6847~

THE DCPP:
A VISUAL TOOL FOR PROGRAMMING PARALLEL AND DISTRIBUTED SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
: OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALTAN KOCYIGIT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN
THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

JANUARY 1997

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr—Fayfur Oztiirk

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree

of Master of Science.

Prof’ Dr. Fatih Canatan
Head of Department

This is to certify that we have read this thesis and that in our opinion it is
fully adequate, in scope and quality, as a thesis for the degree of Master of

Science.
Y
Prof&)r. Hasan Giiran
upervisor

Examining Committee Members

Prof.Dr. Semih Bilgen
Prof. Dr. Hasan Giiran. AMAA N\
';

Prof. Dr. Ugur Halici

290y
el

//ﬂ /1 ////

Assoc. Prof, Dr. M. Mete Bulut /
/

A s ‘/

i

14

/

Ms. Sc. Erkan Unal

ABSTRACT

THE DCPP:A VISUAL TOOL FOR PROGRAMMING PARALLEL AND
DISTRIBUTED SYSTEMS

Kogyigit, Altan
Ms. Sc. Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Hasan Giiran

January 1997, 130 pages

This thesis presents a visual programming tool called the DCPP that is used
for programming parallel and distributed systems. The DCPP can be used on
variety of platforms based on multiple instruction multiple data (MIMD)
architectures. It presents a portable programming language for shared and
distributed memory types of these machines. It is intended to provide a
simple programming interface that is very close to sequential programming.
In addition, the DCPP uses C++ as the base language to improve the

efficiency and usefulness of the proposed programming system.

Keywords: Paralle] and Distributed Programming, Programming Languages,

Visual Programming Languages.

iil

(0Y/

DCPP: PARALEL VE DAGITIK SISTEMLERIN PROGRAMLANMASI
iCIN BIR GORSEL ARAC

Kogyigit, Altan
Yiiksek Lisans, Elektirik ve Elektronik Mithendishigi Boliimii

Tez Yoneticisi: Prof, Dr. Hasan Giiran

Ocak 1997, 130 sayfa

Bu tezde paralel ve dagitik sistemlerin programlamasi i¢in kullamlan, DCPP
adinda bir gorsel programlama araci sunulmustur. DCPP ¢oklu komut goklu
veri (MIMD) mimarisine dayanan gegitli sistemler lizerinde kullamilabilir.
DCPP bu tir makinelerin paylasimlt veya dagitilmus bellekli gesitlerinin
programlanabilmest i¢in taginabilir bir programlama dilidir. Bu dilde, siralt
programlamaya benzer basit bir programlama arabirimi saglanmaya
¢ahsilmistir. Bunun yaninda, DCPP dili yeterliligi ve kullarulabilirligi

gelistirmek amaciyla C++ dilini temel dil olarak kullanmaktadir,

Anahtar Kelimeler: Paralel ve Dagitilmig Programlama, Programlama Dilleri,

Gorsel Programlama Dilleri.

iv

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor Prof. Dr. Hasan Giran for his
guidance and insight. This work would not have been completed without his
understanding, and encouragement. I would especially thank to my friends
Can, Giiglii, and Serkan for their help during the preparation of this thesis. I
would also like to thank Ozlem, Deniz, and Yesim for their help on solving
problems that arose dﬁring this research. Finally, I would like to thank all my

friends for their continuous morale support, and encouragment.

TABLE OF CONTENTS

ABSTRACT iii
0z : iv
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF TABLES ix
LIST OF FIGURES X
ABBREVIATIONS xii
CHAPTER

1. INTRODUCTION....cccorvneenrrossesansrorsarssensonssssssessessasssessessasssersssssssenees .1
L] OVEIVIEW .cnneeeeeeeacaereereceiiscnnsncsssssssssssesssasssssssssissssssssnssssassnsstessssssssssnssssansssssasnns 2
1.2 Organization 0f TRIS TRESISuuvvievvivisrisisserisnesirissssssssssisssstsssssssssssssssssessssssass 3
2. PARALLEL and DISTRIBUTED SYSTEMS........cociiinmniniienreninrineessesseresnns 5
2.1 Classification of CoOmputing SYSIEIMSc.covveerverierersesressesestissssssessessssssssessrosenes 6
2.1.1 8SISD 6

2.1.2 MISD
2.1.3 SIMD 7
2.1 4 MIMD.....ciiirrreccnieecesessstsssssssessssrsnsssssssissssssnssssssneracssnessessissssesnesstessasseersassesneasaase 8
2.2 Parallelism ClaSSIfICALION.uvoviivviinviosrviniiniiniienresreciesasisessssssssssessassnsssans 10
2.3 Operating SYStem SUPPOT!ucvevvevesesvirverserssrisensssssssstssmssisssnsestssessssseseseasesesos 11
2.4 Programming Language SUPPOTtccvveevievenrirnsueresrssnsisasssssssnsasessessssssssnssnsns 13
2.4.1 Automatic Parallelizationccccovvvrerervurrvnrinririerinnns 13
2.4.2 Sequential Language Plus EXtENSIONScivvveririinininnsirisisirissrsinsresssississnssssssssessns 13
2.4.3 Shared Memory Programming Languages..........cccuvcvmiiiiieieisioesanssensssesesnsrssessosens 14
2.4.4 Data Parallel Programming LangUagescccoceevmiiiniiiiniiisinseesrnstnssesnsssessenssesessss 14

vi

15

2.4.5 Functional Programming Languages

2.4.6 Logic Programming Languages 15

2.4.7 Object Oriented Programming Languages 15

2.5 Visual Programming Languages.. .I 6

3. THE DCPP LANGUAGEcccnrrrnneercsrsescsrsneenescearsassssssssssssssssssssssssssssssasssans 21

3.1 OBSCIVALIONScouvvnvnreinniinvissinsaisrisrsosasssnsssssssosssessossasssssississsssssssissssssesssssssssasssis 21

3.2 The DCPP Design GUIARIINES.........c.vvevviriivviiirsiisiisirivissrinseriiississsessssesssessssssesss 23

3.3 The DCPP Programming..............eevivveesevssisenssnssssissosssssssssssssosssssssssssssosssssssnss 25

3.3.1 Graph Model 27

3.3.2 Representation of Parallel Programs by DAGs 28

3.3.3 The DCPP Programming Tools.. 48

3.4 THE DOPP RUIES...cuontineieseaineivrsisinsinsisiisssssisssencsnesessssasssssssssssssssssssssssosesssntsns 52

3.5 Progrant EXCCULON. ... eeeverveirieineinsiinserinaninstissssseeissssssissssssssssssssassssssssessesses 54

4, IMPLEMENTATIONcoirniiriiisiiniisississsissosssssessiissssssssssessssssssessesssssssssssssssises 56

4.1 Execution Environment REQUIYEIMENLSc..euuiveeremicrisvnsissessossssissessessessessesssassens 57

4.2 SYNLAX CRECK c.cneonvninviriririniinriinsinisisssstnsessinsssissssisisississsssasssiasssssssssssssssssssroses 58

4.3 THE DUPP QUIDUL........covuevuennirvrcecsanserssissssssssssssssstisssssesssssssssosssssssssesssssssssesasssons 60

4.3.1 Program Module..........c.oooioieiereereneesenreissnenese e seessssenssssssesesssssasesans «..61

4.3.2 Caller Module 63

4. d RUNLTINEG SYSLEM ...ceuonneeecveconiesrreensientresessaeeosareasassssestesstssstasssssssssssessnsasssessessassees 65

4.5 Hardware and Operating System Abstraction . W 69

4.5.1 Thread Class 70

4.5.2 Queue Class 73

4.5.3 Pool Class 74

4.5.4 Executive Function 75

4.6 CONVEISION SYSIEM.c..nonrnrrerrrerersiersisesssicnissistsisists e sss e s s s s s sesssesssssnasassssasase 75

4.6.1 Decision Tools 76

4.6.2 Loop Tools............ 76

4.6.3 Queue Tools 76

4.6.4 Block Tools 77

5. EXAMPLE PROGRAM........ccotntriieriareeneeccersseeteneeseeseneenssasesesasssasssnesnsansesensansasssns 79

6. CONCLUSION.....oocccrvreereeseseresssssssessssssesssessasssssssssseseessessesssessssssessesssssessesssssese 83

REFERENCES 87
APPENDICES

A. RUNTIME SYSTEM FOR NETWORK OF COMPUTERS.........ccccecereectreiinernenenenes 91

vil

B. RUNTIME SYSTEM FOR WINDOWS NT ON MULTIPROCESSORS..........cccccccuuee 98

C. RUNTIME SYSTEM FOR AIX ON MULTIPROCESSORS105
D. MATRIX MULTIPLICTION SOURCE CODES............cccoceunucne 112
E. THE DCPP APPLICATIONcocouvmimruruririicacsisesssnsnensssssssssseasssssisesssesessssassssssensasses 123

viii

LIS

TABLE

2.1 Classification of Parallel
3.1 C++ Fundamental Types

T OF TABLES

Programs........cccoevveevevieniieeneeniieeecerecieeneenn

..

ix

LIST OF FIGURES

FIGURES

2.1 MISD (Pipeline) COmMPULET..........cccceverreminumreriiinininienesnnenseiennns
2.2 SIMD (Array) COMPULET........cccveerrrerreerneeeneeeneeerrerereeosresssseesseesseenne
2.3 Shared Memory MIMD.........ccccoeiiieieireiieneeneeneeneeeeeseeesreeesneenee
2.4 Distributed Memory MIMDccccooceereimiueiniinieiiercieeiieeiesceieeaee
3.1 The DCPP's Graphical User Interface..........cccccocceveiciinciicnnninncnnnnnen.
3.2 A SImPle Graph........coeiieeiieieeiieeieree et ssresrteseetesae s e eeesaeenaeas
3.3 Representation of a Function in a Directed Graph...........c.cccccoeeenene.
3.4 Graph Representation of a Program That Computes the
Correlation Coefficient of two Sequences...........ccoceeveeeveenieevienennicennenne.
3.5 Graph Representation of a Simple Program Segment That Use a
NULL arc to Synchronize Two Functions............cocceeeveveneevenncnnecnncnnen
3.6 Graph Representation of a Loop Node...........cccccooiiiininnieniiiinicnnne.
3.7 Graph Representation of a Simple Program Using Loop to
Calculate the Correlation Coefficients of the K Sequence Pairs...............
3.8 Graph Representation of a Decision Node...........cccceeevvevrrvnieciennennnnn.
3.9 Graph Representation of a Simple Program That Does Error
Checking at Runtime Using a Condition Node...........c.ccoocvrveeecrennnnnnnn,
3.10 Graph Representation of a Queue Node...........ccceovvevcrvivinienennneennens,
3.11 Graph Representation of a Simple Program To Apply K Different
Filters To An Image In Parallel, and Using Queues To Pass The

Dependent Portions of Image Between Tasks.........cccceoveeviiiniieenneennnnne.

3.12 Graph Representation of Dynamic Task Creation...........cc.ccoeevuruennne. 46
3.13 Graph Representation of a Simple Program Using Dynamic Job

Creation to Compute the Product of Two Matrices...........cc.cceveeueennenn.. 48
3.14 The DCPP’s Visual Programming ToOIS..........cccccevveerreeeveveerneeveennns 49
4.1 The DCPP Programming OVEIVIEWccccevueerurerreersneeenrennrnrerevenns 56
5.1 Matrix Multiplication AXB=C...........ccc.ceevirriiiiiiecereeeee e, 80
5.2 Matrix Multiplication Programccccceviviirnriveneererreeenneeeennn, 81

xi

DAG

DCPP

DTC

GUI

FIFO

MISD

RPC

SIMD

SISD

SPMD

ABBREVIATIONS

Directed Acyclic Graph

The name of the Language (implying Distributed C++)
Dynamic Task Creation

Graphical User Interface

First In First Out

Multiple Instruction Multiple Data
Multiple Instruction Single Data
Message Paséing Interface
Remote Procedure Call

Single Instruction Multiple Data
Single Instruction Single Data

Single Program Multiple Data

xil

CHAPTER 1

INTRODUCTION

Today, computers are widely used on many areas of science and engineering.
Every new application requires more processing power than the previous
one. Current computer industry provides new, fast computers to meet this
increased processing power requirement. It can be thought that, eventually
they will be fast enough to satisfy technological growth. However, history
showed that, a certain technology meets known applications, as the new

applications arise, it is required to develop new technology to treat them[1].

Normally, it is expected that increasing the clock rate will increase the overall
performance proportionally. Although, clock rates are increasing
continuously, they tend to approach physical limits. For example, a chip with
3 cm diameter propagates a signal in 10® sec with 3*107 m/sec signal
transmission speed in silicon (speed of light argument) [2]. This sets a limit
for sequential computing power. Reference [3] presents the relationship
between the speed and overall performance for a system. The actual
performance of a system also depends on several other factors. Fundamental
limits on clock rates, system reliability, memory bandwidth, and cost are
principal issues on the design of high performance systems[4]. These
observations favor the usage of parallel architectures against sequential

systems.

Actually, parallel and distributed systems have been a huge research area for
many years. The vector processors, massively parallel architectures, were
produced and they have been used for special large applications in
laboratories and big computing centers. However, they were not available for

broad use on industry due to their high prices.

Nowadays, it is possible to face parallel and distributed computing systems
on many areas. Parallel and distributed computing are not a laboratory
research topic any more. Parallel and distributed computing systems are
widely used on many real life applications. It is possible to find several kinds
of multiprocessor systems on the market with acceptable prices. Moreover,
advances in networking products make it simpler to build a distributed
computing environment based on network of workstations with reasonable

effort, and price.

We can say that parallel and distributed computing seems to be effective on
wide range of applications and systems for the near future. Computer
industry will mainly focus on these systems. In addition, tendency towards
these systems results in more interest in software tools and programming for

parallel and distributed computing.

1.1 Overview

The parallel and distributed programs can be developed in several ways. The
first method is developing the application on top of a parallel or a distributed
operating system. The second method is using and existing sequential
programming language with library routines that provide parallel
programming primitives. The last method is using a language that is designed

for parallel and/or distributed computing,.

This thesis is based on the third method. In this thesis, the DCPP (Distributed

C++) programming language that is used for programming parallel and

distributed systems is presented. The DCPP is a general purpose
programming tool for programming shared or distributed memory MIMD

machines.

The DCPP is intended to be an easy to use and flexible tool for development
of variety of applications on different platforms. It is a visual development
environment for construction and viewing of realistically sized programs.
This visual development environment makes the design process simpler and
understandable compared to textual programming counterparts. The
structure of the program, and interfaces between modules can be defined

more clearly, and precisely by using such a visual development environment.

Although the DCPP can easily be ported to variety of platforms, its current
implementation supports three platforms. These are the Microsoft NT
operating system running on symmetric multiprocessors, AIX version 4.1.4
operating system running on IBM RS/6000 multiprocessor machine, and
DOS operating system running on PC’s that are connected by a local area
network. These target platforms represent two different parallel
architectures. One is a shared memory multiprocessor system, the other is a
distributed memory MIMD system. All of these environments/platforms are

readily available for implementing and testing the programming system.

1.2 Organization of This Thesis

Before giving the introduction to the DCPP language, Chapter 1 presents the
need for parallel and distributed programming and brief overview of the

language.

Chapter 2 introduces parallel and distributed systems and their classification.
In this chapter, hardware and software platforms for these computing

systems and currently available programming tools are presented.

Chapter 3 introduces the DCPP programming system. It starts with design
guidelines of the DCPP and continues with detailed explanation of
programming activity in this environment. Each primitive visual element is

defined and its usage is demonstrated by simple program segments.

Chapter 4 describes the output of the DCPP, runtime system, syntax check,
and conversion of the programs. The conversion process for each tool and its

interface with the runtime system is presented.

Chapter 5 gives an example program written by the DCPP system. It

presents a matrix multiplication example with its implementation.

Finally, chapter 6 gives the concluding remarks about the work done in this

thesis.

CHAPTER 2

PARALLEL and DISTRIBUTED SYSTEMS

The parallel and distributed computing systems can be defined as the systems
in which multiple processing elements are combined together to get more

processing power.

Although the main goal for a distributed system and a parallel system is the
same, they differ slightly in their definitions. The parallel computing systems
are formed by multiple processors that are located within a small distance
from each other. These systems have reliable communication between the
processors. Their main purpose is to execute a computational task jointly.
However, for a distributed system, processors may be far away from each
other, and communication between processors is more problematic.
Communication links between them may be unreliable, and communication
delays may be much higher. In these systems, each processor executes its
own task and cooperates with other processors in context of some large

computation task[7].

A parallel, or a distributed system can be characterized by its hardware, the
operating system running on top of this hardware, and the programming
tools for this configuration. This chapter introduces the parallel and

distributed systems along these aspects.

2.1 Classification of Computing Systems

The computer systems are first classified by Flynn. Flynn's classification [5]

divides the computer systems into .four main groups. These are [6]:
1. SISD: Single Instruction Single Data

2. MISD: Multiple Instruction Single Data

3. SIMD: Single Instruction Multiple Data

4. MIMD: Multiple Instruction Multiple Data

In this classification scheme, two of the classes are very important for parallel
and distributed processing. Most of the parallel and distributed systems can
be categorized by SIMD, and MIMD classes. Besides, it is possible to
encounter Hybrid parallel computer systems [6]. They are derived from
pipeline, MIMD, and SIMD. The multiple-pipeline, multiple-SIMD, and

SPMD are examples of these systems.

2.1.1 SISD

The SISD class concerns the single processor von Neumann computer. This
represents the well-known sequential machine model. The von Neumann
computer model was standardized many years ago, and still a valid model for
sequential computers. This computer model consists of a central processing
unit, and a storage unit. In this system, the CPU executes a program that

specifies the sequence of simple operations on the storage unit.

2.1.2 MISD

The MISD computers are also called as pipeline computers (Figure 2.1).
This architecture presents a processing model in which single data is

processed through multiple processors.

Control
Proc.

Figure 2.1 MISD (Pipeline) Computer

The main characteristic of MISD architecture is that each processor performs
a pre-defined, single operation on the incoming data in the pipeline. By this
way, in each clock cycle one set of instructions is finished then the data chain

is further shifted in to the pipeline of processors.

2.1.3 SIMD

On SIMD systems, there is a single instruction that is to be executed by all
the processors synchronously. The processors do not decode the instruction.
The instruction is fetched and decoded by the central control processor. Thus
the processing elements only contain the logic for Arithmetic Logic Unit
(ALU), local memory and communication interface to other processing
elements. This greatly reduces the complexity of the SIMD architectures and
programming. The main problem in SIMD architectures is observed when
the processing elements require too much communication. Special SIMD
architectures are widely used in image processing today where image is split
into blocks and each processor performs the same instruction on its region of

the image.

[ACU [« Storage |
y

Instructions and Data

sfe?] [S/R S [P
Data

I Network J

Figure 2.2 SIMD (Array) Computer

We can divide SIMD computers into two categories. The first one has no
communication or only a chain communication link between processors. This
kind of SIMD computer is also called as vecfor computer. The other type of
SIMD computer has an interconnection network between processors. This

machine is also called as array computer (Figure 2.2).

2.1.4 MIMD

The most complex architecture of the Flynn’s classification is MIMD. In this
class of computers each processing element has its own control flow. This
leads to an asynchronous operation between processing elements. Each

processor executes several instructions on several parts of the data.

