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Assist. Prof. Dr. Nader Ghaffarinasab
Industrial Engineering, METU

Assoc. Prof. Dr. Gülşah Karakaya
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ABSTRACT

DAY-AHEAD ELECTRICITY PRICE FORECASTING FOR
USING AN ENSEMBLE MACHINE LEARNING TECHNIQUE

Özbudak, Çağkan

M.S., Department of Industrial Engineering

Supervisor: Prof. Dr. Zeynep Müge Avşar

Co-Supervisor: Assoc. Prof. Dr. Bora Kat

November 2024, 86 pages

In a liberal electricity market where there is competition, accurate hourly electricity

price forecasting is important. Electricity producers and consumers require methods

for precise price predictions. Producers and consumers may organize their bidding

strategies to maximize their benefits by using price projections, which provide im-

portant information. Due to the under-maturation and low proliferation of grid-scale

storage technologies, the increasing uncertainty with the high penetration of inter-

mittent technologies such as solar and wind makes forecasting more challenging and

critical than ever before. Therefore, changes in supply or demand occur with an

impact on pricing. Moreover, economic instability mainly originated from national

monetary policies together with the political conjoncture in the neighbouring coun-

tries, which are also energy suppliers, in the recent decade decrease the predictability

of the prices.

In this thesis, XGBoost, SVR and an ensemble of these two algorithms are used for

precise for precise and reliable day-ahead electricity price forecasting in the electric-

ity market in Türkiye. The proposed algorithms are compared with other benchmark
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models which are which are SARIMA and Naive Models for precise and reliable

day-ahead electricity price forecasting in the electricity market in Türkiye. Different

model settings and time periods for the performance metrics are investigated. The

results obtained indicate that the proposed method used is promising in terms of per-

formance metrics which shows competing values compared to the benchmark models

and other studies in the literature.

Keywords: Day-Ahead Electricity Price, Price Forecasting, Machine Learning, En-

semble Learning, XGBoost, Support Vector Regression (SVR), SARIMA, Naive Mod-

els
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ÖZ

BİRLEŞTİRİLMİŞ MAKİNE ÖĞRENMESİ TEKNİĞİ İLE
TÜRKİYE GÜN ÖNCESİ PİYASASI ELEKTRİK FİYAT TAHMİNİ

Özbudak, Çağkan

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Zeynep Müge Avşar

Ortak Tez Yöneticisi: Doç. Dr. Bora Kat

Kasım 2024 , 86 sayfa

Rekabetin olduğu liberal bir elektrik piyasasında, doğru saatlik elektrik fiyatı tah-

mini önem arz eder. Elektrik üreticileri ve tüketicileri fiyat tahminleri için kesinliği

yüksek yöntemlere ihtiyaç duyarlar. Üreticiler ve tüketiciler, önemli bilgiler sağlayan

fiyat projeksiyonlarını kullanarak faydalarını en üst düzeye çıkarmak için teklif stra-

tejilerini düzenlerler. Şebeke ölçeğindeki depolama teknolojilerinin henüz yeterince

olgunlaşmamış ve yaygınlaşmamış olması nedeniyle, güneş ve rüzgar gibi süreklilik

arz etmeyen teknolojilerin yüksek oranda kullanımıyla birlikte belirsizlik artmakta ve

tahmin yapmak her zamankinden daha zor ve kritik hale gelmektedir. Bu nedenle,

arz veya talepteki değişiklikler fiyatlandırma üzerinde etkili olmaktadır. Ayrıca, son

on yılda ulusal para politikalarından kaynaklanan ekonomik istikrarsızlık ve enerji

tedarikçisi de olan komşu ülkelerdeki siyasi konjonktür, fiyatların öngörülebilirliğini

azaltmaktadır.

Bu tezde, Türkiye’de enerji sektöründe kesin ve güvenilir gün öncesi elektrik fiyatı

tahmini için Extreme Gradient Boosting (XGBoost) ve Destek Vektör Regresyonu
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(SVR) algoritmaları ve bu algoritmaların birleşimi kullanılıp SARIMA ve Naif mo-

dellerle kıyaslaması yapılmıştır. Performans metrikleri için farklı model ayarları ve

zaman periyotları incelenmiştir. Elde edilen sonuçlar, önerilen yöntemin performans

metrikleri açısından umut verici olduğunu ve kıyaslama yapılan modeller ile lite-

ratürdeki diğer çalışmalarla karşılaştırıldığında rekabetçi değerlere sahip olduğunu

göstermektedir.

Anahtar Kelimeler: Gün Öncesi Electrik Fiyatı, Fiyat Tahmini, Makine Öğrenmesi,

Topluluk Öğrenimi, XGBoost, Destek Vektör Regresyonu (SVR), SARIMA, Naif

Modeller
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Avşar and Assoc. Prof. Dr. Bora Kat, for their invaluable guidance, support, and

encouragement throughout the course of this thesis. Their knowledge and experience

have greatly influenced my study and helped me complete my study.

I am also grateful to the members of examining committee; Prof. Dr. Serhan Duran,

Dr. Nader Ghaffarinasab, Dr. Gülşah Karakaya and especially Assoc. Prof. Dr.
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CHAPTER 1

INTRODUCTION

The Turkish electricity market is a critical component of the overall national energy

system where electricity is produced, transmitted, distributed, and exchanged among

its participants. In this market, commitment to market-oriented conduct is charac-

terized by the departure of the governmental authority. It was established as a result

of extensive changes coordinated by the Energy Market Regulatory Authority (EM-

RA/EPDK in Turkish). Encompassing multiple divisions, such as the Day-Ahead

Market (DAM), Intraday Market and the Balancing Market, the system serves a wide

range of users, including traders, consumers, and generators.

This study aims to fulfill the essential demand for accurate and reliable price forecasts

in the energy sector by developing an innovative methodology for day-ahead electric-

ity price forecasting in Türkiye. Furthermore, the goal of this research is to provide

a basis for future studies that will improve and broaden this technique, ultimately ad-

vancing data science and machine learning applications in the region for forecasting

on energy related issues.

This thesis study is primarily driven by the novel use of an ensemble machine learn-

ing technique that combines Support Vector Regression (SVR) and Extreme Gradient

Boosting (XGBoost) to Turkish data for the first time in an academic setting. This

innovative method makes use of the complementing advantages of both algorithms to

improve regression models’ robustness and predictive accuracy. Through the integra-

tion of these two approaches, the study seeks to offer a detailed analysis of their com-

bined effectiveness by comparing with the results of benchmark models, SARIMA

and Naive Models through the use of an extensive set of performance metrics devel-

oped for regression tasks.
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The rest of this chapter explores the development and significant developments in the

Turkish electricity market’s history. This is followed by a summary of the Turkish

day-ahead market’s operations. Chapter 2 examines the related studies in the liter-

ature which focus on forecasting electricity prices with a specific emphasis on the

studies for the Turkish electricity market. In Chapter 3, the methodology, i.e., the

data collection process, data preprocessing steps and data modeling steps, introduc-

ing the algorithms used in the study, namely Extreme Gradient Boosting (XGBoost)

and Support Vector Regression (SVR), are presented in detail. Numerical Analysis

and Results presents the outputs of the model trials, including results with different

feature combinations, and provides a complete analysis of the performance metrics to

evaluate the model results. Finally, Chapter 5 summarizes the findings and suggests

directions for future work. Supplementary material, such as detailed tables and plots

related to the model results, is included in the appendix to provide additional context

and to support the main text.

1.1 History of the Turkish Electricity Market

Turkish Electricity Authority Act No. 1312 in 1970 marked the country’s initial in-

stitutionalization of the electricity market. Increased energy efficiency was the result

of the First Five Year Development Plan. Transmission and distribution of electricity

produced under the monopoly are the responsibility of Turkish Electricity Authority,

a state economic entity established by law.

Due to rising global costs resulted by the Oil Crisis in 1973, privatization began

to gain importance in the publicly owned electricity sectors all around the world.

Türkiye experienced it likewise. Privatization was considered a tool to overcome in-

efficiencies found in the public sector. Law No. 2705 in 1982, together with the

monopoly held by the Turkish Electricity Authority in the production, transmission,

and distribution of electricity, offers the means for the private sector to enter the mar-

ket. Trade, transmission, and distribution of electricity for both local and foreign

private enterprises were liberalized with Law No. 3096 in 1984. In 1994, Turkish

Electricity Authority established Turkish Electricity Generation-Transmission Corpo-

ration (TEAŞ) and Turkish Electricity Distribution Company (TEDAŞ) as two distinct

2



economic state companies in accordance with employment and privatization plans.

By 2001, the electricity market underwent a shift towards a free and competitive mar-

ket. TEAŞ transmission was split into three distinct economic state enterprises which

are Turkish Electricity Transmission Company (TEİAŞ), Electricity Generation Inc.

(EÜAŞ) and Turkish Electricity Trading and Contracting Co. (TETAŞ).

With the enactment of the Electricity Market Law No. 4628 in 2001, the frame-

work for a competitive market was established; both domestic and foreign investors

are leading the charge for implementing regulations regarding the production, trans-

mission, distribution, and providing with electricity energy to guarantee the efficient

operation of market operations. Enacted by legislation, TEAŞ is the sole governing

body for transmitting energy. It has the term licenses necessary for both domestic

and foreign enterprises seeking to engage in the market. Furthermore, since its es-

tablishment under the Electricity Market Law No. 4628, Energy Market Regulatory

Authority (EMRA) has been in charge of license distribution, market monitoring, and

the assessment and examination of pricing principles.

Figure 1.1: Transformation in the Turkish Electricity Market given in [3]

As it can be seen in Figure 1.1, the Turkish Electricity Authority splits into two

branches. While TEAŞ is in charge of production and transmission, TEDAŞ is mostly

in charge of distribution. TEAŞ splits into three suborganizations, namely EÜAŞ,

TEİAŞ, and TETAŞ, where respectively production, transmission, and wholesale are
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handled independently. Simultaneously, TEDAŞ divides its electricity distribution

business into 21 local regions and transfers it to separate distributors for each region.

On July 1, 2006, the electricity market underwent the first phase of change, moving

from a single buyer and single seller model to a liberal and competitive model. This

involved switching to a monthly three-period financial settlement system. Subse-

quently, the Day-Ahead Planning system began giving service on December 1, 2009.

These transitional phases are crucial for the electricity market’s development into a

more robust and dynamic structure. The establishment of the DAM system, which is

presently in operation, is considered to be the largest step towards the development

of the intended electrical market structure. The establishment of the DAM gave the

Turkish Electricity Market a new beginning and a competitive framework, enabling

the development of a competitive market structure.

Energy Exchange Istanbul (EXIST) was founded on March 18, 2015, and is also

known by its Turkish name, Enerji Piyasaları İşletme A.Ş. (EPİAŞ). EXIST is a com-

pany that was formally established in accordance with the Turkish Electricity Market

Law and is governed by the Energy Markets Operation License that is obtained from

EMRA. Gas, electricity, and environmental commodities are among the energy mar-

kets that EXIST is in charge of managing and operating. EXIST operates Day-Ahead

and Intraday Spot Power Market, Spot Natural Gas Market, Power Futures Market,

Natural Gas Futures Market and Renewable Energy Guarantees of Origin System &

Organized YEK-G Market as stated in [6].

1.2 An Overview of the Turkish Day-Ahead Market

The DAM in Türkiye is one of the main components of the national electricity market,

offering a mechanism for anticipating and allocating electricity usage and generation

for the next day. This market allows market participants, including producers and

consumers, to make bids and offers based on projected supply and demand circum-

stances. The idea is to establish a fair and competitive marketplace where prices are

determined by the equilibrium of supply and demand offers. This approach enables

more efficient resource utilization and better planning for both producers and con-
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sumers in order to meet Türkiye’s dynamic and rising electricity demand.

The capability of users to adjust their usage in response to price changes is an impor-

tant part of the DAM’s entrance in to the electricity market. As a result, the demand

side has begun to engage in the market more actively, with the ability of respond-

ing to fluctuating prices. Another innovation is DAM portfolios for market players,

which enable them to balance their own portfolios. Attending DAM is not mandatory.

The DAM has made a substantial improvement by allowing daily financial settlement

and clearing of receivables and payables resulting from business transactions on the

day following the transaction date. Market participants can continue to invest with-

out worrying about their financial situation because of the possibility to earn revenue

from the sale of generated electricity on a daily rather than a monthly basis. The

final advantage to be adopted is the collateral mechanism, which guarantees market

players’ receivables in the electricity business against potential cash-flow concerns,

thereby diminishing their influence on the market.

The general principles of the DAM are presented below.

• Legal companies with licenses are eligible to participate in the DAM by sign-

ing the DAM Participation Agreement, which outlines the obligations for the

market participants in the DAM.

• Each day starts from 00:00 and ends at 00:00 of following day and consists of

hourly time periods.

• Offer submissions can can be submitted from the next day to 5 days later by

participants.

• Every hour, prices and volumes that are applied for clearing of the daily DAM

are determined.

• Market Operator (EXIST) announces payables to the Market Operator and re-

ceivables from the Market Operator for individual market participants through

advance payment notifications, which are the outcome of clearing calculations

for the market participants based on their day-ahead balancing activities. Mar-

ket Operator notifies market participants on a daily basis through Central Clear-

ing House.
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• Every day until 10:30 am, market participants present letters of guarantee to

the market operator. Every day until 11:00 am, market players present their

collateral, amount of money paid by the electricity producer to guarantee a suc-

cessful trade, to the Central Clearing House, aside from letters of guarantee.

The amount of the collateral follows the market price of electricity and is re-

turned to the producer after a successful delivery of the electricity

• In order for the market participants to go on with the DAM operations on the

weekends and public holidays, letters of guarantee must be submitted by 10:30

am, and collateral other than letters of guarantee must be given by 11:00 am on

the preceding work day.

Processes of the DAM consists of the following steps.

• Firstly, DAM participants send the Market Operator their DAM offers for the

following day until 12:30 pm.

• Collaterals are checked from 12:30 pm to 1:00 pm to see if DAM offerings

qualify.

• Offers for the DAM that are submitted to the Market Operator are checked

between 12:30 and 3:00 pm.

• Verified offers are evaluated using an optimization tool between 13:00 and

13:30 pm; market clearing prices and volumes are calculated for each hour

of the day.

• Approved sales-bid volumes and commercial transaction approvals are com-

municated daily at 13:30 pm to the relevant market participants. Market partic-

ipants may reject those notifications 13:30 and 13:50 pm if they believe there

are inaccuracies in any transactions that occurred between.

• At 13:50-14:00, objections are assessed, and the market participants who raised

the objection are informed of any pertinent findings. Finalized pricing and

matched volumes for the next day’s 24 hours are announced at 14:00.

• 0:00 am to 17:00 pm market players send their bilateral agreement notifications,

a private trade between two parties, to the Market Operator.
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• "Karşılığı Olmayan Piyasa İşlemleri (KOPİ)" in Turkish, Market Transactions

without Compensation, is in charge of the bilateral contracts from 17:00 to

17:05 pm every day.

• When KOPİ cancels bilateral contracts, market players have the option to object

to their transactions between 17:05 and 17:15 pm every day.

Having given the general principles and processes in DAM, the offer types and bid

types are discussed next. Hourly offers, block offers and flexible bids are some of the

offer types. Detailed explanations are given below.

Participants can enter the DAM by submitting bids for specific hours or periods, either

on an hourly or daily basis, along with flexible proposals. These proposals consist of

both quantity and price details, which may vary across different hours. The prices

quoted in the offers are sensitive to centesimal changes. Also, participants have the

option of expressing their offers in Turkish Lira, US Dollar, or Euro. If one of the

currencies other than Turkish Lira is used, then the submitted prices are converted

based on the daily Central Bank of the Republic of Türkiye (CBRT) bid rate. The

offer quantity is provided in Lots, where 1 Lot equals 0.1 MWh.

Offers can be given in the form of buying or selling proposals. Whether an offer is

for buying or selling is determined by the sign accompanying the offer quantity. For

example, a quantity of 100 Lots signifies a buying offer, whereas -100 Lots indicates

a selling offer. The Market Operator establishes the minimum offer quantities as 0

Lot, while the maximum offer quantities are determined by organizational capacity

and KOPİ. According to the DAM’s structure and the procedures and principles for

evaluating offers, the quantity for flexible bids submitted to the DAM cannot surpass

100 MWh (equivalent to 1000 lots), and the quantity for block bids is capped at 600

MWh (equivalent to 6,000 lots). Offers submitted for the same delivery date are

recorded in the system as a new version in case they are updates.

Hourly offers consist of up to 64 levels, divided equally into a maximum of 32 buying

levels and 32 selling levels. Prices assigned to each level must follow an ascending

order. A particular price level cannot simultaneously feature both buying and sell-

ing directions. When constructing the supply-demand curve, the linear interpolation
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method is applied to estimate values between two successive price/quantity levels.

