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ABSTRACT

DAY-AHEAD ELECTRICITY PRICE FORECASTING FOR TURKIYE
USING AN ENSEMBLE MACHINE LEARNING TECHNIQUE

Ozbudak, Cagkan
M.S., Department of Industrial Engineering
Supervisor: Prof. Dr. Zeynep Miige Avsar

Co-Supervisor: Assoc. Prof. Dr. Bora Kat

November 2024, [86] pages

In a liberal electricity market where there is competition, accurate hourly electricity
price forecasting is important. Electricity producers and consumers require methods
for precise price predictions. Producers and consumers may organize their bidding
strategies to maximize their benefits by using price projections, which provide im-
portant information. Due to the under-maturation and low proliferation of grid-scale
storage technologies, the increasing uncertainty with the high penetration of inter-
mittent technologies such as solar and wind makes forecasting more challenging and
critical than ever before. Therefore, changes in supply or demand occur with an
impact on pricing. Moreover, economic instability mainly originated from national
monetary policies together with the political conjoncture in the neighbouring coun-
tries, which are also energy suppliers, in the recent decade decrease the predictability

of the prices.

In this thesis, XGBoost, SVR and an ensemble of these two algorithms are used for
precise for precise and reliable day-ahead electricity price forecasting in the electric-

ity market in Tiirkiye. The proposed algorithms are compared with other benchmark



models which are which are SARIMA and Naive Models for precise and reliable
day-ahead electricity price forecasting in the electricity market in Tiirkiye. Different
model settings and time periods for the performance metrics are investigated. The
results obtained indicate that the proposed method used is promising in terms of per-
formance metrics which shows competing values compared to the benchmark models

and other studies in the literature.

Keywords: Day-Ahead Electricity Price, Price Forecasting, Machine Learning, En-
semble Learning, XGBoost, Support Vector Regression (SVR), SARIMA, Naive Mod-

els
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0z

_ BIRLESTIRILMIS MAKINE OGRENMESI TEKNIGI ILE
TURKIYE GUN ONCESI PIYASASI ELEKTRIK FIYAT TAHMINI

Ozbudak, Cagkan
Yiiksek Lisans, Endiistri Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Zeynep Miige Avsar
Ortak Tez Yoneticisi: Dog. Dr. Bora Kat

Kasim 2024 ,[86] sayfa

Rekabetin oldugu liberal bir elektrik piyasasinda, dogru saatlik elektrik fiyat1 tah-
mini 6nem arz eder. Elektrik iireticileri ve tiiketicileri fiyat tahminleri i¢in kesinligi
yiiksek yontemlere ihtiya¢ duyarlar. Ureticiler ve tiiketiciler, nemli bilgiler saglayan
fiyat projeksiyonlarini kullanarak faydalarini en iist diizeye ¢ikarmak i¢in teklif stra-
tejilerini diizenlerler. Sebeke Olcegindeki depolama teknolojilerinin heniiz yeterince
olgunlagmamis ve yayginlasmamis olmasi nedeniyle, giines ve riizgar gibi siireklilik
arz etmeyen teknolojilerin yiiksek oranda kullanimiyla birlikte belirsizlik artmakta ve
tahmin yapmak her zamankinden daha zor ve kritik hale gelmektedir. Bu nedenle,
arz veya talepteki degisiklikler fiyatlandirma iizerinde etkili olmaktadir. Ayrica, son
on yilda ulusal para politikalarindan kaynaklanan ekonomik istikrarsizlik ve enerji
tedarikcisi de olan komsu iilkelerdeki siyasi konjonktiir, fiyatlarin 6ngoriilebilirligini

azaltmaktadir.

Bu tezde, Tiirkiye’de enerji sektoriinde kesin ve giivenilir giin oncesi elektrik fiyati

tahmini i¢in Extreme Gradient Boosting (XGBoost) ve Destek Vektor Regresyonu

vii



(SVR) algoritmalar1 ve bu algoritmalarin birlesimi kullanilip SARIMA ve Naif mo-
dellerle kiyaslamasi yapilmigstir. Performans metrikleri i¢in farkli model ayarlar1 ve
zaman periyotlar1 incelenmistir. Elde edilen sonuclar, 6nerilen yontemin performans
metrikleri agisindan umut verici oldugunu ve kiyaslama yapilan modeller ile lite-
ratiirdeki diger galismalarla karsilagtirildiginda rekabetci degerlere sahip oldugunu

gostermektedir.

Anahtar Kelimeler: Giin Oncesi Electrik Fiyati, Fiyat Tahmini, Makine Ogrenmesi,
Topluluk Ogrenimi, XGBoost, Destek Vektor Regresyonu (SVR), SARIMA, Naif
Modeller
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CHAPTER 1

INTRODUCTION

The Turkish electricity market is a critical component of the overall national energy
system where electricity is produced, transmitted, distributed, and exchanged among
its participants. In this market, commitment to market-oriented conduct is charac-
terized by the departure of the governmental authority. It was established as a result
of extensive changes coordinated by the Energy Market Regulatory Authority (EM-
RA/EPDK in Turkish). Encompassing multiple divisions, such as the Day-Ahead
Market (DAM), Intraday Market and the Balancing Market, the system serves a wide

range of users, including traders, consumers, and generators.

This study aims to fulfill the essential demand for accurate and reliable price forecasts
in the energy sector by developing an innovative methodology for day-ahead electric-
ity price forecasting in Tiirkiye. Furthermore, the goal of this research is to provide
a basis for future studies that will improve and broaden this technique, ultimately ad-
vancing data science and machine learning applications in the region for forecasting

on energy related issues.

This thesis study is primarily driven by the novel use of an ensemble machine learn-
ing technique that combines Support Vector Regression (SVR) and Extreme Gradient
Boosting (XGBoost) to Turkish data for the first time in an academic setting. This
innovative method makes use of the complementing advantages of both algorithms to
improve regression models’ robustness and predictive accuracy. Through the integra-
tion of these two approaches, the study seeks to offer a detailed analysis of their com-
bined effectiveness by comparing with the results of benchmark models, SARIMA
and Naive Models through the use of an extensive set of performance metrics devel-

oped for regression tasks.



The rest of this chapter explores the development and significant developments in the
Turkish electricity market’s history. This is followed by a summary of the Turkish
day-ahead market’s operations. Chapter 2 examines the related studies in the liter-
ature which focus on forecasting electricity prices with a specific emphasis on the
studies for the Turkish electricity market. In Chapter 3, the methodology, i.e., the
data collection process, data preprocessing steps and data modeling steps, introduc-
ing the algorithms used in the study, namely Extreme Gradient Boosting (XGBoost)
and Support Vector Regression (SVR), are presented in detail. Numerical Analysis
and Results presents the outputs of the model trials, including results with different
feature combinations, and provides a complete analysis of the performance metrics to
evaluate the model results. Finally, Chapter 5 summarizes the findings and suggests
directions for future work. Supplementary material, such as detailed tables and plots
related to the model results, is included in the appendix to provide additional context

and to support the main text.

1.1 History of the Turkish Electricity Market

Turkish Electricity Authority Act No. 1312 in 1970 marked the country’s initial in-
stitutionalization of the electricity market. Increased energy efficiency was the result
of the First Five Year Development Plan. Transmission and distribution of electricity
produced under the monopoly are the responsibility of Turkish Electricity Authority,

a state economic entity established by law.

Due to rising global costs resulted by the Oil Crisis in 1973, privatization began
to gain importance in the publicly owned electricity sectors all around the world.
Tiirkiye experienced it likewise. Privatization was considered a tool to overcome in-
efficiencies found in the public sector. Law No. 2705 in 1982, together with the
monopoly held by the Turkish Electricity Authority in the production, transmission,
and distribution of electricity, offers the means for the private sector to enter the mar-
ket. Trade, transmission, and distribution of electricity for both local and foreign
private enterprises were liberalized with Law No. 3096 in 1984. In 1994, Turkish
Electricity Authority established Turkish Electricity Generation-Transmission Corpo-

ration (TEAS) and Turkish Electricity Distribution Company (TEDAS) as two distinct

2



economic state companies in accordance with employment and privatization plans.

By 2001, the electricity market underwent a shift towards a free and competitive mar-
ket. TEAS transmission was split into three distinct economic state enterprises which
are Turkish Electricity Transmission Company (TEIAS), Electricity Generation Inc.

(EUAS) and Turkish Electricity Trading and Contracting Co. (TETAS).

With the enactment of the Electricity Market Law No. 4628 in 2001, the frame-
work for a competitive market was established; both domestic and foreign investors
are leading the charge for implementing regulations regarding the production, trans-
mission, distribution, and providing with electricity energy to guarantee the efficient
operation of market operations. Enacted by legislation, TEAS is the sole governing
body for transmitting energy. It has the term licenses necessary for both domestic
and foreign enterprises seeking to engage in the market. Furthermore, since its es-
tablishment under the Electricity Market Law No. 4628, Energy Market Regulatory
Authority (EMRA) has been in charge of license distribution, market monitoring, and

the assessment and examination of pricing principles.

TURKEY ELECTRICITY
AUTHORITY

(Generation., Transmission.,
Distribution.)
Ll

L |

( Generation.

TEDAS
Trmlisn%issiou)

(Distribution)

I | | |

TETAS 21 Private Firms ‘
(Wholesale) (Distribution)

TEIAS
(Transmission)

EUAS
(Generation)

Figure 1.1: Transformation in the Turkish Electricity Market given in [3]

As it can be seen in Figure 1.1, the Turkish Electricity Authority splits into two
branches. While TEAS is in charge of production and transmission, TEDAS is mostly
in charge of distribution. TEAS splits into three suborganizations, namely EUAS,

TEIAS, and TETAS, where respectively production, transmission, and wholesale are



handled independently. Simultaneously, TEDAS divides its electricity distribution

business into 21 local regions and transfers it to separate distributors for each region.

On July 1, 2006, the electricity market underwent the first phase of change, moving
from a single buyer and single seller model to a liberal and competitive model. This
involved switching to a monthly three-period financial settlement system. Subse-
quently, the Day-Ahead Planning system began giving service on December 1, 2009.
These transitional phases are crucial for the electricity market’s development into a
more robust and dynamic structure. The establishment of the DAM system, which is
presently in operation, is considered to be the largest step towards the development
of the intended electrical market structure. The establishment of the DAM gave the
Turkish Electricity Market a new beginning and a competitive framework, enabling

the development of a competitive market structure.

Energy Exchange Istanbul (EXIST) was founded on March 18, 2015, and is also
known by its Turkish name, Enerji Piyasalar1 Isletme A.S. (EPIAS). EXIST is a com-
pany that was formally established in accordance with the Turkish Electricity Market
Law and is governed by the Energy Markets Operation License that is obtained from
EMRA. Gas, electricity, and environmental commodities are among the energy mar-
kets that EXIST is in charge of managing and operating. EXIST operates Day-Ahead
and Intraday Spot Power Market, Spot Natural Gas Market, Power Futures Market,
Natural Gas Futures Market and Renewable Energy Guarantees of Origin System &
Organized YEK-G Market as stated in [6].

1.2 An Overview of the Turkish Day-Ahead Market

The DAM in Tiirkiye is one of the main components of the national electricity market,
offering a mechanism for anticipating and allocating electricity usage and generation
for the next day. This market allows market participants, including producers and
consumers, to make bids and offers based on projected supply and demand circum-
stances. The idea is to establish a fair and competitive marketplace where prices are
determined by the equilibrium of supply and demand offers. This approach enables

more efficient resource utilization and better planning for both producers and con-
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sumers in order to meet Tiirkiye’s dynamic and rising electricity demand.

The capability of users to adjust their usage in response to price changes is an impor-
tant part of the DAM’s entrance in to the electricity market. As a result, the demand
side has begun to engage in the market more actively, with the ability of respond-
ing to fluctuating prices. Another innovation is DAM portfolios for market players,
which enable them to balance their own portfolios. Attending DAM is not mandatory.
The DAM has made a substantial improvement by allowing daily financial settlement
and clearing of receivables and payables resulting from business transactions on the
day following the transaction date. Market participants can continue to invest with-
out worrying about their financial situation because of the possibility to earn revenue
from the sale of generated electricity on a daily rather than a monthly basis. The
final advantage to be adopted is the collateral mechanism, which guarantees market
players’ receivables in the electricity business against potential cash-flow concerns,

thereby diminishing their influence on the market.

The general principles of the DAM are presented below.

e [egal companies with licenses are eligible to participate in the DAM by sign-
ing the DAM Participation Agreement, which outlines the obligations for the
market participants in the DAM.

e Each day starts from 00:00 and ends at 00:00 of following day and consists of

hourly time periods.

e Offer submissions can can be submitted from the next day to 5 days later by

participants.

e Every hour, prices and volumes that are applied for clearing of the daily DAM

are determined.

e Market Operator (EXIST) announces payables to the Market Operator and re-
ceivables from the Market Operator for individual market participants through
advance payment notifications, which are the outcome of clearing calculations
for the market participants based on their day-ahead balancing activities. Mar-
ket Operator notifies market participants on a daily basis through Central Clear-

ing House.



e Every day until 10:30 am, market participants present letters of guarantee to
the market operator. Every day until 11:00 am, market players present their
collateral, amount of money paid by the electricity producer to guarantee a suc-
cessful trade, to the Central Clearing House, aside from letters of guarantee.
The amount of the collateral follows the market price of electricity and is re-

turned to the producer after a successful delivery of the electricity

e In order for the market participants to go on with the DAM operations on the
weekends and public holidays, letters of guarantee must be submitted by 10:30
am, and collateral other than letters of guarantee must be given by 11:00 am on

the preceding work day.

Processes of the DAM consists of the following steps.

e Firstly, DAM participants send the Market Operator their DAM offers for the
following day until 12:30 pm.

e Collaterals are checked from 12:30 pm to 1:00 pm to see if DAM offerings
qualify.

e Offers for the DAM that are submitted to the Market Operator are checked
between 12:30 and 3:00 pm.

e Verified offers are evaluated using an optimization tool between 13:00 and
13:30 pm; market clearing prices and volumes are calculated for each hour

of the day.

e Approved sales-bid volumes and commercial transaction approvals are com-
municated daily at 13:30 pm to the relevant market participants. Market partic-
ipants may reject those notifications 13:30 and 13:50 pm if they believe there

are inaccuracies in any transactions that occurred between.

e At 13:50-14:00, objections are assessed, and the market participants who raised
the objection are informed of any pertinent findings. Finalized pricing and

matched volumes for the next day’s 24 hours are announced at 14:00.

e 0:00 am to 17:00 pm market players send their bilateral agreement notifications,

a private trade between two parties, to the Market Operator.

6



e "Karsilig1 Olmayan Piyasa Islemleri (KOPI)" in Turkish, Market Transactions
without Compensation, is in charge of the bilateral contracts from 17:00 to

17:05 pm every day.

e When KOPI cancels bilateral contracts, market players have the option to object

to their transactions between 17:05 and 17:15 pm every day.

Having given the general principles and processes in DAM, the offer types and bid
types are discussed next. Hourly offers, block offers and flexible bids are some of the

offer types. Detailed explanations are given below.

Participants can enter the DAM by submitting bids for specific hours or periods, either
on an hourly or daily basis, along with flexible proposals. These proposals consist of
both quantity and price details, which may vary across different hours. The prices
quoted in the offers are sensitive to centesimal changes. Also, participants have the
option of expressing their offers in Turkish Lira, US Dollar, or Euro. If one of the
currencies other than Turkish Lira is used, then the submitted prices are converted
based on the daily Central Bank of the Republic of Tiirkiye (CBRT) bid rate. The
offer quantity is provided in Lots, where 1 Lot equals 0.1 MWh.

Offers can be given in the form of buying or selling proposals. Whether an offer is
for buying or selling is determined by the sign accompanying the offer quantity. For
example, a quantity of 100 Lots signifies a buying offer, whereas -100 Lots indicates
a selling offer. The Market Operator establishes the minimum offer quantities as 0
Lot, while the maximum offer quantities are determined by organizational capacity
and KOPI. According to the DAM’s structure and the procedures and principles for
evaluating offers, the quantity for flexible bids submitted to the DAM cannot surpass
100 MWh (equivalent to 1000 lots), and the quantity for block bids is capped at 600
MWh (equivalent to 6,000 lots). Offers submitted for the same delivery date are

recorded in the system as a new version in case they are updates.

Hourly offers consist of up to 64 levels, divided equally into a maximum of 32 buying
levels and 32 selling levels. Prices assigned to each level must follow an ascending
order. A particular price level cannot simultaneously feature both buying and sell-

ing directions. When constructing the supply-demand curve, the linear interpolation

7



method is applied to estimate values between two successive price/quantity levels.

Block offers provide details concerning price, quantity, and the duration they cover.
These offers can span a minimum of 3 hours to a maximum of 24 hours, with block of-
fer hours defined as consecutive and whole hours. Block offers are treated as entirely
indivisible entities, and each block offer is subject to either acceptance or rejection for
the specified time period. Participants in the market have the option of using the ex-
isting block offer structures or give their own. The maximum number of block offers
that can be submitted daily is limited to 50. Furthermore, block offers may feature
varying quantities for each hour, with the flexibility of an increase or decrease in the

quantity up to three times in each consecutive hour.

Flexible bids involve quantities that can be adjusted during a specified order time
within an offer period, with a single price designated for each hour. The order time
interval spans a minimum of 8 hours and a maximum of 24 hours, while the offer
period for flexible orders must not exceed 4 hours. Flexible orders are open for both
buying and selling, allowing participants to submit up to a maximum of 6 different
flexible orders on a delivery day. It is important to note that within the same offer

period, both buying and selling quantities cannot coexist.

As for Bilateral Agreements, it encompasses information for a 24-hour duration, with
positive values indicating buying and negative values indicating selling. Values sub-
mitted by agreement parties are considered reciprocal, with one value representing
buying and its corresponding reciprocal value indicating selling. Bilateral agreements
are deemed valid when both parties submit the same absolute values. These agree-

ments can be submitted up to a maximum of 60 days in advance.



CHAPTER 2

RELATED STUDIES IN THE LITERATURE

Price prediction in DAM has gathered widespread attention in academic and indus-
trial research, leading to a diverse range of methodologies which aimed at enhancing
the forecasting accuracy. Researchers have explored different kinds of approaches,
spanning the traditional time series models and cutting-edge machine learning tech-
niques [[7]. The global nature of these investigations reflects the diverse characteristics
of worldwide energy markets. Each region faces unique challenges and dynamics. As
the field continues to evolve, the integration of explainable Artificial Intelligence (Al),
real-time adaptation strategies, and the exploration of new data sources exhibit the dy-

namic nature of research aiming at refining DAM price prediction methodologies.

In this chapter, studies in the related literature on the DAM prices are reviewed in two
subsections. Section 2.1 is devoted to the studies conducted for the energy market
around the world and Section 2.2 presents the studies carried out in Tiirkiye. Besides,
while presenting the related studies in the literature, the contribution of the study in
this thesis to the literature is presented by comparing it with the existing studies in the

literature.

2.1 Related Studies around the World

In order to forecast the DAM prices accurately and help companies optimize their
electricity production processes and increase their profit, there are different types of
studies conducted all over the world with a variety of methodologies and various
data used [7]. Following two subsections present time series and machine learning

approaches respectively conducted around the world.
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2.1.1 Time Series and Regression Approaches

Models that are using statistical methods mostly rely on linear regression. The depen-
dent variable, i.e. the price, for a the specific day and hour is represented by a linear
combination of independent variables, which are also called regressors, inputs or fea-
tures. Several significant advancements for statistical approaches for Energy Price
Forecasting (EPF) have been observed in recent years; the linear regression models
with a high number of input features that use regularization techniques have been one

of the effective approaches [8]].

[9] propose using an Auto-Regressive Moving Average (ARMA) model in conjunc-
tion with Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) to
estimate price changes on the DAM using extended ARMA models. [10] employs
wavelet decomposition in conjunction with multiple regression. Specifically, they
compute the regression coefficients by using the wavelet decomposition detail se-
ries and the forecasted demand. The DAM prediction is subsequently derived from
the low-frequency component of the previous day and the forecasted high-frequency
components. [11] examines the day-ahead electricity price of the EPEX Spot for
Germany and Austria. They setup a model which is considered as an AR24-X model
where X stands for the external regressors, e.g. futures, weekday dummies and pe-
riodic B-splines. [12] explores comprehensive seasonal periodic regression models
incorporating Auto-Regressive Integrated Moving Average (ARIMA), Autoregres-
sive Fractional Integral Moving Average (ARFIMA), and GARCH disturbances to
analyze daily electricity spot prices. The included regressors account for annual cy-
cles, holiday impacts, and potential interventions in both mean and variance. The
findings in this study indicate that, specifically for the Nord Pool market (unlike other
European markets), an effective modeling of daily spot prices necessitates a long-
memory model with periodic coefficients. It is important to note, however, that the
performance of these models in [[12] for forecasting is not assessed by the authors of
the study. [13]] employs diverse autoregression methods to model and predict prices
in the California market. They note that an Auto-Regressive (AR) model incorporat-
ing lags of 24, 48, and 168 hours, with each hour of the day modeled individually,
outperforms the unified (S)ARIMA specification suggested by [14] for all hours.
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2.1.2 Machine Learning Approaches

Recently, in line with widespread implementation of Al in many areas, there have
been an increasing trend in using the Al techniques for forecasting the day-ahead
electricity prices. Machine learning has grown in popularity due to its ability to han-
dle complicated and nonlinear relationships within datasets, adapt to shifting patterns,
and catch delicate nuances that conventional statistical models may miss. Algorithms
like neural networks, Support Vector Machines (SVM), and ensemble approaches
have gained popularity for their capacity to uncover patterns in vast datasets, allow-
ing more accurate day-ahead price forecasting. The dynamic nature of electricity
markets, combined with the rising availability of varied data sources, has driven the
adoption of machine learning techniques, which provide a flexible and robust frame-
work for modeling and predicting the complex dynamics of energy prices. This trend
reflects a larger recognition of machine learning’s strengths in improving forecasting
accuracy and responding to the complexities inherent in the electricity market. These

are some of the reasons to use machine learning approaches in this study.