In accordance with the memory organization of the MIMD architecture this

class is divided into two categories:

The first category includes the systems having shared memory (Figure 2.3),
and therefore called fightly coupled. This is because of the fact that the
access order and interaction on shared memory somehow control the

execution flow of the processing elements. This class of computers are also

called multiprocessors. The symmetric multiprocessors is an example for

such systems.

7 p

FI%' Netvvo:kél J

Figure 2.3 Shared Memory MIMD

In the second category, the processing elements have their own local
memory (Figure 2.4). Thus the structure is ‘loosely coupled’ which imposes
several difficulties due to the communication overhead between processing
elements. Since, the processing elements have their owh memory, they can
also be called as multicomputers. The network of workstations (or

minicomputers) is a good example for this category.

[Network l

Figure 2.4 Distributed Memory MIMD

2.2 Parallelism Classification

The parallel and distributed systems are classified according to many features
of their hardware and software. The fundamental classification of these
systems is done according to their hardware architectures (section 2.1). The
principal measure of parallelism in a given hardware is the number of
processors it has. If a paralle! system contains thousands of processors, this
system is called as massively parallel system. The SIMD systems usually
contain large number of processors, and they are the good examples for
massively parallel systems. On the contrary, if a parallel system has ten or
twenty processors, it is called as multiprocessors, or multicomputers

according to their memory systems.

Besides, the parallel programs often classified by the measure of computation
time between successive communications [8]. This is called as grain of
parallelism. Large-grain (coarse-grain) parallel programs do computation
most of the time, and communicate rarely. On the contrary, the fine-grain
parallel programs communicate more frequently. The medium-grain parallel

programs are in between them.

The hardware and software classification of a parallel system are also related
to each other. In massively parallel architectures, the fine grain parallelism is

suitable. However, in multicomputer systems the coarse grain parallelism is

preferred.
Table 2.1 Classification of Parallel Programs
Level Executed Object Example System
Program Level Job, Task Multitasking Operating System
Procedure Level Process MIMD System
Expression Level Instruction SIMD System
Bit Level Within Instruction von Neumann Computer

10

In Table 2.1, classification of parallel programs according to their levels of
parallelism, are shown. In this table, parallelism level is illustrated for coarse
grain to fine grain, from top to bottom respectively. In reference [6], a

detailed explanation is given for these levels of parallelism.

2.3 Operating System Support

It is possible to make use of an operating system to develop a parallel or a
distributed application. This approach employs a sequential programming
language, and the existing operating system primitives to develop a parallel

or a distributed application.

Many operating systems provide multitasking capabilities, and basic
communication utilities to build communication links between multiple
concurrent tasks, or tasks running on multiple processing elements
(computers). These tasks can be one of the separate programs, large program
segments called processes with their own codes, data, and status information,
or small processes called threads that share a common address space. The
UNIX, and Windows NT are the most common examples for such operating
systems. By using these characteristics of an operating system, a simple
parallel or distributed application that is composed of many concurrent
processes running on a shared memory multiprocessor system, or network of
computers can be build. These processes also use the existing communication
protocols (such as TCP/IP, NETBIOS, etc.), and the related tools (such as
pipes) to communicate between each other; This style of programming have
been used for a long time, and it is a reasonable programming method to

build parallel and distributed applications on many platforms.

In addition to above services, some operating systems provide more specific

and useful libraries dedicated to parallel or distributed program development.

11

The message passing [30], and remote procedure call (RPC) libraries are the

most popular, and widely used examples of such libraries.

The message passing enables the exchange of messages between the
processes running concurrently. There are two types of the message passing,
synchronous, or asynchronous. In synchronous message passing, sender
process stops the execution and waits until the message is delivered to the
receiving process. This is a simple and easy to use method for
communication. However, this type of communication reduces performance
considerably due to waits. Alternative communication choice is the
asynchronous message passing. In asynchronous message passing, sender
immediately continues its execution after sending the message. By this way
communication and executions are overlapped. This communication method
is more difficult to use compared to synchronous one, but its performance is

much higher.

It is possible to develop a message passing library on top of an operating
system that have communication tools. For example, using the UNIX’s

sockets, or pipes one can develop such applications easily.

Another important communication method is remote procedure call (RPC).
RPC is a different form of synchronous message passing. In this method,
one process sends a message to another process. Then, receiving process
gets the message, and process it. Finally, the result is sent back to the sender
process. RPC is very similar to the normal procedure call mechanism. It
forms a two-way communication mechanism between processes. One of the
best example of the operating system support for distributed application

development using RPC is the Microsoft’s RPC [9].

12

2.4 Programming Language Support

Implementation of a parallel, or distributed application has many difficulties.
However, use of a suitable language for programming could ease the

implementation of such applications..

Like sequential programming, there are many parallel languages, and
programming tools for application development on different architectures
and operating systems. Each of them offers different programming styles, and
each of them are suitable for different classes of applications. This section
presents an overview of some programming models and corresponding tools

or languages.

2.4.1 Automatic Parallelization

Automatic parallelization of a given sequential code is the easiest way to
build a parallel application. In this scheme, compiler accept a sequential
program, and produce efficient parallel object code without any additional
effort of the programmer. However, automatic parallelizétion is a very hard
problem and it seems to be almost impossible for the current compiler

technology.

2.4.2 Sequential Language Plus Extensions

This approach uses an existing sequential language and extensions to that
language to support parallel programming. These extensions supply explicit

control over locality, concurrency, communication, and mapping.

Thes'e languages are intended to shield the programmer from both the
operating system and the underlying hardware. These programming
languages present a higher level, more abstract model for programming to

ease the programming task.

13

Compositional C++, and FM [1] are the examples of such languages.

2.4.3 Shared Memory Programming Languages

In this programming style, parallel tasks communicate, and synchronize
through shared data. The programming language enables users to define
shared memory area, or shared variables. For distributed memory
multiprocessors, this approach simulates physical shared memory

architectures.

This approach has many advantages over message passing type
communication. For example, in message passing systems, a message
generally transfers information between two specific tasks, but shared data is
accessible over all tasks. Besides, in shared memory programming, the
programmer does not need to know the physical distribution of main

memory.

Linda [4], and Tuple Space Smalltalk [8] are the examples for shared

memory programming languages.

2.4.4 Data Parallel Programming Languages

The data parallel parallelism is obtained by applying same operation to some
or all elements of a data ensemble. In data parallel programming, the data is
distributed over processing elements, and sequence of operations are
performed on that data. Therefore, a data-parallel program is formed by a

sequence of operations that are to be done on data ensemble.

pC++, FORTRAN 90, HPF (High Performance FORTRAN) [6] are the

examples for this type of programming languages.

14

2.4.5 Functional Programming Languages

In this programming model, the functions are like mathematical functions.
That is, the result of computation depends on function arguments only. If this
condition is satisfied, order of execution of functions makes no difference,

and they can be evaluated in parallel. For example, to evaluate the value r:

r=f(x, y, z), where x = g(l, m), and y = h(n, o, p), and z = i(q). Here, I, m,
n, o, p, and q represent the values, and f, g, h, and z represent the

Jfunctions.

the functions g, h, and i can be evaluated in parallel, and in any order then f'is
evaluated using the results of these functions. This kind of parallelism is well
suited for fine-grain applications and corresponding architectures, such as

data flow computers.

Concurrent Lisp, and ParAlfl [8] are the examples for functional parallelism
programming.
2.4.6 Logic Programming Languages

Logic programming is implicit, paralle! execution of a logic rule base. Most
of the logic programming languages are based on AND/OR parallelism.
These kinds of programs are usually communicate through shared logical

variables.
Concurrent Prolog [6], and PARLOG [8] are the examples of logic

programming languages.

2.4.7 Object Oriented Programming Languages

In object oriented programming model, the unit of parallelism is the objects.

The objects are assumed to be schedulable entities, and they are distributed

15

over processors. They may be either passive or active at any instant. Each
active object completes its task, and goes into passive state. While the active
objects are running, they send messages to other passive objects. Then these

passive objects go into active state and start to execute.

POOL, and Emerald [8] are the examples of object oriented programming

languages.

2.5 Visual Programming Languages

Visual programming is not a new concept. Today, there exists many
programming languages based on visual programming. The implementations
of these visual programming languages vary from visualization of existing
textual languages to inherently visual implementations. References [10], [11],
and [12] discuss the visual programming languages, their evaluation, and

advantages of these languages.

The visual programming languages are also applied for programming parallel
and distributed systems. The visual approach in parallel and distributed
processing has many advantages compared to textual counterparts [21, 22].
This is because the visual languages are easy to use and more
understandable. In such programming environments, the structure of

program, and interfaces between modules are supposed to be more clear, and

definite.

Most of the textual parallel programming languages introduce implicit
parallelism with complex compilation techniques, or they integrate
communication and synchronization with the sequential programming
causing large, and complex program structure. These programs are certainly
difficult to understand. However, in order to achieve a high performance, the
programmer must understand and keep the large structure of the program

under control.

16

The parallel programs are not linear like the sequential ones. A parallel
program is multidimensional, because it has multiple concurrently running
tasks, and communication among multiple tasks [22]. Therefore, the directed
graphs may become a natural means to model the parallel programs. It is
possible to combine the directed graph model with the programming
language to express the parallelism more clearly. Such languages can present
the graphical representation of the program graph to the programmer, as a
result, they have an imporfant advantage in paralle] programming over

textual languages.

The directed graph representation for the parallel programs enables the
creation of tasks and communications between these tasks are to be defined
more abstractly. The abstraction may bring out the usage of simple and easy
to use primitives. Therefore the implementation of the language can cover
many of the parallel architectures. In addition, it is possible to implement a

language for heterogeneous parallel environments.

Most of the visual languages make use of graph models to represent parallel
programs. In these graphs, the nodes represent the sequential program parts,
and the arcs represent the data dependencies. In the literature, there are many
graph models present such as, Petri nets, form based, process graph,
program dependence graphs, etc. These models help to display the structure
of the program, and describe the programming activity according to various
aspects. Reference [26] classifies and compares these graph models

according to their functionality, parallelism, formalism, etc.

Poker [13], PFG [15] STILE [16] , Clara [14], and VERDI [17] can be
given as the earliest examples for the visual parallel and distributed

programming languages.

17

The first example is the Poker programming environment that allows visual
programming on a special hardware platform: CHIP parallel processor
architecture. It is based on grid based specification of a graph that shows

communication paths between processes.

The second example is the PFG (Parallel Flow Graphs) that is a language for
expression of concurrent, time-dependent computations. It is based on
control flow modeling of programs. The control flow diagram is composed
of non-overlapping basic blocks, called threads, and sequential function calls
in these threads. In this model the threads run parallel with each other. The
PFG’s execution semantics are defined by timed Petri nets [6] and

hierarchical graphs.

The third example is the STILE environment. The STILE is a graphical
environment to design and develop logical relationships between
components. This approach can be applied to different computation and
concurrency methods. STILE programs are composed of boxes that contain
sequential computations in a typical programming language. The boxes
répresent the sequential processes that communicate through the data ports.

These ports are used to communicate with other boxes.

The fourth example is the Clara environment. Clara supports Milner’s CCS
as a specification and design language. The CCS is a tool to define systems in
terms of processes communicating through ports. Clara environment

provides an ideographic syntax for CCS expressions.

The last example is the VERDI visual environment for distributed system
design. In VERDI, designer creates a system control flow diagram of
application, then specifies the points of interprocess communication and
synchronization. Normal computations (assignments, expressions, etc.) are

specified in a standard language (e.g., C, PASCAL).

18

There are some more recent systems that are based on visual parallel and
distributed programming. Some of these are currently under development.
The CODE 2.0 [29], HeNCE [23, 24], VPE [25], and PADS [27] are the
famous examples for such systems. All of these systems are based on
directed graph modeling of the parallel programs. All of the four systems are
based on the idea that the nodes represent the computation, and the arcs

represent the data dependencies.

CODE 2.0 programs consist of the graphs, and each graph has many nodes,
and arcs. Arcs carry data between the nodes, and they behave as FIFO
buffers. In addition, it is possible to call a graph from any graph by using a
special node called call node. The computation nodes get data from the input
arcs and process them. Finally the results are pushed to the output arcs.
There also special firing rules of the nodes. The firing rules determine the

execution start inside a node.

HeNCE is built on top of a distributed programming software package PVM
[28] that is used for process management, and communication over
heterogeneous network of computers. The HeNCE programs are modeled by
directed acyclic graphs (DAG) where the nodes represent the procedures (in
C or FORTRAN), and the arcs represent the dependencies. The graphs

express the control flow of a program.

VPE is also a heterogeneous programming environment and uses PVM (like
HeNCE). It is also be readily implemented on top of other message passing
libraries like MPI [30]. VPE is based on the graphs that describe the process
structure of the program. The arcs represent the message ports for the
processes, and messages flow on these arcs. It is also possible to call the

other graphs from a graph to allow hierarchical program development.

19

PEDS is a visual programming tool, that is used for programming
heterogeneous distributed environments. It can utilize various different
software packages and integrate them in a visual development environment.
The programs are modeled by computational graph model based on a
directed graph. The nodes represent the computational units, and the arcs

represent inter-node data dependency or communication relationship.

20

CHAPTER 3

THE DCPP LANGUAGE

This chapter introduces the DCPP programming language. The DCPP is a
language that is used for parallel and distributed program development. For
this reason, before giving the details of the language, some observations on
the parallel and distributed program development are given in the following
sections. The DCPP proposes a programming tool that tries to reduce the

difficulties presented in those sections.

3.1 Observations

Designing and building parallel and distributed programs is a complex and
hard process compared to sequential programs [22, 24, 20]. The complexity
comes from the design of a parallel algorithm, and implementing this
algorithm on a parallel and distributed platform. The present programming
tools are trying to ease the implementation of a designed program. These
tools hide the low-level details of the run-time system from the programmer,

and offer a hardware and operating system independent interface.

Although the implementation difficulties can be solved by using a good
programming tool, there are still problems with the design of the programs.
Design of a parallel algorithm is effected by several factors. The most

important factor is the selection of a suitable software structure with the

21

present implementation tool and present hardware. It is sometimes difficult
to find the best algorithm for a specific platform and development tool.
Besides, if a specific language is used for the implementation, some
restrictions of that language and familiarity problems for the programmers
will arise. The programmers also suffer from the lack of the ready to use, and
tested library routines. Certainly, this will increase the programming time,

and program bugs.

Another important point to consider about the parallel programming is to
visualize the program as whole. This is even more important for parallel
programming, because parallel program writers must check many things,
such as, the states of simultaneously running tasks, shared data areas, etc.
As program gets larger, the programmer may lose his/her control over the
whole program. Sometimes, such a long program with a complicated
structure may cause serious programming errors. In many cases, there is no
way to detect these errors during programming. Such errors can not be
detected until runtime, and produce confusing results. To avoid these errors,
the structured programming model, or more simple algorithms can be
employed. Since simple algorithms may degrade the performance, and some
languages may not be suitable for structured programming, the above

situation may be inevitable.

Portability is also an important design issue for parallel and distributed
programs. There are many problems associated with writing parallel
programs that run on several platforms. One of the main problems in porting
an application to a different platform is the implementation language. There
may not be an implementation of the development ianguage on the target
system. Thus, to run an application on that platform, the program must be
rewritten with a new language that is designed for that platform. In addition,
if an application is built on top of a parallel or distributed operating system, it

may not be possible to find the required system calls on the new target

22

operating system. So, it may not be possible to transfer the application to a

new domain,

Efficient use of available processors is also important for parallel programs.
Application writers want to keep all processors as busy as possible. For a
fixed partitioned application, it may not be easy to assign a job for each idle
processor all the time. Therefore, some processors wait idle most of the time.
This results in a reduced parallelism. To overcome this problem, an
application should be partitioned to large number of small tasks and they are
distributed over the idle processors. However, this may complicate the
application unless there is mechanism to handle the execution of large

number of tasks.

3.2 The DCPP Design Guidelines

The main goal of the DCPP is to help programmer to write parallel and
distributed applications easily and more systematically. It is intended to be an
easy to use, and flexible tool for building general purpose applications on a
parallel or distributed system. It provides a simple and flexible programming
interface for the programmer to make things simpler, and more

understandable.

The DCPP is a visual programming language. The visual languages have
many advantages on the parallel programming [21]. The DCPP combines
most of the benefits of the visual programming with the parallel and
distributed programming. The usage of a visual programming environment
enables the programmer to visualize the whole program structure easily, and
gives a complete control over the designed program. The program structure
is always kept under the control of the designer, and serious design errors

that are caused by poor program structures are prevented at design time.

23

The DCPP is designed to present a programming model that is very close to
the sequential programming. So that programmers who are working on
sequential programs, and inexperienced on parallel computing have no
trouble in writing programs by using this system. Therefore, the amount of
time that developers spend learning the new environment is tried to be

minimized.

Instead of designing a special programming language, the DCPP is designed
to use C++ [1] as a base language. The base language selection is an
important factor on the usefulness of this system. The C++ language is a very
powerful programming language for the development of complicated
programs. In addition, its extensive and widespread libraries ease writing
sophisticated, and large programs with improved reuse. Many
implementations of C++ exist on variety of platforms and they are more or
less compatible with each other. The DCPP extends all the advantages of the
C++ language to write parallel programs. By using C++, the problems that
may appear due to usage of a special language are also prevented. Besides,
the programmers, who are using C++ for their programs, can easily adapt to

programming with the DCPP.

Another design goal of the DCPP is to provide a hardware and operating
system independent interface for the programmer. The DCPP users are not
required to know about the details of the underlying platform. They are
isolated from platform specific tasks like the distribution of tasks over
multiple processors, required operating system calls, communication between
processors. This provides creation of a program independently from the low-
level programming details and hardware configurations. The design of DCPP
system also presents full flexibility to switch the run-time system. With small
modifications, the DCPP system can easily be adapted to any MIMD
machine that has a C++ compiler (this requirement is very important, but

almost all the computing systems have a C++ compiler), without the need to

24

modify the applications already written on the DCPP. This presents a great
flexibility to select run-time system for any application. Therefore, we can

say that the DCPP system is a portable system.

The DCPP’s another important feature is the dynamic task creation (DTC)
which will be explained in section 3.3.2.5. The DTC improves the parallelism
and efficient usage of the processors. It is an easy to use and powerful
method to handle large number of tasks that require independent

computations.

3.3 The DCPP Programming

The DCPP is a visual programming environment for parallel and distributed
application development. It comprises a graphical user interface (GUI)
(Figure 3.1), and the run-time systems (see Chapter 4). The programs are
developed in this GUI by the visual programming elements, and the textual
parts of the programs are written by DCPP’s built-in editors. Finally these
programs are converted to the source files in C++ language by the DCPP

compiler.

The DCPP’s output (C++ source files) can be compiled and linked with a
suitable run-time system to have executable files. The run-time systems
provide a hardware and operating system independent interface for the
DCPP’s output. The platform specific run-time systems are used for each of

the target platforms.

Program development steps for the DCPP system can be summarized as

follows:
1. Control flow diagram (or data flow diagram) of the program is designed.

2. This control flow diagram is implemented in the GUI by the suitable visual

tools.

25

. The textual parts of the program, and required type declarations are

‘implemented in C++ language by using the built-in editor.

. The program structure is checked against the DCPP programming rules
by using the check command of the DCPP’s GUI. If there are errors, they

are fixed by the programmer.

. The program is converted to C++ source files by using the convert

command of the DCPP’s GUI.

. The outputs of the DCPP (the C++ source files) are compiled and linked
with a suitable run-time system by a C++ compiler and linker to produce

the executable file.

