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1 Introduction

If a dimensional reduction is consistent, then any solution of the lower dimensional theory
is automatically a solution of the higher dimensional one. In this way one can find some
complicated and potentially new solutions in the higher dimensional theory which might
be hard to find directly.

In [1] a consistent 3-sphere reduction of the D = 6, N = (1, 0) supergravity coupled to a
single chiral tensor multiplet [2] was obtained and the result is a D = 3, N = 4, SO(4) gauged
supergravity [3–5]. The 6-dimensional parent theory can be connected to the 10-dimensional
type IIB theory by a dimensional reduction on K3 or T 4 followed by a truncation, which
makes finding its supersymmetric solutions desirable.

To easily apply the described strategy, the D = 3 model obtained in [1] was simplified
in [6] by keeping fields that are invariant under the U(1) × U(1) subgroup of the gauge group
SO(4) only. This truncation is compatible with the consistency of the S3 reduction. After
this, two supersymmetric, uncharged string solutions with 1 and 2 active scalars were found.
Their uplift gave rise to the well-known dyonic string solution that was found some time
ago [7, 8] and a dyonic string distibution, respectively.
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In this paper we would like to extend these earlier results by making a systematic study
of the supersymmetric solutions of this D = 3 model with the help of Tod’s Killing spinor
bilinears method [9, 10]. This method was successfully used in many supergravities to classify
and construct their supersymmetric solutions, and specifically in 6-dimensions in [11–16]. In
3-dimensions it was used relatively less and applied mostly to off-shell supergravities [17–19].
The only D = 3, on-shell gauged supergravity where this method was used is the half-maximal
one [20] and although the analysis is general, solutions were found solely for the ungauged
model [20, 21]. There also has been attempts to find supersymmetric solutions of gauged
supergravities in D = 3 by directly analyzing their Killing spinor equations [22–24].

Application of this method to our model works very similar to the D = 3, N = 8 case [20]
and we end up with several algebraic and differential conditions as usual. In this approach,
one can classify supersymmetric solutions according to whether the Killing vector that is
constructed from the Killing spinors is null or timelike. After this general analysis, in trying
to find explicit solutions we focus on the null case. Parametrizing the spacetime metric
according to the Killing vector direction following [17], we find all possible solutions when
scalar fields depend only on one of the two remaining coordinates. They can be distinguished
with respect to the number of active scalars that are distinct, which ranges from 0 to 3.
When all scalars are constant (i.e. no active scalars) but gauge fields are non-trivial, we
obtain the null warped AdS3 which appeared as a supersymmetric solution in some off-shell
supergravities before [18, 19, 25, 26]. As far as we know, this is first time that it shows up
in an on-shell D = 3 supergravity. Holographic aspects of it attracted much attention in
recent years (see e.g. [27, 28]). Its metric is also known as the Schrödinger spacetime due
to its anisotropic scale invariance which has applications in non-relativistic physics [29–39]
(see [40] for a historical review). All other solutions we get (i.e. cases with 1, 2 or 3 active
scalars) are domain walls and only the 1-scalar solution allows for non-trivial gauge fields.
The 1-scalar solution with zero gauge fields and the 2-scalars solution already appeared in [6].

In the next step, we uplift the three new solutions that we find to D = 6. The null
warped AdS3 gives rise to a novel AdS3 × S3 background with a non-trivial rotation in the
U(1) fiber direction of the S3 which retains the Schrödinger scale invariance that the seed
solution has. This background was obtained in [41] using a TsT transformation [42] on the
AdS3 × S3 geometry and its reduction to the null warped AdS3 on S3 was also noted. The
charged 1-scalar solution produces the well-known rotating dyonic string solution [43, 44].
Finally, the 3-scalars solution results in a distribution of dyonic strings.

The plan of our paper is as follows: in the section 2 we describe the 3-dimensional gauged
supergravity that we are working with. In section 3 we make a general Killing analysis of this
model using spinor bilinears and then focus on the null Killing vector case. Supersymmetric
solutions are obtained in section 4 and they are uplifted to D = 6 in section 5. We conclude
in section 6 with some comments and possible future directions. Appendix A gives the
derivation of the spacetime metric with a null Killing vector for supersymmetric solutions.
Appendix B explains the Garfinkle-Vachaspati solution generating method which allows for
the addition of waves to a solution with a null Killing vector without changing other fields.

Notation and conventions. Three-dimensional tangent space indices i, j, k, . . . range from
0 to 2. We denote the 3-dimensional Levi-Civita tensor by ϵµνσ and the Levi-Civita symbol
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as ε012 = −1 (ϵµνσ =
√
−gεµνσ, ϵµνσ = (

√
−g)−1 εµνσ). The charge conjugation matrix C

satisfies C† = −C and (γµ)† = CγµC−1. We then have χ̄χ = 0, where χ̄ = χ†C. Some
useful gamma matrix identities are: γµν = γ[µγν] = ϵµνσγσ, γµγν = gµνI + ϵµνσγσ. We
explicitly work with real gamma matrices that are chosen with tangent space indices as
follows: γ0 = iσ2, γ1 = σ3, γ2 = σ1, where σ’s are the Pauli matrices. With this choice we
have C = γ0 and a Majorana spinor satisfies λ∗ = −iλ.

2 The 3-dimensional model

The model that we will study is a truncation of the D = 3, N = 4, SO(4) gauged supergravity
which was obtained in [1] via a consistent S3 reduction of the D = 6, N = (1, 0) supergravity
coupled to a single chiral tensor multiplet [2]. The truncated model preserves U(1) × U(1) ⊂
SO(3) × SO(3) ≃ SO(4) symmetry [6]. Its bosonic Lagrangian is

L3 =
√
−g

(
R− 1

2 g
µν
[
(∂µξ1)(∂νξ1) + (∂µξ2)(∂νξ2) + (∂µρ)(∂νρ) + sinh2 ρ (Dµθ)(Dνθ)

]
−1

4 e
−2ξ1 F1

µν F1 µν − 1
4 e

−2ξ2 F2
µν F2 µν − V

)
− k0

2 εµνρ A1
µ F2

νρ . (2.1)

There are four real scalar fields (ξ1, ξ2, ρ, θ) and two real Abelian vector fields A1,2
µ , with field

strengths F1,2
µν respectively. Here the covariant derivative for θ is defined as

Dµθ := ∂µθ + 2 g0 A1
µ , (2.2)

and the scalar potential is [6]

V = −4 g2
0 e

ξ1+ξ2 cosh ρ+ 2 g2
0 e

2ξ1 sinh2 ρ+ k2
0
2 e2(ξ1+ξ2) . (2.3)

The potential V can be written in terms of the superpotential W as

V = 2
[
(∂ξ1W )2 + (∂ξ2W )2 + (∂ρW )2 −W 2

]
, (2.4)

where

W = eξ2

2
(
−2 g0 + k0 e

ξ1
)
− g0 e

ξ1 cosh ρ . (2.5)

The potential has a fully supersymmetric AdS3 vacuum at [6]

ρ = 0 , eξ1 = eξ2 = 2g0
k0

, (2.6)

where the constant g0/k0 is taken to be positive. The value of the potential at this point
is V = −8g4

0
k2

0
and the superpotential becomes W = −2g2

0
k0

. By setting supersymmetry
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transformations of the fermions to zero one obtains the following equations [6]:

0 = (γµ ∂µξ1) ζa − 1√
−g

(
γµ ε

µσρ F1
ρσ

)
ϵab ζ

b + 2 ∂W
∂ξ1

ζa , (2.7)

0 = (γµ ∂µξ2) ζa − 1√
−g

(
γµ ε

µσρ F2
ρσ

)
ϵab ζ

b + 2 ∂W
∂ξ2

ζa , (2.8)

