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ABSTRACT

OPTIMAL ROBOT HAND PRESHAPING
AND
REGRASPING
USING GENETIC ALGORITHMS

Giinver, Hakan
M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Aydan M. Erkmen

January 1997, 138 pages

The main contribution of this thesis is to develop the necessary
formalism for the generation of task optimal fingertip trajectory for a multifingered
robot hand of a predetermined preshape closing upon an object to be handled. A
“look ahead” preshape control of a robot hand necessitates the concept of preshaping
for manipulation, which is missing in the literature. This work provides a formalism
for such a concept and defines the preshaping efficiency of a robot hand by a
performance measure based on both task properties in manipulating a grasped object
and on object constraints. This measure is formulated using the dual criteria of
manipulability and stability that are derived in terms of vortices generated by
preshape closure and hand divergences, respectively. These criteria together with

iii



candidate contact points from possible landing areas on the object to be grasped are
then applied to the generation of candidate hand closure configurations using the
optimal search mechanism of Genetic Algorithms (GA). The surviving
configurations at the end of each generation created by the GA-based processing
constitutes the continuous hand preshape closure with optimal performance. This
thesis work contributes also to the increase in the performance of GA’s applied to the
generation of optimal hand preshapes, by modifying the classical GA operators and
by introducing more disruptive effects to the directed search mechanism. These
modifications are tested and results are presented in the balance of this thesis in order
to illustrate and discuss the improvement in purposive, task oriented hand closure
that they provide.

Keywords : Genetic Algorithms, Optimal Robot Hand Preshaping, Optimal
Regrasping, Optimal Finger Trajectory, Multifingered Robot Hand, Grasping,
Vorticity, Stability, Manipulability.
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GENETIK ALGORITMALAR KULLANILARAK
ROBOTELIN
KAVRAMA iCiN SEKILLENDIRILMESI
VE
TEKRAR KAVRAMA

Giinver, Hakan
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi BSltimii

Tez Yoneticisi : Dog. Dr. Aydan M. Erkmen

Ocak 1997, 138 sayfa

Bu tez, ¢ok parmakli bir robot elin, yapilacak ise gére belirlenmis
kavramay! saglamasi amaciyla, tutma oncesi sekillendirilmesi sirasinda, parmak
uglarinin takip edecegi en iyi yoriingelerin olusturulmasi igin model gelistirmektedir.
Bu yoriinge kontrolii, literatiirde eksik olan, elin kavranacak cismin kontroliinii
saglayacak yonde sekillendirilmesini agiklamakta; tutulacak cismi ve yapilacak isi
temel alan performans Olgiisiinii, robot elin gekillendirilmesine uyarlamaktadir.
Parmak hareketlerinin girdap kuramlar ile tammlanmastyla ortaya konan manevra ve
denge kabiliyetleri, bu &lgiiniin kriterleridir. Bu kriterler ile, parmak uglanmn
tutulacak cisim lizerinde temas edecegi noktalar, parmaklarn, elin sekillendirilmesi



sirasinda izleyecegi yoriingelerin bulunmasinda kullanihirlar. Bu y&riinge tayininde
genetik algoritma metodu kullanilmaktadir ki, bu metod, performans ydniinden en iyi
olan parmak ucu yoriingelerinin bulunmasim saglar. Bu ¢aligmada, ayrica, genetik
algoritmamn giiciinii arttirmak ve daha iyi aragtirma yapmasim saglamak i¢in, klasik
genetik algoritma islevlerine yonlendirici ve “bozucu 6zellikler kazandirlmigtir.
Yapilan ¢aligmalann sonuglar, amaca yénelik el gekillendirilmesindeki gelismeleri
agiklayacak sekilde sunulmugtur.

Anahtar Kelimeler : Genetik  Algoritmalar, Robot Elin Tutma Oncesi
Sekillendirilmesi, Tekrar Kavrama, En Iyi Parmak Ydriingesi, Cok Parmakh Robot
El, Kavrama, Girdap Hareketi, Denge Hassasiyeti, Manevra Yetenegi.
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CHAPTER 1

INTRODUCTION

Even though robots are used to replace human beings for tedious or
hazardous works and robot manipulators are employed in various working areas,
their evolution has not been driven by the ability in emulating human behavior but by
the capacity of doing useful work. Usually a gripper, executing only opening and
closing motions, is attached to the wrist of robot manipulators, so that the capability
of the manipulator is limited to low level dexterity, requiring a conveniently
structured environment in which everything is known and planned prior to the action.

Almost all of the robot manipulators just hold the object firmly with their
grippers without possessing the ability and the required redundancy to manipulate
grasped objects. However, today’s potential application areas are those in which the
environment is unstructured and uncertain and where highly dexterous manipulations
of grasped objects are necessary, such as: i) equipment maintenance and repair
operations in space, under sea, in a nuclear power plant, or in a chemically
contaminated area; ii) handling and deactivation of explosive materials and devices;
iii) flexible manufacturing systems that require fine assembly or disassembly (e.g.,
circuit board insertion); iv) medical applications such as exploratory surgery, orthotic
limbs, robotic wheelchairs; v) home robotics where domestic tasks highly depend on
each home layout, usually crowded and changing; vi) other nontraditional application
areas such as agriculture, mining and construction. The range and complexity of
tasks that contemporary industrial robots can perform are limited, and these robots
are not suitable for operating in unstructured environments. Difficulty in
manipulating objects in such environments has prompted researchers to explore
designs of increasingly sophisticated end effectors with improved grasping capability
and dexterity in object manipulation.



End effectors can be divided into i) special purpose end effectors
(including two-jaw grippers, motorized screwdrivers, spray nozzles, etc.) and
ii) general purpose end effectors (the multifingered hands). A robot manipulator
using special purpose end effectors has to change effectors for each different task.
Being capable of accommodating a variety of tasks easily and having more flexibility
when coping with unforeseen situations and unstructured environments,
multifingered, dexterous hands opened a new avenue of progress in the area of
robotics. The versatility of robot hands accrues from the fact that fine manipulation
can be accomplished through relatively fast and small motions of the fingers and
from the fact that they can be used on a wide variety of different objects. Therefore,
multifingered hands, which are also anatomically consistent with the human hand,
attract the attention of researchers in order to expand the dexterity and versatility of
robotic manipulators.

1.1. Motivation

The grasp and manipulation of an unknown object by multifingered
hands are recognized as one of the most challenging topics in robotic research. To
date, numerous approaches have been proposed for characterizing grasps and
modeling the process of manipulation, but neither a “look-ahead” preshaping model
which is controlled predictively nor a well-established regrasping model exists.

For a dexterous hand, a grasp can be defined as a first phase of
interaction with its work space. Any grasp has three characteristics: a parametrizable
preshape configuration, object sensory information, and task description in terms of
dexterity level in manipulation together with its stability content. By preshaping, the
hand posture is changed from a general one to a grasp-specific gripping tool posture.
The description of a preshape configuration thus requires a set of individual joint or
finger configurations as well as fingertip trajectories. Multifingered hands can both
manipulate objects by imparting to them contact velocities and localized forces
through each fingertip, while preserving a certain stability. Optimal grasp for better
subsequent manipulation can only be achieved with a full analysis and a better
formalism of finger coordination, finger trajectory planning, and task planning for
multifingered hands. :



Low-level control algorithms are limited to simple tip prehension tasks
between the fingers, leaving more complex tip prehension (e.g., opening a jar lid) and
the entire area of palm prehension (e.g., holding a hammer) largely unexplored.
Developed schemes either assume rigid attachment of fingertips to the object or are
open loop, and they do not account for an appropriate contact model between the
fingertips and the object.

Moreover, in order to fill the gap between the determination of a
preshape and the manipulation of objects, we must introduce an adequate preshaping
model which can easily adapt to disturbances by generating regrasp alternatives
under environmental uncertainties. Frequently, manipulations in unstructured
environments lead to grasp failure due to uncertainties and unexpected changes. Then
the robot hand has to reconfigure itself under these new conditions by regrasping the
object. The motivations behind this thesis work reside in the above issues, which are
not yet fully addressed and are not well established. An attempt in this work is
towards formulating the purposive preshaping of a robot hand for a given
manipulation task after grasping a predefined object and its regrasping mechanism
when necessity occurs.

1.2. Problem Characteristics

During manipulation the hand has to firmly grasp the object, while
imparting a controlled motion to the object in terms of translation and rotation. This
process requires task optimal criteria in choosing the grasp points on objects for
proper initialization of manipulation: this is due from the fact that, although the
fingers may satisfy the squeezing constraints at the chosen grasp points, which are
necessary for stability, the improper choice of grasp points may lead to insufficiency
in providing the desired motion to the object.

The proper choice of grasp contact points on the object depends highly
on distances between fingers of a preshaped hand. Thus, the type of the selected
grasp not only plays an important role in manipulation but also defines the way of
preshaping that will lead to that grasp. Task oriented grasp types can be classified
into three main classes such as power, precision and support configurations including



many subclasses. Any grasp is composed of a prior and a posterior phase. The prior
grasp phase incorporates approaching the object with a proper orientation of the wrist
and the closing of a convenient hand preshape. The posterior phase mainly deals with
adjustment of the hand posture for a better manipulation. Because of the close
relation of hand ﬁreshape with the object features and task specifications, additional
preshaping measures dealing with the stability and manipulability concepts must be
generated in order to achieve valid grasps. Manipulation of large objects is limited by
wide apertures between fingers. In this case stability becomes more important while
small objects impose less constraints on the hand aperture.

Manipulability measure retains its maximum for precision hand
configuration, and decreases in value as the aperture between fingers increases. When
it is equal to zero for a hand preshape, any manipulation of an object grasped with
that preshape is impossible. This preshape is the divergent hand configuration where
the palm lays flat and the fingers are fully extended apart. On the other hand, the
stability measure reaches its minimum for precision configurations but increases in
value as the fingers move away from each other. The divergent hand configuration
possesses the maximum stability. These complementary behaviors of stability and
manipulability measures reveal the fact that they are dual in nature.

These measures imposes task specific dynamic constraints on the
fingertip trajectories. Moreover, although being small, the workspace of a hand is
crowded with many constraints that shape up the finger trajectories in this
workspace. The fingertips must follow paths that, not only realize collision
avoidance between fingers and unwanted objects as well as between fingers
themselves but also must satisfy the task specific measures. In addition dexterous
multifingered robot hands are redundant systems where the space of fingertip
trajectories is both multidimensional and multimodal meaning that for a selected
point on the trajectory, there may not be a unique robot hand configuration. So the
joint space of the robot hand seems to be the best control space because not only the
results are directly applicable to the joints of the manipulator but also the mapping
from joint space to Cartesian space is unique.



1.3. Objectives

Prehension models stated so far in the literature do not cover the complex
anthropomorphic prehensions which involves mixture of basic simple prehensions
and most importantly regrasping. The lack in developing a universal contact model
between the fingertips and the object that is equally valid for preshaping (prior
contact) and for manipulation (post contact) limits the proposed schemes to simple
tip prehensions. In the literature, the measures for a good grasp are analyzed after
contacts with the object occur, but when human grasping is analyzed, it can be seen
that during the approach, and before contacting the object the hand assumes a
preshape according to the object shape and task requirements.

Studies on robot hand prehension base upon two separate ways of
approach. One way investigates the decision making of task-oriented preshapes.
Though the preshape selections take into account both the task specifications and
object characteristics, they are mainly static, that is finger dynamics that determine
the motion of fingers for proper configuration are not considered. These decision
makings use artificial intelligence techniques and rarely soft computing methods for
selecting the required hand configuration from a set of predetermined hand
preshapes. The second way of approach mainly deals with force closure analysis in
the grasp after contacts with an object have occurred. There, for a specific grasped
object, energy changes in the fingertips are considered with contacting fingers
modeled linearly by elastic springs. This leads to the kinematic analysis of grasps in
terms of withstanding disturbances (stability) and having the ability of imparting a
desired velocity (manipulability). These approaches focus on the interactive
information between fingertip models and object surface constraints and do not put
forward a suitable model of finger dynamics from preshape to grasp after contact.

Considering the above shortcomings of the current literature and
advocating that preshaping of a hand and manipulation of an object can not be
investigated separately, we attempt at formulating an appropriate search method
combining the low-level contact parameters in joint spaces with the high-level task
specifications and object properties in the framework of optimal preshape closure for
better manipulation of an object. Noting that one can not scribe with a pen grasped
like a hammer, manipulation task characteristics which are generally the stability and



manipulability criteria should be not only taken into account for grasping and
manipulating an object but also for preshaping and closing the hand upon the object
with that preshape.

Our study bridges the gap between the two ways of approach that
predominates works on robot hand prehension based on the following objectives:
Consider a robot hand that has entered the hand workspace. The wrist is then kept
fixed and the closure of the preshape on an object is about to begin.
Preshaping Objective 1 ; Given final landing points, determine, from the initial entry
hand posture, fingertip trajectories of the closing preshape so that sequences of hand
postures at discrete points of the trajectories do not differ considerably from each
other (minimization of energy in motion) and fingertips contact the object very close
or on the predefined landing points with an energy very close or equal to the required
one by the manipulation task in terms of desired manipulability and stability. Our
methodology equally meets a second objective which is the reverse of the previous
one. Preshaping Qbjective 2 : For this problem what is given are the optimal
fingertip trajectories computed according to Objective I for a fixed set of landing
points on an object, desired manipulability and stability derived from task
requirements and from different set of initial points sampled on the boundaries of the
hand workspace. Among all these trajectories choose the closer initial hand posture
(optimal initial preshape) to the arrival posture of the hand just about to enter the
hand workspace attached to a robot arm. Let’s remark that the final landing points
assumed given can be an outcome of a classical grasp analysis.

1.4. Goals of the Thesis

Finger coordination, finger trajectory planning, and task planning are not
well established techniques for multifingered hands. However, the solution to these
problems is indeed very important in the automation of object handling with
multifingered robot hands. In order to reach a valid solution, satisfying each of the
objectives stated above, one must put forward proper task specific measures
concerning the preshape stability and manipulability. Preshape control is based on
coordinated path planning of fingertips in the presence of obstacles within the
coordinated action space constrained by the given preshape. Each finger follows



without colliding into each other, a trajectory that participates to the coordinated
action of the hand that should be optimally preshaped for a certain task.

Determining an optimum hand preshape that will lead to a grasp that
provides the required task oriented manipulability and stability for a predefined
object is the main concern of our objectives. One of the two major contributions of
this thesis work is the parametrization of control in the preshaping phase prior to
grasp. Our second contribution is regrasping control posterior to the grasp phase.
This second focus of the work is extremely important, because we aim at robot hand
operation in an unstructured and uncertain environment. An error or disturbance that
causes a change in the orientation of the object results in two probable cases: if the
object is already grasped, the stability of the grasp must be regained or if the object
has not been grasped yet, a new preshape must be formed. To this end we must
formalize a preshape optimization using appropriate measures of stability and
manipulability and also transitions between different grasps.

1.5. Methodology

Towards the parametrization of hand closure, we decompose the hand
motion into two motion characteristics: the divergence of the fingertips and the curl
of each finger. When manipulating an object with a multifingered robot hand,
rotations given to the object are due to the curling of fingers in different motion
planes which results in vortices of different directions and intensities. In our
apprdach, vortex theory proved to be highly efficient in parametrizing manipulation
control.

In redundant systems where control using inverse kinematics does not
yield unique solutions, direct kinematics is heavily utilized as a control model
providing a unique map from joint space to Cartesian space. The redundancy in the
control search space is somewhat overcome with the addition of task specific
constraints, in terms of stability and manipulability measures that are formulated
using concepts of vortex theory.



Our trajectory generation model for preshaping is a nonlinear
optimization problem with nonlinear, nonconvex constraints and unconnected
feasible regions. The domain of the solution may contain multiple extrema, and part
of a solution may harm the other parts. Both the excess numbers of degrees of
freedom in grasping with a robot hand and every day changing technology with
economical demands create a substantial problem for traditional control and
optimizing strategies, so that an efficient adaptive optimization strategy, that will be
loosely dependent on prior knowledge of the solution, must be utilized. Being an
adaptive search strategy, GA is chosen as our search algorithm to overcome this
overwhelming complexity. Figure 1.1 presents our “Optimal Finger Trajectory
Generation System” producing a sequence of optimal hand postures in robot hand
preshaping closing optimally on an object.
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Figure 1.1. Structure of preshape formation using GA

As seen in Figure 1.1, GA processes a set of hand postures in order to
produce new ones in a cyclic manner. During this cycle the best member from the
produced hand postures is selected and added to the sequence of hand postures



forming the preshape trajectory. This cycle ends when the desired trajectory is
completed. In this process, GA works on hand postures only; it does not utilize any
other model such as heuristic grasp models or closed form dynamical expressions for
deciding on the preshape trajectory.

GAs do not need to possess an explicit model of behavior in redundant
environments with multiple extrema. Also their intrinsically parallel search ability
has the advantage of distinguishing what is important from what is irrelevant in such
environments. Not only the GA architecture has to be designed for our specific
problem in terms of coding parameters and formulating the necessary costs, several
modifications to GA operators have revealed to be necessary for increasing the
performance of the optimal search method (GA).

1.6. Outline of the Thesis

Our thesis work aims at the construction of an optimal sequence of hand
postures in the closing of a preshaped hand using GA’s. To this end, we provide in
Chapter 2 the necessary review of mathematical tools together with a survey of the
most current related works.

Chapter 3 provides the formalism of our optimal preshaping and
regrasping strategies. The testing of our approach is performed in Chapter 4 where
illustrative examples are given together with detailed discussions. The thesis ends
with concluding remarks and suggestions for future work in Chapter 5.



CHAPTER 2

SURVEY

2.1. Related Work

Complex applications, which need higher level of dexterity, more
versatility and more adaptability in end-effectors prompted researchers to explore
increasingly sophisticated manipulator designs to improve grasping and object
manipulation. The human hand, being able to support a wide variety of dexterous
manipulation tasks is a good aim and research tool for researchers both in designing
multifingered robot hands and in stating grasp strategies. Several articulated robot
hands were developed for analyzing the grasping and manipulation of objects [1].
Among them, the Anthrobot-III which is available in the Robot Hand Laboratory of
the Department of Electrical and Electronics Eng. in Middle East Technical
University, is manufactured based on a human hand model with five fingers and a
palm, so that it bears consistencies with both anthropomorphic and anatomical
features.

Regarding the similarity between the tightly coordinated two robot
manipulators (TCTR) and multifingered hands, Chien et al. [2], introduce a new
configuration space. This configuration space contains the state space information
about all robot joints that maps into a unique configuration of the TCTR in the world
space. However, more than robot posture defining its configuration, changes in joint
space induce a robotic motion which is a continuous action between the initial and
final positions requiring the generation of a trajectory. Path planning interacts
generally with real-time motion control and must involve obstacle avoidance.
Collision free trajectories are obtained in [3] using a multi-layered roadmap approach
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necessitating ‘the knowledge about the starting and final configurations of the end
effector. There, the problem of motion planning in 3-D is reduced to a number of
suitably chosen 2-D surfaces. The artificial potential field approach is a state space
map applied to collision avoidance for all manipulator links [4]. In this work, a joint
space artificial potential field is used to satisfy the manipulator joint constraints. A
later work [5] uses potential fields to implement an economical descriptive aid for
complex manipulator configurations, and demonstrates examples for preshaping a
dexterous hand. The problem of finding where to place or how to move a solid object
in the presence of obstacles is discussed in [6]. The solution of this problem is very
important for the automatic planning of manipulator-transfer-movements like
grasping an object and placing it on an assembly layout. That paper also considers
planning transfer movements so that collision avoidance and a safe grasping are both
satisfied.

One of the most popular models used in the study of motion
characteristics of multifingered hands is the three-fingered Salisbury hand. Hunt et
al. [7] identify the general criterion governing the gain or loss.of workpiece freedom
due to the mixture of in-parallel and serial actuation of multifingered hands by using
the concepts of screw theory and reciprocity. Another approach [8] using the
Salisbury hand, considers the determinant function of the finger Jacobian matrix, and
establishes a criterion to find the optimal grasp configuration for a given finite
displacement of the workpiece. The choice of grasp points is an important factor in
task oriented grasping, since if the contact points on an object are not properly
determined, then no combination of finger forces that satisfies the squeezing
constraints at contacts would yield the desired motion.