£t Distributed C++ - NoName.DEP

Figure 3.1 The DCPP's Graphical User Interface

26

3.3.1 Graph Model

Before giving the details of the DCPP language a simple graph model to
represent parallel algorithms, is given in this section. The remaining sections

will refer to this graph model to illustrate the DCPP programming concepts.

Let, G = (N, E) be a directed graph, where N = {B},B,,...,By} is the set of
nodes, and E={I(i,j) | i=1...[N| , j=1...|N|, i#j, and there is an arc from B; to
B;} is the set of directed arcs connecting these nodes (in this model |N] is
used to represent the number of elements in the set N). In Figure 3.2, a
simple graph is given with N={B,, B,, Bs, B4, Bs, B¢}, and E={1(1,2), I(1,3),
1(1,4), 1(2,5), 1(3,4), 1(3,5), 1(4,6), 1(5,6)}.

It is said that, the node B; is a predecessor of node B;, and B; is a successor
of B;, if B;, BjeN, and I(i, j)€E. The in-degree of a node B;eN is the number
of the predecessors of that node, and the out-degree of a node B;eN is the
number of the successors of that node. If in-degree of a node is zero, that
node is called as a source node. If out-degree of a node is zero, that node is
called as a sink node. For example, in Figure 3.2, B, is the source node, and

Bg is the sink node.

Figure 3.2 A Simple Graph

27

In this model, each I(j, j) € E that is leaving the node B; is also represented
by r(B;, j), and each I(j, j) € E that is going into the node B; is represented by
a(B;, 1). Therefore, it can easily be seen that I(i, j) = r(B;, j) = a(B;, i). By
using these definitions, the set of arcs going into the node B; can be defined
as A={a(B;,)| I(3, j)€E, i=1,...,|N|}, and the set of arcs leaving the node B;
can be defined as R={r(B;, j)| I}, j)€E, j=1,...,|N|}. For example, Figure 3.2,
A;={a(Bs,1}, and Rs={r(B;,4), r(B3,5)}. It can be easily seen that in-degree
for a node B; is equal to |A;|, and out-degree for a node B; is equal to |Rj|.
Moreover, if |Aj] is equal to zero then B; will be a source node, and if [Rj| is

equal to zero then B; will be a sink node.

A path is the sequence of nodes B;p,Bi;,...,Bix of nodes such that I(iy,i+1)€E
for k=0,1,...,K-1. For example, in Figure 3.2, B|B3;B.B; is a path with length
of 3 arcs. If all of the nodes By are distinct nodes in a path, it is said that
there are no cycles in that path, otherwise the path has at least one cycle. If

there is no path that has a cycle, that graph is also called as a directed acyclic

graph (DAG).

3.3.2 Representation of Parallel Programs by DAGs

The parallel programs are multidimensional objects [22]. Therefore the
natural models for the parallel programs are the directed graphs. It is also
possible to use the graph model for the implementation of the parallel
programs. This section presents a DAG representation model for the parallel
programs. This model establishes the basis for the DCPP programming. The
following sections describe the construction of parallel programs using some
special programming tools such as functions, condition expressions, loop

expressions, and queues.

28

3.3.2.1 Functions and the Programs Constructed by Functions

Let a directed graph G = (N,E) be used to represent a parallel program. In
this model, each B;eN represents a C++ function, and each arc 1(i,j)eE
represents the data dependency between the nodes B;, B;jeN. In particular, an
arc 1(i,j)€E indicates that the function represented by the node B; uses the
results of the function represented by the node B;. According to this model,
the set A; represents the arguments, and the set R; represents the return

values of the function B;.
Example 3-1:

To clarify the above representation model, a simple function’s representation
in a directed graph, and it’s implementation in C++ language is given below.
In Figure 3.3, a function, that calculates the mean and variance of a sequence

A with probabilities pA, is given in graph representation model.

int A[N], float pA[N]

Figure 3.3 Representation of a

Function in a Directed Graph

The function Mean Variance, takes the sequence A, and the probabilities of
the numbers in pA as the arguments that returned from the predecessor node.

Then it calculates the mean E, and variance V of the sequence, and returns

29

them. The return values of this function are used by the two successors of

this node. This function is implemented by C++ language as follows:

struct Ret_Mean_Variance{
float E; // E stands for the mean of the sequence A
float V; // V stands for the variance of the sequence A

5
Ret_Mean_Variance* Mean_Variance(int A[N], float pA[N])
{

‘Ret_Mean_Variance* ret = new Ret_Mean_Variance;
// first calculate the mean of A as E =3 Aj*pA;
ret->E = 0;
for(int i=0; i<N; i++) ret->E += A[i] * pAli];
// then calculate the variance of A as V = (T A** pA)) - E*
ret->V = -1 *ret->E*1et->E;
for(int j=0; j<N; j++) ret->V += A[i] * A[i] * pAli];
// finally return the results V, and E
return ret;

Note: In the above implementation, a struct of type Ret Mean Variance is
declared to specify the return values from the Mean Variance function. This
declaration is necessary, because a C++ function can not return more than
one return value. Instead of returning values directly, a dynamic storage of
type Ret Mean Variance is allocated, and the pointer to this storage is
returned by the function. The successor nodes (functions) will use this
pointer, and extract their arguments from the storage, and when the last node

gets its argument, the dynamic storage will be de-allocated.
|

The function model described above can be used to represent any parallel
program that consists of the functions. To adapt this model to DCPP
programming some rules should be specified. Lets consider the following
rules to represent a program with a directed graph. These preliminary rules
ensure the creation of proper program structures for the rest of the programs

that will be given.

30

Preliminary rules:
Let G=(N,E) be the directed graph representation for a parallel program,
1. G must be a directed acyclic graph to prevent deadlocks.

2. In G, there should be only one source node, and one sink node with
names' dmain, and dret respectively. The source node has arguments “int
arge, char *argv[]” (these are the program arguments of a C++
program). The sink node has a return value “inf ref”’ (ret is the program’s

return value).

3. For all nodes B;eN, all the argument variable names in the set of arcs A;

should be unique.

4. For all nodes B;eN, the return value variable names in the set of arcs R;

should be unique.
Example 3-2:

In Figure 3.4, a program that is represented by a DAG is given. This
program computes the correlation coefficient of two sequences A, and B
with the probability densities pA, pB, and the joint density pAB. The

program simply computes the numbers:

covariance = C =E{AB}-E{A}E{B}=E{AB}-E E,
correlation coefficient =r ¢ ¢
0e nt =y = =
0,05 Vs

In this program, the dmain function prepares the sequences and related
probability densities. The MV A, and MV B represent the functions that
compute the mean E and variance V of the sequences A, and B. The function
E AB computes the E{AB} using the sA = A, sB = B, and pAB. The

Covariance function computes the covariance of the sequences A, and B

31

using the results of the functions £ AB, MV A, and MV B. Finally, the
correlation coefficient r is computed at the dref function using the return

values of the functions Covariance, MV_A, and MV _B.

int SA[N], int sB[M], int B[M], float pB[M]

float pAB[N]

float EAB

int A[N], float pA[N]

Covariance

Figure 3.4 Graph Representation of a Program That Computes the

Correlation Coefficient of two Sequences

Sometimes, a mechanism for synchronizing the executions of some functions
required in parallel programs. It is possible to use arcs for this purpose, in
this model. The proposed mechanism employs the arcs that carry no
arguments or return values. These types of arcs are also called as the NULL
arcs. If a function is required to run prior to the execution of another
function (or a function can only be executed after another function’s

execution is completed) a NULL arc is placed between these functions. In

32

this case, the function that the NULL arc goes in can go into execution if and

only if the predecessor function executed completely.

Example 3-3:

In Figure 3.5, a program segment that has a NULL arc is shown. For this
program segment, funcl will be executed completely before the func2 goes

into execution.

Figure 3.5 Graph Representation of a
Simple Program Segment That Use a

NULL arc to Synchronize Two Functions

The last thing to mention about the model described so far is the execution
order of the functions. This is called as the execution mechanism for the
programs. The execution mechanism presents a method to execute the
functions with the correct order, and the correct parameters. The execution

mechanism for this program model can be expressed as follows:
Let each arc have a state value of waiting, ready, and passed.

1. Set the NULL arcs to passed state with the argument values of all zero,

and remaining arcs to waiting state.

33

2. Pass program arguments to dmain, and execute dmain.

3. Find a node B; with all a(B;, j)€A; are in passed state. Set all r(B;,j)eR; to
passed state with the values of all zero(to indicate passed state). This
means, if a node is only synchronized (no arguments are passed to it), then

it is not executed, just the successor nodes are synchronized.

4. Find a node B; with all a(B;, j)€A, is in ready or passed state, then execute
the function by proper arguments. The arguments of the arcs that are in
ready state will carry the predecessor functions’ return values. The
arguments of the arcs that are in passed state will carry zeros (to indicate

passed state).

5. Find a node B; that completes the execution. If B; is dret then jump to step
6, else set all r(B;, j)eR; to ready state with the related argument values.

Jump to step 3.

6. Execute dret with the return values of the predecessor nodes.

To illustrate mechanism described above, consider the program in Example
3-2. The execution of this program starts with the execution of the dmain
function. After dmain function is executed, the arcs leaving it go into the
ready state, and the functions E_AB, MV A, and MV _B can be executed in
parallel. When all of these functions are executed, all the arguments of the
Covariance function become ready and it is executed. Finally, all the
arguments of the dref become ready and execution completes after the dref is

executed.

3.3.2.2 Loops

The loops enable a program segment (with one or more nodes) to be

executed repeatedly while the condition expression supplied to the loop

34

statement evaluates to non-zero. Using the loop ensures that the
corresponding program segment is executed at least once because the

Boolean expression is evaluated after the execution of that segment.

The loop item is represented with a thick bordered circle in the graph model
(see Figure 3.6). It has only three arcs to connect it to the other nodes
(functions) in the graph. These arcs have special names to distinguish them
from the other types of arcs. The arc that is going into the loop node is called
as the condition link, the thin arc leaving the loop item is called as the false
link, and the thick arc leaving the loop node is called as the frue link.

false(i, f)

Figure 3.6 Graph Representation of a
Loop Node

The implementation of the loop node in C++ language is given as (the

following function can also be called as loop function):

int LoopName(/*arguments from the predecessor node */)

{
}

return /* condition expression supplied to the node */

35

The execution mechanism for the loop is as follows:

1. At the beginning of the iteration (refer to Figure 3.6), the true link is set

to passed state to enable the execution of the B, node.

2. After B, node is executed, the condition statement of the loop node is
evaluated by calling the loop function, and if the result is non-zero, true
link is set to ready state and all other arcs of A, is set to passed state to

start the next iteration.

3. If the condition statement evaluates to zero then only the false link is set

to ready state (terminate the iteration and pass results to successor node).

4. if the condition link is in the passed state, the false link is set to passed
state (i.e., if the condition node is synchronized, just the successor node

that terminates the loop is synchronized).

This execution mechanism can be combined with the one in the previous

section to have the execution mechanism for the programs that has loops.

This system works properly only if all paths starting from B, pass through the
loop node. Otherwise, in the second and further iterations there will be many
nodes waiting arguments from their predecessor nodes to go into the
execution, and this is not possible. In addition, except the true links of the
loop nodes, the whole program must be a directed acyclic graph to preserve
previous rules(i.e. If all the loop tools’ true links are removed from the whole
graph, the remaining graph must be a DAG). As long as the programs obey

these rules, it is also possible to have nested loops in a program.

Example 3-4:

In this example, a loop is added to the program in the Example 3-2 to
compute correlation coefficients for the K pairs of sequences A, and B.

There is some modifications on the previous program to adapt it to the loop

36

usage. First, the NextSeq function is used to supply arguments to £ 4B,
MV A, and MV B functions. The Calculate function is used to compute the
correlation coefficient for the current sequence pairs and pass arguments to

next iterations.

/

nt A[K][N], int B[K][M], float

int B[M], float pB[M]

% ¥ ok

int KA[K][N], int kB[K][M], float
pkAB[K][N][M], int k, float r[K]

Next
sk sk Kk

Figure 3.7 Graph Representation of a Simple Program Using Loop to

Calculate the Correlation Coefficients of the K Sequence Pairs

Note: For this example, passing the huge arrays through the nodes may not

be an efficient method. However, this program, with this structure can run on

37

all of the target platforms without taking the care of whether the target
system is a shared memory or distributed memory architecture. If
performance improvement is necessary, for a shared memory system, global
variables for the arrays can be used, and only the pointers to these variables
can be passed between the nodes. The same type of improvements can also
be done in distributed memory systems, for example one can distribute the
arrays over all the processors in some way, and only the array descriptors are

passed between the nodes.

3.3.2.3 Decisions

The decision nodes implement conditional execution of some portions of a
program. It specifies the conditions for the selection of one of the two
successor nodes to go into execution. When one of them is selected, the
arguments of the condition node are passed to that node, and the other node
is just synchronized (like it is connected to the condition node with a NULL

arc).

G
condition(c, i)

false(i, f)

Figure 3.8 Graph Representation of a

Decision Node

38

The decision node is represented with a double-line circle in the graph
representation (see Figure 3.8). It has three arcs to connect it to the other
nodes (functions) in the graph. These arcs have special names to distinguish
them from the other types of arcs. The arc that is going into the decision
node is called as the condition link, the thin arc leaving the decision node is
called as the false link, and the thick arc leaving the decision node is called as
the frue link.

The implementation of the decision node in C++ language is given as (the

following function can also be called as decision function):

int DecisionName(/*arguments from the predecessor node */)

{
}

return /* condition expression supplied to the node */

The execution mechanism for a decision node is as follows:

1. When the condition link becomes the ready, the condition expression is

evaluated by calling the decision function.

2. 'If the result is non-zero the true link is set to ready state and the
arguments in the condition link are transferred to true link. The false link

is set to passed state with all arguments of zeros (to indicate the passed

state).

3. If'the result is zero the false link is set to ready state and the arguments in
the condition link are transferred to false link. The true link is set to

passed state with all arguments of zeros (to indicate the passed state).

39

4. If the condition link is in the passed state, both of the outgoing arcs are
set to passed state (i.e., if a condition node is synchronized, all of the

successor nodes are synchronized).

This execution mechanism can be combined with the ones in the previous
sections to establish the execution method for the programs that has decision

nodes.

For the programs in which the decision nodes are used, the whole graph must
still be a directed acyclic. As long as this rule is preserved, it is possible to

use more than one decision node in a program.

Example 3-5:

In this example, a program that does error checking at run-time is given (see
Figure 3.9). The decision node called CheckError is placed after the
construct function to handle the errors that may arise in the execution of
construct function. According to the value of the Error variable the
CheckError function chooses one of its successors to execute. If Error is
grater than zero (means some errors are occurred), the true link is set to
ready state, and the false link is set to passed state. Therefore, the program
terminates after the execution of the dref function. If Error is less than or
equal to zero (this means no error is occurred), the false link is set to ready
state and data is transferred to that link, and true link is set to passed state.

Then execution continues with the execution of process function.

40

ParamType parame

construct

DataType data, int Error

Figure 3.9 Graph Representation of a
Simple Program That Does Error
Checking at Runtime Using a Condition
Node

3.3.2.4 Queues

According to the model described so far, functions in a program can
communicate with each other via the argument or return values. This is a
limited method, because the functions can communicate with the other
functions only at the start of the execution, and the end of the execution.
This is not the only way for communication of functions in DCPP programs.
The DCPP has a queue tool that enables the communication of the functions
between each other during their execution period. This is an important
approach, the program model introduced so far may be awkward, because it
may lead to large and complicated programs without some additional

communication methods [25].

Queues provide communication links between the functions in a program.
The queues provide an abstract communication interface with strongly typed

data transfer through it. This is an easy to use and secure method of

41

interaction of the functions at run-time. In addition, a function can use the
queue more than once during its execution period to transfer large data to

more than one function.

A queue is first in first out (FIFO) container, and it manages a train of
objects, where the objects are added to the train from the tail position, and
removed from the train from the head position. In this model, each queue is
associated with a record type for the items. Different queue nodes can have
different record types in a program. However, the record type is unique

within each queue.

Every queue can be used by the functions in a program. To use a queue in a
function, an arc from the queue to that function must be present. This arc
carries the queue identifier to the functions, and functions can operate on the

queue by using this identifier.

TDcppQueue<Queueltem_QueueNode> *QueueNode

Figure 3.10 Graph Representation of a
Queue Node

The queue node is represented with a dashed line circle in the graph

representation model (see Figure 3.10). The arcs leaving the queue node are

42

represented with dashed lines (to identify the arcs carrying the queue

identifiers).

The queues are created as the instances of a class template TDcppQueue in

C++ language. The declaration of this class template is:

template <class T>
class TDcppQueue{
private:
/* private declarations */
public:
TDcppQueue (); /* constructor of the class */
~TDcppQueue(); /* destructor of the class */
T* Put(T* Item); /* put an item of type T* into the queue, if result is NULL, there is
no empty space left */
T* Get(); /* get an item of type T* from the queue, if result is NULL , there is no

item yet */

b
The record types can be assigned to the queues as it is done for the arcs. For

each queue in the program, the record type is declared as:

struct Queueltem_QueueName{
/! variable declarations

5

Finally the queues are created as:

TDcppQueue<Queueltem_QueueName> QueueName;

The previous rules still hold for the programs that have queue nodes, except
one of them. In many cases the queue nodes can behave as source nodes.
Therefore that rule must be modified as: There will be only one source node,

and one sink node, except the queue nodes in the program.

The queues are not the executable parts of the programs. However, they
effect the execution mechanisms of the programs, due to the arcs that
connects queues to the functions. Therefore, a simple modification is

required in previous execution mechanisms. The arcs leaving the queues

43

carry queue identifiers to the functions as arguments to that function. Hence,
the arcs that connect queues to the functions must be initialized to passed

state at the program initialization.
Example 3-6:

This example presents a program to apply K square filters of size M*M (M is

odd) in sequence to an image of size N*N. This program employs two

functions to filter the whole image, and each function filters a half of the

image (see Figure 3.11). The filtering operation can be given for a filter as:
+HM=1)/2 +(M-1)/2

Image[Il[J] = Z Zlmage[l +i)[J + j1* Filter[i + (M - 1)/ 2][j + (M -1)/2]

i==(M-1)/2 j=-(M-1)/2

int rFilters[K][M]}[M],

int IFilters[K][M][M], int rlmage[NJIN/2]

int lImage[N][N/2]

,,,,,,,,

1Image[N][N/2] e ’

Figure 3.11 Graph Representation of a Simple Program To
Apply K Different Filters To An Image In Parallel, and Using
Queues To Pass The Dependent Portions of Image Between
Tasks

44

Apparently, to filter a half of an image (M-1)/2 columns from the other half
is required. Therefore, the functions FilterLeft and FilterRight exchange
their dependent image portions before each filtering process. This exchange
is achieved by two queues. These queues are called as RightToLeft, and
LeftToRight. FilterLeft function puts the related image portion to
LeftToRight queue, and FilterRight function gets this portion and uses it to
filter its own half. FilterRight function buts the related image portion to
RightToLeft queue, and FilterLeft function gets this portion and uses it to
filter its own half.

3.3.2.5 Dynamic Task Creation

The dynamic task creation (DTC) is a very important feature of the DCPP
language. It is an easy to use and effective mechanism to implement dynamic
parallelization of the parallel algorithms. The DTC is achieved by a special
usage of the queue nodes. The major goal of the DTC is to improve

parallelism by the efficient usage of the idle processors at run-time.