SVMs are commonly used in the EPF applications. For example, in [15] SVM is
applied to predict the value of the spot price. [[16] proposes a novel machine learning
method which uses linear regression, Automatic Relevance Determination (ARD) and
Extra Tree Regression (ETR) models. In the study it is seen that more accurate predic-
tion results and overcoming the limitations of individual models can be acquired by
combining several models. Experimental results show that proposed method gives
lower prediction errors than other individual models. They show that the model
can outperform several other models in the literature. [17] proposes Support Vec-
tor Regression-Auto-Regressive Integrated Moving Average (SVRARIMA), which
is a hybrid model that combines Support Vector Regression (SVR; to capture non-
linear patterns) and ARIMA models. The results show that SVRARIMA model sur-
passes certain existing Artificial Neural Network (ANN) approaches and conventional
ARIMA models. [18] is on the development of a novel hybrid deep learning-based
model named convolutional neural network+stacked sparse denoising auto-encoders;
the authors suggest a decomposition method to enhance the model performance. In

[18] the Australian national electricity market is considered as a case study. Their
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results show that the proposed model gives successful prediction results in terms of
accuracy and stability and shows outstanding prediction performance for price spikes.
Moreover, the proposed model can reduce the training time for neural networks dur-
ing the prediction process due to its quicker convergence speed. [19] introduces three
techniques, namely Feed-Forward Neural Network (FFNN), Cascade-Forward Neu-
ral Network (CFNN), and Generalized Regression Neural Network (GRNN), to fore-
cast the day-ahead prices in the Spanish OMEL market for the period of January to
December in 2002, as well as in the New York electricity market for the period of Jan-
uary to December in 2010. Rather than forecasting the price value, the authors chose
to classify the level of the electricity prices since they support the idea that all mar-
ket participants do not know the exact value of future prices in their decision-making
process. [20] applies LSTM deep neural networks combined with feature selection
algorithms for EPF. [21]] implements a Bayesian Neural Network (BNN) approach
to predict the electricity prices in Italy. A probabilistic price forecast methodology
is implemented. By this method different results coming from a specific distribution
for the same instance is acquired. The methodology gives competing results with the

deterministic approaches.

2.2 Related Studies in Tiirkiye

In Tiirkiye, DAM price forecasting is crucial for the power market to function effec-
tively and reliably. Accurate forecasting is critical for market players to make better
actions in a rapidly changing energy landscape defined by increased renewable energy
integration and unpredictable market circumstances. Various forecasting approaches
are used to predict electricity prices for the following day. These methods include
a range of techniques, such as statistical models, machine learning algorithms, and
time series analysis. By using historical data, weather patterns, market trends, and
other relevant factors, the precision of the forecasts are endeavoured to be enhanced.
Because of the complex interaction of various variables, an entire plan is required
to maintain the durability of forecasting models, allowing stakeholders to make in-

formed decisions in the dynamic Turkish energy market.
[22] aim to develop a price forecasting tool based on ANN. A short-term price fore-
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casting model is developed by studying the data that most accurately affect the price.
The forecasting model relies on supply and demand curves. At the end of the study, it
is seen that the proposed ANN model scientifically supports the market participants
to make short-term decisions. Another research is presented in [23]]. In their study,
multiple linear regression method on electricity price forecasting is examined. They
analyze various predictors in order to reduce mean absolute percentage error (MAPE).
The lagged electricity prices such as the previous one day, one week, and lagged mov-
ing average prices are proven to be the effective factors in electricity price estimation.
Moreover, they investigate whether there would be a difference if a regular regression
method or a dynamic regression method is used. It is seen that there is no dramatic
difference regarding the error rates. The research presented in [24] seeks to predict
the hourly market clearing price using deep learning techniques, which are Multi-
layer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU). Among these methodologies,
LSTM gives the best average forecasting performance in their study. [25] presents
customized models to forecast short-term electricity prices. They mainly use the time
series models. Results are compared with dynamic regression. [26] also presents
the deep learning approaches for performing the prediction of electricity prices. In
order to assess the resilience and reliability of the model, twelve Recurrent Neural
Network (RNN)-based models are re-estimated using the identical dataset. While all
models demonstrate proficiency in price prediction, it is noteworthy that the model
which is named as the Transformer Encoder-Decoder with Self Attention (TEDSE)
model, that is used for the first time to estimate the electricity prices outperforms
its counterparts. [27] mentions how data frequency and different estimation method-
ologies affect performance of the electricity price forecasting. In this study, different
kinds of machine learning and statistical analysis techniques are used parallel with the
distinct data periods which belong to COVID-19 pre-pandemic and pandemic. The
forecasting frequency is also separated as weekly or daily. At the end of the study, it
is shown that the role of the data frequency and method selection can not be ignored

in electricity price estimation.

Table 2.1 is given to summarize the aforementioned studies for Tiirkiye. In these ta-

bles, methodologies to forecast the electricity prices, the features used in the models,
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the metrics that are used to measure the performance of the models etc. can be seen.
Some studies in the tables may give multiple results for different settings. Therefore,
results shown in the tables for the studies are given such a way that they presents the

best or average metric results shown in the related studies.
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According to the studies in Table 2.1, it can be said that there is still a gap in terms
of new methodologies, test period, data frequency and performance metrics for DAM

price forecasting although there are numerous studies related with this topic.

In this thesis, SVR and XGBoost algorithms are implemented to predict the electricity
prices. There are also some studies which also implement similar algorithms. For
example, [31] uses only SVM with wavelet transformation. [28] uses the boosting
algorithms and compares their performances. XGBoost is one of the methodologies
that is adopted in [28]. However, these studies propose an analysis over daily or

weekly results instead of an hourly resolution.

In this thesis, the main difference is the modeling approach. Even tough the similar
studies in the literature use only one algorithm for modeling, SVR and XGBoost are
both implemented while modeling the data in this thesis. By this way, the overall
performance of the model is tried to be improved by ensembling two models whose
performance may be worse for each using the weighted average procedure. While
these algorithms are being ensembled, an optimization problem is used to determine
the weight of each algorithm in the model. In the literature, a similar approach is not
encountered to the best of our knowledge for Tiirkiye. Also, by comparing over an
extensive set of performance metrics with the benchmark approaches like SARIMA
and Naive methodolgy, the effectiveness of the new methodolgy is shown. In addi-
tion, it is seen that most of the existing studies in the literature adopt deep learning
approaches. Deep learning models are chosen for their high performances as men-
tioned before. Although the deep learning approaches have high performances, sim-
ilar results are thought to be achieved using machine learning approaches with less
complex structures compared to deep learning structures with less training times as
shown in [32]. In [32], K Nearest-Neighbors (KNN) model produces forecasts that
are more accurate than any of the Deep Learning models examined. Another study
conducted in [26] shows similar result by using hybrid CNN_LSTM model which
performs slightly weaker than some of the ensemble models generated in this thesis.

Therefore, machine learning approaches are implemented in this thesis.

Another contribution of this study is regarding the performance evaluation. In the

literature, studies regarding the energy price forecasting present performance values
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based on a time period. In most of the studies, the performance of the proposed
algorithms are mostly given for short time periods or in aggregate time intervals such
as days or weeks. For example, [33] applies SVM algorithm and obtains successful
results over a specific time period such as consecutive two days in a month. However,
in this thesis, performance metrics are given for a longer period which spans a whole
year. Moreover, the performance metrics are compared for different time periods,
such as hours, days and weeks in order to put forward an idea about how the model
performs in different time periods. In addition to the aforementioned contributions,
the training data in this thesis is from 09.2021 to 06.2023. Also, the electricity sector
has changed with the increase in the renewable energy share. Therefore, the up-to-
date data of the Tiirkiye’s energy is used in this thesis unlike the case in the other
studies listed in Tables 2.1. Besides, an extensive set of performance metrics are
taken into account. In addition to MAPE, MAE, MSE and RMSE; SMAPE

and M ASE are used for more precise analysis.
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CHAPTER 3

METHODOLOGY

The machine learning techniques are capable of revealing the hidden relationships
between the features [34]. As it is given in the result of the study [33], machine
learning techniques shows superior performance compared to the traditional time se-
ries techniques. Therefore in this study, machine learning techniques will be used for

forecasting the time series data.

Developing models with machine learning requires common processes. Figure [3.1]
shows steps of the common processes described in study [36] for a machine learning

problem.

Model
Learning

Model
Evaluation

Data
Preprocessing

Data
Collection

Figure 3.1: Basic Flow of a Machine Learning Process

At the data collection step, the data required for the problem is collected from the
necessary data sources. The selection of the data period for the time series analysis
is important for the model performance. A period when the data shows regular be-
havior and does not have too much outlier can be preferred to make the model learn
more effectively. In data preprocessing, data is undergone some operations to make
it suitable to feed into the model. Scaling, transformation, feature determination, etc.

can be given as examples of the data preprocessing procedures. It usually takes most
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of the time in the model development flow. At the model learning step, the necessary
machine learning algorithm and model are determined. The hyperparameter tuning
for the related model is also conducted here. As a last step, created model is evaluated

according to the related evaluation metrics.

In this chapter, a detailed explanation of the model development stages will be pro-

vided for Turkish DAM analysis in this thesis study.

3.1 Data Collection

The raw data is gathered from [6] which is the day-ahead electricity market operator.
Price data between 01.09.2021 and 01.06.2024 is collected for this study. One of the
reasons for selecting that period is obtaining the recent past data. In this way, the new
characteristics, which can be the increased prices due to the inflation etc, of the price
values can be observed. Also, the effect of the covid pandemic started to decrease
in the last quarters of 2021. Therefore, price fluctuations due to the pandemic are
thought to reduce in that period. Besides, the time period should be sufficiently large
in order to make the model capture necessary patterns. Thus, the aforementioned
approximately three year period is considered to be long enough for developing a
powerful model. By this way, a data period which is more up-to-date and has a longer
monitoring period, i.e. 1 year test data can be acquired compared to most of the
studies in Table 2.1. Using a complete year as the test data allows gaining insights on

the performance of the algorithms under possible seasonality impacts.

The price value is a target variable that is going to be predicted. However, there may
be other variables that describe the target variable. In the literature, features that may
best define the electricity prices are used. According to [18]] total electricity gener-
ation amount, temperature, wind speed, natural gas prices, electricity demand, the
electricity generated by the renewable sources could be candidates for describing the
target variable. [37]] use renewable energy production amount, gas prices and date
features as their inputs. In the studies conducted for Turkish data, similar approaches
are observed. Crude oil prices, volatility index, USD/TRY rates, electricity gener-

ated from renewable sources, and stock market index are considered as the feature
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variables in the studies due to [27], [23]], [30]]. As it can be seen in Table 2.1, the
input features are similar to each other in different studies. Besides, day of the week

information can be effective in determining electricity prices according to [38].

After investigating the example studies, hourly electricity demand amount, daily av-
erage temperature and hourly electricity amount, which is produced by the renewable
sources, weekday number information and flag for whether a day is a work day or not
are determined to be the initial features that are going to be used in the model since it
is seen that these features are commonly used in the studies that are mentioned before.
In this thesis, in feature extraction processes, features will be introduced into the data
for increasing prediction performance and suitability to be used in the model. These
topics are explained in detail in Section 3.2.2 and 3.2.3 respectively. While hourly
electricity demand and hourly electricity production data can be gathered from [6],
daily average temperature data are gathered through [39]. The same temperature data
values are used for each hour of the related day because in this study, hourly analysis

are considered.

After predictions are gathered, the results are modified according to the maximum
electricity prices defined by EPIAS for the specific time periods. All price thresholds
are collected from [6]. Collecting the price thresholds, they transformed to USD
amounts according to the corresponding exchange rate at the respective time since
the predictions are done in USD amounts in order to decrease the inflation effect in

the Turkish economy. The USD exchange rates are collected from [40].

The collected features and the target variable can be observed in Table [3.1] given

below.

3.2 Data Preprocessing and Feature Extraction

After collecting the necessary data for modelling, the data should be preprocessed
and, if necessary, new features can be added. Descriptive statistics for the collected

data are presented in Table [3.2]
In the Table minimum, maximum, percentiles for 25%, 50% and 75%, mean
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Table 3.1: Features Collected and Descriptions

Feature Description
DATE Day / month / year

Date is not used as an input for the model.
WORKDAY Flag for whether the day is holiday or not.

WEEKDAY_NO

Weekday number of the day.

Takes values between 1 and 7.

HOUR Hour of the day between 0 am and 11 pm

DEMAND Hourly electricity demand information in
MWh

TAVG Daily temperature information in celcius

RENEW_PERC Energy supply percentage from the renewable
sources: ratio of the energy acquired from
rivers, dams, wind, sun and jeo termal to the
total energy production amount

EP Day-ahead electricity price in USD.

Table 3.2: Descriptive Statistics for the Collected Data

STATISTIC | DEMAND (MWh) | WORKDAY | WEEKDAY_NO | TAVG (C°) | RENEW_PERC (%) | EP ($)

Count 24120 24120 24120 24000 24120 24120

Mean 26946.83 0.69 4 12.92 37.09 107.04

Std 4141.48 0.46 2 8.12 11.51 55.46

Minimum 13663.90 0 1 -5.50 9.61 0.00

Quantile 25% 23922.90 0 2 6.80 28.43 70.85

Quantile 50 % 26922.15 1 4 12.80 36.40 90.26

Quantile 75% 30069.65 1 6 19.13 45.20 134.70

Maximum 39322.20 1 7 33.30 76.45 264.17

values and standard deviation value, which is given as "Std", can be seen.

Figure [3.2] shows the diagnostic plots of the continuous input features used in the

modeling.

According to the plots, it can be said that all the features distributed normally accord-

ing to the probability plots and possible outllier analysis is not needed according to

the box plots since the number of outliers are negligible.
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3.2.1 Imputing Missing Data

The data may have some missing values in machine learning problems. Imputing the
missing data is the part of the preprocessing. According to Table [3.2] count values,
feature TAVG has missing data. Since TAVG has a normal distribution and there is no
skewness according to Figure mean value can be used to fill the missing data.
Monthly mean temperature values are used to fill the missing values in a respective

month.

3.2.2 Feature Extraction

Since the data is on hourly basis, the information about the hour may reveal some
patterns for the model. Therefore, hour can be included into the input data in a proper
way. Hour data should not directly be included to the input data because it is an ordi-
nal number and it may cause the model to learn the patterns in an inappropriate way.
Also, weekday number information can be used in the model. Since it is an ordinal
number it may mislead the pattern recognition in the model. Thus, applying the sin
and cosine functions may be helpful like in [41]. Features named as "HOUR_SIN",
"HOUR_COS", "DAY_SIN" and "DAY_COS" are added to the data as shown below,

. (27Tyi,hom") A (zﬂ-yi,hour)
Y; = Sin 24 , Y = cos 24
2 i,da ~ 2 i,da
Ui = Sm(—ﬂy%d y), Yi = COS(—MJ?’d y)

where ); is the calculated value for the i*" instance. The hour and weekday number
values, ¥; hour» Yi.day are transformed into the values that is more proper to make the
model understand in modeling phase. The new hour and day values transformed by

the trigonometric functions are shown in Tables [3.3]and [3.4] for each hour and day.
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Table 3.3: Hour Trigonometric Features

HOUR | HOUR_SIN | HOUR_COS || HOUR | HOUR_SIN | HOUR_COS
0:00 0.000 1.000 12:00 0.000 -1.000
1:00 0.259 0.966 13:00 -0.259 -0.966
2:00 0.500 0.866 14:00 -0.500 -0.866
3:00 0.707 0.707 15:00 -0.707 -0.707
4:00 0.866 0.500 16:00 -0.866 -0.500
5:00 0.966 0.259 17:00 -0.966 -0.259
6:00 1.000 0.000 18:00 -1.000 -0.000
7:00 0.966 -0.259 19:00 -0.966 0.259
8:00 0.866 -0.500 20:00 -0.866 0.500
9:00 0.707 -0.707 21:00 -0.707 0.707
10:00 0.500 -0.866 22:00 -0.500 0.866
11:00 0.259 -0.966 23:00 -0.259 0.966

Table 3.4: Weekday Trigonometric Features

DAY | DAY_SIN | DAY_COS
1 0.782 0.623
2 0.975 -0.223
3 0.434 -0.901
4 -0.434 -0.901
5 -0.975 -0.223
6 -0.782 0.623
7 0.000 1.000
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In addition to trigonometric features, lag features are introduced to the model. In
the literature, when similar studies are investigated, lag features are usually used by
the researchers as in [42]], [43]. By introducing lag features, a correlation between
the near past and current values of each feature is tried to be identified. Actually, in
order to make the time series data to be useful for predicting purposes in supervised
learning algorithms, the data should be transformed to a format comprising of the lag
values. By doing this, the past values of the features are used to predict the feature
value. For deciding the lag value, partial autocorrelation plots of input and target

variables are examined.

DEMAND TAVG
Partial Autocorrelation Partial Autocorrelation
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0.75 4 0.75

0.50 0.50
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Figure 3.3: Partial Autocorrelation Plots of the Features and Target Variable

In Figure [3.3] partial autocorrelation plots for input features and target variable can
be seen. Trigonometric features are not investigated in autocorrelation analysis. Ac-
cording to [42], the lag value can be determined as a value at which the partial auto-
correlation value falls below a significant level. Also, in [44], it is stated that if there
is a repeated pattern in partial autocorrelation plots for a specific value, that value can

be taken as the lag value. According to these, lag value of 24 and 168 are determined
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to be used in analysis. The lag values for trigonometric features are not introduced in

to the model since the lag values will be the same.

3.2.3 Preparing Train and Test Data

The data should be split into train and test sets before modeling. The train data set is
used for determining parameters for the model. To train a model, different methodolo-
gies can be followed. In this study, time series cross-validation method is used. The
test data set is separated from the modeling procedure and it is used for the unbiased

evaluation of the model.

Splitting ratios can be different. In [45]], ratios used in practice are 80:20, 70:30,
60:40, and even 50:50. It is also stated that there does not appear to be any clear rec-
ommendation on what ratio is appropriate or ideal for a certain data set. Since, 1 year
period is desired to be investigated in test data set, split ratio of 65:35 is implemented.
Thus, approximately one year period is reserved for test dataset. After data is trans-
formed to a data of supervised learning data which is discussed next, split procedure

is conducted.

Table 3.5: Example Data Table

t|A B |C |D |T
1| A | By |Cy | D | T
Ay | By | Cy | Dy | T3
A3 | B3 | C3 | D3 | T3
Ay | By | Cy | Dy | Ty

EXNE VS I I S

n| A, | B, | C,| D, | T,

As it mentioned before, time series data should be transformed to a data of supervised
learning problem. The procedure is explained by an example. Let the input data be

as shown in Table @ where A, B, C, D are the input features and 7" is the target that
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is going to be predicted and ¢ denotes the time.

If the lag value is 24, the past 24 hours of data is used to predict the next 24 hours.

After the transformation of the data, the input would seem as shown in Table @

Table 3.6: Example Data Table after Transformation

Al Bl Cl D1 T1 T25
A2 By 02 Dy | Ty | Ta

A, | B, | Cy | D | T, | Trsos

3.3 Modeling the Data

After data is split into train and test data sets, training takes place. Training the
time series data requires a cross - validation procedure. Also, data should be scaled
since the features may not be in the same scale which might lead to deviate from an
optimally trained model. Therefore, the data scaling is important while training. In
the following Sections 3.3.1 and 3.3.2, feature scaling and parameter optimization is

explained.

3.3.1 Feature Scaling

In the literature, there are plenty of scaling techniques [46]. Normalization and stan-
dardization are the most widely used ones. When the features are close to normal
distribution, the standardization is more appropriate for the scaling [47]]. Therefore,
standardization is conducted in this study. The formulas for normalization and stan-

dardization are given below.

Ty — |
max;(x;) — min;)

xnew
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Here, x,., 1s the new x value after the normalization, x; is the value of instance ¢
before the scaling,  is mean of the feature in training data set, max;(z;) and min;(x;)

are maximum and minimum values of the feature, respectively,

Here, z is the standardized value and o is the standard deviation of the feature value.
It is important to specify that mean of the training data, y, should be used for scaling
the validation and test data sets. Validation data set is used for parameter optimization
while conducting the cross-validation. In Section 3.3.2, parameter optimization with

the cross-validation techniques is explained.

3.3.2 Optimizing the Model Parameters

Parameter optimization is a fundamental stage of the modeling procedure. Then, the
model would be ready to be used in the prediction and evaluating the model met-
rics. In order to find the optimal parameters, parameter search and cross-validation

procedures are conducted together.