Based on the analysis of the grasping mechanics, several criteria are
defined in [9] for qualitatively choosing the grasp points on planar objects. The
researchers extend the analysis of planning grasp points and the optimization of
compressive finger forces to the grasping of solid objects with four contacts. In order
to reduce the complexity of finger force calculations, they also offer a model which
decomposes the finger forces at grasp points into manipulation forces and grasping
(internal) forces.
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In the literature, research works do nof remain only at the contact level,
but human grasping is also investigated for the task based modeling of robot hands.
Studying a set of high-level descriptions of tasks relevant to both humans and robots,
a grasp representation called the contact web is generated in [10] and the observed
human grasp is mapped into this web in order to program robots in performing
grasping tasks. Using the results obtained from human grasping, Stansfield [11] deals
with the design and implementation of a system that generates grasps for unknown
objects by utilizing the high-level knowledge about the relationships between the
object features and the set of valid grasps for the object. The work consists of two
stages: the approach phase towards the object with a proper orientation of wrist and
hand preshaping, and the adjustment phase. Cutkosky [12] presents an expert system
that performs grasp selection in the manufacturing domain. Information about grasp
parameters is given to the system as input by the user and the system utilizes them to
choose an appropriate grasp. In both of the latter works the preshape is chosen from a
predetermined set relevant to the object shape.

All these works manage to produce valid grasps, but unfortunately they
miss the notion of preshaping in the manipulation of an object. We must underline
that it may be possible to produce a useless grasp, though it satisfies all the necessary
stability conditions (i.e., scribing with a pen grasped like a hammer). Consequently,
task specifications in terms of necessary motions to be undertaken together with a
least amount of stability change the hand into a grasp-specific gripping tool at the
preshaping phase.

Li and Sastry [13], use the task requirements as a criterion for choosing
optimal grasps. In a later work [14], they formulate the grasp quality measures using
grasp stability and grasp manipulability notions. Their schemes either assume rigid
attachment of fingertips to the object or are open loop and do not exhibit any
appropriate contact model between the fingertips and the object. Li and Sastry study
the object-to-finger dynamics with point contact model. They devise a grasp planning
algorithm and give basic laws for coordinated control of multifingered robot hand
manipulating an object. They also show that the redundancies of the robot can be
used to achieve additional objectives like collision avoidance with environmental
obstacles and singularity avoidance.
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The stability and manipulability concepts and their measures are
introduced for classification of grasps. Nguyen and Stephanou [15] present a
parametric model of prehension for multifingered robot hand which essentially
deduces low-level contact wrench p:arameters in joint spaces both from high-level
task specifications and object properties of task-object topological spaces, and from a
topological space of hand shapes. They define four terminal positions: fist, planar-
convergent, planar-divergent, all-finger-in-opposition, and use this model in
characterizing a grasp as a combination of these terminal positions. Their model
allows Sastry’s mappings [14], with a modification brought to it, to compute stability
and manipulability conditions from the joint parameters. The notions of
functionality, distribution of power, precision and support to a set of hand
configurations are introduced in terms of finger characteristics. Nguyen and
Stephanou [16], propose an algorithm for the derivation of hand preshapes from a set
of task-object properties grouped as geometrical, topological, functional, and
behavioral. Having assigned a static property as a point in space to the hand
preshape, they disregard the kinematic properties that preshaping imparts to the
object after contact occurs.

Erkmen [17] introduces a different approach to hand preshaping by
decomposing the manipulation into two motion characteristics which are the
divergence of the fingertips in acquiring a stable grasp and the curl of each finger
closing over the object. The hand flux and hand curl are defined for providing a
mechanism to map high level grasp requirements defined in [13,14] to low level
kinematics. Stating that the preshaping of a hand and the manipulétion of an object
with the same hand is a continuous and inseparable process in the grasping task, one
generating the initial conditions of the other, the preshaping manipulability and
stability measures formulated in [18,19], using the concepts of vortex theory lay
favorable grounds to manipulation after that contacts with the object occur. This
work forms the basis of our stability and manipulability criteria for the robot hand
preshaping.

All these studies try to define human like preshaping and grasping. They
also state stability and manipulability measures but one area remains less explored,
that is the area of how those preshapes and actual contacts will be reached. What is
needed in solving a problem in this area is an efficient adaptive optimizing strategy
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that will be loosely dependent on prior knowledge of the solution, because the
excessive number of degrees of freedom creates a substantial problem for traditional
control and optimizing strategies. As introduced in [20], simulated annealing is a
useful search algorithm for finding the near global optimum to this kind of problems.
It is a stochastic computational technique derived from statistical mechanics for
finding almost optimum solutions to large scaled problems. Derived from simulated
annealing, Genetic Algorithms (GAs) can be chosen to handle this overwhelming
complexity. Besides the ease of adaptability, the GAs do not need to possess an
explicit behavior model and search the redundant environment in an intrinsically
parallel fashion, so that they can easily find out which is important and which is
relevant.

A GA differs from other search techniques by the use of ideas taken from
natural genetics and evolution theory [21,22]. One characteristic of the algorithm is
that it works with a population of strings, searching many peaks in parallel. By
employing genetic operators it exchanges information between the peaks, hence
reducing the possibility of ending at a local extremum by missing the global one. The
second characteristic of GA is that it works with a coding of the parameters, and not
the parameters themselves. Thirdly the algorithm only needs to evaluate the objective
function to guide its search. There is no requirement for derivatives or other auxiliary
knowledge. The only available feedback from the system is the value of the
performance measure(fitness) of the current population. Transition rules in GA are
probabilistic rather than deterministic. The randomized search is guided by the
fitness value of each string and the comparison of this string’s fitness to the others.
Using operators taken from population genetics, the algorithm efficiently explores
parts of the search space where the probability of finding improved performance is

high.

Zhao et al. [23,24] handle path planning of a mobile manipulator system
which is used to perform a sequence of tasks specified by locations and minimum
oriented force capabilities. The purpose is to find an optimal sequence of base
positions and manipulator configurations for performing a sequence of tasks given a
series of specifications. This optimization problem is nonlinear with nonconvex
constraints and unconnected feasible regions. In addition, manipulator mobility and
redundancy makes the problem much more difficult. The search method they choose
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is GA with a penalty function for implementing the constraint violations and a
tangent function for accentuating the relative Signiﬁcance among population
members in later generations. In another work [25], the problem of point to point
motion of redundant robot manipulators working in environments with obstacles is
solved using GA and the positional errors of the end-effector are minimized while
avoiding collisions.

In [26], a method of distributed decision making for the path planning is
proposed for a structure organization of cellular robotic system (CEBOT) which
consists of a large number of autonomous robotic units or cells. A proposed genetic
algorithm is introduced allowing local evaluation of fitness function for a path
planning procedure.

Applications of GAs are by no means limited to the area of Robotics but
extend to various application areas such as problems of estimating poles and zeros of
a dynamical system in designing an adaptive controller, based on these
estimates [27]; implementations of fuzzy logic controller for a laboratory acid-base
system [28], implementation of a finite state automaton with multi-parameter
encoding [29], design of a communication network, the very large scale integration
circuit layout, the traveling salesman problem, image classification and pattern
recognition [21,22,30]. Moreover, many studies are present in the literature some of
which brings new notions into the Genetic Architecture, while others explore better
GA performance.

Maclay and Dorey [31] implement performance measures as a stopping
criterion in the identification of vehicle drivetrain dynamics using GA. A number of
models of the engine and drivetrain system have been identified for a range of
different engine speeds in each of the first, second and third gears.

In [32], the optimal graph matching problem, which is NP-complete, is
approached using GA. Graphs, providing a pattern structure description, make use of
the information related with the features available for recognition. The presence of
noise and distortion makes this matching extremely difficult, but GA overcomes
these bottlenecks. Using a coding that resembles the Traveling Salesman Problem
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and relating the fitness function to the value positioning of the chromosomes not
their orderings, Krcmar and Dhawan [32] explore the effects of population size and
number of generations needed for an optimum solution and conclude that an
underestimation of population size would make GA a rather stochastic search
aigorithm, as the population size is closely related with the complexity of the
problem. Besides they show that GA needs a certain number of generations in order
to exploit the search space and that any choice of extremely large population size
would not improve the performance of GA.

Choosing proper parameter settings for a specific GA application is not a
trivial task, because any poor setting would decrease the performance of GA. In [33],
a new technique, that can also adapt the operator probabilities based on observed
performance of operators during the run is introduced for setting the probabilities of
genetic operators in the application. In that work, operators with good performance
other than binary crossover and binary mutation are also mentioned. In a later work,
Lee and Takagi[34] design a fuzzy knowledge-based system for dynamically
controlling GA parameters such as population size, crossover rates and mutation
rates.

A different type of crossover operator, called analogous crossover, is
introduced in [35]. This operator is designed to work with order dependent
production programs where varying length strings are considered. It is based on
matching corresponding crossover points according to the function of the rules at that
points. Being not related to the respective position in the strings, analogous crossover
resolves ambiguities arising during recombination of varying length, order dependent
production programs.

Deb and Goldberg [36], compare the performance of crowding and
sharing methods on a number of test functions. They consider two different sharing
functions according to the similarity of the individuals either in decoded parameter
space or in the gene space. The distance between individuals in decoded parameter
space is named as phenotypic sharing. On the other hand the Hamming distance
between strings (number of different alleles) represent the genotypic sharing. As a
result they show that GA with sharing is able to converge and distribute trials at all
the peaks of the functions, whereas GA with crowding is unable to maintain
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subpopulations at all the peaks. GA that runs the search on many subpopulations is
named as distributed GA. Distributed GAs allow occasional identification and
exchange of information among subpopulations. Tanese [37], defining the terms
Migration-Interval and Migration-Rate for distributed GA, show that distributed GA
not only finds better solutions then the traditional GA but also maintains more fitted
populations.

Premature convergence being the loss of population diversity before an
optimal value is found, is a serious failure of GAs because the decrease in the
population diversity tempers the improvement of search. In order to keep the
population diversity three strategies are handled [38]: i) the mating of dissimilar
(high Hamming distance) individuals is encouraged, ii) a position-wised crossover
operator, the uniform crossover, is used, and iii) the discarding of similar individuals
during reproduction is adapted. Though these strategies, having more disruptive
effects, contradicts with the implicit parallelism of GA, they maintain the continuity
of improvement of search with increasing number of generations. In a different
work [39] which deals with optimization of neural nets using GENITOR, a type of
GA, population diversity is monitored by measuring the Hamming distance between
parents during reproduction. In order to allow the convergence toward an optimum,
the mutation probability is held at a much lower rate when the population is diverse,
but with the decrease in the diversity of the population, probability of mutation is
increased for introducing new genetic material into the population.

The design task of binary phase-only filters in a pattern recognition
application is studied with GA in [40]. These filters exceed the pattern recognition
ability of the classical matched filters. Stochastic remainder selection operator, a two-
dimensional crossover operator, a diversity based mutation operator and a survival
operator are used in this GA. The comparison of the signal-to-noise ratio in the
output planes of the image to be recognized with the image to be rejected is used as
the fitness function. The chromosomes are decoded into 16x16 bit matrices. A
diversity measure is stated based on the allele value at a specific position in the
chromosome for the whole population. This measure is then applied for changing the
mutation probability of any bit position: the higher the diversity at a particular
position in the chromosome, the lower the probability of mutation for alleles at that
position. In a later work [41], the effect of varying the probability of mutation over

17



time and across integer représentation is examined. In this work, Fogarty studies four
mutation regimes, i) constant mutation probability across all bits and over all
generations, ii) exponentially decreasing mutation probability over generations,
iii) exponentially increasing mutation probability o:i'er bit representation of each
integer, iv) a combination of the last two regimes and he finds that improvement in
the performance of GA can be maintained by a varying mutation probability.

Another important research subject in GAs deals with what the approach
will be to the constrained function optimizations, involving problems where a portion
of the search space contains infeasible solutions. Richardson et al. [42], studying
penalties on the strings which fail to satisfy all the constraints, conclude that i) better
performance can be reached when the penalties are functions of the distance from
feasibility, ii) the cost of reaching the optimum solution must be included in penalty
functions, and iii) penalties should be close to the maximum allowed error from the
optimum. Powell and Skolnick [43], show that large constraint violations would
cause immature convergence due to the fact that when the majority of population is
composed of individuals that violate constraints, the remaining part being far from
the optimum would quickly dominate the population as they meet the constraints.
They also add that in the case when constraint violation is small, there will not be a
difference between good and bad individuals, so that the population can be
dominated by individuals that violate constraints.

In the balance of this thesis, we base our work on multifingered robot
hand preshaping and regrasping using GAs. We model a five fingered robot hand
with four joints in each finger including the thumb. This model having twenty
degrees of freedom creates a very large and redundant search space. We overcome
the redundancy in the search space with the addition of task specific constraints, of
stability and manipulability which are formulated using concepts in vortex theory.
Under these characteristics of the problem in hand, GA is used in this thesis in
reaching an optimum hand preshape that satisfies the task specific conditions in
terms of manipulability and stability providing in this manner the best hand-object
contact status to initiate the manipulation.
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2.2. Overview of Genetic Algorithms (GA)

GAs are search procedures that use random choice as a tool to guide a
highly explorative search through a coding of a parameter space. They differ from
other search techniques by the use of ideas taken from natural genetics and evolution
theory. GAs, providing robust search in complex spaces, are not affected by the
complexity of the region, but exploit the region as a whole not restricting themselves
to small search spaces, and accumulate search around the optimizing points, as a
reward. Besides, GAs are computationally simple yet powerful in their search for
improvement, and they are not fundamentally limited by restrictive assumptions
about the search space.

2.2.1. What is GA?

GAs are search algorithms based on mechanics of natural selection and
natural genetics. They were invented to mimic some of the processes observed in
natural evolution. The resemblances of GAs with the natural phenomena can be
abstracted into an algorithm with the following outlines and the strict analogy
between the nature and genetic algorithms is illustrated in Table 2.1 [22].

1) Solutions to the problem are encoded as chromosomes,
ii ) An initial population of solutions is created,

iii JAn evaluation function for rating solutions in terms of fitness(objective
function value) is adapted,

1iv )Genetic operators are used for altering the composition of offsprings.
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Table 2.1. Analogy between Nature and Artificial Genetic Algorithms

Genetic Algorithm Natural
string chromosome
feature, character, or detector gene
feature value allele
string position locus
structure genotype
parameter set, a decoded structure phenotype

GAs consist of a string representation of parameter(s) in the search space,
a set of genetic operators for generating new search points, a fitness function to
evaluate the search points, and a stochastic assignment to control the genetic
operators. They combine survival of the fittest among string structures with a
structured yet randomized information exchange to form a search algorithm. Being
different than a simple random walk, they efficiently exploit historical information to
speculate on new points systematically with expected improved performances. GAs
are different from traditional optimization and search procedures in the following
ways [21,22] :

i) They work with a coding of the parameter set, not the parameters
themselves. The parameters are like molecules, and GAs deal with the
atoms forming these molecules.

ii ) They form a population of strings not a single one and look globally at the
search space. The search set is crowded that is, it is not restricted to a
portion of the space. However as iterations evolve, the generated population
becomes crowded around the best points.

iii )For performing an effective search, they only require objective function
evaluations (fitness values) associated with individuals, not derivatives or
other auxiliary knowledge, and do a blind search through sampling.

iv )They use probabilistic transition rules instead of deterministic rules. The
random search among the population rewards regions with likely
improvement.
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Exploiting the accumulated information about an initially unknown
search space in order to guide subsequent search into useful sub-spaces is the key
point that makes the GAs attractive. Below GA’s basic differences are explained:

Representation : Usually bit strings are coded using binary alphabet
which proved to be an effective representation mechanism in unknown
environments [23,24]. Alphabets other than binary notation are also used in some
industrial applications[22] but the choice mainly depends on the task. Any parameter
dealt within GAs finds its representation in string structures after a mapping
algorithm. The precision needed determines the length of the string representation.

Initialization : The initial population is created randomly in general and
a well adapted population is reached from the initial random population, but for some
works in industry more directed methods are utilized like perturbing the results of a
human solution to a problem[22,30].

Evaluation Function : GAs are usually implemented to take the single
value returned by the evaluation function and use it to determine the reproduction
fitness. The evaluation function is the link between the GA and the problem to be
solved. This evaluation function plays the same role in GAs that the environment
plays in natural evolution. Robustness of GA depends on insensitivity of GA to the
way with which fitness function evaluation is done. In addition, GAs continue to
work well after evaluation has been changed in an unexpected way.

2.2.2, Genetic Operators

The question of how a simple GA produces good results is hidden in the
basic operators the algorithm uses:

Reproduction, being an artificial version of natural selection, performs a
selection algorithm among strings in the population such that the highly fit strings are
rewarded and form the large portion of the population in the next generations. There
are many selection schemes such as roulette wheel selection, stochastic remainder
sampling, etc.
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Besides these selection schemes, a number of reproduction techniques are
also available [44]: i) generational replacement where the whole population is
replaced by offsprings; ii) generational gap replacement where a portion of the
population is replaced by offsprings; iii) steady state reproduction where only the
worst members of the existing population is replaced by offsprings having better
fitness values; iv) selective breeding which forms a new population from the best
individuals taken from the populations of parents and offsprings.

Although producing new populations crowded with m;)stly fit
individuals, the adopted reproduction scheme is not enough for exp101tmg the whole
search space. This deficiency is covered by another operator: 5

Crossover operator is a structured yet randomized information exchange
between strings, so that different characteristics can easily be compared ‘As a
consequence of this exchange of information between individuals, unsearched parts
of the population get a chance for being explored. The crossover operator is not a

single operator but it consists of n by x different combinations of operators whefe T
is the string length and x is the number of crossover sites. ay ©

Mutation : Even though reproduction and crossover effectively search
the problem space, they may cause irrecoverable loss of some potentially important
informations. In order to avoid this loss or at least to have a chance of recovering this
information another operator, mutation, must be utilized. In simple GA, mutation is
the occasional random alteration of the value of a string position. Mutation, walking
randomly through the string space effects the long length strings more.

For increasing the performance of GA, some tools which usually
modifies the selection are adapted.

Elitist Model : In this model, the number of copy of the best individual
in the next generation can be a fixed proportion of population size or can be
calculated according to the ratio of its fitness to the nearest individual, so that the
best individual never goes out of scope.
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. Fitness Scaling : In order to exert selective pressure between competing
individuals in a population, fitness value must be scaled. This scaling mechanism
prevents the population to undergo both an immature convergence in early
generations and a random walk in later generations where equally weighted )
individuals form almost all of the population. The scaling mechanisms can be
classified as ranking method, windowing method, functional normalization, etc.

Hybrid Schemes : When the problem specific information exists, a
hybrid genetic algorithm can be considered. In a hybrid scheme, GAs are combined
with various problem specific search techniques. As a result, GA finds the search
locations and the problem specific convergence technique, for example the hill
climber improves the convergence to the optimum.

2.2.3. Schemata, the Similarity Templates

Schemata, the plural of schema, are similarity templates describing a
subset of strings with the similarities at certain string positions. Schemata provide the
basic means for analyzing the net effect of reproduction and genetic operators on
building blocks contained within the population. In GAs, the building blocks are
short, low-order, highly fit schemata. There are two terms related with the schema:

Schema Order, o(H) : is the number of fixed positions in the schema.

Schema Defining Length, d(H) : is the distance between the first and
the last specific string positions in a schema.

For example in a population of binary strings of length six, the schema
1**0*1 describes the set of all strings with 1s at positions 1 and 6 and a zero at
position 4. The “*”
a 0. The order of this schema is 3 and its length is 5. The fitness of a schema is the

average fitness of all strings matching the schema.

is a “don’t care” symbol; positions 2, 3 and 5 can be either a 1 or
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The fundamental theorem of genetic dlgorithm (Schema Theorem) states
that high-performance, short-defining length, low;:order schemata receive at least
exponentially increasing numbers of trials in successive generations because
reproduction allocates more copies to the best while crossover can not disturb short-
defining length schemata with high frequencies and mutation is fairly infrequent and
has little effect. Here we must mention a formula [22] relating the fitness value, order
and defining length of a schema with the number copies of the same schema in next

generations.
m(H, ¢ +1) = m(H, 1) *3@—)*(1 —p* S _ o) *pm)
f (-1

where H : represents the particular schema.
Pe : probability of crossover.
P : probability of mutation.
f(H) : average fitness of strings in the schema.
f : average fitness of the entire population.( Z f/n ).
f; : fitness value of an individual

m(H,t) : number of representations of a schema.