The DTC makes it possible to process many of the objects of the same type
through a program portion. This program portion can utilize any types of
nodes that are described so far as long as the programming rules are
preserved. The result of the processing will be an object of many of the
different objects (the type of these objects may be different from the initial

object’s type).

The DTC requires the usage of at least two queues. One of the queues is
used to hold the objects to be processed and manages the start of processing.
The remaining queues are used to collect the results of the processing. In this
method, the objects that are to be processed are accepted as the fasks. The

queue that holds the tasks that are to be accomplished is called as the task

45

queue, and the remaining queues are called as the result queues. The tasks
are send to processing whenever there is an idle processor. This behavior

ensures that the normal functions have a higher priority than processing of a

new task.

The tasks can be placed to the task queue by some functions in the program.
This is the standard usage of the queue to add records. The results can be

taken from the result queues as the records like the normal queue usage.

Figure 3.12 Graph Representation of Dynamic

Task Creation

Representation for this type of queue usage in the graph model makes use of
the arcs with the solid lines that are connected to the queue nodes (see
Figure 3.12). The solid arc that is leaving the queue is called as the create
link, and the solid arc going into the queue is called as the refurn link. There

can only be one create link, and one refurn link for each queue node. The

46

node that is successor of the queue takes its arguments from the objects in
the queue. To do this the object is removed from the queue, and the object’s
data are supplied to the function as the arguments. The node that is

predecessor of the queue puts its return values to the queue as new objects.

When DTC is used in a program, the whole graph must still be directed
acyclic. In addition, this method works properly if and only if all paths
starting from a queue node’s create link pass through another queue node.
Otherwise, there will be many nodes waiting to go to execution, and this is
not possible. As long as the programs obey this rule, it is also possible to

have nested program segments that use the DTC.

Example 3-7:

This example proposes a program to find the product C of two matrices 4,
and B with the dimensions NxM, and MxK respectively. The CreateJobs
function puts the i row and j™ column of A, and B, and i, j values to the
JobQueue for i=1..N, and j=1.K. For each item in the JobQueue, the
Calculateltem function is called and this function computes C[i][j] =
Ya[k][b[k] for those items, and returns result to the ResultQueue. At the
same time, the CollectResults function gets the C[i][j] values from the result
queue, and forms the C matrix. Finally, CollectResults function returns C

matrix to the dret function.

47

inti, intj,

float A[N][M], float a[M], float bM]
float BM][K] -‘__::" JobQueue \:'
ST e
float a[M], float b[M]

int N, int K

CollectResults

.....

int i, int j, float ¢

float C[N][K]

Figure 3.13 Graph Representation of a Simple Program Using

Dynamic Job Creation to Compute the Product of Two Matrices

3.3.3 The DCPP Programming Tools

The programming model described in previous sections are realized in the
DCPP environment by using the DCPP’s visual tools. There are five visual
tools in the DCPP system. These are the line, block, loop, decision, and
queue tools. In Figure 3.14, these visual tools are presented zis they appear in

the DCPP environment.

This section describes the visual programming tools of the DCPP language.

In the following sections these visual tools and their properties are presented.

48

Figure 3.14 The DCPP’s Visual

Programming Tools

3.3.3.1 Lines

The arcs in the graph model are realized by the Line (Figure 3.14) tool in the
DCPP environment. In DCPP programs six types of arcs are used. These are
the normal (argument or return value carrying), condition, true, false, create,
and return arcs. To distinguish the different arc types théy are indicated by
different colors in the programming environment. The normal arcs have
black, the condition, and return arcs have gray, true and create arcs have

green, false arcs have red colors.

The normal (except the queue identifier carrying arcs), and condition lines
can be associated to some variable declarations. Every line of these kinds can
be associated to multiple variables. For variable declarations, the DCPP
accepts the C++ argument declaration rules for the functions (i.e., the
variable declarations are separated by the commas). The format of a

declaration can be like:

<ype> <argumentl>, <type> <argument2>, ..., <type> <argumentN>

49

The fype identifiers shown above can be any C++ fundamental type (see
Table 3.1), and arrays of that type (at most 9 dimensions are allowed). In
addition, the variable names should be valid C++ identifiers. The variable
names assigned on the lines are used as argument names and return value
names for the functions that are connected by that line. While selecting
variable names, the programmer must be careful. Because, argument names

and return value names must be unique within each function.

Table 3.1 C++ Fundamental Types

integers of different sizes char
short int
int
long int
floating point numbers float
double
long double
unsigned integers unsigned char
unsigned short int
unsigned int
unsigned long int
explicitly signed types __signed char
signed short int
signed int
signed long int

In DCPP environment, the lines can be drawn between the programming
tools by means of mouse, and variable declarations can be entered by simply

double clicking on the line and editing the line variables.

3.3.3.2 Blocks

The function nodes in the graph model are realized by the Block (Figure
3.14) tool in the DCPP environment. The label on the Block tool indicates

50

the name of that node (function name) in the program. In the DCPP
environment, it is possible to draw lines between the blocks and the other
nodes, assign or change the block name, and edit the function (using the

Function Editor).

It is possible to draw line that is leaving the block, or going into the block by
clicking with the mouse anywhere on the tool. That is, the block tools do not

have special connection points to draw lines.

3.3.3.3 Loops

The loop nodes in the graph model are realized by the Loop (Figure 3.14)
tool in the DCPP environment. The label on the loop tool indicates the loop
identifier in the program. In the DCPP environment, it is possible to draw
lines between the loop tool and the blocks, assign or change the loop

identifier, and edit the loop’s condition expression.

The loop tool has three connection points to the other blocks. It is possible
to draw lines to connect the loop tool to any block only at these connection
points. These connection points are shown by gray circles on the loop tool in
Figure 3.14. The upper right circle stands for the condition link, the lower
right circle stands for the false link, and the left circle stands for the frue link.
These are represented by gray, green, and red circles for condition, true, and

false links respectively, in the DCPP environment.

3.3.3.4 Decisions

The decision nodes in the graph model are realized by the Decision (Figure
3.14) tool in the DCPP environment. The label on the decision tool indicates
the decision identifier in the program. In the DCPP environment, it is
possible to draw lines between the decision tool and the blocks, assign or

change the decision identifier, and edit the condition expression.

51

The decision tool has three connection points to the other blocks. It is
possible to draw lines to connect the decision tool to any other block only at
these connection points. These connection points are shown by gray circles
on the loop tool in Figure 3.14. The upper circle stands for the condition
link, the right circle stands for the false link, and the left circle stands for the
true link. These are represented by gray, green, and red circles for condition,

true, and false links respectively, in the DCPP environment.

3.3.3.5 Queues

The queue nodes in the graphs are realized by the Queue (Figure 3.14) tool
in the DCPP environment. The label on the queue tool shows the queue
name in the program. In the DCPP environment, it is possible to draw lines
between the queue tool and the other function nodes, assign or change the

condition identifier, and edit the condition expression.

It is possible to draw line that is leaving the queue by clicking with the mouse
anywhere on the queue tool. These lines shows the successor blocks that will
use this queue for communication. Besides, the queue tools also have two
special connection points for dynamic task creation. It is possible to draw
lines to connect the queue tool to any block at these connection points.
These connection points are shown by gray circles on the queue tool (see
Figure 3.14). The circle on the right stands for the refurn link, and the circle
on the left stands for the create link. These lines are represented by gray, and
green circles for return, and create links respectively, in the DCPP

environment.

3.4 The DCPP Rules

The DCPP programs are developed by putting components together and
making connections between these building blocks. To develop a valid DCPP

program, there are some rules that must be obeyed. In the previous sections,

52

the rules for each visual tool were presented separately. This section presents
complete set of these rules using the graph representation model given in

section 3.3.1.

Let G=(N, E) be the directed graph representation for the program under
development. Obtain, E'=E-{l(j, j)| B; is a loop tool, 1(i, j)=true(i, j)}, and
G=(N, E".

The rules are as follows:
1. G' must be a directed acyclic graph.

2. There should be only one source (except queue tools), and one sink node
in G, and G'.The source node’s name must be ‘dmain’, and the sink

node’s function name must be ‘dref’.

3. For all nodes B;eN, the node names must be valid C++ identifiers, and

they must be unique among all other nodes.

4. For all decision and loop tools a valid C++ expression for the condition

must be supplied.

5. For all B;eN, and B; is a decision or loop tool, there must be the arcs
condition(i, j)=I(i, j)€E, true(k, i)=l(k, i)eE, and false(t, i)=I(t, i)eE for
any Bj, By, BieN, and all B;, By, B,’s must be block tools.

6. For all B;eN, and B; is a decision or loop tool, condition(y, j) can not be a

null line,

7. For all loop tools B;eN, and true(i, j)E, all paths starting from B; must

pass through B; in G'.

8. For all queue tools, a queue’s object types must be declared.

53

9. For all queue tools B;, there must be at least one arc I(i, j)eE such that

1(i,j)*=create(i, j), and B;eN is a block tool.

10.For all queue tools B;, and create(i, j)=I(i, j)E, all paths in G', starting
with arc 1(i,j) must pass through one or more ByeN such that k=i, and By

is a queue tool.

11.For all queue tools B;, and create(i, j)=I(i, j)€E, A; must be equal to {l(j,
j)}. For all queue tools B;, and return(k, i) =l(k, i)eE, R must be equal to
{I(k, 1)}.

3.5 Program Execution

This section presents the complete definition of the program execution

process.

Each line I(i, j)€E can be in one of three states at run-time. These states are
waiting, ready, and passed. The waiting state shows that B; is not executed
or execution of that block is not completed yet. The ready state indicates that
biock B; executed already, and all return values are set with B;’s return
values. Finally, the passed state means that block B; is not executed but
execution must continue without the arguments on I(i, j). In this case, all
variables of I(i, j) (arguments of B;) are set to zeros (in passed state array

variables’ first item is set to zero only).

Execution of a program starts with execution of dmain block, and ends with
the execution of dret block. All blocks except these two are executed on
other processors than the first processor on which the program started
execution. After the execution of dmain block, all elements of Rymaia are set
to ready state, and return values of dmain are put to those arcs’ variables.

Then the execution goes on following way:

54

. Find a block B; with all 1(j, i)€ A; are set to passed state. If not found jump

to step 3.

. For all I(i, k)eR;, set I(i, k) to passed state except the line true(i, k) if B; is
a loop tool. Then go to step 1.

. If there is an idle processor, find a block B; with all I(j, i)€A; are set to

passed, or ready state. Otherwise, jump to step 7.

. If B; is a block tool, set all arguments of B; with the values on 1(j, i), and

start execution of B; on an idle processor.

. If B; is a decision tool, execute condition expression. If result is not zero,
pass all values of I(j, i) to true(i, t) and set true(i, t) to ready state, set
zeros to all variables of false(i, f) and set false(i, f) to passed state. If
result of condition is zero, set zeros to all variables of true(i, t) and set
true(i, t) to passed state, pass all values of 1(j, i) to false(i, f) and set
false(i, f) to ready state.

. If B; is a loop tool, execute condition expression. If result is not zero, pass
all values of I(j, 1) to true(i, t) and set true(i, t) to ready state, set all other

elements of A, to passed state, and set all variables of those arcs to zeros.

. If there is an idle processor, and there are queues Bi with create(i, ¢)E, if
there is an item in B;, take the item from the queue and set all variables of

create(i, c) with that item’s data, and set create(i, c) to ready state.

. If there is a block B; that is completed the execution already, set all return
values of B; to the elements of R;, and set all those arcs to ready state.
Except if R={I(i, q)} and By is a queue tool then create a queue item for

B, and fill this item with return values of B;, then put that item to queue.

. If dret is not started yet, jump to step 1.

55

CHAPTER 4

IMPLEMENTATION

The DCPP implementation can be divided into two parts. The first part is the
conversion of user programs into C++ language, and the second part is the
runtime system that executes threads in that program, and manages the

queues.

Runtime
System
DCPP Syntax L, Convert C++ Source C++ Compiler
Program Check to C++ Codes and Linker

y

Executabl
File

Figure 4.1 The DCPP Programming Overview

Figure 4.1 shows the program development process with the DCPP. In this

figure, circles represent the files and boxes represent the processing parts.

56

This chapter presents these development steps, generated output source code

and runtime system.

The syntax check and conversion parts are the same for all execution
platforms. However, the runtime system is specific to every target system.
This means, by creating a runtime system for any given architecture and
operating system that is compatible with the system defined in section 4.1,
makes it possible to run DCPP programs on that system. Therefore, it can be
said that runtime system isolates hardware and operating system details from
the DCPP programs. For this reason, the runtime system is called the
hardware and operating system abstraction module, and it will be explained

in section 4.5

4.1 Execution Environment Requirements

The DCPP is intended to be a portable programming tool on variety of
parallel and distributed systems. This section presents basic requirements for
execution environments in which the DCPP programs can run. The execution
environment expressed here stands for the operating system, and the

hardware platform used for program execution.

The DCPP uses C++ as the base language. It produces C++ source codes
for the application under development. Therefore, the main requirement is
the availability of a C++ compiler on target system. Today, the C++
compilers are available for most of the systems, and it is almost standard
throughout different implementations. Therefore, it is possible to fulfill this

requirement on most of the systems.

The second important criterion is about the thread execution mechanism. In a
shared memory symmetric multiprocessor system, there must be a way to
define and run threads simultaneously, and get their states such as running,

finished, etc. This requirement is fulfilled by almost all the multiprocessor

57

systems, and their operating systems. For example, Windows NT operating
system, that is running on a multiprocessor architecture, supports threads
[18], and some UNIX implementations (like AIX operating system) provide
such a multi-threaded program execution system. In a distributed system, this
requirement is solved by a remote procedure call (RPC) mechanism. By this
way, all the distributed operating systems based on RPC can also run the

DCPP programs.

The last requirement is related to communication of multiple threads during
program execution. As stated before, in the DCPP system, the queues are
used for this purpose. In a shared memory multiprocessor system, it is
possible to implement such queues easily. It is also possible to implement,
similar queue structure on a distributed memory system by means of available

communication tools.

4.2 Syntax Check

Before converting a DCPP program, the syntax of the program must be
checked with the rules presented in section 3.4. If the syntax check operation
fails, the program can not be converted. The syntax checking operation is
done in the following order with the corresponding operations (the following

lines use the definitions in section 3.3.1):

L Check names of all nodes in the program whether they are valid and

unique C++ identifiers, or not (rule 3).

IL. Check all decision and loop tools whether a valid C++ expression for

the condition is supplied, or not (rule 4).

II. Check all decision and loop tools B; whether they have arcs
condition(j, j), true(k, 1), and false(t, i), or not. Then, check whether B;,

By, By’s are the representatives for block tools, or not (rule 5).

58

IV.

VL

VIL

VIIL

IX.

Check all decision and loop tools B; whether return variables from B;

for condition(i,j) assigned, or not (rule 6).
Check all queue tools whether a queue item type is declared, or not.

Check all queue tools B;, whether there is at least one arc (i, j)eE

such that I(i,j)#create(, j), and B; is a block tool, or not (rule 9).

Check all queue tools B; with create(i, j) is defined whether A; is
equal to {I(i, j)}, or not. Then check all queue tools B; with return(k, i)
is defined whether Ry is equal to {I(k, 1)}, or not (rule 11).

Check G', whether it is acyclic or not (rule 1). This check is done as

follows:
A. Form sets M =N, and V=E'

B. Find a node B;eM, and I(i, j)eV, or 1(j, i) ¢V for all B;eN. If
not found go to step D.

C. Remove B; from M, and I(i, j), and 1(j, i) from V for all B;eN.
Go to step B.

D. If M=@ then G' is acyclic, else G' has cycles.

Check whether there is only one source (except queue tools), and one
sink node in G, and G', or not. If true check whether source node’s

function name is ‘dmain’, and the sink node’s function name is ‘dret’,

or not (rule 2).

Check all loop tools B; with true(i, j) whether all paths starting from
B; pass through B; in G', and not pass through any queues, or not (rule

7). This check is done as follows:

59

A Let B. =B;, anduse G'.
B. If B, is the block dret, or a queue then check fails.
C. If R, = { condition(c, i) } return okey.

D. For all successors B of B. follow steps b through d with B, =
By. If all of them returned okey, then return okey.

XI. Check all queue tools B; with create(i, j) is defined whether all paths
in G', starting with arc 1(i,j) pass through one or more ByeN such that
k#i, and By is a representative for a queue tool, or not (rule 10). This

check is done as follows:

A Let B, = B;, and use G'.

B. If B, is the block dret then check fails.

C. If R = { return(c, q) }, and B#B; is a queue return okey.

D. For all successors By of B. follow steps b through d with B, =
By. If all of them returned okey, then return okey.

If any of the check steps above fails, the DCPP will stop the check process,

and report the error to the user.

4.3 The DCPP Output

The conversion system produces two C++ modules corresponding to
program under development, caller module and program module. The caller
module is named as CALLER.CPP (and CALLER.H as header file), and the
same for every DCPP program. The program module takes its name from the

program name as <Program Name>.CPP (and <Program Name>.H as

60

header file). This section describes these modules briefly. The detailed

description for the caller module contents will be given in section 4.6.

4.3.1 Program Module

Program module contains the functions and required type definitions for all
the block, decision, loop, and queue tools. This module contains the block,
decision, and loop functions. Actually, the program source file contains all
the source lines written by the programmer. Therefore, if any error is
detected on converted source codes, by C++ compiler, this module can easily

be edited to correct that error without reconverting the program.

The header file of this module contains the required type definitions and the
prototypes of the functions that are located in the program source file. Every
block tools’ argument and return variables, and every queue tool’s item
record types are defined as records in the header file. These records are used

by program source file, and other modules.

The header file starts with including the header file of the runtime system
module. The queue record-type definitions for every queue tool follow this
include directive. Every queue record’s type name looks like
Queueltem_<queue name>, and all other modules assume this naming
convention. For example record type for a queue tool named queuel is

defined as:

struct Queueltem_queuel {
/7 queuel’s Item Variables

IR

Then, the argument and return record types for blocks are defined. The
names of these record types look like Arg <function name>, and

Ret_<function name> for argument and return record types respectively. All

61

the other modules assume this naming convention. For example, argument

and return record types for a block named as funcl are defined as:

struct Arg_funcl{
// Argument Variables

b

struct Ret_funcl{
/] Return Variables

I
Finally, the function prototypes for the functions that are declared in program

source file are put in header file, to enable access from other modules.

The program source file starts with including the header file. Then, global
definitions and include files that are written by the user are put in program
source file. The function declarations for the blocks follow these definitions.

For example, a block named as funcl is transferred as:

Ret_funcl* funcl(/* arguments of funcl */)

{
Ret_funcl* ret = new Ret_funcl;
// Function Body of funcl
return ret;

}

The declarations for the condition functions of loops and decision follow the
block functions. These functions are used to evaluate the corresponding
condition by other modules. In these functions, loop and decision tools’
names are used as function names. These functions return an integer value
for the condition expression’s result. Following lines show an example for

the declaration of condition functions corresponding to loopl, and decisionl.

int loop1(/*arguments of loop1*/)
{

}

return (/* Condition Expression of loop1 */);

62

int decisionl{/*arguments of cond1*/)
{

}

return (/* Condition Expression of decisionl */);

4.3.2 Caller Module

The caller module includes the definitions, and functions required to execute

the threads, and manage queues in the program.