0 = (γµ ∂µρ) ζa + sinh ρ (γµDµθ) ϵab ζ
b + 2 ∂W

∂ρ
ζa , (2.9)

0 = ∇µζa +
[1

4 (1 − cosh ρ)Dµθ −
2√
−g

ε σρ
µ

(
F1

ρσ + F2
ρσ

)]
ϵab ζ

b − W

2 γµ ζa , (2.10)

where ζa’s with (a = 1, 2) are defined as ζ1 = λ1 + iλ3 and ζ2 = λ2 + iλ4, and λA’s
(A = 1, 2, 3, 4) are Majorana spinors [6]. Here, ∇µζa =

(
∂µ + 1

4 ω
bc

µ γbc

)
ζa and ϵab = −ϵba

with ϵ12 = ϵ12 = −1.
The Einstein field equations that follow from (2.1) are

Rµν = 1
2
(
(∂µξ1)(∂νξ1) + (∂µξ2)(∂νξ2) + (∂µρ)(∂νρ) + sinh2 ρ (Dµθ)(Dνθ)

)
+ gµν V (2.11)

+1
2 e

−2ξ1

(
F1

µρ F1
ν

ρ − 1
2 gµν F1

ρσ F1 ρσ
)

+ 1
2 e

−2ξ2

(
F2

µρ F2
ν

ρ − 1
2 gµν F2

ρσ F2 ρσ
)
.

The remaining bosonic field equations are

∇µ∇µξ1 + e−2ξ1

2 F1
µνF1µν + 4g2

0e
ξ1+ξ2 cosh ρ− 4g2

0e
2ξ1 sinh2 ρ− k2

0e
2(ξ1+ξ2) = 0, (2.12)

∇µ∇µξ2 + 1
2e

−2ξ2F2
µν F2 µν + 4g2

0 e
ξ1+ξ2 cosh ρ− k2

0 e
2(ξ1+ξ2) = 0 , (2.13)

∇µ∇µρ− 1
2 sinh 2ρ (Dµθ)(Dµθ) + 4g2

0 e
ξ1+ξ2 sinh ρ− 2g2

0 e
2ξ1 sinh 2ρ = 0 , (2.14)

∇µ

(
sinh2 ρ gµν Dνθ

)
= 0 , (2.15)

∇µ

(
e−2ξ1 F1 µν

)
− 2g0 sinh2 ρ gµν Dµθ −

k0
2

1√
−g

ενµρ F2
µρ = 0 , (2.16)

∇µ

(
e−2ξ2 F2 µν

)
− k0

2
1√
−g

ενµρ F1
µρ = 0 . (2.17)

3 Killing spinor analysis

To obtain supersymmetric solutions of this model we assume the existence of one set of
commuting Majorana Killing spinors λA (A = 1, 2, 3, 4). We then define the following real
spinor bilinears

FAB := λ̄AλB = −λ̄BλA = −FBA , (3.1)
V AB

µ := λ̄Aγµλ
B = λ̄Bγµλ

A = V BA
µ . (3.2)

The analysis of algebraic conditions on these bilinears works exactly as in [20] where su-
persymmetric solutions of D = 3 half-maximal supergravities were studied. In particular,
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using the Fierz identity

λχ̄ = 1
2(χ̄λ)1 + 1

2(χ̄γµλ)γµ , (3.3)

one finds that

(F 3)AD + f2FAD = 0 , (3.4)

where f2 = 1
2F

ABFAB. Thus, eigenvalues Λ of the matrix FAB satisfy

Λ2(Λ2 + f2) = 0 . (3.5)

From this, it follows that we can split SO(4) spinor indices as A = (a, ã) with a = {1, 2}
and ã = {3, 4} and choose a basis in which

F ab = −fϵab , F aã = F ãb̃ = 0 . (3.6)

So, spinors λ3 and λ4 can be set to zero without loss of generality. Similarly, among V AB
µ

only V ab
µ ’s are non-vanishing [20]. Then, defining vectors

Vµ = V 11
µ + V 22

µ , Kµ = V 11
µ − V 22

µ , Lµ = 2V 12
µ , (3.7)

one can show that they satisfy

V µKµ = V µLµ = KµLµ = 0 , V[µKν] = ϵµνσfL
σ ,

V µVµ = −KµKµ = −LµLµ = −4f2 . (3.8)

When f ̸= 0, they constitute an orthogonal basis for the 3-dimensional spacetime. However,
when f = 0 we can choose a basis in which Vµ = Kµ and Lµ = 0 [20].

By choosing the spinors in the Fierz identity (3.3) as λa and multiplying it with λb from
the right, one can derive the supersymmetry breaking condition as

V µγµλa = 2fϵabλ
b . (3.9)

We now continue with the differential conditions that follow from this analysis which
depend on the specific details of the model that we work with unlike the algebraic conditions
above. After multiplying the Killing spinor equation (2.10) with λ̄cγν , one gets

∇µV
ab

ν = −WϵµνσV
σ ab −Xµ(ϵacV

cb
ν + ϵbcV

ac
ν ) , (3.10)

where

Xµ = 1
4 (1 − cosh ρ)Dµθ −

2√
−g

ε σρ
µ

(
F1

ρσ + F2
ρσ

)
. (3.11)

Note that (3.10) implies

∇µVν = −WϵµνσV
σ , (3.12)
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from which we see that ∇(µVν) = 0. Since V µVµ = −4f2, we conclude that V µ is either
a timelike or a null Killing vector. Moreover, multiplying (3.12) with V ν shows that its
norm is constant, that is

∂µf = 0 . (3.13)

Now, multiplying supersymmetry variations of scalar fields (2.7)–(2.9) with λ̄c, we find that
Lie derivatives of the scalar fields vanish in the Killing vector direction

LV ξ1 = LV ξ2 = LV ρ = 0 . (3.14)

Next, multiplying (2.7)–(2.9) with λ̄cγν we get

ϵνµσ∂µξ1,2 Vσ + 2f ϵνσρ F1,2
ρσ + ∂W

∂ξ1,2
2V ν = 0 , (3.15)

f ∂νξ1,2 + F1,2
νσ V σ = 0 , (3.16)

ϵνµσ∂µρVσ − 2fgµν sinh ρDµθ + ∂W

∂ρ
2V ν = 0 , (3.17)

2f∂νρ+ sinh ρ ϵνµσ Dµθ Vσ = 0 . (3.18)

Other equations that one derives from these computations are not independent due to the
algebraic conditions (3.8).

Finally, after choosing the following Coulomb-type gauge for the vector fields A1,2
µ

V µA1,2
µ = −fξ1,2 (3.19)

and using (3.16), we obtain

LV A1,2
µ = 0 . (3.20)

When ρ = 0 the scalar field θ completely drops out from the model. For ρ ̸= 0, using the
gauge choice (3.19), from (3.17) and (3.18), we find that

LV θ = 2fg0(2eξ1 + ξ1) . (3.21)

So, when the Killing vector is null, the Lie derivative of the field θ also vanishes similar
to all the other physical fields.

In this paper we will focus on the null case (i.e. f = 0) and leave the analysis of the
timelike case for a future work.

3.1 Null Killing vector

From now on we will take f = 0. If we call the null Killing vector direction as v, that is V = ∂v,
the discussion above shows that none of the physical fields depend on the v-coordinate due
to (3.14), (3.20) and (3.21). We will further assume that scalar fields (ξ1, ξ2, ρ) depend only
on one of the remaining two coordinates, namely the radial coordinate r which we comment
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at the end of this section. In that case, adapting the derivation given in [17] to our model,
one finds that the most general spacetime metric admitting V = ∂v as a null Killing vector is

ds2 = dr2 + 2e2U(r)dudv + e2β(u,r)du2 , (3.22)

where β(u, r) is to be determined from the field equations, and U(r) is related to the
superpotential W (2.5) as

U ′(r) = W. (3.23)

The details of this result are given in the appendix A.
For the metric (3.22), we choose the dreibeins as

e0 = e2U−βdv , e1 = eβdu+ e2U−βdv , e2 = dr , (3.24)

for which the non-zero spin connections are

ω 02
v = ω 12

v = e2U−βW , ω 01
u = ∂uβ , ω 12

u = eβ∂rβ , ω 02
u = −W + ∂rβ , ω 01

r = e−β .