In the literature, there are different parameter search and cross-validation techniques
for machine learning and time series [48]], [49], [S0], [S1]. Grid search is one of the
popular parameter search algorithms used widely in machine learning problems. It
searches for all possible hyperparameter sets, and gives the best combination among
those sets. For example, in [52]], cross-validation and grid search are used to improve
performance of study of a multi-class classification problem by determining the op-
timal parameters. Also, in [53] grid search and cross-validation techniques are used
to increase the performance of their machine learning models. Since the grid search
with cross validation is used by the studies mentioned, it is also adopted in this thesis.

These two procedures form the hyperparameter tuning process for the model.

In classification problems, k-fold cross validation is one of the most widely used
method for machine learning problems [S0]. & is the number of splits and is defined

by the user. Generally, k is defined as 3, 5, 7 which is stated in [54].
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Figure 3.4: Cross-validation Process given in [4]

The cross validation procedure is shown in Figure As it is shown, the train data
is split into again train and validation data sets. The model is trained using k-1 of
the folds as train data. The generated model is verified on the remaining data (i.e., it
serves as a test set for calculating a performance metric like accuracy). The perfor-
mance metric given by k-fold cross-validation is the average of the values calculated
for each fold. If k is 5, number of parameters to be optimized is 3 and there are 3 can-

didate values for each parameter, then there will be 5x3x3 = 45 models generated.

The connection between nearby observations (autocorrelation) characterizes time se-
ries data. Classical cross-validation methods, shown in Figure [3.4] assume that sam-
ples are independent and identically distributed, resulting in an unjustifiable correla-
tion between training and testing instances (and inaccurate estimates of generalization
error) for time series data. As a result, it is critical to evaluate the model for time se-
ries data on "future" observations that differ significantly from those used to train the

model.

Figure [3.5] shows the time series cross validation procedure conducted in this study.
It is a version of k-fold that returns the first fold as the train set and the last fold as the

test set. It is worth noting that, unlike typical cross-validation approaches, consecutive
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Figure 3.5: Cross validation process for time series data given in [3]

training sets are super sets of the previous ones. Additionally, it adds all surplus data
to the initial training partition, which is always used to train the model. In this thesis,
the number folds are set to be 3 for the sake of simplicity and considering the model

training times.

3.4 Machine Learning Algorithms used in the Study

In this study, two of the machine learning algorithms are used. One of them is SVM.
Since the target variable, namely the day-ahead electricity price, is a continuous vari-
able, it can be highlighted that SVM is used for regression, which can also be named
as Support Vector Regression (SVR) instead of its general use for classification. One
of the reasons behind why SVM is chosen is that it offers a solution to bypass the
complexities involved in using linear functions within feature spaces characterized
by a high dimensionality as stated in [55]. Therefore, SVMs are more effective in

high dimensional spaces.

The other machine learning algorithm, which takes a part of predicting the day-ahead
energy prices in this thesis is Extreme Gradient Boosting, which is called generally

XGBoost. It is an ensemble learning algorithm. The name ensemble comes from the
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Table 3.7: Advantages and Disadvantages of SVMs given in [1]]

Advantages of SVMs

Disadvantages of SVMs

Effective in high-dimensional spaces

Computationally expensive during

training

Handles large feature spaces and

datasets

Careful selection of Kernel function

and hyperparameter tuning is required

Robust against overfitting

Difficult to interpret results

Complex decision boundaries are

Sensitive to noisy or mislabeled data

captured via different Kernel func-

tions

Linearly separable or non-linearly | Imbalanced datasets may lead to

separable data is handled well struggle

fact that the algorithm ensembles weak learning algorithms and gives an output. This

weak learning algorithm in XGBoost is decision trees.

In Table advantages and disadvantages of SVM are given. As it is seen in the
table, SVM is effective in high dimensional spaces and it is a flexible algorithm in
terms of overfitting. The Kernel function options are used to struggle with the com-
plex decision boundaries. However, SVMs are sensitive to the noisy and mislabeled
data. Also, imbalanced datasets and rigorous selection process of Kernel functions

and hyperparameters create different challenges to fit a proper model.

Table [3.§] gives advantages and disadvantages of XGBoost algorithm. It can be said
that while improvements are included to the original gradient boosting models to
increase the performance and accuracy of the results, overfitting and slower training

process may be observed in XGBoost models.

Consequently, although both SVM and XGBoost algorithms have some drawbacks
like any other algorithms, they are used in this thesis because of their high level
benefits mentioned in advantages columns. The explanations for the aforementioned

algorithms are provided in Sections 3.4.1 and 3.4.2.
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Table 3.8: Advantages and Disadvantages of XGBoost given in [2]

Advantages of XGBoost

Disadvantages of XGBoost

Effective in small number of samples

with a large number of features

Overfitting may be observed unless
hyperparameters are adjusted cor-

rectly

Explainability capabilities that can

Applicable for numeric features only

help validate the correctness of the
model, i.e., the most significant fea-

tures can be checked

Improvements for increasing the per- | Slower to train
formance and accuracy of the results

are included to the original gradient

boosting models

3.4.1 Support Vector Machine for Regression (SVR)

The fundamental concept of SVMs was initially introduced in 1960s by Vapnik and
his colleagues [56]], [57]. Subsequently, significant advancements were made in the
following decades. The comprehensive framework of SVM was formally documented
in 1992 for classification by [58]], and later extended to regression, referred to as the

e-SVR model, in [59] and [60].

Conventional statistical regression methods are typically described as processes gen-
erating a function that minimizes the difference between predicted and actual re-
sponses across all training instances. A distinguishing feature of SVR is its focus
on minimizing the generalized error bound rather than solely targeting the training
error. This bound encompasses both the training error and a regularization term,
which governs the complexity of the hypothesis space, thereby aiming for improved

generalization performance [61]].
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3.4.2 Extreme Gradient Boosting (XGBoost)

Extreme gradient boosting (XGBoost) is a machine learning technique initially de-
veloped in [62]. Gradient tree boosting is a machine learning method that is widely
utilized in a range of applications. Tree boosting has been shown to achieve superior
performance on various traditional classification standards. XGBoost is comparable
to other gradient boosting methods, but its effectiveness stems mostly from its abil-
ity to scale across all scenarios. The system surpasses earlier approaches on a single
computer and is capable of handling billions of samples in distributed or memory-
constrained environments. XGBoost’s scalability is accomplished by a variety of
system and algorithmic improvements. These improvements include an innovative
tree learning technique for sparse data and a theoretically justified weighted quan-
tile sketch procedure for handling instance weights in approximation tree learning.
Parallel and distributed computers also enhance learning, allowing fast model explo-
ration. The approach is based on the study of [[63]]. This research now includes minor

improvements.

3.5 Ensemble of Two Algorithms

Ensemble of the machine learning algorithms are used in the literature to get in-
creased final model performance rather than less powerful individual models. Several
ensembling techniques, including bagging, boosting, dagging, stacking/blending and
model averaging are used in the literature and practice [64]. While boosting and
bagging techniques concentrate more on lowering bias and variance, respectively,
stacking approaches aim to reduce both by determining the best way to mix base
learners. Ensembles are formed by stacking the weighted averages of many basic
learners together. It is well known that improving each base learner’s hyperparam-
eter throughout the ensemble weight optimization procedure might result in higher-
performing ensembles [65]. The procedure in [65] which is stated as Generalized
Ensemble Model (GEM) algorithm is implemented while producing ensemle of the

algorithms.
In this thesis, SVM and XGBoost is combined in order to achieve the output. The
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weighted average of the outputs coming from both algorithms gives the final result.
The weights of the algorithms are determined according to the average performance
metric of the cross-validation scores. An optimization problem is solved to mini-
mize the error metric and the final weights are determined. Those weights are used
in predicting the test output. Next, the performance metrics used in this thesis are

described. Then, the procedure is given in this section.

It is known that there are plenty of performance metrics in order to examine the per-
formance of the regression and classification problems. Since the problem in this
study is a regression problem, the metrics for regression problems are used. After the
suitable metrics for the study are searched in the literature, four performance metrics
are determined to be used in this study as these metrics are commonly used in the
literature [66], [66]], [28]. The first performance metric is called Mean Absolute Error

(M AF). The calculation of the metric is given as follows:

N
1 Z X
MAFE = ﬁ o ’Zi - Z,L'| (31)

where N is the number of instances, z; is the real value and Z; is the predicted value
of instance :. The second performance metric is Mean Absolute Percentage Error

(M APE). 1t is computed by the following formulation:

N N

100 ‘Zi - Zi‘
.MAPE::RFE:

Z,
i=1 g

(3.2)

Mean Squared Error (M SFE) is the third performance metric used in this study. Its

calculation is given below.

N
1
MSE = =3 (2 - 2)° .
S N 2 (zi — %) (3.3)

The fourth performance metric is Root Mean Squared Error (RM SE) which is cal-
culated by taking the squared root of M SE and the calculation is shown below.
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N

1
= p— —_— ¢ — A, 2
RMSE =vMS N ;:1 (zi — 2) (3.4)

The other metric is Mean Error (M E). It is used how the model deviates from actual
values on the average. It shows whether the model overestimates or underestimates

the actual values on the average. The calculation is shown below.

ME == (2 — %) (3.5)

The sixth performance metric used in the thesis is Symmetric Mean Absolute Percent-
age Error (SM APE). The SM APE metric is designed to account for the relative
difference between predicted and actual values, considering their magnitudes in a
balanced manner. Unlike other error measures, SM APE assigns equal weight to
overestimations and underestimations [67/]], [[68]]. Calculation is shown below. Also,
since the values closer to zero distract the M APE value [[69], SM APFE can be an

alternative.

100 |zi — 2|
SMAPE = Z EIRE (3.6)

The last performance metric used in this thesis is Mean Absolute Scaled Error (M ASFE).
It is the mean absolute error of the forecast values, divided by the mean absolute error
of the in-sample seasonal naive forecast. It is used in this study because M ASFE is
independent of the scale of the data, so can be used to compare forecasts across data
sets with different scales. Also, M ASE penalizes positive and negative forecast er-
rors equally, and penalizes errors in large forecasts and small forecasts equally [70],

[71]. The formula of M ASE' is shown below.

NZZ 1|Zl AZ'|

T—m Zz m+1 |Z1 2z—m|

N
1
MASE = ~ Z:: (3.7)

where 7' is the size of training data, m is seasonal period, which is taken as 24 in this

study.

38



Having given the performance metrics used in the study, how the two algorithm is
combined is explained next. Since the aim here is to determine the weight of each
algorithm which becomes a decision variable, let w; be the weight of algorithm j.
When j is 1, it denotes SVR algorithm and when it is 2, it denotes XGBoost algo-
rithm. Note that the weight should satisfy the following equation that assures that
the resulting measure is a convex combination of individual measures, i.e., sum of

weights is equal to unity.

J
> wy=1, w; >0, for Vj,j =1,..J. (3.8)
j=1

Parameters of the optimization problem are provided below.

¥i;1: Day-ahead electricity price predicted by algorithm j for the k™ cross-validation
split and for instance .

y;x: Real day-ahead electricity price value for instance i and k' cross-validation split.
uix: Upper limit price value obtained from EPIAS after transforming it to USD for
instance i in k" cross-validation split.

l;x: Lowest price value, which is 1, after transforming TL price values to USD for
instance i in k™" cross-validation split.

u;: Upper limit price value obtained from EPIAS after transforming TL price values
to USD for instance ¢ in the test set.

l;: Lowest price value, which is 1, after transforming TL price values to USD for

instance ¢ in the test set.

U;; values are obtained after modifying the model outputs according to the real maxi-
mum or minimum price levels. Let g;;;, be the first version of the output from machine

learning model. y;;;, value is obtained according to the relation below.

lig, if gy <0,
Uik = Uije, i 0 < G < wi (3.9

u;,, otherwise.
The similar procedure is followed for the test dataset after the validation set.
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For this study, M AE and M APFE values are chosen to be in the objective function.
For each cross-validation split (fold) £, they can be calculated by the expression be-

low,

N J
1 ~x
MAE, = > lyie — Y wyiyy| for Vk (3.10)
i=1 j=1
N J ~
100 o [Yik = D252 Wil
MAPE, = — J YT for Vk (3.11)
‘ N ; Yik

Then, by putting the expressions found above into the optimization problems for Error

Metric Minimization, objective functions of problems are formulated below.

K
. 1
Problem EMMmae: Minimize e ; MAE,

subject to (8.3, (3-10)

K
. 1
Problem EMMmape: Minimize e ; MAPE}

subject to (B:8), (B-TT)

Problem EMMmae and Problem EMMmape above give the weight values for each al-
gorithm to minimize the average of the error metrics. The weight values are expected
to be changed when any property of each algorithm is changed. Using the weight
values found, the final predictions for the test data set are found. Denoting the final

prediction result by 7,7,

. J ~test
li, if D i wig <0,
~ test J N . J A
Uit = i wit, A 0 < 3T wigist < u -12)
u;, otherwise.
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gives the final prediction result. In this formula, w; shows the weight values found
by solving Problem EMM, 7" shows the " predicted electricity price value in the

test dataset by algorithm j.

After finding the final values, gjl-t“t, for test data set, the performance metrics to
present model performances are calculated. Next chapter presents the results of Prob-
lem EMM, different model settings and performance metrics for those models. Also,

several analysis for the performance metrics are presented.

3.6 Benchmark Models

To compare the results of new methodology, models which can be used as benchmark
are investigated. In this study, two modeling approaches are used as benchmark and

their performance are compared with the new approach mentioned before.

3.6.1 Naive Model

Although there are many studies focusing on precise forecasting of energy related
issues, the decision makers would rather prefer traditional and simple methods they
have been using for a long time in practice. One of them in DAM price forecasting
using recent data as they were observed. Thus, a naive algorithm that employs specific
lag values of 24, 48 and 168 hours is proposed. In this model, these specific lag values
of the electricity price are taken as the prediction values. The prediction is found as

shown in the calculation below.

where g, is the predicted value for time ¢ using the value which is m times before. In

this study, we take m as 24, 48 and 168 hours.
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3.6.2 Seasonal Auto-Regressive Integrated Moving Average (SARIMA)

A widespread and simple time series forecasting method SARIMA is used as another

benchmark in this study. According to [[72], a full ARIMA model can be written as

Vo= CF Ol g+ o+ O+ 161+ o+ Ore g T €

where y; is the differenced series (it may have been differenced more than once). The
“predictors” on the right hand side include both lagged values of 1, and lagged errors.
It is called an ARIMA(p,d,q) model, where p is order of the autoregressive part, d is
the degree of first differencing involved and g is the order of the moving average part.

The backshift notation of this model can be written as,

(1—¢1B—...—¢,B)(1 - B)y =c+ (14+ 1B+ ... + ¢,B)e;

where the firstelement in right side of the equation defines AR(p), second part defines
d differences and left side of the equation defines moving averages with ¢, M A(q). A
seasonal ARIMA model is formed by including additional seasonal terms,(P, D, Q).
in ARIMA models where m is the number of observations in a period. It is taken as
24 in this study. The seasonal part of the model consists of terms that are similar
to the non-seasonal components of the model, but involve backshifts of the seasonal
period. An ARIMA(1,1,1)(1,1,1)24 model without a constant is for a lag 24 data

and can be written as

(1—¢1B)(1—@B*)(1 - B)(1— B*)y, = (14 ¢1B)(1 + 0B*)¢

The additional seasonal terms are simply multiplied by the non-seasonal terms. The
auto.arima() function in R is used to create model for SARIMA time series. Consider-
ing the AIC (Akaike Information Criterion), an iterative procedure called Hyndman-
Khandakar algorithm, [73], is used to reach minimum AIC value. The parameters

searched in the study are given in Table
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Table 3.9: Parameters Searched in SARIMA model

SARIMA Parameters | Values Searched
p 0,1,2,3
d 1
q 0,1,2,3
P 0,1,2,3
D 0
Q 0,1,2,3

The modification for upper and lowest price limits are also conducted for the predic-

tions of Naive and SARIMA models.
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CHAPTER 4

NUMERICAL ANALYSIS AND RESULTS

This chapter presents the findings from a variety of models that were generated using
varying input parameters in order to assess the models’ performance on the time series
forecasting problem. Numerical values of the performance metrics are given using the
effectiveness of each lag setting used in the ensemble methodology, which follows
the procedures previously stated in Chapter 3. The accuracy and robustness of the
models are evaluated using the metrics including M APE, MAE, RMSE, MSFE,
ME, MASFE and SM APFE given in Chapter 3. Also, benchmark model findings are

included to the results to compare the effectiveness of ensemble approach.

Several input configurations are used in different models, including independent vari-
ables. When compared to previous research in the literature for Turkish DAM, the
suggested ensemble model introduced in Section 3.5 performs competitively, demon-
strating its dependability and robustness. In addition, several input configurations are
examined to see how they affect the model’s performance, emphasizing the signif-
icance of careful feature selection and parameter adjustment. The best-performing
models are thoroughly discussed among the other models tried in this chapter along
with their advantages and disadvantages when applied to the particular time series

data.

4.1 Model Results

In this section, the numerical results of the methodology given in Chapter 3 are pre-
sented. Different combinations of the features are tried and their results are presented.

Besides, since the data is time series, the numerical values of the evaluation metrics
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are analyzed based on the time periods.

4.1.1 Results of All Models

After optimizing parameters separately using grid search, the ensemble model results
are achieved using the best parameter settings. The grid search results belonging to
the models are given in Appendix. There are 6 main ensemble models, 6 individual
models created with XGBoost and SVR, 3 Naive models with lags 24, 48 and 168
and 1 SARIMA model tried in the study. For the simplicity, the aliases are given to
the models and the numbers are given to the features. Since the seasonal features,
HOUR_SIN, HOUR_COS, DAY_SIN and DAY_COS are always going to be put
in feature combination calculations with electricity price target variable, numbers to
these features are not given. In the next subsections the given aliases are going to be
used to mention the models and features. Model aliases and feature aliases can be

seen in Table [4.1]and Table [4.2]respectively.

Table 4.1: Feature Aliases

Feature Number
WORKDAY 1
DEMAND 2
TAVG 3
RENEW_PERC 4

According to the initial results, without any feature combination and using the best

parameters for each individual algorithm, the model results are presented in Table4.3]

In Table [4.3] the results are presented for the test data set. According to the results,
Model B_mae and Model B_SVR are the dominant models which are shown as bolt
characters in the table. The optimal weight values found in Model B_mae are 0.631
and 0.369 for XGBoost and SVR, respectively. It can be said that when lag 24 and
lag 168 values used together, the overall performance increased. A similar behavior

can be observed in [74]. Also, it can be observed that the proposed methodology
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Table 4.2: Model Aliases

Model Alias

Model Description

Model A_mae

Ensemble model obtained from problem EMMmae in which lag 168 values

of the features are used.

Model A_mape

Ensemble model obtained from problem EMMmape in which lag 168 values

of the features are used.

Model A_SVR Individual SVR model in which lag 168 values of the features are used.
Model A_XGB Individual XGBoost model in which lag 168 values of the features are used.
Model B_mae Ensemble model obtained from problem EMMmae in which lag 24 and 168

values of the features are used.

Model B_mape

Ensemble model obtained from problem EMMmape in which lag 24 and

168 values of the features are used.

Model B_SVR Individual SVR model in which lag 24 and 168 values of the features are
used.

Model B_XGB Individual XGBoost model in which lag 24 and 168 values of the features
are used.

Model C_mae Ensemble model obtained from problem EMMmae in which lag 24 values

of the features are used.

Model C_mape

Ensemble model obtained from problem EMMmape in which lag 24 values

of the features are used.

Model C_SVR Individual SVR model in which lag 24 values of the features are used.
Model C_XGB Individual XGBoost model in which lag 24 values of the features are used.
Naive_24 Naive model using lag 24 value of target variable

Naive_48 Naive model using lag 48 value of target variable

Naive_168 Naive model using lag 168 value of target variable

SARIMA SARIMA model defined in Chapter 3.

performs better than Naive and SARIMA models in terms of M AE, MASE, MSFE,
RMSFE and SM APE. Therefore, the rest of the analysis are conducted for Model
B_mae and Model B_SVR.

In Figure 4.1a] and Figure the predicted and actual values of the whole period
of the test set for the two models are given. An example time period of 01/07/2023
- 07/07/2023 can be seen in Figure 4.1b|and Figure to see a detailed prediction
plot of the two models for the same time period. It can be said that both of the models
perform similar for the same example time period. To examine how the residuals

behave for both models, error analysis are conducted for test data sets. Figure
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Table 4.3: All Model Results for Test Data Set

Models MAE | MAPE (%) | MASE | ME MSE | RMSE | SMAPE (%)
Model A_mae | 11.664 55.002 0.525 | -5.741 | 293.553 | 17.133 20.174
Model A_mape | 11.664 55.002 0.525 | -5.741 | 293.552 | 17.133 20.174
Model A_SVR | 11.663 55.000 0.525 | -5.740 | 293.550 | 17.133 20.174
Model A_XGB | 18.004 97.537 0.810 | -17.132 | 648.648 | 25.469 26.932
Model B_mae | 10.614 46.009 0.477 | -5.438 | 223.800 | 14.960 18.760
Model B_mape | 12.168 52.121 0.547 | -7.665 | 288.695 | 16.991 20.579
Model B_SVR | 10.272 38.948 0.462 | -1.637 | 209.108 | 14.461 18.772
Model B_XGB | 12.168 52.121 0.547 | -7.665 | 288.696 | 16.991 20.579
Model C_mae | 13.880 58.057 0.627 | -11.348 | 388.564 | 19.712 22.605
Model C_mape | 13.879 58.057 0.627 | -11.348 | 388.559 | 19.712 22.605
Model C_SVR | 13.879 58.057 0.627 | -11.348 | 388.559 | 19.712 22.605
Model C_XGB | 13.700 54.669 0.619 | -10.642 | 362.789 | 19.047 22.354
Naive_24 11.981 40.620 0.541 | -0.342 | 310.167 | 17.612 22.298
Naive_48 12.567 37.096 0.568 | -0.053 | 353.770 | 18.809 23.144
Naive_168 14.659 51.748 0.662 | -0.094 | 458.857 | 21.421 26.161
SARIMA 14.053 45.117 0.635 3.602 | 365.226 | 19.111 25.047

shows the residuals for both models.

