-to-use data as mass anomalies of 

water. Negative changes show mass losses, while positive changes show an increase 

in mass amount. Thus, it aids in our observation of the water flows and their temporal 

variations. 

∆𝑇𝑊𝑆 = ∆𝐺𝑊 −  ∆𝑆𝑀 − ∆𝐶𝑊𝐶 −  ∆𝑆𝑊𝐸 (2. 1) 

where ∆𝑇𝑊𝑆 is the change in total water storage, ∆𝐺𝑊 is the change in groundwater 

storage, ∆𝑆𝑀 is the change in soil moisture content in soil layers, ∆𝑆𝑊𝐸 is the 

change in snow depth water equivalent, and ∆𝐶𝑊𝐶 is the change in canopy surface 

water storage. 

The G3P dataset provides a monthly TWS dataset at a higher spatial resolution (0.5°) 

than the other spherical harmonic solutions (1.0°) from April 2002 to December 

2020. The G3P TWS dataset (Güntner et al., 2023) is available from the GFZ 

Information System and Data Center (ftp://isdcftp.gfz-potsdam.de). 

The monthly JPL mascon (from now on abbreviated as JPL) TWS dataset spans from 

April 2002 to the present at a spatial resolution of 0.5°, like G3P. The JPL TWS data 

(Watkins et al., 2015; Wiese et al., 2023) is acquired from the Virtual Directories of 

Earth Data CMR (https://cmr.earthdata.nasa.gov/virtual-

directory/collections/C2536962485-POCLOUD/temporal/2002/04/16). The time 

https://cmr.earthdata.nasa.gov/virtual-directory/collections/C2536962485-POCLOUD/temporal/2002/04/16
https://cmr.earthdata.nasa.gov/virtual-directory/collections/C2536962485-POCLOUD/temporal/2002/04/16
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series of the mean TWSA dataset obtained from G3P and JPL are demonstrated in 

Figure 2.5. 

Because of the satellite battery issues, both G3P and JPL TWS datasets have missing 

monthly data, especially after 2011. The missing monthly data in the time series were 

filled with the average of previous and subsequent two months, an average of four 

months (Andrew et al., 2017; Long et al., 2015). Except for the missing data due to 

the satellite battery problems, a time gap between the GRACE and GRACE-FO 

missions is missing, spanning from July 2017 (the end of the GRACE mission) to 

May 2018 (the launch of the GRACE-FO mission). This time gap has been left 

missing. 

 

Figure 2.5. The time series of the global mean monthly TWSA dataset obtained from 

G3P and JPL 

Both G3P and JPL have a baseline to calculate the anomalies. G3P TWS dataset 

represents anomalies relative to a long-term mean from April 2002 to December 

2020. In contrast, the JPL TWS dataset utilizes a long-term mean from January 2004 

to December 2009 as the baseline. The differences in TWSA time series, especially 
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after 2010 (Figure 2.4), could arises from the baseline difference between TWSA 

products. 

The baseline of the JPL TWSA should be matched with that of G3P TWSA to 

maintain consistency in the time series comparisons. (Humphrey et al., 2023; 

Monthly Mass Grids - Global Mascons (JPL RL06.1_v03) | Data Portal – GRACE 

Tellus, n.d.). Thus, the baseline of the JPL TWSA was changed from 2004-2009 to 

2002-2020 in this study. First, the average for each grid point from April 2002 to 

December 2020 is calculated to align the baseline of the JPL TWSA (Eq. 2.2). 

𝑟𝑒𝑓(𝑇𝑊𝑆𝐴)𝑥,𝑦 =
1

𝑡𝑜𝑡𝑎𝑙 𝑚𝑜𝑛𝑡ℎ
∑ 𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚𝑏

𝑡𝑜𝑡𝑎𝑙 𝑚𝑜𝑛𝑡ℎ

𝑚𝑏=1

 (2. 2) 

where 𝑟𝑒𝑓(𝑇𝑊𝑆𝐴)𝑥,𝑦 is the reference value of TWSA, x and y refer to the horizontal 

and vertical grid locations over the study area, 𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚𝑏 is the TWSA value, mb 

refers to the month since beginning of the analysis, and 𝑡𝑜𝑡𝑎𝑙 𝑚𝑜𝑛𝑡ℎ is the total 

numbers of month in the analyses. Then, reference value is subtracted from each 

TWSA in the datasets to calculate the TWSA value according to the new baseline 

(𝑏(𝑇𝑊𝑆𝐴)) as follows: 

𝑏(𝑇𝑊𝑆𝐴)𝑥,𝑦,𝑚𝑏 = 𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚𝑏 − 𝑟𝑒𝑓(𝑇𝑊𝑆𝐴)𝑥,𝑦 (2. 3) 

2.2 Water Balance Equation 

The water balance equation establishes a close relationship between TWS 

fluctuations and precipitation. 

𝑑𝑠/𝑑𝑡 = 𝑃 − 𝐸𝑇 − 𝑅 (2. 4) 

where 𝑑𝑠/𝑑𝑡 is the storage change over time, which is TWSA in this study, 𝑃 is 

precipitation, 𝐸𝑇 is evapotranspiration, and 𝑅 is streamflow, contains both surface 

and subsurface water. These values are expressed in millimeters of equivalent water 

height per month (mm/month). 
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Any change in storage over time (𝑑𝑠/𝑑𝑡) must be driven by water fluxes. These 

fluxes can be vertical, such as 𝑃 or 𝐸𝑇, occurring between the surface and the 

atmosphere. Alternatively, they can be horizontal, occurring at or below the Earth's 

surface, and are collectively referred to as 𝑅. Gravity missions directly observe 

TWSA relative to a long-term mean value. Thus, these observations can provide 

insights into water fluxes across various timescales.  

In this thesis, the relationship between the combined ET + R fluxes and precipitation 

is assumed to be linear and stationary (Singh et al., 2021). Following this assumption, 

the possible variations in precipitation can be deduced by using the changes in 

TWSA. By comparing two storage measurements taken 30 days apart, the typical 

interval for GRACE solutions, quantitative information about the precipitation 

occurring during this time period can be derived. 

2.3 Deviation of Storage (dTWSA) 

Determining the timescales for drought recovery requires an understanding of the 

extent of water deficiencies. The variability in TWSA data can be used to infer these 

water deficiencies directly (Thomas et al., 2014). Long-term processes like 

groundwater extraction and/or glacier mass accumulation can affect variations in 

water storage. The TWSA data were detrended for each grid in order to reduce the 

influence of the long-term factors in this study. Eliminating the linear trend isolates 

the deviations from the long-term trend. These deviations are referred to as 

deviations of storage (dTWSA, Singh et al., 2021). The deviations represent the 

anomalies.  

𝑑𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚𝑏 = 𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚𝑏 − 𝑡𝑟𝑒𝑛𝑑(𝑇𝑊𝑆𝐴)𝑥,𝑦 (2. 5) 

where 𝑑𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚𝑏 is the deviation of storage, x and y refers to the horizontal and 

vertical grid locations over the study area, mb refers to the month since beginning of 

the analysis, 𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚𝑏 is the TWSA value, and 𝑡𝑟𝑒𝑛𝑑(𝑇𝑊𝑆𝐴)𝑥,𝑦 is the linear 

trend of the TWSA, all given in mm equivalent water height per month (mm/month). 
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2.4 Cumulative Detrended Precipitation Anomaly (cdPA) 

The precipitation anomalies (PA) were calculated by subtracting the temporal mean 

precipitation of the grid for the period between April 2002 and December 2020 (the 

reference period) from the precipitation. 

𝑃𝐴𝑥,𝑦,𝑚𝑏 = 𝑃𝑥,𝑦,𝑚𝑏 − 𝑃𝑥,𝑦 (2. 6) 

where 𝑃𝐴𝑥,𝑦,𝑚𝑏is the precipitation anomaly value, x and y refer to the horizontal and 

vertical grid locations over the study area, mb refers to the month since beginning of 

the analysis, 𝑃𝑥,𝑦,𝑚𝑏 is the precipitation value and 𝑃𝑥,𝑦 is the temporal mean 

precipitation value. To ensure compatibility between the precipitation data and 

TWSA, a temporal integration of the precipitation anomaly data is performed in this 

study, resulting in cumulative precipitation (cPA) data.  

𝑐𝑃𝐴𝑥,𝑦,𝑚𝑏 = 𝑃𝐴𝑥,𝑦𝑚𝑏 + 𝑐𝑃𝐴𝑥,𝑦,𝑚𝑏−1 (2. 7) 

where 𝑐𝑃𝐴𝑥,𝑦,𝑚𝑏 is the cumulative precipitation anomaly value, x and y refer to the 

horizontal and vertical grid locations over the study area, mb refers to the month 

since beginning of the analysis. In this thesis, the cumulative precipitation anomalies 

(cPA) were smoothed using a 3-month moving average filter, applied with the filter 

function from the stats package in R, resulting in smoothed cumulative precipitation 

anomalies (scPA). (Singh et al., 2021). This procedure effectively reduced noise and 

short-term variations in the cPA. The scPA were then detrended to separate short-

term fluctuations from long-term trends, resulting in the cumulative detrended 

precipitation anomalies (cdPA). This additional step reduced the long-term effects 

in precipitation patterns. 

𝑐𝑑𝑃𝐴𝑥,𝑦,𝑚𝑏 = 𝑠𝑐𝑃𝐴𝑥,𝑦,𝑚𝑏 − 𝑡𝑟𝑒𝑛𝑑(𝑠𝑐𝑃𝐴)𝑥,𝑦 (2. 8) 

where 𝑐𝑑𝑃𝐴𝑥,𝑦,𝑚𝑏 is the cumulative detrended precipitation anomaly value, x and y 

refer to the horizontal and vertical grid locations over the study area, mb refers to the 

month since beginning of the analysis, 𝑠𝑐𝑃𝐴𝑥,𝑦,𝑡 is the smoothed cumulative 
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precipitation anomaly value 𝑡𝑟𝑒𝑛𝑑(𝑠𝑐𝑃𝐴)𝑥,𝑦 is the trend of the smoothed 

cumulative precipitation anomaly, all given in mm equivalent water height per month 

(mm/month). 