(3.25)

We will now solve the Killing spinor equation (2.10). A consequence of this equation is (3.10)
and from that, we get

Xµ = 1
4 (1 − cosh ρ)Dµθ −

2√
−g

ε σρ
µ

(
F1

ρσ + F2
ρσ

)
= 0 , (3.26)

using the fact that only V 11
µ is nonzero in the null case as discussed earlier after (3.8). Now,

the supersymmetry breaking condition (3.9) becomes

γvλa = γuλa = e2U−β(γ1 − γ0)λa = 0 , (3.27)

which can be solved as

λa = (1 + i)Z(u, v, r)λa
0 , (3.28)

where Z is a real function and λa
0 is a constant, real spinor that satisfies (γ1 − γ0)λa

0 = 0.
The complex prefactor is due to the Majorana requirement. From (2.10), we further find

0 = ∂vZ , (3.29)

0 =
(
∂u + 1

2∂uβ

)
Z , (3.30)

0 =
(
∂r −W + 1

2∂rβ

)
Z . (3.31)

Equation (3.29) shows that Z = Z(u, r), that is LV λ
a = 0 just like the physical fields. Solving

the remaining two equations for Z, we get the Killing spinors as

λa = (1 + i) eU− 1
2 β λa

0 . (3.32)
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Now we look at the consequences of Killing spinor equations on the physical fields. Note first
that the potential of our model (2.4) does not depend on the scalar field θ which can be set
to zero by making a local gauge transformation A1

µ → A1
µ − 1

2g0
∂µθ. This transformation

is consistent with our gauge choice (3.9), that is V µA1,2
µ = 0, since ∂vθ = 0 from (3.21).

Therefore, from now on we will take

θ = 0 =⇒ Dµθ = 2g0A1
µ . (3.33)

With this, equation (3.18) reduces to

sinh ρ A1
r = 0 . (3.34)

Our gauge choice (3.19) sets A1,2
v = 0 and the remaining components have to be

independent of the v-coordinate by (3.20). We can still make a gauge transformation with a
gauge parameter that depends only on r and u coordinates to set A1,2

r = 0, after which (3.34)
is identically satisfied. We denote the only remaining component of the gauge fields as

A1,2
u = χ1,2(u, r) . (3.35)

Note that, the gauge choice (3.19) also gives F1,2
vr = F1,2

vu = 0, which follows from (3.16) as
well. These imply Xv = Xr = 0 in (3.11) and the remaining condition Xu = 0 combined
with (3.33) leads to

(1 − cosh ρ)g0χ
1 + 8(∂rχ

1 + ∂rχ
2) = 0 . (3.36)

For the remaining scalar fields, which depend only on the r-coordinate by our assumption,
from (3.15) and (3.17), we get

ξ′1 = −k0e
ξ1+ξ2 + 2g0e

ξ1 cosh ρ , (3.37)
ξ′2 = −k0e

ξ1+ξ2 + 2g0e
ξ2 , (3.38)

ρ′ = 2g0e
ξ1 sinh ρ . (3.39)

This completes our analysis of the Killing spinor equations after which only 4 first order
differential equations remain to be solved, namely (3.36)–(3.39). We next turn to field
equations (2.11)–(2.17) of the model. The scalar field equations are automatically satisfied
using these BPS conditions. Similarly, the Einstein’s field equations (2.11) except for the
uu-component are satisfied automatically, which implies

2∂r(e2βW ) − ∂ 2
r (e2β) = 4g2

0 sinh2 ρ(χ1)2 + e−2ξ1(∂rχ
1)2 + e−2ξ2(∂rχ

2)2 . (3.40)

Finally, the vector field equations (2.16)–(2.17) reduce to

0 = ∂r(e−2ξ1∂rχ
1) − 4g2

0 sinh2 ρχ1 − k0∂rχ
2 , (3.41)

0 = ∂r(e−2ξ2∂rχ
2) − k0∂rχ

1. (3.42)

If we had allowed scalars to depend also on the u-coordinate in addition to the r-
coordinate, then we would have to use (A.8) instead of (3.22) as the spacetime metric. Then
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the analysis of the BPS conditions and field equations would go through as above with some
straightforward modifications due to the change in the metric. However, the uu-component
of the Einstein’s equation (3.40) gets additional non-linear terms involving the u-derivatives
of the scalar fields. Because of these non-linearities we were unable to solve this equation
except for the case of having scalars independent of u. After this last comment, we are now
ready to look for exact supersymmetric solutions of our model within this class.

4 Supersymmetric solutions in 3-dimensions

To find supersymmetric solutions with a null Killing vector we are left with four BPS
equations (3.36)–(3.39) and three field equations (3.40)–(3.42). Since the first order BPS
equations for scalar fields (3.37)–(3.38) are decoupled from vectors, it is natural to start
from them. Afterwards, one should solve the vector field equations (3.41)–(3.42) together
with (3.36) and finally (3.40) determines the metric function β(u, r) in (3.22). Solutions can
be classified with respect to the number of active scalars that are distinct which ranges from
0 to 3. They are independent solutions, that is one cannot go from, let’s say, the 3-scalars to
the 2-scalars solution by setting the extra active scalar to a constant and so on. This is so
since the scalars are functionally dependent on each other in these solutions.

It is easy to see that setting the scalar field ρ to zero considerably simplifies equations as
in the first three solutions that will be presented below. In this case, (3.39) is automatically
satisfied and (3.36) implies

ρ = 0 =⇒ ∂rχ
1 + ∂rχ

2 = 0 . (4.1)

Let us also note that two supersymmetric solutions of this type were found in [6] with
χ1 = χ2 = 0.

In solutions below we will assume free parameters of our model (2.1), namely g0 and k0,
are non-vanishing. The ungauged version of this supergravity can be obtained by setting
g0 = k0 = 0 =⇒ V = W = 0. In this case, it is easy to show that equations (3.36)–(3.42)
give rise to a pp-wave solution on Minkowski spacetime whose metric has exactly the same
form as the one found for the ungauged D = 3, N = 8 supergravity [20] (see its equation (6.8)).
However, our uplift formulas to D = 6 (5.2) become singular when g0 = 0 and hence we will
not consider this solution here. Moreover, only the 1-scalar solution in the subsection 4.2
allows for k0 = 0 but then one loses the AdS vacuum (2.6) of the potential (2.3).