In Figure it is seen that residuals are mostly below zero, which is actually ex-
pected from the M E value, -5.438, in Table for Model B_mae. Therefore, it can

be said that Model B_mae nearly overestimates the real values. In Figure @.2b] it

can be said that residuals are distributed closer to zero, which again can be observed

in M E value for Mode B_SVR, -1.637 in Table Although, M E value is much

closer than -5.438, it is less than zero and a few amount of overestimation can also be

observed in Model B_SVR.

Therefore, it can be inferred that, if the limit value for price prediction increases,

model performance can increase.
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Model B_mae

(a) Plot for Model B_mae

Model B_mac

—Predicted —Resl

(b) Model B_mae Plot Covering 01/07/2023 - 07/07/2023

Model B_SVR

(c) Plot for Model B_SVR

Model B_SVR

o
s 3 3 203 75 6203 R
Date

—Predicted —Real

(d) Model B_SVR Plot Covering 01/07/2023 - 07/07/2023

Figure 4.1: Plots for Model B_mae and Model B_SVR

4.1.2 Results with Different Feature Combinations

Initial model results shows that Model B_mae and Model B_SVR outperforms among

the other developed models. These results are obtained using all the features. How-
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(a) Residuals for Model B_mae
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(b) Residuals for Model B_SVR

Figure 4.2: Plots for Residuals in Model B_mae and Model B_SVR

ever, using all the features may cause the training period to slow down because uti-
lizing the lag variables increases the data size. Also, there is a probability of getting
same or better results with a smaller sets of features. Therefore, it is logical to search

all the feature combinations to find the best model result.

In this section, different combinations of input features are tried and the 5 best re-
sults in all of the trials are presented. For the simplicity, the same parameters found
in the training period are used in all the results of combinations. The name of the

combinations are given according to the feature aliases given in Section 4.1.1.

In Model B_mae and Model B_SVR, there are 8 main features. As it mentioned
before, HOUR_SIN, HOUR_COS, DAY_SIN and DAY_COS are always going to
be put in feature combination calculations. There will be 15 feature combinations

including the Model B_mae and Model B_SVR themselves.

In the results, M AE and SM APE values are presented. Since SM APE' assigns
equal weight to over-estimations and under-estimations, it is used instead of M APFE

value.
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4.1.2.1 Feature Combination Results for Model B_mae

Table 4.4: Model B_mae Top 5 Results for M AE

Model B_mae Combination | Test Data
1 9.653
1-4 9.872
1-2 9.883
1-2-4 9.896
2 9.897

According to Table [ZIZ[], combination "1", which uses only WORKDAY feature has
the smallest M AFE value for the test set. Again combination "1" has the smallest

SM APE value for the test set according to Table

Table 4.5: Model B_mae Top 5 Results for SM APE (%)

Model B_mae Combination | Test Data
1 17.530
1-4 17.858
1-2-4 17.875
4 17.905
2 17.985

4.1.2.2 Feature Combination Results for Model B_SVR

According to Table combination "1-2-4" has the smallest M AF value for test
set. It is seen that Combination "1-2-4" have the smallest SM APFE value as well for

test set respectively when the output values in Table 4./| are examined.

According to the feature combination results, Model B_mae outperforms compared
to Model B_SVR in terms of both M AFE and SM APFE metrics. Therefore, perfor-

mance metric analysis are conducted for Model B_mae in the next sections.
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Table 4.6: Model B_SVR Top 5 Results for M AE

Model B_SVR Combination | Test Data
1-2-4 10.259
1-2-3-4 10.272
2-4 10.275
2-3-4 10.287
1-4 10.418

Table 4.7: Model B_SVR Top 5 Results for SMAPE (%)

Model B_SVR Combination | Test Data
1-2-4 18.751
2-4 18.760
1-2-3-4 18.772
2-3-4 18.781
1-4 18.998

4.2 Metric Analysis for Model B_mae

After different feature combination results for the Model B_mae and Model B_SVR
are investigated, the performance metrics are examined for Model B_mae. Since the
test data set is comprised of 12 months, the values found in the previous sections are
average values for that time horizon. However, there may be better time periods when

the metrics exhibit better performance.

Two of the performance metrics, M AE and SM APFE are examined on hourly, daily,
weekly basis. Metric analysis are presented for the top five models of combinations
mentioned in Section 4.1.2.1 in the following steps. Tables showing the values in

detail can be seen in Appendix B.

To analyze the metrics, confidence intervals are considered. The significance factor

() 1s taken as 0.05.
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In order to construct hourly confidence intervals, the following equation is used,

_ S _ S
x—tg(—)gugzc—i—t%(ﬁ

2 /n

where Z is hourly, daily or weekly average value for a metric, « is significance factor,

)

s is sample standard deviation of a metric and 7 is the number of hours, days or
weeks. Since the population standard deviation is not known, ¢-distribution is used

for constructing the confidence intervals.

In Figures the best five combination results which are derived from Model
B_mae for M AE and SM AP FE metrics can be seen for the hourly basis.

As it can be seen in Figure[4.3] all five combinations have the similar average SM APE
values for each hour. 12 am has the highest values while 8 pm has the lowest average
values for SM APE. Moreover, it can be observed that when the average value for
SMAPE is lower, the possible range where the population mean shrinks. However,
larger average SM APFE values mean wider range for the true value of the mean for

that hour.

M AFE metric has more stable outputs for the same five feature combinations. Ac-
cording to Figure #.4] it can be said that the behavior is the same with the behavior
observed in SM APFE values. The smallest average M AFE values are again seen in 8
pm for each feature combination. The highest average M AFE values are again at 12

am.
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Confidence Intervals for SMAPE
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SMAPE (%)
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10.000

Feature Combination

Figure 4.5: Confidence intervals for SM APFE values constructed weekly and daily

for the best 5 feature combination results.

When the confidence intervals constructed for daily and weekly are seen in Figure 4.5
and [4.6)a similar behavior is observed. In Figure 4.5|and[4.6] confidence intervals for
weekly means are wider than the confidence intervals for daily means. Also, it can
be said that M AFE values on daily basis are more consistent compared to SM APFE

metrics on daily basis.

Confidence Intervals for VAE
12.0
115
11.0
10.5
10.0
9.5
9.0
8.5

MAE

Week Mean
8.0

1Day Mean
7.0
6.5
6.0

5.5
5.0

Feature Combination

Figure 4.6: Confidence intervals for M AE values constructed weekly and daily for

the best 5 feature combination results.

As it can be seen in Figure {.5| and Figure 4.6 feature combination "1", which is
generated using "WORKDAY" feature performs better for daily and weekly analysis

than other models generated using other features.

Giving the hourly, daily and weekly performance metric analysis, the sensitivity anal-

ysis results for the weight values of Model B_mae are presented in the next section.
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4.3 Sensitivity Analysis for Weight Values

In this section, the sensitivity analysis of the weight value are conducted for Model
B_mae. Left side of the weight constraint of Problem EMM given in Section 3.5 is
changed by adding or subtracting 0.025, 0.050, 0.075 and 0.1. According to those
modifications, the performance metric results on the test data set are observed and
analyzed. Again, the same best hyperparameters found for both algorithms, XGBoost

and SVR, are used in all constraint changes.

In Figure 4.7] all the performance metric results are given for different weight con-
straints. There is clear fact that subtracting a specific amount from the weight con-
straint results in a better performance metric. Especially for M £, it can be seen that
the least mean deviation from zero is obtained as -0.066 when the weight constraint
is equal to 0.925. It is an expected situation because the model overestimates and
decreasing weight values reduces the overestimation. Thus, the overestimation of
the model decreases by using sum of the weights as 0.925. Decreasing the weight
constraint by a specific amount also positively affects the other performance metrics.
Some performance metric values; MAE, MASE, and SMAPFE, increase when
weight constraint is kept decreasing. For M APFE, it can be seen that decreasing
weight constraint below 0.9 may positively affect the result. However, when analysis
for M APE are conducted, it is seen that the minimum M APFE value is around 43%.
For less values of weight constraint such as 0.75, the M AP E value again increases to
46%. It is also logical that increasing the constraint value increases the overestimation

and the performance metric performances decrease.
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Figure 4.7: Results of the Sensitivity Analysis
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4.4 Feature Importance

Lastly, the feature importance can be checked using the SHAP library in python.

EP_LAG_168
EP_LAG 24
TAVG_LAG_168
RENEW PERC_LAG_24
RENEW PERC LAG 168
HOUR_COS

HOUR_SIN

DAY_SIN

DEMAND _LAG 24
DEMAND LAG 168
DAY_COS
TAVG_LAG 24
WORKDAY_LAG_24

WORKDAY LAG 168

Figure 4.8: Feature Importance Values for Model B_mae

In Figure [4.8] each feature in the model are given vertically on the left side ranked
from top to bottom by their mean absolute SHAP values for the entire data set. Each
instance value of the feature is given as a point in relative feature row. On the x-axis,
the SHAP values are distributed. The color bar on the right shows whether an instance
value is high or low. If the value of a variable for a particular instance is relatively
high, it appears as a red dot. Relatively low value instances appear as blue dots. In
places where there is a high density of SHAP values, the points are stacked vertically.

Examining how the SHAP values are distributed reveals how a variable may influence

the model’s prediction.
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According to the SHAP plot in Figure {4.8] it can be said that lag 168 and lag 24
of electricity price are the most important features. Also, it is seen that the high
or low values for electricity prices of lag 24 and 168 always cause the prediction
values to increase since all high or low instance points have the positive SHAP values.
Temperature and renewable resource ratio are other important features. It can be
said that higher values of last week’s temperature gives lower prediction values for
electricity prices. It can be logical because higher temperatures means the season is
summer and days are longer than nights which also explains the need for electricity

is lower.
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CHAPTER 5

CONCLUSIONS

Accurately estimating the electricity prices has been a major problem in the electricity
market since the liberalization of the Turkish electricity market in 2001. Accurate
forecasting is challenging because of high volatility, many seasonality levels, and
nonlinear correlations. Consequently, there are numerous researches to predict the

electricity prices in Tiirkiye.

This thesis examines the Turkish electricity market, starting with its history and pre-
senting a look at how the Turkish DAM works. By understanding how the market
has developed and how it operates now, the framework for analyzing and forecasting
the electricity prices is given. A review of related studies, both global and specific
to Tiirkiye, on the use of different time series and machine learning methods for the

electricity price forecasting, shows the progress and gaps in the existing research.

The methodology reviewed in Chapter 3 for data collection, pre-processing, and mod-
eling, focuses on XGBoost and SVR. These algorithms are chosen for their power and
potential to improve predictive accuracy. An ensemble of these two algorithms is con-
sidered for predicting the day-ahead electricity prices for Turkish electricity market.
The analysis and results in Chapter 4 present the outcomes of the different mod-
els produced, including various feature combinations, and evaluate the performance
metrics. The results show that two of the models produced, Model B_mae, using
Problem EMMmae for determining weights of the algorithms, and Model B_SVR,
dominate other alternative models and benchmark models in terms of performance
metric values. According to the results, it can be observed that the new methodology
compete with the time series and other methodologies given in the literature. Also, it

is shown that the model has slightly overestimates the electricity prices. Thus, it can
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be said that possible increases in price limitations would affect positively the outputs

of the model.

Moreover, Model B_mae performs better than Model B_SVR in feature combination
processes in terms of both SM APFE and M AE values. Hourly analysis show that
model performance is better when the time is 8 or 9 pm. In daily and weekly analy-
sis, it is seen that model generated only using WORKDAY feature and lag of target
variable gives better performance. Besides, confidence intervals of daily calculated

metric values are narrower compared to weekly calculated values.

When optimal weights are investigated, in Model B_mae, XGBoost algorithm has
more weight than SVR. For weight values, also, sensitivity analysis are conducted.
As a result of sensitivity analysis, it is seen that decreasing the total weight positively

affect the model performance and overestimation decreases.

Lastly, when feature importance analysis conducted, lag values of electricity prices
seem as the most effective features with temperature and renewable resource ratio in

electricity supply.

In future studies, in order to provide a more comprehensive modeling, future studies
might include optimizing the parameters for each feature combination used in the
study. In this way, feature combination results would improve with the best parameter
settings for each feature combination set. Moreover, exchange rate prediction models
can be used in real systems for price limitations which are given as TL by EPIAS.
However, the model predicts in USD and by predicting the exchange rates in the

future periods, predictions can be modified.
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Appendix A

A.1 Grid Search Results

A.1.1 Grid Search Results For Xgboost Algorithm

Table A.1: Grid Search Results for Model A_XGB

param_XGB__learning_rate | param_XGB__max_depth | param_XGB__n_estimators | split0_test_score | splitl_test_score | split2_test_score | mean_test_score | std_test_score | rank_test_score
0.01 4 200 -27.7687 -20.8493 -30.8061 -26.4747 4.166559 1
0.01 6 200 -28.765 -20.8787 -30.0646 -26.5694 4.058779 2
0.1 4 100 -30.1796 -18.8744 -31.1333 -26.7291 5.567729 3
0.01 8 200 -28.9872 -21.8681 -32.3576 -27.7377 4.372529 4
0.1 4 150 -31.0168 -19.068 -33.9812 -28.022 6.446076 5
0.01 4 150 -28.1027 -22.0566 -34.11 -28.0898 4.92077 6
0.01 6 150 -29.4556 -22.3213 -32.8399 -28.2056 4.384241 7
0.1 6 100 -30.9979 -20.1909 -34.5762 -28.5883 6.114928 8
0.01 8 150 -29.1045 -22.691 -34.4725 -28.756 4.816049 9
0.1 4 200 -31.1133 -19.3366 -36.2208 -28.8902 7.069929 10
0.1 6 150 -32.1989 -20.4321 -36.6211 -29.7507 6.832057 11
0.1 8 100 -30.8404 -22.1389 -36.7035 -29.8943 5.983491 12
0.1 6 200 -32.8718 -20.5181 -38.0435 -30.4778 7.352249 13
0.01 4 100 -29.3385 -24.2944 -38.4904 -30.7078 5.875781 14
0.01 8 100 -29.7291 -24.9256 -38.1652 -30.9399 5.472432 15
0.01 6 100 -30.383 -25.047 -37.5363 -30.9888 5.116703 16
0.1 8 150 -31.7444 -22.6771 -38.7589 -31.0601 6.58315 17
0.1 8 200 -31.7872 -22.9959 -39.3443 -31.3758 6.680538 18
0.001 8 200 -33.8791 -33.0575 -51.2165 -39.3844 8.37332 19
0.001 6 200 -33.9592 -33.1026 -51.5356 -39.5325 8.494721 20
0.001 4 200 -33.7525 -32.8313 -52.2176 -39.6005 8.929586 21
0.001 8 150 -34.2489 -33.8326 -52.5283 -40.2032 8.716775 22
0.001 6 150 -34.2922 -33.8869 -52.76 -40.313 8.80288 23
0.001 4 150 -34.223 -33.6723 -53.3866 -40.4273 9.166387 24
0.001 8 100 -34.6327 -34.6608 -53.9321 -41.0752 9.091205 25
0.001 6 100 -34.7374 -34.7298 -54.0284 -41.1652 9.095637 26
0.001 4 100 -34.73 -34.5661 -54.6285 -41.3082 9.419111 27
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Table A.2: Grid Search Results for Model B_ XGB

param_XGB__learning_rate | param_XGB__max_depth | param_XGB__n_estimators | split0_test_score | splitl_test_score | split2_test_score | mean_test_score | std_test_score | rank_test_score
0.1 4 100 -19.0092 -13.912 -13.4051 -15.4421 2.530781 1
0.1 4 150 -20.0667 -14.1846 -13.3108 -15.854 3.000103 2
0.1 4 200 -20.2802 -14.0373 -13.3554 -15.891 3.116139 3
0.1 6 100 -21.0914 -14.3872 -16.926 -17.4682 2.763688 4
0.1 8 100 -19.5779 -15.3877 -18.3386 -17.768 1.757579 5
0.1 6 150 -21.6201 -14.6297 -17.3178 -17.8559 2.879075 6
0.01 4 200 -20.5202 -15.2429 -18.6046 -18.1226 2.181224 7
0.1 8 150 -19.9754 -15.4765 -19.0457 -18.1659 1.939169 8
0.1 6 200 -21.9517 -14.7382 -18.3944 -18.3615 2.944992 9
0.1 8 200 -20.0987 -15.6902 -19.6696 -18.4861 1.984795 10
0.01 6 200 -20.4727 -15.7188 -20.0997 -18.7637 2.158461 11
0.01 8 200 -21.0414 -16.3505 -21.9086 -19.7668 2.44152 12
0.01 4 150 -21.5204 -16.6115 -21.8386 -19.9902 2.392618 13
0.01 6 150 -21.6486 -17.347 -23.1915 -20.7291 2.473012 14
0.01 8 150 -22.1887 -17.9319 -25.1351 -21.7519 2.956871 15
0.01 4 100 -23.5144 -19.3882 -27.2842 -23.3956 3.224613 16
0.01 6 100 -23.884 -20.3297 -29.0615 -24.4251 3.585199 17
0.01 8 100 -24.2842 -20.8554 -30.7838 -25.3078 4.117375 18
0.001 4 200 -31.7704 -31.1514 -48.4946 -37.1388 8.033749 19
0.001 6 200 -31.8462 -31.3136 -49.21 -37.4566 8.313718 20
0.001 8 200 -31.712 -31.5686 -49.6936 -37.6581 8.510584 21
0.001 4 150 -32.6488 -32.3494 -50.5034 -38.5005 8.488168 22
0.001 6 150 -32.7157 -32.5242 -51.1042 -38.7814 8.713917 23
0.001 8 150 -32.5431 -32.6837 -51.4178 -38.8815 8.864655 24
0.001 4 100 -33.5792 -33.6361 -52.6337 -39.9497 8.969003 25
0.001 6 100 -33.6934 -33.7907 -53.072 -40.1853 9.112347 26
0.001 8 100 -33.565 -33.8749 -53.2821 -40.2407 9.222553 27

Table A.3: Grid Search Results for Model C_XGB

param_XGB__learning_rate | param_XGB__max_depth | param_XGB__n_estimators | split0_test_score | split]_test_score | split2_test_score | mean_test_score | std_test_score | rank_test_score
0.1 4 100 -26.4708 -16.5541 -22.3273 -21.784 4.066664 1
0.1 6 100 -26.6236 -16.55 -22.6964 -21.9567 4.145651 2
0.1 4 150 -27.0907 -16.6746 -22.6835 -22.1496 4.269078 3
0.1 4 200 -27.424 -17.2094 -22.9945 -22.5426 4.182303 4
001 4 200 -26.7964 -16.6724 24,2841 22.5843 4304301 5
0.1 6 150 -27.4932 -17.1038 -23.9925 22.8632 4315996 6
0.01 6 200 -27.265 -17.0929 -24.7662 -23.0414 4.328113 7
0.1 6 200 -28.0868 -17.5871 -24.7109 -23.4616 4.376583 8
0.01 4 150 -27.6775 -17.8033 -26.3971 -23.9593 4.384247 9
0.01 8 200 -28.6208 -16.7866 -26.5095 -23.9723 5.15366 10
0.1 8 100 -28.8441 -17.1122 -26.233 -24.0631 5.029297 11
0.1 8 150 -29.1892 -17.5216 -27.1826 24,6311 5093499 12
001 6 150 283171 -18.3273 27.5077 247174 4530518 13
0.1 8 200 -29.6373 -17.7819 -27.5715 -24.9969 5.17101 14
0.01 8 150 -29.3429 -17.8007 -28.7215 -25.2884 5.300649 15
0.01 4 100 -29.3824 -19.7953 -30.1495 -26.4424 4.710628 16
0.01 6 100 -30.5789 -20.5804 -32.0828 -27.7474 5.104877 17
001 8 100 311081 20,0818 -32.9936 280612 5.694516 18
0.001 4 200 -36.9679 -27.98 -45.3515 -36.7665 7.093338 19
0.001 6 200 -37.1648 -28.2551 -46.2097 -37.2099 7.329973 20
0.001 8 200 -37.1832 -28.0789 -46.6052 -37.2891 7.5637 21
0.001 4 150 -37.6493 -28.8367 -46.878 -37.788 7.365975 22
0.001 6 150 -37.8668 -29.0218 -47.533 -38.1405 7.559638 23
0.001 8 150 -37.8353 -28.9059 -47.8615 -38.2009 7.742881 24
0.001 4 100 -38.464 297443 48,5052 -38.9045 7.665448 25
0.001 6 100 -38.5797 -29.8654 -48.958 4391344 7.804362 26
0.001 8 100 -38.5971 -29.7997 49,1312 -39.176 7.902682 27