2.5 Relationship between cdPA and dTWSA 

The amount of precipitation required to balance a water storage deficit can be 

estimated using the water balance equation, with the assumption of stationary and 

linear relationship between ET+R flux and precipitation. By establishing a direct 

connection between changes in TWSA and precipitation dynamics, this method 

provides an invaluable tool for comprehending water resources management. To 

estimate the amount of precipitation needed based on water deficiency, a linear 

relationship between cdPA and dTWSA was constructed as follows: 

𝑐𝑑𝑃𝐴𝑥,𝑦,𝑚𝑏 = 𝛽0𝑥,𝑦
+ 𝛽1𝑥,𝑦

∗ 𝑑𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚𝑏 + 𝜀 (2. 9) 

where 𝛽0𝑥,𝑦
 is the intercept, x and y refer to the horizontal and vertical grid locations 

over the study area, 𝛽1𝑥,𝑦
 is the slope, and ε represents the residual errors of the fit. 

The cdPA and dTWSA are both in mm/month. 

Given that cdPA and dTWSA are measured in the same units, a β1 value of 1 

indicates that cdPA is equal to dTWSA and variations in precipitation is same as the 

differences in storage. In contrast, a β1 value greater than 1 suggests that a portion 

of local precipitation is immediately lost through processes like evapotranspiration 

(ET) and runoff (R), without contributing to local storage. This implies that the 

decrease in precipitation amount can be attributed to other hydrological processes 

(e.g., ET and R) and is only partially reflected in the variability of storage data in 

these regions. Regions where β1 is less than 1 imply that the storage deficit can be 

addressed with less precipitation than is actually required. In other words, there needs 

to be either further input from outside that coincides with local rain events, which 

would cause an underestimation of the amount of precipitation needed based only on 

storage fluctuations (Singh et al., 2021). 
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Based on the research conducted by Singh et al. (2021), we have computed the 

correlation coefficient (ρx,y) between cdPA and dTWSA and the maximum drought 

length for each pixel (globe, spatial resolution of 0.5°, 259200 pixels) using 19 years 

of monthly data (i.e., from 2002 to 2020), in addition to regression analyses (i.e., β0 

and β1). In this case, a positive correlation between cdPA and dTWSA is anticipated, 

meaning that increases (decreases) in storage changes should result from positive 

(negative) precipitation anomalies. If storage change increases (decreases) in the 

presence of a negative (positive) precipitation anomaly, this indicates a weak or no 

linear relationship between cdPA and dTWSA. Correspondingly, in the study of 

Singh et al. (2021), regions with a weak or no linear association between the two 

variables (i.e., ρ < 0, β1 < 1, and maximum drought period < 5 months) were removed 

from the global analyses since these regions were considered as being unsuitable for 

the further analysis. A considerable linear relationship may still exist in some pixels 

with β1 values slightly less than 1, although sampling mistakes may result in 

fluctuations around 1, and random variability may also lead some pixels to exhibit 

marginal differences. Therefore, while Singh et al. (2021) masked out regions where 

β1 was less than 1, this thesis applies a t-test for statistical significance to determine 

the threshold for β1. The lm function in R was used to calculate p-value, which shows 

the significance threshold of β1 values. Figure A1 illustrates the spatial distributions 

of the p-values of the β1 for each TWS-precipitation product. The insignificant β1 

values (p-value>0.05) were excluded in this thesis along with regions with maximum 

drought length < 5 months. The masked-out criteria used to classify regions based 

on their suitability for further analysis are listed in Table 2.2. 
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Table 2.2. Masked-out Criteria used in the present study 

Criteria 

Number 
Criteria in this study Singh et al. (2021) 

1 - ρ < 0 

2 p-value of β1 > 0.05 β1 < 1 

3 
maximum drought length < 5 

months 

maximum drought length < 5 

months 

2.6 DRT Estimations 

TWSA datasets from G3P and JPL and precipitation datasets from GPCC and GPCC 

will be utilized in DRT estimations. We quantify DRT using two different estimation 

methods, closely adhering to the methodology provided by Singh et al. (2021), 

described in Section 2.10. Using solely on GRACE and GRACE-FO TWSA dataset, 

the first approach, relied on storage deficit, estimates DRT as the length of TWSA 

residuals from its climatology. The second approach uses the required precipitation 

amount, which is determined by combining the precipitation and TWSA datasets. 

According to this method, a drought is assumed to end when the absolute required 

precipitation amount (Section 2.6.2) exceeds the precipitation observations. Thus, 

the precipitation (GPCC and GPCP) and the TWSA (G3P and JPL) products and two 

DRT estimation methods (storage deficit and required precipitation amount) will be 

utilized in further analyses for various climate zones as defined by the Köppen-

Geiger climate classification. The details of the DRT estimations are explained in 

Table 2.3. Precipitation products (GPCC and GPCP) are used in DRT-1, DRT-2, 

DRT-3, and DRT-4 for excluding regions, with exclusion criteria provided in Table 

2.2. 
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Table 2.3. The details of the DRT estimations 

Estimation 

No. 

TWSA 

Product 

Precipitation Product Estimation Method 

DRT-1 G3P - / GPCP (excluding regions) Storage Deficit 

DRT-2 G3P - / GPCC (excluding regions) Storage Deficit 

DRT-3 JPL - / GPCP (excluding regions) Storage Deficit 

DRT-4 JPL - / GPCC (excluding regions) Storage Deficit 

DRT-5 G3P GPCP Required Precipitation 

Amount 

DRT-6 G3P GPCC Required Precipitation 

Amount 

DRT-7 JPL GPCP Required Precipitation 

Amount 

DRT-8 JPL GPCC Required Precipitation 

Amount 

2.6.1 DRT Estimation based on Storage Deficit 

Drought features can be better understood by examining how TWSA deviates from 

its climatology. A reference point by averaging the TWSA values for each month 

over the course of the time series is established in order to compute this deviation. 

For instance, a reference point for February would be calculated by the average of 

all February TWSA values in the dataset. The climatology for that particular month 

was reflected by this average monthly TWSA. 

𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚 =
1

𝑡𝑜𝑡𝑎𝑙 𝑦𝑒𝑎𝑟
∑ 𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚,𝑦𝑦

𝑡𝑜𝑡𝑎𝑙 𝑦𝑒𝑎𝑟

𝑦𝑦=1

(2. 10) 

where 𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚 is the mean TWSA value, x and y refer to the horizontal and 

vertical grid locations over the study area, m refers the month, 𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚,𝑦𝑦 is the 
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TWSA, yy refers to the year, and 𝑡𝑜𝑡𝑎𝑙 𝑦𝑒𝑎𝑟 is the total number of year of the 

datasets. Then, the corresponding monthly climatology value was subtracted from 

each TWSA data point to determine the deviation of each TWSA data point from the 

climatology, resulting in residuals. 

𝑑𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚,𝑦𝑦 = 𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚,𝑦𝑦 − 𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚 (2. 11) 

where 𝑑𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚,𝑦𝑦 is the deviation of the TWSA value x and y refer to the 

horizontal and vertical grid locations over the study area, m refers to the month, and 

yy refers to the year. 

Deficits in water storage are indicated by negative residuals of TWSA from its 

climatology (Thomas et al., 2014). Long-term below-average water storage periods 

were identified as drought occurrences when persistent negative residuals persisted 

for more than three consecutive months (Singh et al., 2021). If these periods lasted 

less than three consecutive months, the negative residuals were not considered a 

drought (Singh et al., 2021). However, if a new phase of negative residuals began 

within a month after a prior drought recovery, it was regarded as a continuation of 

the same drought (Singh et al., 2021). This approach ensured a consistent record of 

drought events over time, allowing to create a comprehensive inventory of drought 

recovery periods for each grid point. DRT estimations were derived from the storage 

deficit method. This method examined the duration of negative residuals (indicating 

lower-than-usual storage values) of dTWSA at each grid and time, providing insights 

into the patterns and severity of drought occurrences over time (Detailed information 

about the differences in between this thesis and Singh et al. (2021) are given in 

Section 2.10). 

2.6.2 DRT Estimation based on Required Precipitation Amount 

Drought characteristics are also investigated by observing precipitation amount. The 

cdPA can be used to analyze each grid's drought characteristics. For this purpose, the 

second method, DRT estimation based on the required precipitation amount, is 
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employed for this purpose. The linear relationship between dTWSA and cdPA (Eq. 

2-9) yields the required precipitation amount to fill the storage deficit. The cdPA 

terms gives the required precipitation amount, while dTWSA is the storage 

deficiency. The climatology of precipitation was used to calculate the absolute 

required precipitation amount in this study. A reference point by averaging the 

precipitation values for each month throughout the time series is established in order 

to compute the absolute required precipitation amount from both precipitation 

products (GPCC and GPCP) using the time series from April 2002 to December 

2020. For instance, a reference point for February was calculated by the average of 

all February precipitation values in the dataset. The climatology for that particular 

month was reflected by this average monthly precipitation. 