4.1 Null warped AdS3 solution with constant scalars

The easiest way of solving BPS equations (3.37)–(3.38) is by setting scalars to constants
which requires

ξ1 = ξ2 = ln 2g0
k0

, ρ = 0 . (4.2)

Note that with these values for the scalars we are at the fully supersymmetric AdS vacuum (2.6)
of the potential (2.3). However, when non-trivial gauge fields are present supersymmetry
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is broken by 1/2. Using (4.1), the vector field equations (3.41) and (3.42) reduce into a
single equation

0 = k2
0

4g2
0

(χ1,2)′′ + k0(χ1,2)′ , (4.3)

with the assumption of separation of variables, and prime indicates differentiation with respect
to the r-coordinate. Solving it, we find the vector fields as

A1 =
(

0, Q(u)e−
4g2

0
k0

r + c1(u), 0
)

and A2 =
(

0,−Q(u)e−
4g2

0
k0

r + c2(u), 0
)
. (4.4)

We will set c1(u) and c2(u) to zero without loss of generality since they are pure gauge.
The only unknowns left are the metric functions in (3.22). The function U can be found
from (3.23) as

U(r) = −2g2
0

k0
r , (4.5)

where we set an integration constant to zero by rescaling the v-coordinate. Finally, (3.40) gives

e2β = − k2
0

4g2
0
Q2(u)e−

8g2
0

k0
r + c3(u)e−

4g2
0

k0
r + c4(u) . (4.6)

The coefficients c3(u) and c4(u) can be set to zero by coordinate transformations as shown
in [17]. They can be generated via the Garfinkle-Vachaspati solution generating method [45,
46] (see also [23]). This method is applicable when there is a null Killing vector in the solution
as in our case. We illustrate this mechanism for all our solutions in appendix B. On the other
hand, the Q(u) term in β(u, r) appears due to the non-trivial part of the gauge fields (4.4).
Setting c3(u) = c4(u) = 0 and Q(u) = Q = constant and defining a new radial coordinate

r = − k0
2g2

0
logR , (4.7)

the solution becomes

ds2
3 = 2R2 dudv + k2

0
4g4

0

dR2

R2 − k2
0 Q

2

4g2
0
R4 du2 , (4.8)

A1 = −A2 = QR2du , eξ1 = eξ2 = 2g0
k0

, ρ = θ = 0 .

When Q = 0 this is the AdS3 spacetime in Poincaré coordinates. However, when Q ̸= 0 the
metric is called the (minus) null warped AdS3 and appeared as a supersymmetric solution in
some 3-dimensional off-shell supergravities [18, 19]. To our knowledge it has not emerged as
a solution in an on-shell gauged supergravity before. Rather surprisingly, in these off-shell
examples it appeared in the timelike family. It is a particular pp-wave deformation of AdS3
which can be seen from its Ricci tensor

Rµν = −8g4
0

k2
0

gµν + ℓµ ℓν , (4.9)
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where −8g4
0

k2
0

is the value of the potential at the AdS vacuum and ℓ is the 1-form

ℓ = 2g0QR
2 du , gµν ℓµ ℓν = 0 . (4.10)

The metric (4.8) is also known as the Schrödinger spacetime due to its anisotropic scale
invariance:

R→ cR , u→ u

c2 , v → v , (4.11)

which also leaves the gauge fields invariant. Note that these are valid only when Q is a
constant. See [27, 28, 47, 48] for a discussion of other properties of this spacetime.

4.2 Charged string solution with 1-scalar

Here we assume ρ = 0, ξ1 = ξ2 = ξ(r) and use ξ as the radial coordinate. Then, (3.23) gives

e2U = e−2ξ(2g0 − k0e
ξ) , (4.12)

and the metric (3.22) becomes

ds2 = e−2ξ

(2g0 − k0eξ)2dξ
2 + 2e−2ξ(2g0 − k0e

ξ)dudv + e2β(u,ξ)du2 . (4.13)

The vector field equations (3.41) and (3.42) reduce into a single equation which is solved as

A1 = (0, Q(u)eξ + c1(u), 0) and A2 = (0,−Q(u)eξ + c2(u), 0). (4.14)

Finally, from (3.40) we find

e2β = c3(u)e−ξ + c4(u)e−2ξ −Q2(u) . (4.15)

The c3(u) and c4(u) terms can also be found using the Garfinkle-Vachaspati method [45, 46]
which we show in appendix B. This solution without the du2 piece in the metric (4.13) and
A1 = A2 = 0 was obtained in [6]. The solution can be interpreted as a charged string
superposed with waves [23]. Its curvature scalar reads

R = e2ξ
(
−8g2

0 − 4g0k0e
ξ + 5

2k
2
0e

2ξ
)
. (4.16)

As eξ → 2g0/k0 the curvature scalar R → −24g4
0/k

2
0, which shows that in this limit the

spacetime is locally AdS. The curvature scalar vanishes as ξ → −∞ and the geometry
becomes a cone over R1,1 [6].

4.3 String solution with 2-scalars

Here we take ρ = 0 and ξ1(r) ̸= ξ2(r). To solve the scalar sector it is convenient to use
the coordinate R defined by [6]

dR

dr
= 2g0(eξ2 − eξ1) . (4.17)
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With this, we solve (3.37), (3.38) and (3.23) as

eξ1 = 2g0
k0

eR − 1
ReR

,

eξ2 = 2g0
k0

eR − 1
R

,

e2U = k0
2g0

ReR

(1 − eR)2 , (4.18)

and find that the metric (3.22) can be written as

ds2 = 1
4g2

0
e4U(R)dR2 + 2e2U(R)dudv + e2β(u,R)du2 . (4.19)

We now move on to the vector field equations (3.41) and (3.42). Defining χ1 = χ and
using (4.1), they can be integrated as

k1(u) = e−2ξ1χ′ + k0χ ,

k2(u) = e−2ξ2χ′ + k0χ .

From these, we can solve for χ and χ′ algebraically

χ′ = (k1 − k2)e2ξ1+2ξ2

e2ξ2 − e2ξ1
,

χ = k2e
2ξ2 − k1e

2ξ1

k0(e2ξ2 − e2ξ1) . (4.20)

These are compatible only if

0 = (k1 − k2)[k0(eξ1 + eξ2) − 4g0] . (4.21)

Now, using the solution for scalars (4.18), the condition (4.21) becomes

0 = (k1 − k2)(R− sinhR) , (4.22)

which can only be satisfied if k1(u) = k2(u). However, (4.20) then implies

χ′ = 0 . (4.23)

Consequently, it is not possible to have a non-trivial gauge field for the 2-scalars solution.
Finally, from (3.40) we find

e2β(u,R) = e2U [c3(u)R+ c4(u)] . (4.24)

Again, c3(u) and c4(u) terms can be obtained from Garfinkle-Vachaspati method as we
show in the appendix B.

As a result, it is not possible to find a charged generalization of the string solution
with 2-scalars found in [6] but one can superpose Garfinkle-Vachaspati waves to it which
has no effect on its curvature scalar

R = 64g4
0 sinh2 (R/2)
k2

0R
4

(
−5 − 3R2 + (5 +R2) coshR− 2R sinhR

)
. (4.25)

As R→ 0 we see that R → −24g4
0/k

2
0 and the spacetime becomes locally AdS. The curvature

scalar diverges as R → ±∞.
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4.4 String solution with 3-scalars

Assuming a non-trivial ρ, the first two BPS equations (3.37), (3.38) can be combined to
produce the following first order ODE, after going from r to ρ derivative using (3.39),

d

dρ

(
eξ1(ρ)−ξ2(ρ)

sinh ρ

)
= − 1

sinh2 ρ
, (4.26)

which can be integrated to obtain,

eξ1(ρ)−ξ2(ρ) = cosh ρ+ κ sinh ρ , (4.27)

where κ is an integration constant. This result can now be plugged into (3.37) to obtain
the following equation for ξ1

d

dρ

(
e−ξ1 sinh ρ

)
= k0

2g0

1
(cosh ρ+ κ sinh ρ) , (4.28)

which can be integrated to obtain,

e−ξ1 sinh ρ = k0

g0
√

1 − κ2

(
arctan

[
κ+ tanh ρ

2√
1 − κ2

]
+ γ

)
, (4.29)

where γ is an integration constant. Note for a real solution that κ is bounded by −1 < κ < 1.
Therefore, we can parametrize κ as

κ = sinα . (4.30)

From (4.29), we see that it is advantageous now to define a new coordinate z such that

z = g0 cosα
k0

e−ξ1 sinh ρ− γ . (4.31)

Following (4.29) we are able to write

tanh ρ2 = sin(z − α)
cos z . (4.32)