Block offers provide details concerning price, quantity, and the duration they cover.

These offers can span a minimum of 3 hours to a maximum of 24 hours, with block of-

fer hours defined as consecutive and whole hours. Block offers are treated as entirely

indivisible entities, and each block offer is subject to either acceptance or rejection for

the specified time period. Participants in the market have the option of using the ex-

isting block offer structures or give their own. The maximum number of block offers

that can be submitted daily is limited to 50. Furthermore, block offers may feature

varying quantities for each hour, with the flexibility of an increase or decrease in the

quantity up to three times in each consecutive hour.

Flexible bids involve quantities that can be adjusted during a specified order time

within an offer period, with a single price designated for each hour. The order time

interval spans a minimum of 8 hours and a maximum of 24 hours, while the offer

period for flexible orders must not exceed 4 hours. Flexible orders are open for both

buying and selling, allowing participants to submit up to a maximum of 6 different

flexible orders on a delivery day. It is important to note that within the same offer

period, both buying and selling quantities cannot coexist.

As for Bilateral Agreements, it encompasses information for a 24-hour duration, with

positive values indicating buying and negative values indicating selling. Values sub-

mitted by agreement parties are considered reciprocal, with one value representing

buying and its corresponding reciprocal value indicating selling. Bilateral agreements

are deemed valid when both parties submit the same absolute values. These agree-

ments can be submitted up to a maximum of 60 days in advance.
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CHAPTER 2

RELATED STUDIES IN THE LITERATURE

Price prediction in DAM has gathered widespread attention in academic and indus-

trial research, leading to a diverse range of methodologies which aimed at enhancing

the forecasting accuracy. Researchers have explored different kinds of approaches,

spanning the traditional time series models and cutting-edge machine learning tech-

niques [7]. The global nature of these investigations reflects the diverse characteristics

of worldwide energy markets. Each region faces unique challenges and dynamics. As

the field continues to evolve, the integration of explainable Artificial Intelligence (AI),

real-time adaptation strategies, and the exploration of new data sources exhibit the dy-

namic nature of research aiming at refining DAM price prediction methodologies.

In this chapter, studies in the related literature on the DAM prices are reviewed in two

subsections. Section 2.1 is devoted to the studies conducted for the energy market

around the world and Section 2.2 presents the studies carried out in Türkiye. Besides,

while presenting the related studies in the literature, the contribution of the study in

this thesis to the literature is presented by comparing it with the existing studies in the

literature.

2.1 Related Studies around the World

In order to forecast the DAM prices accurately and help companies optimize their

electricity production processes and increase their profit, there are different types of

studies conducted all over the world with a variety of methodologies and various

data used [7]. Following two subsections present time series and machine learning

approaches respectively conducted around the world.
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2.1.1 Time Series and Regression Approaches

Models that are using statistical methods mostly rely on linear regression. The depen-

dent variable, i.e. the price, for a the specific day and hour is represented by a linear

combination of independent variables, which are also called regressors, inputs or fea-

tures. Several significant advancements for statistical approaches for Energy Price

Forecasting (EPF) have been observed in recent years; the linear regression models

with a high number of input features that use regularization techniques have been one

of the effective approaches [8].

[9] propose using an Auto-Regressive Moving Average (ARMA) model in conjunc-

tion with Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) to

estimate price changes on the DAM using extended ARMA models. [10] employs

wavelet decomposition in conjunction with multiple regression. Specifically, they

compute the regression coefficients by using the wavelet decomposition detail se-

ries and the forecasted demand. The DAM prediction is subsequently derived from

the low-frequency component of the previous day and the forecasted high-frequency

components. [11] examines the day-ahead electricity price of the EPEX Spot for

Germany and Austria. They setup a model which is considered as an AR24-X model

where X stands for the external regressors, e.g. futures, weekday dummies and pe-

riodic B-splines. [12] explores comprehensive seasonal periodic regression models

incorporating Auto-Regressive Integrated Moving Average (ARIMA), Autoregres-

sive Fractional Integral Moving Average (ARFIMA), and GARCH disturbances to

analyze daily electricity spot prices. The included regressors account for annual cy-

cles, holiday impacts, and potential interventions in both mean and variance. The

findings in this study indicate that, specifically for the Nord Pool market (unlike other

European markets), an effective modeling of daily spot prices necessitates a long-

memory model with periodic coefficients. It is important to note, however, that the

performance of these models in [12] for forecasting is not assessed by the authors of

the study. [13] employs diverse autoregression methods to model and predict prices

in the California market. They note that an Auto-Regressive (AR) model incorporat-

ing lags of 24, 48, and 168 hours, with each hour of the day modeled individually,

outperforms the unified (S)ARIMA specification suggested by [14] for all hours.

10



2.1.2 Machine Learning Approaches

Recently, in line with widespread implementation of AI in many areas, there have

been an increasing trend in using the AI techniques for forecasting the day-ahead

electricity prices. Machine learning has grown in popularity due to its ability to han-

dle complicated and nonlinear relationships within datasets, adapt to shifting patterns,

and catch delicate nuances that conventional statistical models may miss. Algorithms

like neural networks, Support Vector Machines (SVM), and ensemble approaches

have gained popularity for their capacity to uncover patterns in vast datasets, allow-

ing more accurate day-ahead price forecasting. The dynamic nature of electricity

markets, combined with the rising availability of varied data sources, has driven the

adoption of machine learning techniques, which provide a flexible and robust frame-

work for modeling and predicting the complex dynamics of energy prices. This trend

reflects a larger recognition of machine learning’s strengths in improving forecasting

accuracy and responding to the complexities inherent in the electricity market. These

are some of the reasons to use machine learning approaches in this study.

SVMs are commonly used in the EPF applications. For example, in [15] SVM is

applied to predict the value of the spot price. [16] proposes a novel machine learning

method which uses linear regression, Automatic Relevance Determination (ARD) and

Extra Tree Regression (ETR) models. In the study it is seen that more accurate predic-

tion results and overcoming the limitations of individual models can be acquired by

combining several models. Experimental results show that proposed method gives

lower prediction errors than other individual models. They show that the model

can outperform several other models in the literature. [17] proposes Support Vec-

tor Regression-Auto-Regressive Integrated Moving Average (SVRARIMA), which

is a hybrid model that combines Support Vector Regression (SVR; to capture non-

linear patterns) and ARIMA models. The results show that SVRARIMA model sur-

passes certain existing Artificial Neural Network (ANN) approaches and conventional

ARIMA models. [18] is on the development of a novel hybrid deep learning-based

model named convolutional neural network+stacked sparse denoising auto-encoders;

the authors suggest a decomposition method to enhance the model performance. In

[18] the Australian national electricity market is considered as a case study. Their
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results show that the proposed model gives successful prediction results in terms of

accuracy and stability and shows outstanding prediction performance for price spikes.

Moreover, the proposed model can reduce the training time for neural networks dur-

ing the prediction process due to its quicker convergence speed. [19] introduces three

techniques, namely Feed-Forward Neural Network (FFNN), Cascade-Forward Neu-

ral Network (CFNN), and Generalized Regression Neural Network (GRNN), to fore-

cast the day-ahead prices in the Spanish OMEL market for the period of January to

December in 2002, as well as in the New York electricity market for the period of Jan-

uary to December in 2010. Rather than forecasting the price value, the authors chose

to classify the level of the electricity prices since they support the idea that all mar-

ket participants do not know the exact value of future prices in their decision-making

process. [20] applies LSTM deep neural networks combined with feature selection

algorithms for EPF. [21] implements a Bayesian Neural Network (BNN) approach

to predict the electricity prices in Italy. A probabilistic price forecast methodology

is implemented. By this method different results coming from a specific distribution

for the same instance is acquired. The methodology gives competing results with the

deterministic approaches.

2.2 Related Studies in Türkiye

In Türkiye, DAM price forecasting is crucial for the power market to function effec-

tively and reliably. Accurate forecasting is critical for market players to make better

actions in a rapidly changing energy landscape defined by increased renewable energy

integration and unpredictable market circumstances. Various forecasting approaches

are used to predict electricity prices for the following day. These methods include

a range of techniques, such as statistical models, machine learning algorithms, and

time series analysis. By using historical data, weather patterns, market trends, and

other relevant factors, the precision of the forecasts are endeavoured to be enhanced.

Because of the complex interaction of various variables, an entire plan is required

to maintain the durability of forecasting models, allowing stakeholders to make in-

formed decisions in the dynamic Turkish energy market.

[22] aim to develop a price forecasting tool based on ANN. A short-term price fore-
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casting model is developed by studying the data that most accurately affect the price.

The forecasting model relies on supply and demand curves. At the end of the study, it

is seen that the proposed ANN model scientifically supports the market participants

to make short-term decisions. Another research is presented in [23]. In their study,

multiple linear regression method on electricity price forecasting is examined. They

analyze various predictors in order to reduce mean absolute percentage error (MAPE).

The lagged electricity prices such as the previous one day, one week, and lagged mov-

ing average prices are proven to be the effective factors in electricity price estimation.

Moreover, they investigate whether there would be a difference if a regular regression

method or a dynamic regression method is used. It is seen that there is no dramatic

difference regarding the error rates. The research presented in [24] seeks to predict

the hourly market clearing price using deep learning techniques, which are Multi-

layer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term

Memory (LSTM) and Gated Recurrent Unit (GRU). Among these methodologies,

LSTM gives the best average forecasting performance in their study. [25] presents

customized models to forecast short-term electricity prices. They mainly use the time

series models. Results are compared with dynamic regression. [26] also presents

the deep learning approaches for performing the prediction of electricity prices. In

order to assess the resilience and reliability of the model, twelve Recurrent Neural

Network (RNN)-based models are re-estimated using the identical dataset. While all

models demonstrate proficiency in price prediction, it is noteworthy that the model

which is named as the Transformer Encoder-Decoder with Self Attention (TEDSE)

model, that is used for the first time to estimate the electricity prices outperforms

its counterparts. [27] mentions how data frequency and different estimation method-

ologies affect performance of the electricity price forecasting. In this study, different

kinds of machine learning and statistical analysis techniques are used parallel with the

distinct data periods which belong to COVID-19 pre-pandemic and pandemic. The

forecasting frequency is also separated as weekly or daily. At the end of the study, it

is shown that the role of the data frequency and method selection can not be ignored

in electricity price estimation.

Table 2.1 is given to summarize the aforementioned studies for Türkiye. In these ta-

bles, methodologies to forecast the electricity prices, the features used in the models,

13



the metrics that are used to measure the performance of the models etc. can be seen.

Some studies in the tables may give multiple results for different settings. Therefore,

results shown in the tables for the studies are given such a way that they presents the

best or average metric results shown in the related studies.
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According to the studies in Table 2.1, it can be said that there is still a gap in terms

of new methodologies, test period, data frequency and performance metrics for DAM

price forecasting although there are numerous studies related with this topic.

In this thesis, SVR and XGBoost algorithms are implemented to predict the electricity

prices. There are also some studies which also implement similar algorithms. For

example, [31] uses only SVM with wavelet transformation. [28] uses the boosting

algorithms and compares their performances. XGBoost is one of the methodologies

that is adopted in [28]. However, these studies propose an analysis over daily or

weekly results instead of an hourly resolution.

In this thesis, the main difference is the modeling approach. Even tough the similar

studies in the literature use only one algorithm for modeling, SVR and XGBoost are

both implemented while modeling the data in this thesis. By this way, the overall

performance of the model is tried to be improved by ensembling two models whose

performance may be worse for each using the weighted average procedure. While

these algorithms are being ensembled, an optimization problem is used to determine

the weight of each algorithm in the model. In the literature, a similar approach is not

encountered to the best of our knowledge for Türkiye. Also, by comparing over an

extensive set of performance metrics with the benchmark approaches like SARIMA

and Naive methodolgy, the effectiveness of the new methodolgy is shown. In addi-

tion, it is seen that most of the existing studies in the literature adopt deep learning

approaches. Deep learning models are chosen for their high performances as men-

tioned before. Although the deep learning approaches have high performances, sim-

ilar results are thought to be achieved using machine learning approaches with less

complex structures compared to deep learning structures with less training times as

shown in [32]. In [32], K Nearest-Neighbors (KNN) model produces forecasts that

are more accurate than any of the Deep Learning models examined. Another study

conducted in [26] shows similar result by using hybrid CNN_LSTM model which

performs slightly weaker than some of the ensemble models generated in this thesis.

Therefore, machine learning approaches are implemented in this thesis.

Another contribution of this study is regarding the performance evaluation. In the

literature, studies regarding the energy price forecasting present performance values
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based on a time period. In most of the studies, the performance of the proposed

algorithms are mostly given for short time periods or in aggregate time intervals such

as days or weeks. For example, [33] applies SVM algorithm and obtains successful

results over a specific time period such as consecutive two days in a month. However,

in this thesis, performance metrics are given for a longer period which spans a whole

year. Moreover, the performance metrics are compared for different time periods,

such as hours, days and weeks in order to put forward an idea about how the model

performs in different time periods. In addition to the aforementioned contributions,

the training data in this thesis is from 09.2021 to 06.2023. Also, the electricity sector

has changed with the increase in the renewable energy share. Therefore, the up-to-

date data of the Türkiye’s energy is used in this thesis unlike the case in the other

studies listed in Tables 2.1. Besides, an extensive set of performance metrics are

taken into account. In addition to MAPE, MAE, MSE and RMSE; SMAPE

and MASE are used for more precise analysis.
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CHAPTER 3

METHODOLOGY

The machine learning techniques are capable of revealing the hidden relationships

between the features [34]. As it is given in the result of the study [35], machine

learning techniques shows superior performance compared to the traditional time se-

ries techniques. Therefore in this study, machine learning techniques will be used for

forecasting the time series data.

Developing models with machine learning requires common processes. Figure 3.1

shows steps of the common processes described in study [36] for a machine learning

problem.

Figure 3.1: Basic Flow of a Machine Learning Process

At the data collection step, the data required for the problem is collected from the

necessary data sources. The selection of the data period for the time series analysis

is important for the model performance. A period when the data shows regular be-

havior and does not have too much outlier can be preferred to make the model learn

more effectively. In data preprocessing, data is undergone some operations to make

it suitable to feed into the model. Scaling, transformation, feature determination, etc.

can be given as examples of the data preprocessing procedures. It usually takes most
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of the time in the model development flow. At the model learning step, the necessary

machine learning algorithm and model are determined. The hyperparameter tuning

for the related model is also conducted here. As a last step, created model is evaluated

according to the related evaluation metrics.

In this chapter, a detailed explanation of the model development stages will be pro-

vided for Turkish DAM analysis in this thesis study.

3.1 Data Collection

The raw data is gathered from [6] which is the day-ahead electricity market operator.

Price data between 01.09.2021 and 01.06.2024 is collected for this study. One of the

reasons for selecting that period is obtaining the recent past data. In this way, the new

characteristics, which can be the increased prices due to the inflation etc, of the price

values can be observed. Also, the effect of the covid pandemic started to decrease

in the last quarters of 2021. Therefore, price fluctuations due to the pandemic are

thought to reduce in that period. Besides, the time period should be sufficiently large

in order to make the model capture necessary patterns. Thus, the aforementioned

approximately three year period is considered to be long enough for developing a

powerful model. By this way, a data period which is more up-to-date and has a longer

monitoring period, i.e. 1 year test data can be acquired compared to most of the

studies in Table 2.1. Using a complete year as the test data allows gaining insights on

the performance of the algorithms under possible seasonality impacts.

The price value is a target variable that is going to be predicted. However, there may

be other variables that describe the target variable. In the literature, features that may

best define the electricity prices are used. According to [18] total electricity gener-

ation amount, temperature, wind speed, natural gas prices, electricity demand, the

electricity generated by the renewable sources could be candidates for describing the

target variable. [37] use renewable energy production amount, gas prices and date

features as their inputs. In the studies conducted for Turkish data, similar approaches

are observed. Crude oil prices, volatility index, USD/TRY rates, electricity gener-

ated from renewable sources, and stock market index are considered as the feature
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variables in the studies due to [27], [23], [30]. As it can be seen in Table 2.1, the

input features are similar to each other in different studies. Besides, day of the week

information can be effective in determining electricity prices according to [38].

After investigating the example studies, hourly electricity demand amount, daily av-

erage temperature and hourly electricity amount, which is produced by the renewable

sources, weekday number information and flag for whether a day is a work day or not

are determined to be the initial features that are going to be used in the model since it

is seen that these features are commonly used in the studies that are mentioned before.

In this thesis, in feature extraction processes, features will be introduced into the data

for increasing prediction performance and suitability to be used in the model. These

topics are explained in detail in Section 3.2.2 and 3.2.3 respectively. While hourly

electricity demand and hourly electricity production data can be gathered from [6],

daily average temperature data are gathered through [39]. The same temperature data

values are used for each hour of the related day because in this study, hourly analysis

are considered.