I : length of the string

Good GA performance requires the choice of a high crossover
probability, a low mutation probability (inversely proportional to the population size)
and a moderate population size. When the population size is small, GA can not
exploit the whole region, but when the population is too large, GA lacks from speed.

2.2.4. Flow of an Genetic Algorithm

Any GA begins by randomly generating a population of fixed size with
individuals of fixed length. These individuals are usually bit strings and they
correspond to the points in the solution space. The string representations are then
evaluated with some objective function and assigned a fitness value that is based on
the quality of the solution represented by the string. Fitness values whether scaled or
not are then used for producing new individuals (reproduction). These individuals are
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manipulated by crossover and mutation operators to form a new generation
containing more efficient members.

These new strings are again decoded, evaluated and transformed using
the basic operators in GA until convergence is achieved or a suitable solution is
found. During all these procedures crossover and mutation operators process the
strings with their respective probabilities.

Although the implementation of operators and coding may vary for
different problems, the basic flow always remains unchanged, enabling a modular
programming,.

2.2.5. GAs in Our Work

GA cuts across different hyper planes to search for improved
performance. It reduces the complexity of arbitrary problems. It discovers new
solutions by speculating on many combinations of the best partial solutions contained
within the current population. Though GAs have no convergence guarantees in
arbitrary problems, they crowd the population in the neighborhoods of the optimizing
points in the search space.

The model of a robot hand requires adjustable number of joints and
fingers. Any model for a specific robot hand working in an environment must also be
capable of adapting to changing conditions in the environment. GAs dealing only
with the coding of parameters and paying attention only to the function evaluations
appear to be very promising for changing environmental conditions and also for
modeling different types of multifingered robot hands.

In the preshape phase of a multifingered robot hand, the hand assumes
different shapes. Any study on the usefulness of these shapes must cover a crowded
space which can not be thoroughly handled using traditional search algorithms.
Taking into consideration that GAs not only would reduce the complexity of this
preshaping problem but also would discover new solutions by speculating on
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different combinations of best partial solutions within the current population, we
selected GA as a search procedure for robot hand preshaping and regrasping.

2.3. Manipulability and Stability: a Mathematical Background

This section introduces our vorticity based manipulability and stability
measures in robot hand preshaping, but starts with an overview of previous grasp
quality measures and basic concepts of vortex fields encountered in the literature.

2.3.1. Approaches to Grasping with Multifingered Robot Hand

This section is devoted to the concepts related with the prehension
models for multifingered robot hands, their kinematics, and the manipulability and
stability concepts.

As opposed to the previously developed schemes surveyed in Section 2.1
that neither study dynamic fingertip attachment to the object nor use feedback about
fingertip positioning, in [14], coordinated control of a multifingered robot hand
manipulating an object and measures for grasp planning are developed assuming a
point contact model.

zl\

Figure 2.1. Coordinate frames for robot hand and a rigid body
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Li and Sastry assumed a rigid body moving in the vicinity of a robot
hand as in Figure 2.1, where C, and C, represent palm and body coordinate frames in
R’, respectively and C; being the ith fingertip contact frame. They showed that the
velocity of C,; relative to C, can be related to the velocity of C, relative to C, by the
fc;llowing transformation

[;] [A; A%E;( 1,)1 ] @3.1)

where A; denotes the orientation of C, relative to C, and vector r;, denotes position of
C; relative to C,, and the cross product operator S:R®— R’ is defined by
Equation 2.3.2 with the properties:

0, 0 o, -o,
S|lo, ||=|-®, 0 o, (2.3.2)
0, o, -0, 0
a) S().f =0 xf Vo,f eR’
b) A.S(0).AT =S(Aw) VA eR*™

In a similar way, the force f;,, and torque my, exerted on the body in R’
can be equated to generalized forces in the body frame.

£ A, o f
[m“:p] [S( bijﬂ, Aﬂ,}[mb;] (2.3.3)

Let n; be the number of independent contact wrenches that can be applied
to the body through the ith contact and T, SE(3), the wrench space of the object in a

manipulation system with a k-fingered robot hand. The following definitions can be
made:
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Definition1: A contact on a rigid body is a map
y;:R™ — T SE(3) given by

Xi

X, X.
AR Ap 0 . ;!
/7H I _)[S(r,,,)An, AJB‘ : |=TB;| ¢

xini xini xini

Here T; is the transformation matrix specified in Equation 2.3.3, and

B, e R*" is the basis matrix which expresses the unit contact wrenches in the
contact frame.

Definition 2: A grasp map for a k-fingered robot hand holding an object

k
isamap G:R" - T,SE(3), n=Xn, givenby:
i=1

G(Xyy5 s Xpn, X" "5 Xy, ) = W (X Y (X )

B, 0 0 0

0 B, . by
US| PO N 2

. - - B, 0 i

|0 0 -+ 0 B

Note that the grasp map transforms the applied finger wrenches
expressed in the contact frames into the body wrenches in the body frame. As any
normal force can only be exerted unidirectionally and friction forces are less than the
normal force times the coefficient of friction, the domain of the grasp map must be
restricted to a proper subset of R”. In addition, the null space of the grasp map G is
the space of internal grasping forces. Since the applied forces in null space do not
effect the motion of the object and are represented by internal forces in a grasped
object, this set of nonzero internal grasping forces is needed during the course of
manipulation in order to assure that the grasp is maintained. Manipulation in an
uncertain environment requires greater internal grasping forces than the manipulation
under a known environment since the grasp has to withstand many disturbances.
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Let 6, =(8,,...8,, )" denote the joint variables of the ith finger having

m, joints. The velocities of the ith fingertip frame in Cartesian coordinates are related
to the time derivative of 6, through the finger Jacobian by

vfiP - .
[m ]-L(ei)ei

fip

Contact and fingertip frames are located at the same point (r;, = 0), but
their orientations may be different. As a result, the velocity of the ith fingertip frame
seen from the ith contact frame is given by an expression premultiplied by a rotation
matrix:

Ve Ail; 0 |~ - :
P | _ ; J.(60.30. =TJ.(06.)0. 2.3.4
l:mf ] l: 0 Ain; {005, 095, ( )

iP

where A is the orientation of the ith fingertip frame with respect to the ith contact
frame satisfying the equation A, = Aj/A_ A . The motion of the body seen from
the ith contact frame is given in Equation 2.3.1. That equation and Equation 2.3.4 are
not identical but agree along the direction specified by the basis matrix B,,

T T Ve
BiJi(ei)—B,-Tfi[mJ

where T is the transformation matrix specified in Equation 2.3.3. As we have k

fingers, the hand Jacobian is formulated as:
J,(8) =B'J(8)

yielding

. . A\
J,0)6=B"J(0)6 = GT[ o
: mbp

] (2.3.5)
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where 0 = [G,T 6{] » J(6) is the block diagonal matrix of the fingertip Jacobians

J(©) and G is the grasp map. The above equa'éion relates the joint velocities to the
body velocity. The equation relating the joinf torques of the fingers to the body
wrench is the dual of Equation 2.3.5 such that '

T = JiT(ei)BiXi

where Bx; € R’ is the finger wrench expressed in the ith contact frame with x; € R,

representing the vector of applied finger wrenches and n, is the number of contact
wrenches. When the system has k fingers with m, joints in each finger

k
1=JT(0)Bx =J] (0)x with 1eR™"xeR",m=) m,

i=1

Using the definition of grasp map, we have

f v
[ b"}——-Gx with its dual x:cf[ ""}
my,

where A=1J,(8)6=B"J(0)6
2.3.2. Stability and Manipulability of a Grasp

Li and Sastry [14] put forward the grasp stability and manipulability
criteria based on the hand Jacobian and grasp map. A task oriented performance
measure is also used for grasp planning.

Definition ( Stability and Manipulability of a Grasp ) : Consider a grasp
with a multifingered hand with k fingers each of which has m; joints i = 1,....k and
with fingertips having contacts with n; degrees of freedom. Let 8 € R", T € R”
represent joint angles and torques respectively. Then:
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i) For a grasp to be stable, there exist a choice of joint torque t to balance
every wrench, (f,,,my )" applied to the body.

ii ) For a grasp to be manipulable, there exist a choice of joint velocity 0 to
impart every motion, (vy,,@y,)" of the body without breaking contact.

The grasp is stable if and only if the range space of grasp map, G is the
entire R® and the grasp is manipulable if and only if the range space of transpose of
grasp map is the subset of range space of hand Jacobian, R(J,(8)) o R(G").

2.3.3. Grasp Planning and Coordinated Control

The difference of multifingered robot hands from special end effectors is
their capability in doing dexterous tasks like scribing. In such tasks robot hand must
be able to manipulate an object from one orientation to another. The success in these
operations are based on a) the selection of a good grasp on the object and b) the
usage of cooperative action of fingers on the object. In [14], the second method is
used by modeling the task with two task ellipsoids, one in the twist space and the
other in the wrench space. The shape of the ellipsoids in twist and wrench spaces
reflects the relative motion and force requirements of the task, respectively. The
quality measures are defined in order to reach a definition of a performance criterion.

Any grasp £=(G, K, J,) contains the information about the fingertip
positions on the object (G and K) and the postures of the fingers (J,). Here G, K and
J, are grasp matrix, friction cone of the contacts and hand Jacobian, respectively.
Besides any task can be modeled in terms of twist and wrench space ellipsoids. These
concepts can be integrated to define a) The Structured Twist Space Quality Measure,
u,, and b) The Structured Wrench Space Quality Measure, p,, for characterizing a
grasp. If for a given task modeled by twist and wrench spaces, a grasp has higher
structured quality measures than other competing ones, it is termed as a good grasp
for the task. One important point is that the two quality measures can not be
increased at the same time. Therefore the chosen grasp must maximize a performance
measure (PM) defined by
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PM =[p, (@] [, ()] Y €[0]

v is the selection parameter which indicates that the task is motion
oriented if it is greater than 0.5 and force oriented if it is less than 0.5.

In the planning of a final grasp the PM is maximized for the given task
but in order to simplify the problem, sequential placement of the fingers on the object
periphery is considered. Also in the coordinated control algorithm the grasp is
thought to be both stable and manipulable which requires that both the grasp map, G,
and hand Jacobian, J,(0) be full rank. This algorithm bears the following features:
a) a point contact model is used, b) hand dynamics are not neglected, c) both the
desired position and the desired internal grasping force trajectories are realized,
d) rolling motion of fingers on the object can easily be accomplished.

Though these concepts introduced in this section develop a grasp
planning algorithm using the dynamics of the object and the finger, and give basic
laws for coordinated control of multifingered robot hand manipulating an object, they
bear the deficiency of concerning only point contact models. Also no appropriate
landing selection that on determined contact points is introduced and the preshape
closure prior to contact is not taken into account.

2.3.4. Vorticities in the Robot Hand Workspace

We consider a robot hand adopting certain preshape in order to generate
suitable changes of momenta, upon impact, in terms of contact forces on the object
while maintaining a certain stability. These momenta are achieved by vorticities
created in the robot hand workspace by all curling fingers. This workspace is
generally a deformable medium such as air or water at the closure phase of the hand
and a deformable object at the impact phase and at the manipulation phase. We aim
in our work at defining measures of manipulability and stability using vorticities
created by the closing fingers of the preshaped robot hand that are carried forward to
the object after contact as initial conditions for manipulation. Toward this objective,
we provide here a short review [45] of the concept of vorticities in a deformable
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medium and tie this concept to vorticities in the workspace of a closing preshaped
hand.

Figure 2.2. Motion of a fluid particle

Let us analyze a small deformable body in the workspace of robot hand.
Consider two successive states of this body at times t and t + At, as in Figure 2.2. At
time t, we select two points O and A of the body which is assumed to be spherically
shaped. We take O as the center of gravity of the body at time t and denote its
position with respect to the reference point O by r,. The vector r is the position of a
point A on the surface of the body with respect to O . Another vector p represents the
position of a point A on the surface of the body with respect to the center of gravity.
The primed vectors denote the same quantities after an infinitesimal time At. As
v = dr/dt, the decomposition of the elementary displacements of O and A are given
by:

= p! =r'-
dr,=r, -1, dr=r'-r

—_ (AT Ry |
p=r-r, p'=r'-r,

From above, the elementary relative displacement of A relative to O is:

dp=p'-p=dr—dr, =(v-v, )dt
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where v and v, are the velocities of points A and O at time t. Considering the
velocities to be point functions and expanding the velocities in Taylor series and
neglecting the terms greater than the first order, we get

v(r) = v(r,) = v(r, +p) - v(r,) = (p-V)v

hence
dp=(p-V)vdt = |:V-F + %(V X V)X p]dt (2.3.6)

The right side of the Equation 2.3.6 is reached after some algebraic
manipulations and F is the deformation vector (detailed derivation can be found
in [45]). Last formula shows that the elementary displacement can be decomposed
into two parts: (i) a pure deformation vector, gradient of F, and (ii) a rotational
displacement vector, with angular velocity, o , being equal to one half of the curl of
the velocity, v. As dr =dr, +dp, we arrive at a conclusion that the elementary
displacement of any point of a deformable body is the sum of three components: a
translation, a rotation and a deformation; dividing by dt, same arguments can be
repeated for the velocity:

V=V, +V, +V,

where v, =dr,/dt is the velocity of translation, v, =0 xR =1/2(Vxv)xR
is rotational velocity of a point along an instantaneous axis, v, =V.F is the rate

of pure deformation.

Such velocity components are important characteristics of our approach
with which the problem of grasping deformable objects is readily modeled.

The vorticity Q of the velocity is defined as the rotation (curl) of the
velocity of a given circulating point:
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Q=Vxv

By Stoke’s theorem the circulation of velocity along a closed contour is
equal to the flux of vorticity across any surface bounding this contour.

dv.de= [(Vxv)ds
4 S

When no rotational motion exists in the medium, V x v =0 is satisfied.

As the curl of the velocity is zero, the velocity field can be expressed as the gradient
of a potential function, v=Vé.

If the vorticity vector is not zero, then the motion in that region is
rotational and a new vector field, vortex field, can be defined. This field is solenoidal
meaning that divergence of vortex is zero, so that the vortex flux across an arbitrary
closed surface is also equal to zero.

V-Q=0 and fQ,ds=0
S

Here S is an arbitrary closed surface in the corresponding environment,
the robot hand workspace. New vector lines, vortex lines, are formed in the vortex
field whose tangents are in the same direction as the vortex vectors. For inspecting
the vortex intensity, select a small contour in the vortex field and pass vortex lines
through each of the points on this contour. This represents a vortex tube in the vortex
field (Figure 2.3). In this work, we consider vortex tubes generated by the curling of
each finger as a preshaped hand closes ﬁpon an object. These tubes cross the volume
of the hand workspace and an object is under their vorticity effects upon contact.
Let’s choose a closed surface S which has the surface of the vortex tube as its side
surface and its capping surfaces are perpendicular to the vortex tube at two different
points. Also assume A, and A, are areas of these capping surfaces. Knowing that
perpendicular component of vorticity on side surface of the tube does not exist, and
normals to capping surfaces are opposite in direction and the divergence of vorticity
is zero, using Gauss’ theorem we reach to the conclusion that
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QIAI = QzAz

where Q, and Q, are magnitude of vorticity on capping surfaces. The product of the
magnitude of vorticity and the area of the cross-section, is called the intensity of the
vortex tube. This intensity does not change along the tube. As a consequence of
Gauss’ theorem, within a deformable medium, a vortex tube can neither originate nor
terminate. They can either originate or terminate on the boundary of the medium, or
they close upon themselves. Let us keep in mind that, in our approach vortex tubes
will terminate on the grasped object if contact occurs or they will close upon
themselves in the approach phase of the hand. This is due to the conservation
principle of vortex tubes explained in Section 2.3.4.1.

Figure 2.3. Vortex tube

2.3.4.1. Conservation of Vortex Lines

When the vorticity is different than zero in a motion of an ideal medium,
the motion is called vortex motion. The vorticity is directed along the tangent to a
line called the vortex line. These vortex lines are preserved at all times of the motion
(Conservation of Vortex Lines). As the divergence of vorticity is always equal to
zero, we can conclude that intensity of a vortex tube does not change along that
vortex tube (Conservation of the Intensity of Vortex Tubes). This invariance was
established by Helmholtz, the founder of Vortex Theory.
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A necessary and sufficient condition that the vorticities of a vector field
N as well as the vector tubes are preserved is that the Helmholtzian vector of N
(helm N) vanishes [45].

helmN=%Nt——(N.V)v+N.V.v=O

2.3.5. Vorticity Based Manipulability and Stability in Grasps

In our work, we have dealt with the robot hand preshaping, which is the
prior phase of grasping. Manipulating an object requires that the fingertips impart
translational and rotational motions to the object within the workspace of the hand.
These rotations are due to the curling of fingers during the preshaping phase of the
robot hand.

Now assume a closing robot hand as a moving deformable body that
envelops the entire workspace and is at rest at large time values considered as
infinity. Also assume that divergence and vorticity of the velocity is zero except for a
smallest unit volume in the workspace. We can then decompose velocity into two
components with the conditions[45,46]:

V=V, +V,
Condition 1: Vv, =0 Vxv, =0
Condition 2: Vxv,=Q Vv, =0

From the conditions on v, (Condition 1), v, is irrotational so that a

velocity potential ¢ exists:

v, =V}

From the conditions on v, (Condition 2) and knowing that the divergence
of rotation of any vector is equal to zero and normal component of vorticity is
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constant on surfaces of discontinuity, it is obvious that v, is rotational and a vector
potential A exists.

v, =VxA

As a result when the distribution of rotation and divergence in an infinite
space is given and vorticity and divergence are zero except for a small volume, the
velocity field can be denoted by:

v=Vd+VxA

The curl of the velocity of any circulating point (fingertip) is the vorticity
of that velocity having the following properties:

1) When the vorticity is zero, the motion is irrotational and the velocity field
becomes the gradient of a potential function. Fingertips undergo linear
translation without the curling of fingers.

ii ) When the vorticity is nonzero, the motion is rotational and the divergence
of the vorticity is zero. Fingertips close upon an object with curling of
fingers (preshape closure).

iii )When the Helmholtzian of a vector in a vector field is zero, vorticities and
vector tubes in this field are preserved. If such a condition does not hold,
vortex tubes branch out generating bifurcations and the grasp begins to be
unpredictable. Higher number of bifurcations creates chaotic dynamics that
should be avoided for preshaping control.

Within the hand workspace, finger motions of the hand preshape closing
upon an object to be grasped and manipulated, create vortex fields that should be
used in preshaping control. As.this motion takes place in a deformable medium and
no other forces are acting on the fingertips, we can conclude from the third property
of vorticities that any vortex in the vortex field of fingertip velocities is conserved.
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2.3.5.1. Modeling Hand Closure

In[17], grasping dynamics is analyzed in terms of two motion
characteristics based on the concepts of divergence and curl in a vector field.

i) The divergence of the fingertips, and
ii ) The curling of each finger.

The hand closure encapsulates a volume with fingers. In this volume, two
types of slices, link slices and joint slices can be formed (Figure 2.4).

v, % v%? F %%///4//%%2//////%%// Capping Surface
{ A Joint Slice 2
S E e-f'gl |
=
ajLink Slices b}Joint Slices

Figure 2.4. Link and joint slices

Let the hand have m fingers each having n joints. The ith (i=1,...,m) link
slice LS; is a closed curve which is tangent to all the links of the ith finger. The jth
(5=1....,n) joint slice JS; is a planar surface that passes through the jth joint of each
finger. Link and joint slices are not specific to a robot hand and hold for robot fingers
with different number of joints.

Hand Flux (Hand Divergence): Let n; be a unit normal vector of the
joint slice JS;, and let v; (i=1,...,m) be the velocity of the ith fingertip. Here note that
the surface integral of the normal component of a vector function F is the flux of F.
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The limit of the ratio of the flux of the ith fingertip velocity, v, to the
volume sliced by the surface JS; as the volume shrinks to zero, about a point is the
divergence of v;.