𝑃𝑥,𝑦,𝑚 =
1

𝑡𝑜𝑡𝑎𝑙 𝑦𝑒𝑎𝑟
∑ 𝑃𝑥,𝑦,𝑚,𝑦𝑦

𝑡𝑜𝑡𝑎𝑙 𝑦𝑒𝑎𝑟

𝑦𝑦=1

(2. 12) 

where 𝑃𝑥,𝑦,𝑚 is the mean P value, x and y refer to the horizontal and vertical grid 

locations over the study area, m refers to the month, 𝑃𝑥,𝑦,𝑚,𝑦𝑦 is the P value, yy refers 

to the year, and 𝑡𝑜𝑡𝑎𝑙 𝑦𝑒𝑎𝑟 is the total number of year in the datasets. Then, the 

corresponding monthly climatology value was added to the estimated required 

precipitation amount, obtained from the linear relationship between cdPA and 

dTWSA, to calculate the absolute required precipitation amount for each grid. 

where 𝑑𝑇𝑊𝑆𝐴𝑥,𝑦,𝑚,𝑦𝑦 is the deviation of the TWSA value x and y refer to the 

horizontal and vertical grid locations over the study area, m refers to the month, and 

yy refers to the year. 

𝐴𝑅𝑃𝐴𝑥,𝑦,𝑚,𝑦𝑦 = 𝐸𝑅𝑃𝐴𝑥,𝑦,𝑚,𝑦𝑦 + 𝑃𝑥,𝑦,𝑚 (2. 13) 

where 𝐴𝑅𝑃𝐴𝑥,𝑦,𝑚,𝑦𝑦 is the absolute required precipitation amount, x and y refer to 

the horizontal and vertical grid locations over the study area, m refers to the month, 

and yy refers to the year, and 𝐸𝑅𝑃𝐴𝑥,𝑦,𝑚,𝑦𝑦 is the estimated required precipitation 

amount. The duration over which the observed precipitation amount surpassed the 
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absolute required precipitation amount for any given time and location was analyzed 

to estimate DRT (Singh et al., 2021). This method allows for an extensive evaluation 

of DRT dynamics across various locations and periods. 

2.7 Accuracy Analysis 

2.7.1 Consistency in DRT Estimations 

By analyzing the differences in the timing acquired from both approaches, the 

consistency (degree of agreement) between the two DRT estimations was measured. 

Here, the consistency was defined as the absolute time difference between the two 

DRT estimation methods, as illustrated in Table 2.4. For instance, the region was 

classified as consistent category 1 if the absolute time difference between the two 

approaches was within two months. In contrast, if the absolute time difference 

between the two methods was more than nine months, the region was classified as 

consistency category 4 (i.e., very poor consistency). The consistency between the 

two methods was measured by comparing the absolute differences between the DRT 

estimates for each TWS-precipitation product. With this investigation, the 

dependability and robustness of the DRT estimations are better understood. 

Essentially, it assisted us in determining the degree to which the two approaches 

converged on comparable DRT values for the same areas. In general, DRT 

estimation values cannot be directly validated via ground observations, these drought 

related characteristics are only estimated utilizing ancillary observations like 

precipitation and TWS. Accordingly, in the absence of direct validation, consistency 

between different and independent methodologies may imply the real skill of these 

methodologies in estimation of DRT. 
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Table 2.4. Consistency Categories in DRT Estimations 

Consistency category Time difference (months) 

1 (very good consistency) 1-2 

2 (good consistency) 3-4 

3 (poor consistency) 5-8 

4 (very poor consistency 9+ 

2.7.2 Calculated Statistics 

The degree of uncertainty related to the means of the datasets were measured by 

using standard deviation (SD) and standard error (SE). A lower SE value, which is 

frequently attained with less fluctuation in the data, denotes a more accurate estimate 

of the mean DRT across each pixel (Lee et al., 2015). For every pixel and climate 

zone, respectively, the values of SD and SE were computed individually using the 

following formulas: 

𝑆𝐷𝑥,𝑦 = √
1

𝑛𝑥,𝑦
 ∑(𝐷𝑅𝑇𝑥,𝑦,𝑖 − 𝜇𝑥,𝑦)2

𝑛𝑥,𝑦

𝑖=1

(2. 14) 

where 𝐷𝑅𝑇𝑥,𝑦,𝑖 is the 𝑖-th DRT value in the dataset, x and y refer to the horizontal 

and vertical grid locations over the study area, 𝜇𝑥,𝑦 is the mean DRT, and 𝑛𝑥,𝑦 is the 

number of the DRT values. 

𝑆𝐸𝑥,𝑦 =
𝑆𝐷𝑥,𝑦

√𝑛𝑥,𝑦

 (2. 15) 

where SDx,y is the standard deviation of DRT, x and y refer to the horizontal and 

vertical grid locations over the study area, and 𝑛𝑥,𝑦 is the number of the DRT values. 

To evaluate the degree of uncertainty surrounding the mean values of the datasets, 

confidence intervals (CIs) are utilized in addition to SD and SE (Altman & Bland, 

2005; Curran-Everett, 2008; Lee et al., 2015). With a certain degree of confidence 
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(in this study, 95%) CIs offer a range of values that are likely to contain the true 

population mean as follows: 

𝐶𝐼𝑥,𝑦 =  𝜇𝑥,𝑦 ∓ 𝑍 ∗ 𝑆𝐸𝑥,𝑦 (2. 16) 

where µx,y is the mean DRT, x and y refer to the horizontal and vertical grid locations 

over the study area, and SE is the standard error of DRT. Here, a normal distribution 

assumption is made with the selection Z = 1.96. However, the sensitivity of the 

results for this assumption and alternative t-distribution scenario results are not 

investigated in this thesis study. Overall, this normal distribution assumption would 

underestimate the uncertainty of mean DRT. 

2.8 Köppen-Geiger Climate Classification 

In this study, the Köppen-Geiger Climate Classification dataset was prepared by 

Rubel et al. (2017) and covers the years 1986–2010 at a spatial resolution of 0.083°. 

There exist 5 main climate zones and 31 subtypes included in the Köppen-Geiger 

Climate Classification was prepared by Rubel et al. (2017). Figure 2.6 illustrates the 

31 subtypes, while Figure 2.7 depicts the 5 main climate zones. In this study, the 

Köppen-Geiger climate classification dataset (spatial resolution of 0.083°) was 

regridded to be consistent with TWS and precipitation data used in this study (spatial 

resolution of 0.5°) by utilizing bilinear interpolation. This thesis concentrated on the 

five main Köppen-Geiger climate categories, which are equatorial, arid, warm 

temperate, snow, and polar, as depicted in Figure 2.7. The Köppen-Geiger Climate 

Classification dataset utilized in the present study is acquired from https://koeppen-

geiger.vu-wien.ac.at/present.htm. The detailed information for the subzones of 

Köppen-Geiger climate classification is shown in Table 2.5. 

https://koeppen-geiger.vu-wien.ac.at/present.htm
https://koeppen-geiger.vu-wien.ac.at/present.htm
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Figure 2.6. Köppen-Geiger Climate Classification (Rubel et al., 2017) 

Table 2.5. Detailed Information for the Subzones of Köppen-Geiger Climate 

Classification (Rubel et al., 2017) 

Main Climates Precipitation Temperature 

A: equatorial W: desert h: hot arid 

B: arid S: steppe k: cold arid 

C: warm temperate f: fully humid a: hot summer 

D: snow s: summer dry b: warm summer 

E: polar w: winter dry c: cool summer 

 m: moonsoonal d: extremely continental 

  F: polar frost 

  T: polar tundrta 
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Figure 2.7. Köppen-Geiger Climate Classification (A, Equatorial; B, Arid; C, Warm 

temperate; D, Snow; and E, Polar Climate Zones) (Rubel et al., 2017) 

2.9 Pixel Size Effect 

This study utilized the gridded TWSA and precipitation datasets to estimate the mean 

DRT. The pixel sizes are constant across the datasets; however, the pixel sizes 

become smaller when moving from the equator to the poles. Area weights were 

calculated based on the area of the pixels and are shown in Figure 2.8. These area 

weights were used in the analysis to investigate whether the pixel size effect impacts 

the results. Here, the area weights are calculated by taking the ratio of the area of any 

pixel on the globe against the area of a pixel over equator. This implies the area 

weights would be near 1 around equator and near 0 around poles. 
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Figure 2.8. Area Weights of the Pixels 

2.10 Difference from Previous Study 

This study follows the methodology of Singh et al. (2021), but with some differences. 

Singh et al. (2021) used one TWSA dataset (JPL mascon) and one precipitation 

dataset (GPCP), while this study utilizes two TWSA datasets (G3P and JPL mascon) 

and two precipitation datasets (GPCC and GPCP). The spatial resolution of the JPL 

mascon, used by Singh et al. (2021), is 0.5°, which is the same resolution as the 

TWSA products used in this study. However, Singh et al. (2021) used the GPCP 

precipitation product with a spatial resolution of 2.5°, which was regridded using 

bilinear interpolation. In contrast, this study uses the updated GPCP precipitation 

product with a spatial resolution of 0.5°, and the GPCC product also has a spatial 

resolution of 0.5°. Thus, both datasets in this study have the same spatial resolution. 

To calculate the cdPA in Singh et al. (2021), the precipitation anomaly was first 

obtained, then smoothed using a 3-month moving average, and the linear trend was 

removed. Finally, the detrended data was integrated over time to obtain the cdPA. 

Conversely, in this study, the precipitation data was first integrated over time to 

obtain cumulative precipitation data. The cumulative precipitation anomaly data was 

then derived, smoothed using a 3-month moving average, and the linear trend was 
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removed to obtain the cdPA. The calculation procedure for this thesis was revised to 

first convert the units of the precipitation dataset into storage units. This change 

ensures consistency between precipitation and storage data, enabling a more similar 

process like GRACE. 

Also, the exclusion criteria for β1 in this study differ from those in the study of Singh 

et al. (2021). While Singh et al. (2021) excluded pixels if β1 was less than 1, this 

study excludes pixels have insignificant β1 values. 