The header file (caller.h) starts with the #include directive for the program
module header file to access functions, and type definitions in program
module. Then, it includes the runtime module header file to access type
definitions, and global variable declarations. Then, the macro identifiers
define distinct identification number macros for the blocks. The identification
macro names look like /D <block name>. For example for a block named as

func1’s identification number declaration with number equal to 12 is:

#define ID_ funcl 12U

The caller function prototypes follow identification number definitions. For
every block in the program, one caller function is assigned. The caller
functions provide standard interface for calling the block’s function with one
of its argument and returning the return values of that function in its other
argument. For example, the caller function prototype for a block named as

funcl looks like:

void Call_funcl(char *arg, int argsize, char *ret, int retsize);

The external global variable definitions for every queue in the program
follow caller function prototypes. By this way, all queue’s in the program can
be accessed over all modules (the actual declarations for queue variables are

located in caller source file). In DCPP, queues are defined as classes. All

63

queue’s in the program, are the instances of a template class 7DcppQueue
(section 4.5.2) with its item record. For a queue named as queuel, external

definition looks like:

extern TDcppQueue<Queueltem_g1> *ql;

For the dynamic task creation queues (queues with create link is connected
to a block), a function creating a thread with an item in the queue is
prototyped afterwards. If there is an item in the queue, this function creates a
thread instance by assigning that item as an argument to thread function. A
pointer to thread instance of type TDcppThread (section 4.5.1) returned by
this function. The runtime system, if there are idle processors, periodically
calls these functions. The returned threads are executed by the runtime
system. An example function prototype for a queue named as queuel is

declared as:

TDcppThread* QueneThread_q1Q;

The last thing located in the header file is class declarations of threads for all
blocks. The thread classes are derived from the abstract base class
TDcppThread. All block specific parameters are passed in the constructor.
The member functions ReturnThread, and PassThread define the operations
done when the block is executed and return values are get, and when all the
argument lines are set to passed state are. More information about the thread
classes can be found in section 4.5.1. Here is an example class declaration for

a block named funcl:

class Thread_funcl : public TDcppThread{
private:
static unsigned SeqNo;
public:
Arg_funcl arg;
Ret_funcl ret;
Thread_funcl(unsigned aSeqNo, int InLoop=0)
: TDcppThread(ID_funcl, (InLoop ? aSeqNo: SeqNo++), 1, -

64

Call_funcl, (char*)&arg, sizeof(arg), (char*)&ret, sizeof(ret))
{

// queue arguments initialization, and loop true line initialization

}
virtual char ReturnThread();

virtual char PassThread();
I3
The program source file (caller.cpp) for this module implements the caller

functions and the class member functions for the blocks.

4.4 Runtime System

The DCPP’s runtime system is provided as a C++ module called DCPP.CPP
(and DCPP.H as header file). This module prepares types, functions, and
variables that are used for thread execution, and queue management
mechanism. The converted source code uses these types, variables to
generate threads and queues corresponding to every block, and queue tool in
the program. After converting user program into C++ source, this module
and produced source codes are compiled, and linked together by a C++

compiler, and linker to get an executable program.

The implementation of runtime system has to be different for every specific
platform. However, it is possible to classify runtime systems into two
different groups. The first group is the runtime systems for the shared
memory multiprocessor systems, and the second group is the runtime
systems for the distributed memory multicomputers. Although, it is possible
to implement the runtime systems in various ways, in this thesis, three
runtime systems corresponding to these two groups are introduced (one of

them for distributed memory and two of them for shared memory MIMD).

The distributed memory multicomputers approach makes use of a parallel
programming library designed for network of PC’s, running DOS operating

system [19]. All DCPP programs running on this system can also use the

65

tools provided in this library. The implementation for this runtime system is

given in Appendix A.

The first example for shared memory multiprocessors approach makes use of
the Windows NT operating system, and the Borland C++ v4.5 multithread
libraries. The Win32 [18] kernel of Windows NT operating system provides
multithread execution system for a single, or multiple processor hardware. It
is possible to run the DCPP programs in this environment with a single, or
multiple processor hardware. However, the performance of the DCPP
programs directly related to number of processors. For single processor
systems, it is possible to use Windows 95 operating system, with its Win32
subsystem. However, this system only runs the programs, it does not provide
an increase on performance. The implementation for this runtime system is

given in Appendix B.

The second example for shared memory multiprocessors approach makes use
of the AIX version 4.1.4 operating system and its pthread library. This
operating system provides multithread execution system for a single, or
multiple processor hardware. It is possible to run the DCPP programs in this
environment with a single, or multiple processor hardware. Again, the
performance of the DCPP programs directly related to number of processors.

The implementation for this runtime system is given in Appendix C.

In the shared memory multiprocessor runtime systems, all blocks are
executed as threads. The execution of user program starts with the execution
of dmain block, and ends with the execution of dret block. All blocks are

executed by calling corresponding threads.

In the distributed memory multicomputer runtime systems, all blocks are
executed by making remote procedure calls to idle machines. The execution

of user program starts with the execution of dmain block, and ends with the

66

execution of dret block on the master computer. Depending on the
implementation of runtime system, the master computer can be the first
computer on which the program starts execution, or the computer that is
specified by the user. All the other blocks are executed by making remote

procedure calls to other idle computers.

For both of the runtime system types, operation is more or less the same. At
the startup, the runtime system starts a special thread called executive
(section 4.5.4). This thread runs throughout the program execution period,

and responsible for starting and returning the other threads.

In runtime system, all the threads, and queues are represented by thread
objects. The thread object types are derived from an abstract base class
named 7DcppThread (section 4.5.1), and named as Thread <block name>
(section 4.6.4). A thread object, corresponding to a block, knows how to call
the caller function on other machines, how return values are distributed over

the successor blocks, etc.

The runtime system considers all the threads as an instance of TDcppThread
type, and does not know anything about the implementation specific issues
for the individual threads. The runtime system uses two specific storage
objects to hold threads. These storage objects are the instances to
TDcppPool (section 4.5.3) class, and named as WaitPool, and ExecPool.
The WaitPool is used for holding threads that has some arguments
unavailable. The ExecPool is used to hold the threads that are currently

running on other processors.

When a thread in the ExecPool completes its execution, its ReturnThread
function is called. This function is responsible for distributing the return

values of its block to other threads in the WaitPool. If a thread that is

67

successor of current thread is not found in WaitPool, it is created and added

to WaitPool by the ReturnThread function.

If all the argument lines of a thread in the WaitPool becomes passed state, its
PassThread method is called and the thread object is removed from the
WaitPool. The PassThread function sets all the related arguments of its
successors to passed state. If a thread that is successor of current thread is
not found in WaitPool, it is created and added to WaitPool by the
PassThread function.

If all the argument lines of a thread in the WaitPool becomes ready, or
passed state, and all of them are not passed state, its Start method is called. If
start method does not return an error, thread object is removed from the
WaitPool, and added to ExecPool. The Start method is responsible for

making a remote procedure, or thread call to its related caller function.

For the dynamic job creation queues, the QueueThread_<queue name> is
called to create a thread using an item from the queue. If there is an item in
the queue, this function gets the item from the queue, and creates a thread
object for the corresponding block. Then, it sets the arguments of the thread
with the item data. Finally, it returns this thread. This thread is added to
WaitPool by this function, and in the next pass it is started. In the runtime
system, these functions are called only when there is no ready to start item in
the WaitPool. This approach gives higher priority to threads created by
ordinary ways. Because, the completion of such threads is more important

than creating a dynamic thread.

Executive function is responsible for doing the above operations in the
runtime system. The executive thread runs on master processor, throughout
the program execution, and manages the threads created by other threads, or

queues. For this reason, it can be thought as a scheduler for programs.

68

4.5 Hardware and Operating System Abstraction

The runtime system described in section 4.4 provides an execution system
independent interface for the DCPP programs. Therefore, it is called the
hardware and operating system abstraction module. This system is

implemented as a C++ module named as DCPP.CPP (and the header file is
DCPP.H).

The header file for this module starts with a caller file type definition. This
type is used to declare variables for the caller functions inside thread class.

The type definition looks like:

typedef void (*ThreadFunc)(char *, int , char *, int);

Then, the external variables for WaitPool, and ExecPool is declared. This
declaration enables the usage of these pools by other modules, and these are
declared in the run-time system source file as global variables. The

declaration of external declaration looks like:

extern TDcppPool WaitPool;

extern TDcppPool ExecPool;

The prototype for executive function is declared after external pool variables

in header file as:

void Executive():

The next declarations are related with the queue types. First a function type
for thread creation functions for queues is defined. Then an external array
variable for the list of dynamic job creation queues is declared. This array is
defined in the caller module with the related functions in the program. This
external definition makes it possible to access these functions in runtime

system. Finally, the function prototypes for creating and destroying queues

69

that are implemented in caller module are declared to access them in runtime

system.

typedef TDcppThread* (*QueueFunc)();
extern QueueFunc ThreadQueues(];
char CreateQueues(int Master);

void DestroyQueues();

In addition, the TDcppQueue (section 4.5.2), TDcppThread (section 4.5.1),
and TDcppPool (section 4.5.3) class types are declared in the header file.

The DCPP.CPP file implements the class methods and standard functions for
the runtime system including the main function. The main function initializes
the runtime system, creates queues, and calls the Executive function (the

initialization process also includes the runtime system related parameters).

4.5.1 Thread Class

The thread class which is called TDcppThread is the most important part of
the runtime system. This class provides execution system independent
interface for the threads. It is an abstract base class, and thread classes for

every block in the program are derived from it. The class definition looks like

as:

class TDcppThread: /* public TThread */ {
public: :
enum ArgState { Ready, Passed, Waiting };
TDcppThread(unsigned anld, unsigned aSeq, unsigned aCount,
. ThreadFunc aFunc, char *aArg, int aArgSz, char *aRet, int aRetSz);
~TDcppThread();
int IsThread(unsigned anld, unsigned aSeq)
{ return (Id==anld) && (Seq==aSeq); }
unsigned long Start();
/* unsigned long Run(); */
virtual char ReturnThread() = 0;
virtual char PassThread() = 0;
int [sCompleted();

70

ArgState GetArgState();
ArgState& operator[](unsigned index)
{ return ArgStat{index]; }
void SetAllPassed();
private:
unsigned Id;
unsigned ArgCount;
protected:
unsigned Seq;
ArgState *ArgStat;
ThreadFunc Func;
char *Arg,
int ArgSize;
char *Ret;
int RetSize;

¥

The data fields of this class are explained in the following lines:

Id: Identification number to indicate the corresponding block.
Func: Function variable pointing to the caller function for the block.

Arg: Address of arguments structure (included in derived class), which is

used to call the caller function.

Ret: Address of return variables structure (included in derived class),

which is used to access caller function’s return variable.
ArgSize: Size of argument structure, used to call the caller function.
RetSize: Size of return structure, used to call the caller function.

Func: Pointer to the caller function of the block. Used by Start method to

call the caller function.
ArgCount: Number of argument lines, going into the block.

ArgStat: Array of size ArgCount. Indicates the states of argument lines.

71

e Seq: Sequence number. The sequence number with Id is used by the
IsThread method to identify threads in the Pools. The sequence numbers
are used to distinguish between objects that has the same identification
number. This condition happens when the queues are used for creating
threads. If a thread is created by a queue, this number must be set to a
distinct value, and all the successors of the block must use the new

sequence number.
The methods can be explained as follows:
e TDcppThread: Constructs the class with the arguments for data fields.
e ~TDcppThread: Destroys the class.

e IsThread: Returns non-zero if aSeq, and anld is equal to Seq, and Id field
values. This method is used by ReturnThread, and PassThread methods of

other object instances for searching successor blocks in the WaitPool.

e GetArgState: This method scans the ArgStat array. If all members of this
array is set to Passed state, it returns Passed, else if all members of the
array is set to Ready, or Passed, it returns Ready, otherwise, it returns
Waiting. This method is used by the Executive function to decide starting,

or passing the threads in the WaitPool.

e operator[]: This operator is used to access an item in the ArgState array.
This operator is used to set the line state, when an argument of the thread

is set.

e SetAllPassed: This method sets all items of ArgState array to Passed

state.

72

e All derived classes must define this class as a public base class, and
override the ReturnThread, and PassThread methods. The data fields in

this class are filled by the constructors of the derived classes.

e The Start method defines how the threads are called on remote
processors. In Windows NT implementation, this class is derived from the
TThread class of Borland C++ v4.52°s class libraries, and this class
defines the interface between operating system kernel, and TDcppThread
class for running threads. In this implementation the Start method is
implemented by the base class TThread, and calls the abstract function
Run(). Therefore, in this implementation, the Run method calls the caller
function for the thread. In network of computers implementation, Start

method makes a remote procedure call to caller function to a remote

computer.

o IsCompleted: This method returns the state of running thread. If thread
execution is finished, this method returns non-zero, else it returns zero to

indicate the thread is already running.

4.5.2 Queue Class

The queue class defines the interface to a multiple access queue over the
multiple processors, and the type name is TDcppQueue. This queue can be
implemented by the operating system, or hardware tools for a parallel or
distributed execution system. It is designed as a template class to cover
different item types for every queue in the program. The declaration of this

class looks like:

template <class T>
class TDcppQueue{
private:
char *Name;
public:
TDcppQueue (int N, char* aName);

73

TDcppQueue<T>:: TDcppQueue(char* aName);
~TDcppQueue();

int Put(T* Item);
T* Get();

5
The constructors of this class define the creation style for the class. The first
constructor is used to create the multiple access queue of N items on the
execution environment. The second constructor is used to connect to a
created queue. The name field is used to identify the queue on the system. In
a network of computers implementation, the first constructor is called on the
master computer to create the queue instance with the name specified in field
Name. The client computers call the second constructor to access the queue

that is created on the master computer. The Name field is used for this

purpose to identify the queue to be accessed.

The Put, and Get methods define the access methods for the queues. They

work with pointers to items of type T, specified in instance declaration.

4.5.3 Pool Class

The pool class defines the WaitPool, and ExecPool storage constructs. It
holds the pointers to items of TDcppThread type, and its name is
TDcppPool. The pool class is standard for any runtime system, and declared

as:

class TDcppPool{
private:
TDcppThread** Pool,;
unsigned Count;
unsigned Max;
unsigned Delta;
int Enlarge();
public:
TDcppPool(unsigned aMax, unsigned aDelta);
~TDcppPool();
int IsEmpty() { return Count == 0; }
int AddThread(TDcppThread* aThread);
void RemoveThread(TDcppThread* aThread);

74

TDcppThread* FindThread(unsigned anld, unsigned aSeq);
TDcppThread* FindFinished();

TDcppThread* FindReadyOrPassed();

3

The methods of this class can be explained as:

e TDcppPool: Creates a pool of size aMax. The aDelta value is used for the

define how many items are added, if the pool is required to grow.
e ~TDcppPool: Destroys the pool, and frees all dynamic allocations.

e AddThread, RemoveThread: These methods are used to add, and remove

threads to, or from the pool.

e FindThread: This method is used to find a thread in the pool with given

parameters. This method is used in WaitPool instance.

o FindFinished: This method is used to find a thread that is completed its

execution, in the ExecPool instance.

e FindReadyOrPassed: This method is used to find a thread whose

arguments are ready or passed, in the WaitPool instance.

4.5.4 Executive Function

This function executes throughout the program execution cycle. Executive
function manages the threads in the WaitPool, and ExecPool, and creates
threads of dynamic task creation queues. It continuously polls these pools,

and queues. Its operation strategy was defined in section 4.4.

4.6 Conversion System-

The conversion system of the DCPP converts a program into C++. This

system produces the program, and caller modules. It prepares all definitions,

75

and declarations for all decision, loop, queue, and block tools that are used in

the program.

4.6.1 Decision Tools

For every decision tool in the program, a function, evaluating the condition
expression of the decision tool, is constructed. The implementation process

was presented in section 4.3.1.

4.6.2 Loop Tools

For every loop tool in the program, a function, evaluating the condition
expression of the loop tool, is constructed. The implementation process has

presented in section 4.3.1.

4.6.3 Queue Tools

The definitions and declarations for the queues that are used in the program
are described in program and caller module sections. One thing to note here
is the thread creation functions for queues used for dynamic task creation.
For all queue tools used for this purpose in the program has a thread creation

function. This function looks like:

TDcppThread* QueueThread_ql1()
{
Queueltem_ql* Item = g1->Get();
if(!Item) return NULL;
Thread x*T_x;
T_x = new Thread_x(0);
memcepy(&(T_x->arg), Item, sizeof(*Item));
delete Item;
(*T_x)[0] = TDcppThread::Ready;
return T_x;

The operation of this function is simple. First the Get function is called to get

an item from the queue. If there is no item in the queue, function returns

76

NULL, else a thread of specified type in the program, is created and
arguments of the thread are set by the item’s data. Then the ArgState for the
argument line is set to ready state. Finally, this thread is returned by the

function.

4.6.4 Block Tools

In program and the caller module sections the declarations and definitions
done for each block tool has given. The caller function, and thread class type
for the blocks will be explained in this section, in addition to previous

explanations.

The caller function for a block defines a standard interface to all blocks for

calling the block function. For a block named funcl, looks like:

void Call_funcl(char *arg, int argsize, char *ret, int retsize)

{
Arg_funcl *Arg;
Ret_funcl *Ret;
(void *)Arg = (void *)arg;
Ret = funcl(/* arguments of funcl */);
memcpy(ret, Ret, retsize);
delete Ret;

To call a block function, the arguments and return values are passed in arg,
and ret arguments of caller function. In this function, the arguments are
resolved from the arg buffer, and they are passed to block function. Then the
block function is called with those arguments. The only exception is the
queues. The queues are passed from the global variables of them (local
variables are used, because, passing the pointers of the processor where the

function called, is meaningless in distributed memory systems).

For every block in the program, a thread class that is derived from the
TDcppThread is declared. This class implements the specific features of each

block. The ReturnThread, and PassThread functions are overridden in this

717

class. These functions are responsible to set arguments and argument status
items for the successor block threads. If a decision or loop tool is
encountered as a successor of the block, the corresponding condition
function is executed and the true and false lines are handled accordingly. If a
NULL line is encountered, the corresponding argument status item is set to

passed state.

78

CHAPTER 5

EXAMPLE PROGRAM

Before giving concluding remarks on the DCPP, an example program written

in DCPP is presented in this chapter.

The example given here considers the problem of developing a parallel
program to compute C=AxB, where A, B, and C are dense matrices. A dense

matrix is a matrix in which most of the matrix elements are non-zero.

In the matrix multiplication process, each element of C is calculated as
Ci=ZcAuBy. That means, calculation of each element of C requires N
multiplicaitbns, and N-1 additions. Therefore, it can be seen that this matrix
multiplication involves O(N®) operations. If this computation is done
sequentially, the time required to compute C will be proportional to this

O(N®) operations.

The implementation of parallel algorithm with DCPP will decompose the
computation of C over multiple computers to get higher throughput.
Basically, the computation is divided to computation of one row of the C
matrix. The computation of a row n is done by calling a thread with
argument n. By this way, the threads are executed on multiple processors,

and computation is done faster than the sequential one.

79

To do this computation on multiple processors, the matrices A, and B are
copied to each processor, and each thread computes a row of C matrix, and
returns this row. Figure 5.1 illustrates this operation. The dark gray row of C

is computed by using dark gray row of A and light gray columns of B.

Figure 5.1 Matrix Multiplication AxB=C.