A.1.2 Grid Search Results For SVR Algorithm
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Table A.4: Grid Search Results for Model A_SVR

param_SVM__C

param_SVM_degree

param_SVM__epsilon

param_SVM__gamma

param_SVM__kernel

split0_test_score

splitl_test_score

split2_test_score

mean_test_score

std_test_score

rank_test_score

10 1 1 0.1 rbf -22.9568 -15.0101 -19.8121 -19.2597 326765 1
10 2 1 0.1 rbf -22.9568 -15.0101 -19.8121 -19.2597 3.26765 1
10 3 1 0.1 rbf -22.9568 -15.0101 -19.8121 -19.2597 3.26765 1
10 1 1 auto rbf -22.9808 -14.9911 -19.8257 -19.2659 3.285735 4
10 2 1 auto rbf -22.9808 -14.9911 -19.8257 -19.2659 3.285735 4
10 3 1 auto bf -22.9808 -14.9911 -19.8257 -19.2659 3.285735 4
5 1 1 0.1 bf -23.7818 -14.7802 -19.816 -19.4594 3.683526 7
2 1 0.1 bf -23.7818 -14.7802 -19.816 -19.4594 3.683526 7

5 3 1 0.1 bf -23.7818 -14.7802 -19.816 -19.4594 3.683526 7
5 1 1 auto bf -23.712 -14.8499 -19.8553 -19.4724 3.628048 10
5 2 1 auto bf -23.712 -14.8499 -19.8553 -19.4724 3.628048 10
5 3 1 auto bf -23.712 -14.8499 -19.8553 -19.4724 3.628048 10
10 1 5 auto bf -23.069 -15.2253 -20.6888 -19.661 3.283598 13
10 2 5 auto bf -23.069 -15.2253 -20.6888 -19.661 3.283598 13
10 3 5 auto bf -23.069 -15.2253 -20.6888 -19.661 3.283598 13
10 5 0.1 bf -23.1104 -15.2154 -20.7219 -19.6825 3.305847 16
10 2 5 0.1 bf -23.1104 -15.2154 -20.7219 -19.6825 3.305847 16
10 3 5 0.1 bf -23.1104 -15.2154 -20.7219 -19.6825 3.305847 16
100 1 1 0.1 bf -24.1149 -15.1404 -20.431 -19.8954 3.683357 19
100 2 1 0.1 rbf -24.1149 -15.1404 -20.431 -19.8954 3.683357 19
100 3 1 0.1 rbf -24.1149 -15.1404 -20.431 -19.8954 3.683357 19
100 1 1 auto rbf -24.2423 -15.1869 -20.3605 -19.9299 3.709392 22
100 2 1 auto rbf -24.2423 -15.1869 -20.3605 -19.9299 3.709392 22
100 3 1 auto rbf -24.2423 -15.1869 -20.3605 -19.9299 3.709392 22
5 1 5 auto rbf -23.9352 -15.1897 -20.9724 -20.0324 3.631702 25
2 5 auto rbf -23.9352 -15.1897 -20.9724 -20.0324 3.631702 25

5 3 5 auto rbf -23.9352 -15.1897 -20.9724 -20.0324 3.631702 25
5 1 5 0.1 rbf -23.9577 -15.2738 -20.9672 -20.0663 3.601986 28
5 2 5 0.1 rbf -23.9577 -15.2738 -20.9672 -20.0663 3.601986 28
5 3 5 0.1 rbf -23.9577 -15.2738 -20.9672 -20.0663 3.601986 28
100 1 1 auto poly -24.204 -16.7498 -19.2746 -20.0761 3.095491 31
100 1 1 0.1 poly -24.205 -16.7504 -19.2735 -20.0763 3.095842 32
10 1 1 auto poly -24.2078 -16.7697 -19.2929 -20.0901 3.088448 33
10 1 1 0.1 poly -24.2109 -16.7691 -19.294 -20.0914 3.089947 34
5 1 1 auto poly -24.215 -19.3131 -20.0955 3.094062 35
5 1 1 0.1 poly -24.2113 -19.3213 -20.0981 3.09049 36
100 1 5 0.1 bf -24.4598 -20.6285 -20.1813 3.689525 37
100 2 5 0.1 hf -24.4598 -20.6285 -20.1813 3.689525 37
100 3 5 0.1 bf -24.4598 -20.6285 -20.1813 3.689525 37
100 1 5 auto bf -24.3259 -20.7289 -20.1863 3.621915 40
100 2 5 auto bf -24.3259 -20.7289 -20.1863 3.621915 40
100 3 5 auto bf -24.3259 -20.7289 -20.1863 3.621915 40
10 1 10 0.1 bf -23.2847 -21.7355 -20.2067 3.318314 43
10 2 10 0.1 bf -23.2847 -21.7355 -20.2067 3.318314 43
10 3 10 0.1 rbf -23.2847 -15.5999 -21.7355 -20.2067 3.318314 43
1 1 1 auto poly -24.2652 -16.8359 -19.5456 -20.2156 3.069777 46
10 1 10 auto rbf -23.3506 -15.6302 -21.7082 -20.2297 3.320705 47
10 2 10 auto rbf -23.3506 -15.6302 -21.7082 -20.2297 3.320705 47
10 3 10 auto tbf -23.3506 -15.6302 -21.7082 -20.2297 3.320705 47
1 1 1 0.1 poly -24.2646 -16.8567 -19.5881 -20.2365 3.058832 50
5 3 1 auto poly -27.1719 -15.7231 -17.972 -20.289 4952813 51
10 3 1 0.1 poly -27.3779 -15.6467 -17.9771 -20.3339 5.070928 52
10 3 1 auto poly -27.5409 -15.6282 -17.9776 -20.3822 5.152028 53
5 3 1 0.1 poly -27.1678 -15.8544 -18.227 -20.4164 4.871227 54
5 1 10 0.1 bf -23.9716 -15.6036 -22.0293 -20.5349 3.575938 55
5 2 10 0.1 bf -23.9716 -15.6036 -22.0293 -20.5349 3.575938 55
5 3 10 0.1 bf -23.9716 -15.6036 -22.0293 -20.5349 3.575938 55
5 1 10 auto bf -24.0567 -15.5457 -22.0193 3.628528 58
5 2 10 auto bf -24.0567 -15.5457 -22.0193 3.628528 58
5 3 10 auto bf -24.0567 -15.5457 -22.0193 3.628528 58
5 3 5 auto poly -26.9387 -16.0958 -18.6486 4.628526 61
10 3 5 0.1 poly -27.1692 -15.9872 -18.5775 4.779152 62
100 1 5 auto poly -24.6095 -17.2198 -20.001 -20.6101 3.047406 63
100 1 5 0.1 poly -24.6092 -17.2201 -20.0016 -20.6103 3.047123 64
10 1 5 auto poly -24.6047 -17.2397 -20.0141 -20.6195 3.037091 65
10 1 5 0.1 poly -24.6089 -17.2438 -20.0083 -20.6203 3.037776 66
10 3 5 auto poly -27.5168 -15.9168 -18.4665 -20.6334 4.977412 67
5 3 5 0.1 poly -26.8872 -16.2383 -18.7814 -20.6356 4.540832 68
5 1 5 auto poly -24.5958 -17.2555 -20.0607 -20.6373 3.024291 69
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Table A.4: Grid Search Results for Model A_SVR (Cont’d)

aram_SVM__C | param_SVM_degree | param_SVM_epsilon | param_SVM__gamma | param_SVM__kernel | split0_test_score | split1_test_score | split2_test_score | mean_test_score | std_test_score | rank_test_score
P: P: gree | p p: P: & P: D! Dl pl
5 1 5 0.1 poly -24.5993 -17.2631 -20.0628 -20.6418 3.022834 70
100 3 1 0.1 poly -28.1361 -15.653 -18.3573 -20.7154 5.362042 71
1 1 5 auto poly -24.6097 -17.3292 -20.2372 -20.7253 2992225 72
1 1 5 0.1 poly -24.6206 -17.336 -20.2641 -20.7402 299295 73
100 3 1 auto poly -28.1993 -15.6931 -18.3996 -20.764 5.372401 74
5 3 10 0.1 poly -26.4947 -16.5262 -19.5895 -20.8701 4.169152 75
1 1 1 0.1 bf -26.2172 -15.2134 -21.2336 -20.888 4.498936 76
1 2 1 0.1 b 262172 -152134 212336 -20.888 4498936 76
1 3 1 0.1 b 262172 -152134 212336 -20.888 4498936 76
5 3 10 auto poly -27.0346 -16.3464 -19.3076 -20.8962 4505697 79
100 1 10 0.1 b 25,0177 -16.1866 -21.4952 -20.8999 3.62077 80
100 2 10 0.1 bf 25,0177 -16.1866 -21.4952 -20.8999 3.62077 80
100 3 10 0.1 rbf 25,0177 -16.1866 214952 -20.8999 3.62077 80
10 3 10 0.1 poly -27.2861 -16.1847 -19.2552 -20.9086 4.680514 83
10 3 10 auto poly -27.4096 -16.1361 -19.2513 209324 4753401 84
100 5 0.1 poly 28.155 -15.8354 -18.8327 20941 5245747 85
100 5 auto poly -28.1482 -15.9039 -18.8832 209784 5213645 86
100 1 10 auto bf -25.2384 -16.3245 215169 -21.0266 3.655581 87
100 2 10 auto bf -25.2384 -16.3245 215169 -21.0266 3.655581 87
100 3 10 auto bf 252384 -16.3245 215169 -21.0266 3.655581 87
1 1 1 auto bf 264224 -15.2551 21435 -21.0375 456768 90
1 2 1 auto f 26,4224 -15.2551 21435 210375 456768 90
1 3 1 auto f 26,4224 -15.2551 21435 -21.0375 456768 90
1 3 1 auto poly 258152 -17.1263 204644 211353 3.578807 93
1 3 5 auto poly -25.7569 -17.3423 -20.7724 -21.2905 3454722 94
100 1 10 auto poly -25.1314 -17.8335 -20.9873 -21.3174 2.988511 95
100 1 10 0.1 poly -25.1319 -17.8335 -20.9873 -21.3176 2.988696 96
10 1 10 auto poly -25.1293 -17.8574 -21.01 -21.3322 2977437 97
10 1 10 0.1 poly -25.1257 -17.8536 -21.022 -21.3338 2976979 98
5 1 10 0.1 poly -25.1198 -17.8649 -21.0415 -21.342 2.969409 99
5 1 10 auto poly -25.1322 -17.8633 -21.0426 -21.346 2975282 100
1 3 1 0.1 poly -25.3065 -17.4609 -21.3536 21.3737 3202982 101
1 1 10 auto poly -25.063 -17.927 212021 213973 2916528 102
1 1 10 0.1 poly -25.0578 -17.9077 212336 213997 2921381 103
1 1 5 0.1 b 264218 -15.6105 222374 214232 4451069 104
1 2 5 0.1 b 264218 -15.6105 222374 214232 4451069 104
1 3 5 0.1 rbf 264218 -15.6105 222374 214232 4451069 104
1 3 10 auto poly -25.4843 -17.5374 212831 214349 3.24612 107
1 3 5 0.1 poly -25.1869 -17.6796 216841 215169 3.067118 108
1 1 5 auto bf -26.6283 -15.5953 22,5057 215765 4551879 109
1 2 5 auto bf -26.6283 -15.5953 22,5057 215765 4551879 109
1 3 5 auto bf -26.6283 -15.5953 22,5057 215765 4551879 109
100 3 10 0.1 poly -28.798 -16.2543 -19.7923 216149 5.280587 112
100 3 10 auto poly -28.816 -16.3155 -19.9138 216818 5254215 113
1 3 10 0.1 poly 252084 -17.8936 22,075 217257 2.996472 114
0.1 1 1 auto poly -24.7793 -18.1737 227469 219 2762421 115
1 1 10 0.1 bf -26.5976 -15.9012 232534 219174 4467791 116
1 2 10 0.1 rbf -26.5976 -15.9012 -23.2534 -21.9174 4467791 116
1 3 10 0.1 bf -26.5976 -15.9012 -23.2534 -21.9174 4467791 116
1 1 10 auto bf -26.7638 -15.9139 -23.5177 -22.0652 4.546983 119
1 2 10 auto bf -26.7638 -15.9139 -23.5177 -22.0652 4546983 119
1 3 10 auto bf -26.7638 -15.9139 -23.5177 -22.0652 4.546983 119
0.1 1 1 0.1 poly -24.8335 -18.3487 -23.244 -22.1421 275967 122
0.1 1 5 auto poly -24.9344 -18.3962 -23.1132 -22.1479 2755115 123
0.1 1 5 0.1 poly -25.0297 -18.5953 -23.579 -22.4013 2.755663 124
0.1 1 1 auto sigmoid -25.4249 -18.4522 -23.5216 -22.4663 2.942798 125
0.1 2 1 auto sigmoid -25.4249 -18.4522 -23.5216 -22.4663 2.942798 125
0.1 3 1 auto sigmoid -25.4249 -18.4522 235216 -22.4663 2.942798 125
0.1 1 5 auto sigmoid 255371 -18.5604 238071 226349 296641 128
0.1 2 5 auto sigmoid 255371 -18.5604 238071 226349 296641 128
0.1 3 5 auto sigmoid 255371 -18.5604 238071 -22.6349 296641 128
0.1 1 1 0.1 sigmoid 254128 -18.6061 -23.9372 226521 2.923636 131
0.1 2 1 0.1 sigmoid 254128 -18.6061 -23.9372 226521 2.923636 131
0.1 3 1 0.1 sigmoid -25.4128 -18.6061 -23.9372 226521 2.923636 131
0.1 1 10 auto poly -25.187 -18.8435 -24.0539 -22.6948 2762321 134
0.1 1 5 0.1 sigmoid -25.4692 -18.7351 241477 22784 291341 135
0.1 2 5 0.1 sigmoid -25.4692 -18.7351 241477 22784 291341 135
0.1 3 5 0.1 sigmoid -25.4692 -18.7351 241477 22784 291341 135
0.1 1 10 0.1 poly 252216 18972 244819 -22.8918 2788134 138
0.1 1 10 auto sigmoid -25.808 -18.9312 245197 -23.0863 2.984807 139
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Table A.4: Grid Search Results for Model A_SVR (Cont’d)

param_SVM__C | param_SVM__degree | param_SVM_epsilon | param_SVM__gamma | param_SVM__kernel | split0_test_score | split]_test_score | split2_test_score | mean_test_score | std_test_score | rank_test_score
0.1 2 10 auto sigmoid -25.808 -18.9312 -24.5197 -23.0863 2.984807 139
0.1 3 10 auto sigmoid -25.808 -18.9312 -24.5197 -23.0863 2.984807 139
0.1 1 10 0.1 sigmoid -25.6984 -19.0312 -24.8697 -23.1998 2.967007 142
0.1 2 10 0.1 sigmoid -25.6984 -19.0312 -24.8697 -23.1998 2.967007 142
0.1 3 10 0.1 sigmoid -25.6984 -19.0312 -24.8697 -23.1998 2.967007 142
0.1 3 1 auto poly -26.3781 -21.6485 -31.238 -26.4215 3.915021 145
0.1 3 5 auto poly -26.4037 218026 -31.3831 265298 3912227 146
0.1 3 10 auto poly 26,5492 -21.9386 314954 -26.661 3902338 147
0.1 3 5 0.1 poly 27,0737 224761 -33.5107 -27.6868 4525666 148
0.1 3 10 0.1 poly 27.1454 225667 -33.4529 217217 4.462905 149
0.1 3 1 0.1 poly -27.0584 224772 -33.6296 217217 4577075 150
0.1 1 10 0.1 tbf -30.7622 -19.909 -32.5828 217513 5594944 151
0.1 2 10 0.1 bf -30.7622 -19.909 -32.5828 217513 5504944 151
0.1 3 10 0.1 bf -30.7622 -19.909 -32.5828 217513 5504944 151
0.1 1 5 0.1 bf 311307 20,0517 -32.6455 -27.9427 5.613883 154
0.1 2 5 0.1 bf 311307 20,0517 -32.6455 27.9427 5.613883 154
0.1 3 5 0.1 bf 311307 20,0517 -32.6455 27.9427 5.613883 154
0.1 1 1 0.1 bf 31055 201544 -32.8552 -28.0215 5611217 157
0.1 2 1 0.1 bf 31055 -20.1544 328552 -28.0215 5611217 157
0.1 3 1 0.1 1bf 31055 20,1544 -32.8552 -28.0215 5611217 157
0.1 1 10 auto 1bf 3114 -20.0825 -33.1778 281334 5.75331 160
0.1 2 10 auto bf 3114 -20.0825 -33.1778 281334 5.75331 160
0.1 3 10 auto bf 3114 -20.0825 -33.1778 281334 5331 160
0.1 1 5 auto f 31,5074 203118 -33.2867 -28.3686 5743198 163
0.1 2 5 auto f 31,5074 203118 -33.2867 -28.3686 5743198 163
0.1 3 5 auto rbf -31.5074 -20.3118 -33.2867 -28.3686 5.743198 163
0.1 1 1 auto rbf -31.4284 -20.3705 -33.4917 -28.4302 5.760972 166
0.1 2 1 auto bf -31.4284 -20.3705 -33.4917 -28.4302 5.760972 166
0.1 3 1 auto bf -31.4284 -20.3705 -33.4917 -28.4302 5.760972 166
100 2 10 0.1 poly -37.1204 -23.3465 -42.6852 -34.384 8.128617 169
100 2 10 auto poly -37.13 -23.3772 -42.7061 -34.4044 8.122931 170
100 2 5 0.1 poly -37.2066 233084 42.9974 -34.5041 8.262045 171
100 2 5 auto poly -37.2253 -23.3109 42,9917 -34.5093 8260984 172
100 2 1 0.1 poly -37.6522 -23.4966 427348 -34.6278 8139921 173
100 2 1 auto poly -37.6509 -23.5091 427381 -34.6327 8.135134 174
10 2 10 auto poly -37.0971 -23.5084 -43.4909 -34.6988 8332216 175
10 2 10 0.1 poly -37.0937 -43.7943 -34.7948 8444581 176
10 5 auto poly -37.3762 -43.6923 -34.8079 8.498958 177
10 5 0.1 poly -37.4498 -43.8272 -34.9005 8522244 178
10 1 auto poly -37.7096 435631 -34.941 8401456 179
5 10 auto poly -37.0664 -44.4838 -35.0151 8.690462 180
10 1 0.1 poly -37.6635 -43.8883 -35.034 8.508645 181
5 auto poly -37.5366 -23.5019 -44.3525 -35.1303 8.680583 182
5 10 0.1 poly 371514 -23.5686 -44.9812 -35.2337 8.846203 183
5 5 0.1 poly -37.6842 235381 44548 -35.2567 8.747299 184
5 2 1 auto poly -37.8469 -23.5757 443631 -35.2619 8.681056 185
5 2 1 0.1 poly -37.9233 23,6401 447489 -35.4374 8.79506 186
0.1 2 5 0.1 poly -37.5926 -25.1262 457577 -36.1588 8.483583 187
0.1 2 1 0.1 poly -37.7754 -25.0733 -45.6469 -36.1652 8.475973 188
0.1 2 5 auto poly -37.82 -24.8361 -45.9278 -36.1946 8.68701 189
0.1 2 1 auto poly -37.9385 -24.8592 -45.9706 -36.2561 8.70042 190
0.1 2 10 0.1 poly -37.9479 -25.4644 -46.0696 -36.494 8.474607 191
0.1 2 10 auto poly -37.9162 -25.2227 -46.487 -36.542 8.735345 192
1 2 10 auto poly -38.4352 -24.1504 -48.1375 -36.9077 9.852106 193
1 2 5 auto poly -38.8889 -24.1786 -47.9834 -37.017 9.807986 194
1 2 1 auto poly -39.5066 241713 478176 -37.1652 9.794534 195
1 2 10 0.1 poly -38.789 243136 -48.5855 -37.2204 9.970156 196
1 2 5 0.1 poly -39.2235 -24.2506 483164 -37.2635 9.922096 197
1 2 1 0.1 poly -39.7294 242162 -48.1266 373574 9.904435 198
1 1 1 0.1 sigmoid -61.4807 -28.6859 -38.7715 -42.9794 1371504 199
1 2 1 0.1 sigmoid -61.4807 -28.6859 -38.7715 -42.9794 13.71504 199
1 3 1 0.1 sigmoid -61.4807 -28.6859 -38.7715 -42.9794 1371504 199
1 1 10 0.1 sigmoid -60.0259 -31.4906 -45.6464 45721 1164961 202
1 2 10 0.1 sigmoid -60.0259 -31.4906 -45.6464 45721 11.64961 202
1 3 10 0.1 sigmoid -60.0259 -31.4906 -45.6464 45721 1164961 202
1 1 5 0.1 sigmoid -60.8878 325561 46522 -46.6553 1156676 205
1 2 5 0.1 sigmoid -60.8878 561 46522 -46.6553 11.56676 205
1 3 5 0.1 sigmoid -60.8878 325561 46522 -46.6553 11.56676 205
1 1 5 auto sigmoid 429758 -42.4618 -61.1976 -48.8784 8.713497 208
1 2 5 auto sigmoid 429758 424618 -61.1976 -48.8784 8.713497 208
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Table A.4: Grid Search Results for Model A_SVR (Cont’d)