Singh et al. (2021) provided results for one global drought event in January 2016, 

whereas this study offers mean DRT estimations from different coupled products 

across five Köppen-Geiger climate zones and globally. 
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CHAPTER 3  

3 RESULTS 

3.1 Relationship between cdPA and dTWSA 

Figure 3.1a shows the spatial distribution of correlation coefficients between 

dTWSA and cdPA for a selected data combination of dTWSA from G3P and cdPA 

from GPCP (hereafter referred to as G3P&GPCP). Since the G3P&GPCP coupled 

product has the highest global average correlation coefficient (0.31), the coupled 

product was chosen to display the actual values in the following figures. The 

correlation coefficients of the other coupled products are presented in Table 3.1. 

Additionally, the impact of pixel size was examined to understand how the 

correlation coefficient changes from the equator to the poles (Table 3.1). Our 

findings indicate that pixel sizes did not significantly affect the correlation 

coefficients, as the difference in the mean correlation coefficient whether or not the 

pixel size effect was considered, is 0.05. High correlations were observed over 

Australia (0.55), South America (0.46) and south Africa (ρ>0.47), regions with 

significant fluctuations in water storage (See Appendix B) and dense in situ 

observation networks (Figure C1). Compared to the other areas (~10% of grids in 

the non-polar regions), polar regions (~70% of grids in the polar regions) had higher 

negative correlations, where the reduction in water storage occurs both during and 

after the melting season without any direct association with the incoming 

precipitation. From October/November onwards, temperatures are usually below 

0°C and any precipitation accumulates on the surface as the snowpack. From 

March/April onwards, temperatures are sufficiently high again that melting can 

occur at larger scales so that the TWS starts to drop again. Melting therefore results 

in lateral surface discharge of water and thereby a reduction of TWS. Similar 

negative correlations were observed in Central Asia and Northern Africa's arid 
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regions, where water storage fluctuations are low (See Appendix B), and GRACE 

measurements are most likely driven by measurement noise. The overall 

measurement accuracy of GRACE (or GRACE measurement accuracy for short) 

slightly varies with latitude due to its polar orbit, resulting in more observations per 

unit area at the poles than at the equator each month. Additionally, there is a minor 

dependency on coastal proximity, as aliasing artifacts tend to be more pronounced 

near the sea compared to inland regions. Consequently, the relative accuracy of 

GRACE is primarily influenced by signal magnitudes: in regions with large signals 

(such as the Amazon), the signal-to-noise ratio (SNR) exceeds 1, allowing 

TWSvariations to be accurately observed. In contrast, in areas with smaller signals 

(such as deserts), the SNR is less than 1, meaning the GRACE data is predominantly 

noise. 

Table 3.1. The Correlation Coefficients of Coupled Products with and without 

Pixel Size Effect 

Coupled Product 
Mean ρ without Pixel 

Size Effect 

Mean ρ with Pixel 

Size Effect 

G3P&GPCP 0.31 0.36 

G3P&GPCC 0.28 0.34 

JPL&GPCP 0.30 0.36 

JPL&GPCC 0.28 0.34 

 

Furthermore, the spatial distributions of ρ differences for the remaining 

combinations against the findings acquired for G3P&GPCP are illustrated in Figures 

3.1b-d. Differences were observed in arid climate zones when swapping the TWS 

product from G3P to JPL (Figure 3.1c). These regions typically exhibit less 

fluctuations in TWS than non-arid regions, resulting in a low signal-to-noise ratio in 

GRACE and GRACE-FO observations (Figure B6). In such areas, processing 

preferences, such as the spatially variable a priori constraints (Watkins et al., 2015) 

applied in the mascon, have a greater effect. The standard deviation of the differences 

in Figure 3.1c (0.14) is smaller than that of the difference in Figure 3.1d (0.21). Thus, 



 

 

31 

correlations are reduced by the switching of the precipitation product from GPCP to 

GPCC (Figures 3.1c and 3.1d) to a considerably greater extent in more regions, 

especially over locations with less dense in situ networks (Figure C1). Higher 

correlations obtained using GPCP as a precipitation product validate the additional 

value of satellite observations in areas that would otherwise lack data (e.g., the 

Congo Basin in central Africa). Nonetheless, several places where GPCC matches 

GRACE and GRACE-FO more closely than GPCP, indicating that systematic 

deficiencies in satellite data may also deteriorate the TWS-precipitation coupled 

product in some regions. Despite the differences mentioned above, precipitation and 

storage, as measured by satellite gravimetry, have an average correlation of 0.30. 

The significance threshold for the correlation is 0.14, based on the number of 

temporally available TWS data points. Therefore, an average correlation of 0.30 is 

considered both significant and substantial, suggesting that GRACE and GRACE-

FO observations should be utilized more frequently in extensive 

hydrometeorological studies. This calculation includes all pixels, even those with 

negative correlations. Consequently, the average correlations remain above the 

significance threshold, even when pixels with negative correlations are included. 
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Figure Hata! Başvuru kaynağı bulunamadı.a depicts the spatial distributions of β1 

(Eq. 2-8), larger than 0, for G3P&GPCP. The β1 values were below 0 in the particular 

areas of North America, North Africa, and Northeastern Asia. The relationship 

between TWSA and precipitation is less dependable in these regions since factors 

other than precipitation likely affected TWSA values. The majority of regions having 

polar climates (i.e., Köppen-Geiger Climate Zone E) displayed β1 values less than 

zero, suggesting a weak relationship between cdPA and dTWSA in these regions. A 

contrasting pattern was found between the arid zones, which was similar to the 

correlation coefficient analysis. The arid areas of North America (Zone B) exhibited 

a pattern more comparable to the arid regions in Australia. The percentage of 

excluded areas was higher in the arid regions in Africa than in Australia and North 

America. Also, the β1 values were lower in the remaining arid areas of North Africa. 

Furthermore, the mean β1 values of all coupled products are shown in Table 3.2. 

Similar to correlation analysis, the effect of the pixel area was investigated to get an 

idea of how the β1 values change from the equator to the poles. The results, aligned 

with the correlation coefficient analysis, show that the pixel areas do not greatly 

impact the β1 values, as minor differences, less than 6%, exist in the mean β1 values 

whether or not the effect of the pixel areas was considered.  

Table 3.2. The β1 Values of Coupled Products with and without Pixel Size Effect 

Coupled Product 
Mean β1 without Pixel 

Size Effect 

Mean β1 with Pixel 

Size Effect 

G3P&GPCP 1.33 1.44 

G3P&GPCC 1.27 1.38 

JPL&GPCP 1.39 1.43 

JPL&GPCC 1.34 1.39 
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Moreover, the spatial distributions of β1 differences for the remaining combinations 

against the findings acquired for G3P&GPCP are illustrated in Figures Hata! 

Başvuru kaynağı bulunamadı.b-d. When swapping the TWS product from G3P to 

JPL (Figure Hata! Başvuru kaynağı bulunamadı.c), the pixel area-weighted mean 

β1 difference is -0.01. Thus, the β1 values are mostly similar for the mascon solutions 

and for the spherical harmonics. Using the JPL instead of G3P revealed more 

locations with β1 bigger than 3 in the warm temperate climate (Zone E) of Europe. 

Switching the precipitation product from GPCP to GPCC also showed a fairly similar 

effect, that the β1 values were usually smaller for the in-situ observations than for the 

blended precipitation product. Also, JPL&GPCC showed the greatest overall decline 

in β1 values against G3P&GPCP (-0.15). Specifically, in the snow zones of Asia and 

the arid zones of Australia, utilizing GPCP revealed more locations with β1 closer to 

1 than GPCC. This indicates that when utilizing GPCP as opposed to GPCC, there 

may be less need for extra variables to explain the relationship between precipitation 

anomalies and TWS variations in these regions. 

3.2 The cdPA and dTWSA for Each Climate Zone 

3.2.1 Equatorial Zone (A) 

The time series of dTWSA obtained from both TWS products (G3P and JPL) are 

illustrated in Figure 3.3a for an example region in the Equatorial Zone (A) in 

Australia (55.75° W, 5.75° S, Figure Hata! Başvuru kaynağı bulunamadı.a). The 

time series of cdPA obtained from both precipitation products (GPCC and GPCP) 

are illustrated in Figure 3.3b for the same region. The dynamics of water availability 

and precipitation, as well as possible patterns of drought recovery, can be understood 

by using these visualizations to track and examine variations in water storage 

deviations and cdPA over time. The close agreement was found between the time 

series of G3P and JPL, and GPCC and GPCP, as well as between dTWSA and cdPA 

time series (average ρ = 0.80) for this region, as shown in Figure 3.3. The correlation 
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coefficients between all products for the example region in the Equatorial Zone (A) 

are shown in Table 3.3. The regression coefficients between cdPA and dTWSA using 

different precipitation and TWSA products for the example region in the Equatorial 

Zone (A) are presented in Table 3.4. 