Using these, we also have the following two identities

cosh ρ = cos2 z + sin2(z − α)
cos2 z − sin2(z − α)

, sinh ρ = 2 sin(z − α) cos z
cos2 z − sin2(z − α)

. (4.33)

Thus we find

eξ1(z) = 2 g0
k0

cos z sin(z − α)
(z + γ) cos(2 z − α) . (4.34)

Then using (4.27) and (4.34), we find the expression for ξ2

eξ2(z) = 2 g0
k0 cosα

cos z sin(z − α)
(z + γ) . (4.35)
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The metric function U can be found from (3.23) and (2.5) as

e2U = k0 cos2 α

4 g0

(z + γ) cos(2 z − α)
sin2(z − α) cos2 z

, (4.36)

where we set a multiplicative integration constant to 1 by a coordinate re-scaling. In order
to write the line element, we need to go from the radial coordinate r to the new coordinate
z. This can be obtained from (4.32), which implies

dz = cos2 z dρ

2 cosα
(
cosh ρ

2
)2 . (4.37)

Using this transformation and (3.39), we can write

z′(r) = g0 γ cosα e−2U . (4.38)

Now, the metric (3.22) becomes

ds2 = e4U(z)

g2
0 cos2 α

dz2 + 2e2U(z) dudv + e2β(u,z)du2 . (4.39)

Note that the form of this line element is the same with that of the 2-scalar solution (4.19).
To fix the constant γ, we note that in the limit z → α, ρ vanishes via (4.32). To have a
well-defined AdS limit (2.6) as z → α, we require ξ1 = ξ2 → log(2 g0/k0) which, from (4.34)
and (4.35), fixes

γ = −α . (4.40)

To ensure that scalars ξ1 and ξ2 do not become complex, we need to restrict the domains
of definition for z and α as

α ≤ z ≤ π/4 + α/2 , −π/2 < α < π/2 . (4.41)

We will now prove that it is not possible to have non-trivial gauge fields for this solution.
Here we outline the proof without equations since the expressions are quite long and will
not be needed. The proof is similar to the 2-scalar case but more involved since (3.36)
and (3.41) are now more complicated. First, we integrate (3.42) to solve for ∂rχ

2 in terms
of χ1. Then, using (3.36) we find ∂rχ

1 algebraically in terms of χ1 too. Now, (3.41) can
be solved algebraically for χ1 using these results. Then, from the last step ∂rχ

1 can be
computed and be compared to ∂rχ

1 found earlier which should identically match. However,
one finds that this is not the case.

Finally, we solve the Einstein’s field equation (3.40) and find

e2β(u,z) = e2U [c3(u)z + c4(u)] , (4.42)

which can be generated by the Garfinkle-Vachaspati method as shown in appendix B.
What we have is again a domain wall solution in 3-dimensions. We checked that as

z → α, the curvature scalar goes to R → −24g4
0/k

2
0. So, the geometry is locally AdS. In the

other limit, that is as (2z − α) → π/2 the curvature scalar diverges. In this limit, we have
ξ1 → ∞, ρ→ ∞ but ξ2 stays finite. The expression for the Ricci scalar in the presence of α
is too complicated to be shown here, but it takes the following form when α is set to zero

R
∣∣∣
α=0

= g4
0 sin2 2z[10 sin2 4z − 4z(6 sin 4z + sin 8z) + 4z2(3 − 36 cos 4z + cos 8z)]

16k2
0 z

4 cos4 2z
.
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5 Uplifts to 6-dimensions

The D = 3 theory that we study in this paper (2.1) is a truncation of the model that comes
from a consistent S3 reduction of the D = 6, N = (1, 0) supergravity coupled to a single
chiral tensor multiplet [2] whose Lagrangian is

L6 =
√
−g

(
R− 1

2∂µϕ∂
µϕ− 1

12e
−
√

2ϕHµνρH
µνρ
)
. (5.1)

The reduction ansatz to compactify this theory on the three-sphere was found in [1] based
on the general analysis of [49]

ds2
6 =

(
detT

1
4
) (

∆
1
2ds2

3 + g−2
0 ∆− 1

2T−1
ij DµiDµj

)
,

ϕ = 1√
2

log
(
∆−1 detT

1
2
)
, (5.2)

H = k0(detT ) vol3 −
1
6ϵijkl

(
g−2

0 M∆−2µiDµj ∧ Dµk ∧ Dµl

+3g−2
0 ∆−2Dµi ∧ Dµj ∧ DTkmTlnµ

mµn + 3g−1
0 ∆−1F ij ∧ DµkTlmµ

m
)
,

where

µiµi = 1 , ∆ = Tijµ
iµj , M = 2TikTjkµ

iµj − ∆Tii ,

Dµi = dµi + g0A
ijµj , DTij = dTij + g0A

ikT kj + g0A
jkT ki , (5.3)

F ij = dAij + g0A
ik ∧Akj , i, j = 1, . . . , 4 .

After the reduction one arrives at a 3-dimensional N = 4, SO(4) gauged supergravity [3–5].
Here the symmetric matrix Tij of the scalar fields parametrizes the quaternionic target
manifold SO(4, 4)/SO(4) × SO(4). In [6] a consistent truncation of this model that preserves
only the U(1) × U(1) symmetry was given by choosing the Tij matrix as

T =

eξ1eR(ρ,θ)I2 02

02 eξ2 I2

 with R(ρ, θ) = ρ

(
sin θ cos θ
cos θ − sin θ

)
, (5.4)

and the vectors Aµ ij as

Aµ =

A1
µ 0

0 A2
µ

 with A1,2
µ =

 0 A1,2
µ

−A1,2
µ 0

 , (5.5)

where A1,2
µ are two Abelian vector fields. Using these one arrives at (2.1).

We parametrize S3 using the Hopf coordinates:

µ⃗ =
(

sin η2 cos φ+ ψ

2 , sin η2 sin φ+ ψ

2 , cos η2 cos φ− ψ

2 , cos η2 sin φ− ψ

2

)
, (5.6)

for which the 3-sphere metric becomes

dΩ2
3 = 1

4(dη2 + σ2 + sin2 η dφ2) , σ = dψ − cos η dφ , (5.7)

whose volume form is volS3 = 1
8 sin η dψ ∧ dη ∧ dφ = 1

8 σ ∧ dσ.
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Since the S3 reduction is consistent and the subsequent U(1) × U(1) truncation is
compatible with that, any (supersymmetric) solution of the 3-dimensional theory (2.1) will
be a (supersymmetric) solution of the 6-dimensional theory (5.1). Using this fact, we will
now uplift our solutions by the prescription given above. In section 4.3, we could not find a
generalization of the 2-scalars solution found in [6] except for the trivial Garfinkle-Vachaspati
deformation which does not affect the uplift process, and hence we refer to [6] for the higher
dimensional result.

5.1 Rotating AdS3 ××× S3 from the null warped AdS3

For the null warped AdS3 solution (4.8) found in the subsection 4.1, the scalar fields are
constant (4.2) and using their values in the uplift formulas, we find

Tij = 2g0
k0
δij , ∆ = 2g0

k0
, M = −8g2

0
k2

0
. (5.8)

Now the uplift of the solution (4.8) gives

ds2
6 = ω

[
2R2du dv + dR2

R2

]
− ωQR2 σ du+ ω dΩ2

3 ,

H3 = 2
g2

0
RdR ∧ du ∧ dv − 2

g2
0

volS3 + 1
2g2

0
d
[
QR2 σ ∧ du

]
,

e
√

2ϕ = 2g0
k0

, ω2 = k0
2g5

0
, (5.9)

where we did the following re-scalings

(u, v) = k0
2g2

0
(ũ, ṽ) , Q = 2g0

k0
Q̃ , (5.10)

and then dropped tildes for convenience. When Q = 0, we have the usual, i.e. the non-rotating,
AdS3 × S3 solution which is also the near horizon geometry of both the rotating and non-
rotating dyonic string solution as we will see in the next subsection. However, when Q ̸= 0
this solution corresponds to AdS3 × S3 background with a non-trivial rotation in the U(1)
fiber direction σ of the S3. Note that the Schrödinger symmetry (4.11) of the seed solution is
still retained assuming that the sphere directions remain invariant under this scaling.