param_SVM__C | param_SVM_degree | param_SVM_epsilon | param_SVM__gamma | param_SVM__kernel | split0_test_score | split1_test_score | split2_test_score | mean_test_score | std_test_score | rank_test_score
1 3 5 auto sigmoid -42.9758 -42.4618 -61.1976 -48.8784 8713497 208
1 1 1 auto sigmoid -43.8641 -42.4638 -61.0501 -49.126 8.450969 211
1 2 1 auto sigmoid -43.8641 -42.4638 -61.0501 -49.126 8.450969 211
1 3 1 auto sigmoid -43.8641 -42.4638 -61.0501 -49.126 8.450969 211
1 1 10 auto sigmoid -44.8216 -42.1011 -61.0439 -49.3222 8362554 214
1 2 10 auto sigmoid -44.8216 -42.1011 -61.0439 -49.3222 8362554 214
1 3 10 auto sigmoid -44.8216 -42.1011 -61.0439 -49.3222 8362554 214
5 1 5 0.1 sigmoid 32289 -15336 224708 -233.653 69.49898 217
5 2 5 0.1 sigmoid 32289 -15336 224708 -233.653 69.49898 217
5 3 5 0.1 sigmoid 32289 -15336 224708 -233.653 69.49898 217
5 1 1 0.1 sigmoid -323.1 -153.588 225338 -234.009 69.47432 220
5 2 1 0.1 sigmoid -323.1 -153.588 225338 -234.009 69.47432 220
5 3 1 0.1 sigmoid -323.1 -153.588 225338 -234.009 69.47432 220
5 1 10 0.1 sigmoid -325.381 -153.241 224427 23435 70.62518 23
5 2 10 0.1 sigmoid -325.381 -153.241 224427 23435 70.62518 23
5 3 10 0.1 sigmoid -325.381 -153.241 224427 23435 70.62518 223
5 1 5 auto sigmoid -404.81 -195.002 -281.068 -293.627 86.11278 226
5 2 5 auto sigmoid -404.81 -195.002 -281.068 -293.627 86.11278 226
5 3 5 auto sigmoid -404.81 -195.002 -281.068 -293.627 86.11278 226
5 1 1 auto sigmoid -405.235 -195.374 -280.42 -293.676 8618649 229
5 2 1 auto sigmoid -405.235 -195.374 -280.42 -293.676 8618649 229
5 3 1 auto sigmoid -405.235 -195.374 -280.42 -293.676 8618649 229
5 1 10 auto sigmoid -407.414 -195.023 281,515 -294.651 87.20426 232
5 2 10 auto sigmoid -407.414 -195.023 281515 294,651 87.20426 232
5 3 10 auto sigmoid -407.414 -195.023 281515 294,651 87.20426 232
10 1 10 0.1 sigmoid -668.173 -316.587 -454.489 -479.75 144.6416 235
10 2 10 0.1 sigmoid -668.173 -316.587 -454.489 47975 144.6416 235
10 3 10 0.1 sigmoid -668.173 -316.587 -454.489 47975 144.6416 235
10 1 5 0.1 sigmoid -670.155 -316.466 -454.827 -480.483 145.5281 238
10 2 5 0.1 sigmoid -670.155 -316.466 -480.483 145.5281 238
10 3 5 0.1 sigmoid -670.155 -316.466 -480.483 31 238
10 1 1 0.1 sigmoid -669.919 -316.485 -481.178 145.2871 241
10 2 1 0.1 sigmoid -669.919 -316.485 -481.178 145.2871 241
10 3 1 0.1 sigmoid -669.919 -316.485 -481.178 145.2871 241
10 1 1 auto sigmoid -801.502 -402.698 -573.088 -592.429 163.3847 244
10 2 1 auto sigmoid -801.502 -402.698 -573.088 -592.429 163.3847 244
10 3 1 auto sigmoid -801.502 -402.698 -573.088 -592.429 163.3847 244
10 1 10 auto sigmoid 827379 -401.808 -572.746 -600.644 174.85 247
10 2 10 auto sigmoid 827379 -401.808 -572.746 -600.644 174.855 247
10 3 10 auto sigmoid -827.379 -401.808 -572.746 -600.644 174.855 247
10 1 5 auto sigmoid 827278 -402.428 -572.363 -600.69 174.5971 250
10 2 5 auto sigmoid -827.278 -402.428 -572.363 -600.69 1745971 250
10 3 5 auto sigmoid 827278 -402.428 -572.363 -600.69 1745971 250
100 1 10 0.1 sigmoid -6121.93 327258 -4605.94 -4666.82 1164.037 253
100 10 0.1 sigmoid -6121.93 327258 -4605.94 -4666.82 1164.037 253
100 3 10 0.1 sigmoid -6121.93 327258 -4605.94 -4666.82 1164.037 253
100 1 1 0.1 sigmoid -6303.96 -3265.54 -4610.35 -4726.62 1243.151 256
100 2 1 0.1 sigmoid -6303.96 -3265.54 -4610.35 -4726.62 1243.151 256
100 3 1 0.1 sigmoid -6303.96 -3265.54 -4610.35 -4726.62 1243.151 256
100 1 5 0.1 sigmoid -6161.03 -4014.64 -5897.94 -5357.87 955.8641 259
100 2 5 0.1 sigmoid -6161.03 -4014.64 -5897.94 -5357.87 955.8641 259
100 3 5 0.1 sigmoid -6161.03 -4014.64 -5897.94 -5357.87 955.8641 259
100 1 1 auto sigmoid -7737.26 -4142.39 -5798.87 -5892.84 1469.105 262
100 2 1 auto sigmoid -7737.26 -4142.39 -5798.87 -5892.84 1469.105 262
100 3 1 auto sigmoid -7737.26 -4142.39 -5798.87 -5892.84 1469.105 262
100 1 10 auto sigmoid -4138.74 -5806.18 -5899.6 1477344 265
100 2 10 auto sigmoid -4138.74 -5806.18 -5899.6 1477344 265
100 3 10 auto sigmoid -4138.74 -5806.18 -5899.6 1477344 265
100 1 5 auto sigmoid -4140.57 -5802.68 -5899.64 1477.441 268
100 2 5 auto sigmoid -7755.65 -4140.57 -5802.68 -5899.64 1477.441 268
100 3 5 auto sigmoid -7755.65 -4140.57 -5802.68 -5899.64 1477.441 268
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Table A.5: Grid Search Results for Model B_SVR

param_SVM__C

param_SVM_degree

param_SVM__epsilon

param_SVM__gamma

param_SVM__kernel

split0_test_score

splitl_test_score

split2_test_score

mean_test_score

std_test_score

rank_test_score

100 1 1 0.1 poly -21.0582 -15.0931 -13.1061 -16.4192 3379144 1
100 1 1 auto poly -21.0585 -15.0938 -13.1079 -16.4201 3.378569 2
10 1 1 0.1 poly -21.0632 -15.0891 -13.1296 -16.4273 3.374281 3
10 1 1 auto poly -21.0669 -15.0844 -13.1378 -16.4297 3373924 4
5 1 1 0.1 poly -21.0705 -15.0779 -13.1499 -16.4327 3372522 5
5 1 1 auto poly -21.0783 -15.07 -13.1706 -16.4396 3.37047 6
1 1 1 0.1 poly -21.1108 -15.0719 -13.2853 -16.4893 3.348266 7
1 1 1 auto poly -21.1371 -15.0771 -13.3767 -16.5303 3.330669 8
100 1 5 0.1 poly -21.342 -13.6709 -16.8217 3.277983 9
100 1 5 auto poly -21.3433 -13.6757 -16.8238 3.27709 10
10 1 5 0.1 poly -21.3462 -13.7048 -16.8351 3.268827 11
10 1 5 auto poly -21.3387 -13.712 -16.8361 3.26263 12
5 1 5 0.1 poly -21.3416 -13.7245 -16.8409 3.260091 13
1 5 auto poly -21.3427 -13.7441 -16.8489 3.253901 14
5 1 1 auto bf -20.6498 -14.2595 -15.8138 -16.9077 2.721088 15
5 2 1 auto bf -20.6498 -14.2595 -15.8138 -16.9077 2.721088 15
5 3 1 auto bf -20.6498 -14.2595 -15.8138 -16.9077 2.721088 15
1 1 5 0.1 poly -21.3795 -15.4936 -13.9365 -16.9365 3.205304 18
1 1 5 auto poly -21.3949 -15.5048 -14.001 -16.9669 3.190702 19
5 1 5 auto rbf -20.9992 -14.4048 -15.9997 -17.1346 2.809173 20
5 2 5 auto rbf -20.9992 -14.4048 -15.9997 -17.1346 2.809173 20
5 3 5 auto rbf -20.9992 -14.4048 -15.9997 -17.1346 2.809173 20
10 1 1 auto rbf -21.3387 -14.4573 -15.9225 -17.2395 2.959631 23
10 2 1 auto rbf -21.3387 -14.4573 -15.9225 -17.2395 2.959631 23
10 3 1 auto rbf -21.3387 -14.4573 -15.9225 -17.2395 2.959631 23
100 1 10 auto poly -21.8023 -16.0187 -14.262 -17.361 3221338 26
100 1 10 0.1 poly -21.8061 -16.0195 -14.2613 -17.3623 3.223181 27
10 1 10 0.1 poly -21.8077 -16.0101 -14.2828 -17.3669 3218343 28
10 1 10 auto poly -21.805 -16.0147 -14.2928 -17.3708 3213274 29
10 3 1 auto poly -22.9573 -16.5589 12,6119 -17.376 4.262858 30
5 1 10 0.1 poly -21.8035 -16.0167 -14.3118 -17.3773 3.206246 31
5 1 10 auto poly -21.8043 -16.0348 -14.3541 -17.3977 3.190538 32
10 1 5 auto bf -21.6173 -14.5132 -16.208 -17.4462 3.029486 33
10 2 5 auto bf -21.6173 -14.5132 -16.208 -17.4462 3.029486 33
10 3 5 auto bf -21.6173 -14.5132 -16.208 -17.4462 3.029486 33
5 3 1 0.1 poly -23.4266 -16.4875 -12.4787 -17.4643 4.522489 36
1 10 auto bf -21.1891 -14.6964 -16.5479 -17.4778 2.730963 37
5 2 10 auto hf -21.1891 -14.6964 -16.5479 -17.4778 2.730963 37
5 3 10 auto bf -21.1891 -14.6964 -16.5479 -17.4778 2.730963 37
1 1 10 0.1 poly -21.8086 -16.0825 -14.6914 -17.5275 3.079991 40
5 3 1 auto poly -22.0196 -16.8167 -13.7689 -17.5351 3.406436 41
5 1 1 0.1 bf -21.3465 -14.387 -16.9535 -17.5623 2.873634 42
5 2 1 0.1 bf -21.3465 -14.387 -16.9535 -17.5623 2.873634 42
5 3 1 0.1 bf -21.3465 -14.387 -16.9535 -17.5623 2.873634 42
0.1 1 1 0.1 poly -21.4126 -15.6472 -15.6454 -17.5684 271826 45
1 1 10 auto poly -21.7992 -16.0938 -14.825 -17.5727 3.033162 46
10 3 1 0.1 poly -24.2219 -16.5036 -122719 -17.6658 4.947305 47
10 1 10 auto rbf -21.5886 -14.9168 -16.8794 -17.7949 2.79965 48
10 2 10 auto rbf -21.5886 -14.9168 -16.8794 -17.7949 2.79965 48
10 3 10 auto rbf -21.5886 -14.9168 -16.8794 -17.7949 2.79965 48
5 3 5 auto poly -22.5464 -17.0467 -13.8863 -17.8265 3578198 51
5 3 5 0.1 poly -24.0717 -16.6893 -12.7971 -17.8527 4.675774 52
10 3 5 auto poly -23.8086 -16.7428 -13.0567 -17.8694 4461133 53
5 1 5 0.1 rbf -21.7249 -14.573 -17.3206 -17.8728 2.945745 54
5 2 5 0.1 rbf -21.7249 -14.573 -17.3206 -17.8728 2.945745 54
5 3 5 0.1 rbf -21.7249 -14.573 -17.3206 -17.8728 2.945745 54
0.1 1 5 0.1 poly -21.5493 -16.0203 -16.4113 -17.9936 2519312 57
1 3 1 0.1 poly -21.3888 -17.5141 -15.2067 -18.0365 2.550709 58
100 3 1 auto poly -25.4243 -16.5446 -12.3074 -18.0921 5.465623 59
10 1 1 0.1 bf -21.9998 -14.8422 -17.4997 -18.1139 2.954209 60
10 2 1 0.1 bf -21.9998 -14.8422 -17.4997 -18.1139 2.954209 60
10 3 1 0.1 bf -21.9998 -14.8422 -17.4997 -18.1139 2.954209 60
10 3 5 0.1 poly -25.0682 -16.8688 -12.4451 -18.1274 5.229648 63
1 3 5 0.1 poly -21.559 -17.5553 -15.2925 -18.1356 2.590977
10 1 5 0.1 bf -21.952 -14.8511 -17.6895 -18.1642 2.918284 65
10 2 5 0.1 bf -21.952 -14.8511 -17.6895 -18.1642 2.918284 65
10 3 5 0.1 bf -21.952 -14.8511 -17.6895 -18.1642 2.918284 65
0.1 1 1 auto poly -21.5548 -16.1401 -16.9781 -18.2243 2.379692 68
5 1 10 0.1 bf -21.6775 -14.821 -18.1831 -18.2272 2.799328 69
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Table A.5: Grid Search Results for Model B_SVR (Cont’d)

param_SVM__C | param_SVM_degree | param_SVM_epsilon | param_SVM__gamma | param_SVM__kernel | split0_test_score | splitl_test_score | split2_test_score | mean_test_score | std_test_score | rank_test_score
5 2 10 0.1 bf -21.6775 -14.821 -18.1831 -18.2272 2.799328 69
5 3 10 0.1 bf -21.6775 -14.821 -18.1831 -18.2272 2.799328 69
1 3 10 0.1 poly -22.195 -17.5763 -15.5504 -18.4406 2.780669 72
5 3 10 auto poly -23.4752 -17.2715 -14.7142 -18.487 3.678466 73
100 3 1 0.1 poly -26.3235 -16.7345 -12.4593 -18.5058 5.796965 74
10 3 10 auto poly -24.644 -17.2299 -13.7536 -18.5425 4.541852 75
10 1 10 0.1 rbf -21.8989 -15.2107 -18.6458 -18.5851 2.730764 76
10 2 10 0.1 b -21.8989 -15.2107 -18.6458 -18.5851 2730764 76
10 3 10 0.1 b -21.8989 -15.2107 -18.6458 -18.5851 2730764 76
5 3 10 0.1 poly 252702 -17.1765 -13.5435 -18.6634 4901483 79
0.1 1 5 auto poly 216929 -16.5247 -17.7839 -18.6672 2.200409 80
100 3 5 auto poly -26.4651 -17.047 -12.719 -18.7437 5.738642 81
1 1 1 auto rbf 227088 -15.0763 -18.481 -18.7554 3122014 82
1 2 1 auto bf 227088 -15.0763 -18.481 -18.7554 3122014 82
1 3 1 auto bf 227088 -15.0763 -18.481 -18.7554 3122014 82
0.1 1 10 0.1 poly -21.8396 -16.7708 -17.7139 -18.7748 2201099 85
1 3 1 auto poly -20.8735 -18.105 -17.3983 -18.7923 1.499665 86
10 3 10 0.1 poly -26.4336 -17.1172 -12.8667 -18.8058 5.665888 87
1 3 5 auto poly 20878 -18.2502 -17.8474 -18.9918 1343806 88
1 3 10 auto poly 207436 -18.4229 -17.9453 -19.0373 1222247 89
1 1 5 auto bf 226471 -15.328 -19.1681 -19.0477 2.989223 90
1 2 5 auto f 226471 -15.328 -19.1681 -19.0477 2.989223 90
1 3 5 auto f 226471 -15.328 -19.1681 -19.0477 2.989223 90
100 3 10 auto poly -27.2161 -17.161 -12.9073 -19.0948 5.999468 93
100 1 1 auto bf -22.5307 -16.067 -18.7977 -19.1318 2.649331 94
100 2 1 auto bf -22.5307 -16.067 -18.7977 -19.1318 2.649331 94
100 3 1 auto bf -22.5307 -16.067 -18.7977 -19.1318 2.649331 94
100 3 5 0.1 poly -27.3497 -17.2387 -12.8784 -19.1556 6.061364 97
0.1 1 1 auto sigmoid -22.6045 -16.4518 -18.5765 -19.2109 2.551592 98
0.1 2 1 auto sigmoid -22.6045 -16.4518 -18.5765 -19.2109 2.551592 98
0.1 3 1 auto sigmoid -22.6045 -16.4518 -18.5765 -19.2109 2.551592 98
1 1 10 auto bf -22.5102 -15.371 -19.9081 -19.2631 2.950021 101
1 2 10 auto b 225102 -15371 -19.9081 -19.2631 2.950021 101
1 3 10 auto b 225102 -15371 -19.9081 -19.2631 2.950021 101
100 1 5 auto b 227497 -16.2478 -19.0974 -19.3649 2661115 104
100 2 5 auto b 227497 -16.2478 -19.0974 -19.3649 2661115 104
100 3 5 auto rbf 227497 -16.2478 -19.0974 -19.3649 2661115 104
100 3 10 0.1 poly -27.8904 -17.1942 -13.1706 -19.4184 6211757 107
100 1 10 auto bf -22.4663 -16.4791 -19.3568 -19.4341 2.444878 108
100 2 10 auto bf -22.4663 -16.4791 -19.3568 -19.4341 2.444878 108
100 3 10 auto bf -22.4663 -16.4791 -19.3568 -19.4341 2.444878 108
0.1 1 10 auto poly 21,9538 -17.1707 -19.1918 -19.4388 1.960469 111
0.1 1 5 auto sigmoid 227465 -16.8604 -19.1902 -19.5991 2420311 112
0.1 2 5 auto sigmoid -22.7465 -16.8604 -19.1902 -19.5991 2420311 112
0.1 3 5 auto sigmoid 227465 -16.8604 -19.1902 -19.5991 2420311 112
0.1 1 1 0.1 sigmoid -23.5662 -16.636 -18.9497 -19.7173 2.880829
0.1 2 1 0.1 sigmoid -23.5662 -16.636 -18.9497 -19.7173 2.880829
0.1 3 1 0.1 sigmoid -23.5662 -16.636 -18.9497 -19.7173 2.880829
1 1 1 0.1 bf -23.5792 -15.5075 -20.1396 -19.7421 3.307237 118
1 1 0.1 bf -23.5792 -15.5075 -20.1396 -19.7421 3307237 118
1 3 1 0.1 bf -23.5792 -15.5075 -20.1396 -19.7421 3307237 118
0.1 1 5 0.1 sigmoid -23.6654 -16.8635 -19.1649 -19.8979 2.824813 121
0.1 2 5 0.1 sigmoid -23.6654 -16.8635 -19.1649 -19.8979 2.824813 121
0.1 3 5 0.1 sigmoid -23.6654 -16.8635 -19.1649 -19.8979 2.824813 121
1 1 5 0.1 bf -23.4892 -15.6399 -20.8893 -20.0061 3.264735 124
1 2 5 0.1 rbf 234802 -15.6399 -20.8893 -20.0061 3264735 124
1 3 5 0.1 b 234802 -15.6399 -20.8893 -20.0061 3264735 124
0.1 1 10 auto sigmoid 229713 -17.3961 20441 -20.2695 2279279 127
0.1 2 10 auto sigmoid 229713 -17.3961 20441 -20.2695 2279279 127
0.1 3 10 auto sigmoid 229713 -17.3961 20441 -20.2695 127
0.1 1 10 0.1 sigmoid 237414 -17.2486 -19.8921 20294 130
0.1 2 10 0.1 sigmoid 237414 -17.2486 -19.8921 20294 130
0.1 3 10 0.1 sigmoid 237414 -17.2486 -19.8921 20294 130
1 1 10 0.1 bf -23.5635 -15.7059 217475 20339 133
1 2 10 0.1 bf -23.5635 -15.7059 217475 -20.339 133
1 3 10 0.1 bf -23.5635 -15.7059 217475 20339 3.358922 133
100 1 5 0.1 bf 22.8264 -17.1191 -21.4398 -20.4618 2430461 136
100 2 5 0.1 bf 22,8264 -17.1191 -21.4398 -20.4618 2430461 136
100 3 5 0.1 bf -22.8264 171191 -21.4398 -20.4618 2430461 136
100 1 1 0.1 tbf 231314 -17.0166 21259 -20.4692 2558144 139
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Table A.5: Grid Search Results for Model B_SVR (Cont’d)