Vv, = Al&_rg’—A—l; Hvi .n;ds

The joint slice passing through the fingertips has the special name, of
“capping surface”. The grasping divergence is a measure of the extent to which the
moving mass diverges from a point and is therefore equal to the sum of the
divergences of velocities of individual fingertips which are assumed to have a unit
mass. The total hand divergence through capping surface is

(V.v), =Z(V.vi)

Hand Curl : In order for a path integral c; F.tdc to define a circulation,

it must be evaluated along a closed curve C of a vector function F, defined
everywhere on curve C, with dc being a small curve segment and t a unit vector
tangent to C. Then the ratio of the circulation of fingertip velocity, v,, to the area of
the surface (link slice LS;) enclosed by C with normal vector n:

Vxv, = 1im—1—<j‘vi.tdc
As—)OASC

is the curl of v,. The curl of a functional around a closed curve expresses a rotation or
a curling around. The circulation of the fingertip velocity along a curve on the
boundary of finger’s link slice surface describes the curling around of the finger.

In curling motion the vector field is rotational. The curl of changes of the
fingertip position, r; relates the angular velocity of the entire finger to the joint
angles forming the curvature. In a similar way, the curl of the ith fingertip velocity
relates the angular velocity of the finger to the joint velocities shaping its curvature.
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Each component of the curl vectors defines directional curling of the finger with
respect to its own base. For an m-fingered hand, curl vectors are:

(Vxr), =Z'V><ri
=1

(Vxv), =ivai

i=1
2.3.5.2. Fingertip Vorticities

We express the fingertip vortex of the ith finger as the curl vector of the
ith fingertip velocity, v;. Therefore, the vortex induced by the ith finger is:

Q, =Vxyv,

From section 2.3.1 we know that the ith fingertip frame has a position
with respect to body coordinate frame which has also a position with respect to the
palm coordinate frame so the position r; and velocity v; of the ith fingertip frame are:

vV, =v, —v, =f —F,

p

If center of mass of the object coincides with the object coordinate frame
(rp=r. and v,,=v,.), theith fingertip vortex will be

Vxv,=Vxv, ~Vxv,

which is also valid for all fingers i=1,...,m. Then
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defines a vortex field induced by the fingertip velocities of the hand. In this vortex
field, any vortex is conserved, since there is no external force on the fingertips and
the deformable medium can be considered as an ideal environment where the
Helmbholtzian vector of fingertip vortex ), helm €, is zero during preshaping. When
contact occurs, fingertip vorticities are zero for nondeformable objects, unless the
contact is lost or grasp becomes unstable.

2.3.5.3. Manipulability in Preshaping While Maintaining a Preshape Stability

The resultant vortex €, of fingertip velocities is:

where m is the number of fingers and the summation is vectorial sum. If the vortices
of each fingertip velocities are summed up to zero that is, if the resultant vortex is
equal to zero then orientation of the manipulated object can not be changed by
fingers because any rotation given to the object by any one of the fingers would be
canceled by the others, so a manipulability criterion must be defined for
preshaping [18,19].

Manipulability : If the resultant vortex of fingertip velocities is different
than zero, the preshape is said to be manipulable. If an object is placed between
fingertips, then the object can be rotated about an axis parallel to the direction of the
resultant vortex of fingertip velocities.

Self-Flux of Fingertip Vorticities:
Q; = IQi .n,ds
LS;

is the self-flux of the ith fingertip vortex through the surface of its link slice, where n;
is the unit normal to the ith link slice and €, is the vortex of the ith fingertip velocity.
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Cross-Flux of Fingertip Vorticities:

;= |Q;.nds

Ls;

is the cross-flux of the ith fingertip vortex through the surface of the jth link slice.

If i equals j the cross-flux becomes the self-flux, ¢;. The self-flux is equal
to the multiplication of the magnitude Q; with the area o; of the link slice LS;. As link
slice is a planar surface and vorticity has constant magnitude and a parallel direction
to the normal of the link slice’s surface, the self-flux becomes

Q; =0,;.Q;

1

Flux of the Resultant Vortex : As the resultant vortex is equal to the
sum of fingertip vorticities, the flux of the resultant vortex, ¢, is the sum of cross-
flux and self-flux vorticities of each finger.

0, = ZZ‘Pij

i=1 j=1

Maximum Directional Flux, ¢, is obtained when vorticities €, Q; are
aligned Vi, Vj. Therefore, this extremum flux @, is defined as:

P, =, 2. Q0, 237
i=1

=1

where Q, (i=l,...,m) is the magnitude of the ith fingertip vortex, o; (j=1,...,m) the area
of the jth link slice and m is the number of fingers. Equation 2.3.7 gives the
maximum amount of resultant flux that can be obtained when all vorticities are
aligned, that is when vortex tubes generated by curling fingers are all parallel. The
flux of the ith fingertip vortex determines thze rotation capability of the ith fingertip
velocity. To see this, recall the definition of {the self-flux of the ith fingertip vortex,

(Pi’

43



0, = [Q.nds= [(Vxv,).nds (2.3.8)

LS; Ls;

and apply the Stoke's theorem to the right hand side of Equation 2.3.8 to obtain:.

(Vxv)nds= |v,.tdl (23.9)
! J

L

where t; is the tangent vector to the contour L; which is the boundary of the link slice
LS;. The right hand side of Equation 2.3.9 is the circulation of the fingertip velocity
v; around the contour L;. Circulation of the velocity is generated from the rotation.
The rotation of the velocity implies the rotation of the object that will be grasped by
the hand. The rotation given to the object by the robot hand allows the manipulation
of the object according to the resultant angular velocity of the hand. From these latest
comments, it is easily deduced that the flux of the ith fingertip vortex gives an idea
about the rotation capability of the ith fingertip velocity. The total rotation is
proportional to the rotation imparted to the object and it can be characterized by a
manipulability measure MM that we define as:

Manipulability Measure : is the ratio of the flux of resultant vorticities
through all of the link slices to the maximum directional flux and is denoted by MM.

MM = 2o
?,

If the manipulability measure becomes zero, no motion tendencies exist
that are initiated by the preshape when contacting the object, that is to say that no
means of manipulation with the preshape is possible. When such a preshape with
MM being zero initiates a nonprehensile grasp, it corresponds to a quantification of a
divergent hand configuration. On the other hand, MM is maximum for the fingertip
grasp configuration that is used for precise, fine motion.

The grasp stability and the stability of a preshape are not common in
sense, because during the preshaping there is not any contacts meaning that the
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internal forces are not formed. However, the grasp stability is based on these forces.
As a result a proper stability measure [18,19] must be put for preshaping. This can be
achieved from observations of human hand preshapes, that the increase in the
distance between fingers of a hand shape causes an increase in the stability of the
succeeding grasp. The stability of the preshape decreases with the decrease of finger
divergence upon closure while the manipulation of the object increases, since
increased curling of fingers decreases the divergence by decreasing distances
between fingers and imparts larger rotation to the grasped object. In short the
stability of a hand preshape is proportional with the divergence of fingers from each
other. From this it can be easily understood that the precision hand preshapes bear the
minimum stability.

Stability of Preshape : A preshape is stable if the divergences of the
fingertip velocities are all positive. For an m-fingered hand

V.v,>0 i=1,...,.m

meaning that we deal with a vector quantity v; originated outside the volume v by a
velocity field that will generate compressive forces when grasp is initiated.

It is well known that the divergence V.A of a vector field A is the net
outward flux of A through the surface € per unit volume v. V.A being nonzero -
implies that the vector quantity A originates (has a source) inside the infinitesimal
volume and that this source density is given by V.A.

In the model of a preshape that has the capacity of stably grasping an
object at impact (stable preshape), the vector field A is the negative velocity field of
v; that will generate compressive force on the object at contact. v/'s are then towards
the surface € moving inward volume v and are negative signed with respect to a
vector field v; tending outward the surface (v, =-v;) . The net inward flux of

A = v, through the surface € is — Ivi.nda,and:
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- Iv;.nda

V-vi=——ij-;;v——>o

Consequently V.v;>0 means that we deal with vector quantity v,
originated outside the volume v by a velocity field that will generate compressive
forces when grasp is initiated.

Stability Measure : is the ratio of the average of fingertip velocity
divergences to the maximum divergence of fingertip velocities.

SM = (max(Vv))( ;V J

If SM is near zero, then the stability of the preshape is minimum. SM can
not reach the value zero since this would mean only tensile forces to be present. Thus
for a preshape to create a grasp for stably manipulating an object a minimum stability
should be maintained. Minimum stability occurs for the precision configuration of
the hand where all fingers are in opposition to each other and at very close proximity
of one another. The maximum SM corresponds to the divergent hand configuration
where all fingers diverge from each other, fully extended. In the precision
configuration of the hand, manipulability is maximum, while stability is minimum.
On the other hand, in a divergent hand configuration, stability is maximum, but
manipulability is minimum (duality observation).

It should also be remarked that since V-(V xv) =0 , the divergence of
vorticities is null for all fingers, thus preshape manipulability has zero contribution to
preshape stability as expected.

The observations on the change of both stability and manipulability
measures with respect to each other, reveal the duality between these measures. As a
result, a new performance measure can be stated such that the stability and
manipulability measures are at their possible maximum values for a task oriented
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grasping before the contacts with the object occur. The performance measure,
PM [18], will be:

PM = .MM + (1-).SM a €[0,]

When the variable o is close to one, manipulation of the object is
important for the given task, while stability is preferred for o closer to zero. The
optimization should be done on the performance measure regarding the task and
object constraints for having a “good” grasp.

The stability and manipulability measures defined based on the vorticities
of fingers are used as constraints in our hand preshaping, in order to handle the
redundancy in the multifingered robot hand.

2.3.6. Preshape Stability and Manipulability Compared to Conventional Concepts

Vorticity based preshape manipulability [47] can be easily placed in the
context of the conventional definition of grasp manipulability (Figure 2.5). Toward
this end, we extend the conventional definition [14] by the item (ii) as introduced

below:

i) Conventionally, the grasp is said to be manipulable if for every motion of
the body, there exists a choice of joint velocity 6 to impart this motion
without breaking contact.

i1) Moreover, we assert that the preshape is said to be manipulable if it
initializes a manipulable grasp upon contacting an object. Consequently, a
preshape is said to be manipulable in vorticity terms if for every motion of
the body, specified by (v, ,®y,)" lying in the nonzero resultant vorticity
tube, there exists a choice of joint velocity 6 to impart this motion. This
motion imparted without breaking contacts is generally a helix constrained
by the resultant vortex tube that forms its boundary conditions.
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Figure 2.5. The generalized force and velocity spaces

A grasp is known conventionally to be manipulable, if and only if
R(Jx(0)) D R( GT) where T stands for transpose, R(-) denotes the range space of -,
J.(0) is the hand Jacobian and G' is the transpose of the grasp matrix [14].

Moreover, we add that a preshape is manipulable if G' is defined on a
domain constrained by the nonzero resultant vortex tube. Let's denote this
constrained mapping by G:. Therefore, a manipulable preshape, initializing a G:

constrained mapping obeys the following relations:
R(G;) oR(G") and R(J,(8)) D R(G,)

Just after grasp initialization, when the hand preshape contacts the object, G;‘;
changes into G' and grasp manipulability control that requires R(Jx(0) ) o R( GT)
continues to preserve the preshape manipulability condition that initialized the grasp

in question since:
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R(GT)SR(GT) = R(J,(6)) >R(G") D R(GY)

Consequently, if grasp control is administrated as a condition on R( G:)
instead of R(G") through (Vg »®y,)"  bounded by the resultant vortex tube

boundary conditions, a more constrained control problem is obtained that equally
provides a solution for the initialization phase of grasp triggered by a preshaped hand
contacting the object, and also for the later phase of manipulation.

Conventionally a grasp is said to be stable if for every wrench
(f, »mg,)" applied to the body, there exists a choice of joint torque T to balance

it.

In our work, a stable preshape helps to satisfy (f,,; ,m;,)" €eR® , for
all fingertip i, by its capacity of generating nonzero compressive generalized forces
through positive V.v,. If V.v; <0 [47], tensile forces are generated upon grasping the
object that tend to break away from the contact surface. Thus in this case

(fopi »my, )" €R” where n<6 for fingertip i and this finger can not guarantee
balancing every wrench applied to the object by a corresponding joint torque T.
During manipulation, a minimum stability should however be kept, thus a minimum

number of compressive forces should exist measured by a minimum SM value.
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CHAPTER 3

OPTIMAL PRESHAPING AND REGRASPING:
STRUCTURING THE PROBLEM

This thesis work focuses on the optimal formation of hand preshapes
closing on an object for grasping and manipulating it. In order to define a task
specific preshaping, we adopt definitions of stability and manipulability in terms of
maneuverability of the object without loosing it. This is at the foundation of our
“optimal preshaping for better manipulation” approach.

We assume that the specifications about the manipulation task are the
landing positions of the fingertips of the closing preshaped hand, together with the
stability and manipulability constraints and are given to our model as inputs. Our
method then tries to emulate an optimum closing preshape behavior having minimum
error values with respect to the inputs.

Structuring the problem involves the encoding of the necessary
parameters and the modifications that must be brought to the GA architecture. To this
end, we start this chapter with the problem definition, followed by the identification
of the preshaping and regrasping system in terms of parameters to be encoded in the
GA structure. Classical GA architectures must be modified in order to respond to the
needs of the problem we handle. Thus we also provide in this chapter the technical
contributions we made to the GA architecture both for the preshaping and for the
regrasping problems.
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3.1. Problem Formulation

Grasping and manipulation of an object with respect to a given task is
usually divided into subphases: i) reasoning about the environment, task and objects,
in order to extract the characteristic parameters for the subsequent phases of selection
and control, ii) hand-preshape selection, iii) finger motion control until contacts with
the object occur, iv)securing the grasp by applying internal forces, v) fine
manipulation through finger motion vi) reasoning about the action by evaluating it
and deciding on the next move. Preshaping of the hand, as the name implies is a
preparation for grasping and for manipulation. As there can be many ways of
grasping an object with the robot hand, the preshape must satisfy several constraints
derived from task-object relations.

Our aim is to determine the optimal fingertip trajectories which satisfy all
the given constraints and will determine an optimal “look ahead” preshape control in
order to optimally grasp the object upon impact. GA is applied to this optimal
multipath planning problem where fingers must be regarded as obstacles to each
other. As a result the optimal preshape control being an optimization problem has the
following objectives:

i) The positional errors, E,, of each finger i (i=1,...,5) with respect to their

respective landing contact points must be minimized,

ii ) Errors, E,, and E,, obtained as (MM s - MM urren) @04 (SMiegired = SMeurrent)
from the discretized closing motion of the hand preshape, must be
minimized each with respect to the final shape requirements described by
task specific MM and SM, MMM sired > SMicsired)s

iii )JAny collision occurring between fingers must be avoided or highly
penalized for a valid functioning.

If for the current hand preshape the ith fingertip position is
P.={x., Y.» Z;} and the fractions of the manipulability and stability measures, it
contributes to, are equal to MM, and SM,, respectively and P, MM; and SM;
represent similar parameters for the final preshape, the error calculations for a five
fingered robot hand are computed as follows:
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EPi = ((xﬁ -xci)z + (Yﬁ _yci)2 + (Zﬁ —Z, 2)]/2 i= 1,...,5
E, =|MM,~MM_|
E, =|SM,;-SM_ |

In the line of the objectives stated above, the optimization problem can
be formulated as:

minimize error terms B (i=1,...,5), E,, and E,

subject to collision free finger motion

This objective can be represented in an equivalent mathematical term that
defines an objective function depending on equally weighted error terms.

maximize

c > .
m + s +Z i
1+E, = I1+E, & 1+E,

¢

subject to collision free finger motion

In short, the aim of the optimization problem is to maximize the objective
function by minimizing the error terms coming from- stability and manipulability
measures and the positional errors of each finger, i, without hitting an indefinite
value of ratios. Here, the terms, ¢, c,, ¢; are task oriented coefficients.

In all our study, the final hand preshape is assumed to encapsulate the
contacted object.
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3.2. The Robot Hand Used in the Thesis

Our methodology is first applied to a simulation of a multifingered robot
hand. This simulation model bears anatomical consistency with the human hand. The
number of fingers, the placement and motion of the thumb, the proportions of the
link lengths, and the shape of the palm are defined to keep this resemblance to its
maximum. Although, in the simulation, the widths of links are taken to be zero for
easing the work, limits of finger joint angles are consistent with anatomical and
physiological characteristics of the human hand.

In this study, our methodology is secondly applied to a hardware
available in the “Robot Hand Laboratory” of the Dept. of Electrical and Electronics
Engineering. The implementation hardware is a five-fingered robot hand, the
Anthrobot III (Figure 3.1). Each finger has four joints as in the human hand; two at
the knuckle (responsible for lateral and vertical motion), one between the proximal
and middle finger segments, and one between the middle and distal finger segments.
The thumb has four degrees-of-freedom, allowing it to emulate the human thumb
motion. The human thumb has two joints which provide the curling action, and a
saddle joint which allows the thumb to oppose the other fingers. The saddle joint
actually has two degrees-of-freedom, bringing the total number of degrees-of-
freedom for the thumb to four. The joint frames assigned are given in Figure 3.2
where the palm of the robot hand faces upwards.

Figure 3.1. Anthrobot III, in “Robot Hand Laboratory”
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Figure 3.2. Joint frames in the robot hand

In this thesis the Anthrobot-III is used as a hardware model, but PC
simulations are done using a hand model which shows some differences in order to
suit our GA structure. First of all there is not any coupling among twenty joints in
our modified hand model, while the third and the fourth joints of the Anthrobot-III,
are coupled. Also the motion of the thumb in our modified model has more
resemblance to the motion of thumb of the human hand. Joints in our hand model
undergo motions that can be controlled independently. All joints are of revolute type.
In our scheme the wrist does not move; only the fingers of the hand move via
extension and flexion. The pitch motions of the fingers are due to the change of joint
angles in the proximal, middle and distal joints and the yaw motions can be managed
by the changes in the angle of the knuckle joints.

Since the backward kinematics that maps the Cartesian space into the
Joint space produces a set of parametric solution, we use direct kinematics to relate
the fingertip frames to a fixed base frame centered at the wrist. The direct kinematics
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takes the intervening joint variables and produces the transformation that specifies
the location of the fingertip and orientation of the finger with respect to the base
frame. This mapping from the joint space to the Cartesian space is unique and also
the results can be applied to each joint in the robot hand directly. As all joints in our
hand model are revolute, the relation between one link and the other can be described
in terms of the homogeneous transformation matrix, A [48], which is a combination
of rotation and translation motions. This matrix for joint n is given in Figure 3.3:

Cos® -Sin0Cosa Sin0Sino  aCos0
A = Sin® Cos6Cosa -—-CosOSina aSin0
n 0 Sina Cosa d
0 0 0 1
a = length of the link d = distance between links
o = twist of the link 0= angle between links

Figure 3.3. General transformation matrix

In our hand model we choose the origin of the main coordinate frame at
the intersection of wrist and the hand with z-axis pointing upwards as the palm and
the x-axis pointing in the direction of the knuckle of the index finger (Figure 3.2).
We place the finger coordinate frames at the knuckles of each finger with
orientations given in Table 3.1. In this table Rot-z means rotation around the named
axis for a given angle 0 and Disp-x means displacement along the named axis by a
given amount. We show these operators in Figure 3.4. All the displacements and
lengths are given in cm and all angles are measured in degrees. Note that the
evaluations of these operators are from left to right:

Frame . = (Rot-z(8,)) (Disp-x(d)) (Rot-2z(6,)) (Rot —z(8,)) Frame,_ ..
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Figure 3.4. Orientation tools
Table 3.1. Position and orientation of frames at the knuckles
KNUCKLE Rot-z (°) Disp-x (cm) Rot-z (°) Rot-x (°)
Thumb -27 2.8 -25 -35
Index 0 9 5 0
Middle 17 8.6 7 0
Ring 31 8.3 16 0
Little 48 7.2 30 0

The Denavit-Hartenberg parameters of our modified hand model are
given in Table 3.2. In this table, 6 is the joint variable and its minimum and
maximum possible values are listed. All the angles are measured in counter
clockwise direction. The negative angle values show that they must be measured in

clockwise direction.
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Table 3.2. Denavit-Hartenberg parameters for the modified hand model

Finger Joint d (cm) 0(°) a(cm) a(®)
variables min. max.
Thumb 0, 0 -43 0 0.0 90
0, 0 0 40 5.0 0
0, 0 0 105 3.0 0
0, 0 0 55 29 0
Index 0, 0 0 34 0.0 90
0, 0 0 85 34 0
0, 0 0 110 2.6 0
0, 0 0 50 22 0
Middle 0, 0 0 20 0.0 90
0, 0 0 85 3.9 0
0, 0 0 115 2.9 0
0, 0 0 60 2.5 0
Ring 8, 0 -21 0 0.0 90
0, 0 0 85 33 0
0; 0 0 110 2.7 0
0, 0 0 50 2.2 0
Little 0, 0 -55 0 0.0 90
0, 0 0 85 2.8 0
0, 0 0 95 2.1 0
0, 0 0 60 2.0 0

In order to reach the desired hand configuration, we must find proper
values for the variables, twenty joint angles in total. As any manipulator having more
than three degrees of freedom is accepted as a redundant structure, our hand model
yields multiple solutions. Manipulability and stability requirements are introduced in
order to ease this redundancy in the hand preshape, especially in determining the
orientation of fingertips at landing positions.