After predictions are gathered, the results are modified according to the maximum

electricity prices defined by EPIAS for the specific time periods. All price thresholds

are collected from [6]. Collecting the price thresholds, they transformed to USD

amounts according to the corresponding exchange rate at the respective time since

the predictions are done in USD amounts in order to decrease the inflation effect in

the Turkish economy. The USD exchange rates are collected from [40].

The collected features and the target variable can be observed in Table 3.1 given

below.

3.2 Data Preprocessing and Feature Extraction

After collecting the necessary data for modelling, the data should be preprocessed

and, if necessary, new features can be added. Descriptive statistics for the collected

data are presented in Table 3.2.

In the Table 3.2, minimum, maximum, percentiles for 25%, 50% and 75%, mean

23



Table 3.1: Features Collected and Descriptions

Feature Description

DATE Day / month / year

Date is not used as an input for the model.

WORKDAY Flag for whether the day is holiday or not.

WEEKDAY_NO Weekday number of the day.

Takes values between 1 and 7.

HOUR Hour of the day between 0 am and 11 pm

DEMAND Hourly electricity demand information in

MWh

TAVG Daily temperature information in celcius

RENEW_PERC Energy supply percentage from the renewable

sources: ratio of the energy acquired from

rivers, dams, wind, sun and jeo termal to the

total energy production amount

EP Day-ahead electricity price in USD.

Table 3.2: Descriptive Statistics for the Collected Data

STATISTIC DEMAND (MWh) WORKDAY WEEKDAY_NO TAVG (Co) RENEW_PERC (%) EP ($)

Count 24120 24120 24120 24000 24120 24120

Mean 26946.83 0.69 4 12.92 37.09 107.04

Std 4141.48 0.46 2 8.12 11.51 55.46

Minimum 13663.90 0 1 -5.50 9.61 0.00

Quantile 25% 23922.90 0 2 6.80 28.43 70.85

Quantile 50% 26922.15 1 4 12.80 36.40 90.26

Quantile 75% 30069.65 1 6 19.13 45.20 134.70

Maximum 39322.20 1 7 33.30 76.45 264.17

values and standard deviation value, which is given as "Std", can be seen.

Figure 3.2 shows the diagnostic plots of the continuous input features used in the

modeling.

According to the plots, it can be said that all the features distributed normally accord-

ing to the probability plots and possible outllier analysis is not needed according to

the box plots since the number of outliers are negligible.
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(a) Diognastic Plots for RENEW_PERC

(b) Diognastic Plots for DEMAND

(c) Diognastic Plots for TAVG

Figure 3.2: Diagnostic Plots for Features
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3.2.1 Imputing Missing Data

The data may have some missing values in machine learning problems. Imputing the

missing data is the part of the preprocessing. According to Table 3.2 count values,

feature TAVG has missing data. Since TAVG has a normal distribution and there is no

skewness according to Figure 3.2c, mean value can be used to fill the missing data.

Monthly mean temperature values are used to fill the missing values in a respective

month.

3.2.2 Feature Extraction

Since the data is on hourly basis, the information about the hour may reveal some

patterns for the model. Therefore, hour can be included into the input data in a proper

way. Hour data should not directly be included to the input data because it is an ordi-

nal number and it may cause the model to learn the patterns in an inappropriate way.

Also, weekday number information can be used in the model. Since it is an ordinal

number it may mislead the pattern recognition in the model. Thus, applying the sin

and cosine functions may be helpful like in [41]. Features named as "HOUR_SIN",

"HOUR_COS", "DAY_SIN" and "DAY_COS" are added to the data as shown below,

ŷi = sin(
2πyi,hour

24
), ŷi = cos(

2πyi,hour
24

)

ŷi = sin(
2πyi,day

7
), ŷi = cos(

2πyi,day
7

)

where ŷi is the calculated value for the ith instance. The hour and weekday number

values, yi,hour, yi,day are transformed into the values that is more proper to make the

model understand in modeling phase. The new hour and day values transformed by

the trigonometric functions are shown in Tables 3.3 and 3.4 for each hour and day.
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Table 3.3: Hour Trigonometric Features

HOUR HOUR_SIN HOUR_COS HOUR HOUR_SIN HOUR_COS

0:00 0.000 1.000 12:00 0.000 -1.000

1:00 0.259 0.966 13:00 -0.259 -0.966

2:00 0.500 0.866 14:00 -0.500 -0.866

3:00 0.707 0.707 15:00 -0.707 -0.707

4:00 0.866 0.500 16:00 -0.866 -0.500

5:00 0.966 0.259 17:00 -0.966 -0.259

6:00 1.000 0.000 18:00 -1.000 -0.000

7:00 0.966 -0.259 19:00 -0.966 0.259

8:00 0.866 -0.500 20:00 -0.866 0.500

9:00 0.707 -0.707 21:00 -0.707 0.707

10:00 0.500 -0.866 22:00 -0.500 0.866

11:00 0.259 -0.966 23:00 -0.259 0.966

Table 3.4: Weekday Trigonometric Features

DAY DAY_SIN DAY_COS

1 0.782 0.623

2 0.975 -0.223

3 0.434 -0.901

4 -0.434 -0.901

5 -0.975 -0.223

6 -0.782 0.623

7 0.000 1.000
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In addition to trigonometric features, lag features are introduced to the model. In

the literature, when similar studies are investigated, lag features are usually used by

the researchers as in [42], [43]. By introducing lag features, a correlation between

the near past and current values of each feature is tried to be identified. Actually, in

order to make the time series data to be useful for predicting purposes in supervised

learning algorithms, the data should be transformed to a format comprising of the lag

values. By doing this, the past values of the features are used to predict the feature

value. For deciding the lag value, partial autocorrelation plots of input and target

variables are examined.

Figure 3.3: Partial Autocorrelation Plots of the Features and Target Variable

In Figure 3.3, partial autocorrelation plots for input features and target variable can

be seen. Trigonometric features are not investigated in autocorrelation analysis. Ac-

cording to [42], the lag value can be determined as a value at which the partial auto-

correlation value falls below a significant level. Also, in [44], it is stated that if there

is a repeated pattern in partial autocorrelation plots for a specific value, that value can

be taken as the lag value. According to these, lag value of 24 and 168 are determined
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to be used in analysis. The lag values for trigonometric features are not introduced in

to the model since the lag values will be the same.

3.2.3 Preparing Train and Test Data

The data should be split into train and test sets before modeling. The train data set is

used for determining parameters for the model. To train a model, different methodolo-

gies can be followed. In this study, time series cross-validation method is used. The

test data set is separated from the modeling procedure and it is used for the unbiased

evaluation of the model.

Splitting ratios can be different. In [45], ratios used in practice are 80:20, 70:30,

60:40, and even 50:50. It is also stated that there does not appear to be any clear rec-

ommendation on what ratio is appropriate or ideal for a certain data set. Since, 1 year

period is desired to be investigated in test data set, split ratio of 65:35 is implemented.

Thus, approximately one year period is reserved for test dataset. After data is trans-

formed to a data of supervised learning data which is discussed next, split procedure

is conducted.

Table 3.5: Example Data Table

t A B C D T

1 A1 B1 C1 D1 T1

2 A2 B2 C2 D2 T2

3 A3 B3 C3 D3 T3

4 A4 B4 C4 D4 T4

. . . . . .

. . . . . .

. . . . . .

n An Bn Cn Dn Tn

As it mentioned before, time series data should be transformed to a data of supervised

learning problem. The procedure is explained by an example. Let the input data be

as shown in Table 3.5, where A, B, C, D are the input features and T is the target that
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is going to be predicted and t denotes the time.

If the lag value is 24, the past 24 hours of data is used to predict the next 24 hours.

After the transformation of the data, the input would seem as shown in Table 3.6.

Table 3.6: Example Data Table after Transformation

A1 B1 C1 D1 T1 T25

A2 B2 C2 D2 T2 T26

. . . . . .

. . . . . .

. . . . . .

An Bn Cn Dn Tn Tn+24

3.3 Modeling the Data

After data is split into train and test data sets, training takes place. Training the

time series data requires a cross - validation procedure. Also, data should be scaled

since the features may not be in the same scale which might lead to deviate from an

optimally trained model. Therefore, the data scaling is important while training. In

the following Sections 3.3.1 and 3.3.2, feature scaling and parameter optimization is

explained.

3.3.1 Feature Scaling

In the literature, there are plenty of scaling techniques [46]. Normalization and stan-

dardization are the most widely used ones. When the features are close to normal

distribution, the standardization is more appropriate for the scaling [47]. Therefore,

standardization is conducted in this study. The formulas for normalization and stan-

dardization are given below.

xnew =
xi − µ

maxi(xi)−min(xi)
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Here, xnew is the new x value after the normalization, xi is the value of instance i

before the scaling, µ is mean of the feature in training data set, maxi(xi) and mini(xi)

are maximum and minimum values of the feature, respectively,

z =
xi − µ

σ

Here, z is the standardized value and σ is the standard deviation of the feature value.

It is important to specify that mean of the training data, µ, should be used for scaling

the validation and test data sets. Validation data set is used for parameter optimization

while conducting the cross-validation. In Section 3.3.2, parameter optimization with

the cross-validation techniques is explained.

3.3.2 Optimizing the Model Parameters

Parameter optimization is a fundamental stage of the modeling procedure. Then, the

model would be ready to be used in the prediction and evaluating the model met-

rics. In order to find the optimal parameters, parameter search and cross-validation

procedures are conducted together.

In the literature, there are different parameter search and cross-validation techniques

for machine learning and time series [48], [49], [50], [51]. Grid search is one of the

popular parameter search algorithms used widely in machine learning problems. It

searches for all possible hyperparameter sets, and gives the best combination among

those sets. For example, in [52], cross-validation and grid search are used to improve

performance of study of a multi-class classification problem by determining the op-

timal parameters. Also, in [53] grid search and cross-validation techniques are used

to increase the performance of their machine learning models. Since the grid search

with cross validation is used by the studies mentioned, it is also adopted in this thesis.

These two procedures form the hyperparameter tuning process for the model.

In classification problems, k-fold cross validation is one of the most widely used

method for machine learning problems [50]. k is the number of splits and is defined

by the user. Generally, k is defined as 3, 5, 7 which is stated in [54].
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Figure 3.4: Cross-validation Process given in [4]

The cross validation procedure is shown in Figure 3.4. As it is shown, the train data

is split into again train and validation data sets. The model is trained using k-1 of

the folds as train data. The generated model is verified on the remaining data (i.e., it

serves as a test set for calculating a performance metric like accuracy). The perfor-

mance metric given by k-fold cross-validation is the average of the values calculated

for each fold. If k is 5, number of parameters to be optimized is 3 and there are 3 can-

didate values for each parameter, then there will be 5x3x3 = 45 models generated.

The connection between nearby observations (autocorrelation) characterizes time se-

ries data. Classical cross-validation methods, shown in Figure 3.4, assume that sam-

ples are independent and identically distributed, resulting in an unjustifiable correla-

tion between training and testing instances (and inaccurate estimates of generalization

error) for time series data. As a result, it is critical to evaluate the model for time se-

ries data on "future" observations that differ significantly from those used to train the

model.

Figure 3.5 shows the time series cross validation procedure conducted in this study.

It is a version of k-fold that returns the first fold as the train set and the last fold as the

test set. It is worth noting that, unlike typical cross-validation approaches, consecutive
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Figure 3.5: Cross validation process for time series data given in [5]

training sets are super sets of the previous ones. Additionally, it adds all surplus data

to the initial training partition, which is always used to train the model. In this thesis,

the number folds are set to be 3 for the sake of simplicity and considering the model

training times.

3.4 Machine Learning Algorithms used in the Study

In this study, two of the machine learning algorithms are used. One of them is SVM.

Since the target variable, namely the day-ahead electricity price, is a continuous vari-

able, it can be highlighted that SVM is used for regression, which can also be named

as Support Vector Regression (SVR) instead of its general use for classification. One

of the reasons behind why SVM is chosen is that it offers a solution to bypass the

complexities involved in using linear functions within feature spaces characterized

by a high dimensionality as stated in [55]. Therefore, SVMs are more effective in

high dimensional spaces.

The other machine learning algorithm, which takes a part of predicting the day-ahead

energy prices in this thesis is Extreme Gradient Boosting, which is called generally

XGBoost. It is an ensemble learning algorithm. The name ensemble comes from the
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Table 3.7: Advantages and Disadvantages of SVMs given in [1]

Advantages of SVMs Disadvantages of SVMs

Effective in high-dimensional spaces Computationally expensive during

training

Handles large feature spaces and

datasets

Careful selection of Kernel function

and hyperparameter tuning is required

Robust against overfitting Difficult to interpret results

Complex decision boundaries are

captured via different Kernel func-

tions

Sensitive to noisy or mislabeled data

Linearly separable or non-linearly

separable data is handled well

Imbalanced datasets may lead to

struggle

fact that the algorithm ensembles weak learning algorithms and gives an output. This

weak learning algorithm in XGBoost is decision trees.

In Table 3.7, advantages and disadvantages of SVM are given. As it is seen in the

table, SVM is effective in high dimensional spaces and it is a flexible algorithm in

terms of overfitting. The Kernel function options are used to struggle with the com-

plex decision boundaries. However, SVMs are sensitive to the noisy and mislabeled

data. Also, imbalanced datasets and rigorous selection process of Kernel functions

and hyperparameters create different challenges to fit a proper model.

Table 3.8 gives advantages and disadvantages of XGBoost algorithm. It can be said

that while improvements are included to the original gradient boosting models to

increase the performance and accuracy of the results, overfitting and slower training

process may be observed in XGBoost models.

Consequently, although both SVM and XGBoost algorithms have some drawbacks

like any other algorithms, they are used in this thesis because of their high level

benefits mentioned in advantages columns. The explanations for the aforementioned

algorithms are provided in Sections 3.4.1 and 3.4.2.
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Table 3.8: Advantages and Disadvantages of XGBoost given in [2]

Advantages of XGBoost Disadvantages of XGBoost

Effective in small number of samples

with a large number of features

Overfitting may be observed unless

hyperparameters are adjusted cor-

rectly

Explainability capabilities that can

help validate the correctness of the

model, i.e., the most significant fea-

tures can be checked

Applicable for numeric features only

Improvements for increasing the per-

formance and accuracy of the results

are included to the original gradient

boosting models

Slower to train

3.4.1 Support Vector Machine for Regression (SVR)

The fundamental concept of SVMs was initially introduced in 1960s by Vapnik and

his colleagues [56], [57]. Subsequently, significant advancements were made in the

following decades. The comprehensive framework of SVM was formally documented

in 1992 for classification by [58], and later extended to regression, referred to as the

ϵ-SVR model, in [59] and [60].

Conventional statistical regression methods are typically described as processes gen-

erating a function that minimizes the difference between predicted and actual re-

sponses across all training instances. A distinguishing feature of SVR is its focus

on minimizing the generalized error bound rather than solely targeting the training

error. This bound encompasses both the training error and a regularization term,

which governs the complexity of the hypothesis space, thereby aiming for improved

generalization performance [61].
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3.4.2 Extreme Gradient Boosting (XGBoost)

Extreme gradient boosting (XGBoost) is a machine learning technique initially de-

veloped in [62]. Gradient tree boosting is a machine learning method that is widely

utilized in a range of applications. Tree boosting has been shown to achieve superior

performance on various traditional classification standards. XGBoost is comparable

to other gradient boosting methods, but its effectiveness stems mostly from its abil-

ity to scale across all scenarios. The system surpasses earlier approaches on a single

computer and is capable of handling billions of samples in distributed or memory-

constrained environments. XGBoost’s scalability is accomplished by a variety of

system and algorithmic improvements. These improvements include an innovative

tree learning technique for sparse data and a theoretically justified weighted quan-

tile sketch procedure for handling instance weights in approximation tree learning.

Parallel and distributed computers also enhance learning, allowing fast model explo-

ration. The approach is based on the study of [63]. This research now includes minor

improvements.

3.5 Ensemble of Two Algorithms

Ensemble of the machine learning algorithms are used in the literature to get in-

creased final model performance rather than less powerful individual models. Several

ensembling techniques, including bagging, boosting, dagging, stacking/blending and

model averaging are used in the literature and practice [64]. While boosting and

bagging techniques concentrate more on lowering bias and variance, respectively,

stacking approaches aim to reduce both by determining the best way to mix base

learners. Ensembles are formed by stacking the weighted averages of many basic

learners together. It is well known that improving each base learner’s hyperparam-

eter throughout the ensemble weight optimization procedure might result in higher-

performing ensembles [65]. The procedure in [65] which is stated as Generalized

Ensemble Model (GEM) algorithm is implemented while producing ensemle of the

algorithms.