The Hodge dual of the 3-form above is

∗H3 = 2
g2

0
RdR ∧ du ∧ dv − 2

g2
0

volS3 , (5.11)

which is the 3-form of the non-rotating AdS3 × S3. Since the 6-dimensional theory (5.1) is
invariant under the interchange H3 ↔ ∗H3 when the dilaton is constant, for the rotating
AdS3 × S3 solution (5.9) we can also use (5.11) as the 3-form with the same metric.

The Ricci tensor for the 6-dimensional solution has the following form,

RMN = R̄MN + 4Q2R4 ℓM ℓN , ℓM dxM = du , gMN ℓM ℓN = 0 , (5.12)

where R̄MN is the Ricci tensor for the same metric without the Q-dependent piece. So,
the Ricci tensor of this solution is identical to that of the non-rotating, AdS3 × S3 except

– 16 –



J
H
E
P
1
0
(
2
0
2
4
)
1
8
5

in the uu-component. This is a reflection of the fact that the 3-dimensional seed solution
is a wave in AdS3 (4.9).

Note that the R4-term in the du2 part of the 3-dimensional metric (4.8) got cancelled
after the uplift due to the contributions of the vector fields. It can be reintroduced if we
could modify the U(1) fiber over S2 as

σ → σ̂ = σ + 2QR2du , (5.13)

after which (5.9) would become

ds2
6 = ω

[
−Q2R4du2 + 2R2du dv + dR2

R2

]
+ ω dΩ̂2

3 ,

H3 = 2
g2

0
RdR ∧ du ∧ dv − 2

g2
0

volŜ3 . (5.14)

Here once again dΩ̂2
3 = 1

4(dη2 + σ̂2 + sin2 η dφ2) and volŜ3 = 1
8 σ̂ ∧ dσ̂. Now the 3-dimensional

part would become the null warped AdS3 and the off-diagonal term, i.e. the rotation, would
be hidden in the deformation of the S3. However, note that the shift (5.13) is not legitimate
since it is not coming from a redefinition of a sphere coordinate.

The rotating AdS3 × S3 solution (5.9) was previously obtained in [41] by applying the
Lunin-Maldacena (or TsT) [42] solution generating method which requires the original 10-
dimensional background to possess at least two U(1) isometries. Then, one can insert a shift
between two T-dualities along the same direction to generate a new solution. Starting from
the usual AdS3 × S3 background (that is (5.9) with Q = 0, which can trivially be uplifted
to 10-dimensions by adding a T 4 part), one can use the v-direction of the AdS3 for the
T-dualities and the ψ-direction of the S3 for the shift to get (5.9). In this way the original
SL(2,R)×SL(2,R)×SU(2)×SU(2) isometry is broken down to U(1)×SL(2,R)×SU(2)×U(1).
Holographic properties of this background were studied further in [50, 51] and the fact that
it preserves supersymmetry was shown in [52].

5.2 Rotating dyonic string solution from the charged string

The 3-dimensional solution we found in the subsection 4.2 can be written as

ds2
3 = e−2ξ dξ2

(2g0 − k0 eξ)2 + 2e−2ξ (2g0 − eξ k0) dudv + e−2ξ
[
c4(u) + c3(u)eξ −Q2(u) e2ξ

]
du2,

A1 = −A2 = Q(u) eξ du , ξ1 = ξ2 = ξ , ρ = θ = 0 , (5.15)

where we set the additive pure gauge terms in the gauge fields to zero. Using these scalars
in the uplift formulas (5.4), we have

Tij = eξ δij , ∆ = eξ , M = −2 e2ξ . (5.16)

By making the following coordinate transformation [6] and rescaling of the charge
parameter Q(u)

eξ = 2g0
k0 + g2

0 R
2 , Q(u) = Q̃(u) g3

0 , (5.17)
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after the uplift, we obtain

ds2
6 = (HpHq)−1/2

[(
h̃1(u) + h̃2(u)

R2

)
du2 + 2dudv − Q̃(u)

R2 σ du

]

+(HpHq)1/2 (dR2 +R2 dΩ2
3) ,

H3 = 4g3
0 k0

(k0 + g2
0 R

2)2 RdR ∧ du ∧ dv − 2
g2

0
volS3 + d

[
Q̃(u) g3

0
k0 + g2

0R
2 σ ∧ du

]
,

e
√

2ϕ = HpH
−1
q , (5.18)

where

Hp = 1
g2

0R
2 , Hq = 1

2g0
+ k0

2 g3
0 R

2 . (5.19)

This is the extremal rotating dyonic string solution found in [43, 44] (see also [53]) when
Q̃(u) is a constant. The choice k0 = 2g0 gives the self-dual string with equal electric and
magnetic charges. The coefficients h̃1(u) and h̃2(u) correspond to waves along the string
and can be obtained using the Garfinkle-Vachaspati method. When Q̃(u) = 0, we have
the non-rotating dyonic string solution [7, 8] which was connected to our 3-dimensional
supergravity in [6]. The Ricci scalar of this solution is

R = 1
4 e

ξ/2 (2g0 − k0 e
ξ)2 = g4

0
4

( 2g0
k0 + g2

0 R
2

)5/2
R4 . (5.20)

Because of the fact that the additive constant in the harmonic function Hp is missing, the
solution is not asymptotically flat as R→ ∞ but a cone over S3 ×R1,1. This is a consequence
of the reduction ansatz that we used [1, 49] and not due to any choices that we made, which
was also observed before (see e.g. [54, 55]).

As R → 0 we have the AdS3 × S3 geometry as we will now show explicitly. We first
do the rescalings

(u, v) = ω (ũ, ṽ) , ω2 = k0
2g5

0
. (5.21)

Then, in the near horizon limit as R → 0, the solution (5.18) goes to

ds2
6 = ω

[(
h̃1(ũ)R2 + h̃2(ũ)

)
dũ2 + 2R2 dũdṽ + dR2

R2

]
− Q̃(u)σ dũ+ ω dΩ2

3 ,

H3 = 2
g2

0
RdR ∧ dũ ∧ dṽ − 2

g2
0

volS3 + Q̃(u) g3
0 ω

k0
sin η dη ∧ dφ ∧ dũ ,

e
√

2ϕ = 2g0
k0

. (5.22)

Note that the Q̃-terms in the metric and the 3-form have no radial dependence unlike (5.9),
and we can get rid of them by making the following shift along the S3

ψ → ψ + f(ũ) =⇒ σ → σ + df

dũ
dũ , where df

dũ
= 2Q̃(ũ)

ω
, (5.23)
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after which we end up with the static AdS3×S3 solution with Garfinkle-Vachaspati waves [44].
So, both rotating and non-rotating dyonic strings have the same near horizon geometry. Note
that the above shift in σ is legitimate unlike (5.13), since it is due to a redefinition of the
sphere coordinate ψ. Now comparing this near horizon limit with the solution (5.9) we see
that both are locally the same but the latter one has a genuine rotation which is reflected
by the presence of a non-trivial off-diagonal term in the metric.