As a result we have a multidimensional (20 joint angles), multimodal
(redundant) search space where nonlinear search has to be performed. These
characteristics of the problem require a parallel search algorithm which must be
capable of exploring a many-peaked space without converging to a local optimum (a
preshape satisfying fingertip landing points but unsuitable for the task). All of these
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requirements force us to choose GAs as the searching tool whose parallel search
capability allows simultaneous positioning of fingertips.

3.3. Discretizing the Stability and Manipulability Measures

We use all the joint angles as the encoded parameters (Section 3.4.1) of
the GA, since our hand model consists of only joints of revolute type. In order to
calculate the preshape stability and manipulability criteria, we need both curl and
divergence of the fingertip velocities (Section 2.3.5.1). As velocity is the time
derivative of position function, r(t), and fingertip positions are calculated from the
joint angles using direct kinematics, we need to discretize partial derivative
expressions [18] in representing computationally both the curl and divergence of the
fingertip velocities.

We proceed here with this discretization of the manipulability and
stability measures. The fingertip positions are functions of time, r(t)=(x(t),y(t),z(t))
with velocity, v(t) = (x(t), y(t),z(t)).

Assuming two functions f(x,y,z,t) and h(x,y,zt), then it is well known
that using the operator:

o d ot
dh dt dh
we get:
d . dat . o Ot
éﬁ(f(t))—aéﬁ(f(t))—f(t)gh— (3.1)

Assuming that a hand configuration can be formed in N steps which is
equal to the number of generations, that is At = 1/N, and n = 1,...,N, we can discretize
Equation 3.1 as:
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fn+l —2fn + fn-l and _a_t__ ~ tn+l - t11—1

) = =5y fhj=t, h_ —h

n+l n-1

The parameter N, that represents the number of steps is equal to the

number of generations in our optimization problem using GA. Knowing that
toa —t. =2At=2/N , we obtain the following:

f,

n+l

h

-2f +f
-h

f(tn)% =2N (3.2)

n+l n~1

The discretization model in Equation 3.2 is used for determining the
discrete measures of preshape stability and manipulability.

1 1 &
SM, = — ) V.v._|,wh
. (m?.x(V.vm)) (mg vm) &

Xitms) ™ 2x, - Xi(a-1)

m

+
Xie) ~ Xi(a-p

Yitaen — 2y, — Yi- h

Vv = VoV, =2N
Yimsty ~ Yin-n

Zinsty — 2 Zin — Zignyy

\ Zitnst) ~ Zia- J

The cross flux is defined to be the integral of the ith fingertip vorticity
over the surface of the link slice of the jth finger (Figure 3.5).

Figure 3.5. Projection of the ith link slice on the jth link slice
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;= [Qids; = [Qds,Cosb, (3.3)
LS; LS;

)

Since the magnitude of the vorticity is constant over a link slice and is
zero outside(Section 2.3.4), Equation 3.3 becomes

9y =, [dsCosd;  yielding oy= [dsCost,

0; is the tilt angle between the ith fingertip vorticity and the normal of the
jth link slice (Figure 3.5). The term in the limit of the integral means the intersection
of the ith link slice projection with the jth link slice. The discretized expression of
MM, is @,(t,)/9,(t,), where

m m

<pr(t,,)=zz£ I(vam)ds.,}

i=1 j=1

o, (t.) :.-Em:i (Vxvy) "o;

i1 =1
where ‘o is the area of the jth link slice, LS, at time t,.

And the approximation for the ith fingertip vorticity at time n is:

Zineny — 225 + 2y _Yiwen ~2¥u + Vi)

Yiwsty ~ Yiga-1 Zitar) ~ Zign-ny

Vxv(t)=2N Xior) ~ 2Xin F Xitaey  Zigoeny — 2Zin + Zigaony
i\ln) = . -

Zi(a+1) ~ Zi(n-1) i) ~ Xiqa-1)
Yiasy — 2Yi + Yica-ny _ XKigasn) = 2%y + Xiop
L Xims) ~ Xi-1) Yi+) ~ Yin-1

Though only the motions of fingertips are taken into account in the
calculation of preshape stability and manipulability measures, the contacts are not
only limited to fingertips. The vortex theory allows a whole hand contact, that is to
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say that surfaces of the palm and fingers as well as fingertips may have contact with
the object. So the landing positions predefined for the optimal preshaping and
regrasping problem using GA can be assigned as point contacts of any area of the
finger that has touched the object. In this thesis work, however, we only deal with
fingertip landing positions on the object to be érasped.

Having solved the problem about the discretized representation of the
curl and divergence for fingertips, we must find a suitable way to calculate the area
of link slices, o;; and "o; that appeared in the MM, computation. Though the shape of
the surface and volume are not important for calculation of curl and divergence, in
continuous time, they appear in discrete time computations. We know that for a
manipulator having three links all of which has revolute joints and working on planar
surfaces, its link slice can be divided into two triangles, the vertices of which are the
end points of the links. A finger is just a partial contour of the shape of the link slice,
ascribed by the moving fingertip, and an approximation of its area bearing partial
information can be obtained taking what is known about the slice limits into account,
which are the finger links. Therefore, this area can be approximated as the sum of
areas of triangles formed with finger links (Figure 3.6).

In the same way the area of the capping surface (Section 2.3.5.1) can also
be approximated by triangles which has vertices on the fingertips. The most
significant point here is that our preshape closure model is dependent both on the
curvature of each finger in the preshaped hand through the MM value and the
aperture of the hand through the capping surface in the hand divergence measure
evaluating SM. ‘

A and A2 known

section of link slice

Ajunknown section
of link slice

A=A+A,

Figure 3.6. Approximated area of a link slice, A.
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The remaining necessary component in determining any evaluation is the
coupling between fingers. This coupling is important because of two reasons:
i) detecting probable collisions between fingers, ii) calculating the cross fluxes with
which one vortex not only influences the curling around of its own finger but also
generates curling tendencies for other fingers through their respective link slice. For
handling this coupling we devise a method in which we form two vectors rooting at
the knuckle of a finger. One of the vectors heads towards the fingertip of the same
finger, while the other points at the fingertip of the left neighbor. The angle between
these two vectors and more over the fact that V; is to left or to the right of ¥/ give an
appropriate detection of collision between the relevant fingers.(Figure 3.7).

No collision Collision

Figure 3.7. Geometric collision detection
between fingers other than thumb

ﬁgure 3.8. Geometric collision detection between thumb and index finger

62



However, an additional precaution must be taken for the thumb which
usually opposes other fingers due to its localization on the palm. In a divergent hand
configuration the angle between the normals of link slices of the thumb and the index
finger is less than 90° (8,, in Figure 3.8). As the thumb moves for opposing other
ﬁngei's, this angle increases. When the thumb opposes the index finger, link slices of
the thumb and the index finger become parallel, (0,,=180°). Until this point, the
thumb can move without colliding any other finger, but after this limit, the thumb
falls into the work space of other fingers. In order to detect any collision in such a
case, we must compare the length of knuckle-tip distance of each finger with the
length of the distance between the knuckle of each finger and the tip of the thumb. If
knuckle-tip distance for the finger is less than the latter, the hand is free from
collision. Otherwise, the thumb violates the preshape either by colliding with another
finger or by restricting motion of the other finger.

3.4. Structuring the Optimal Preshaping Problem

We consider preshaping a trajectory in the multidimensional joint space
of a whole hand. The tip of a vector of joint variables defines a point in this space for
given values of joints. A vast multitude of points in joint space are candidates to lie
along the preshaping trajectories. Consequently, this multidimensional search space
of possible candidate points trying to belong to a preshaping is highly crowded.
Moreover trajectories do cross each other since a closing preshape can resemble
another preshaping trajectory in posture at a certain point in the joint space. These
intersection points of many trajectories define common posture to different
preshaping and are the saddle point singularities in the search space. The existence of
many such singularities attests to the multimodal characteristic of preshaping. This
multimodal nonlinear mapping is suitable to the application of GAs in the selection
of an optimal trajectory that defines an optimal preshaping in a crowded search
space.

However, we found that many modifications should be brought to the
existing classical GA operators as well as new operators for the optimal preshaping
system. Although modifications as well as added new operators increase the
performance of GAs, in general, the effectiveness of GA for a certain system lies on
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the encoding of the parameter space, and on the appropriate assignment of a fitness
function.

In this section, the encoding of chromosomes, the difference between
fitness and objective functions, and the chosen GA parameters are introduced
together with genetic operators.

3.4.1. Encoding of Parameter Space

Since we are dealing with robot hand preshaping, individuals processed
through GA are the hand postures, which are represented by points in the hand joint
space. Preshaping is represented by a sequence of postures. Our modified hand
model for the Anthrobot III, consists of twenty joint variables (four for each finger),
each of which moving independently. The parameters represented by binary strings
of power of two, can easily be handled by crossover and mutation operators. On the
other hand if the parameters can not be represented by a power of 2, some
precautions must be taken for these operators. In addition, crossover and mutation
can easily create new individuals that are not in the search space. In order not to deal
with such complexities, each joint angle is encoded into 16-bit strings. Each joint
variables 0, is assumed to vary between 0,,, and 6,,,,, where those extrema values are
characteristics of joint i. The resultant hand configuration is a 16 x 4 x 5 =320 bit
length code for the five-fingered robot hand which contains four joints in each finger.
This is a rather huge coded parameter space ( 2 > 10 ) even for the GA. In order to
map the outcome of GA processing which is a string value, to a joint value in joint
space, the following decoding relation is used:

String value
0=0_, "'—‘zm—_l—(emax =00 )
where 0, and 0, are the minimum and maximum limits for the corresponding joint
angle. 0, is assumed to be equal to zero and values 8,,, are given in Table 3.3.



Table 3.3. Maximum allowed swing for joint angles in degrees

Joints
Fingers 1 2 3 4
Thumb 43° 40° 105° 55°
Index 34° 85° 110° 50°
Middle 20° 85° 115° 60°
Ring 21° 85° 110° 50°
Little 55° 85° 95° 60°

Let’s remind that, in Table 3.3, the first joint of each finger is responsible
for the yaw motion, so that manipulation of an object is realized resisting to breaking
contacts. The remaining joints are revoluted creating the curling motion of the finger.

We have shown up to now the way we encode variables and calculate
fingertip positions, but how we implement the stability and manipulability measures
still remains unanswered. In Section 3.3, we have formulated the discretized forms of
these measures by using the central difference theorem with three points in
calculating derivatives of fingertip velocities. The subscripts (n+1), n and (n-1) can
now be used for denoting generations with (n+1) being the current generation. As a
result we have all the information about the positions of fingertips necessary for
calculating stability and manipulability measures. GA processing, especially at the
early times of its search does not follow a smooth improvement due to large jumps in
the trajectory path. Besides, later in the process run, the improvements nearly stop
due to the overcrowding of the population. These drawbacks would ruin our
calculations of derivatives. In order to overcome this bottleneck, we decided to
increase the length of our encoded chromosomes by including, into our bit strings,
the joint data which belong to the previous hand preshaping steps at times n and (n-1)
with present time being equal to (n+1) (Figure 3.9).
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16 bits 1

A finger representation
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stability measures requires 3
fingertip posttions at + +
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Cur chromosome ; 320 x 3 = 960 bits

Figure 3.9. Chromosome structure

Accordingly the length of a chromosome in our population is equal to
3 x 320 =960, which is rather a long string. Though previous data undergo the same
modifications as the current ones, we allow a small difference in the least significant
eight bits of each previous joint angle representation (Figure 3.10). Remember that
each finger has four joint angles represented with sixteen bit length strings, creating a
total of 32 (=4 x 8 ) bits of information in the positions of the least significant 8 bits
of each angle representation. We restrict the difference of each previous joint angle
from the present one to at most 5 out of 8 least significant bits, so that the total
number of different bits in previous finger representations has an upper bound of 20
out of 32. We have also tested our restrictions to different number of bits and we
present in Tables 3.4 and 3.5 the effects of changing the total number of different bits
between current and previous bit string representations of finger configurations on
SM and MM evaluations.
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[ ] Mostsignificant 8 bits
[ ]

Least significant 8 bits

| chengedvit position
]

Joint angle representation 16 bits

Bit strings representing the current finger configuration (time n)

Figure 3.10. Finger representation for evaluating MM and SM

Table 3.4. Effect of total number of different bits in finger configuration on SM

Number of bits allowed to be different than current hand preshape
Trial 2 bits 8 bits 16 bits 20 bits 24 bits
1 0.24 0.54 0.50 0.35 0.31
2 0.52 0.34 0.57 0.42 0.39
3 0.35 0.40 0.28 0.41 0.48
4 0.55 0.28 0.65 0.63 0.55
5 0.47 0.41 0.40 0.48 0.25
6 0.74 0.33 0.29 0.27 0.41
7 0.84 0.78 038 | 0.54 0.40
8 0.96 0.41 0.48 0.36 0.65
9 0.42 0.39 0.34 0.30 0.64
10 0.90 0.56 0.48 0.43 0.49
Max. 0.96 0.78 0.65 0.63 0.65
Min. 0.24 0.28 0.28 0.27 0.25
Avg. 0.60 0.44 0.44 0.42 0.46
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Table 3.5. Effect of total number of different bits in finger configuration on MM

Number of bits allowed to be different than current hand preshape
Trial 2 bits 8 bits 16 bits 20 bits 24 bits
1 0.53 0.65 0.76 057 0.64
2 0.67 0.77 0.61 0.86 0.40
3 0.64 0.56 0.72 0.46 0.84
4 0.54 0.73 0.78 0.66 0.62
5 0.52 0.57 0.48 0.66 0.60
6 0.63 0.64 0.45 0.76 0.57
7 0.57 0.73 0.59 0.62 0.85
8 0.61 0.68 0.70 0.66 0.72
9 0.65 0.55 0.67 0.76 0.55
10 0.78 0.68 0.71 0.51 0.63
Max. 0.78 0.77 0.78 0.86 0.85
Min. 0.52 0.55 0.45 0.46 0.40
Avg. 0.61 0.66 0.65 0.65 0.64

From Tables 3.4 and 3.5 we can see that when the total number of
different bits between bit string representations of current and previous finger
configurations is increased, the variation in the value of SM decreases while the
variation in the value of MM increases. Moreover, increasing this total number more
than 20 bits does not yield a significant change. In addition, the variations in both
SM and MM values are nearly equal at this 20 bit limit. As a result we fixed the total
number of different bits between bit string representations of current and previous
finger configurations to 20 bits.

3.4.2. Objective and Fitness Function Calculations

The fitness function should reflect the error due to improper assignments.
It should penalize partial matching and favor a good assignment by yielding a high
fitness value. Similarly the objective function should reflect the errors in the
optimality parameters again due to bad assignments and according to their priorities
in the task. As stated in Section 3.1, our objective in this optimization problem is the
minimization of positional error for each fingertip and the errors coming from
stability and manipulability measures, provided that no collision occurs between
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fingers. In the view of this statement, both the objective and the fitness functions in
our work have the general form of:

CLE,+c E +c E +P,

where E, reflects a general positional error of fingertips, while E, and E,, are errors
due to stability and manipulability measures. The coefficients, ¢, c,, ¢, are related
with the task requirements and are assumed to be user defined inputs of the program.
P is the penalty for collision between fingers,

A occurs between fingers

P = 0, no collision
“ 105, collision

Although any collision, regardless of its severity, is discarded directly in
our implementation, we did not neglect it in the optimization process. A hand
preshape in which some fingers collide with each other may contain useful schemata
while searching for optimality. In order to maintain in the GA processing the
exchange of this data with other individuals’ information during crossover. We only
decrease the probability of selection of hand preshapes that contain colliding fingers
for the next generations by half.

The general positional error, E,, is implemented in two different ways for
the objective and fitness functions, respectively:

5

For the objective function B, =) S
i 1+E,

However, for the fitness function, the positional errors due to all fingertips are
summed in the following way:
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‘e, = (Z Epi) for the kth individual
k

; , 1 is the size of population
max "ep)

5
where ¢, = Z c;

i=1

In all these formulas i represents the finger number. The values for
coefficients cy C; (1=1,...,5), ¢, c,, that are used to weigh the importance of each of the
errors, are considered related to the task and are assumed in this approach to be user
defined. The weights are taken as duals according to the expression ¢, +c¢,+c_=1.

The emphasis in the fitness function comes from the high reward paid to
good preshapes. From the calculations it is obvious that E, of the objective function
puts a criterion that can be used for comparing all individuals through out the whole
generation, but E, for fitness function including the term “maximum error in a
generation” can only be used when comparing individuals in a generation. This
presents us a much broader band for'scaling. As a result the fitness function
evaluation for the worst individual is very close to zero and better individuals receive
more copies for reproduction then the average ones.

3.4.3. Modifications in our GA Implementation

The poor performance of GA is generally caused both by long lengths of
schemata which led to breaking good schemata using the crossover operator and by
the deceptiveness of the fitness function. Having chosen a proper fitness function that
both climinates the redundancies in the search space and penalizes the improper
functioning, we have to deal with our long length encoding, creating an enormous
search space.
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Population size:

The exploration size of the search is closely related to the population
size. On one hand, if a population size is selected too small, GA will converge too
quickly, with insufficient processing of very few schemata. On the other hand, a
population with too many members results in long processing times in order to attain
significant improvement. Linkens and Nyongesa [44] uses a population size of 20 to
40 individuals for dealing with strings of length 2080, but they make a remark that
good results can be found with suitable recombination operators even for small sizes
of population. Considering the robot hand structure, and the statement that any
measure on the size of the population must take into account both the numbers of
schemata processed and the time of their processing [49], we fixed our population
size to 50 individuals.

Stopping criteria:

The stopping criterion remains untouched. At the start of our study we
have accepted that 100 generations will be enough for reaching a proper solution, but
as our search improved we have realized that thg number of generations must be
increased for a good result. Maximum number of  generations for the run of GA is
changed to 500 and another stopping condition which monitors the errors and signals
for an acceptable range is also added. This latter check is added for preventing the
GA from processing although an acceptable solution is found. Our objective function
is constructed by weighted error terms which are fingertip positional errors and errors
in the SM and MM (Section 3.4.2). This last stopping condition checks each of these
errors and accepts the solution if all these error terms are less than 0.1.

Reproduction methods used:

Initially generational replacement without gap is applied to our
optimization problem. In this reproduction method, all the parents in the population
are replaced by newly formed offsprings. Though this maintains a diversity in the
population, it causes the loss of fitted parents between generations. As seen in
Figure 3.11, the average of the objective function does not exceed the value 0.8 even
after the 500" generation. In order to overcome this deficiency we develop in this
thesis work a new reproduction scheme as a combination of the two techniques,
selective breeding and steady state reproduction.
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Figure 3.11. Performance of generational replacement

In steady state reproductions, only a few members of the population is
changed within each generation [44]. Other members are allowed to survive for
generating new offsprings. However, the selective breeding schemes allow the
survival of both parents and offsprings until the selection takes place. A population
enlarged to two times of the base population triggers the selection scheme, which
ranks individuals according to their objective values and reduces this enlarged
population size by selecting only the individuals which are in the best half
fitnesswise. Selective breeding scheme, always keeping the best individual, allows an
increase in the performance of GA but keeping the best individuals sometimes causes
overcrowding of the population at false peaks, and also it may cause the loss of
diversity. In order to avoid this deficiency our adapted selective breeding scheme
chooses only 80% of the population from the best individuals composed of both
parents and offsprings. The remaining 20% of the population is formed by randomly
choosing from the unselected individuals. Objective function values of the
individuals do not have any effect in the formation of that 20%.