In this thesis, SVM and XGBoost is combined in order to achieve the output. The
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weighted average of the outputs coming from both algorithms gives the final result.

The weights of the algorithms are determined according to the average performance

metric of the cross-validation scores. An optimization problem is solved to mini-

mize the error metric and the final weights are determined. Those weights are used

in predicting the test output. Next, the performance metrics used in this thesis are

described. Then, the procedure is given in this section.

It is known that there are plenty of performance metrics in order to examine the per-

formance of the regression and classification problems. Since the problem in this

study is a regression problem, the metrics for regression problems are used. After the

suitable metrics for the study are searched in the literature, four performance metrics

are determined to be used in this study as these metrics are commonly used in the

literature [66], [66], [28]. The first performance metric is called Mean Absolute Error

(MAE). The calculation of the metric is given as follows:

MAE =
1

N

N∑
i=1

|zi − ẑi| (3.1)

where N is the number of instances, zi is the real value and ẑi is the predicted value

of instance i. The second performance metric is Mean Absolute Percentage Error

(MAPE). It is computed by the following formulation:

MAPE =
100

N

N∑
i=1

|zi − ẑi|
zi

(3.2)

Mean Squared Error (MSE) is the third performance metric used in this study. Its

calculation is given below.

MSE =
1

N

N∑
i=1

(zi − ẑi)
2 (3.3)

The fourth performance metric is Root Mean Squared Error (RMSE) which is cal-

culated by taking the squared root of MSE and the calculation is shown below.
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RMSE =
√
MSE =

√√√√ 1

N

N∑
i=1

(zi − ẑi)2 (3.4)

The other metric is Mean Error (ME). It is used how the model deviates from actual

values on the average. It shows whether the model overestimates or underestimates

the actual values on the average. The calculation is shown below.

ME =
1

N

N∑
i=1

(zi − ẑi) (3.5)

The sixth performance metric used in the thesis is Symmetric Mean Absolute Percent-

age Error (SMAPE). The SMAPE metric is designed to account for the relative

difference between predicted and actual values, considering their magnitudes in a

balanced manner. Unlike other error measures, SMAPE assigns equal weight to

overestimations and underestimations [67], [68]. Calculation is shown below. Also,

since the values closer to zero distract the MAPE value [69], SMAPE can be an

alternative.

SMAPE =
100

N

N∑
i=1

|zi − ẑi|
|zi|+|ẑi|

2

(3.6)

The last performance metric used in this thesis is Mean Absolute Scaled Error (MASE).

It is the mean absolute error of the forecast values, divided by the mean absolute error

of the in-sample seasonal naive forecast. It is used in this study because MASE is

independent of the scale of the data, so can be used to compare forecasts across data

sets with different scales. Also, MASE penalizes positive and negative forecast er-

rors equally, and penalizes errors in large forecasts and small forecasts equally [70],

[71]. The formula of MASE is shown below.

MASE =
1

N

N∑
i=1

1
N

∑N
i=1 |zi − ẑi|

1
T−m

∑T
i=m+1 |zi − ẑi−m|

(3.7)

where T is the size of training data, m is seasonal period, which is taken as 24 in this

study.
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Having given the performance metrics used in the study, how the two algorithm is

combined is explained next. Since the aim here is to determine the weight of each

algorithm which becomes a decision variable, let wj be the weight of algorithm j.

When j is 1, it denotes SVR algorithm and when it is 2, it denotes XGBoost algo-

rithm. Note that the weight should satisfy the following equation that assures that

the resulting measure is a convex combination of individual measures, i.e., sum of

weights is equal to unity.

J∑
j=1

wj = 1, wj ≥ 0, for ∀j, j = 1, ...J. (3.8)

Parameters of the optimization problem are provided below.

ŷijk: Day-ahead electricity price predicted by algorithm j for the kth cross-validation

split and for instance i.

yik: Real day-ahead electricity price value for instance i and kth cross-validation split.

uik: Upper limit price value obtained from EPIAS after transforming it to USD for

instance i in kth cross-validation split.

lik: Lowest price value, which is 1, after transforming TL price values to USD for

instance i in kth cross-validation split.

ui: Upper limit price value obtained from EPIAS after transforming TL price values

to USD for instance i in the test set.

li: Lowest price value, which is 1, after transforming TL price values to USD for

instance i in the test set.

ŷ∗ijk values are obtained after modifying the model outputs according to the real maxi-

mum or minimum price levels. Let ŷijk be the first version of the output from machine

learning model. ŷ∗ijk value is obtained according to the relation below.

ŷ∗ijk =


lik, if ŷijk ≤ 0,

ŷijk, if 0 < ŷijk < uik

uik, otherwise.

(3.9)

The similar procedure is followed for the test dataset after the validation set.
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For this study, MAE and MAPE values are chosen to be in the objective function.

For each cross-validation split (fold) k, they can be calculated by the expression be-

low,

MAEk =
1

N

N∑
i=1

|yik −
J∑

j=1

wj ŷ
∗
ijk| for ∀k (3.10)

MAPEk =
100

N

N∑
i=1

|yik −
∑J

j=1wj ŷ
∗
ijk|

yik
for ∀k (3.11)

Then, by putting the expressions found above into the optimization problems for Error

Metric Minimization, objective functions of problems are formulated below.

Problem EMMmae: Minimize
1

K

K∑
k=1

MAEk

subject to (3.8), (3.10)

Problem EMMmape: Minimize
1

K

K∑
k=1

MAPEk

subject to (3.8), (3.11)

Problem EMMmae and Problem EMMmape above give the weight values for each al-

gorithm to minimize the average of the error metrics. The weight values are expected

to be changed when any property of each algorithm is changed. Using the weight

values found, the final predictions for the test data set are found. Denoting the final

prediction result by ŷi
test,

ŷi
test =


li, if

∑J
j=1 w

∗
j ŷ

test
ij ≤ 0,∑J

j=1 w
∗
j ŷ

test
ij , if 0 <

∑J
j=1w

∗
j ŷ

test
ij < ui

ui, otherwise.

(3.12)
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gives the final prediction result. In this formula, w∗
j shows the weight values found

by solving Problem EMM, ŷtestij shows the ith predicted electricity price value in the

test dataset by algorithm j.

After finding the final values, ŷi
test, for test data set, the performance metrics to

present model performances are calculated. Next chapter presents the results of Prob-

lem EMM, different model settings and performance metrics for those models. Also,

several analysis for the performance metrics are presented.

3.6 Benchmark Models

To compare the results of new methodology, models which can be used as benchmark

are investigated. In this study, two modeling approaches are used as benchmark and

their performance are compared with the new approach mentioned before.

3.6.1 Naive Model

Although there are many studies focusing on precise forecasting of energy related

issues, the decision makers would rather prefer traditional and simple methods they

have been using for a long time in practice. One of them in DAM price forecasting

using recent data as they were observed. Thus, a naive algorithm that employs specific

lag values of 24, 48 and 168 hours is proposed. In this model, these specific lag values

of the electricity price are taken as the prediction values. The prediction is found as

shown in the calculation below.

ŷt = yt−m

where ŷt is the predicted value for time t using the value which is m times before. In

this study, we take m as 24, 48 and 168 hours.
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3.6.2 Seasonal Auto-Regressive Integrated Moving Average (SARIMA)

A widespread and simple time series forecasting method SARIMA is used as another

benchmark in this study. According to [72], a full ARIMA model can be written as

y
′

t = c+ ϕ1y
′

t−1 + ...+ ϕpy
′

t−p + θ1ϵt−1 + ...+ θ1ϵt−q + ϵt

where y′
t is the differenced series (it may have been differenced more than once). The

“predictors” on the right hand side include both lagged values of yt and lagged errors.

It is called an ARIMA(p,d,q) model, where p is order of the autoregressive part, d is

the degree of first differencing involved and q is the order of the moving average part.

The backshift notation of this model can be written as,

(1− ϕ1B − ...− ϕpB
p)(1−B)dyt = c+ (1 + ϕ1B + ...+ ϕqB

q)ϵt

where the firstelement in right side of the equation defines AR(p), second part defines

d differences and left side of the equation defines moving averages with q, MA(q). A

seasonal ARIMA model is formed by including additional seasonal terms,(P,D,Q)m

in ARIMA models where m is the number of observations in a period. It is taken as

24 in this study. The seasonal part of the model consists of terms that are similar

to the non-seasonal components of the model, but involve backshifts of the seasonal

period. An ARIMA(1, 1, 1)(1, 1, 1)24 model without a constant is for a lag 24 data

and can be written as

(1− ϕ1B)(1− ΦB24)(1−B)(1−B24)yt = (1 + ϕ1B)(1 + ΘB24)ϵt

The additional seasonal terms are simply multiplied by the non-seasonal terms. The

auto.arima() function in R is used to create model for SARIMA time series. Consider-

ing the AIC (Akaike Information Criterion), an iterative procedure called Hyndman-

Khandakar algorithm, [73], is used to reach minimum AIC value. The parameters

searched in the study are given in Table 3.9
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Table 3.9: Parameters Searched in SARIMA model

SARIMA Parameters Values Searched

p 0,1,2,3

d 1

q 0,1,2,3

P 0,1,2,3

D 0

Q 0,1,2,3

The modification for upper and lowest price limits are also conducted for the predic-

tions of Naive and SARIMA models.
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CHAPTER 4

NUMERICAL ANALYSIS AND RESULTS

This chapter presents the findings from a variety of models that were generated using

varying input parameters in order to assess the models’ performance on the time series

forecasting problem. Numerical values of the performance metrics are given using the

effectiveness of each lag setting used in the ensemble methodology, which follows

the procedures previously stated in Chapter 3. The accuracy and robustness of the

models are evaluated using the metrics including MAPE, MAE, RMSE, MSE,

ME, MASE and SMAPE given in Chapter 3. Also, benchmark model findings are

included to the results to compare the effectiveness of ensemble approach.

Several input configurations are used in different models, including independent vari-

ables. When compared to previous research in the literature for Turkish DAM, the

suggested ensemble model introduced in Section 3.5 performs competitively, demon-

strating its dependability and robustness. In addition, several input configurations are

examined to see how they affect the model’s performance, emphasizing the signif-

icance of careful feature selection and parameter adjustment. The best-performing

models are thoroughly discussed among the other models tried in this chapter along

with their advantages and disadvantages when applied to the particular time series

data.

4.1 Model Results

In this section, the numerical results of the methodology given in Chapter 3 are pre-

sented. Different combinations of the features are tried and their results are presented.

Besides, since the data is time series, the numerical values of the evaluation metrics
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are analyzed based on the time periods.

4.1.1 Results of All Models

After optimizing parameters separately using grid search, the ensemble model results

are achieved using the best parameter settings. The grid search results belonging to

the models are given in Appendix. There are 6 main ensemble models, 6 individual

models created with XGBoost and SVR, 3 Naive models with lags 24, 48 and 168

and 1 SARIMA model tried in the study. For the simplicity, the aliases are given to

the models and the numbers are given to the features. Since the seasonal features,

HOUR_SIN, HOUR_COS, DAY_SIN and DAY_COS are always going to be put

in feature combination calculations with electricity price target variable, numbers to

these features are not given. In the next subsections the given aliases are going to be

used to mention the models and features. Model aliases and feature aliases can be

seen in Table 4.1 and Table 4.2 respectively.

Table 4.1: Feature Aliases

Feature Number

WORKDAY 1

DEMAND 2

TAVG 3

RENEW_PERC 4

According to the initial results, without any feature combination and using the best

parameters for each individual algorithm, the model results are presented in Table 4.3.

In Table 4.3, the results are presented for the test data set. According to the results,

Model B_mae and Model B_SVR are the dominant models which are shown as bolt

characters in the table. The optimal weight values found in Model B_mae are 0.631

and 0.369 for XGBoost and SVR, respectively. It can be said that when lag 24 and

lag 168 values used together, the overall performance increased. A similar behavior

can be observed in [74]. Also, it can be observed that the proposed methodology
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Table 4.2: Model Aliases

Model Alias Model Description

Model A_mae Ensemble model obtained from problem EMMmae in which lag 168 values

of the features are used.

Model A_mape Ensemble model obtained from problem EMMmape in which lag 168 values

of the features are used.

Model A_SVR Individual SVR model in which lag 168 values of the features are used.

Model A_XGB Individual XGBoost model in which lag 168 values of the features are used.

Model B_mae Ensemble model obtained from problem EMMmae in which lag 24 and 168

values of the features are used.

Model B_mape Ensemble model obtained from problem EMMmape in which lag 24 and

168 values of the features are used.

Model B_SVR Individual SVR model in which lag 24 and 168 values of the features are

used.

Model B_XGB Individual XGBoost model in which lag 24 and 168 values of the features

are used.

Model C_mae Ensemble model obtained from problem EMMmae in which lag 24 values

of the features are used.

Model C_mape Ensemble model obtained from problem EMMmape in which lag 24 values

of the features are used.

Model C_SVR Individual SVR model in which lag 24 values of the features are used.

Model C_XGB Individual XGBoost model in which lag 24 values of the features are used.

Naive_24 Naive model using lag 24 value of target variable

Naive_48 Naive model using lag 48 value of target variable

Naive_168 Naive model using lag 168 value of target variable

SARIMA SARIMA model defined in Chapter 3.

performs better than Naive and SARIMA models in terms of MAE, MASE, MSE,

RMSE and SMAPE. Therefore, the rest of the analysis are conducted for Model

B_mae and Model B_SVR.

In Figure 4.1a and Figure 4.1c, the predicted and actual values of the whole period

of the test set for the two models are given. An example time period of 01/07/2023

- 07/07/2023 can be seen in Figure 4.1b and Figure 4.1d to see a detailed prediction

plot of the two models for the same time period. It can be said that both of the models

perform similar for the same example time period. To examine how the residuals

behave for both models, error analysis are conducted for test data sets. Figure 4.2
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Table 4.3: All Model Results for Test Data Set

Models MAE MAPE (%) MASE ME MSE RMSE SMAPE (%)

Model A_mae 11.664 55.002 0.525 -5.741 293.553 17.133 20.174

Model A_mape 11.664 55.002 0.525 -5.741 293.552 17.133 20.174

Model A_SVR 11.663 55.000 0.525 -5.740 293.550 17.133 20.174

Model A_XGB 18.004 97.537 0.810 -17.132 648.648 25.469 26.932

Model B_mae 10.614 46.009 0.477 -5.438 223.800 14.960 18.760

Model B_mape 12.168 52.121 0.547 -7.665 288.695 16.991 20.579

Model B_SVR 10.272 38.948 0.462 -1.637 209.108 14.461 18.772

Model B_XGB 12.168 52.121 0.547 -7.665 288.696 16.991 20.579

Model C_mae 13.880 58.057 0.627 -11.348 388.564 19.712 22.605

Model C_mape 13.879 58.057 0.627 -11.348 388.559 19.712 22.605

Model C_SVR 13.879 58.057 0.627 -11.348 388.559 19.712 22.605

Model C_XGB 13.700 54.669 0.619 -10.642 362.789 19.047 22.354

Naive_24 11.981 40.620 0.541 -0.342 310.167 17.612 22.298

Naive_48 12.567 37.096 0.568 -0.053 353.770 18.809 23.144

Naive_168 14.659 51.748 0.662 -0.094 458.857 21.421 26.161

SARIMA 14.053 45.117 0.635 3.602 365.226 19.111 25.047

shows the residuals for both models.

In Figure 4.2a, it is seen that residuals are mostly below zero, which is actually ex-

pected from the ME value, -5.438, in Table 4.3 for Model B_mae. Therefore, it can

be said that Model B_mae nearly overestimates the real values. In Figure 4.2b, it

can be said that residuals are distributed closer to zero, which again can be observed

in ME value for Mode B_SVR, -1.637 in Table 4.3. Although, ME value is much

closer than -5.438, it is less than zero and a few amount of overestimation can also be

observed in Model B_SVR.

Therefore, it can be inferred that, if the limit value for price prediction increases,

model performance can increase.
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(a) Plot for Model B_mae

(b) Model B_mae Plot Covering 01/07/2023 - 07/07/2023

(c) Plot for Model B_SVR

(d) Model B_SVR Plot Covering 01/07/2023 - 07/07/2023

Figure 4.1: Plots for Model B_mae and Model B_SVR

4.1.2 Results with Different Feature Combinations

Initial model results shows that Model B_mae and Model B_SVR outperforms among

the other developed models. These results are obtained using all the features. How-
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(a) Residuals for Model B_mae

(b) Residuals for Model B_SVR

Figure 4.2: Plots for Residuals in Model B_mae and Model B_SVR

ever, using all the features may cause the training period to slow down because uti-

lizing the lag variables increases the data size. Also, there is a probability of getting

same or better results with a smaller sets of features. Therefore, it is logical to search

all the feature combinations to find the best model result.