5.3 A dyonic string distribution from the 3-scalars solution

To simplify the process of the uplift of the solution found in the subsection 4.4, we will set
the constant α = 0 which appeared in how scalar fields are related to each other via (4.27)
and (4.30). In that case the solution takes the following form

ds2
3 = 2e2U dudv + g−2

0 e4U dz2 , e2U = k0
g0

z cos 2z
sin2 2z

,

eξ1 = g0
k0

tan 2z
z

, eξ2 = g0
k0

sin 2z
z

, tanh ρ2 = tan z . (5.24)

The scalar matrix Tij (5.4) is now non-diagonal due to the non-trivial ρ and is given by

Tij =


cosh ρ eξ1 sinh ρ eξ1 0 0

sinh ρ eξ1 cosh ρ eξ1 0 0

0 0 eξ2 0
0 0 0 eξ2

 = g0
k0



tan 2z
z cos 2z

tan2 2z
z 0 0

tan2 2z
z

tan 2z
z cos 2z 0 0

0 0 sin 2z
z 0

0 0 0 sin 2z
z


. (5.25)

Uplifting the 3D solution, we find the following metric in D = 6

ds2
6 = W1dudv +W2dz

2 +W3dη
2 +W4(dψ2 + dφ2) +W5dη (dψ + dφ) +W6dφ dψ , (5.26)

where Wi’s are functions of all four transverse space coordinates in D = 6,

W1 =
(
g0

2 k0

)1/2 Ξ
(z sin 4z)1/2 ,

W2 =
(
k0

4 g5
0

)1/2 (z cos 2z
sin5 2z

)1/2
Ξ ,

W3 =
(
k0

4 g5
0

)1/2 ( z

tan 2z

)1/2 (1 − cos2 η
2 sin(φ+ ψ) sin 2z

)
Ξ ,

W4 =
(
k0

4 g5
0

)1/2 ( z

tan 2z

)1/2 (1 + sin2 η
2 sin(φ+ ψ) sin 2z

)
Ξ ,

W5 = −
(
k0

4 g5
0

)1/2
(z sin 2z cos 2z)1/2 sin η cos(φ+ ψ)

Ξ ,

W6 = −
(
k0
g5

0

)1/2 ( z

tan 2z

)1/2 (cos η − sin2 η
2 sin(φ+ ψ) sin 2z

)
Ξ , (5.27)
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with,

Ξ2 = 4
(

1 − cos2 η

2 sin2 2z + sin2 η

2 sin(φ+ ψ) sin 2z
)
.

The dilaton is given by

e
√

2 ϕ = 2 g0
k0

sin 4z
z Ξ2 , (5.28)

and the 3-form is found as

H3 = g4
0
k3

0

sin4 2z
z4 cos2 2z vol3 + h1 dη ∧ dψ ∧ dφ+ h2 dη ∧ dz ∧ (dφ− dψ) + h3 dφ ∧ dψ ∧ dz ,

h1 = 4 sin η
g2

0 Ξ4

(
cos2 2z − sin2 2z sin2 η

2 + sin2 η

2 sin3 2z sin(φ+ ψ)
)
,

h2 = 4 cos(φ+ ψ) cos 2z sin η
g2

0 Ξ4

(
1 + cos2 η

2 sin2 2z
)
,

h3 = −2 cos 2z sin2 η

g2
0 Ξ4 ((3 − cos 4z) sin(φ+ ψ) + 4 sin 2z) . (5.29)

In consistent sphere reductions, the uplift of a domain wall solution typically results in a
continuous brane distribution [56–59] which is also the case here. To see this, first we rewrite
the metric (5.26) and the dilaton (5.28) in the dyonic string form

ds2
6 = (HpHq)−

1
2 ds2

R1,1 + (HpHq)
1
2 ds2

M4 , e
√

2 ϕ := HpH
−1
q , (5.30)

where
Hp = 2 sin 4z

Ξ2 , Hq = k0
g0
z . (5.31)

Now one can verify that the transverse 4-dimensional space M4 is actually R4 from

Rµνρσ(M4) = 0 . (5.32)

Furthermore, one can also prove that functions Hp and Hq (5.31) are harmonic functions
on M4. Hence, this solution corresponds to a dyonic string distribution. To understand its
geometry better the metric on M4 needs to be written in a more familiar form. For that
purpose we will now show that the metric

ds2
R4 = dr2 + r2

4

(
dθ2 + cos2 θ

2dα̃
2 + sin2 θ

2dβ̃
2
)

(5.33)

can be mapped to the metric on M4. For that, we define the following coordinates in (5.26)

ψ = 1
2 (β + α) , φ = 1

2 (β − α) . (5.34)

Since the metric coefficients in (5.26), that is Wi’s, do not depend on α, it is reasonable to
assume that while going from (5.33) to (5.30) we have

α̃ = α . (5.35)
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In other words the coefficient of the dα2 in (5.30) should match directly with the coefficient
of dα̃2 in (5.33). This leads to the following condition

r2 cos2 θ

2 = g−2
0

cos2 η
2

sin 2z . (5.36)

Viewing θ as defined by (5.36), after some work, one finds that if the remaining coordinates
transform as

tan β̃2 =
sin
(

2z−β
2

)
cos

(
2z+β

2

) , (5.37)

r2 =
1 − sin2 η

2 sin β sin 2z
g2

0 sin 2z
, (5.38)

the metric (5.33) is mapped to the metric (5.30) on M4. However, what we need is in fact the
transformations in the opposite direction. For that, it is useful to note that (5.37) implies

sin β̃ sin 2z sin β = sin β + sin β̃ − sin 2z . (5.39)

Now, from (5.36) and (5.39), we have

cos2 η

2 = g2
0 r

2 cos2 θ

2 sin 2z , sin β = sin β̃ − sin 2z
sin β̃ sin 2z − 1

. (5.40)

Inserting these in (5.38), we get a cubic equation

g2
0 r

2 cos2 θ

2 x
3 +

(
g2

0 r
2 sin2 θ

2 sin β̃ − 1
)
x2 − g2

0 r
2 x+ 1 = 0 , x := sin 2z . (5.41)

One can verify that this equation has one real and two imaginary roots. Having a real
root ensures that the mapping between the flat coordinates (5.33) and the original uplifted
coordinates (5.30) is invertible, and that one can in principle give the harmonic functions,
3-form and the dilaton in the more familiar flat coordinates (5.33). Unfortunately, the
real root is too complicated to present here. Moreover, we could not express the harmonic
functions (5.31) only in terms of the flat coordinates (5.33) using (5.41) which, unfortunately,
prevents us determining the geometry of this string distribution explicitly.

It is easy to check that as z → 0 the solution (5.30) approaches to AdS3 × S3. The Ricci
scalar of this metric is too complicated to present here but one can demonstrate that it blows
up in the other end of the range for z, that is as z → π/4.

6 Conclusions

In this paper we initiated a systematic investigation of the supersymmetric solutions of
the D = 3, N = 4, SO(4) gauged supergravity and used the powerful Killing spinor
bilinears method of Tod [9, 10] to achieve this. Our main motivation was to exploit the
fact that our D = 3 model is connected to D = 6, N = (1, 0) ungauged supergravity via a
consistent dimensional reduction. Indeed, by uplifting our solutions we found some interesting
supersymmetric backgrounds in D = 6 including the well-known rotating dyonic strings
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D = 3 D = 6

Constant scalars • AdS3, (4.8) with Q = 0 •AdS3 × S3, (5.9) with Q = 0

• Null warped AdS3,
(4.8) with Q ̸= 0

• Rotating AdS3 × S3,
(5.9) with Q ̸= 0, [41]

Single active scalar
• Uncharged string with waves,
(5.15) with Q(u) = 0, [6]

• Dyonic string with waves,
(5.18) with Q̃(u) = 0, [7, 8]

• Charged string with waves,
(5.15) with Q(u) ̸= 0

• Rotating dyonic string,
(5.18) with Q̃(u) ̸= 0, [44, 53]

Two active scalars • Uncharged string with waves,
(4.19), [6]

• Dyonic string distribution, [6]