param_SVM__C | param_SVM__degree | param_SVM_epsilon | param_SVM__gamma | param_SVM__kernel | split0_test_score | split]_test_score | split2_test_score | mean_test_score | std_test_score | rank_test_score
100 2 1 0.1 tbf -23.1314 -17.0166 -21.2596 -20.4692 2.558144 139
100 3 1 0.1 rbf -23.1314 -17.0166 -21.2596 -20.4692 2.558144 139
100 1 10 0.1 bf -22.9794 -17.1629 -21.5272 -20.5565 2471781 142
100 2 10 0.1 bf -22.9794 -17.1629 -21.5272 -20.5565 2.471781 142
100 3 10 0.1 bf -22.9794 -17.1629 -21.5272 -20.5565 2.471781 142
0.1 3 1 0.1 poly 21,2987 -19.5648 209853 206163 0.754398 145
0.1 3 5 0.1 poly -21.2385 -19.6402 -21.2961 -20.7249 0.767395 146
0.1 3 10 0.1 poly 212018 -19.9342 217245 -20.9535 0751701 147
0.1 3 1 auto poly 212447 220711 -27.9225 -23.7461 2972374 148
0.1 3 5 auto poly 213113 222437 -28.0873 -23.8808 2.998706 149
0.1 3 10 auto poly -21.2962 223074 -28.1924 23.932 3.0407 150
0.1 1 1 auto tbf -27.7839 216641 -33.6425 -27.6968 4.890563 151
0.1 2 1 auto bf -27.7839 216641 -33.6425 -27.6968 4.890563 151
0.1 3 1 auto bf -27.7839 216641 -33.6425 -27.6968 4.890563 151
0.1 1 5 auto bf -27.882 -21.5696 -34.0706 -27.8407 5103588 154
0.1 2 5 auto bf -27.882 -21.5696 -34.0706 -27.8407 5103588 154
0.1 3 5 auto bf -27.882 -21.5696 -34.0706 -27.8407 5103588 154
0.1 1 10 auto bf -27.8283 215815 -34.4803 -27.9664 5270475 157
0.1 2 10 auto bf -27.8283 215815 -34.4803 -27.9664 5270475 157
0.1 3 10 auto 1bf -27.8283 215815 -34.4803 -27.9664 5270475 157
0.1 1 5 0.1 1bf -29.1367 -23.4856 -37.5326 -30.0517 5771042 160
0.1 2 5 0.1 bf -29.1367 -23.4856 -37.5326 -30.0517 5771042 160
0.1 3 5 0.1 bf -29.1367 -23.4856 -37.5326 -30.0517 5771042 160
0.1 1 10 0.1 f -29.1086 232402 -37.8704 -30.0731 6011542 163
0.1 2 10 0.1 f -29.1086 232402 -37.8704 -30.0731 6011542 163
0.1 3 10 0.1 rbf -29.1086 -23.2402 -37.8704 -30.0731 6.011542 163
0.1 1 1 0.1 rbf -29.0779 -23.5963 -37.6671 -30.1138 5.790902 166
0.1 2 1 0.1 bf -29.0779 -23.5963 -37.6671 -30.1138 5.790902 166
0.1 3 1 0.1 bf -29.0779 -23.5963 -37.6671 -30.1138 5.790902 166
100 2 1 0.1 poly -32.6179 -20.4954 -46.6323 -33.2486 10.67965 169
100 2 10 0.1 poly -32.7212 -20.254 -46.7792 -33.2515 10.83537 170
100 2 0.1 poly 327493 205338 -46.6046 -33.2959 10.65038 171
100 2 5 auto poly -32.8449 -20.6061 -46.4532 333014 172
100 2 10 auto poly -32.6927 -20.3369 -46.9075 333124 10.85626 173
100 2 1 auto poly 327166 -20.7035 -46.6903 333701 1061915 174
10 2 5 0.1 poly 32,9779 212767 -47.0764 33777 10.54783 175
10 2 1 0.1 poly -32.8228 213744 -47.3686 -33.8553 1063717 176
10 10 0.1 poly -32.9169 211818 411571 339521 10.87423 177
10 auto poly -33.0238 -21.9496 -47.8266 -34.2667 10.60073 178
5 5 0.1 poly -33.0207 -21.9793 -47.8695 -34.2898 10.60763 179
10 1 auto poly -33.0179 22,0574 -47.8323 -34.3025 1056166 180
5 1 0.1 poly -33.0201 -22.0853 -47.8621 -34.3225 10.56357 181
10 10 auto poly -33.1006 217825 -48.4411 344414 10.92455 182
5 10 0.1 poly -33.0994 218145 -48.4313 -34.4484 10.90803 183
5 5 auto poly -33.1343 227797 -48.8969 -34.937 10.73823 184
5 2 1 auto poly -33.0675 -23.1003 -49.0366 -35.0681 10.68251 185
5 2 10 auto poly -33.1224 22,5849 -49.7671 -35.1581 11.19006 186
1 2 10 0.1 poly -33.4612 -24.5411 -52.1359 -36.7127 11.49775 187
1 2 5 0.1 poly -33.9707 -24.5444 -52.1777 -36.8976 11.46952 188
1 2 1 0.1 poly -34.3256 -24.8685 -51.8959 -37.03 11.19838 189
1 2 10 auto poly -35.1491 -26.4755 -55.0957 -38.9068 11.98247 190
1 2 5 auto poly -35.3768 -26.6764 -55.2554 -39.1029 11.96115 191
1 2 1 auto poly -35.6474 -26.9019 -55.2274 -39.2589 11.84245 192
0.1 2 5 auto poly -35.1308 -30.2271 -54.8898 -40.0826 10.65998 193
0.1 2 1 auto poly -34.9467 -30.2879 -55.3183 -40.1843 10.86904 194
0.1 2 10 auto poly 353127 304618 -55.0326 -40.269 106256 195
0.1 2 1 0.1 poly 372728 303981 -58.4651 42.0453 11.94493 196
0.1 2 5 0.1 poly -37.1566 -30.6681 -58.4202 -42.0816 1185291 197
0.1 2 10 0.1 poly -37.0958 -30.6059 -58.6021 -42.1013 11.96488 198
1 1 10 auto sigmoid -50.6192 -45.5951 -59.1947 -51.803 5.614748 199
1 2 10 auto sigmoid -50.6192 -45.5951 -59.1947 -51.803 5.614748 199
1 3 10 auto sigmoid -50.6192 -45.5951 -59.1947 -51.803 5.614748 199
1 1 5 auto sigmoid -51.4764 -46.0727 -59.427 523254 5.484846 202
1 2 5 auto sigmoid -51.4764 -46.0727 -59.427 523254 5.484846 202
1 3 5 auto sigmoid -51.4764 -46.0727 -59.427 523254 5.484846 202
1 1 1 auto sigmoid -52.161 -46.2 593181 525714 5349031 205
1 2 1 auto sigmoid -52.161 -46.2 593181 525714 5349031 205
1 3 1 auto sigmoid -52.161 -46.235 593181 525714 5349031 205
1 1 10 0.1 sigmoid -103.567 -99.508 -127.888 -110.321 12.53187 208
1 2 10 0.1 sigmoid -103.567 -99.508 -127.888 -110.321 12.53187 208
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Table A.5: Grid Search Results for Model B_SVR (Cont’d)

param_SVM__C | param_SVM_degree | param_SVM_epsilon | param_SVM__gamma | param_SVM__kernel | split0_test_score | split1_test_score | split2_test_score | mean_test_score | std_test_score | rank_test_score

1 3 10 0.1 sigmoid -103.567 -99.508 -127.888 -110.321 12.53187 208

1 1 5 0.1 sigmoid -103.438 -99.6904 -128.272 -110.467 12.68281 211

1 2 5 0.1 sigmoid -103.438 -99.6904 -128.272 -110.467 12.68281 211

1 3 5 0.1 sigmoid -103.438 -99.6904 -128272 -110467 1268281 211
1 1 1 0.1 sigmoid -103.72 -99.9878 -128.601 -110.769 1270039 214
1 2 1 0.1 sigmoid -103.72 -99.9878 -110.769 1270039 214
1 3 1 0.1 sigmoid -103.72 -99.9878 -110.769 12.70039 214
5 1 5 auto sigmoid -386.93 -136.704 -293.977 1118213 217
5 2 5 auto sigmoid -386.93 -136.704 293977 1118213 217
5 3 5 auto sigmoid -386.93 -136.704 -293.977 1118213 217
5 1 1 auto sigmoid -386.43 -136.617 -294.566 112.1817 220
5 2 1 auto sigmoid -386.43 -136.617 -294.566 112.1817 220
5 3 1 auto sigmoid -386.43 -136.617 -360.652 -294.566 112.1817 220
5 1 10 auto sigmoid -388.235 223325 -359.428 -323.663 71.91747 23
5 2 10 auto sigmoid -388.235 223325 -359.428 -323.663 71.91747 23
5 3 10 auto sigmoid -388.235 223325 -359.428 -323.663 71.91747 223
5 1 10 0.1 sigmoid 732592 -470.543 -656.762 -619.966 110.0998 226
5 2 10 0.1 sigmoid 732592 -470.543 -656.762 -619.966 110.0998 226
5 3 10 0.1 sigmoid 732592 -470.543 -656.762 -619.966 110.0998 226
10 1 10 auto sigmoid 761337 -449.889 724395 -645.207 138.9318 229
10 2 10 auto sigmoid 761337 -449.889 724395 -645.207 138.9318 229
10 3 10 auto sigmoid 761337 -449.889 724395 -645.207 138.9318 229
10 1 1 auto sigmoid -761.034 -450.073 -724.889 -645.332 138.855 232
10 2 1 auto sigmoid -761.034 -450.073 -724.889 -645.332 138.855 232
10 3 1 auto sigmoid -761.034 -450.073 -724.889 -645.332 138.855 232
10 1 5 auto sigmoid -762.034 -450.345 -725.431 -645.937 139.1091 235
10 2 5 auto sigmoid -762.034 -450.345 -725.431 -645.937 139.1091 235
10 3 5 auto sigmoid -762.034 -450.345 -725.431 -645.937 139.1091 235
5 1 1 0.1 sigmoid 73178 -471.659 -737.986 -647.142 124.1112 238
2 1 0.1 sigmoid 73178 -471.659 -737.986 647.142 124.1112 238

5 3 1 0.1 sigmoid 73178 -471.659 -737.986 -647.142 124.1112 238
5 1 5 0.1 sigmoid -732.779 -471.605 -738.44 -647.608 124.4742 241
5 2 5 0.1 sigmoid -732.779 -471.605 -738.44 -647.608 124.4742 241
5 3 5 0.1 sigmoid -732.779 -471.605 -738.44 -647.608 124.4742 241
10 1 5 0.1 sigmoid -1463.58 -555.756 -1474.96 -1164.77 430.6608 244
10 2 5 0.1 sigmoid -1463.58 -555.756 -1474.96 -1164.77 430.6608 244
10 3 5 0.1 sigmoid -1463.58 -555.756 -1474.96 -1164.77 430.6608 244
10 1 1 0.1 sigmoid -1464.36 911593 -1477.28 -1284.41 263.6749 247
10 2 1 0.1 sigmoid -1464.36 911593 -1477.28 -1284.41 263.6749 247
10 3 1 0.1 sigmoid -1464.36 911593 -1477.28 -1284.41 263.6749 247
10 1 10 0.1 sigmoid -1465.79 -932.69 -1474.76 -1291.08 253.4462 250
10 2 10 0.1 sigmoid -1465.79 -932.69 -1474.76 -1291.08 253.4462 250
10 3 10 0.1 sigmoid -1465.79 -932.69 -1474.76 -1291.08 253.4462 250
100 1 5 auto sigmoid -7571.94 -4495.99 -7309.65 -6459.19 1392318 253
100 5 auto sigmoid -7571.94 -4495.99 -7309.65 -6459.19 1392318 253
100 3 5 auto sigmoid -7571.94 -4495.99 -7309.65 -6459.19 1392318 253
100 1 1 auto sigmoid 757174 -4500.49 732078 -6464.34 1392.423 256
100 2 1 auto sigmoid 757174 -4500.49 732078 -6464.34 1392.423 256
100 3 1 auto sigmoid 757174 -4500.49 732078 -6464.34 1392.423 256
100 1 10 auto sigmoid -7576.28 -4502.54 -7318.39 -6465.74 1392.177 259
100 2 10 auto sigmoid -7576.28 -4502.54 -7318.39 -6465.74 1392.177 259
100 3 10 auto sigmoid -7576.28 -4502.54 -7318.39 -6465.74 1392.177 259
100 1 1 0.1 sigmoid -14699 9273.93 -14682.8 -12885.2 255358 262
100 2 1 0.1 sigmoid -14699 9273.93 -14682.8 -12885.2 255358 262
100 3 1 0.1 sigmoid -14699 9273.93 -14682.8 -12885.2 255358 262
100 1 5 0.1 sigmoid -14717.5 9351.29 -14709.6 -12926.1 2527791 265
100 2 5 0.1 sigmoid -14717.5 -9351.29 -14709.6 -12926.1 2527791 265
100 3 5 0.1 sigmoid -14717.5 -9351.29 -14709.6 -12926.1 2527791 265
100 1 10 0.1 sigmoid -14692.9 -9324.18 -14799.2 -12938.8 2556258 268
100 2 10 0.1 sigmoid -14692.9 932418 -14799.2 -12938.8 2556258 268
100 3 10 0.1 sigmoid -14692.9 932418 -14799.2 -12938.8 2556258 268
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Table A.6: Grid Search Results for Model C_SVR

param_SVM__C

param_SVM_degree

param_SVM__epsilon

param_SVM__gamma

param_SVM__kernel

split0_test_score

splitl_test_score

split2_test_score

mean_test_score

std_test_score

rank_test_score

100 1 1 auto poly -28.1628 -19.627 -22.6952 -23.495 3.530343 1
100 1 1 0.1 poly -28.1632 -19.6269 -22.6971 -23.4958 3.530382 2
10 1 1 0.1 poly -28.1521 -19.6359 -22.7238 -23.5039 3.520222 3
10 1 1 auto poly -28.1535 -19.6444 -22.7182 -23.5054 3.518165 4
5 1 1 0.1 poly -28.1307 -19.6248 -22.8329 -23.5295 3.507276 5
5 1 1 auto poly -28.1401 -19.6325 -22.8353 -23.536 3.508405 6
1 1 1 0.1 poly -27.9908 -19.776 -23.2545 -23.6738 3.366753 7
1 1 1 auto poly -28.0122 -19.7917 -23.2292 -23.6777 3.370923 8
100 1 5 auto poly -28.5437 -20.3132 -23.5472 -24.1347 3.385675 9
100 1 5 0.1 poly -28.5443 -20.3133 -23.5472 -24.1349 3.385873 10
10 1 5 0.1 poly -28.5292 -20.3395 -23.6189 -24.1625 3.365423 11
10 1 5 auto poly -28.5316 -20.3361 -23.621 -24.1629 3.367658 12
5 1 5 auto poly -28.5213 -20.3436 -23.6447 -24.1699 3.359148 13
5 1 5 0.1 poly -28.5182 -20.3447 -23.6607 -24.1745 3.356545 14
1 1 5 auto poly -28.3743 -20.4144 -24.0254 -24.2713 3.254261 15
1 1 5 0.1 poly -28.363 -20.4338 -24.1202 -24.3057 3.239743 16
0.1 1 1 auto poly -26.8746 -21.2103 -27.5074 -25.1974 2.831158 17
100 1 10 auto poly -29.1809 -21.3607 -25.1211 -25.2209 3.193349 18
100 1 10 0.1 poly -29.183 -21.3592 -25.126 -25.2227 3.194792 19
10 1 10 0.1 poly -29.17 -21.3714 -25.1869 -25.2428 3.184028 20
10 1 10 auto poly -29.1793 -21.3789 -25.1752 -25.2445 3.184882 21
5 1 10 auto poly -29.172 -21.3788 -25.2438 -25.2649 3.181596 22
5 1 10 0.1 poly -29.1785 -21.3843 -25.2501 -25.271 3.182011 23
0.1 1 1 auto sigmoid -26.779 -21.2094 -28.1319 -25.3734 2.995791 24
0.1 2 1 auto sigmoid 26.779 -21.2094 -28.1319 253734 2.995791 24
0.1 3 1 auto sigmoid -26.779 -21.2094 -28.1319 253734 2.995791 24
1 1 10 auto poly -29.0331 -21.5634 -25.5582 -25.3849 3.051956 27
1 1 10 0.1 poly -29.021 -21.5865 -25.5953 -25.4009 3.038215 28
0.1 1 1 0.1 poly -26.8229 -21.3871 -28.2463 -25.4854 29556435 29
0.1 1 5 auto poly -27.1188 -21.5845 -28.2838 -25.6623 2922426 30
0.1 1 1 0.1 sigmoid -26.6746 -21.5009 -28.884 -25.6865 3.094048 31
0.1 2 1 0.1 sigmoid -26.6746 -21.5009 -28.884 -25.6865 3.094048 31
0.1 3 1 0.1 sigmoid -26.6746 -21.5009 -28.884 -25.6865 3.094048 31
0.1 1 5 auto sigmoid -27.0036 -21.5418 -29.0744 -25.8733 3.177325 34
0.1 2 5 auto sigmoid -27.0036 -21.5418 -29.0744 -25.8733 3.177325 34
0.1 3 5 auto sigmoid -27.0036 -21.5418 -29.0744 -25.8733 3.177325 34
0.1 1 5 0.1 poly -27.0558 -21.8077 -28.9107 -25.9247 3.008069 37
0.1 1 5 0.1 sigmoid -26.9282 -21.8144 -29.5315 -26.0914 3.205585 38
0.1 2 5 0.1 sigmoid -26.9282 -21.8144 -29.5315 -26.0914 3.205585 38
0.1 3 5 0.1 sigmoid -26.9282 -21.8144 -29.5315 -26.0914 3.205585 38
0.1 1 10 auto poly -27.8465 -22.6342 -29.7941 -26.7583 3.022593 41
0.1 1 10 auto sigmoid -27.6739 -22.5637 -30.241 -26.8262 3.191019 42
0.1 2 10 auto sigmoid -27.6739 -22.5637 -30.241 -26.8262 3.191019 42
0.1 3 10 auto sigmoid -27.6739 -22.5637 -30.241 -26.8262 3.191019 42
0.1 1 10 0.1 poly -27.747 -22.8029 -30.2103 -26.92 3.08006 45
0.1 1 10 0.1 sigmoid -27.6264 -22.7872 -30.8191 -27.0776 3.301911 46
0.1 2 10 0.1 sigmoid -27.6264 -22.7872 -30.8191 -27.0776 3.301911 46
0.1 3 10 0.1 sigmoid -27.6264 -22.7872 -30.8191 -27.0776 3.301911 46
1 1 1 0.1 rbf -29.718 -20.551 -31.8787 -27.3825 4910518 49
1 2 1 0.1 rbf 29.718 -20.551 -31.8787 -27.3825 4910518 49
1 3 1 0.1 rbf 29.718 -20.551 -31.8787 -27.3825 4910518 49
1 3 1 0.1 poly -31.653 -23.044 -27.7041 -27.4671 3518591 52
1 3 1 auto poly -32.5696 -22.8088 -27.0256 -27.468 3.997122 53
1 1 1 auto rbf -29.8918 -20.729 -32.0713 -27.5641 4.914359 54
1 2 1 auto rbf -29.8918 -20.729 -32.0713 -27.5641 4.914359 54
1 3 1 auto rbf -29.8918 -20.729 -32.0713 -27.5641 4.914359 54
1 1 5 0.1 bf -29.9916 -20.6672 -32.0651 -27.5746 4.957122 57
1 2 5 0.1 bf -29.9916 -20.6672 -32.0651 4.957122 57
1 3 5 0.1 bf -29.9916 -20.6672 -32.0651 -27.5746 4.957122 57
5 1 1 0.1 bf -30.8976 -20.9305 -31.0661 -27.6314 4.73875 60
5 2 1 0.1 bf -30.8976 -20.9305 -31.0661 -27.6314 4.73875 60
5 3 1 0.1 bf -30.8976 -20.9305 -31.0661 -27.6314 4.73875 60
5 1 1 auto bf -30.8884 -21.0185 -31.2265 -27.7111 4.734404 63
5 2 1 auto bf -30.8884 -21.0185 -31.2265 -27.7111 4.734404 63
5 3 1 auto bf -30.8884 -21.0185 -31.2265 -27.7111 4.734404 63
1 3 5 0.1 poly -31.7058 -23.4829 -27.947 -27.7119 3.361104 66
5 3 1 0.1 poly -34.8616 -22.6331 -25.6907 -27.7285 5.196079 67
1 1 5 auto bf -30.113 -20.7886 -32.2853 -27.7289 4.987062 68
1 2 5 auto bf -30.113 -20.7886 -32.2853 -27.7289 4.987062 68
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Table A.6: Grid Search Results for Model C_SVR (Cont’d)

param_SVM__C | param_SVM_degree | param_SVM_epsilon | param_SVM__gamma | param_SVM__kernel | split0_test_score | splitl_test_score | split2_test_score | mean_test_score | std_test_score | rank_test_score