In this section, different combinations of input features are tried and the 5 best re-

sults in all of the trials are presented. For the simplicity, the same parameters found

in the training period are used in all the results of combinations. The name of the

combinations are given according to the feature aliases given in Section 4.1.1.

In Model B_mae and Model B_SVR, there are 8 main features. As it mentioned

before, HOUR_SIN, HOUR_COS, DAY_SIN and DAY_COS are always going to

be put in feature combination calculations. There will be 15 feature combinations

including the Model B_mae and Model B_SVR themselves.

In the results, MAE and SMAPE values are presented. Since SMAPE assigns

equal weight to over-estimations and under-estimations, it is used instead of MAPE

value.
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4.1.2.1 Feature Combination Results for Model B_mae

Table 4.4: Model B_mae Top 5 Results for MAE

Model B_mae Combination Test Data

1 9.653

1-4 9.872

1-2 9.883

1-2-4 9.896

2 9.897

According to Table 4.4, combination "1", which uses only WORKDAY feature has

the smallest MAE value for the test set. Again combination "1" has the smallest

SMAPE value for the test set according to Table 4.5.

Table 4.5: Model B_mae Top 5 Results for SMAPE (%)

Model B_mae Combination Test Data

1 17.530

1-4 17.858

1-2-4 17.875

4 17.905

2 17.985

4.1.2.2 Feature Combination Results for Model B_SVR

According to Table 4.6, combination "1-2-4" has the smallest MAE value for test

set. It is seen that Combination "1-2-4" have the smallest SMAPE value as well for

test set respectively when the output values in Table 4.7 are examined.

According to the feature combination results, Model B_mae outperforms compared

to Model B_SVR in terms of both MAE and SMAPE metrics. Therefore, perfor-

mance metric analysis are conducted for Model B_mae in the next sections.
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Table 4.6: Model B_SVR Top 5 Results for MAE

Model B_SVR Combination Test Data

1-2-4 10.259

1-2-3-4 10.272

2-4 10.275

2-3-4 10.287

1-4 10.418

Table 4.7: Model B_SVR Top 5 Results for SMAPE (%)

Model B_SVR Combination Test Data

1-2-4 18.751

2-4 18.760

1-2-3-4 18.772

2-3-4 18.781

1-4 18.998

4.2 Metric Analysis for Model B_mae

After different feature combination results for the Model B_mae and Model B_SVR

are investigated, the performance metrics are examined for Model B_mae. Since the

test data set is comprised of 12 months, the values found in the previous sections are

average values for that time horizon. However, there may be better time periods when

the metrics exhibit better performance.

Two of the performance metrics, MAE and SMAPE are examined on hourly, daily,

weekly basis. Metric analysis are presented for the top five models of combinations

mentioned in Section 4.1.2.1 in the following steps. Tables showing the values in

detail can be seen in Appendix B.

To analyze the metrics, confidence intervals are considered. The significance factor

(α) is taken as 0.05.
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In order to construct hourly confidence intervals, the following equation is used,

x̄− tα
2
(
s√
n
) ≤ µ ≤ x̄+ tα

2
(
s√
n
)

where x̄ is hourly, daily or weekly average value for a metric, α is significance factor,

s is sample standard deviation of a metric and n is the number of hours, days or

weeks. Since the population standard deviation is not known, t-distribution is used

for constructing the confidence intervals.

In Figures 4.3, 4.4, the best five combination results which are derived from Model

B_mae for MAE and SMAPE metrics can be seen for the hourly basis.

As it can be seen in Figure 4.3, all five combinations have the similar average SMAPE

values for each hour. 12 am has the highest values while 8 pm has the lowest average

values for SMAPE. Moreover, it can be observed that when the average value for

SMAPE is lower, the possible range where the population mean shrinks. However,

larger average SMAPE values mean wider range for the true value of the mean for

that hour.

MAE metric has more stable outputs for the same five feature combinations. Ac-

cording to Figure 4.4, it can be said that the behavior is the same with the behavior

observed in SMAPE values. The smallest average MAE values are again seen in 8

pm for each feature combination. The highest average MAE values are again at 12

am.
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Figure 4.5: Confidence intervals for SMAPE values constructed weekly and daily

for the best 5 feature combination results.

When the confidence intervals constructed for daily and weekly are seen in Figure 4.5

and 4.6 a similar behavior is observed. In Figure 4.5 and 4.6, confidence intervals for

weekly means are wider than the confidence intervals for daily means. Also, it can

be said that MAE values on daily basis are more consistent compared to SMAPE

metrics on daily basis.

Figure 4.6: Confidence intervals for MAE values constructed weekly and daily for

the best 5 feature combination results.

As it can be seen in Figure 4.5 and Figure 4.6, feature combination "1", which is

generated using "WORKDAY" feature performs better for daily and weekly analysis

than other models generated using other features.

Giving the hourly, daily and weekly performance metric analysis, the sensitivity anal-

ysis results for the weight values of Model B_mae are presented in the next section.
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4.3 Sensitivity Analysis for Weight Values

In this section, the sensitivity analysis of the weight value are conducted for Model

B_mae. Left side of the weight constraint of Problem EMM given in Section 3.5 is

changed by adding or subtracting 0.025, 0.050, 0.075 and 0.1. According to those

modifications, the performance metric results on the test data set are observed and

analyzed. Again, the same best hyperparameters found for both algorithms, XGBoost

and SVR, are used in all constraint changes.

In Figure 4.7, all the performance metric results are given for different weight con-

straints. There is clear fact that subtracting a specific amount from the weight con-

straint results in a better performance metric. Especially for ME, it can be seen that

the least mean deviation from zero is obtained as -0.066 when the weight constraint

is equal to 0.925. It is an expected situation because the model overestimates and

decreasing weight values reduces the overestimation. Thus, the overestimation of

the model decreases by using sum of the weights as 0.925. Decreasing the weight

constraint by a specific amount also positively affects the other performance metrics.

Some performance metric values; MAE, MASE, and SMAPE, increase when

weight constraint is kept decreasing. For MAPE, it can be seen that decreasing

weight constraint below 0.9 may positively affect the result. However, when analysis

for MAPE are conducted, it is seen that the minimum MAPE value is around 43%.

For less values of weight constraint such as 0.75, the MAPE value again increases to

46%. It is also logical that increasing the constraint value increases the overestimation

and the performance metric performances decrease.
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Figure 4.7: Results of the Sensitivity Analysis
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4.4 Feature Importance

Lastly, the feature importance can be checked using the SHAP library in python.

Figure 4.8: Feature Importance Values for Model B_mae

In Figure 4.8, each feature in the model are given vertically on the left side ranked

from top to bottom by their mean absolute SHAP values for the entire data set. Each

instance value of the feature is given as a point in relative feature row. On the x-axis,

the SHAP values are distributed. The color bar on the right shows whether an instance

value is high or low. If the value of a variable for a particular instance is relatively

high, it appears as a red dot. Relatively low value instances appear as blue dots. In

places where there is a high density of SHAP values, the points are stacked vertically.

Examining how the SHAP values are distributed reveals how a variable may influence

the model’s prediction.

59



According to the SHAP plot in Figure 4.8, it can be said that lag 168 and lag 24

of electricity price are the most important features. Also, it is seen that the high

or low values for electricity prices of lag 24 and 168 always cause the prediction

values to increase since all high or low instance points have the positive SHAP values.

Temperature and renewable resource ratio are other important features. It can be

said that higher values of last week’s temperature gives lower prediction values for

electricity prices. It can be logical because higher temperatures means the season is

summer and days are longer than nights which also explains the need for electricity

is lower.
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CHAPTER 5

CONCLUSIONS

Accurately estimating the electricity prices has been a major problem in the electricity

market since the liberalization of the Turkish electricity market in 2001. Accurate

forecasting is challenging because of high volatility, many seasonality levels, and

nonlinear correlations. Consequently, there are numerous researches to predict the

electricity prices in Türkiye.

This thesis examines the Turkish electricity market, starting with its history and pre-

senting a look at how the Turkish DAM works. By understanding how the market

has developed and how it operates now, the framework for analyzing and forecasting

the electricity prices is given. A review of related studies, both global and specific

to Türkiye, on the use of different time series and machine learning methods for the

electricity price forecasting, shows the progress and gaps in the existing research.

The methodology reviewed in Chapter 3 for data collection, pre-processing, and mod-

eling, focuses on XGBoost and SVR. These algorithms are chosen for their power and

potential to improve predictive accuracy. An ensemble of these two algorithms is con-

sidered for predicting the day-ahead electricity prices for Turkish electricity market.

The analysis and results in Chapter 4 present the outcomes of the different mod-

els produced, including various feature combinations, and evaluate the performance

metrics. The results show that two of the models produced, Model B_mae, using

Problem EMMmae for determining weights of the algorithms, and Model B_SVR,

dominate other alternative models and benchmark models in terms of performance

metric values. According to the results, it can be observed that the new methodology

compete with the time series and other methodologies given in the literature. Also, it

is shown that the model has slightly overestimates the electricity prices. Thus, it can

61



be said that possible increases in price limitations would affect positively the outputs

of the model.

Moreover, Model B_mae performs better than Model B_SVR in feature combination

processes in terms of both SMAPE and MAE values. Hourly analysis show that

model performance is better when the time is 8 or 9 pm. In daily and weekly analy-

sis, it is seen that model generated only using WORKDAY feature and lag of target

variable gives better performance. Besides, confidence intervals of daily calculated

metric values are narrower compared to weekly calculated values.

When optimal weights are investigated, in Model B_mae, XGBoost algorithm has

more weight than SVR. For weight values, also, sensitivity analysis are conducted.

As a result of sensitivity analysis, it is seen that decreasing the total weight positively

affect the model performance and overestimation decreases.

Lastly, when feature importance analysis conducted, lag values of electricity prices

seem as the most effective features with temperature and renewable resource ratio in

electricity supply.

In future studies, in order to provide a more comprehensive modeling, future studies

might include optimizing the parameters for each feature combination used in the

study. In this way, feature combination results would improve with the best parameter

settings for each feature combination set. Moreover, exchange rate prediction models

can be used in real systems for price limitations which are given as TL by EPIAS.

However, the model predicts in USD and by predicting the exchange rates in the

future periods, predictions can be modified.
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Appendix A

A.1 Grid Search Results

A.1.1 Grid Search Results For Xgboost Algorithm

Table A.1: Grid Search Results for Model A_XGB

param_XGB__learning_rate param_XGB__max_depth param_XGB__n_estimators split0_test_score split1_test_score split2_test_score mean_test_score std_test_score rank_test_score

0.01 4 200 -27.7687 -20.8493 -30.8061 -26.4747 4.166559 1

0.01 6 200 -28.765 -20.8787 -30.0646 -26.5694 4.058779 2

0.1 4 100 -30.1796 -18.8744 -31.1333 -26.7291 5.567729 3

0.01 8 200 -28.9872 -21.8681 -32.3576 -27.7377 4.372529 4

0.1 4 150 -31.0168 -19.068 -33.9812 -28.022 6.446076 5

0.01 4 150 -28.1027 -22.0566 -34.11 -28.0898 4.92077 6

0.01 6 150 -29.4556 -22.3213 -32.8399 -28.2056 4.384241 7

0.1 6 100 -30.9979 -20.1909 -34.5762 -28.5883 6.114928 8

0.01 8 150 -29.1045 -22.691 -34.4725 -28.756 4.816049 9

0.1 4 200 -31.1133 -19.3366 -36.2208 -28.8902 7.069929 10

0.1 6 150 -32.1989 -20.4321 -36.6211 -29.7507 6.832057 11

0.1 8 100 -30.8404 -22.1389 -36.7035 -29.8943 5.983491 12

0.1 6 200 -32.8718 -20.5181 -38.0435 -30.4778 7.352249 13

0.01 4 100 -29.3385 -24.2944 -38.4904 -30.7078 5.875781 14

0.01 8 100 -29.7291 -24.9256 -38.1652 -30.9399 5.472432 15

0.01 6 100 -30.383 -25.047 -37.5363 -30.9888 5.116703 16

0.1 8 150 -31.7444 -22.6771 -38.7589 -31.0601 6.58315 17

0.1 8 200 -31.7872 -22.9959 -39.3443 -31.3758 6.680538 18

0.001 8 200 -33.8791 -33.0575 -51.2165 -39.3844 8.37332 19

0.001 6 200 -33.9592 -33.1026 -51.5356 -39.5325 8.494721 20

0.001 4 200 -33.7525 -32.8313 -52.2176 -39.6005 8.929586 21

0.001 8 150 -34.2489 -33.8326 -52.5283 -40.2032 8.716775 22

0.001 6 150 -34.2922 -33.8869 -52.76 -40.313 8.80288 23

0.001 4 150 -34.223 -33.6723 -53.3866 -40.4273 9.166387 24

0.001 8 100 -34.6327 -34.6608 -53.9321 -41.0752 9.091205 25

0.001 6 100 -34.7374 -34.7298 -54.0284 -41.1652 9.095637 26

0.001 4 100 -34.73 -34.5661 -54.6285 -41.3082 9.419111 27
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Table A.2: Grid Search Results for Model B_XGB

param_XGB__learning_rate param_XGB__max_depth param_XGB__n_estimators split0_test_score split1_test_score split2_test_score mean_test_score std_test_score rank_test_score

0.1 4 100 -19.0092 -13.912 -13.4051 -15.4421 2.530781 1

0.1 4 150 -20.0667 -14.1846 -13.3108 -15.854 3.000103 2

0.1 4 200 -20.2802 -14.0373 -13.3554 -15.891 3.116139 3

0.1 6 100 -21.0914 -14.3872 -16.926 -17.4682 2.763688 4

0.1 8 100 -19.5779 -15.3877 -18.3386 -17.768 1.757579 5

0.1 6 150 -21.6201 -14.6297 -17.3178 -17.8559 2.879075 6

0.01 4 200 -20.5202 -15.2429 -18.6046 -18.1226 2.181224 7

0.1 8 150 -19.9754 -15.4765 -19.0457 -18.1659 1.939169 8

0.1 6 200 -21.9517 -14.7382 -18.3944 -18.3615 2.944992 9

0.1 8 200 -20.0987 -15.6902 -19.6696 -18.4861 1.984795 10

0.01 6 200 -20.4727 -15.7188 -20.0997 -18.7637 2.158461 11

0.01 8 200 -21.0414 -16.3505 -21.9086 -19.7668 2.44152 12

0.01 4 150 -21.5204 -16.6115 -21.8386 -19.9902 2.392618 13

0.01 6 150 -21.6486 -17.347 -23.1915 -20.7291 2.473012 14

0.01 8 150 -22.1887 -17.9319 -25.1351 -21.7519 2.956871 15

0.01 4 100 -23.5144 -19.3882 -27.2842 -23.3956 3.224613 16

0.01 6 100 -23.884 -20.3297 -29.0615 -24.4251 3.585199 17

0.01 8 100 -24.2842 -20.8554 -30.7838 -25.3078 4.117375 18

0.001 4 200 -31.7704 -31.1514 -48.4946 -37.1388 8.033749 19

0.001 6 200 -31.8462 -31.3136 -49.21 -37.4566 8.313718 20

0.001 8 200 -31.712 -31.5686 -49.6936 -37.6581 8.510584 21

0.001 4 150 -32.6488 -32.3494 -50.5034 -38.5005 8.488168 22

0.001 6 150 -32.7157 -32.5242 -51.1042 -38.7814 8.713917 23

0.001 8 150 -32.5431 -32.6837 -51.4178 -38.8815 8.864655 24

0.001 4 100 -33.5792 -33.6361 -52.6337 -39.9497 8.969003 25

0.001 6 100 -33.6934 -33.7907 -53.072 -40.1853 9.112347 26

0.001 8 100 -33.565 -33.8749 -53.2821 -40.2407 9.222553 27

Table A.3: Grid Search Results for Model C_XGB

param_XGB__learning_rate param_XGB__max_depth param_XGB__n_estimators split0_test_score split1_test_score split2_test_score mean_test_score std_test_score rank_test_score