The DCPP implementation of this computation makes use of dynamic job
creation queues. A thread in the program puts all row numbers of C to a
queue, and gets results from the other queue. For each item in the create
queue, system calls the compute row thread and the row returned by this
thread is put into return queue. Finally, the thread that puts all the row
numbers into create queue, gets the rows of C from the return queue. The
program reads the matrices A, and B from the files and writes result matrix C

to output file.

The matrix multiplication program is shown in Figure 5.2. The program gets
the names of the files having A, and B matrices, and the output file on which
the C matrix will be written, from program arguments argv[1], argv[2], and
argv[3] correspondingly. The dmain block checks the program arguments,

and reads the matrices A, and B from the corresponding files. If all

80

arguments are supplied and matrices A, and B are read successfully, it
returns start=1, and out=argv[3]. Otherwise, start is set to 0. Then, the
decision tool valid, checks start and if start is nonzero it passes control to
ComputeAB block. If start is set to zero, valid passes control to dret block,

and completes program execution.

¢ Distributed C++ - F-ADCPPAEXAMPLEAMATRIXAMATREX.DCP -

3

int row

int row, float ¢ [128]

o CovmpljteRo_w'

Figure 5.2 Matrix Multiplication Program

The ComputeAB thread puts all numbers corresponding to rows of C to ql,
and then, it waits for the results in q2. After all the rows of C are completed,
it writes C matrix to file named out. If any error occurs in this operation, the

return value result, is set to zero to indicate an error, and thread returns. If

81

all the operations completed successfully, it sets result to 1, and returns after

writing the output.

The ComputeRow block is called whenever an item is found in the queue.
The ComputeRow block first checks the existance of the replicas of A, and
B, in its main memory. If the replicas are not found, they are taken from the
master station. Then, tt gets this row number, and using the replicated copies
of A, and B matrices, it computes the corresponding row of C matrix. After
the row is computed, it returns the row number and resultant row, and these

return values are put into q2.

The converted source codes for this program can be found in appendix E.

82

CHAPTER 6

CONCLUSION

In this thesis, a visual development system for programming parallel and

distributed systems is presented.

The DCPP provides an easy to use interface for building programs. The
programs are build on a visual development environment by using block,
queue, decision, and loop tools. The programmer builds a control flow
diagram for the program with these tools. The graphical development
environment and DCPP’s simple syntax ease the design and implementation
process, and enable programmers to visualize the whole program easily.
After the implementation process, the DCPP converts the program into C++
source files. These source files include the required definitions, declarations
to execute the program on a parallel or distributed system. However, the
approach presented in this thesis can also be used for different purposes. The
programming model, and conversion system can be extended to implement a

visual system for sequential, or multithreaded programming.

The DCPP hides the low level details of underlying operating system, and
hardware primitives. The execution of blocks as threads or making remote
procedure calls for blocks to remote machines, handling of the loop and
decision tools, management of queues are done automatically. Therefore, by

using the DCPP, it is possible to build programs independent from the target

83

platform. However, it is sometimes advantageous to access and use
operating system tools to improve performance, or ease the implementation
of a parallel or distributed program. For example, a programmer may want to
use a tool provided by operating system in a program for distributing large
data to multiple computers in an efficient way. In addition to normal
programming model, the proposed system also permits the access to
environment resources. This presents a great flexibility for the programmers

who use the DCPP.

The DCPP has a simple syntax. This makes it easy to learn and use.
Programming in DCPP is made as close as possible to standard procedural
programming mode]. Consequently switching from sequential programming
to parallel programming is made easy for the programmers who are not
familiar with parallel programming concepts. Besides, instead of designing a
custom language that is used with DCPP, the C++ language is selected for
the base language for the DCPP. Therefore, the programmers who are
familiar with C++ language can easily adapt to this system. The powerful

libraries, and extensive syntax of C++ language are also made available.

The current DCPP implementation can build programs for three target
platforms. The first target system is the network of computers with DOS
operating system. The second is the shared memory, symmetric
multiprocessor system with Windows NT operating system. Finally the third
1s also a shared memory multiprocessor system with AIX operating system.
Although these two types of systems possess quite different parallel
programming approach, and programming interfaces, the DCPP presents a
unified interface, and output syntax for programming these two systems
using a hardware and operating system abstraction mechanism. Using
different runtime systems to get executable files, both systems are supported

with the same output files.

84

The hardware and software abstraction system supports portable programs
for all MIMD parallel and distributed systems, by implementing a suitable
runtime system for every different platform. In DCPP, more general, and
simple assumptions are made about the execution environment to increase
portability chance. Selection of C++ as a base language is also an important
criterion for covering broad range of execution platforms. As it is stated
before, the current DCPP implementation provides three runtime systems for
the three target platforms. For Windows NT, and AIX implementations, the
runtime system, makes use of the multithreaded operating system kernel. For
network of computers implementations, the runtime system uses parallel
programming library designed for personal computer connected by a local
area network. As a future research, many runtime systems for different
execution environments, or different runtime systems for these two
environments with different operating systems and different parallel and
distributed libraries can be prepared. For example, network of computers
runtime can be build upon a shared memory distributed operating system.
Therefore, like in shared memory implementation, global shared variables can

be used in programs to increase usability of the DCPP system.

The current implementation of the DCPP, converts blocks to two functions,
one is the main block function, and the other is the caller function for this
block. The caller function, prepares a standard interface for calling block
functions on remote computers. This standard interface is a good approach
to increase the chance for porting the DCPP to any other remote procedure
call based distributed memory system. However, the caller functions cause an
overhead of calling one more function for a block in the shared memory
multiprocessor system. There are some other overheads induced by
portability requirement for both target systems. It is possible to design a new

system without changing the current programming model, and making

85

changes in conversion system to get a new and more efficient tool for any of

these target platforms.

As a future improvement, it is possible to add new tools to the system. For
instance, it may be possible to implement, with some modifications a tool for
implementing libraries through the DCPP and using these libraries in

sequential languages, or in other DCPP programs.

86

(1]

[2]

[3]

[4]

[3]

(6]

[7]

(8]
[9]

[10]

REFERENCES

Foster, 1., Designing and Building Parallel Programs, Addision-
Wesley Publishing Company, 1994.

White, S. et al., How Does Processor MHz Relate to End-User
Performance?, TEEE Micro, Part I, August 1993, Part II, October
1993.

Halic1 U., Aybay 1., Lecture notes on Operating Systems, METU,
1992.

Morse, H. S., Practical Parallel Computing, Academic Press, Inc.,

1994.

Flynn, M., Some Computer Organizations and Their Effectiveness,

IEEE Trans. on Computers, Vol C-21, 1972.

Briaunl, T., Parallel Programming, Prentice Hall International
Limited, 1993.

Bertsekas, D. P., Tsitsiklis, J. N., Parallel and Distributed
Computation, Prentice Hall, 1989.

Bal, H. E., Programming Distributed Systems, Slicon Press, 1990.
Microsoft Corp., RPC On-line Help, Microsoft Corp., 1994.

Chang, S., Visual Languages: A Tutorial and Survey, IEEE
Software, January 1987.

87

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Ambler, A. L., Bumett, M. M., Influence of Visual Technology on
the evaluation of Language Environments, IEEE Computer, October

1989.

Glinert, E. P., Tanimoto, S. L., PICT: An Interactive, Graphical

Programming Environment, IEEE Computer, November 1984.

Snyder, L., Parallel Programming and the POKER Programming
Environment, IEEE Computer, July 1984,

Giacalone, A., Smolka, S. A. Integrated Environments for Formally
Well-Founded Design and Simulation of Concurrent Systems, IEEE

Trans. on Software Engineering, June 1988.

Stotts, P. D., The PFG Language: Visual Programming for
Concurrent Computation, Proc. Int. Conf. on Parallel Processing,

Volume 2: Software, Pennsylvania State University Press, August

1988.

Stovsky, M. P., Weide B. W., Building Interprocess Communication
Models Using STILE, Proc. 21* Hawaii Int. Conf. on System
Sciences, IEEE Computer Society Press, January 1988.

Graf, M., A Visual Environment for the Design of Distributed
Systems, Plenum Press, 1990.

Microsoft Corp., WIN32 On-line Help, Microsoft Corp., 1994.

Acar C. E., A Parallel Programming Environment for PC
Compatible Computers Connected by Ethernet Local Area Network,
Masters Thesis at METU, 1996.

Newton P., A Graphical Retargetable Parallel Programming
Environment and Its Efficient Implementation, Technical Report

88

(21]

[22]

[23]

[24]

[25]

[26]

[27]

TR93-28, Dept. of Computer Sciences, Univ. of Texas at Austin,
1993.

Newton P., Visual Programming and Parallel Computing,
Workshop on Environments and Tools for Parallel Scientific

Computing, Walland, TN, May, 1994,

Browne J.C., Dongarra J., Hyder S.I., Moore K., Newton P,
Experiences with CODE and HeNCE in Visual Programming for
Parallel Computing, IEEE Parallel and Distributed Technology, Vol.
3 No.1 pp 75-83, Spring 1994.

Beguelin A, Dongarra J., Geist G. A., Mancbek R, Sunderam V.S,
Graphical Development Tools for Network Based Concurrent
Supercomputing, Proceedings of Supercomputing *91, IEEE press pp
435-444, 1991.

Beguelin A., Dongarra J., Geist A., Sunderam V.S., Visualization
and Debugging in a Heterogeneous Environment, IEEE Computer,

June 1993,

Dongarra J., Newton P., Overview of VPE: A Visual Environment
for Message Passing, Heterogeneous Computing Workshop ’95,
Proceedings of 4™ Heterogeneous Computing Workshop, Santa

Barbara CA, April, 1995.

Zhang K., Ma W., Graphical Assistance in Parallel Program
Development, Proc. VL *94 - 10™ IEEE International Symposium on
Visual Languages, St Louis USA, October, 1994,

Zhang D., Zhang K., A Visual Programming Environment for
Distributed Systems, Proc. VL ’95 - 11" IEEE International

89

[28]

[29]

[30]

Symposium on Visual Languages, Darmstadt Germany, September,
1995.

Sunderam V., Dongarra J., Geist A., and Manchek R, The PVM
Concurrent Computing System: Evolution, Experiences, and

Trends,, Parallel Computing, Vol. 20, No. 4, pp 531-547, April 1994.

Newton P., Browne J.C., The CODE 2.0 Parallel Programming
Language, Proc. ACM Int. Conf. on Supercomputing, July, 1992.

Message Passing Interface Forum, MPI: A Message Passing
Interface Standard, Journal of Supercomputing Applications, Vol. 8,
No. 3/4, 1994

90

APPENDIX A

RUNTIME SYSTEM FOR NETWORK OF COMPUTERS

DCPP.H

#if !defined(_ DCPP_H)
#define _ DCPP_H

#include <iostream.h>
#include <conio.h>

#include "ppnww.h"
typedef void (*ThreadFunc)(char*, int, char®, int);

class TDcppThread{
public:
enum ArgState { Ready, Passed, Waiting };
TDcppThread(unsigned anld, unsigned aSeq, unsigned aCount,
ThreadFunc aFunc, char *aArg, int aArgSz, char
*aRet, int aRetSz);
virtual ~TDcppThread();
int IsThread(unsigned anld, unsigned aSeq)
{ return (id==anld) && (Seq==aSeq); }
unsigned long Start()
{ Handle = RPCCall((RPC*)Func, Arg, ArgSize, Ret. RetSize); return
Handle!=NULL; }
virtual char ReturnThread() = 0;
virtual char PassThread() = 0;
int IsCompleted()
{ return RSStatus(Handle)==RS_DONE; }
ArgState GetArgState();
ArgState& operator[J(unsigned index)
{ return ArgStat[index]: }
void SetAllPassed():
private:
unsigned Id;
unsigned ArgCount;

91

RCALL *Handle;
protected:
unsigned Seq;
ArgState *ArgStat;
ThreadFunc Func;
char *Arg;
int ArgSize;
char *Ret;
int RetSize;

},

template <class T>
class TDcppQueue{
private:
/* T** Jtems;
int Size;
int Head;
int Tail;*/
char *Name;
int Master;
RQueue *Handle;
public:
TDcppQueue (int N, char *aName),
TDcppQueue (char *aName)
: /*Size(0), Head(0), Tail(0), */Name(aName), Master(0), Handle(NULL) {
5
~TDcppQuene() {};
int Put(T* Item);
T* Get();
5

template <class T>
TDcppQueue<T>::TDcppQueue(int N, char *aName)
: *Size(0), Head(0), Tail(0), */Name(aName), Master(1)
{
Handle = RQCreate(Name, (sizeof(T)+4)*N, sizeof(T));
}

template <class T>
T* TDcppQueue<T>::Get()
{

T* Result = new T;

if('Handle) Handle=RQLocate(Name, sizeof(T));
if(RQGetNB(Handle, Result)){

delete Result;

Result = NULL,;

}
}

return Result;

template <class T>
int TDcppQueue<T>::Put(T* Item)

92

{
if(!Handle) Handle=RQLocate(Name, sizeof(T));
return !{RQAdd(Handle, Item);

}

class TDcppPool{
private:
TDcppThread** Pool;
unsigned Count;
unsigned Max;
unsigned Delta;
int Enlarge();
public:
TDcppPool(unsigned aMax, unsigned aDelta);
~TDcppPool();
int ISEmpty() { return Count == 0; }
int AddThread(TDcppThread* aThread);
void RemoveThread(TDcppThread* aThread);
TDcppThread* FindThread(unsigned anld, unsigned aSeq);
TDcppThread* FindFinished();
TDcppThread* FindReadyOrPassed();
I8

extern TDcppPool WaitPool,

extern TDcppPool ExecPool;

void Executive();

typedef TDcppThread* (*QueueFunc)();
extern QueueFunc ThreadQueues][];
char CreateQueues(int Master);

void DestroyQueues();

void Sleep(int d);

#endif

DCPP.CPP

#include <iostream.h>
#include <stdlib.h>
#include "dcppnww.h"
#include "caller.h"
#include "timeout.h"
{// TDcppThread Class

TDcppThread:: TDcppThread(unsigned anld, unsigned aSeq, unsigned aCount.

93

ThreadFunc aFunc, char *aArg, int aArgSz, char
*aRet, int aRetSz)
: Id(anId), ArgCount(aCount), Seq(aSeq),
Func(aFunc), Arg(aArg), ArgSize(aArgSz),
Ret(aRet), RetSize(aRetSz)

{
ArgStat = new ArgState[ArgCount];
for(unsigned i=0; i<ArgCount; i++) ArgStat[i] = Waiting;
}
TDcppThread::~TDcppThread()
{
delete[] ArgStat;
RSRelease(Handle);
{/ TThread::~TThread();
}
TDcppThread:: ArgState TDcppThread:;GetArgState()
{
unsigned i;
int p=0;
for(i=0; i<ArgCount; i-++)
{
if(ArgStat[i]==Waiting) break;
if('p && (ArgStat[i]==Ready)) p=1;
}
if(i<ArgCount) return Waiting;
if(!p) return Passed;
return Ready;
}
void TDcppThread::SetAllPassed()
{
for(unsigned i=0; i<ArgCount; i++) operator[](i) = Passed;
}
// TPoolClass

TDcppPool:: TDcppPool(unsigned aMax, unsigned aDelta)
: Count(0), Max(aMax), Delta(aDelta)

{
Pool = (TDcppThread**) new char[aMax*sizeof(TDcppThread*)];

for(unsigned i=0; i<aMax; i++) Pool[i] = NULL,;
}

TDcppPool::~TDcppPool()

{
delete[] Pool,

}

int TDcppPool::Enlarge()

{
TDcppThread** NewPool;

94

NewPool = (TDcppThread**) new char[(Max+Delta)*sizeof(TDcppThread*)];
if(!NewPool) return 0;

for(unsigned i=0; i<Count; i++) NewPool[i]=Pool[i];

delete[] Pool;

Pool = NewPool;

Max += Delta;

return 1;

}

int TDcppPool::AddThread(TDcppThread* aThread)
{
if{ Count>=(Max-1))
if(!Enlarge()) return 0;
Pool[Count++] = aThread;
return 1;

}

void TDcppPool::RemoveThread(TDcppThread* aThread)
{

unsigned i;

for(i=0; i<Count; i++)

if(Pool[i]==aThread) break;

if(i<Count) Count--;

for(;i<Count; i++) Pool[i] = Pool[i+1];

Pool[Count] = NULL;
}

TDcppThread* TDcppPool::FindThread(unsigned anld, unsigned aSeq)
{
unsigned i;
for(i=0; i<Count; i++)
if(Pool[i]->IsThread(anld, aSeq)) break;
return Pool[i];

3

TDcppThread* TDcppPool::FindFinished()
{
unsigned i;
for(i=0; i<Count; i++)
if(Pool[i]->IsCompleted()) break;
return Pool[i];

}

TDcppThread* TDcppPool::FindReadyOrPassed()
{
TDcppThread::ArgState ArgState;
unsigned i;
for(i=0; i<Count; i++){
ArgState = Pool[i]->GetArgState();
if((ArgState==TDcppThread::Passed)||
(ArgState==TDcppThread::Ready)) break;
}

return Pool[i];

95

}
TDcppPool WaitPool(10, 5);
TDcppPool ExecPool(10, 5);

void Executive(int argc, char** argv)
{
TDcppThread *T;
Thread_dmain *T_dmain;
T_dmain = new Thread_dmain(0);
T_dmain->arg.argc = argc;
T_dmain->arg.argv = argv;
(*T_dmain){0] = TDcppThread::Ready;
WaitPool. AddThread(T_dmain);
while((! WaitPool. ISEmpty()){|(!ExecPool. IsSEmpty())){
PPTick();
T = WaitPool. FindReadyOrPassed();
if(T){
if (T->GetArgState()==TDcppThread::Passed){
T->PassThread();
WaitPool. RemoveThread(T);
/* try {*/
delete T;
1* } catch (...){

htd
}else {
if(T->Start()){
WaitPool. RemoveThread(T);
ExecPool. AddThread(T);
}
}
} else if(HostByState(HST_IDLE)){
for(int i=0; ThreadQueues[i]; i++){
TDcppThread *QT;
QT = ThreadQueues[i]();
if(QT) WaitPool. AddThread(QT);
}
yelse RSTryUpdate();
T = ExecPool. FindFinished();
if(T){
ExecPool.RemoveThread(T);
T->ReturnThread();
delete T;

void IdleFunc(void)
{

96

if(HIDErrorFlag) PPEndIdle();
}

#pragma argsused
int main(int argc, char** argv)
{

int master,stat;

if(argc==2){
master=1;
stat=atoi(argv[1]);
if(stat<0) stat=1;
if(stat>200) stat=200;
}else master=0;

if(PPInit(master,0,0)){
cout<<"Initialization Failed\n";
exit(1);

}

PPSetldleFn(IdleFunc);

CreateQueues(master);
if(master){
cout<<"Waiting for "<<stat<<" stations...\n";

while(num_hosts<stat) PPTick();
cout<<"Donel\n";
Executive(argc, argv);

}else PPGoldle();

DestroyQueues();
return 0;

}

void Sleep(int d)
{
clock_tt;
cout << "Sleep "<<d<<end];
t=clock();
while(!mstimeout(t,d)) PPTick();
}