The stochastic remainder sampling without replacement method is also
used in our implementations for deciding which parents and how many copies of
them would be treated by crossover and mutation. This method, using the base
population, constructs a shadow population, from which individuals are selected for
mating in the proportion of their expected fitness values. The construction of this
shadow population for a population of N individuals is given below where the fitness
value of the ith individual is represented by (i) [22].
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a) The average fitness value in the base population is calculated.
1 N
f.=—) f@
~ = Zl: (1)
b) The fitness value of each individual in the base population is compared with
the average fitness value in (a).

fexpected(i) = f(i)/favg

¢) The integer part of the comparison in (b) represents how many guaranteed
slots that individual would receive for mating.

N prameed,i = I ( fopeciea (1))

d) If the population size, N, is not reached by the sum of guaranteed slots, the
remaining part of the shadow population is filled by sampling the
individuals with the probability, p, where

p(Nadditioml,i) = fexpected (l) > Ngumnteed,i

For example, if the individual fitness is 0.9 in a population of average
fitness equal to 0.6, the individual would receive one guaranteed slot and has a 50%
chance of receiving an additional slot in the shadow population.

Before applying this sampling algorithm the fitness values are scaled
using the method linear scaling which modifies the fitness value, f, of an individual
to a new fitness value, f,.,, using the relation:

fe, =af+b

where a and b are calculated based on the consideration of how many copies the best
individual would receive for reproduction. In our implementation, we let the best
individual receive two copies.

Using this method, we not only get the advantage of deciding the number
of copies of the best individual will have before crossover and mutation are applied,
but also we prevent the population from being dominated by highly fit members. In
addition this scaling mechanism rewards much more the better strings when the
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population is crowded around an optimum even if the difference between better and
average is small. Here, one last remark must be added that linear scaling may
sometimes introduce negative fitness values due to the difference between fitness
values. In order to eliminate this disadvantage, absolute value of the minimum
negative fitness value is added to all scaled fitness values.

Crossover operators:

As our reproduction method always keeps the best individual and selects
better members of population for each generation, it may cause the loss of population
diversity. The loss of diversity results in the insufficient utilization of information
exchange between individuals. In order to overcome these, we implemented different
crossover operators. All the crossover operators used in our GA structure are
described below. In all the examples of crossover operators, Parent 1 is a string of all
1’s and Parent 2 is a string of all 0’s for simplicity. Child 1 receives bits that are 1 in
the mask from Parent 1 and that are 0 in the mask from Parent 2. This inheritance is
in the opposite way for Child 2. In addition, chromosomes consisting of two angles
encoded into 8 bit strings are utilized in all the examples. The crossover points are
represented by bold lines and angle boundaries lie after the 8" and 16" bit positions.
Only the first angle boundary is shown with a rather thick line.

i) One point crossover: is the classical crossover operator in which a random
point is chosen in the bit string and partial strings on the left and right side
of this point is exchanged between parents in order to create different

offsprings.
Example :
Angle Boundary

Paremt1 |1 1 1 1 1 1 1 111 1 1]1 1 1 1 1
Parent2 |0 0 0 0 0 0 0 OJO O O|JO O O O O

Mask 1 1111111111 1]0 0 O O O
Child 1 1t 111111 141 1 10 O O O O
Child2 |0 0 0 0 0 0 O OfJO O OJ1 1 1 1 1

In the example above angle boundary is not accepted as a crossover point.
Crossover point lies at the position between the 11" and 12" bits. A sketch
of this operator is shown in Figure 3.12.
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AB Cxr AB

Parent1 |

Parent2 [ .

Child1 |

Child 2

AB : Angle boundaty Cxr.: Crossoversegion

Figure 3.12. One point crossover

ii ) Eight point crossover: is the same procedure as one point crossover but in
this case two crossover points are selected for each of the bit strings
corresponding to the different joint angles. One of the crossover points lies
at the boundaries of the bit string, while other is chosen from inside. As a
result there are eight crossover regions (Cx.r.) four of which lies at the
boundaries of joint angles’ codes. In this scheme, portions of bit strings
corresponding same joint angles are exchanged (Figure 3.13).

Czxr. AB Cxr AB Cxt. AB Cxzr. AB

Parent1 |

Patent2 |

Childi |

Child2 L

AB : Angle boundary Cxr.: Crossover region

Figure 3.13. Eight point crossover, ( here AB = Cx.r. )
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Example :

Angle Boundary
Parent! {1 1 1)1 1 1 1 11 1 1 1 1 1|1 1
Parent2 {0 0 0}0 0 0 O OJO O 0 O O OJO O
Mask 11 140 0 0 0 OJ1-1 1 1 1 1]0 O
Child 1 11 110 0 0 0 OJ1 1.1 1 1 1]0 O
Chid2 |0 0 OJ1 1 1 1 140 0 0 0 O O}1 1

In the example above, number of crossover points is implemented as two
instead of eight, but the angle boundaries must also be counted as crossover
points. In this example the crossover points are after the 3“', 8"', 14" and 16"
bit positions where 8" and 16" bit positions are angle boundaries at the
same time. As the crossover points are increased with respect to one point
crossover, the disruption in the schemata increases.

iii )Eight point ring structured crossover: is the same as the previous one but
no restrictions on crossover points exist. Crossover points not restricted to
angle boundaries will bring more disruption to the search (Figure 3.14).

AB AB AB AB
Parent1 |
Parent2 |
Chitd1 |
Chid2 L
Cxr. Cxr. Cxr. Cxr. Cxr. Cxr.  Cxr Cxr
AB : Angle boundary Cxr. : Crossover region

Figure 3.14. Eight point ring structured crossover
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Example :

Angle Boundary
Paremtl1 |1 1 1}1 1 1|1 111 1 11 1 1}]1 1
Parent2 |0 0 00 0 O0]J]O OJO O OJO0O O O]JO O
Mask I 1 1]0 6 O0J1 1§41 1 110 0 O}1 1
Child 1 I 1 140 0 OJ1 111 1 140 O O}1 1
Chid2 {0 0 01 1 1}j0 OJO O O}J1 1 1]0 O

In the example above there are four crossover points which are after the 3"',
6", 11" and 14" bit positions and the angle boundaries are not counted as
crossover points. Also note that the starting and ending bits (1,2,3,15,16) in
Child 1 and Child 2 lie in the same crossover region unlike to previously
introduced crossover operators.

iv )Uniform crossover: A bit string mask is used for exchanging bit values
between parents. Bit values corresponding to 1’s in the mask are chosen
from one parent, while the other parent fills bit positions corresponding to
0’s of the mask. A more detailed explanation and a sample application is
given below.

Uniform crossover [50] results in position-wise genetic information
exchange among chromosomes, generalizing the concept of multi-point crossover. A
crossover mask, is a string of bits as the chromosomes to be crossed. Each bit value
in the mask determines which parent would pass its corresponding bit value to which
child. The values of bits in the mask are distributed with an- equal probability (0.5)
for each position throughout the chromosome. A new crossover mask is randomly
selected for each crossover operation. This operator equates the number of crossover
points to the chromosome length. It disrupts all schemata of any order with equal
probability, regardless of their defining lengths [51]. The disruption order of uniform
crossover can be controlled by changing the probability of bit values in the mask.
Uniform crossover can bring an impressive improvement to the GA processing with
a more conservative selection scheme that allows parental structures to live for many
generations, unless an offspring superior'to them appears. A sample uniform
crossover operation is introduced below. Child 1 takes the bits that are 1 in the mask
from Parent 1, and Parent 2 gives the corresponding bits that are 0 in the mask. This
operation is in the reverse order for Child 2.
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Example :

Angle Boundary
Parent1 {1 1}1]1]1 tjt1]1pt1 1]1 1§11 1§11
Parent2 (0 0|0JO0JO O|jO}JO}JO O}JO O]JO O]JO}O
Mask 1 110140 O}J1]J0§J0 OJ1 140 Of1}]0O
Child 1 1 1101110 OJ1})J0jJ0 O}J1 1]0 O}]J1}0
Child2 |0 Ofj1}joOo}1 10|11 1]0 0|1 1]0]1

In the example above there are nine crossover points which are after the
2" 3"’, 4" 6" 7" 10"’, 12“', 14" and 15" bit positions and there is not any
qualification about the angle boundaries.

Al the crossover operators implemented select the required number of
crossover-points randomly throughout the length of each finger and exchange the
data between corresponding fingers of two parent hand preshapes with a probability
of 0.8.

Mutation operators:

In our application, we also use two types of mutation operators: random-
bit mutation and exactly n-bit mutation. The former being the classical mutation
operator alters the value of any bit in bit strings, representing each finger with a
probability of 0.03. The latter however, is implemented for guaranteeing the
alteration of the value of a fixed number of bits, here 2 bits, in the same bit strings.

Example :
Finger Representations

Parent 1 111 11111111111
Chida §y1 1 1 1t 1 1 1 1 1 1 0 1 1 1 1 1
Chidb y1 1 1 1 1 0 1 1 1 1 1 1 1 1 O

Child a is the result of random bit mutation operator with probability 0.03
and Child b results after the exactly 2 bit mutation operator is applied to the same
parent. The main difference between the two operators is that the latter always
guarantees that the offspring will be different than its parent by 2 bits. The two
mutation operators have almost equal probabilities.
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Encoding of chromosomes:
Our implementation starts with a population of 50 individuals each of
which are encoded in concatenated, mapped, binary strings of length 960

(Figqre 3.9).

Encoding of the optimization variables is very important in GA. When
binary coding is used, some of the consecutive positions are unreachable with the
single bit mutation. For an example, consider the binary representations of 30, 31 and
32 that is 011110, 011111 and 100000, respectively. Though the Hamming distance
between 30 and 31 is one bit, it increases to six bits between 31 and 32. At such
points in space, especially when an optimum is present at a point like 32 and almost
all of the population is crowded around this point, the one bit mutation operator
becomes useless. This drawback can be overcome either by adopting a different
mutation operator or by changing the coding. Note that Gray code in which
consecutive values differ from each other by only one bit, can solve this bottleneck.
Besides, when the Hamming distance is high for parents that corresponds to
consecutive values, a crossover point (for one-point crossover operator) between
most significant bit positions would produce offsprings which resemble neither of the
parents, as given below.

Parentl O]1 1 1 1 1 1
Parent2 110 0 0 O 0 O

Child 1 0 0 0 0 0 0 O
Chid2 1t 1 1 1 1 1 1

Small changes in the value of binary encoded strings can not be achieved
by the single bit mutation operator, however, these small variations are important for
the search in converging to the neighborhood of an optimum point in small step
changes. In order to overcome this drawback, either Gray code should be used or the
probability of mutation should be increased exponentially with decreasing
significance of bits, allowing more small changes in the value than large ones. Gray
code, maps Euclidean neighborhoods into Hamming neighborhoods due to the
representation of adjacent integers by bit strings of unit Hamming distance. In the
folléwing mappings binary and gray code representations for two consecutive
integers are given. Also note that the leftmost bit is the most significant bit.
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Integer Representation Binary Code Gray Code
127 01111111 01000000
128 10000000 11000000

Gray code has significant advantages over standard binary coding
especially when optimization consists in fine-tuning of the last few bits [52]. A Gray
code interpretation of the bit string segment (b,...b,) of length n can be converted into
the standard binary code representation (a,...a,) with a mapping

a, =@bj

=1

where @ denotes addition in modulo 2. Conversely, the standard binary code can be
converted into Gray code by the mapping

oA ,ifi=1
i%a,, ®a, ,ifi>2

Creeping mutation : a new mutation operator

A new mutation operator, creeping mutation is introduced in this thesis
work. This new operator, derived from the real-number-creep [30], that is used with
floating point representations in GA, is different than the classical single bit mutation
operator by allowing a local search around the neighborhood of best individual to
find a better point. With the increasing number of generations, the population gathers
around a global optimum (in the best case), such that small changes in the value of
best individual can catch the optimum point, but the classical single bit mutation
operator, processing bits that are not necessarily consecutive may not result in such a
suitable change. In order to achieve a local search, we modify the real-number-creep
operator into creeping mutation.

When the population is crowded around an optimum point with
increasing number of generations, this creeping mutation operator selects the best
twenty percent of the population; then for each selected individual it randomly
selects a joint angle from each finger in order to change its value. The change is
restricted between zero and one half degrees, either in the increasing or decreasing
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directions. The resultant offsprings are evaluated and compared with parents for a
replacement only if they are more fitted. In order to prevent an immature
convergence, this new mutation operator is applied only after the 200" generation; a
limit, at which the population accumulates around the optimum solution.

All the aforementioned modifications and the just introduced creeping
mutation operator, have positive effects in improving the performance of GA but
they can not succeed in sustaining the diversity of the population with evolving
generations. However, the search power of GA lies in the population diversity. Any
population crowded with similar schemata makes especially the crossover operator
useless, because the offsprings created by this operator will be identical to the
parents. In such populations any improvement can be reached by chance, making the
GA a random search. Therefore we have to introduce a modification in the crossover
operator and develop a new mutation operator which disturbs the existing schemata
more than the classical operators.

Mutation like crossover operator:

We know that the crossover operator generates two string partitions and
exchanges the information between them, but no new information can be produced if
the individuals that are mated are identical. In order to prevent such a case and to
search for unreached regions of the space, we take the complement of the bit strings
of one of the parents in cases when two parents are identical. As a result the
exchanged bit strings contain different informations and the resulting offsprings
belong to different parts of the search space. Example 1, given below, introduces the
result of the classical one-point crossover operator on two identical bit strings, while
Example 2 illustrates the effect of our modification.

Example 1:
Angle Boundary
Paremt1 |1 1 1 1 1 1t 1 111 1 1]1 1 1 1 1
Paremt2 |1 1 1 1 1 1 1t 1§41 1 1|1 1 1 1 1
Mask 1111111 1111 110 0 O O O
Child 1 1 111111 111 11 1 1 11
Cud2 (1 1 1 1 1 1 1 1)1 1 111 1 1 1 1
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Example 2:

Angle Boundary
Parent1 {1 1 1 1 1 1 1 1§11 11 1 1 1 1
Parent2 |1 1 1 1 1 1 1 11 1 1]1 1 1 1 1
Take complement of Parent 2

Paremtl1 (1 1 1 1 1 1 1 1J1 1 1]1 1 1 1 1
Parent2 |0 O 0 0 0 0 0J0 0 O0JO0 0 O0 O O

Mask 1111111 1311 1]0 0 O O O
Child 1 1 1111 11 131 1 110 0 0 0 O
Chid2 {0 0 0 0 0 0 0 OJO O O]J1 1 1 1 1

As it is obvious from the given examples the complement operation in
crossover operator results in two different offsprings, so that new portions of the
search space can be investigated even if the population is accumulated around an
optimum. The complement operator as analyzed in this paragraph is applied for all
crossover types introduced in this thesis work.

Burst mutation operator:

Although this new operator, the burst mutation operator, makes bit
inversion like classical bit mutation operator, it corrupts bit strings more when
compared to classical ones. This magnified corruption comes both from the increased
number of inverted bits and from the increasing probability of mutation with
decreasing significance of bits.

The burst mutation operator works on bit strings of joint angles. It
chooses a number of joint angles from a number of fingers of a hand preshape. This
selection is random but at least one joint angle is selected for processing. The bit
string of any joint angle is divided into three parts. The first and second parts are
separated at the boundary falling between the fourth and fifth bit positions, while the
third part starts at the tenth bit position where most significant bit is the first bit. The
burst mutation operator processes these parts with different probabilities as given in
Table 3.6. The third part, consisting of bits that have less significance, has the highest
probability (0.5) to be selected by the burst mutation operator. However, the
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probability of the first part is the lowest (0.2) as bits in this part have higher
significance than the other two parts.

In Table 3.6, a 16 bit length string of a joint angle is given and‘its three
parts that are of different lengths are shown. The probability of each of the parts to be
selected for processing by the burst mutation operator is given in the second row. In
order to disturb individuals in a population that contains less information about the
search space, the burst mutation operator inverts a group of bits in the selected part.
The number bits in this group changes from 1 to 7 for different parts of the bit string.
In the last row of the table, the number of bits to be inverted and their selection
probabilities are given.

Table 3.6. How burst mutation operator processes bit strings?

IMSB LSB
Part 1 Part 2 Part 3
Bit no. X X X xX§x x x x x|x x X X X X X
Probability 0.2 0.3 0.5
Probability Prob. #ofbits] Prob. # ofbits Prob. # of bits
of number 0.7 1 0.40 2 0.30 4
of inverted 0.3 2 0.35 3 0.25 5
bits and num- 0.25 4 0.25 6
ber of bits 0.20 7
where MSB = Most Significant Bit
LSB = Least Significant Bit

The process of burst mutation operator is introduced with an example. In
this example, second part is chosen as the processing region. In this part, either of the
three bit groups of bit lengths 2, 3 and 4 can be selected with different probabilities.
As the number of bits in a group increases, the selection probability of that group
decreases. After a region is determined (second part), number of bits to be inverted
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and their position is selected randomly. In the same example, burst mutation operator
applies at the eighth bit position and the number of bits to be inverted is selected as
three. As there are two bits before the boundary of the selected part, the last bit to be
inverted becomes the first bit in the same part where the burst mutation operator
applies. Note that this operator modifies the selected part as a ring. This
ring-structured processing also introduces more disturbance by inverting bits of
different significance.

Example :
MSB LS
Parent 1 11 11 1 1 1 141 1 1 1 1 1 1
Child 1 111101 1 0 OJ1 1 1 1 1 1 1

Burst mutation operator is added for sustaining the search power of GA
in a converged population by increasing the population diversity. It begins to effect
members in the population after a predefined limit like creeping mutation operator,
but with a probability of 0.05. This limit is taken as the 300" generation after which
similar schemata are observed to constitute most of the population.

These new operators and modifications to classical ones are introduced in
this thesis work in order to get an optimum performance in the search for optimum
hand preshapes. These operators are tested for efficiency and good performers are
selected for improving optimal hand preshape formation. The implementation results
of our GA architecture are introduced and discussed:in Chapter 4.

3.5. Structuring the Optimal Regrasping Problem

Having implemented a number of operators for increasing the
performance of GA, we turn our attention to the regrasping process. We model the
problem of regrasping as an optimal search toward a predetermined final preshape
initiated by the final preshape of a prior optimal search which is the initial preshaping
of the regrasping procedure. Here, we assume that all the information about the two
final preshapes is given as input to our algorithm and that the mismatches between
the two preshapes, initial and final, are not much, that is we assume a divergent hand
preshape will not be changed into a fingertip pinch grasp in one step. Otherwise, the



jumps in the fingertip trajectories between the two hand preshapes, initial and final,
will be considerable so that it will not incorporate a minimization of energy in the
optimal reshaping of the hand.

In the regrasping part of our search, we do not initiate the search with a
randomly generated population as it was the case in the optimal preshaping problem.
Instead, this problem of reshaping a hand has the converged population of the prior
preshape as the initial condition.

Towards this end, we have firstly an initial population which is the
population converged to a hand preshape via optimal fingertip trajectories. This is the
initial preshape for the regrasping process. Using this population, GA begins a new
preshaping search as a result of which the resultant hand converges to a given final
preshape for the regrasping procedure. The regrasping problem is thus to disturb an
initial preshape into generating its optimal transition to a final preshape.

The difference of the regrasping search when compared to the preshaping
one occurs technically in the evaluation of both fitness and objective functions,
represented as FOF (fitness and objective functions) in the arguments below.

FOF = (1-B) FOF, + B FOF, , generation number less equal 200
FOF, , otherwise

where the subscripts f and p represent final and initial hand preshapes, respectively.
Evaluation of FOF, and FOF; are in the same way as the functions given for
preshaping in Section 3.4. However, FOF in regrasping integrates both the FOF of
the initial preshaping search prior to regrasping and that of the new one with a fuzzy
effect B, smoothly changing in time. Bringing the dimming effect through (1-8) and
the smooth activation through the expression of B, B is expressed such that it must
equal to zero at the start and must reach its steady state value of unity at the 200"
generation. We can either choose a linear or a sigmoidal variation. In an approach we
adopt a Sine function for evaluating B, and we establish the expression of B as a
sigmoid with a rise time equal to 200 generation, a unit magnitude at steady state and
a delay time of 100 generations. This formulation is given below with the plot of B
and (1-B) provided in Figure 3.15.

85



2

100

B = l{l N Sin( _723 (generation number - 100) H

.