0.1 4 100 -26.4708 -16.5541 -22.3273 -21.784 4.066664 1

0.1 6 100 -26.6236 -16.55 -22.6964 -21.9567 4.145651 2

0.1 4 150 -27.0907 -16.6746 -22.6835 -22.1496 4.269078 3

0.1 4 200 -27.424 -17.2094 -22.9945 -22.5426 4.182303 4

0.01 4 200 -26.7964 -16.6724 -24.2841 -22.5843 4.304301 5

0.1 6 150 -27.4932 -17.1038 -23.9925 -22.8632 4.315996 6

0.01 6 200 -27.265 -17.0929 -24.7662 -23.0414 4.328113 7

0.1 6 200 -28.0868 -17.5871 -24.7109 -23.4616 4.376583 8

0.01 4 150 -27.6775 -17.8033 -26.3971 -23.9593 4.384247 9

0.01 8 200 -28.6208 -16.7866 -26.5095 -23.9723 5.15366 10

0.1 8 100 -28.8441 -17.1122 -26.233 -24.0631 5.029297 11

0.1 8 150 -29.1892 -17.5216 -27.1826 -24.6311 5.093499 12

0.01 6 150 -28.3171 -18.3273 -27.5077 -24.7174 4.530518 13

0.1 8 200 -29.6373 -17.7819 -27.5715 -24.9969 5.17101 14

0.01 8 150 -29.3429 -17.8007 -28.7215 -25.2884 5.300649 15

0.01 4 100 -29.3824 -19.7953 -30.1495 -26.4424 4.710628 16

0.01 6 100 -30.5789 -20.5804 -32.0828 -27.7474 5.104877 17

0.01 8 100 -31.1081 -20.0818 -32.9936 -28.0612 5.694516 18

0.001 4 200 -36.9679 -27.98 -45.3515 -36.7665 7.093338 19

0.001 6 200 -37.1648 -28.2551 -46.2097 -37.2099 7.329973 20

0.001 8 200 -37.1832 -28.0789 -46.6052 -37.2891 7.5637 21

0.001 4 150 -37.6493 -28.8367 -46.878 -37.788 7.365975 22

0.001 6 150 -37.8668 -29.0218 -47.533 -38.1405 7.559638 23

0.001 8 150 -37.8353 -28.9059 -47.8615 -38.2009 7.742881 24

0.001 4 100 -38.464 -29.7443 -48.5052 -38.9045 7.665448 25

0.001 6 100 -38.5797 -29.8654 -48.958 -39.1344 7.804362 26

0.001 8 100 -38.5971 -29.7997 -49.1312 -39.176 7.902682 27

A.1.2 Grid Search Results For SVR Algorithm
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Table A.4: Grid Search Results for Model A_SVR

param_SVM__C param_SVM__degree param_SVM__epsilon param_SVM__gamma param_SVM__kernel split0_test_score split1_test_score split2_test_score mean_test_score std_test_score rank_test_score

10 1 1 0.1 rbf -22.9568 -15.0101 -19.8121 -19.2597 3.26765 1

10 2 1 0.1 rbf -22.9568 -15.0101 -19.8121 -19.2597 3.26765 1

10 3 1 0.1 rbf -22.9568 -15.0101 -19.8121 -19.2597 3.26765 1

10 1 1 auto rbf -22.9808 -14.9911 -19.8257 -19.2659 3.285735 4

10 2 1 auto rbf -22.9808 -14.9911 -19.8257 -19.2659 3.285735 4

10 3 1 auto rbf -22.9808 -14.9911 -19.8257 -19.2659 3.285735 4

5 1 1 0.1 rbf -23.7818 -14.7802 -19.816 -19.4594 3.683526 7

5 2 1 0.1 rbf -23.7818 -14.7802 -19.816 -19.4594 3.683526 7

5 3 1 0.1 rbf -23.7818 -14.7802 -19.816 -19.4594 3.683526 7

5 1 1 auto rbf -23.712 -14.8499 -19.8553 -19.4724 3.628048 10

5 2 1 auto rbf -23.712 -14.8499 -19.8553 -19.4724 3.628048 10

5 3 1 auto rbf -23.712 -14.8499 -19.8553 -19.4724 3.628048 10

10 1 5 auto rbf -23.069 -15.2253 -20.6888 -19.661 3.283598 13

10 2 5 auto rbf -23.069 -15.2253 -20.6888 -19.661 3.283598 13

10 3 5 auto rbf -23.069 -15.2253 -20.6888 -19.661 3.283598 13

10 1 5 0.1 rbf -23.1104 -15.2154 -20.7219 -19.6825 3.305847 16

10 2 5 0.1 rbf -23.1104 -15.2154 -20.7219 -19.6825 3.305847 16

10 3 5 0.1 rbf -23.1104 -15.2154 -20.7219 -19.6825 3.305847 16

100 1 1 0.1 rbf -24.1149 -15.1404 -20.431 -19.8954 3.683357 19

100 2 1 0.1 rbf -24.1149 -15.1404 -20.431 -19.8954 3.683357 19

100 3 1 0.1 rbf -24.1149 -15.1404 -20.431 -19.8954 3.683357 19

100 1 1 auto rbf -24.2423 -15.1869 -20.3605 -19.9299 3.709392 22

100 2 1 auto rbf -24.2423 -15.1869 -20.3605 -19.9299 3.709392 22

100 3 1 auto rbf -24.2423 -15.1869 -20.3605 -19.9299 3.709392 22

5 1 5 auto rbf -23.9352 -15.1897 -20.9724 -20.0324 3.631702 25

5 2 5 auto rbf -23.9352 -15.1897 -20.9724 -20.0324 3.631702 25

5 3 5 auto rbf -23.9352 -15.1897 -20.9724 -20.0324 3.631702 25

5 1 5 0.1 rbf -23.9577 -15.2738 -20.9672 -20.0663 3.601986 28

5 2 5 0.1 rbf -23.9577 -15.2738 -20.9672 -20.0663 3.601986 28

5 3 5 0.1 rbf -23.9577 -15.2738 -20.9672 -20.0663 3.601986 28

100 1 1 auto poly -24.204 -16.7498 -19.2746 -20.0761 3.095491 31

100 1 1 0.1 poly -24.205 -16.7504 -19.2735 -20.0763 3.095842 32

10 1 1 auto poly -24.2078 -16.7697 -19.2929 -20.0901 3.088448 33

10 1 1 0.1 poly -24.2109 -16.7691 -19.294 -20.0914 3.089947 34

5 1 1 auto poly -24.215 -16.7583 -19.3131 -20.0955 3.094062 35

5 1 1 0.1 poly -24.2113 -16.7618 -19.3213 -20.0981 3.09049 36

100 1 5 0.1 rbf -24.4598 -15.4556 -20.6285 -20.1813 3.689525 37

100 2 5 0.1 rbf -24.4598 -15.4556 -20.6285 -20.1813 3.689525 37

100 3 5 0.1 rbf -24.4598 -15.4556 -20.6285 -20.1813 3.689525 37

100 1 5 auto rbf -24.3259 -15.504 -20.7289 -20.1863 3.621915 40

100 2 5 auto rbf -24.3259 -15.504 -20.7289 -20.1863 3.621915 40

100 3 5 auto rbf -24.3259 -15.504 -20.7289 -20.1863 3.621915 40

10 1 10 0.1 rbf -23.2847 -15.5999 -21.7355 -20.2067 3.318314 43

10 2 10 0.1 rbf -23.2847 -15.5999 -21.7355 -20.2067 3.318314 43

10 3 10 0.1 rbf -23.2847 -15.5999 -21.7355 -20.2067 3.318314 43

1 1 1 auto poly -24.2652 -16.8359 -19.5456 -20.2156 3.069777 46

10 1 10 auto rbf -23.3506 -15.6302 -21.7082 -20.2297 3.320705 47

10 2 10 auto rbf -23.3506 -15.6302 -21.7082 -20.2297 3.320705 47

10 3 10 auto rbf -23.3506 -15.6302 -21.7082 -20.2297 3.320705 47

1 1 1 0.1 poly -24.2646 -16.8567 -19.5881 -20.2365 3.058832 50

5 3 1 auto poly -27.1719 -15.7231 -17.972 -20.289 4.952813 51

10 3 1 0.1 poly -27.3779 -15.6467 -17.9771 -20.3339 5.070928 52

10 3 1 auto poly -27.5409 -15.6282 -17.9776 -20.3822 5.152028 53

5 3 1 0.1 poly -27.1678 -15.8544 -18.227 -20.4164 4.871227 54

5 1 10 0.1 rbf -23.9716 -15.6036 -22.0293 -20.5349 3.575938 55

5 2 10 0.1 rbf -23.9716 -15.6036 -22.0293 -20.5349 3.575938 55

5 3 10 0.1 rbf -23.9716 -15.6036 -22.0293 -20.5349 3.575938 55

5 1 10 auto rbf -24.0567 -15.5457 -22.0193 -20.5405 3.628528 58

5 2 10 auto rbf -24.0567 -15.5457 -22.0193 -20.5405 3.628528 58

5 3 10 auto rbf -24.0567 -15.5457 -22.0193 -20.5405 3.628528 58

5 3 5 auto poly -26.9387 -16.0958 -18.6486 -20.561 4.628526 61

10 3 5 0.1 poly -27.1692 -15.9872 -18.5775 -20.578 4.779152 62

100 1 5 auto poly -24.6095 -17.2198 -20.001 -20.6101 3.047406 63

100 1 5 0.1 poly -24.6092 -17.2201 -20.0016 -20.6103 3.047123 64

10 1 5 auto poly -24.6047 -17.2397 -20.0141 -20.6195 3.037091 65

10 1 5 0.1 poly -24.6089 -17.2438 -20.0083 -20.6203 3.037776 66

10 3 5 auto poly -27.5168 -15.9168 -18.4665 -20.6334 4.977412 67

5 3 5 0.1 poly -26.8872 -16.2383 -18.7814 -20.6356 4.540832 68

5 1 5 auto poly -24.5958 -17.2555 -20.0607 -20.6373 3.024291 69
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Table A.4: Grid Search Results for Model A_SVR (Cont’d)

param_SVM__C param_SVM__degree param_SVM__epsilon param_SVM__gamma param_SVM__kernel split0_test_score split1_test_score split2_test_score mean_test_score std_test_score rank_test_score

5 1 5 0.1 poly -24.5993 -17.2631 -20.0628 -20.6418 3.022834 70

100 3 1 0.1 poly -28.1361 -15.653 -18.3573 -20.7154 5.362042 71

1 1 5 auto poly -24.6097 -17.3292 -20.2372 -20.7253 2.992225 72

1 1 5 0.1 poly -24.6206 -17.336 -20.2641 -20.7402 2.99295 73

100 3 1 auto poly -28.1993 -15.6931 -18.3996 -20.764 5.372401 74

5 3 10 0.1 poly -26.4947 -16.5262 -19.5895 -20.8701 4.169152 75

1 1 1 0.1 rbf -26.2172 -15.2134 -21.2336 -20.888 4.498936 76

1 2 1 0.1 rbf -26.2172 -15.2134 -21.2336 -20.888 4.498936 76

1 3 1 0.1 rbf -26.2172 -15.2134 -21.2336 -20.888 4.498936 76

5 3 10 auto poly -27.0346 -16.3464 -19.3076 -20.8962 4.505697 79

100 1 10 0.1 rbf -25.0177 -16.1866 -21.4952 -20.8999 3.62977 80

100 2 10 0.1 rbf -25.0177 -16.1866 -21.4952 -20.8999 3.62977 80

100 3 10 0.1 rbf -25.0177 -16.1866 -21.4952 -20.8999 3.62977 80

10 3 10 0.1 poly -27.2861 -16.1847 -19.2552 -20.9086 4.680514 83

10 3 10 auto poly -27.4096 -16.1361 -19.2513 -20.9324 4.753401 84

100 3 5 0.1 poly -28.155 -15.8354 -18.8327 -20.941 5.245747 85

100 3 5 auto poly -28.1482 -15.9039 -18.8832 -20.9784 5.213645 86

100 1 10 auto rbf -25.2384 -16.3245 -21.5169 -21.0266 3.655581 87

100 2 10 auto rbf -25.2384 -16.3245 -21.5169 -21.0266 3.655581 87

100 3 10 auto rbf -25.2384 -16.3245 -21.5169 -21.0266 3.655581 87

1 1 1 auto rbf -26.4224 -15.2551 -21.435 -21.0375 4.56768 90

1 2 1 auto rbf -26.4224 -15.2551 -21.435 -21.0375 4.56768 90

1 3 1 auto rbf -26.4224 -15.2551 -21.435 -21.0375 4.56768 90

1 3 1 auto poly -25.8152 -17.1263 -20.4644 -21.1353 3.578807 93

1 3 5 auto poly -25.7569 -17.3423 -20.7724 -21.2905 3.454722 94

100 1 10 auto poly -25.1314 -17.8335 -20.9873 -21.3174 2.988511 95

100 1 10 0.1 poly -25.1319 -17.8335 -20.9873 -21.3176 2.988696 96

10 1 10 auto poly -25.1293 -17.8574 -21.01 -21.3322 2.977437 97

10 1 10 0.1 poly -25.1257 -17.8536 -21.022 -21.3338 2.976979 98

5 1 10 0.1 poly -25.1198 -17.8649 -21.0415 -21.342 2.969409 99

5 1 10 auto poly -25.1322 -17.8633 -21.0426 -21.346 2.975282 100

1 3 1 0.1 poly -25.3065 -17.4609 -21.3536 -21.3737 3.202982 101

1 1 10 auto poly -25.063 -17.927 -21.2021 -21.3973 2.916528 102

1 1 10 0.1 poly -25.0578 -17.9077 -21.2336 -21.3997 2.921381 103

1 1 5 0.1 rbf -26.4218 -15.6105 -22.2374 -21.4232 4.451069 104

1 2 5 0.1 rbf -26.4218 -15.6105 -22.2374 -21.4232 4.451069 104

1 3 5 0.1 rbf -26.4218 -15.6105 -22.2374 -21.4232 4.451069 104

1 3 10 auto poly -25.4843 -17.5374 -21.2831 -21.4349 3.24612 107

1 3 5 0.1 poly -25.1869 -17.6796 -21.6841 -21.5169 3.067118 108

1 1 5 auto rbf -26.6283 -15.5953 -22.5057 -21.5765 4.551879 109

1 2 5 auto rbf -26.6283 -15.5953 -22.5057 -21.5765 4.551879 109

1 3 5 auto rbf -26.6283 -15.5953 -22.5057 -21.5765 4.551879 109

100 3 10 0.1 poly -28.798 -16.2543 -19.7923 -21.6149 5.280587 112

100 3 10 auto poly -28.816 -16.3155 -19.9138 -21.6818 5.254215 113

1 3 10 0.1 poly -25.2084 -17.8936 -22.075 -21.7257 2.996472 114

0.1 1 1 auto poly -24.7793 -18.1737 -22.7469 -21.9 2.762421 115

1 1 10 0.1 rbf -26.5976 -15.9012 -23.2534 -21.9174 4.467791 116

1 2 10 0.1 rbf -26.5976 -15.9012 -23.2534 -21.9174 4.467791 116

1 3 10 0.1 rbf -26.5976 -15.9012 -23.2534 -21.9174 4.467791 116

1 1 10 auto rbf -26.7638 -15.9139 -23.5177 -22.0652 4.546983 119

1 2 10 auto rbf -26.7638 -15.9139 -23.5177 -22.0652 4.546983 119

1 3 10 auto rbf -26.7638 -15.9139 -23.5177 -22.0652 4.546983 119

0.1 1 1 0.1 poly -24.8335 -18.3487 -23.244 -22.1421 2.75967 122

0.1 1 5 auto poly -24.9344 -18.3962 -23.1132 -22.1479 2.755115 123

0.1 1 5 0.1 poly -25.0297 -18.5953 -23.579 -22.4013 2.755663 124

0.1 1 1 auto sigmoid -25.4249 -18.4522 -23.5216 -22.4663 2.942798 125

0.1 2 1 auto sigmoid -25.4249 -18.4522 -23.5216 -22.4663 2.942798 125

0.1 3 1 auto sigmoid -25.4249 -18.4522 -23.5216 -22.4663 2.942798 125

0.1 1 5 auto sigmoid -25.5371 -18.5604 -23.8071 -22.6349 2.96641 128

0.1 2 5 auto sigmoid -25.5371 -18.5604 -23.8071 -22.6349 2.96641 128

0.1 3 5 auto sigmoid -25.5371 -18.5604 -23.8071 -22.6349 2.96641 128

0.1 1 1 0.1 sigmoid -25.4128 -18.6061 -23.9372 -22.6521 2.923636 131

0.1 2 1 0.1 sigmoid -25.4128 -18.6061 -23.9372 -22.6521 2.923636 131

0.1 3 1 0.1 sigmoid -25.4128 -18.6061 -23.9372 -22.6521 2.923636 131

0.1 1 10 auto poly -25.187 -18.8435 -24.0539 -22.6948 2.762321 134

0.1 1 5 0.1 sigmoid -25.4692 -18.7351 -24.1477 -22.784 2.91341 135

0.1 2 5 0.1 sigmoid -25.4692 -18.7351 -24.1477 -22.784 2.91341 135

0.1 3 5 0.1 sigmoid -25.4692 -18.7351 -24.1477 -22.784 2.91341 135

0.1 1 10 0.1 poly -25.2216 -18.972 -24.4819 -22.8918 2.788134 138

0.1 1 10 auto sigmoid -25.808 -18.9312 -24.5197 -23.0863 2.984807 139
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Table A.4: Grid Search Results for Model A_SVR (Cont’d)

param_SVM__C param_SVM__degree param_SVM__epsilon param_SVM__gamma param_SVM__kernel split0_test_score split1_test_score split2_test_score mean_test_score std_test_score rank_test_score