97

APPENDIX B

RUNTIME SYSTEM FOR WINDOWS NT ON

MULTIPROCESSORS

DCPP.H

#if defined(_ DCPP_H)
#define _ DCPP_H

#include <classlib\thread.h>
typedef void (*ThreadFunc)(char*, int, char*, int);

class TDcppThread: public TThread{
public:
enum ArgState { Ready, Passed, Waiting };
TDcppThread(unsigned anld, unsigned aSeq, unsigned aCount,
ThreadFunc aFunc, char *aArg, int aArgSz, char
*3Ret, int aRetSz);
~TDcppThread();
int IsThread(unsigned anld, unsigned aSeq)
{ return (Id==anld) && (Seq==aSeq); }
unsigned long Run()
{ (*Func)(Arg, ArgSize, Ret, RetSize); return OL; }
virtual char ReturnThread() = 0;
virtual char PassThread() = 0;
int IsCompleted()
{ return GetStatus()==Finished; }
ArgState GetArgState();
ArgState& operator[](unsigned index)
{ return ArgStat[index]; }
void SetAllPassed();
private:
unsigned Id;
unsigned ArgCount;

98

protected:
unsigned Seq;
ArgState *ArgStat;
ThreadFunc Func;
char *Arg;
int ArgSize;
char *Ret;
int RetSize;

b

template <class T>
class TDcppQueue{
private:
T** Items;
int Size;
int Head;
int Tail;
TCriticalSection LockQ;
char *Name;
public:
TDcppQueue (int N, char* aName);
TDcppQueue<T>::TDcppQueue(char* aName)
: Size(0), Head(0), Tail(0), Name(aName) {};
~TDcppQueue();
T* Put(T* Item);
T* Get();
h

template <class T>
TDcppQueue<T>::TDcppQueue(int N, char* aName)
: Size(N), Head(0), Tail(0), Name(aName)
{
Items = (T**) new char[N*sizeof(T*)];
for(int i=0; i<N; i++) Items[i] = NULL;
}

template <class T>
TDcppQuene<T>::~TDcppQueue()

{
for(int i=0; i<Size; i++) if(Items[i]) delete Items[i];
delete Items;
}
template <class T>
T* TDcppQueue<T>::Get()
{
TCriticalSection::Lack lock(LockQ);
T* Result;
if(Head==Tail)
Result = NULL;
else {

Result = Items{Head];
Items[Head++] = NULL;

99

fa

Head %= Size;
}
return Result;

}

template <class T>
T* TDcppQueue<T>::Put(T* Item)
{
TCriticalSection::Lock k(LockQ);
T* Result;
if(Head==((Tail+1)%Size))
Result = NULL;
else {
Result = Items[Tail++] = Item;
Tail %= Size;
}
return Result;

}

class TDcppPool{
private:
TDcppThread** Pool;
unsigned Count;
unsigned Max;
unsigned Delta;
int Enlarge();
public:
TDcppPool(unsigned aMax, unsigned aDelta);
~TDcppPool();
int IsSEmpty() { return Count == 0; }
int AddThread(TDcppThread* aThread);
void RemoveThread(TDcppThread* aThread);
TDcppThread* FindThread(unsigned anld, unsigned aSeq);
TDcppThread* FindFinished();
TDcppThread* FindReadyOrPassed();
unsigned GetCount(){ return Count; }

b
extern TDcppPool WaitPool;

extern TDcppPool ExecPool;

void Executive();

typedef TDcppThread* (*QueueFunc)();
extern QueueFunc ThreadQueues(];
char CreateQueues(int Master);

void DestroyQueues();

#endif

100

DCPP.CPP

#include "dcpp.h”
#include "caller.h"
#include <stdlib.h>

// TDcppThread Class

TDcppThread:: TDcppThread(unsigned anld, unsigned aSeq, unsigned aCount,
ThreadFunc aFunc, char *aArg, int aArgSz, char
*aRet, int aRetSz)
: Id(anld), Seq(aSeq), ArgCount(aCount),
Func(aFunc), Arg(aArg), ArgSize(aArgSz),
Ret(aRet), RetSize(aRetSz)

{

ArgStat = new ArgState[ArgCount];

for(int i=0; i<ArgCount; i++) ArgStat[i] = Waiting;
}
TDcppThread::~TDcppThread()
{

delete[] ArgStat;

}
TDcppThread:: ArgState TDcppThread::GetArgState()
{

int p=0;

for(int i=0; i<ArgCount; i++)

{

if(ArgStat[i]==Waiting) break;
if(Ip && (ArgStat[iJ==Ready)) p=1,

} .

if(i<ArgCount) return Waiting;

if(!p) return Passed;

return Ready;
}
void TDcppThread::SetAllPassed()
{

for(int i=0; i<ArgCount; i++) operator[](i) = Passed;

}
// TPoolClass

TDcppPool:: TDcppPool(unsigned aMax, unsigned aDelta)
: Max(aMax), Delta(aDelta), Count(0)

{
Pool = (TDcppThread**) new char[aMax*sizeof(TDcppThread*)};
for(int i=0; i<aMax; i++) Pool[i] = NULL;

}

101

TDcppPool::~TDcppPool()
{
delete[] Pool;

}

int TDcppPool::Enlarge()
{
TDcppThread** NewPool;
NewPool = (TDcppThread**) new char[(Max+Delta)*sizeof(TDcppThread*)];
if(!NewPool) return 0;
for(int i=0; i<Count; i++) NewPool[i]=Pool[i];
delete[] Pool;
Pool = NewPool;
Max += Delta;
return 1;

}

int TDcppPool::AddThread(TDcppThread* aThread) -
{
if(Count>=(Max-1))
if(!Enlarge()) return 0;
Pool[Count++] = aThread;
return 1;

}

void TDcppPool::RemoveThread(TDcppThread* aThread)
{

for(int i=0; i<Count; i++)

if(Pool[i]==aThread) break;

if(i<Count) Count--;

for(;i<Count; i++) Pool[i] = Pool[i+1];

Pool[Count] = NULL;
}

TDcppThread* TDcppPool::FindThread(unsigned anld, unsigned aSeq)
{
for(int i=0; i<Count; i++)
if(Pool[i]->IsThread(anld, aSeq)) break;
return Pool[i];

}

TDcppThread* TDcppPool::FindFinished()
{
“ for(int i=0; i<Count; i++)
if(Pool[i]->IsCompleted()) break;
return Pool[i];

}

TDcppThread* TDcppPool::FindReadyOrPassed()

{
TDcppThread:: ArgState ArgState;

for(int i=0; i<Count; i++){

102

ArgState = Pool[i]->GetArgState();
if((ArgState==TDcppThread::Passed)]|
(ArgState==TDcppThread::Ready)) break;

return Pool[i];

}

TDcppPool WaitPool(10, 5);
TDcppPool ExecPool(10, 5);
int MAXTHREADS;

void Executive(int argc, char** argv)
{

TDcppThread *T;

Thread_dmain *T_dmain;

if(argc<2) return;

MAXTHREADS = atoi(argv[1]);

ifMAXTHREADS<2) return;

T_dmain = new Thread_dmain(0);

T_dmain->arg.argec = argc-1;

T_dmain->arg.argv = &argv|1];

(*T_dmain)[0] = TDcppThread::Ready;

WaitPool. AddThread(T_dmain);

while((! WaitPool. IsEmpty())}|(!ExecPool. ISEmpty())){

for(int i=0; ThreadQueues[i]; i++){
TDcppThread *QT;
QT = ThreadQueues[i](;
if(QT){
WaitPool. AddThread(QT);
break;
}

}
if(ExecPool. GetCount)<MAXTHREADS)

T = WaitPool. FindReadyOrPassed();

else
T =NULL;
if(T){
if (T->GetArgState()==TDcppThread::Passed){
T->PassThread();
WaitPool. RemoveThread(T);
try {
delete T;
} catch (...){
cout << "exception" << endl;
}
}else {
T->Start();
WaitPool. RemoveThread(T);
ExecPool. AddThread(T);
}
}

103

T = ExecPool.FindFinished();

if(TH
ExecPool.RemoveThread(T);
T->ReturnThread();
delete T;

}
}

fipragma argsused
void main(int argc, char** argv)
{
CreateQueues(1);
Executive(argc, argv);
DestroyQueues();
returm;
}

104

APPENDIX C

RUNTIME SYSTEM FOR AIX ON

MULTIPROCESSORS

DCPP.H

#if |defined(_ DCPP_H)
#idefine _ DCPP_H

#include <pthread.h>
#include <stdlib.h>
#include <iostream.h>

typedef void (*ThreadFunc)(char*, int, char*, int);

struct ThreadParams{
ThreadFunc £,
char *arg, *ret;
int argsz, retsz;

int *Result;

5

void* Call(void *p);

class TDcppThread{
public:

enum ArgState { Ready, Passed, Waiting };

TDcppThread(unsigned anld, unsigned aSeq, unsigned aCount,

ThreadFunc aFunc, char *aArg, int aArgSz, char *aRet, int

aRetSz);

~TDcppThread();

int IsThread(unsigned anld, unsigned aSeq)

{ return (Id==anld) && (Seq==aSeq); }
void Start(){
Status = 0;

105

tparams->f=Func;
tparams->arg=Arg;
tparams->ret=Ret;
tparams->argsz=ArgSize;
tparams->retsz=RetSize;
tparams->Result=&Status;
pthread_create(&e_th, NULL, Call, tparams);

}

virtual char ReturnThread() = 0;

virtual char PassThread() = 0;

int IsCompleted()

{ return Status; }
ArgState GetArgState();
ArgState& operator[J(unsigned index)
{ return ArgStat[index]; }
void SetAllPassed();
private:

unsigned Id;

pthread_t e_th;

unsigned ArgCount;

int Status;

protected:

unsigned Seq;

ArgState *ArgStat;

ThreadFunc Func;

char *Arg;

int ArgSize;

char *Ret;

int RetSize;

ThreadParams *tparams;

b

template <class T>
class TDcppQueue{
private:
T** Items;
int Size;
int Head;
int Tail;
pthread_mutex_t mutex;
char *Name;
public:
TDcppQueue (int N, char* aName);
TDcppQueue<T>::TDcppQueue(char* aName)
: Size(0), Head(0), Tail(0), Name(aName){
pthread_mutex_init(&mutex, NULLY;
}
~TDcppQueue();
T* Put(T* Item);
T* Get();
i

template <class T>

106

TDcppQueue<T>::TDcppQueue(int N, char* aName)
: Size(N), Head(0), Tail(0), Name(aName)
{
Items = (T**) new char[N*sizeof(T*)];
for(int i=0; i<N; i++) Items[i] = NULL,;
pthread_mutex_init(&mutex, NULL);
}

template <class T>
TDcppQueue<T>::~TDcppQueue()
{

for(int i=0; i<Size; i++) if(Items][i]) delete Items[i];
delete Items;

}

template <class T>
T* TDcppQueue<T>::Get()
{
pthread_mutex_lock(&mutex);
T* Result;
if(Head==Tail)
Result = NULL;
else {
Result = Items[Head];
Items[Head++] = NULL,;
Head %= Size;
}
pthread_mutex_unlock(&mutex);
return Result;

}

template <class T>
T* TDcppQueue<T>::Put(T* Item)
{
pthread_mutex_lock(&mutex);
T* Result;
if(Head==((Tail+1)%Size))
Result = NULL;
else {
Result = Items[Tail++] = Item;
Tail %= Size;
}
pthread_mutex_unlock(&mutex);
return Result;

}

class TDcppPool{
private:
TDcppThread** Pool;
unsigned Count;
unsigned Max;
unsigned Delta;
int Enlarge();

107

public:
TDcppPool(unsigned aMax, unsigned aDelta);
~TDcppPool();
int IsEmpty({ return Count == 0; }
int AddThread(TDcppThread* aThread);
void RemoveThread(TDcppThread* aThread);
TDcppThread* FindThread(unsigned anld, unsigned aSeq);
TDcppThread* FindFinished();
TDcppThread* FindReadyOrPassed();

unsigned GetCount(){ return Count; }

5

extern TDcppPool WaitPool;

extern TDcppPool ExecPool;

void Executive();

typedef TDcppThread* (*QueueFunc)();
extern QueueFunc ThreadQueues[];
char CreateQueues(int Master);

void DestroyQueues();

#endif

DCPP.C

#include "dcpp.h"
#include "caller.h"

void* Call(void *p)

{
ThreadParams *P=(ThreadParams*)p;
(*(P->))(P->arg, P->argsz, P->ret, P->retsz);
*(P->Result)=1;
pthread_exit(NULL);
return NULL;

}

// TDcppThread Class

TDcppThread:: TDcppThread(unsigned anld, unsigned aSeq, unsigned aCount,
ThreadFunc aFunc, char *aArg, int aArgSz, char
*aRet, int aRetSz)
: Id(anld), Seq(aSeq), ArgCount(aCount),
Func(aFunc), Arg(aArg), ArgSize(aArgSz),
Ret(aRet), RetSize(aRetSz)

108

ArgStat = new ArgState[ArgCount];
for(int i=0; i<ArgCount; i++) ArgStat{i] = Waiting;
tparams = new ThreadParams;

}

TDcppThread::~TDcppThread()
{

delete[] ArgStat;
}

TDcppThread:: ArgState TDcppThread::GetArgState()
{
int p=0;
for(int i=0; i<ArgCount; i++)
{
if(ArgStat[i]==Waiting) break;
if(!p && (ArgStatfi]==Ready)) p=1;
}
if(i<ArgCount) return Waiting;
if(Ip) return Passed;
return Ready;

}

void TDcppThread::SetAllPassed()
{

for(int i=0; i<ArgCount; i++) operator[](i) = Passed;
}

/! TPoolClass

TDcppPool::TDcppPool(unsigned aMax, unsigned aDelta)
: Max(aMax), Delta(aDelta), Count(0)

{
Pool = (TDcppThread**) new char[aMax*sizeof(TDcppThread*)];
for(int i=0; i<aMax; i++) Pool[i] = NULL;

}

TDcppPool::~TDcppPool()

{
delete[] Pool;
}

int TDcppPool::Enlarge()
{
TDcppThread** NewPool;
NewPool = (TDcppThread**) new char[(Max+Delta)*sizeof(TDcppThread*)];
if(!NewPool) return 0;
for(int i=0; i<Count; i++) NewPool[i]=Pool[i];
delete[] Pool;
Pool = NewPool;
Max += Delta;
return 1;

109

int TDcppPool::AddThread(TDcppThread* aThread)
{
if(Count>=(Max-1))
if(Enlarge()) return 0;
Pool{Count++] = aThread;
return 1;
}

void TDcppPool::RemoveThread(TDcppThread* aThread)
{

for(int i=0; i<Count; i++)

if(Pool[i]==aThread) break;

if(i<Count) Count--;

for(;i<Count; i++) Pool[i] = Pool[i+1];

Pool[Count] = NULL;
}

TDcppThread* TDcppPool::FindThread(unsigned anld, unsigned aSeq)
{
for(int i=0; i<Count; i++)
if(Pool[i}->IsThread(anld, aSeq)) break;
return Pool[i];

}

TDcppThread* TDcppPool::FindFinished()
{
for(int i=0; i<Count; i++)
if(Pool[i]->IsCompleted()) break;
return Pool[i];
}

TDcppThread* TDcppPool::FindReadyOrPassed()

{
TDcppThread:: ArgState ArgState;
for(int i=0; i<Count; i++){
ArgState = Pool[i]->GetArgState();
if((ArgState==TDcppThread::Passed)||
(ArgState==TDcppThread::Ready)) break;

return Pool[i};

}

TDcppPool WaitPool(10, 5);
ﬁmpPool ExecPool(10, 5);

int MAXTHREADCNT;

void Executive(int argc, char** argv)
{

TDcppThread *T;
Thread_dmain *T_dmain;

110

if(argc<2) return;
int MAXTHREADCNT = atoi(argv[1]);
ifMMAXTHREADS<2) return;
T_dmain = new Thread_dmain(0);
T_dmain->arg.argc = arge-1;
T_dmain->arg.argy = &argv[1];
(*T_dmain)[0] = TDcppThread::Ready;
WaitPool. AddThread(T_dmain);
while((! WaitPool.IsSEmpty()||(ExecPool. ISEmpty())){
for(int i=0; ThreadQueues{i]; i++){
TDcppThread *QT;
QT = ThreadQueues][i]Q;
if(QT){
WaitPool. AddThread(QT);
break;
}

}
if(ExecPool. GetCount)<MAXTHREADCNT)

T = WaitPool. FindReadyOrPassed();

else
T=NULL;
if(TH
if (T->GetArgState()==TDcppThread::Passed){
T->PassThread();
WaitPool.RemoveThread(T);
delete T;
} else {
T->Start();
WaitPool.RemoveThread(T);
ExecPool. AddThread(T);
}
}
T = ExecPool.FindFinished();
if(T){
ExecPool.RemoveThread(T);
T->ReturnThread();
delete T;
}
}

}

f#fpragma argsused
void main(int argc, char** argv)

CreateQueues(1);
Executive(argc, argv);
DestroyQueues();
return;

}

111

APPENDIX D

MATRIX MULTIPLICTION SOURCE CODES

MATRIX.CPP

#include "matrix.h"
#include <stdio.h>
#include <iostream.h>
#finclude <string.h>
#include “datadist.h”

float A[128][128], B[128][128];
float C[128][128]; ‘

char A_B_available=0;

Ret_dmain* dmain(int argc,char** argv)

{
Ret_dmain* ret = new Ret_dmain;
ret->start = 0;
if(arge<4){
cout << "Usage: " << end],
cout <<" MATRIX <matrix A> <matrix B> <matrix C>" << end],
return ret;
}
FILE* inA = fopen(argv[1], "rb");
if(!inA){
cout << " Unable to open file: " << argv[l] << endl,
return ret;
}
FILE* inB = fopen(argv{2], "rb");
if(!inB){
fclose(inA);
cout << " Unable to open file: " << argv{2] << end],
return ret;

112

}

if(fread(A, sizeof(float), 128*128, inA)!=128*128){
cout << "Unable to read file: " << argv[1] <<endl;
fclose(inA); fclose(inB);
return ret;

}

if(fread(B, sizeof(float), 128*128, inB)!=128*128){
cout << "Unable to read file: " << argv[2] << endl;
fclose(inA); fclose(inB);
return ret;

}

fclose(inA); fclose(inB);
Disribute_A_B();

strepy(ret->out, argv([3]);
ret->start = 1,
return ret;

}

Ret_ComputeAB* ComputeAB(int start,char out [80], TDcppQueue<Queueltem_q1>*
q1,TDcppQueue<Queueltem_q2>* q2)
{

Ret_ComputeAB* ret = new Ret_ComputeAB;
ret->result = 0;

ret->result = 0;

for(int i=0; i<128; i++){
Queueltem_ql* Item = new Queueltem_q1;
Item->row = i;
while(!q1->Put(Item));

}

for(int j=0; j<128; j++)}{
Queueltem_q2* Item;
while(!(Item = q2->Get()));
memcpy(C[Item->row], Item->c, 128*sizeof(float));
delete Item;

}

FILE *stream = fopen(out, "wb");
if(!stream) return ret;

if(fwrite(C, sizeof(float), 128*128, stream)!=128%128){
fclose(streamy);
return ret;

}

ret->result = 1;
return ret;

}

113

Ret_dret* dret(int start,char out [80],int result)
{
Ret_dret* ret = new Ret_dret;
if(result|jstart)
cout << "Matrix multiplication completed sucessfully..." << endl;
else
cout << "Matrix multiplication failed..." << endl;
return ret;