Values

0.8 -+

0.6 +

04 4+

0.2

\,
.
\\ l IB

0 100 200 . 300 400 500
Generations

Figure 3.15.  Coefficients in the evaluation of fitness and objective functions in
regrasping.
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Figure 3.16. Phases of regrasping process on best objective values

An optimal preshape is disturbed considerably from convergence and a

new preshaping search is triggered toward a new convergence area in state space. 3
provide the smooth passage from a disturbed prior convergence to a new deviated
convergence. This is the essence of our regrasping model using GA architecture
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(Figure 3.16). Note that GA run continues 500 generations both for the preshaping
and for the regrasping phases.

The effects of both linear function of P and the Sine function on the
objective values can be seen comparatively in Figures 3.17 and 3.18. The Sine
function not only recovers the final desired hand shape earlier (around generation
630) than the linear variation (around generation 650) but also it finds a better hand
shape at the end of the GA run (higher magnitude of objective values at
convergence). Besides, the Sine function allows much smoother transition between
two different hand preshapes (Figure 3.19).

g e Sine function
s
g
0.8
0.6 —
1
]
0.4 Z t + § + + } —
0 250 500 7560 Generations 1000
Figure 3.17. Objective values for the best of population
7 Sine function
o 0.9 4

0 250 500 750 Generations 1000

Figure 3.18. Average objective values of the population
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Figure 3.19. Total hand error from the desired hand shapes

The coefficient, B, is held constant (steady state) after the 200"
generation. We think that 200 generations will be enough for injecting enough
diversity in the initial population through disturbance. During regrasping we model
transient hand postures along regrasping trajectories as being both influenced by the
previous hand preshape and by the final preshape. In Figure 3.20, regrasping phases
for hand error values are displayed. Note that the curve characteristic at the
convergence region (after 65 0" generation) for the final desired grasp is similar to the
start of GA run for preshaping (around 0" generation).

ﬁmr Values (e l&——I Distuthatice region
| {
Convergence to

10 ) anew grasp
Optimal preshaping phase | Regrasping phase
s ] . . - Cd

g 250 500 750 1000

Generations

Figure 3.20. Phases of regrasping process for hand error values
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In addition to the modifications in both objective and fitness function
calculations, we allowed here, the burst mutation scheme to operate on members of
the population at the disturbance region of regrasping, since we start regrasping with
a converged initial population and this convergence prevents GA from an effective
here after search of the joint space unless a satisfactory amount of diversity is
attained. Burst mutation operator corrupting strings of joint angles in the first 100
genérations, helps to increase diversity of the population and has a rather high
probability, 0.4. Also, it operates after the 300" generation the same way as in the
optimal preshaping search.

The following modifications in the reproduction method are applied in
the first 100 generations. There are two variants in order to increase the diversity of
the population. In the first modification the reproduction method uses generational
replacement, causing offsprings to replace parents. The second modification is a
reproduction method that uses selective breeding with a change in the percentage of
the directly selected best members from the population. Remember that in the
previous phase of preshaping (Figure 3.16), 80% of each new generation had been
constructed by the best members selected from the population of both parents and
offsprings. However, in the first 100 generations of regrasping phase (Figure 3.16),
only 5% of population are formed from the best members for increasing the
population diversity. After the 100" generation of regrasping phase, this modified
reproduction method is changed to our selective breeding scheme used in the
previous phase of preshaping.

Sample test results on the regrasping model are detailed in Chapter 4 for
a more deeper insight in the technique used.
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CHAPTER 4

RESULTS AND DISCUSSIONS

In the previous chapter we introduced the structuring of the optimization
problem in hand preshaping and regrasping using GAs. To evaluate the improvement
brought by the modified operators and new operators of GA, multiple experiments on
proper preshaping of a robot hand are carried out. A picture of the robot hand we
used can be seen in Figure 4.1. This chapter demonstrates step by step results of our
experiments. These results help us in evaluating the efficiency of modified operators
and new operators as well as in generating the path to be followed for improving the
search.

Figure 4.1. Anthrobot ITI, five-fingered robot hand

4.1. Starting Remarks

The proposed method and later modifications are all implemented in C
programming language and tested on an IBM compatible Pentium/133 machine.
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At the start of our search, we estimate that 100 generations will be
enough for reaching a mature solution for the optimization, but through the
experiments, we understood that 500 generatioﬁs; is a better upper bound for
optimally preshaping a five-fingered robot hand. Our GA structure selects the best
members in each generation for forming the preshape trajectory. At the start of the
process the improvements in the best member of the population cause large jumps in
the trajectory path. These large jumps must be compensated for the step motors in the
joints of the robot hand. The number of generations can be used for relating the
velocity of step motors in joints to the value changes in joint angles for this purpose.
As a result, though the increase in the number of generations would result in a longer
processing time, it will prevent large jumps in the fingertip trajectory. In addition,
error values (Section 3.4.3) are checked out during runs for preventing ripples in
fingertip positions. The starting configuration of our GA then takes the form given in
Table 4.1.

Table 4.1. Starting configuration of our GA architecture

Characteristics of GA
population size 50
chromosome length 960 bits
coding concatenated, mapped, unsigned binary
number of generations 500
inputs data related to final hand preshape (fingertip

positions, SM, MM and their probable priority
weights in hand preshaping)

evaluation function compared with the final preshape

output best hand preshape of each generation
selection method (mating) stochastic remainder sampling
scaling linear

crossover scheme one-point crossover applied for each finger
crossover probability 0.8 for each finger

mutation type classical random-bit mutation

mutation probability 0.03 for each bit along chromosome
reproduction type generational replacement without gap
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We have a five-fingered robot hand with 4 joints in each finger. Each of
these joint angles is mapped into 16 bit length strings. This constitutes one third of
the whole chromosome length. The remaining part is constructed by two prior hand
postures of the same length. These postures, which represent the last two hand
preshapes at times, (n-1) and (n-2), are used for calculating stability and
manipulability measures. The total length of the whole chromosome reaches 960 bits.
This rather long chromosome length results in an enormous search space which is:
2= 10",

Though the results obtained from the run of GA with a set of genetic
operators can be evaluated using databases and chart construction programs, in our
implementation we included a graphical interface which displays both error terms
and fingertip positions throughout the run. This graphical interface, illustrating the
performance of the running GA in a graphical representation, helps determining the
efficiency of our modifications as the run continues.

Hetmod 1 &-apoint ax, ©
wirme. O RITL MO DOU

Figure 4.2. Graphical interface of our implementation

92



A screen of our graphical interface is displayed in Figure 4.2. The terms
listed as a column at the upper right of the screen, show the outlines of our GA
implementation and are listed in Table 4.2. The upper plot, to the left of these listed
terms, displays these terms in a graphic display for giving visual interpretation of the
performance of the run. This graph can be changed via a keyboard command so as to
display plots of each of the terms in the upper right column. The plots have the same
color as the corresponding terms listed in the column.

Table 4.2. Terms in our graphical interface

SYMBOL COLOR DESCRIPTION

BEST yellow Objective value for the best member

AVG cyan Average of objective values for the population

B_AVG green Average of objective values for the best 80% of
the population

STDEV magenta Standard deviation in the population

2ER H brown Total positional error of the hand

3ER T green Positional error of the thumb

4ER 1 magenta Positional error of the index finger

SER M cyan Positional error of the middle finger

6ER R yellow Positional error of the ring finger

7ER L red Positional error of the little finger

8ER s blue Error from the unmatched SM

9ER m gray Error from the unmatched MM

1PERC white Percent of population in the 0.01 neighborhood
of B_AVG

In the lower left of the screen, a two dimensional plot of the fingertip
trajectories appears for the hand preshaping up to the present time step. Note that for
the sake of simplicity, we have omitted the z-coordinate and interchanged x and y
coordinates such that the palm faces the user. The colors of the fingertip positions
match with the finger names plotted in the table to the right of this plot. In this table,
real x, y, z coordinates of each fingertip positions and the individual MM and SM
real values are displayed for final, current and previous hand postures. Here note that
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the optimal preshaping phase is triggered upon a single desired hand preshape, which
is the desired final hand configuration. In the regrasping case, the trigger is based
upon 2 hand postures : i) the hand configuration that GA finds in its first optimal
preshaping run, and ii) the final hand preshape which is the desired hand
configuration.

At the lower right of the screen, bit differences that the string
representation of the best hand preshape has with the final preshape are given. This
helps us to view coarsely the best surviving schema. The line below the screen
displays the method chosen for the run of GA. The symbols displayed in this line are
listed in Table 4.3. Here, we must add that every modification we introduced into GA
is an option that is to be used in the optimization, so that we can test different
operator combinations. The chosen method formed by chosen operators is held fixed
for a complete run of GA which is the whole 500 generations phase.

Table 4.3. Applicable operators in GA implementation

Symbol Description Symbol Description

1-point cx 1-point crossover Iscl Linear scaling

8-point cx  |8-point crossover ell0 Elitist sampling

8-pnt rcx  [8-point ring str. crossover | |pl0 Take power in obj. value

Uniform cx |Uniform crossover S Mfit SM, MM in fitness value

n-bits mut  |Exactly n bit mutation pos fit Only positional error in

random mut |Random bit mutation fitness value

v-mutrate  |Variable mutation rate crp | creeping mutation

c-mut rate  |Constant mutation rate rsmate Restrict similar mating

sel brd Adapted selective grr Generational replacement
breeding with 80% at start of regrasping

rwheel sel  |Roulette wheel selection brst Burst mutation

stocrems  |Stochastic Rem. Sampling| |[lbeta linear

gen rep Generational replacement | (sbeta sinusoidal f

gray code Gray code + following choice is ON

bnry code Binary code - following choice is OFF
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4.2. Experiments

In Figure 4.3 the best and average of population for a GA with operators
listed in Table 4.1 are drawn. All those listed operators are classical operators of GA
which are generally efficient in general search approaches, however, our results are
very disappointing. Though we increased the number of generations by ending the
run of GA at 500 generations instead of 100, no convergence seems to occur in a
neighborhood of a global optimum.

“Are GAs not suitable for robot hand preshape?” is the first question
coming to our mind, but we can not in a single step disregard the advantages of GA
as a promising search tool in many applications. Instead, we tried to find the answer
of the question: “What is wrong with our implementation?”

Pop. best
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N %W gﬁ%f“ﬁf%f&%ﬁﬁﬁ?ﬁ%ﬁw&gMJ@{@W% I lé\%’q?xfﬁ’\!‘algﬁg L W?ﬁ” Mg
‘ op. avg.

0.4 +

03

0 100 200 Generations 300 400 500

Figure 4.3. Genetic search with generational replacement

We know that efficient utilization of the available population space can
only be achieved by avoiding overcrowding by a dominance of highly fit individuals,
and by maintaining an evolving population, initially exploratory in nature, and
eventually leading to an exploitative search of the solution domain. In order to have
an efficient utilization of the search space, we must either increase the population
size, or adapt a more conservative searching tool. Due to the restrictions of the DOS
environment and C programming language, we can not exceed some memory limits
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spared for the programmer’s usage ; this leads to the constraint that population size,
GA can handle at one time, can not exceed 100 individuals. Then there is one
remaining solution: we must change our reproduction method. In reproduction with
generational replacement, all the population is replaced by new created offsprings,
but this usually causes the irrecoverable loss of good parents in large search spaces,
that is to say that hand preshapes created as a result of crossover and mutation will be
worse than their parents. As a result, we implement a new reproduction tool which is
a combination of steady state reproduction and selective breeding (Section 3.4.3).

In Figure 4.4 the improvement of this new tool can be seen. Compared to
the performance of generational replacement in Figure 4.3, this adapted selective
breeding is much more efficient. Comparing graphs on these two figures reveals
much less variability and much higher objective values in the adapted selective
breeding scheme applied to GA. Forming the 80% of population from the best
members of the current population for each next generation out of the best
individuals of the last population, our adapted selective breeding not only conserves
the good members of the population unless better individuals replace them, but in
addition maintains the diversity of the population by selecting 20% at random from
the unselected members, parents or offsprings. We must also mention that the
population size for this adaptive selective breeding scheme doubles after
reproduction and returns to its actual size after the selection based on objective
values is completed, that is a new population is created for next generation.

Pop. best
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Figure 4.4. Adapted selective breeding scheme
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In Figures 4.5 and 4.6, the effect that the directly selected portion of the
population has on the performance of GA is investigated. If the directly selected
members which have better objective function evaluations form a large portion of the
next population, the diversity of the population can be quickly exploited and lost. On
the other hand, if a small portion of the population is formed from these directly
selected members, the reproduction resembles the generational replacement. In order
to select a proper number of members directly, we carry out several runs with
different selection percentages (60%, 70%, 80%, 90%). These percentages represent
the directly selected portion of the next generation.

Percent of directly

a3 selected population
60%
70%
80%
90%
0.65
0 100 200 300 400 500

Generations

Figure 4.5. Average of objective values of the population for different percen-
tages of directly selected members in adapted selective breeding
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Figure 4.6. Objective values of the population best member for different percen-
tages of directly selected members in adapted selective breeding
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From Figure 4.5 it is obvious that population average of objective values
increases with the increasing number of directly selected members. However, the
objective values of the best member in population for different directly selected
percentages are very close to each other except for the 60% case (Figure 4.6).
Though there is not any spectacular difference between other cases, the 80% case
allows much more advances in the best member of population than both the 70% and
the 90% cases. As a result we choose the 80% case after neglecting the worst
performer (60%) and the cases that stabilize the population earlier (70% and 90%)).

We know that the source of exploitation in GA is the selection according
to the fitness, while mutation and crossover operators, disrupting the schemata on
which they are operating, are sources of exploration. Members in the population are
selected for mating with respect to their fitness values. In order to prevent a good
member from dominating the population in early generations, leading to a loss of
diversity, we use linear scaling for all our implementations, although our new
reproduction mechanism rewards good strings. This creates a selective pressure,
giving higher reproduction opportunities to the individuals with above average
performance and exploiting the diversity of the population. In order to increase the
exploration power of our GA, we must increase the diversity of the information in
our population. This is achieved by rendering mutation and crossover operators more
disruptive with an increase either in the mutation rate or in the number of crossover

points.

To increase the disruptive effect of mutation we added the “exactly-n bit
mutation” operator. Unlike the random bit mutation operator, this operator
guarantees that exactly n bits are mutated for each finger. Choosing n as 2 bits, the
probability of mutation (2 bit/64 bit for each finger representation =0.031) is not
changed much, but we are sure that each offspring is different than its parents by at
least two bits (assuming no crossover takes place). The comparison of two mutation
operators, the exactly-2 bit mutation and the random bit mutation, is performed in
Figure 4.7. From here on, the reproduction method used is the adapted selective
breeding scheme. Being slightly better than the random bit mutation and increasing
the speed of GA run, exactly 2-bit mutation is chosen as our mutation operator for all
of the later tests.
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Figure 4.7. Different mutation operators

As introduced previously in Chapter 3 from the technical part of view,
we implemented three new crossover operators: i) eight-point crossover, ii) eight-
point ring-structured crossover, iii) uniform crossover. The results of these
modifications compared to the one-point crossover is illustrated in Figure 4.8. Eight-
point crossover scheme forcing exchange of information between corresponding
angles of two hand preshapes is superior, however, uniform crossover is found to
improve solution in spite of the population crowding around the neighborhood of the
optimum solution. The applied uniform crossover operator uses a mask constructed
by uniform distribution of 1’s and 0’s, that is equivalent to a probability of a bit
coming from a parent being 0.5. The eight-point ring-structured scheme is the least

efficient.

0.958
0.946

Obj. Values
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08 1-pt. crossover
8-pt. crossover
Uniform crossover
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Figure 4.8. Different crossover operators
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As GA’s ability to sustain search lies in the selective pressure and
population diversity, the maintenance of diversity of a population with increasing
number of generations is very important. The crossover operator, getting its power
from the diversity of the two parents looses its explorative power in a converged
population of mainly alike individuals that consist of less information that can be
shared between individuals. When the entire population converges to a single
solution or when similar strings form the large portion of population, the progress of
the search reaches a plateau and any improvement becomes the result of random
alteration of bits in a chromosome. Therefore, we take two precautions for not
restricting the search in adapted selective breeding scheme.

One of these precautions comes just before that the crossover operator is
applied. Genotypic equality is searched in the bit strings selected for mating, that is
every bit position is compared. If they are equal and no precaution is taken, crossover
operator will create offsprings that are identical to parents, but complementing one of
the parents, the crossover operator results in offsprings, falling in other parts of the
search space being highly different than their parents. Besides, the offspring created
by crossover and mutation operators may be an exact copy of one of the parents. A
population crowded by many identical individuals, would cause the loss of
explorative power of GA. As a result, burst mutation is applied to offsprings identical
to parents. In Figure 4.9, though the scheme in which mating of identical parents is
not restricted, reaches a better convergence, the improvements in this scheme stop
after the 350" generation, but improvements continue even after the 400" generation
in the restricted mating of identical parents. This graph reveals the success of these
precautions in a search with GA utilizing adapted selective breeding scheme, eight-
point crossover operator and exactly 2-bit mutation operator. Though linear scaling is
implemented in all the runs until this point, its effect is illustrated in Figure 4.10. It
can be seen that when linear scaling is not used, the population converges rapidly.
This convergence point may be a false optimum.
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Figure 4.9. Sustaining diversity in mating and offsprings
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Figure 4.10. Effect of linear scaling

We have used stochastic remainder without replacement as a selection
method in all these runs. This selection method rewards individuals with respect to
the ratio of their fitness values to the average fitness value of the population. This
method, making good individuals to have more copies for mating, decreases the
population diversity. However, one of our aims is maintaining the survival of this
diversity for not stopping the improvement of search with GA. As a result, we also
implemented the classical weighted roulette wheel sampling. The comparison
between the two sampling schemes is plotted in Figure 4.11. Roulette wheel
sampling randomly selects individuals from the population, but stochastic remainder
sampling forms an excessive part of the next population from the highly fit
individuals. These highly fit individuals, being similar to each other, exploit the
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diversity of population so that the convergence rate to the optimum slows down. It is
obvious from Figure 4.11 that roulette wheel sampling explores the search space

more efficiently than the stochastic remainder sampling.

0.95 Roulette wheel sampling
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Figure 4.11. Two sampling schemes
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Figure 4.12. Comparison of binary code to Gray code

In the natural flow of the GA process, individuals of a mature population
crowd in the neighborhood of the optimum. Although any single bit change in the
chromosome representation may result in better solutions in such a population, the
binary representation used in the encoding of joint angles into bit strings prohibits
such an improvement as introduced in Section 3.4. In addition, random-bit mutation

becomes useless for improvements in strings which are close phenotypically, that is
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close in value, but far genotypically, that is Hamming distance between strings is
large. In order to prevent the mutation operator from being useless, we implement the
Gray code as our encoding structure. Though this new mapping increases the runtime

of each generation, it improves the performance of our application (Figure 4.12).

All the mutation operators presented up to here in this chapter make
random searches, only, however, a more directive search is necessary in a population
crowded with alike individuals, because in such populations the information
exchange between individuals (crossover operator) becomes negligible. Aiming at
directive search, we implement the creeping mutation operator (Section 3.4.3) which
is applied to individuals after the 200" generation, so the generated population begins
to crowd around an optimum. This mutation operator that yields small changes
(0 -0.5 degree) in the value of joint angles, results in much more improvement in

our searches(Figure 4.13).

Creeping mutation

Obj. Values

No creeping mutation
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0 100 200 1 300 400 500
Generations

Figure 4.13. Effect of creeping mutation operator

Although our program accepts various hand preshapes as input and
manages to find out proper solutions for these inputs, we have implemented all these
experiments for a known hand preshape in order to judge the performance of GA.
The desired hand posture in our implementation is the cylindrical hand preshape with
the properties listed in Table 4.4. In this table, coordinates of fingertip positions in
three dimensional space are given, together with the stability and manipulability
measures. This data is evaluated by an expert system on grasp analysis and is given
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to our GA model as input. In Figure 4.14, the desired cylindrical hand preshape
together with the resultant hand posture outcome of GA implementation is displayed.