0.1 2 10 auto sigmoid -25.808 -18.9312 -24.5197 -23.0863 2.984807 139

0.1 3 10 auto sigmoid -25.808 -18.9312 -24.5197 -23.0863 2.984807 139

0.1 1 10 0.1 sigmoid -25.6984 -19.0312 -24.8697 -23.1998 2.967007 142

0.1 2 10 0.1 sigmoid -25.6984 -19.0312 -24.8697 -23.1998 2.967007 142

0.1 3 10 0.1 sigmoid -25.6984 -19.0312 -24.8697 -23.1998 2.967007 142

0.1 3 1 auto poly -26.3781 -21.6485 -31.238 -26.4215 3.915021 145

0.1 3 5 auto poly -26.4037 -21.8026 -31.3831 -26.5298 3.912227 146

0.1 3 10 auto poly -26.5492 -21.9386 -31.4954 -26.661 3.902338 147

0.1 3 5 0.1 poly -27.0737 -22.4761 -33.5107 -27.6868 4.525666 148

0.1 3 10 0.1 poly -27.1454 -22.5667 -33.4529 -27.7217 4.462905 149

0.1 3 1 0.1 poly -27.0584 -22.4772 -33.6296 -27.7217 4.577075 150

0.1 1 10 0.1 rbf -30.7622 -19.909 -32.5828 -27.7513 5.594944 151

0.1 2 10 0.1 rbf -30.7622 -19.909 -32.5828 -27.7513 5.594944 151

0.1 3 10 0.1 rbf -30.7622 -19.909 -32.5828 -27.7513 5.594944 151

0.1 1 5 0.1 rbf -31.1307 -20.0517 -32.6455 -27.9427 5.613883 154

0.1 2 5 0.1 rbf -31.1307 -20.0517 -32.6455 -27.9427 5.613883 154

0.1 3 5 0.1 rbf -31.1307 -20.0517 -32.6455 -27.9427 5.613883 154

0.1 1 1 0.1 rbf -31.055 -20.1544 -32.8552 -28.0215 5.611217 157

0.1 2 1 0.1 rbf -31.055 -20.1544 -32.8552 -28.0215 5.611217 157

0.1 3 1 0.1 rbf -31.055 -20.1544 -32.8552 -28.0215 5.611217 157

0.1 1 10 auto rbf -31.14 -20.0825 -33.1778 -28.1334 5.75331 160

0.1 2 10 auto rbf -31.14 -20.0825 -33.1778 -28.1334 5.75331 160

0.1 3 10 auto rbf -31.14 -20.0825 -33.1778 -28.1334 5.75331 160

0.1 1 5 auto rbf -31.5074 -20.3118 -33.2867 -28.3686 5.743198 163

0.1 2 5 auto rbf -31.5074 -20.3118 -33.2867 -28.3686 5.743198 163

0.1 3 5 auto rbf -31.5074 -20.3118 -33.2867 -28.3686 5.743198 163

0.1 1 1 auto rbf -31.4284 -20.3705 -33.4917 -28.4302 5.760972 166

0.1 2 1 auto rbf -31.4284 -20.3705 -33.4917 -28.4302 5.760972 166

0.1 3 1 auto rbf -31.4284 -20.3705 -33.4917 -28.4302 5.760972 166

100 2 10 0.1 poly -37.1204 -23.3465 -42.6852 -34.384 8.128617 169

100 2 10 auto poly -37.13 -23.3772 -42.7061 -34.4044 8.122931 170

100 2 5 0.1 poly -37.2066 -23.3084 -42.9974 -34.5041 8.262045 171

100 2 5 auto poly -37.2253 -23.3109 -42.9917 -34.5093 8.260984 172

100 2 1 0.1 poly -37.6522 -23.4966 -42.7348 -34.6278 8.139921 173

100 2 1 auto poly -37.6509 -23.5091 -42.7381 -34.6327 8.135134 174

10 2 10 auto poly -37.0971 -23.5084 -43.4909 -34.6988 8.332216 175

10 2 10 0.1 poly -37.0937 -23.4963 -43.7943 -34.7948 8.444581 176

10 2 5 auto poly -37.3762 -23.3551 -43.6923 -34.8079 8.498958 177

10 2 5 0.1 poly -37.4498 -23.4244 -43.8272 -34.9005 8.522244 178

10 2 1 auto poly -37.7096 -23.5503 -43.5631 -34.941 8.401456 179

5 2 10 auto poly -37.0664 -23.4952 -44.4838 -35.0151 8.690462 180

10 2 1 0.1 poly -37.6635 -23.5502 -43.8883 -35.034 8.508645 181

5 2 5 auto poly -37.5366 -23.5019 -44.3525 -35.1303 8.680583 182

5 2 10 0.1 poly -37.1514 -23.5686 -44.9812 -35.2337 8.846203 183

5 2 5 0.1 poly -37.6842 -23.5381 -44.548 -35.2567 8.747299 184

5 2 1 auto poly -37.8469 -23.5757 -44.3631 -35.2619 8.681056 185

5 2 1 0.1 poly -37.9233 -23.6401 -44.7489 -35.4374 8.79506 186

0.1 2 5 0.1 poly -37.5926 -25.1262 -45.7577 -36.1588 8.483583 187

0.1 2 1 0.1 poly -37.7754 -25.0733 -45.6469 -36.1652 8.475973 188

0.1 2 5 auto poly -37.82 -24.8361 -45.9278 -36.1946 8.68701 189

0.1 2 1 auto poly -37.9385 -24.8592 -45.9706 -36.2561 8.70042 190

0.1 2 10 0.1 poly -37.9479 -25.4644 -46.0696 -36.494 8.474607 191

0.1 2 10 auto poly -37.9162 -25.2227 -46.487 -36.542 8.735345 192

1 2 10 auto poly -38.4352 -24.1504 -48.1375 -36.9077 9.852106 193

1 2 5 auto poly -38.8889 -24.1786 -47.9834 -37.017 9.807986 194

1 2 1 auto poly -39.5066 -24.1713 -47.8176 -37.1652 9.794534 195

1 2 10 0.1 poly -38.789 -24.3136 -48.5855 -37.2294 9.970156 196

1 2 5 0.1 poly -39.2235 -24.2506 -48.3164 -37.2635 9.922096 197

1 2 1 0.1 poly -39.7294 -24.2162 -48.1266 -37.3574 9.904435 198

1 1 1 0.1 sigmoid -61.4807 -28.6859 -38.7715 -42.9794 13.71504 199

1 2 1 0.1 sigmoid -61.4807 -28.6859 -38.7715 -42.9794 13.71504 199

1 3 1 0.1 sigmoid -61.4807 -28.6859 -38.7715 -42.9794 13.71504 199

1 1 10 0.1 sigmoid -60.0259 -31.4906 -45.6464 -45.721 11.64961 202

1 2 10 0.1 sigmoid -60.0259 -31.4906 -45.6464 -45.721 11.64961 202

1 3 10 0.1 sigmoid -60.0259 -31.4906 -45.6464 -45.721 11.64961 202

1 1 5 0.1 sigmoid -60.8878 -32.5561 -46.522 -46.6553 11.56676 205

1 2 5 0.1 sigmoid -60.8878 -32.5561 -46.522 -46.6553 11.56676 205

1 3 5 0.1 sigmoid -60.8878 -32.5561 -46.522 -46.6553 11.56676 205

1 1 5 auto sigmoid -42.9758 -42.4618 -61.1976 -48.8784 8.713497 208

1 2 5 auto sigmoid -42.9758 -42.4618 -61.1976 -48.8784 8.713497 208
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Table A.4: Grid Search Results for Model A_SVR (Cont’d)

param_SVM__C param_SVM__degree param_SVM__epsilon param_SVM__gamma param_SVM__kernel split0_test_score split1_test_score split2_test_score mean_test_score std_test_score rank_test_score

1 3 5 auto sigmoid -42.9758 -42.4618 -61.1976 -48.8784 8.713497 208

1 1 1 auto sigmoid -43.8641 -42.4638 -61.0501 -49.126 8.450969 211

1 2 1 auto sigmoid -43.8641 -42.4638 -61.0501 -49.126 8.450969 211

1 3 1 auto sigmoid -43.8641 -42.4638 -61.0501 -49.126 8.450969 211

1 1 10 auto sigmoid -44.8216 -42.1011 -61.0439 -49.3222 8.362554 214

1 2 10 auto sigmoid -44.8216 -42.1011 -61.0439 -49.3222 8.362554 214

1 3 10 auto sigmoid -44.8216 -42.1011 -61.0439 -49.3222 8.362554 214

5 1 5 0.1 sigmoid -322.89 -153.36 -224.708 -233.653 69.49898 217

5 2 5 0.1 sigmoid -322.89 -153.36 -224.708 -233.653 69.49898 217

5 3 5 0.1 sigmoid -322.89 -153.36 -224.708 -233.653 69.49898 217

5 1 1 0.1 sigmoid -323.1 -153.588 -225.338 -234.009 69.47432 220

5 2 1 0.1 sigmoid -323.1 -153.588 -225.338 -234.009 69.47432 220

5 3 1 0.1 sigmoid -323.1 -153.588 -225.338 -234.009 69.47432 220

5 1 10 0.1 sigmoid -325.381 -153.241 -224.427 -234.35 70.62518 223

5 2 10 0.1 sigmoid -325.381 -153.241 -224.427 -234.35 70.62518 223

5 3 10 0.1 sigmoid -325.381 -153.241 -224.427 -234.35 70.62518 223

5 1 5 auto sigmoid -404.81 -195.002 -281.068 -293.627 86.11278 226

5 2 5 auto sigmoid -404.81 -195.002 -281.068 -293.627 86.11278 226

5 3 5 auto sigmoid -404.81 -195.002 -281.068 -293.627 86.11278 226

5 1 1 auto sigmoid -405.235 -195.374 -280.42 -293.676 86.18649 229

5 2 1 auto sigmoid -405.235 -195.374 -280.42 -293.676 86.18649 229

5 3 1 auto sigmoid -405.235 -195.374 -280.42 -293.676 86.18649 229

5 1 10 auto sigmoid -407.414 -195.023 -281.515 -294.651 87.20426 232

5 2 10 auto sigmoid -407.414 -195.023 -281.515 -294.651 87.20426 232

5 3 10 auto sigmoid -407.414 -195.023 -281.515 -294.651 87.20426 232

10 1 10 0.1 sigmoid -668.173 -316.587 -454.489 -479.75 144.6416 235

10 2 10 0.1 sigmoid -668.173 -316.587 -454.489 -479.75 144.6416 235

10 3 10 0.1 sigmoid -668.173 -316.587 -454.489 -479.75 144.6416 235

10 1 5 0.1 sigmoid -670.155 -316.466 -454.827 -480.483 145.5281 238

10 2 5 0.1 sigmoid -670.155 -316.466 -454.827 -480.483 145.5281 238

10 3 5 0.1 sigmoid -670.155 -316.466 -454.827 -480.483 145.5281 238

10 1 1 0.1 sigmoid -669.919 -316.485 -457.131 -481.178 145.2871 241

10 2 1 0.1 sigmoid -669.919 -316.485 -457.131 -481.178 145.2871 241

10 3 1 0.1 sigmoid -669.919 -316.485 -457.131 -481.178 145.2871 241

10 1 1 auto sigmoid -801.502 -402.698 -573.088 -592.429 163.3847 244

10 2 1 auto sigmoid -801.502 -402.698 -573.088 -592.429 163.3847 244

10 3 1 auto sigmoid -801.502 -402.698 -573.088 -592.429 163.3847 244

10 1 10 auto sigmoid -827.379 -401.808 -572.746 -600.644 174.855 247

10 2 10 auto sigmoid -827.379 -401.808 -572.746 -600.644 174.855 247

10 3 10 auto sigmoid -827.379 -401.808 -572.746 -600.644 174.855 247

10 1 5 auto sigmoid -827.278 -402.428 -572.363 -600.69 174.5971 250

10 2 5 auto sigmoid -827.278 -402.428 -572.363 -600.69 174.5971 250

10 3 5 auto sigmoid -827.278 -402.428 -572.363 -600.69 174.5971 250

100 1 10 0.1 sigmoid -6121.93 -3272.58 -4605.94 -4666.82 1164.037 253

100 2 10 0.1 sigmoid -6121.93 -3272.58 -4605.94 -4666.82 1164.037 253

100 3 10 0.1 sigmoid -6121.93 -3272.58 -4605.94 -4666.82 1164.037 253

100 1 1 0.1 sigmoid -6303.96 -3265.54 -4610.35 -4726.62 1243.151 256

100 2 1 0.1 sigmoid -6303.96 -3265.54 -4610.35 -4726.62 1243.151 256

100 3 1 0.1 sigmoid -6303.96 -3265.54 -4610.35 -4726.62 1243.151 256

100 1 5 0.1 sigmoid -6161.03 -4014.64 -5897.94 -5357.87 955.8641 259

100 2 5 0.1 sigmoid -6161.03 -4014.64 -5897.94 -5357.87 955.8641 259

100 3 5 0.1 sigmoid -6161.03 -4014.64 -5897.94 -5357.87 955.8641 259

100 1 1 auto sigmoid -7737.26 -4142.39 -5798.87 -5892.84 1469.105 262

100 2 1 auto sigmoid -7737.26 -4142.39 -5798.87 -5892.84 1469.105 262

100 3 1 auto sigmoid -7737.26 -4142.39 -5798.87 -5892.84 1469.105 262

100 1 10 auto sigmoid -7753.86 -4138.74 -5806.18 -5899.6 1477.344 265

100 2 10 auto sigmoid -7753.86 -4138.74 -5806.18 -5899.6 1477.344 265

100 3 10 auto sigmoid -7753.86 -4138.74 -5806.18 -5899.6 1477.344 265

100 1 5 auto sigmoid -7755.65 -4140.57 -5802.68 -5899.64 1477.441 268

100 2 5 auto sigmoid -7755.65 -4140.57 -5802.68 -5899.64 1477.441 268

100 3 5 auto sigmoid -7755.65 -4140.57 -5802.68 -5899.64 1477.441 268

76



Table A.5: Grid Search Results for Model B_SVR

param_SVM__C param_SVM__degree param_SVM__epsilon param_SVM__gamma param_SVM__kernel split0_test_score split1_test_score split2_test_score mean_test_score std_test_score rank_test_score