}

Ret_ComputeRow* ComputeRow(int row)
{
if ({A_B_available){
GetA_B_FromMaster();
A_B_available = 1;
}
Ret_ComputeRow* ret = new Ret_ComputeRow;
for(int i=0; i<128; i++){
ret->c[i] = 0;
for (int j=0; j<128; j++)
ret->cfi] += A[row][j]*B[l[i];
}
ret->row = row;
/! cout << row << endl;
return ret;

}

int valid(int start,char out [80])

{
return (start==1);

}

MATRIX.H

#if ldefined(_ MATRIX_H)
#define __ MATRIX_H

#include "dcpp.h"

struct Queueltem_q1 {
int row;

I

struct Queueltem_q2 {
int row;

float c [128];

X

struct Arg_dmain {
int argc;

114

char** argv;
b

struct Ret_dmain {
int start;

char out [80];

IS

struct Arg ComputeAB {

int start;

char out [80];

TDcppQueue<Queueltem_ql1>* q1;
TDcppQueue<Queueltem_qg2>* q2;
5

struct Ret_ComputeAB {
int result;
B

struct Arg_dret {
int start;
char out {80];
int result;
5

struct Ret_dret {
intr;

}’

struct Arg_ComputeRow {
int row;

b

struct Ret_ComputeRow {
int row;

float ¢ [128];

5

Ret_dmain* dmain(int argc,char** argv);

Ret_ComputeAB* ComputeAB(int start,char out [80], TDcppQueue<Queueltem_q1>*

q1,TDcppQueue<Queueltemn_q2>* q2);

Ret_dret* dret(int start,char out [80],int result);

Ret_ComputeRow* ComputeRow(int row);

int valid(int start,char out [80]);

#endif

CALLER.CPP

#include "caller.h"

115

#pragma argsused
void Call_dmain(char *arg, int argsize, char *ret, int retsize)
{

Arg_dmain *Arg;

Ret_dmain *Ret;

Arg = (Arg_dmain *)arg;

Ret = dmain(Arg->argc,Arg->argv);

memcpy(ret, Ret, retsize);

delete Ret;

#pragma argsused
void Call_ComputeAB(char *arg, int argsize, char *ret, int retsize)
{

Arg_ComputeAB *Arg;

Ret_ComputeAB *Ret;

Arg = (Arg_ComputeAB *)arg;

Ret = ComputeAB(Arg->start, Arg->out,q1,q2);

memcpy(ret, Ret, retsize);

delete Ret;

#pragma argsused
void Call_dret(char *arg, int argsize, char *ret, int retsize)
{
Arg_dret *Arg;
Ret_dret *Ret;
Arg = (Arg_dret *Arg)arg;
Ret = dret(Arg->start, Arg->out, Arg->result);
memcpy(ret, Ret, retsize);
delete Ret;

#pragma argsused
void Call_ComputeRow(char *arg, int argsize, char *ret, int retsize)
{

Arg ComputeRow *Arg;

Ret_ComputeRow *Ret;

Arg = (Arg_ComputeRow *)arg;

Ret = ComputeRow(Arg->1ow);

memcpy(ret, Ret, retsize);

delete Ret;

unsigned Thread_dmain::SeqNo;
char Thread_dmain::ReturnThread()

{
TDcppThread:: ArgState first_branch, second_branch;

116

if(valid(ret.start, ret.out)){
first_branch = TDcppThread::Ready;
second_branch = TDcppThread::Passed;

} else { '
first_branch = TDcppThread::Passed;
second_branch = TDcppThread::Ready;

}

{

Thread_ComputeAB* T_ComputeAB;

T_ComputeAB = (Thread_ComputeAB*) WaitPool.FindThread(ID_ComputeAB,
Seq);

if('T_ComputeAB){

T_ComputeAB = new Thread_ComputeAB(Seq);
WaitPool. AddThread(T_ComputeAB);

}

if (first_branch==TDcppThread::Passed) {
T_ComputeAB->arg.start = 0;
T_ComputeAB->arg.out[0] = 0;
}else {
T_ComputeAB->arg.start = ret.start;
for(int i=0;i<80;i++)
T_ComputeAB->arg.out[i] = ret.out[i];
}
(*T_ComputeAB)[0] = first_branch;
}
{
Thread_dret* T_dret;
T_dret = (Thread_dret*) WaitPool.FindThread(ID_dret, Seq);
if(IT_dret){
T_dret = new Thread_dret(Seq);
WaitPool. AddThread(T_dret);
}

if (second_branch==TDcppThread::Passed) {
T_dret->arg.start = 0;
T_dret->arg.out[0] = 0;
}else
T_dret->arg.start = ret.start;
for(int i=0;i<80;i++)
T_dret->arg.out[i] = ret.out[i];
}
(*T_dret)[0] = second_branch;
}
return 1;

}

char Thread_dmain::PassThread()
{
{
Thread_ComputeAB* T_ComputeAB;

T_ComputeAB = (Thread_ComputeAB*) WaitPool. FindThread(ID_ComputeAB,
Seq);

117

if(!T_ComputeAB){
T_ComputeAB = new Thread ComputeAB(Seq);

WaitPool. AddThread(T_ComputeAB);
}

T_ComputeAB->arg.start = 0;
T_ComputeAB->arg.out[0] = 0;
(*T_ComputeAB)[0] = TDcppThread::Passed;
}

{
Thread_dret* T_dret;
T_dret = (Thread_dret*) WaitPool. FindThread(ID_dret, Seq);

if(IT_dret){
T_dret = new Thread_dret(Seq);
WaitPool. AddThread(T_dret);

}

T_dret->arg.start = 0;
T_dret->arg.out[0] =0,
(*T_dret)[0] = TDcppThread::Passed;

}
return 1;

}
unsigned Thread_ComputeAB::SeqNo;

char Thread_ComputeAB::ReturnThread()

{
{
Thread_dret* T_dret;
T_dret = (Thread_dret*) WaitPool. FindThread(ID_dret, Seq);
if(\T_dret){
T_dret = new Thread_dret(Seq);
WaitPool. AddThread(T_dret);

}

T_dret->arg.result = ret.result;
(*T_dret)[1] = TDcppThread::Ready;
}

return 1;
3

char Thread_ComputeAB::PassThread()

{

{
Thread_dret* T_dret;
T_dret = (Thread_dret*) WaitPool.FindThread(ID_dret, Seq);

if(IT_dret){
T_dret = new Thread_dret(Seq);

WaitPool. AddThread(T_dret);
}

T_dret->arg.result = 0;

118

(*T_dret)[1] = TDcppThread::Passed,
}

return 1;

}
unsigned Thread_dret::SeqNo;

char Thread_dret::ReturnThread()
{

return 1;

}

char Thread_dret::PassThread()
{

return 1;

}

unsigned Thread_ComputeRow::SeqNo;

char Thread_ComputeRow::ReturnThread()

{
Queueltem_q2 *Qltem_q2 = new Queueltem_q2;
memcpy(Qltem_q2, &ret, sizeof(ret));
q2->Put(Qltem_g2);
return 1;

}

char Thread_ComputeRow::PassThread()
{
return 1;

}

TDcppThread* QueueThread_ql()

{
Queueltem_ql* Item = q1->Get();
if(!Item) return NULL;
Thread_ComputeRow* T_ComputeRow;
T_ComputeRow = new Thread_ComputeRow(0);
memcpy(&(T_ComputeRow->arg), Item, sizeof(*Item));
delete Item;
(*T_ComputeRow)[0] = TDcppThread::Ready;
return T_ComputeRow;

}

TDcppQueue<Queueltem_ql> *ql;
TDcppQueue<Queueltem_q2> *q2;

QueueFunc ThreadQueuesf} = {
QueueThread_ql,

NULL};

char CreateQueues(int Master)

{

119

if(Master){
q! = new TDcppQueue<Queueltem_q1>(130,"q1");
q2 = new TDcppQueue<Queueltem_q2>(130,"q2");
} else {
ql = new TDcppQuene<Queueltem_q1>("q1");
g2 = new TDcppQueue<Queueltem_q2>("q2");
}

return 1;

}

void DestroyQueues()
{

delete q1;

delete q2;

}

int Max_Thread = 3;
int Min_Thread = 3;

CALLER.H

#if |defined(_ CALLER_H)
#define _ CALLER H

#include "dcpp.h"
#include "matrix.h"

#define ID_dmain 0U
#define ID_ComputeAB 2U
#define ID_dret 3U

#define ID_ComputeRow 6U

void Call_dmain(char *arg, int argsize, char *ret, int retsize);

void Call_ComputeAB(char *arg, int argsize, char *ret, int retsize);
void Call_dret(char *arg, int argsize, char *ret, int retsize);

void Call_ComputeRow(char *arg, int argsize, char *ret, int retsize);

extern TDcppQueue<Queueltem_ql> *ql;
extern TDcppQueue<Queueltem_q2> *q2;

TDcppThread* QueueThread_ql();

class Thread_dmain ; public TDcppThread{
private:
static unsigned SeqNo;
public:
Arg_dmain arg;
Ret_dmain ret;
Thread_dmain(unsigned aSeqNo, int InLoop=0)
: TDcppThread(ID_dmain, (InLoop ? aSeqNo: SeqNo++), 1,
Call_dmain, (char*)&arg, sizeof(arg), (char*)&ret, sizeof(ret))

120

{

}
virtual char ReturnThread();
virtual char PassThread();

}’

class Thread_ComputeAB : public TDcppThread{
private:
static unsigned SeqNo;
public:
Arg_ComputeAB arg;
Ret_ComputeAB ret;
Thread_ComputeAB(unsigned aSeqNo, int InLoop=0)
: TDcppThread(ID_ComputeAB, (InLoop ? aSeqNo: SeqNo++), 3,
Call_ComputeAB, (char*)&arg, sizeof(arg), (char*)&ret, sizeof(ret))

{

}
virtual char ReturnThread();

virtual char PassThread();
b

arg.ql = ql; operator[]J(1) = Passed; arg.q2 = q2; operator[](2) = Passed;

class Thread_dret : public TDcppThread{
private:

static unsigned SeqNo;
public:

Arg_dret arg;

Ret_dret ret;

Thread_dret(unsigned aSeqNo, int InLoop=0)

: TDcppThread(ID_dret, (InLoop ? aSeqNo: SeqNo++), 2,
Call_dret, (char*)&arg, sizeof(arg), (char*)&ret, sizeof(ret))

{

}
virtual char ReturnThread();
virtual char PassThread();

}’

class Thread_ComputeRow : public TDcppThread{
private:
static unsigned SeqNo;
public:
Arg_ComputeRow arg;
Ret_ComputeRow ret;
Thread_ComputeRow(unsigned aSeqNo, int InLoop=0)
: TDcppThread(ID_ComputeRow, (InLoop ? aSeqNo: SeqNo++), 1,
Call_ComputeRow, (char*)&arg, sizeof(arg), (char*)&ret, sizeof(ret))

{

k4

121

H
virtual char ReturnThread();
virtual char PassThread();
5

#endif

122

APPENDIX E

THE DCPP APPLICATION

The DCPP is developed by using DELPHI programming language. DELPHI
is a visual programming language based on PASCAL programming language.
The DELPHI is a useful tool for implementing GUI visually, and easily. For

this reason it is chosen as the implementation language for the DCPP.

[l T 1
| BLOCK | | LINE | [CONVERT| | | SYNTAX |

| EDITOR | | VARCHECK |

GLOBALS

Figure E.1 The DCPP Modules

The DCPP is an object oriented application that is composed of eight

DELPHI modules (urits). Some of these modules have visual components

123

(forms), and some of them are the non-visual, utility procedures. In this

appendix, these modules are presented.

In Figure E.1, the modules that constitute the DCPP application, and the
interactions between them are shown. The following sections will introduce
each module and their contents in detail. The DCPP application, DCPP
application source codes, and the run-time systems are given in 3.5” floppy

disk with this thesis.

E.1 PRGEDIT MODULE

PRGEDIT module defines the main form of the DCPP application. The main
form is an instance of the class named 7PrgEditForm (Figure E.2). This class
is derived from the TForm component (a reusable component that is the

ancestor of all the forms in DELPHI).

TPrgEditForm has a Main Menu, a Speed Bar, and a Pop-up Menu to

accept the standard file related commands:

New Application

Open Application
Save Application

Save Application

Exit.

Al ol

the commands related to program editing:

Add visual tools to program such as Block, Decision, Loop, Queue, and Line.
Remove a visual tool from the program.

Set a tool’s identifier.

Edit the block’s functions, set the item type of a queue, edit the condition
expression for decision and loop tools.

ol S e

the commands related to program conversion:

1. Syntax check of the program.
2. Conversion of the program into C++ sources.

124

This form captures the user commands (messages) from these menus (main
menu, pop-up menu, and speed bar), and responds to them by performing
that action. TPrgEditForm has also a program development area, to hold the
program under development, and required message handlers (for windows
messages) to draw, insert, delete, move, and edit the visual programming

tools in it.

Figure E.2 TPrgEditForm Component

E.2 BLOCK MODULE

Block module defines the TBlock class. TBlock class is a DELPHI visual
component that implements the DCPP visual programming tools block,
queue, decision, and loop. That is, every block, queue, decision, and loop

tool are the instances of the TBlock class.

125

Every TBlock instance has a BlockType field to identify the visual
programming tool that it corresponds to. According to BlockType field, it
displays itself on TPrgEditForm object, and responds to the windows
messages directed to it. It also displays the block, decision, loop, or queue

name on top of itself to identify itself to the programmer.

The TBlock class has the following fields to keep the related parameters:

1. Buf: Buf is a buffer that holds the function implementations for the blocks,
condition expressions for the decision and loop tools, and queue item’s record type

for the queues.
2. Arg: Arg is a string variable that holds the argument definitions for the block,

loop, and decision tools.

3. Ret: Ret is a string variable that holds the return value definitions for the block,
loop, and decision tools.

4. LIn: LIn is an array variable that holds the list of lines that are going into itself.

5. LOut: LOut is an array variable that holds the list of lines that are leaving itself. -

6. LTrue: LTrue is a line variable that holds the true line for decision, and loop tools,
and create line for queue tools.

7. LFalse: LFalse is a line variable that holds the false line for decision, and loop

tools, and return line for queue tools. ,
8. LCond: LCond is a line variable that holds the condition line for decision, and loop

tools.
9. BlockName: BlockName is a string variable that holds the identifier for itself

(block name, decision name, loop name, queue name).
The fields above defines everything about a block, decision, loop, and queue
tool. Every visual tool keep the user defined data on these fields, and
programmer can always edit these fields using the DCPP’s editors. These
editors are the TFuncEditor (see section E.4) for editing functions, InputBox
(standard windows dialog box for getting string inputs) for editing the
condition expressions, and queue item’s type, and TPrgEditForm(see section
E.1) for the lines connected to itself. The textual editors can be activated by

the mouse or TPrgEditForm menu commands.

These fields are also accessible from the TPrgEditForm. According to these
fields TPrgEditForm can make syntax checking of the programs, and

converts the programs into C++ sources.

126

E.3 LINE MODULE

Line module defines the TLine class. TLine class is a DELPHI visual
component that implements the line tool of DCPP visual programming
language. That is, every line in the program are the instances of TLine

component.

Every TLine instance can represent different type of lines in the program.
These types can be one of normal line, true line, false line, condition line,
create line, and return line. Every different line type has different colors to
identify themselves to the programmer. The normal lines have black, the true
and create lines have green, false and return lines have red, and the condition
lines have gray colors. According to line types, the lines draw themselves on

TPrgEditForm, and connects the TBlock instances.

Every TLine instance have the following data fields:

1. Vars: Vars is a string variable and it keeps the argument (or return) variables
carried by the line.

2. LStart: LStart field holds the TBlock instance which the line leaves.

3. LEnd: LEnd field holds the TBlock instance which the line goes into.
All the lines responds the mouse events click, and double click. Clicking the
line with the mouse selects the line, and it is possible to work with that line
by means of DCPP menu commands. It is possible to edit Vars field of the
line by simply double clicking on the line. However, the true, false, create,
and return lines are not editable. If the user wants to edit the other editable
lines, an InputBox dialog appears, and user can edit the variables. Every
editing operation is checked against the rules defined in Chapter 3, by calling

the CheckVars function in VARCHECK module (section E.7). The new

variables are not accepted until they are properly defined.

127

E.4 EDITOR MODULE

The editor module defines the TFuncEditor class (Figure E.3). TFuncEditor
is a DCPP class derived from the TForm class. TFuncEditor is a special
editor to edit the function definitions of the block tools (instances of TBlock
class). It simply displays a C++ function skeleton to the programmer. The
function declarations, and return values etc. are automatically prepared by
using the TBlock’s data fields. Only the function body (white areas) is
editable in this form. Therefore, programmers can easily implement the

function body in this area.

5 3 Fnliitor :

for (int i=0; i<128; i++) {
c[i] = O;

for (int 3=0; j<128: 3++) i

c[i] += Alrow] (3] *B{3i](1i]:

Figure E.3 TFuncEditor Form

The editor form always keep the active block’s function definition, and is
invisible to the user. The form is shown to the user whenever a block is
double clicked by the mouse, or the edit command from the TPrgEditForm
menus. Whenever the active block is changed, it saves the contents to the

related block’s Buf field, and loads the contents from the active block.

128

E.5 SYNTAX MODULE

The syntax module implements a function that is used for syntax checking
the programs by TPrgEditForm. It has a single interface function called
Syntax. Syntax function checks the syntax of the programs according to the
rules in Chapter 3, and if there is no error it returns true. If Syntax function
detects an error, it returns false, and sets the global variables SyntaxErrStr,
SyntaxErrBlock, SyntaxErrLine to indicate the description and the location

of the error. The interface function, and the global variables are defined as:

function Syntax(Lines, Blocks: Tlist, FullName: string);
var

SyntaxErrStr: string;

SyntaxErrBlock: TBlock;

SyntaxErrLine: TLine;

E.6 CONVERT MODULE

The convert module implements the conversion process of the programs into
C++ language. This process is described in detail in Chapter 4. There is one
function called Make in the interface of this module. The Make function
takes the lines, blocks, and the full name of the program as arguments. It
produces the program module, and caller module for the given program. This
function is called by TPrgEditForm in response to the convert command. It
writes its output to disk as FullName.cpp, FullName.h, Caller.cpp, and

Caller.h. The definition of the interface function is:
procedure Make(Lines, Blocks: TList; FullName: string);

E.7 VARCHECK MODULE

This module is used by the Line, Syntax, and Convert modules to process the
variable declarations for the lines, and queue item types. The CheckVars
function is used to determine whether the given string is a valid declaration
according to rules in Chapter 3. The IsIdentifier function is used to determine

whether a given string is a valid C++ argument or not. The Normalize

129

function is used to format the variable declaration so that the ExtractDecl,
and ExtractVars functions can work with it. ExtractDecl function is used to
extract a variable declaration from a given variable definition, and deletes
that declaration from the argument string (to enable iterations). Similarly, the
ExtractVar function extracts a variable name from a given variable
declaration string, and deletes the related declaration from the argument

string (to enable iterations). The interface functions are defined as:

function CheckVars(var vars: string): Boolean;

function ExtractDecl(vars: string; var vartype, variable: string;
var dim: array of Integer): string;

function ExtractVar(var vars: string): string;
function Normalize(s: string): string;

function IsIdentifier(s: string): Boolean;

E.8 GLOBALS MODULE

The globals module includes the global variables, utility functions and the
program constants that are used by the other modules in the DCPP

application.

130