Table 4.4. Desired hand preshape data for cylindrical grasp

Final Values X (cm) y (cm) z (cm)
Thumb 703 -2.33 7.82

Index 7.96 0.38 6.46

Middle 6.71 1.49 7.23

Ring 523 3.26 6.45

Little 4.51 4.59 6.15

Manipulability | 0.84

Stability 0.64

Desired cylindrical grasp Resultant cylindrical grasp

Figure 4.14. Desired and resultant cylindrical grasps

The coefficients (Section 3.4.2) for error terms are also determined by the
classical grasp analysis expert system due to the task requirements and object
constraints. For our specific search the values of these coefficients are listed in
Table 4.5.
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Table 4.5. Coefficients for error terms

Coefficient Coefficient
Error terms Symbol | Value Error terms Symbol | Value
Thumb ¢ 0.16 Little finger Cs 0.16
Index finger (-3 0.16 Hand Ch 0.80
Middle finger c 0.16 SM c, 0.10
Ring finger (o 0.16 MM T 0.10

In this specific example search, the operators used in GA are listed in

Table 4.6 with a population size of 50 individuals. A detailed description of these

operators can be found in Section 3.4.3.

Table 4.6. Operators used in our GA implementation

Operator Type
Crossover Eight point crossover with probability 0.8
Mutation Exactly 2 bit mutation

Selection scheme

Reproduction method

Coding
Scaling
Miscellaneous

Stochastic remainder sampling without replacement
Adapted selective breeding (80%)

Gray code

Linear

Complement, burst mutation, creeping mutation

In Figure 4.15, the total positional error of the hand is displayed. The

evaluation of this total positional error which is the sum of each fingertip distances to

the fingertip positions in the desired hand preshape, determined by the expert system,

is given in Section 3.4.2. The decrease in this error term is smooth and the

misplacement of fingertip sums less than 0.5 cm after the 200" generation.
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Figure 4.15. Total positional error of hand

Figures 4.16 through 4.20 present the positional errors of each fingertip
in candidate hand preshapes which are used in forming the preshape trajectory
towards the desired final hand preshape. Our aim in giving graphics of positional
error terms for each finger is to show that all the fingers move simultaneously for
forming the desired hand preshape and that the effect of GA is similar for each of the
fingers. As all fingers show alike motion characteristics, we introduced fingertip
trajectories on x-y plane and joint angle variations of a finger only for the thumb and

the index finger in Appendix A.
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Figure 4.16. Positional error of thumb
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Figure 4.19. Positional error of ring finger
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Figure 4.20. Positional error of little finger

Positional errors of the thumb and index finger show many more
variations when compared to the other fingers, because these two fingers bear the
characteristics of the cylindrical grasp. In addition, the error in placement of ring
finger is greater than the errors in placements of middle and little fingers in the first
200" generation. This error is due to the manipulability measure, MM (Figure 4.21).
When a better manipulability is attained after the 170" generation, positional error of
the ring finger decreases. Figures 4.21 and 4.22 present errors of manipulability and
stability measures, respectively. The variations in stability measure, SM is the result

of finger motions during the search for better trajectory.

0.1
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Figure 4.21. Error of manipulability measure
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Figure 4.22. Error of stability measure

We also present the objective values for the best and average of
population in Figure 4.23. Objective values for average of population are much less
than the ones for the best member, because the adapted selective breeding scheme
doubles the population size before choosing the more fitted 80% and the objective
values of members in this doubled population can sweep a wide range. Table 4.7
contains information about the resultant hand preshape, found by our search with
GA. A comparison between the Tables 4.7 and 4.4 that contains the information

about the desired hand preshape, reveals the success of our GA implementation.

Pop. best

Obj. Values

0.6

04 4

0 100 200 & 300 400
Generations

500

Figure 4.23. Objective values for the best and average of population
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Table 4.7. Resultant hand preshape data for cylindrical grasp

Final Values X (cm) y (cm) z (cm)
Thumb 7.038 -2.328 7.822
Index 7972 -0.426 6.487
Middle 6.716 1.493 7.234
Ring 5299 3.241 6.419
Little 4.550 4.577 6.121
Manipulability | 0.845

Stability 0.664

4.3. Regrasping

In the regrasping process, the program is given an initial preshape and a
desired final hand preshape and the transition between them is generated in terms of
a set of hand postures. The basic difference between regrasping and preshaping using
GA resides in the initialization of population: the process of preshape formation
works on a given final preshape and starts its search with a randomly initialized
population. However, the regrasping process is initialized by the population which
has converged to a neighborhood of an optimum previous hand preshape. Thereafter,
this converged population is handled with the same GA operators as in preshape
formation phase in order to find the next preshape configuration, towards a desired

final preshapc.

The second difference between these two processes (preshaping versus
regrasping) lies in the evaluation of the fitness function and also the objective
function. Both of these two functions are effected by different weights that multiply
the evaluation of cost in disturbing the system away from the initial preshape towards
the desired final one until a generation limit is reached. After this limit, these
functions are under the influence of only the desired final hand preshape. This limit is
assumed to be the generation number where enough diversity exists in a population
tending towards convergence; in our study this limit is fixed to the 200" generation.
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In the examples here on, we again used specific hand preshapes as in the
preshaping phase. In the preshaping part we have considered the optimal preshaping
for grasping a cylindrical object with a cylindrical grasp. In the regrasping problem,
we try to transfer the hand posture from cylindrical grasp to hook grasp. The fingertip
contact points, together with values of SM and MM are listed in Tables 4.8 and 4.9
for the desired and final hook grasps, respectively. A simulation of preshaping for
cylindrical grasp and regrasping process from initialized cylindrical grasp to the hook
grasp for this example is presented in Appendix B.

Table 4.8. Desired hand preshape data for hook grasp

Final Values x (cm) y (cm) z (cm)
Thumb 7.60 -2.15 6.15
Index 8.98 0.01 451
Middle 8.42 2.63 5,13
Ring 7.48 4.57 5.08
Little 532 5.90 4.52
Manipulability | 0.62

Stability 0.54

Table 4.9. Resultant hand preshape data for hook grasp

Final Values X (cm) y (cm) z (cm)
Thumb 7.597 -2.144 6.152
Index 8.982 -0.005 4.509
Middle 8.424 2.634 5.136
Ring 7.445 4.584 5.077
Little 5313 5.905 4.504
Manipulability | 0.674

Stability 0535
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The plot of the best and average objective values of a regrasping search is
given in Figure 4.24. The objective value decreases with the increasing generation
number due to the decreasing effect of evaluations of the initial preshape that has
been disturbed. As the generation number gets closer to the 200" generation, the
objective function evaluation begins to increase due to the increasing effect of the
final preshape to be reached. Here we can understand that the disturbance given by
genetic operators to the initial preshape is enough for the new generations to escape
toward a regrasping search. The 200" generation is a boundary after which the
previous hand preshape will have no effect (refer to Figure 3.15). It is purposefully
set to 200 to give new population much more chance for converging to the final
preshape.

Pop. best

08 S
Pop. avg.

Obj. Values

0.6

0 100 200 300 400 500

Generations

Figure 4.24. Objective values for regrasping

In Figures 4.25 through 4.27 we explain the reason of the 200"
generation limit in the evaluations of the coefficient, . Different generation limits
from 100 to 300 are tested with an increment of 50 generations. Our requirement for
this generation limit is that i) it must maintain enough diversity in disturbing a
converged population (initial preshape) before starting a new search and ii) the
remaining generations must be sufficient for converging to the final desired hand
preshape. When Figures 4.25 and 4.26 are analyzed, we can deduce that the limits
100 and 150 manage a better convergence, because the remaining number of
generations is sufficient for a good convergence. However, the decrease in the
objective values for these two limits is much more than the decrease of objective
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values in other limits. In addition, since these two limits have steep slopes at the start
of the search when tending towards the final desired hand preshape, they can not
introduce enough diversity into the population.
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Figure 4.25. Objective values of the population best member for different limits

> : denotes loss of disturbance effect and tendency to move toward thé

final preshape.
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Figure 4.26. Average objective values of the population for different limits

We observe that the limits 200, 250 and 300 show almost the same
performances, but as seen in Figure 4.26, the last two limits (250, 300) cause many
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more variations in the objective values than the limit 200. Besides, Figure 4.27
reveals that the transitions between two distinct hand preshapes are smoother for the
limit 200 than for 250 or 300. As a result, the 200" generation, that allows enough
number of generations for exploring the search space and performs better than the
other limits in maintaining smooth transitions, is chosen as the limit after which the
coefficient, B reaches unity, that is, after limit 200, the objective and fitness functions
are under the influence of only the final desired hand preshape.

5
8 Generation limits
3 100
E‘s L 150
5] 200
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300

[

0 100 200 G 400 500
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Figure 4.27. Total hand errors for different limits

In Figure 4.28, the whole regrasping process is shown. The word “whole”
means that the formation of the initial hand preshape and the transformation from
this preshape to the final desired hand preshape (regrasping) are displayed for the
sake of completeness. Here, at the start (the o* generation) we have a randomly
initialized population which converges to a neighborhood of the desired hand
preshape at the 500" generation. After this generation, the regrasping phase begins.
The generation limit for the disturbance phase of regrasping is taken as the 700"
generation in this particular application. The average objective value of the
population decreases up to the 650" generation after it has reached a maximum at the
500" generation. This is due to the decreasing effect of the initial hand preshape. As
the population diversity is increased, the GA begins to efficiently explore the search
space towards the final desired hand preshape and finally at the 1000" generation, it
catches an acceptable error for the regrasping process to terminate.
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Figure 4.28. Objective values for regrasping showing whole process

Figure 4.29 displays the total positional error of the best of population for
each generation in the regrasping phase. Again, GA finds the desired hand preshape
in the first half of the total 1000 generations, In the first 30% of the second half
which corresponds to the regrasping phase GA can not explore the search space
efficiently due to the lack of diversity in the population: this is the disturbance region
(Figures 3.16 and 3.20). After the 700" generation, as the population diversity
reaches to an acceptable range, GA effectively secarches the space of preshape

postures.
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Figure 4.29. Total positional error of hand for the whole regrasping process
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It is obvious from Figure 4.29 that our GA structure waits lazily at the
start of regrasping phase until enough diversity is injected in the population This lack
of diversity is due to the converged population at the start of the regrasping phase.
The information content of such populations is limited to the neighborhood of the
converged optimum. In order to enrich the information content of the population, we
use the modifications described in Section3.5. Figure 430 displays these
modifications. The reproduction method in one modification does not change, that is
the adapted selective breeding scheme is used but the percentage of directly selected
more fitted members is decreased to 5% for the first 100 generations of the
regrasping process. In the other modification, generational replacement is used as the
reproduction technique. When generational replacement is used the decrease in
objective values is more in the disturbance region and the increase in objective values
is steeper in the convergence region when compared to the adapted selective breeding

scheme with 5% direct selection.

Generational repl.

Obj. Values

Selective breeding
with 5% selection

v
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Figure 4.30. Comparison of modifications at the start of regrasping

The effect of the adapted selective breeding scheme with 5% direct
selection in the first 100 generations (500-600 generations) of regrasping phase is
shown in Figures 4.31 and 4.32. The direct selection percentage of the adapted
selective breeding scheme is returned to its default value (80%) after this generation
gap. The comparisons of Figure 4.31 with Figure 4.28 reveal that our modifications
in regrasping process increase the disturbance added to the converged population at
the start of regrasping process. Besides, the convergence region (refer to Figure 3.20)
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in Figure 4.32 starts earlier (610"' generation) than the case (640" generation) in
which the reproduction method for the first 100 generations of regrasping is not
modified. As a result, tracking for the preshape trajectory starts earlier and smoother
due to the adapted selective breeding scheme with 5% direct selection in the first 100
generations (Figure 4.32).
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Figure 4.31. Objective values for modified regrasping
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Figure 4.32. Total positional error of hand for modified regrasping
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4.4. Effect of SM and MM on Robot Hand Preshaping

Until this point we included SM and MM measures in the evaluations of
both the objective and the fitness values, because we propose that the information
about the task and object is contained in these measures. Now, just for analyzing the
effects of SM and MM on robot hand preshaping we change the coefficients for error

terms as in Table 4.10.

Table 4.10. Changing coefficients for error terms

Coefficient Coefficient

Error terms Symbol | Value Error terms Symbol | Value
Thumb (o 0.10 Little finger Cs 0.10
Index finger s 0.10 Hand i, 0.50
Middle finger O 0.10 SM ¢, 0.25
Ring finger Cy 0.10 MM Cin 0125

o

s Coeff. in Table 4.10 e

g =

Coeff. in Table 4.5

" "
0 100 200 R 300 400 500
Generations

Figure 4.33. Comparison of different error term coefficients for objective values

Figures 4.33 and 4.34 displays the comparison of two different error term
coefficients in Tables 4.5 and 4.10. Although GA’s performance does not change
considerably for different coefficients (Figure 4.33), the total hand error for the error
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term coefficients listed in Table 4.10 is greater than the one which uses the coef-ficients

in Table 4.5, because positional error terms are more emphasized in Table 4.5, while

task and object oriented terms (MM, SM) are more important in Table 4.10.
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Figure 4.34. Effect of different error term coefficients on total hand errors

In order to complete the effect of MM and SM on preshaping, we held

another test in which these two measures are completely discarded in the evaluations

of both the objective and the fitness values. Figures 4.35 through 4.38 displays this

effect. In the runs which are plotted in gray color, only positional error terms are

included in the evaluations, that is, the coefficients for error terms related to MM and

SM are assigned as zero. The black plotted run uses the coefficients in Table 4.5.

Obj. Values

MM, SM discarded

MM, SM included

Figure 4.35. Effect of discarding MM and SM on objective values
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Figure 4.36. Effect of discarding MM and SM on total hand error

In Figure 4.35, the objective value for the best member of the population
is plotted. As stability and manipulability measures are not included in gray plot, the
decrease in the objective value is much more than the one which does not neglect
these measures (black plot). Nevertheless, the convergence of the run that only takes
care of the positional errors is superior than the other, because manipulability and
stability measures induce a coupling between the fingers, which as a result effects the
improvement of the search by restricting finger motions. In Figure 4.36, total
positional errors for the hand is displayed. It is obvious that, when manipulability and
stability measures are not included in the objective values, the positional errors of

fingertips decrease considerably in the expense of uncoupled finger motion.
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CHAPTER 5

CONCLUSION

The work considered in this thesis integrates concepts from the grasp
selection due to task-object requirements and from formation of preshapes that
satisfy the manipulation considerations after contacts with the object occur.

Task specific manipulation with multifingered robot hand requires a
stability for grasp such that neither the contacts with the object are lost, nor a damage
occurs on the grasped object. Besides, the multifingered robot hand should have the
capability of imparting to the grasped object any orientation which is characteristic of
the task.

At the initial phase of grasping, the landing fingertips impart to an object
a particular momentum change, generating the impact forces. This momentum
change being different for each hand preshape, can be characterized by particular
stability and manipulability measures. We base these measures on vorticities
generated by the curling motion of fingers during preshaping and by the hand
aperture expressed through the hand divergence, and formulate a performance
measure for task specifications in terms of concepts in vortex theory.

Our objective in this thesis is to find realizable, non-intersecting, optimal
finger trajectories to form a hand preshape such that this preshape provides us with
the ability of reconfiguring the hand preshape involved in the grasp according to the
task requirements, without breaking the contacts with the object. Although fingertip
contacts are considered in this thesis work, the contact model used in our approach
which is based on the two preshape measures of stability and manipulability,
formulated using concepts of vortex theory, is not limited to point contacts but also
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to surface contacts and also to sequences of contacts. Our work generates transitions
between hand postures and determines optimal preshape trajectories until landing on
an object with an optimal preshape capable of imparting the necessary task oriented
motions. Due to uncertainties, this preshape can also reconfigure optimally through
transitions from this preshape to a final one.

The best suited tool that can be used to structure and run our optimal
preshaping and regrasping problem is GA. Though the performance of classical
operators of GA was found to be disappointing, our modifications not only improved
the performance of search with GA but also realized the convergence of our trial runs
toward the neighborhood of intended preshapes with errors within prescribed
tolerance. In the regrasping phase we introduced a disturbance to a converged
population around the initial preshape for enriching the information contained in that
population. As a result of the disturbance injected by the increased information
content, trajectories of hand postures acquired the capacity of being maneuvered
optimally toward the final desired hand preshape with an acceptable convergence.
Consequently, the effect of the initial hand preshape is predominant in the initial
phase of the disturbance region and tapers off as we proceed in that region, while the
final preshape begins to dominate. This results in a smooth transition between the

two different hand preshapes (initial, final) involved in regrasping.

5.1. Future Works

Although our results are efficient in searching for optimal trajectories in
hand preshaping, length of computation time in converging to the desired (given)
hand preshape is the main deficiency of our implementation. One reason for this long
computation lies in our lengthy vectorial representation of joint angles. In order to
reach an acceptable error range in a shorter time than those of our implementations,
the bit string representations of joint angles can be adjusted according both to the
maximum swing of the angle and to the maximum error tolerance. Speeding up the
convergence of genetic algorithms can also be managed by a more intense search that
is the disruption introduced into the population must be increased while more
directive methods are used for generating new populations. Changing the percentage
of population formed by more fitted members in the adapted selective breeding, the
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type and probability of crossover and mutation operators can be counted as the
sources of disruption.

Especially, the mutation operator can be used in increasing the
information content of a population that has reached a convergence plateau. The
probability of mutation operator can be made to change with bit positions such that
diversity of any bit position throughout the population can be calculated and the
result of this diversity can be directly used for determining the probability of
mutation operator. As a result information content of the population can be preserved
and a proper operation of the crossover operator can be maintained. This method also
allows the processing of schemata that is, if a profile of the best schema is drawn in a
converged population, the crossover points and mutation positions can be selected
outside of this profile causing a decrease in the amount of information to be
processed. The speed of convergence to the desired preshape will benefit from this
shrinkage of the search space.

In addition, different types of operators can be handled in the same
population such that different crossover schemes can be applied for different parts of
the population in the same generation. These altered processes of the information
content of the population may also introduce a parallel processing power to GA and
the increased disturbance may result in quick responses for changing preshapes in the
regrasping phase. A prediction algorithm that approximates a trajectory between
fingertip positions of two hand preshapes can be used to direct this disturbance such
that a smooth transition can be obtained.

The incorporation of wrist and arm motion with the multifingered hand,
resulting in a human like whole arm object handling will be an important extension
of this work. The integration of a visual system along with a haptic system would
allow us to extract more information about the object so that this information can be
utilized by an expert system to produce the grasp requirements and contact point
informations which are inputs to our GA architecture and are defined on static
grasps. This integrated sensing, that also handles the redundancy present in the nature
of the robot hand, can be used to provide a collision avoidance. A sensible increase in
the convergence speed of GA would also enable real-time applications.

123



The manipulation of an object by multifingered hands is recognized as
one of the most important topics in robotic research. To date, numerous analytic
approaches have been proposed for characterizing grasps and modeling the process
of manipulation. Although advances in control strategies and tactile sensing for
hands have provided appealing results, the usage of a robotic hand to perform
sophisticated tasks needs many more studies. Nevertheless we are sure that if optimal
control strategies are integrated in our work, satisfactory preshape trajectories as well

as preshape transitions will be obtained.
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APPENDIX A

DATA RELATED TO CARTESIAN AND JOINT SPACES

A.1. Motion of Fingertips in Cartesian Space

x-axis

Figure A.1. Fingertip motion of thumb in xy-plane in preshaping phase
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x-axis

Figure A.2. Fingertip motion of thumb in xy-plane in regrasping phase
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z-axis

Figure A.3. Fingertip motion of thumb in xz-plane in preshaping phase

zaxis

Figure A.4. Fingertip motion of thumb in xz-plane in regrasping phase
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Figure A.5. Fingertip motion of index finger in xy-plane in preshaping phase
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Figure A.6. Fingertip motion of thumb in xy-plane in regrasping phase

A.2. Variation in the Value of Joint Angles

(gray lines represent desired final values)
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Figure A.7. First (knuckle) joint angle of thumb

Value of the Angle (degrees)

Generations

Figure A.8. Second (proximal) joint angle of thumb
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Figure A.9. Third (middle) joint angle of thumb
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Figure A.11. First (knuckle) joint angle of index finger
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Figure A.12. Second (proximal) joint angle of index finger
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Figure A.13. Third (middle) joint angle of index finger
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Figure A.14. Fourth (distal) joint angle of index finger
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APPENDIX B

FINGER MOTION
IN THE PRESHAPING OF THE CYLINDRICAL GRASP
AND
IN THE REGRASPING PHASE FOR THE HOOK GRASP

Figure B.1. Initial hand posture for preshaping phase of cylindrical grasping

Figure B.2. Final hand posture for cylindrical grasp
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