 

Figure 3.3. Time series of (a) dTWSA derived from both TWS products (G3P and 

JPL); and (b) cdPA derived from both precipitation products (GPCC and GPCP), 

each in an example region in the Equatorial zone (A) in South America (55.75° W, 

5.75° S). 
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Table 3.3. Correlation Coefficient of All Products for an Example Region in the 

Equatorial Zone (A) in South America (55.75°W 5.75°S) 

 G3P JPL GPCC GPCP 

G3P - 0.98 0.81 0.79 

JPL 0.98 - 0.81 0.77 

GPCC 0.81 0.81 - 0.74 

GPCP 0.79 0.77 0.74 - 

 

Table 3.4. The β1 values for Different Precipitation and TWSA Products for an 

Example Region in the Equatorial Zone (A) in South America (55.75°W 5.75°S) 

Products β1 value 

G3P&GPCP 1.02 

G3P&GPCC 1.17 

JPL&GPCP 0.98 

JPL&GPCC 1.15 

 

Based on the β1 values in Table 3.4, which are around 1 for different products, the 

decrease in precipitation can be directly linked to the storage deficit for the example 

region in the Equatorial Zone (A) in South America (55.75°W, 5.75°S). This 

suggests that changes in precipitation closely correspond to variations in terrestrial 

water storage in this region. 
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3.2.2 Arid Zone (B) 

The time series of dTWSA obtained from both TWS products (G3P and JPL) are 

illustrated in Figure 3.4a for an example region in the Arid Zone (B) in Australia 

(113.75° E, 23.75° S, Figure Hata! Başvuru kaynağı bulunamadı.a). The time 

series of cdPA obtained from both precipitation products (GPCC and GPCP) are 

illustrated in Figure 3.4b for the same region. The dynamics of water availability and 

precipitation, as well as possible patterns of drought recovery, can be understood by 

using these visualizations to track and examine variations in water storage deviations 

and cdPA over time. The close agreement was found between the time series of G3P 

and JPL, and GPCC and GPCP, as well as between dTWSA and cdPA time series 

(average ρ = 0.65) for this region, as shown in Figure 3.4. The correlation coefficients 

between all products for the example region in the Arid Zone (B) are shown in Table 

3.5. The regression coefficients between cdPA and dTWSA using different 

precipitation and TWSA products for the example region in the Arid Zone (B) are 

presented in Table 3.6. 
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Figure 3.4. Time series of (a) dTWSA derived from both TWS products (G3P and 

JPL); and (b) cdPA derived from both precipitation products (GPCC and GPCP), 

each in an example region in the Arid zone (B) in Australia (113.75° E, 23.75° S) 

Table 3.5. Correlation Coefficient of All Products for an Example Region in the 

Arid Zone (B) in Australia (133.75°E 23.75°S) 

 G3P JPL GPCC GPCP 

G3P - 0.88 0.67 0.66 

JPL 0.88 - 0.65 0.60 

GPCC 0.68 0.65 - 0.99 

GPCP 0.66 0.60 0.99 - 
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Table 3.6. The β1 values for Different Precipitation and TWSA Products for an 

Example Region in the Arid Zone (B) in Australia (133.75°E 23.75°S) 

Products β1 value 

G3P&GPCP 3.21 

G3P&GPCC 3.34 

JPL&GPCP 2.53 

JPL&GPCC 2.77 

 

Based on the β1 values in Table 3.6, which are higher than 1 for different products, 

the decrease in precipitation can be attributed to other hydrological processes, such 

as ET and R, for the example region in the Arid Zone (B) in Australia (133.75°E, 

23.75°S). 

3.2.3 Warm Temperate Zone (C) 

The time series of dTWSA obtained from both TWS products (G3P and JPL) are 

illustrated in Figure 3.5a for an example region in the Warm Temperate Zone (C) in 

Europe (5.75° W, 40.75° N). The time series of cdPA obtained from both 

precipitation products (GPCC and GPCP) are illustrated in Figure 3.5b for the same 

region. The dynamics of water availability and precipitation, as well as possible 

patterns of drought recovery, can be understood by using these visualizations to track 

and examine variations in water storage deviations and cdPA over time. The close 

agreement was found between the time series of G3P and JPL, and GPCC and GPCP, 

as well as between dTWSA and cdPA time series (average ρ = 0.69) for this region, 

as shown in Figure 3.5. The correlation coefficients between all products for the 

example region in the Warm Temperate Zone (C) are shown in Table 3.7. The 
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regression coefficients between cdPA and dTWSA using different precipitation and 

TWSA products for the example region in the Warm Temperate Zone (C) are 

presented in Table 3.8. 

 

Figure 3.5. Time series of (a) dTWSA derived from both TWS products (G3P and 

JPL); and (b) cdPA derived from both precipitation products (GPCC and GPCP), 

each in an example region in the Warm Temperate Zone (C) in Europe (5.75° W, 

40.75° S) 

Table 3.7. Correlation Coefficient of All Products for an Example Region in the 

Warm Temperate Zone (C) in Europe (5.75° W, 40.75° S) 

 G3P JPL GPCC GPCP 

G3P - 0.89 0.69 0.66 

JPL 0.89 - 0.72 0.69 

GPCC 0.69 0.72 - 0.98 
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GPCP 0.66 0.69 0.98 - 

Table 3.8. The β1 values for Different Precipitation and TWSA Products for an 

Example Region in the Warm Temperate Zone (C) in Europe (5.75° W, 40.75° S) 

Products β1 value 

G3P&GPCP 3.21 

G3P&GPCC 3.35 

JPL&GPCP 2.53 

JPL&GPCC 2.77 

 

Based on the β1 values in Table 3.8, which are higher than 1 for different products, 

the decrease in precipitation can be attributed to the other hydrological processes, 

such as ET and R, for the example region in the Warm Temperate Zone (C) in Europe 

(5.75° W, 40.75° N). 

3.2.4 Snow Zone (D) 

The time series of dTWSA obtained from both TWS products (G3P and JPL) are 

illustrated in Figure 3.6a for an example region in the Snow Zone (D) in North 

America (90.75° W, 45.75° N, Figure Hata! Başvuru kaynağı bulunamadı.a). The 

time series of cdPA obtained from both precipitation products (GPCC and GPCP) 

are illustrated in Figure 3.6b for the same region. The dynamics of water availability 

and precipitation, as well as possible patterns of drought recovery, can be understood 

by using these visualizations to track and examine variations in water storage 

deviations and cdPA over time. The close agreement was found between the time 

series of G3P and JPL, and GPCC and GPCP, as well as between dTWSA and cdPA 
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time series (average ρ = 0.60) for this region, as shown in Figure 3.6. The correlation 

coefficients between all products for the example region in the Snow Zone (D) are 

shown in Table 3.9 The regression coefficients between cdPA and dTWSA using 

different precipitation and TWSA products for the example region in the Snow Zone 

(D) are presented in Table 3.10. 

 

Figure 3.6. Time series of (a) dTWSA derived from both TWS products (G3P and 

JPL); and (b) cdPA derived from both precipitation products (GPCC and GPCP), 

each in an example region in the Snow Zone (D) in North America (90.75° W, 45.75° 

N) 

Table 3.9. Correlation Coefficient of All Products for an Example Region in the 

Snow Zone (D) in North America (90.75° W, 45.75° N) 

 G3P JPL GPCC GPCP 

G3P - 0.95 0.63 0.65 

JPL 0.95 - 0.53 0.60 
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GPCC 0.63 0.53 - 0.98 

GPCP 0.65 0.60 0.98 - 

Table 3.10. The β1 values for Different Precipitation and TWSA Products for an 

Example Region in the Example Region in the Snow Zone (D) in North America 

(90.75° W, 45.75° N) 

Products β1 value 

G3P&GPCP 2.22 

G3P&GPCC 2.23 

JPL&GPCP 2.66 

JPL&GPCC 2.44 

 

Based on the β1 values in Table 3.10, which are higher than 1 for different products, 

the decrease in precipitation can be attributed to other hydrological processes, such 

as ET and R, for the example region in the Snow Zone (D) in North America (90.75° 

W, 45.75° N). 

3.2.5 Polar Zone (E) 

The time series of dTWSA obtained from both TWS products (G3P and JPL) are 

illustrated in Figure 3.7a for an example region in the Polar Zone (E) in Asia (85.75° 

E, 36.25° N, Figure Hata! Başvuru kaynağı bulunamadı.a). The time series of 

cdPA obtained from both precipitation products (GPCC and GPCP) are illustrated in 

Figure 3.7b for the same region. The dynamics of water availability and 

precipitation, as well as possible patterns of drought recovery, can be understood by 

using these visualizations to track and examine variations in water storage deviations 
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and cdPA over time. The mean correlation coefficient between the time series of 

G3P and JPL, and GPCC and GPCP, as well as dTWSA and cdPA for the example 

region in the Polar Zone (E) are shown in Table 3.11. The mean correlation 

coefficient between dTWSA and cdPA time series was found to be 0.42 for this 

region. The regression coefficients between cdPA and dTWSA using different 

precipitation and TWSA products for the example region in the Polar Zone (E) are 

presented in Table 3.12. 

 

Figure 3.7. Time series of (a) dTWSA derived from both TWS products (G3P and 

JPL); and (b) cdPA derived from both precipitation products (GPCC and GPCP), 

each in an example region in the Polar Zone (E) in Asia (85.75° E, 36.25° N) 

Table 3.11. Correlation Coefficient of All Products for an Example Region in the 

Polar Zone (E) in Asia (85.75° E, 36.25° N) 

 G3P JPL GPCC GPCP 

G3P - 0.62 0.48 0.48 

JPL 0.62 - 0.55 0.17 
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GPCC 0.48 0.55 - -0.12 

GPCP 0.48 0.17 -0.12 - 

 

Table 3.12. The β1 values for Different Precipitation and TWSA Products for an 

Example Region in the Example Region in the Polar Zone (E) in Asia (85.75° E, 

36.25° N) 

Products β1 value 

G3P&GPCP 0.25 

G3P&GPCC 0.37 

JPL&GPCP 0.20 

JPL&GPCC 0.93 

 

Based on the β1 values in Table 3.12, which are less than 1 for all products except 

JPL & GPCC, the required precipitation amount may be underestimated when 

considering only storage fluctuations for the example region in the Polar Zone (E) in 

Asia (85.75° E, 36.25° N). For JPL&GPCC product, the variation in precipitation is 

almost equal to the variation in storage for this region. 

3.3 Storage Deficit Amount 

DRT estimation based on storage deficit was calculated using TWSA data for storage 

deficit amount. Figure Hata! Başvuru kaynağı bulunamadı.a illustrates the spatial 

distributions of mean storage deficit amount to calculate DRT estimations based on 

storage deficit method. Moreover, Figures Hata! Başvuru kaynağı bulunamadı.b-

d demonstrate the spatial distribution of the differences between G3P&GPCC and 
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G3P&GPCP, JPL&GPCP, and JPL&GPCC, respectively. The mean storage deficit 

amount was the highest in the Equatorial (A) zone, exceeding 125 mm for the G3P 

& GPCC coupled products. In North Africa’s Arid (B) zone, the mean storage deficit 

amount was the lowest, with less than 25 mm. When switching from G3P to JPL, the 

mean storage deficit amount marginally increased by 8 mm. 