1 3 5 auto bf -30.113 -20.7886 -32.2853 -27.7289 4.987062 68
5 3 1 auto poly -35.3449 -22.5645 -25.3669 -27.7588 5.484842 71
1 3 5 auto poly -32.7178 -23.3051 -27.3172 -27.78 3.856635 72
10 3 1 0.1 poly -35.6358 -22.6384 -25.4308 -27.9017 5.586424 73
5 1 5 0.1 bf -31.2489 -20.9554 -31.7391 -27.9811 4.971955 74
5 2 5 0.1 bf -31.2489 -20.9554 -31.7391 -27.9811 4.971955 74
5 3 5 0.1 bf -31.2489 -20.9554 -31.7391 -27.9811 4.971955 74
10 3 1 auto poly -35.7443 226795 25,543 -27.989 5.607085 71
5 3 5 0.1 poly -35.4803 22711 -26.0938 -28.095 5401715 78
5 1 5 auto b 31309 210908 -31.9003 28.1 4962154 79
5 2 5 auto b 31309 -21.0908 -31.9003 28.1 4962154 79
5 3 5 auto bf 31309 -21.0908 -31.9003 28.1 4962154 79
5 3 5 auto poly -35.7505 22.8105 257434 -28.1015 5539635 82
10 1 1 0.1 bf 316018 212119 -31.5668 -28.1268 4.889595 83
10 2 1 0.1 bf 316018 212119 -31.5668 -28.1268 4.889595 83
10 3 1 0.1 bf 316018 212119 -31.5668 -28.1268 4.889595 83
10 1 1 auto bf 315127 213724 -31.5887 -28.158 4798196 86
10 2 1 auto bf 315127 213724 -31.5887 -28.158 4798196 86
10 3 1 auto bf 315127 213724 -31.5887 -28.158 4798196 86
1 1 10 0.1 bf -30.3643 -20.9667 332574 -28.1961 524666 89
1 2 10 0.1 bf -30.3643 -20.9667 332574 -28.1961 5.24666 89
1 3 10 0.1 f -30.3643 -20.9667 332574 -28.1961 524666 89
10 3 5 0.1 poly 362474 -22.8867 4256282 282541 5761828 92
1 3 10 auto poly -32.861 236132 -28.3598 28278 3775832 93
10 1 5 0.1 f -31.6969 212243 319501 282904 499755 94
10 2 5 0.1 bf -31.6969 -21.2243 -31.9501 -28.2904 4.99755 94
10 3 5 0.1 bf -31.6969 -21.2243 -31.9501 -28.2904 4.99755 94
1 3 10 0.1 poly -32.3382 -23.8612 -28.7935 -28.331 3476143 97

1 1 10 auto bf -30.4354 -21.0772 -33.5423 -28.3516 5.297909 98

1 2 10 auto bf -30.4354 -21.0772 -33.5423 -28.3516 5.297909 98

1 3 10 auto b 304354 210772 -33.5423 -28.3516 5297909 98
5 3 10 0.1 poly -35.4598 -23.1505 -26.5675 -28.3926 5.188305 101
10 3 5 auto poly -36.8087 22.9592 -25.5756 -28.4478 6.00775 102
10 1 5 auto b 316714 214958 322232 -28.4635 4.932009 103
10 2 5 auto b 316714 -21.4958 322232 -28.4635 4.932009 103
10 3 5 auto b 316714 -21.4958 322232 -28.4635 4.932009 103
5 3 10 auto poly -35.9537 -23.0126 -26.4492 284718 5473333 106
100 3 1 auto poly -37.4605 224882 69 -28.4952 6.460458 107
100 3 1 0.1 poly 375168 22,5226 55 285216 6477628 108
10 10 0.1 poly -36.766 227414 -26.306 286044 5951744 109
10 10 auto poly -36.9542 227672 -26.2693 -28.6636 6.034171 110
5 1 10 0.1 bf 315108 216879 329142 -28.7043 4.994295 111
2 10 0.1 bf 315108 216879 329142 -28.7043 4.994295 111

5 3 10 0.1 bf 315108 216879 329142 -28.7043 4.994295 111
5 1 10 auto bf -31.4857 21793 -33.0917 287901 4.990966 114
5 2 10 auto tbf -31.4857 21793 -33.0917 287901 4.990966 114
5 3 10 auto bf -31.4857 21793 -33.0917 287901 4.990966 114
100 3 5 auto poly -38.0037 227955 -25.9705 -28.9232 6.550354 117
100 3 5 0.1 poly -37.9553 228748 -25.9597 2893 6.504979 118
10 1 10 0.1 bf -322118 -21.8241 -33.1421 -29.0594 5.130148 119
10 2 10 0.1 bf -322118 -21.8241 -33.1421 -29.0594 5.130148 119
10 3 10 0.1 bf -32.2118 -21.8241 -33.1421 -29.0594 5.130148 119
100 3 10 0.1 poly -38.1663 -22.7694 -26.4394 -29.1251 6.566328 122
100 3 10 auto poly -38.1561 -22.7408 -26.4842 -29.127 6.564884 123
10 1 10 auto bf -32.2434 -21.9294 -33.3875 -29.1868 52974 124
10 2 10 auto rbf 322434 21,9294 -33.3875 -29.1868 5.152074 124
10 3 10 auto b 322434 219294 -33.3875 -29.1868 5152974 124
0.1 3 1 auto poly -27.6135 -25.7456 -36.4099 29.923 4.649864 127
0.1 3 5 auto poly 277444 25.9215 -30.0779 4.64896 128
100 1 5 0.1 b 322279 225573 -30.1443 5543515 129
100 2 5 0.1 rbf 322279 225573 -30.1443 129
100 3 5 0.1 rbf 322279 225573 -30.1443 129
100 1 5 auto rbf 317943 229109 -30.2275 132
100 2 5 auto bf 317943 22,9109 59772 -30.2275 5448117 132
100 5 auto bf 317943 229109 -35.9772 -30.2275 5448117 132
100 1 1 0.1 bf 321126 227828 -35.8745 -30.2566 5503396 135
100 2 1 0.1 bf 321126 227828 -35.8745 -30.2566 5503396 135
100 3 1 0.1 bf 321126 227828 -35.8745 -30.2566 5503396 135
0.1 3 10 auto poly -28.0327 -26.1639 -36.7163 4303043 459771 138
100 1 10 0.1 tbf 323147 22,6522 -36.0676 4303448 5651142 139
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Table A.6: Grid Search Results for Model C_SVR (Cont’d)

param_SVM__C | param_SVM__degree | param_SVM_epsilon | param_SVM__gamma | param_SVM__kernel | split0_test_score | split]_test_score | split2_test_score | mean_test_score | std_test_score | rank_test_score
100 2 10 0.1 tbf -323147 -22.6522 -36.0676 -30.3448 5.651142 139
100 3 10 0.1 rbf -323147 -22.6522 -36.0676 -30.3448 5.651142 139
100 1 1 auto bf -31.6285 -23.1632 -36.2707 -30.3541 5.42645 142
100 2 1 auto bf -31.6285 -23.1632 -36.2707 -30.3541 5.42645 142
100 3 1 auto bf -31.6285 -23.1632 -36.2707 -30.3541 5.42645 142
100 1 10 auto b 320323 -23.0865 363428 304872 5.521046 145
100 2 10 auto rbf 320323 -23.0865 363428 304872 5.521046 145
100 3 10 auto tbf 32,0323 -23.0865 -36.3428 -30.4872 5521046 145
0.1 3 1 0.1 poly 27.7016 26,4978 -38.7753 -30.9916 5525845 148
0.1 3 5 0.1 poly 277858 -26.6576 -39.056 311665 5597746 149
0.1 3 10 0.1 poly 27.9704 -26.8167 -38.8876 -31.2249 5438793 150
0.1 1 1 0.1 tbf -29.4445 245818 -39.7565 -31.2609 326801 151
0.1 2 1 0.1 bf 29.4445 245818 -39.7565 -31.2609 6326801 151
0.1 3 1 0.1 bf -29.4445 245818 -39.7565 -31.2609 6326801 151
0.1 1 5 0.1 bf -29.7802 24.5519 -39.839 -31.3903 6343948 154
0.1 2 5 0.1 bf -29.7802 24.5519 -39.839 -31.3903 6343948 154
0.1 3 5 0.1 bf -29.7802 245519 -39.839 -31.3903 6343948 154
0.1 1 1 auto bf -29.6537 248611 -40.4431 -31.6526 6516482 157
0.1 2 1 auto bf -29.6537 -24.8611 -40.4431 -31.6526 6516482 157
0.1 3 1 auto 1bf -29.6537 248611 -40.4431 -31.6526 6516482 157
0.1 1 10 0.1 1bf -29.945 249511 -40.2043 317001 6349573 160
0.1 2 10 0.1 bf -29.945 249511 -40.2043 -31.7001 6349573 160
0.1 3 10 0.1 bf -29.945 249511 -40.2043 317001 6349573 160
0.1 1 5 auto f -29.9498 -24.8705 -40.4421 317541 6483852 163
0.1 2 5 auto bf -29.9498 -24.8705 -40.4421 -31.7541 6.483852 163
0.1 3 5 auto rbf -29.9498 -24.8705 -40.4421 -31.7541 6.483852 163
0.1 1 10 auto rbf -30.1314 -25.0888 -40.7197 -31.98 6.5138 166
0.1 2 10 auto bf -30.1314 -25.0888 -40.7197 -31.98 6.5138 166
0.1 3 10 auto bf -30.1314 -25.0888 -40.7197 -31.98 6.5138 166
100 2 5 auto poly 347138 -25.63 472501 -35.8647 8.863797 169
100 2 5 0.1 poly 34.715 -25.6265 472746 35872 8.875584 170
100 2 10 auto poly -34.337 -25.7943 475233 -35.8849 8.938074 171
100 2 10 0.1 poly -34.3349 -25.7961 -47.5615 -35.8975 8954108 172
100 2 1 0.1 poly -34.9843 -25.7044 -47.2399 -35.9762 8819771 173
10 2 5 auto poly -34.633 -25.7085 -47.5962 -35.9792 8986168 174
100 2 1 auto poly -34.9837 257443 472321 -35.9867 8.800959 175
10 2 10 auto poly -34.3577 258317 -47.9438 -36.0444 9.105682 176
10 5 0.1 poly -34.6816 -25.7193 477822 -36.061 9.059778 177
10 10 0.1 poly -34.3805 25,8215 -48.0297 -36.0772 9.145499 178
5 10 auto poly 34324 -25.8964 -48.2091 -36.1432 9.199483 179
10 1 auto poly -35.0334 -25.8988 -47.6285 -36.1869 8.908565 180
5 10 0.1 poly -343633 -25.9259 -48.4396 -36.2429 9.286765 181
5 5 auto poly -34.7937 -25.8394 -48.1581 -36.2637 9.17066 182
10 1 0.1 poly -35.0578 -25.9537 477821 -36.2645 8952155 183
5 5 0.1 poly 347734 -25.8639 -48.1839 -36.2737 9.173664 184
5 2 1 auto poly -35.0788 26,0134 -47.9974 -36.3632 9.02077 185
5 2 1 0.1 poly -35.0322 26,0192 482742 -36.4419 9.140049 186
1 2 10 auto poly -34.9371 -26.679 -50.7875 -37.4679 10.00365 187
1 2 5 auto poly -35.4753 -26.7369 -50.2567 -37.4896 9.706984 188
0.1 2 1 0.1 poly -33.804 -28.6468 -50.2745 -37.5751 9.223343 189
1 2 1 auto poly -35.573 -26.7453 -50.4884 -37.6022 9.798719 190
0.1 2 1 auto poly -33.9907 -28.4609 -50.6555 -37.7024 9.433326 191
0.1 2 5 0.1 poly -33.9028 -28.851 -50.5278 -37.7605 9.260387 192
1 2 5 0.1 poly -35.6238 -26.9839 -50.7758 -37.7945 9.833519 193
1 2 10 0.1 poly -35.362 -26.9052 -51.1242 -37.7971 10.03618 194
1 2 1 0.1 poly -35.7463 269584 -50.8455 -37.8501 9.864679 195
0.1 2 5 auto poly -34.0858 287196 509059 -37.9038 9.451315 196
0.1 2 10 0.1 poly -34.1016 -29.1927 -51.0319 -38.1087 9.355226 197
0.1 2 10 auto poly 342771 -28.9583 512071 -38.1475 9.486379 198
1 1 10 0.1 sigmoid -63.2803 -35.0187 526194 -50.3061 1165314 199
1 2 10 0.1 sigmoid -63.2803 -35.0187 526194 -50.3061 11.65314 199
1 3 10 0.1 sigmoid -63.2803 -35.0187 526194 -50.3061 1165314 199
1 1 5 0.1 sigmoid -64.096 -34.8728 -52.2076 503921 1199916 202
1 2 5 0.1 sigmoid -64.096 -34.8728 -52.2076 -50.3921 11.99916 202
1 3 5 0.1 sigmoid -64.096 34.8728 -52.2076 503921 1199916 202
1 1 1 0.1 sigmoid -64.8777 -34.6094 -52.1646 -50.5506 12.4096 205
1 2 1 0.1 sigmoid -64.8777 -34.6094 -52.1646 -50.5506 12.4096 205
1 3 1 0.1 sigmoid -64.8777 -34.6094 -52.1646 -50.5506 12.4096 205
1 1 10 auto sigmoid 774767 417304 -63.652 -60.953 14.71761 208
1 2 10 auto sigmoid 774767 417304 -63.652 -60.953 14.71761 208
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Table A.6: Grid Search Results for Model C_SVR (Cont’d)

param_SVM__C | param_SVM_degree | param_SVM_epsilon | param_SVM__gamma | param_SVM__kernel | split0_test_score | split1_test_score | split2_test_score | mean_test_score | std_test_score | rank_test_score
1 3 10 auto sigmoid -77.4767 -41.7304 -63.652 -60.953 14.71761 208
1 1 1 auto sigmoid -78.041 -41.6441 -63.3768 -61.0206 14.95208 211
1 2 1 auto sigmoid -78.041 -41.6441 -61.0206 14.95208 211
1 3 1 auto sigmoid -78.041 -41.6441 -61.0206 14.95208 211
1 1 5 auto sigmoid -78.4135 -41.4243 -61.1378 15.19886 214
1 2 5 auto sigmoid -78.4135 -41.4243 -61.1378 15.19886 214
1 3 5 auto sigmoid -78.4135 -41.4243 -61.1378 15.19886 214
5 1 10 0.1 sigmoid -321.623 211257 -286.281 -273.054 46.01734 217
5 2 10 0.1 sigmoid 321623 211257 -286.281 -273.054 46.01734 217
5 3 10 0.1 sigmoid -321.623 211257 -286.281 -273.054 46.01734 217
5 1 5 0.1 sigmoid -319.384 -215.261 -287.285 273977 43.53751 220
5 2 5 0.1 sigmoid -319.384 -215.261 -287.285 273977 43.53751 220
5 3 5 0.1 sigmoid -319.384 -215.261 -287.285 273977 43.53751 220
5 1 1 0.1 sigmoid -321.632 -215.139 -289.127 -275.299 4456143 23
5 2 1 0.1 sigmoid -321.632 -215.139 -289.127 -275.299 4456143 23
5 3 1 0.1 sigmoid -321.632 -215.139 -289.127 -275.299 44.56143 223
5 1 1 auto sigmoid -396.196 -260.527 -364.619 -340447 57.9637 226
5 2 1 auto sigmoid -396.196 -260.527 -364.619 -340.447 57.9637 226
5 3 1 auto sigmoid -396.196 -260.527 -364.619 -340.447 57.9637 226
5 1 5 auto sigmoid -394.342 -275.656 -364.055 -344.684 50.35233 229
5 2 5 auto sigmoid -394.342 -275.656 -364.055 -344.684 5035233 229
5 3 5 auto sigmoid -394.342 -275.656 -364.055 -344.684 5035233 229
5 1 10 auto sigmoid -395.585 274245 -364.294 -344.708 5143647 232
5 2 10 auto sigmoid -395.585 -274.245 -364.294 -344.708 51.43647 232
5 3 10 auto sigmoid -395.585 -274.245 -364.294 -344.708 51.43647 232
10 1 1 0.1 sigmoid -629.183 42451 -580.745 544813 87.33473 235
10 2 1 0.1 sigmoid -629.183 42451 -580.745 544813 87.33473 235
10 3 1 0.1 sigmoid -629.183 42451 -580.745 544813 87.33473 235
10 1 5 0.1 sigmoid -637.203 -424.633 -579.985 547274 89.81109 238
10 2 5 0.1 sigmoid -637.203 -424.633 -579.985 -547.274 89.81109 238
10 3 5 0.1 sigmoid -637.203 -424.633 -579.985 -547.274 89.81109 238
10 1 10 0.1 sigmoid -644.247 -424.647 -580.155 -549.683 92.20439 241
10 2 10 0.1 sigmoid -644.247 -424.647 -580.155 -549.683 92.20439 241
10 3 10 0.1 sigmoid -644.247 -424.647 -580.155 -549.683 92.20439 241
10 1 1 auto sigmoid -780.265 -516.682 -733.822 -676.923 114.8826 244
10 2 1 auto sigmoid -780.265 -516.682 -733.822 -676.923 114.8826 244
10 3 1 auto sigmoid -780.265 -516.682 -733.822 676923 114.8826 244
10 1 5 auto sigmoid -786.542 -515.641 -732.61 -678.264 117.0808 247
10 2 5 auto sigmoid -786.542 -515.641 -732.61 -678.264 117.0808 247
10 3 5 auto sigmoid -786.542 -515.641 -732.61 -678.264 117.0808 247
10 1 10 auto sigmoid -786.248 -516.753 -732.486 -678.496 116.4563 250
10 2 10 auto sigmoid -786.248 -516.753 -732.486 -678.496 116.4563 250
10 3 10 auto sigmoid -786.248 516753 -732.486 -678.496 116.4563 250
100 1 10 0.1 sigmoid -6280.34 -4079.74 -5919.25 -5426.45 963.6058 253
100 10 0.1 sigmoid -6280.34 -4079.74 -5919.25 -5426.45 963.6058 253
100 3 10 0.1 sigmoid -6280.34 -4079.74 -5919.25 -5426.45 963.6058 253
100 1 5 0.1 sigmoid -6212.6 -4080.24 611673 -5469.86 983.3876 256
100 2 5 0.1 sigmoid -6212.6 -4080.24 611673 -5469.86 9833876 256
100 3 5 0.1 sigmoid 6212.6 -4080.24 611673 -5469.86 9833876 256
100 1 1 0.1 sigmoid -6286.74 -4099.34 -6118.14 -5501.4 993.7974 259
100 2 1 0.1 sigmoid -6286.74 -4099.34 -6118.14 -5501.4 993.7974 259
100 3 1 0.1 sigmoid -6286.74 -4099.34 6118.14 -5501.4 9937974 259
100 1 10 auto sigmoid -7739.18 -5144.42 -5801.75 622845 1101436 262
100 2 10 auto sigmoid -7739.18 -5144.42 -5801.75 622845 1101.436 262
100 3 10 auto sigmoid -7739.18 -5144.42 -5801.75 622845 1101.436 262
100 1 5 auto sigmoid -7638.54 515571 -7432.59 674228 1125.021 265
100 2 5 auto sigmoid -7638.54 515571 -7432.59 674228 1125.021 265
100 3 5 auto sigmoid -7638.54 515571 -7432.59 674228 1125.021 265
100 1 1 auto sigmoid -8331.34 -5048.41 714304 -6936.72 1384.966 268
100 2 1 auto sigmoid -8331.34 -5048.41 714304 -6936.72 1384.966 268
100 3 1 auto sigmoid -8331.34 -5048.41 714304 -6936.72 1384.966 268
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B.1 Tables of Metric Analysis

B.1.1 Daily - Weekly Tables

Appendix B

Table B.1: Daily-Weekly Metric Values of MAE for Model B_mae

Comb | Metric | Week Max | Week Min | Day Max | Day Min | Week Mean | Day Mean | Week Error | Day Error | Week Confidence Interval | Day Confidence Interval
1 MAE 32915 9.706 68.184 11.470 9.684 9.656 0.956 0.573 8.728 10.640 9.083 10.229
2 MAE 36.672 13.393 69.925 10.680 9.922 9.900 1.014 0.611 8.908 10.936 9.290 10.511
1-2 MAE 35.156 12.810 69.101 12.730 9.909 9.886 0.988 0.600 8.921 10.898 9.286 10.486
1-4 MAE 32.756 10.222 62.933 10.113 9.901 9.874 0.917 0.571 8.984 10.817 9.302 10.445
1-2-4 | MAE 31.834 11.883 63.421 13.442 9.933 9.899 0.949 0.591 8.984 10.882 9.309 10.490
Table B.2: Daily-Weekly Metric Values of SMAPE for Model B_mae
Comb Metric Week Max | Week Min | Day Max | Day Min | Week Mean | Day Mean | Week Error | Day Error | Week Confidence Interval | Day Confidence Interval
1 SMAPE (%) 141.960 48.977 184.398 17.971 17.542 17.532 3.285 1.806 14.257 20.827 15.725 19.338
2 SMAPE (%) 145.423 47.859 189.628 21.038 17.979 17.986 3.398 1.877 14.581 21.377 16.109 19.863
4 SMAPE (%) 138.771 51.463 188.078 10.824 17.912 17.903 3.297 1.809 14.615 21.209 16.094 19.713
1-4 | SMAPE (%) 140.856 51.879 188.675 16.976 17.859 17.856 3.248 1.801 14.612 21.107 16.055 19.657
1-2-4 | SMAPE (%) 140.913 55.407 189.393 21.260 17.885 17.876 3.302 1.834 14.583 21.187 16.042 19.709

B.1.2 Hourly Table
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