Three active scalars • Uncharged string with waves,
(4.39)

• Dyonic string distribution,
(5.30)

Table 1. Supersymmetric solutions of the U(1) × U(1) truncation of the D = 3, N = 4, SO(4)
gauged supergravity with a null Killing vector and their mappings to the ungauged D = 6, N = (1, 0)
supergravity coupled to a single chiral tensor multiplet.

configuration [43, 44]. The rotating AdS3 × S3 given in section 5.1, is especially interesting
since it is a non-trivial deformation of one of the most studied backgrounds in String/M-theory
literature (see e.g. [60–69]). Moreover, it has Schrödinger anisotropic scale invariance and
it will be interesting to study its holographic aspects. This background was found earlier
in [41] using a TsT transformation and there has already been some progress in understanding
properties of its dual (warped) CFT [41, 50–52]. We hope that our work by providing a
D = 3 supergravity framework will help in exploring it further. Holographic interpretations
of its seed solution, that is the null warped AdS3, is also worth pursuing [27, 28]. In this
vein, it is also desirable to analyze renormalization group flows generated by our domain wall
solutions [70–73]. It will particularly be interesting to find out the effect of vector fields using
the 1-scalar solution found in subsection 4.2. Whether our domain wall solutions can also
be obtained using a TsT transformation [42] is also worth studying as in [74].

An important outcome of our paper is the observation that non-trivial gauge fields create
rotation in the higher dimension. This might also explain why it is not possible to find
charged generalizations of the 2 and 3-scalars solutions. These domain walls rise to dyonic
string distributions in D = 6 and such a rotation does not seem to be compatible with that.

Combined with earlier results of [6], the construction of supersymmetric solutions of
U(1) × U(1) truncation of the D = 3, N = 4, SO(4) gauged supergravity with a null Killing
vector and their uplifts to D = 6 is now completed as summarized in table 1. Except for
the first one which is fully supersymmetric, all preserve 1/2 supersymmetry. A natural
continuation of this paper is to consider the timelike case for which we did the Killing spinor
analysis but did not work out explicit solutions. The null family turned out to be richer
compared to off-shell supergravities where one only finds waves in AdS3 and no strings or
null warped AdS3 [17–19, 25, 26]. It will particularly be interesting to see if the timelike
class contains spacelike or timelike warped AdS3 geometries.

– 22 –



J
H
E
P
1
0
(
2
0
2
4
)
1
8
5

Of course, one can also try to utilize other consistent reductions to D = 3 like [75, 76].
In [77] a consistent reduction of the D = 6, N = (1, 0) supergravity coupled to 2 chiral tensor
multiplets was worked out and U(1) × U(1) truncation of the resulting D = 3 model was also
performed. Using this set-up superstrata geometries in D = 6 were constructed [77–79]. In
comparison to our D = 3 theory its only difference is that its action contains 2 additional
scalar fields which also affect the scalar potential. Therefore, it should be straightforward
to extend our analysis to this case and a rich class of solutions are to be expected. One
might also attempt to generalize the model in [77] by adding more tensor multiplets or
generalize [1] by considering the gauged version of our D = 6 theory [80] as the starting
point. It is also attractive to study the connection of supersymmetric solutions between
known examples of consistent reductions of D = 6 supergravities with higher number of
supersymmetries to D = 3 supergravities [81, 82].

Another direction that we would like to pursue is the uplift of our solutions to higher
dimensions. Their reduction to D = 5 could also be interesting. We hope to come back
to these issues in the near future.
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A Derivation of the metric with a null Killing vector

In this appendix we give the derivation of (3.22) following [17] for our model. The most
general 3-dimensional metric admitting V = ∂v as a null Killing vector can be written as [17]

ds2 = hijdx
idxj + 2Aidx

idv , (A.1)

where hij and Ai are independent of the coordinate v = x0 and i = 1, 2. The inverse
metric is then

g00 = −|A|−2, g0i = Ai|A|−2, gij = hij −AiAj |A|−2 , (A.2)

where Ai = hijAj and |A|2 = AiAi. Note that we have
√
−g =

√
h |A|. From equa-

tion (3.12), we find

(−∂1A2 + ∂2A1) = 2
√
h |A|W , (A.3)
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where W is the superpotential (2.5). Then we choose new coordinates x̂i such that Aidx
i =

a(xj)dx̂1 and a(xj) = x̂2. Let us call these new coordinates by x̂i = (u, x) so that Aidx
i = xdu.

Now, we can write the metric (A.1) as

ds2 = ĥij dx̂
idx̂j + 2x dudv , (A.4)

which can be further modified by a coordinate transformation v → v + ξ(u, x) to eliminate
the non-diagonal entries of ĥij , and we get

ˆ̂gµν =


0 x 0

x ˆ̂h11 0

0 0 ˆ̂h22

 . (A.5)

Then, equation (A.3) implies

1
4W 2x2 = ˆ̂h22 . (A.6)

Calling x = e2U(r) and ˆ̂h11 = e2β(u,r), we arrive at

ds2 =
(

U ′

W (u, r)

)2
dr2 + 2e2U(r)dudv + e2β(u,r)du2 , (A.7)

where U ′ = dU
dr . When the superpotential W (2.5) depends only on r, in other words when all

scalar fields are functions of r only, then we can choose U ′(r) = W and finally reach (3.22).
Otherwise, it may be convenient to use U as a coordinate and rewrite (A.7) as [19]

ds2 = 1
W 2(U, u)dU

2 + 2e2Ududv + e2β(U,u)du2 . (A.8)

The analysis of [17] corresponds to the case W = 1.

B Garfinkle-Vachaspati method

In this appendix we briefly review and then apply the Garfinkle-Vachaspati solution generating
method [45, 46] which allows adding waves to an existing solution that possesses a null Killing
vector as our case. Let the metric gµν be an exact solution for a gravity theory coupled to
some matter fields, such that V µ is a null, hypersurface orthogonal Killing vector. Now one
can find scalars ψ and Ω by solving the equations

∂[µVν] = V[µ∂ν] ln Ω , V µ∂µψ = 0 , □ψ = 0 . (B.1)

Then, the following metric is another exact solution with the same matter fields

ĝµν = gµν + ΩψVµVν . (B.2)

Now, we will apply this method to our solutions.
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Null warped AdS solution with constant scalars. We start with the metric

ds2 = 2e2Ududv + dr2 , (B.3)

where U(r) = −2g2
0

k0
r. Let us take V = ∂v as the null Killing vector. Then, solving (B.1),

we find

Ω = k1e
−2U , ψ = k2(u)e−2U + k3(u) . (B.4)

Then, the new metric is

d̂s2 = 2e2Ududv + dr2 + [c3(u)e2U + c4(u)]du2 . (B.5)

The new terms match exactly with the c3(u) and c4(u) terms in (4.6).

Charged string solution with 1-scalar. We start with the metric

ds2 = 2e2Ududv + dr2 , (B.6)

and take the null Killing vector as V = ∂v. Then we find

Ω = k1e
−2U , ψ = k2(u)

(2g0 − k0eξ)2 + k3(u) . (B.7)

The new metric is

d̂s2 = 2e2Ududv + dr2 + [c3(u)e−ξ + c4(u)e−2ξ]du2 . (B.8)

Note that c3(u) and c4(u) terms are identical to those in (4.15).

String solutions with two and three distinct scalars. We start with the metric

ds2 = e4U(Θ)dΘ2 + 2e2U(Θ)dudv , (B.9)

and take the null Killing vector field as V = ∂v. Then we find

Ω = k1e
−2U , ψ = k2(u)Θ + k3(u) . (B.10)

So the new piece in the metric is

ĝuu = e2U [c3(u)Θ + c4(u)] , (B.11)

whose form is identical to (4.24) and (4.42).
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