3.4 Required Precipitation Amount 

DRT estimation based on required precipitation amount was calculated using both 

cdPA and TWSA data for necessary precipitation amount. Figure Hata! Başvuru 

kaynağı bulunamadı.a illustrates the spatial distributions of mean required 

precipitation amount to calculate DRT estimations based on required precipitation 

method. Moreover, Figures Hata! Başvuru kaynağı bulunamadı.b-d demonstrate 

the spatial distribution of the differences between G3P&GPCC and G3P&GPCP, 

JPL&GPCP, and JPL&GPCC, respectively. The mean required precipitation amount 

to fill the storage deficit was the highest in the Equatorial (A) zone, exceeding 500 

mm for the G3P&GPCP coupled products. In North Africa’s Arid (B) zone, the mean 

required precipitation amount was less than 100 mm, while in Australia’s and North 

America’s Arid (B) zones, it ranged between 100 and 200 mm for the G3P&GPCP 

coupled products. When switching from GPCP to GPCC, the required precipitation 

amount decreased marginally in South America, central Africa and south Asia on a 

global scale (3.2 mm). Similarly, when switching from G3P to JPL, the required 

precipitation amounts also marginally increased by 5 mm. 
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3.5 The Storage Deficit and Required Precipitation Amount for an 

Example Regions in Each Climate Zone 

3.5.1 Equatorial Zone (A) 

The storage deficit and required precipitation amount for an example region in the 

Equatorial zone (A) in South America (55.75° W, 5.75° S, Figure Hata! Başvuru 

kaynağı bulunamadı.a) are illustrated using both TWS products (G3P and JPL) and 

precipitation products (GPCC and GPCP) in Figure 3.10. Observed precipitation 

amount from corresponding precipitation product is also shown in Figure 3.10. 

Figure 3.10a shows the storage deficit amount obtained from the G3P TWS product, 

the required precipitation amount from the G3P TWS and GPCP precipitation 

products, and the observed precipitation amount from the GPCP precipitation 

product, thereby illustrating results from the G3P&GPCP coupled products. Figures 

3.10b-d present results obtained from the G3P&GPCC, JPL&GPCP, and 

JPL&GPCC coupled products, respectively.  

For all coupled products, the maximum storage deficit amount was approximately 

400 mm in April 2016 (Figure 3.10). The longest drought period for G3P was 

observed between October 2015 and May 2017 (Figure 3.10a and 3.10b), while for 

the longest drought period for JPL was observed between December 2014 and 

September 2016 (Figure 3.10c and 3.10d). The drought events between 2007 and 

2008, as well as between mid-2015 and mid-2017, were continuous for the G3P 

product; however, they were not continuous for the JPL product. Other drought 

events were observed with both products.  

Furthermore, the maximum observed precipitation amount for the GPCC was around 

650 mm in March 2016 (Figure 3.10b and 3.10d), however, it was not observed for 

GPCP (350 mm). The maximum amount for the GPCP was around 550 mm in 

February 2005 (Figure 3.10a and 3.10c) and also it was observed for GPCC (Figure 

3.10b and 3.10d). 
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Figure 3.10. The time series of storage deficit amount, required precipitation amount, 

and observed precipitation amount using (a) obtained from G3P&GPCP, (b) 

G3P&GPCC, (c) JPL&GPCP, and (d) JPL&GPCC, each in an example region in the 

Equatorial zone (A) in South America (55.75° W, 5.75° S). 
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3.5.2 Arid Zone (B) 

The storage deficit and required precipitation amount for an example region in the 

Arid Zone (B) in Australia (113.75° E, 23.75° S, Figure Hata! Başvuru kaynağı 

bulunamadı.a) are illustrated using both TWS products (G3P and JPL) and 

precipitation products (GPCC and GPCP) in Figure 3.11. Observed precipitation 

amount from corresponding precipitation product is also shown in Figure 3.11. 

Figure 3.11a shows the storage deficit amount obtained from the G3P TWS product, 

the required precipitation amount from the G3P TWS and GPCP precipitation 

products, and the observed precipitation amount from the GPCP precipitation 

product, thereby illustrating results from the G3P&GPCP coupled products. Figures 

3.11b-d present results obtained from the G3P&GPCC, JPL&GPCP, and 

JPL&GPCC coupled products, respectively.  

The maximum storage deficit amount was approximately 60 mm and 70 mm in 

March 2008 for G3P and JPL, respectively (Figure 3.11). The longest drought period 

for G3P and JPL was observed between May 2007 and February 2010 (Figure 3.11). 

The drought was noted in 2013, mid-2013 and mid-2015 for the G3P TWS product, 

while no drought was observed using the JPL. Other drought events were observed 

with both products. 

Furthermore, the maximum observed precipitation amount for the GPCC and GPCP 

was around 140 mm in November 2008 and February 2010 (Figure 3.11). In general, 

the observed precipitation from GPCC was aligned well with the observed 

precipitation from GPCP for this grid. 
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Figure 3.11. The time series of storage deficit amount, required precipitation amount, 

and observed precipitation amount using (a) obtained from G3P&GPCP, (b) 

G3P&GPCC, (c) JPL&GPCP, and (d) JPL&GPCC, each in an example region in the 

Arid Zone (B) in Australia (113.75° E, 23.75° S) 
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3.5.3 Warm Temperate Zone (C) 

The storage deficit and required precipitation amount for an example region in the 

Warm Temperate Zone (C) in Europe (5.75° W, 40.75° N, Figure Hata! Başvuru 

kaynağı bulunamadı.a) are illustrated using both TWS products (G3P and JPL) and 

precipitation products (GPCC and GPCP) in Figure 3.12. Observed precipitation 

amount from corresponding precipitation product is also shown in Figure 3.12. 

Figure  3.12a shows the storage deficit amount obtained from the G3P TWS product, 

the required precipitation amount from the G3P TWS and GPCP precipitation 

products, and the observed precipitation amount from the GPCP precipitation 

product, thereby illustrating results from the G3P&GPCP coupled products. Figures  

3.12b-d present results obtained from the G3P&GPCC, JPL&GPCP, and 

JPL&GPCC coupled products, respectively.  

The maximum storage deficit amount was approximately 80 mm in May 2012 for 

G3P (Figure 3.12a and 3.12b), while the maximum storage deficit amount was 

around 100 mm in May 2017 for the JPL (Figure 3.12c and 3.12d). The longest 

drought period was observed between December 2004 and September 2006 for G3P, 

while the longest drought was observed between December 2004 and December 

2009 for JPL. Other drought events were observed with both products. 

Furthermore, the maximum observed precipitation amount for the GPCC and GPCP 

was around 250 mm in October 2005 and December 2009 (Figure3.12). In general, 

the observed precipitation from GPCC was aligned well with the observed 

precipitation from GPCP for this grid. 
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Figure 3.12. The time series of storage deficit amount, required precipitation amount, 

and observed precipitation amount using (a) obtained from G3P&GPCP, (b) 

G3P&GPCC, (c) JPL&GPCP, and (d) JPL&GPCC, each in an example region in the 

Warm Temperate Zone (C) in Europe (5.75° W, 40.75° N) 
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3.5.4 Snow Zone (D) 

The storage deficit and required precipitation amount for an example region in the 

Snow Zone (D) in North America (90.75° W, 45.75° N, Figure Hata! Başvuru 

kaynağı bulunamadı.a) are illustrated using both TWS products (G3P and JPL) and 

precipitation products (GPCC and GPCP) in Figure 3.13. Observed precipitation 

amount from corresponding precipitation product is also shown in Figure 3.13. 

Figure  3.13a shows the storage deficit amount obtained from the G3P TWS product, 

the required precipitation amount from the G3P TWS and GPCP precipitation 

products, and the observed precipitation amount from the GPCP precipitation 

product, thereby illustrating results from the G3P&GPCP coupled products. Figures  

3.13b-d present results obtained from the G3P&GPCC, JPL&GPCP, and 

JPL&GPCC coupled products, respectively.  

The maximum storage deficit amount was approximately 200 mm and 150 mm in 

December 2012 for G3P and JPL. respectively (Figure 3.13). The longest drought 

period was observed between May 2011 and July 2014 for G3P (Figure 3.13a and 

3.13b), while the longest drought was observed between October 2011 and July 2016 

for JPL (Figure 3.13c and 3.13d). Droughts were noted in 2010 and 2017 for the G3P 

TWS product, while no drought is observed using the JPL. Other drought events 

were observed with both products. 

Furthermore, the maximum observed precipitation amount was around 200 mm in 

September 2010 for both GPCC and GPCP (Figure 3.13). In general, the observed 

precipitation from GPCC was aligned well with the observed precipitation from 

GPCP for this grid. 
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Figure 3.13. The time series of storage deficit amount, required precipitation amount, 

and observed precipitation amount using (a) obtained from G3P&GPCP, (b) 

G3P&GPCC, (c) JPL&GPCP, and (d) JPL&GPCC, each in an example region in the 

Snow Zone (D) in North America (90.75° W, 45.75° N) 
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3.5.5 Polar Zone (E) 

The storage deficit and required precipitation amount for an example region in the 

Polar Zone (E) in Asia (85.75° E, 36.25° N, Figure Hata! Başvuru kaynağı 

bulunamadı.a) are illustrated using both TWS products (G3P and JPL) and 

precipitation products (GPCC and GPCP) in Figure 3.13. Observed precipitation 

amount from corresponding precipitation product was also shown in Figure 3.14. 

Figure 3.14a shows the storage deficit amount obtained from the G3P TWS product, 

the required precipitation amount from the G3P TWS and GPCP precipitation 

products, and the observed precipitation amount from the GPCP precipitation 

product, thereby illustrating results from the G3P&GPCP coupled products. Figures  

3.14b-d present results obtained from the G3P&GPCC, JPL&GPCP, and 

JPL&GPCC coupled products, respectively.  

The maximum storage deficit amount was approximately 50 mm in June 2016 for 

G3P (Figures 3.14a and 3.14b), while the maximum storage deficit amount was 

around 20 mm in March 2010 for the JPL (Figures 3.14c and 3.14d). Also, there was 

a similar drought event (20 mm) in March 2010 for G3P (Figures 3.14a and 3.14b). 

The longest drought period was observed between June 2014 and March 2017 for 

G3P (Figures 3.14a and 3.14b), while the longest drought was observed between 

June 2014 and June 2017 for JPL (Figures 3.14c and 3.14d). The droughts were noted 

before mid-2005 and at the end of 2020 for the G3P TWS product, while no drought 

was observed using the JPL. In contrast, droughts were noted in 2006 and 2012 for 

the JPL TWS product, while no drought was observed using the G3P TWS product. 

Other drought events were observed with both products. 

Furthermore, the maximum observed precipitation amount for the GPCP was around 

15 mm in August 2016 (Figures 3.14a and 3.14c). The maximum amount for the 

GPCC was around 35 mm in June 2010 and August 2016 (Figures 3.14b and 3.14d). 

In general, the observed precipitation from GPCC was aligned well with the 

observed precipitation from GPCP for this grid.   
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Figure 3.14. The time series of storage deficit amount, required precipitation amount, 

and observed precipitation amount using (a) obtained from G3P&GPCP, (b) 

G3P&GPCC, (c) JPL&GPCP, and (d) JPL&GPCC, each in an example region in the 

Polar Zone (E) in Asia (85.75° E, 36.25° N) 
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3.6 DRT Estimations 

Figures Hata! Başvuru kaynağı bulunamadı.a and 3.16a demonstrate the spatial 

distributions of mean DRT estimations based on storage deficit and required 

precipitation amount methods using the G3P-GPCP coupled product, respectively. 

Additionally, Figures Hata! Başvuru kaynağı bulunamadı.b-d and 3.16b-d 

illustrate the spatial distribution of the differences between G3P & GPCC and G3P 

& GPCP, JPL & GPCP, and JPL & GPCC, respectively, for both approaches. 

Because the DRT estimations based on the storage deficit approach only used TWS 

products in the analysis, the mean DRT estimations for this method are the same in 

Figures Hata! Başvuru kaynağı bulunamadı.a and Hata! Başvuru kaynağı 

bulunamadı.b, as well as Figures Hata! Başvuru kaynağı bulunamadı.c and 

Hata! Başvuru kaynağı bulunamadı.d. The only purpose of using precipitation 

products in this method (Figure Hata! Başvuru kaynağı bulunamadı.) is the 

exclusion of the regions that are not suitable for the analysis (Table 2.2). Thus, the 

excluded regions are the only distinctions between G3P&GPCP and G3P&GPCC 

(Figure Hata! Başvuru kaynağı bulunamadı.b), as well as JPL&GPCP (Figure 

Hata! Başvuru kaynağı bulunamadı.c) and JPL&GPCC (Figure Hata! Başvuru 

kaynağı bulunamadı.d). Although precipitation products were integrated into DRT 

estimations based on the required precipitation amount method, the overall spatial 

patterns of mean DRT did not differ between G3P&GPCC and G3P&GPCP (Figure 

3.16b) and between JPL&GPCP (Figure 3.16c) and JPL&GPCC (Figure 3.16d). The 

mean and spatial distributions of DRT estimations using both approaches were 

compatible with one another, as shown in Figures Hata! Başvuru kaynağı 

bulunamadı. and 3.16. 

Furthermore, the mean DRT estimations based on storage deficit and required 

precipitation amount for all coupled products are shown in Table 3.13 and Table 

3.14, respectively. Similar to correlation and regression analysis, the effect of the 

pixel area was investigated to get an idea of how the mean DRT estimations change 

from the equator to the poles. The results, aligned with the other pixel size analyses 
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in this study, show that the pixel areas do not greatly impact the mean DRT 

estimations, as minor differences, 0.2 months, exist in the mean DRT estimations 

whether or not the effect of the pixel areas was considered. 
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Table 3.13. The mean DRT Estimations based on Storage Deficit of Coupled 

Products with and without Pixel Size Effect 

Coupled Product 
Mean DRT without 

Pixel Size Effect 

Mean DRT with 

Pixel Size Effect 

G3P&GPCP 12.8 12.5 

G3P&GPCC 12.7 12.5 

JPL&GPCP 15.5 15.2 

JPL&GPCC 15.4 15.1 

 

Table 3.14. The mean DRT Estimations based on Required Precipitation Amount 

of Coupled Products with and without Pixel Size Effect 

Coupled Product 
Mean DRT without 

Pixel Size Effect 

Mean DRT with 

Pixel Size Effect 

G3P&GPCP 10.9 11.0 

G3P&GPCC 10.8 10.9 

JPL&GPCP 13.1 13.2 

JPL&GPCC 13.0 13.1 

 

The highest mean DRT (50-60 months) estimations based on the storage deficit 

approach were observed in Iran and Central Asia using G3P as TWS product and 

GPCC and GPCP as precipitation product, as shown in Figures Hata! Başvuru 

kaynağı bulunamadı.a and Hata! Başvuru kaynağı bulunamadı.b, respectively. 

Similarly, the highest mean DRT estimations were found in the same locations (Iran 

and Central Asia) for the required precipitation amount methods, as shown in Figures 

3.16a and 3.16b, which used G3P as the TWS product and GPCC and GPCP as the 

precipitation product, respectively. The results of both DRT estimations, which used 

JPL as the TWS product with GPCC and GPCP as the precipitation product, showed 

that the regions with the highest mean DRT (50-60 months) were consistently 

observed in Iran, southeast Australia, central Asia, and north Africa, as depicted in 

Figures Hata! Başvuru kaynağı bulunamadı.c and Hata! Başvuru kaynağı 
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bulunamadı.d, as well as Figures 3.16c and 3.16d. Figures Hata! Başvuru kaynağı 

bulunamadı.a and  3.16a have a 0.75 spatial correlation, demonstrating a high level 

of spatial correlation between the two. The spatial correlations of the other coupled 

products were provided in Table 3.15.  

Table 3.15. The spatial correlation of the DRT estimations based on both methods 

using all coupled products 

Coupled Products 
Spatial ρ of the DRT estimations 

based on both methods 

G3P&GPCP 0.79 

G3P&GPCC 0.78 

JPL&GPCP 0.76 

JPL&GPCC 0.77 

 

Central and south Africa (~45 months), central and southern South America (~40 

months), west and central North America (~40 months), eastern Australia (~35 

months), east Asia (~30 months), and central Europe (~35 months) were found as 

the other regions that showed high DRT estimations based on both approaches and 

across all the product combinations. The current study's results, which are the regions 

with high DRT, are consistent with increasing worldwide aridity and drought areas 

since the mid-20th century, mostly due to widespread drying in eastern Australia and 

northern mid-latitude regions (Dai, 2011). Based on these approaches, the drought 

conditions in eastern Australia (~35 months) were more severe than in western 

Australia (~20 months). The results of the current study are consistent with earlier 

research that focused on tracking droughts in regions that have previously 

experienced prolonged, intense, multi-month drought events. These areas include 

central Europe, Iran, southeast Australia, central and western North America, and 

central South America, all of which have seen more severe droughts than other 

regions. Madadgar & Moradkhani (2014) observed droughts of varying intensities 

in the Colorado River Basin from 2001 to 2004, totaling 48 months of drought 

between 2000 and 2011. The current study's results indicate a mean DRT of 



 

 

66 

approximately 30 months for the same region. The results of the current study 

(Figures Hata! Başvuru kaynağı bulunamadı.a and 3.16a) align with those of 

(Boergens et al., 2020), who found that Central Europe is prone to drought and 

required more than a year to recover from the extreme drought experienced during 

the summers of 2018 and 2019. 

Moreover, when utilizing JPL, the mean DRT estimations derived from both 

approaches were higher than those obtained using G3P. In contrast, the choice of 

precipitation product (GPCC or GPCP) do not impact the overall spatial patterns of 

DRT estimates, as there is a close agreement between GPCC and GPCP regarding 

the spatial distributions of the mean DRT estimations for both TWS products (G3P 

and JPL), as shown in Figure 3.16. Standard error was used to assess the variability 

and uncertainty in the DRT estimations across the regions and datasets. Figures 

Hata! Başvuru kaynağı bulunamadı. and 3.18 illustrate the spatial distributions of 

the SE of DRT estimates, which were similar to the spatial distributions of the mean 

DRT estimates. The regions with the highest mean DRT also exhibited the highest 

SE. This indicates that regions experiencing more extended DRT periods showed 

greater variability in the DRT estimates. 
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Figures 3.19a and 3.19b demonstrate the mean DRT estimations derived from 

storage deficit and required precipitation amounts, respectively, across the Köppen-

Geiger main climate zones, utilizing all the TWS-precipitation coupled products. 

Variability in the mean DRT estimations is shown by error bars that represent the 

95% confidence intervals for each zone and each TWS-precipitation coupled 

product. In each zone and each coupled product, the "n" values indicate the number 

of grids per coupled product. The highest mean DRT estimation was observed in the 

polar (E) zone for both DRT estimation methods, with 18.9 months for storage deficit 

and 16.1 months for required precipitation amount. Except for the polar (E) zone, the 

arid (B) zone showed the highest mean DRT estimation for both methods, with 15.0 

months for storage deficit and 13.2 months for required precipitation amount. In 

contrast, the equatorial (A) zone showed the lowest mean DRT estimation for both 

methods, with 10.9 months for storage deficit and 9.8 months for required 

precipitation amount. Thus, these results are consistent with the earlier findings of 

Van Lanen et al. (2013), particularly for the regions that experience the least and 

most severe droughts. In the warm temperate (C) zone, the mean DRT derived from 

storage deficit and required precipitation amount was 14.0 months and 11.7 months, 

respectively; in the snow (D) zone, it was 14.8 months and 11.5 months, respectively. 

Specifically, the mean DRT estimations showed less than 0.2 months variability 

across all climate zones except the polar (E) zone, as evidenced by narrow 95% 

confidence intervals indicating low uncertainty. The highest differences between 

DRT estimations using G3P and JPL were 5.7 months for the Polar (E) zone and 3.8 

months for the Arid (B) zone. In contrast, the differences in other zones are lower 

than those in the Polar (E) and Arid (B) zones. For all the TWS-precipitation coupled 

products, the SE for the DRT estimations derived from storage deficit and required 

precipitation amount throughout the Köppen-Geiger climatic zones are illustrated in 

Figures 3.20a and 3.20b, respectively. For both approaches, the highest SE was 

found in the polar (E) zone, while the lowest SE varied depending on the product. 

All climate zones, except the polar (E) zone, showed similar SE for GPCC and 
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GPCP. The SE obtained from estimations using G3P was marginally smaller than 

the SE obtained from estimations using JPL for both approaches. 
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On a global average, the mean DRT estimation derived from the required 

precipitation amount was determined as 12.0 months, while the mean DRT 

estimation derived from the storage deficit was determined as 14.1 months. 

Regardless of precipitation products, the mean DRT estimations obtained from G3P 

(12.1 months) are consistently lower than those obtained from JPL (14.9 months) in 

each climate zone and the global average. In terms of precipitation products, DRT 

estimations derived from GPCC and GPCP show similar results (13.5 months) 

independent of TWS products across all climate zones and the global average. These 

results indicate a close agreement between GPCC and GPCP regarding DRT 

estimations and show that G3P-based DRT estimations are consistently lower than 

JPL-based DRT estimations in each climate zone and the global average. 

3.7 Consistency in DRT Estimations 

The spatial distributions of the consistency categories, described in Table 2.4, for the 

DRT estimation obtained from G3P&GPCP coupled products are illustrated in 

Figure 3.21a. Moreover, the spatial distributions of the differences in consistency 

categories for the DRT estimation obtained from G3P&GPCC, JPL&GPCP, and 

JPL&GPCC against G3P&GPCP are demonstrated in Figure 3.21b-d, respectively. 

The majority of regions were found to be in consistency category 1 (high agreement), 

with a mean absolute difference of 1.9 months between DRT estimations derived 

from the two approaches. Consistency results of all combinations of the products 

(Figure 3.21), including different TWS (G3P vs. JPL) and precipitation (GPCC vs. 

GPCP), showed similar spatial patterns. These similarities were also observed in the 

mean DRT estimation obtained from all coupled products. The regions in 

consistency category 4, where the time difference between DRT estimations is larger 

than 9 months, had the highest mean DRT estimations and the highest standard error 

of the mean DRT for both approaches, as expected (Table 3.16). 
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Table 3.16. Mean DRT and SE for the Consistency Categories 

 Mean DRT (months) Mean SE (months) 

Category 1 12.6 4.1 

Category 2 14.3 5.5 

Category 3 17.2 7.7 

Category 4 25.4 13.6 

The consistency levels for the Köppen-Geiger climate zones utilizing all of the 

coupled products are displayed in Figure 3.22 as a percentage of consistency 

category 1 (time difference in DRT estimation of 1-2 months). With an average 

consistency of 98.4%, the equatorial (A) zone had the greatest, while the polar (E) 

zone had the lowest with an average consistency of 80.2%. On a global average, 

consistency category 1 was achieved by 89.6% of DRT estimations. The rate of 

consistency category 1 of DRT estimations obtained from G3P (90.7%) is higher 

than obtained from JPL (86.8%) across all the climate zones and the global average. 

In terms of the coupled products, the G3P&GPCP combination showed the highest 

consistency (91.0%), while JPL&GPCP displayed the lowest (86.4%). 

The selection of the precipitation product (GPCC vs. GPCP) had a minor effect on 

consistency in DRT estimations with an average absolute difference of 0.3%, 

provided that the identical TWS product was utilized. In contrast, G3P had higher 

consistency in DRT estimation than JPL, with an average absolute difference of 4.0% 

when the same precipitation product was utilized. Climate zones also impacted 

consistencies in DRT estimations in addition to the selection of the products. The 

polar (E) zone had the highest difference between GPCC and GPCP, with a 

difference of 5.1%. In contrast, the arid (B, 0.2 months) zone and snow zone (E, 0.1 

months) showed the lowest difference between the two, with a similar consistency 

in DRT estimations. Similarly, in the equatorial (A) zone, G3P and JPL showed the 

most similar consistency in DRT estimations, with a difference of 1.3%, while they 

displayed the largest difference (7.0%) in DRT estimation consistency in the arid (B) 

zone, and the polar (E) zone. 
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CHAPTER 4  

4 SUMMARY AND CONCLUSION 

Satellite gravimetry measures monthly variations in TWS, which are closely related 

to the amount of precipitation that fell during that time frame. Thus, the innovative 

observing concept implemented with the GRACE and GRACE-FO missions offers 

a unique chance to verify precipitation products' long-term consistency. Based on 

the current analysis using TWS (G3P spherical harmonics and JPL) and precipitation 

(GPCC and GPCP) products, a generally high correlation between the two was found 

over semi-arid and even wetter climates, some parts of the equatorial, warm 

temperate and snow zones. On a global average, G3P and GPCP have the best 

correspondence. In general, correlation coefficients are not greatly affected by the 

choice of GRACE and GRACE-FO products, with the exception of arid regions with 

minimal storage fluctuations. However, when swapping precipitation products from 

GPCP to GPCC, correlation coefficients of cdPA and dTWSA change, especially in 

Africa and some parts of Central Asia, where there is a lack of in situ station 

coverage. In addition, the impact of satellite-based precipitation information in 

GPCP is relatively large because GPCC relies solely on in situ rain gauges, which 

have sparse coverage. 

 

A new method of characterizing drought using the storage deficit is made possible 

by GRACE and GRACE-FO observations, which directly provide water storage 

anomalies. Thus, by directly observing the temporal evolution of the storage deficit, 

it is possible to determine the time needed to recover from a drought (Singh et al., 

2021). This approach allows for the assessment of both the length and severity of a 

drought. It is observed that there is not much difference between the mean DRT 

estimations derived from GPCC and GPCP. On average, however, the mean DRT 
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estimations across the Köppen-Geiger climate zones and the globe using JPL were 

2.8 months longer than those using G3P. Furthermore, the findings demonstrate that 

the equatorial (A) zone had the lowest mean DRT estimation based on both methods, 

while the polar (E) zone had the highest for all TWS-precipitation combinations. In 

contrast, the consistency in DRT estimations using G3P was 4.0% higher than using 

JPL when the same precipitation product was utilized. Furthermore, for all TWS-

precipitation combinations taken into consideration, the results showed that the 

equatorial (A) zone had the highest consistency in mean DRT estimations derived 

from both methods, whereas the polar (E) zone had the lowest consistency. 

 

The close association between precipitation and TWS fluctuations highlights the 

potential utility of GRACE and GRACE-FO for hydrometeorological research, as 

demonstrated by the results of the current study. Its global coverage (albeit relatively 

low spatial resolution) makes it possible to assess various precipitation products from 

global atmospheric reanalysis and numerical weather prediction models, in addition 

to combinations of varying satellite and in situ observations (as done in this study). 

It can be expected that additional advancements in the quality of satellite gravimetry 

solutions for hydrological studies since studies on future satellite gravity missions 

and the use of more precise sensors are conducted by NASA and the European Space 

Agency (ESA). 

 

Future studies can focus on the new satellite gravity missions conducted by NASA 

and ESA. These new missions are expected to have more precise sensors than 

GRACE and GRACE-FO. Additionally, other precipitation products, such as various 

blended products and reanalysis datasets, can be assessed from a hydrological 

drought perspective using these DRT estimation methods. Moreover, the subzone of 

Köppen-Geiger climate zones could be studied in the future for one coupled TWS-

precipitation product.  
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A. β1 Limit 
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B. Time Series of TWSA 

The time series of the mean monthly TWSA dataset obtained from G3P and JPL 

are shown in Figures B1, B2, B3, B4, and B5 for Australia, South America, 

Southern Africa, Central Asia, and Northern Africa, respectively. 

 

Figure B1. The time series of the mean monthly TWSA dataset obtained from G3P 

and JPL for Australia 
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Figure B2. The time series of the mean monthly TWSA dataset obtained from G3P 

and JPL for South America 

 

Figure B3. The time series of the mean monthly TWSA dataset obtained from G3P 

and JPL for Southern Africa 
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Figure B4. The time series of the mean monthly TWSA dataset obtained from G3P 

and JPL for Central Asia 

 

Figure B5. The time series of the mean monthly TWSA dataset obtained from G3P 

and JPL for Northern Africa 
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The time series of the mean monthly TWSA dataset obtained from G3P and JPL for 

arid and non-arid regions are shown in Figures B6a and B6b, respectively. 

 

Figure B6. The time series of the mean monthly TWSA dataset obtained from G3P 

and JPL for (a) Arid and (b) non-arid regions 

C. Spatial Distribution of the Precipitation Gauge 

Figure C1 shows the spatial distribution of the average number of precipitation 

gauges from 2002 to 2020, as provided by the GPCC dataset. 
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Figure C1. The spatial distribution of the average number of precipitation gauges 

from 2002 to 2020, as provided by the GPCC dataset. 

 