100 1 1 0.1 poly -21.0582 -15.0931 -13.1061 -16.4192 3.379144 1

100 1 1 auto poly -21.0585 -15.0938 -13.1079 -16.4201 3.378569 2

10 1 1 0.1 poly -21.0632 -15.0891 -13.1296 -16.4273 3.374281 3

10 1 1 auto poly -21.0669 -15.0844 -13.1378 -16.4297 3.373924 4

5 1 1 0.1 poly -21.0705 -15.0779 -13.1499 -16.4327 3.372522 5

5 1 1 auto poly -21.0783 -15.07 -13.1706 -16.4396 3.37047 6

1 1 1 0.1 poly -21.1108 -15.0719 -13.2853 -16.4893 3.348266 7

1 1 1 auto poly -21.1371 -15.0771 -13.3767 -16.5303 3.330669 8

100 1 5 0.1 poly -21.342 -15.4523 -13.6709 -16.8217 3.277983 9

100 1 5 auto poly -21.3433 -15.4522 -13.6757 -16.8238 3.27709 10

10 1 5 0.1 poly -21.3462 -15.4543 -13.7048 -16.8351 3.268827 11

10 1 5 auto poly -21.3387 -15.4575 -13.712 -16.8361 3.26263 12

5 1 5 0.1 poly -21.3416 -15.4565 -13.7245 -16.8409 3.260091 13

5 1 5 auto poly -21.3427 -15.4599 -13.7441 -16.8489 3.253901 14

5 1 1 auto rbf -20.6498 -14.2595 -15.8138 -16.9077 2.721088 15

5 2 1 auto rbf -20.6498 -14.2595 -15.8138 -16.9077 2.721088 15

5 3 1 auto rbf -20.6498 -14.2595 -15.8138 -16.9077 2.721088 15

1 1 5 0.1 poly -21.3795 -15.4936 -13.9365 -16.9365 3.205304 18

1 1 5 auto poly -21.3949 -15.5048 -14.001 -16.9669 3.190702 19

5 1 5 auto rbf -20.9992 -14.4048 -15.9997 -17.1346 2.809173 20

5 2 5 auto rbf -20.9992 -14.4048 -15.9997 -17.1346 2.809173 20

5 3 5 auto rbf -20.9992 -14.4048 -15.9997 -17.1346 2.809173 20

10 1 1 auto rbf -21.3387 -14.4573 -15.9225 -17.2395 2.959631 23

10 2 1 auto rbf -21.3387 -14.4573 -15.9225 -17.2395 2.959631 23

10 3 1 auto rbf -21.3387 -14.4573 -15.9225 -17.2395 2.959631 23

100 1 10 auto poly -21.8023 -16.0187 -14.262 -17.361 3.221338 26

100 1 10 0.1 poly -21.8061 -16.0195 -14.2613 -17.3623 3.223181 27

10 1 10 0.1 poly -21.8077 -16.0101 -14.2828 -17.3669 3.218343 28

10 1 10 auto poly -21.805 -16.0147 -14.2928 -17.3708 3.213274 29

10 3 1 auto poly -22.9573 -16.5589 -12.6119 -17.376 4.262858 30

5 1 10 0.1 poly -21.8035 -16.0167 -14.3118 -17.3773 3.206246 31

5 1 10 auto poly -21.8043 -16.0348 -14.3541 -17.3977 3.190538 32

10 1 5 auto rbf -21.6173 -14.5132 -16.208 -17.4462 3.029486 33

10 2 5 auto rbf -21.6173 -14.5132 -16.208 -17.4462 3.029486 33

10 3 5 auto rbf -21.6173 -14.5132 -16.208 -17.4462 3.029486 33

5 3 1 0.1 poly -23.4266 -16.4875 -12.4787 -17.4643 4.522489 36

5 1 10 auto rbf -21.1891 -14.6964 -16.5479 -17.4778 2.730963 37

5 2 10 auto rbf -21.1891 -14.6964 -16.5479 -17.4778 2.730963 37

5 3 10 auto rbf -21.1891 -14.6964 -16.5479 -17.4778 2.730963 37

1 1 10 0.1 poly -21.8086 -16.0825 -14.6914 -17.5275 3.079991 40

5 3 1 auto poly -22.0196 -16.8167 -13.7689 -17.5351 3.406436 41

5 1 1 0.1 rbf -21.3465 -14.387 -16.9535 -17.5623 2.873634 42

5 2 1 0.1 rbf -21.3465 -14.387 -16.9535 -17.5623 2.873634 42

5 3 1 0.1 rbf -21.3465 -14.387 -16.9535 -17.5623 2.873634 42

0.1 1 1 0.1 poly -21.4126 -15.6472 -15.6454 -17.5684 2.71826 45

1 1 10 auto poly -21.7992 -16.0938 -14.825 -17.5727 3.033162 46

10 3 1 0.1 poly -24.2219 -16.5036 -12.2719 -17.6658 4.947305 47

10 1 10 auto rbf -21.5886 -14.9168 -16.8794 -17.7949 2.79965 48

10 2 10 auto rbf -21.5886 -14.9168 -16.8794 -17.7949 2.79965 48

10 3 10 auto rbf -21.5886 -14.9168 -16.8794 -17.7949 2.79965 48

5 3 5 auto poly -22.5464 -17.0467 -13.8863 -17.8265 3.578198 51

5 3 5 0.1 poly -24.0717 -16.6893 -12.7971 -17.8527 4.675774 52

10 3 5 auto poly -23.8086 -16.7428 -13.0567 -17.8694 4.461133 53

5 1 5 0.1 rbf -21.7249 -14.573 -17.3206 -17.8728 2.945745 54

5 2 5 0.1 rbf -21.7249 -14.573 -17.3206 -17.8728 2.945745 54

5 3 5 0.1 rbf -21.7249 -14.573 -17.3206 -17.8728 2.945745 54

0.1 1 5 0.1 poly -21.5493 -16.0203 -16.4113 -17.9936 2.519312 57

1 3 1 0.1 poly -21.3888 -17.5141 -15.2067 -18.0365 2.550709 58

100 3 1 auto poly -25.4243 -16.5446 -12.3074 -18.0921 5.465623 59

10 1 1 0.1 rbf -21.9998 -14.8422 -17.4997 -18.1139 2.954209 60

10 2 1 0.1 rbf -21.9998 -14.8422 -17.4997 -18.1139 2.954209 60

10 3 1 0.1 rbf -21.9998 -14.8422 -17.4997 -18.1139 2.954209 60

10 3 5 0.1 poly -25.0682 -16.8688 -12.4451 -18.1274 5.229648 63

1 3 5 0.1 poly -21.559 -17.5553 -15.2925 -18.1356 2.590977 64

10 1 5 0.1 rbf -21.952 -14.8511 -17.6895 -18.1642 2.918284 65

10 2 5 0.1 rbf -21.952 -14.8511 -17.6895 -18.1642 2.918284 65

10 3 5 0.1 rbf -21.952 -14.8511 -17.6895 -18.1642 2.918284 65

0.1 1 1 auto poly -21.5548 -16.1401 -16.9781 -18.2243 2.379692 68

5 1 10 0.1 rbf -21.6775 -14.821 -18.1831 -18.2272 2.799328 69
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Table A.5: Grid Search Results for Model B_SVR (Cont’d)

param_SVM__C param_SVM__degree param_SVM__epsilon param_SVM__gamma param_SVM__kernel split0_test_score split1_test_score split2_test_score mean_test_score std_test_score rank_test_score

5 2 10 0.1 rbf -21.6775 -14.821 -18.1831 -18.2272 2.799328 69

5 3 10 0.1 rbf -21.6775 -14.821 -18.1831 -18.2272 2.799328 69

1 3 10 0.1 poly -22.195 -17.5763 -15.5504 -18.4406 2.780669 72

5 3 10 auto poly -23.4752 -17.2715 -14.7142 -18.487 3.678466 73

100 3 1 0.1 poly -26.3235 -16.7345 -12.4593 -18.5058 5.796965 74

10 3 10 auto poly -24.644 -17.2299 -13.7536 -18.5425 4.541852 75

10 1 10 0.1 rbf -21.8989 -15.2107 -18.6458 -18.5851 2.730764 76

10 2 10 0.1 rbf -21.8989 -15.2107 -18.6458 -18.5851 2.730764 76

10 3 10 0.1 rbf -21.8989 -15.2107 -18.6458 -18.5851 2.730764 76

5 3 10 0.1 poly -25.2702 -17.1765 -13.5435 -18.6634 4.901483 79

0.1 1 5 auto poly -21.6929 -16.5247 -17.7839 -18.6672 2.200409 80

100 3 5 auto poly -26.4651 -17.047 -12.719 -18.7437 5.738642 81

1 1 1 auto rbf -22.7088 -15.0763 -18.481 -18.7554 3.122014 82

1 2 1 auto rbf -22.7088 -15.0763 -18.481 -18.7554 3.122014 82

1 3 1 auto rbf -22.7088 -15.0763 -18.481 -18.7554 3.122014 82

0.1 1 10 0.1 poly -21.8396 -16.7708 -17.7139 -18.7748 2.201099 85

1 3 1 auto poly -20.8735 -18.105 -17.3983 -18.7923 1.499665 86

10 3 10 0.1 poly -26.4336 -17.1172 -12.8667 -18.8058 5.665888 87

1 3 5 auto poly -20.878 -18.2502 -17.8474 -18.9918 1.343806 88

1 3 10 auto poly -20.7436 -18.4229 -17.9453 -19.0373 1.222247 89

1 1 5 auto rbf -22.6471 -15.328 -19.1681 -19.0477 2.989223 90

1 2 5 auto rbf -22.6471 -15.328 -19.1681 -19.0477 2.989223 90

1 3 5 auto rbf -22.6471 -15.328 -19.1681 -19.0477 2.989223 90

100 3 10 auto poly -27.2161 -17.161 -12.9073 -19.0948 5.999468 93

100 1 1 auto rbf -22.5307 -16.067 -18.7977 -19.1318 2.649331 94

100 2 1 auto rbf -22.5307 -16.067 -18.7977 -19.1318 2.649331 94

100 3 1 auto rbf -22.5307 -16.067 -18.7977 -19.1318 2.649331 94

100 3 5 0.1 poly -27.3497 -17.2387 -12.8784 -19.1556 6.061364 97

0.1 1 1 auto sigmoid -22.6045 -16.4518 -18.5765 -19.2109 2.551592 98

0.1 2 1 auto sigmoid -22.6045 -16.4518 -18.5765 -19.2109 2.551592 98

0.1 3 1 auto sigmoid -22.6045 -16.4518 -18.5765 -19.2109 2.551592 98

1 1 10 auto rbf -22.5102 -15.371 -19.9081 -19.2631 2.950021 101

1 2 10 auto rbf -22.5102 -15.371 -19.9081 -19.2631 2.950021 101

1 3 10 auto rbf -22.5102 -15.371 -19.9081 -19.2631 2.950021 101

100 1 5 auto rbf -22.7497 -16.2478 -19.0974 -19.3649 2.661115 104

100 2 5 auto rbf -22.7497 -16.2478 -19.0974 -19.3649 2.661115 104

100 3 5 auto rbf -22.7497 -16.2478 -19.0974 -19.3649 2.661115 104

100 3 10 0.1 poly -27.8904 -17.1942 -13.1706 -19.4184 6.211757 107

100 1 10 auto rbf -22.4663 -16.4791 -19.3568 -19.4341 2.444878 108

100 2 10 auto rbf -22.4663 -16.4791 -19.3568 -19.4341 2.444878 108

100 3 10 auto rbf -22.4663 -16.4791 -19.3568 -19.4341 2.444878 108

0.1 1 10 auto poly -21.9538 -17.1707 -19.1918 -19.4388 1.960469 111

0.1 1 5 auto sigmoid -22.7465 -16.8604 -19.1902 -19.5991 2.420311 112

0.1 2 5 auto sigmoid -22.7465 -16.8604 -19.1902 -19.5991 2.420311 112

0.1 3 5 auto sigmoid -22.7465 -16.8604 -19.1902 -19.5991 2.420311 112

0.1 1 1 0.1 sigmoid -23.5662 -16.636 -18.9497 -19.7173 2.880829 115

0.1 2 1 0.1 sigmoid -23.5662 -16.636 -18.9497 -19.7173 2.880829 115

0.1 3 1 0.1 sigmoid -23.5662 -16.636 -18.9497 -19.7173 2.880829 115

1 1 1 0.1 rbf -23.5792 -15.5075 -20.1396 -19.7421 3.307237 118

1 2 1 0.1 rbf -23.5792 -15.5075 -20.1396 -19.7421 3.307237 118

1 3 1 0.1 rbf -23.5792 -15.5075 -20.1396 -19.7421 3.307237 118

0.1 1 5 0.1 sigmoid -23.6654 -16.8635 -19.1649 -19.8979 2.824813 121

0.1 2 5 0.1 sigmoid -23.6654 -16.8635 -19.1649 -19.8979 2.824813 121

0.1 3 5 0.1 sigmoid -23.6654 -16.8635 -19.1649 -19.8979 2.824813 121

1 1 5 0.1 rbf -23.4892 -15.6399 -20.8893 -20.0061 3.264735 124

1 2 5 0.1 rbf -23.4892 -15.6399 -20.8893 -20.0061 3.264735 124

1 3 5 0.1 rbf -23.4892 -15.6399 -20.8893 -20.0061 3.264735 124

0.1 1 10 auto sigmoid -22.9713 -17.3961 -20.441 -20.2695 2.279279 127

0.1 2 10 auto sigmoid -22.9713 -17.3961 -20.441 -20.2695 2.279279 127

0.1 3 10 auto sigmoid -22.9713 -17.3961 -20.441 -20.2695 2.279279 127

0.1 1 10 0.1 sigmoid -23.7414 -17.2486 -19.8921 -20.294 2.665841 130

0.1 2 10 0.1 sigmoid -23.7414 -17.2486 -19.8921 -20.294 2.665841 130

0.1 3 10 0.1 sigmoid -23.7414 -17.2486 -19.8921 -20.294 2.665841 130

1 1 10 0.1 rbf -23.5635 -15.7059 -21.7475 -20.339 3.358922 133

1 2 10 0.1 rbf -23.5635 -15.7059 -21.7475 -20.339 3.358922 133

1 3 10 0.1 rbf -23.5635 -15.7059 -21.7475 -20.339 3.358922 133

100 1 5 0.1 rbf -22.8264 -17.1191 -21.4398 -20.4618 2.430461 136

100 2 5 0.1 rbf -22.8264 -17.1191 -21.4398 -20.4618 2.430461 136

100 3 5 0.1 rbf -22.8264 -17.1191 -21.4398 -20.4618 2.430461 136

100 1 1 0.1 rbf -23.1314 -17.0166 -21.2596 -20.4692 2.558144 139
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Table A.5: Grid Search Results for Model B_SVR (Cont’d)

param_SVM__C param_SVM__degree param_SVM__epsilon param_SVM__gamma param_SVM__kernel split0_test_score split1_test_score split2_test_score mean_test_score std_test_score rank_test_score

100 2 1 0.1 rbf -23.1314 -17.0166 -21.2596 -20.4692 2.558144 139

100 3 1 0.1 rbf -23.1314 -17.0166 -21.2596 -20.4692 2.558144 139

100 1 10 0.1 rbf -22.9794 -17.1629 -21.5272 -20.5565 2.471781 142

100 2 10 0.1 rbf -22.9794 -17.1629 -21.5272 -20.5565 2.471781 142

100 3 10 0.1 rbf -22.9794 -17.1629 -21.5272 -20.5565 2.471781 142

0.1 3 1 0.1 poly -21.2987 -19.5648 -20.9853 -20.6163 0.754398 145

0.1 3 5 0.1 poly -21.2385 -19.6402 -21.2961 -20.7249 0.767395 146

0.1 3 10 0.1 poly -21.2018 -19.9342 -21.7245 -20.9535 0.751701 147

0.1 3 1 auto poly -21.2447 -22.0711 -27.9225 -23.7461 2.972374 148

0.1 3 5 auto poly -21.3113 -22.2437 -28.0873 -23.8808 2.998706 149

0.1 3 10 auto poly -21.2962 -22.3074 -28.1924 -23.932 3.0407 150

0.1 1 1 auto rbf -27.7839 -21.6641 -33.6425 -27.6968 4.890563 151

0.1 2 1 auto rbf -27.7839 -21.6641 -33.6425 -27.6968 4.890563 151

0.1 3 1 auto rbf -27.7839 -21.6641 -33.6425 -27.6968 4.890563 151

0.1 1 5 auto rbf -27.882 -21.5696 -34.0706 -27.8407 5.103588 154

0.1 2 5 auto rbf -27.882 -21.5696 -34.0706 -27.8407 5.103588 154

0.1 3 5 auto rbf -27.882 -21.5696 -34.0706 -27.8407 5.103588 154

0.1 1 10 auto rbf -27.8283 -21.5815 -34.4893 -27.9664 5.270475 157

0.1 2 10 auto rbf -27.8283 -21.5815 -34.4893 -27.9664 5.270475 157

0.1 3 10 auto rbf -27.8283 -21.5815 -34.4893 -27.9664 5.270475 157

0.1 1 5 0.1 rbf -29.1367 -23.4856 -37.5326 -30.0517 5.771042 160

0.1 2 5 0.1 rbf -29.1367 -23.4856 -37.5326 -30.0517 5.771042 160

0.1 3 5 0.1 rbf -29.1367 -23.4856 -37.5326 -30.0517 5.771042 160

0.1 1 10 0.1 rbf -29.1086 -23.2402 -37.8704 -30.0731 6.011542 163

0.1 2 10 0.1 rbf -29.1086 -23.2402 -37.8704 -30.0731 6.011542 163

0.1 3 10 0.1 rbf -29.1086 -23.2402 -37.8704 -30.0731 6.011542 163

0.1 1 1 0.1 rbf -29.0779 -23.5963 -37.6671 -30.1138 5.790902 166

0.1 2 1 0.1 rbf -29.0779 -23.5963 -37.6671 -30.1138 5.790902 166

0.1 3 1 0.1 rbf -29.0779 -23.5963 -37.6671 -30.1138 5.790902 166

100 2 1 0.1 poly -32.6179 -20.4954 -46.6323 -33.2486 10.67965 169

100 2 10 0.1 poly -32.7212 -20.254 -46.7792 -33.2515 10.83537 170

100 2 5 0.1 poly -32.7493 -20.5338 -46.6046 -33.2959 10.65038 171

100 2 5 auto poly -32.8449 -20.6061 -46.4532 -33.3014 10.55696 172

100 2 10 auto poly -32.6927 -20.3369 -46.9075 -33.3124 10.85626 173

100 2 1 auto poly -32.7166 -20.7035 -46.6903 -33.3701 10.61915 174

10 2 5 0.1 poly -32.9779 -21.2767 -47.0764 -33.777 10.54783 175

10 2 1 0.1 poly -32.8228 -21.3744 -47.3686 -33.8553 10.63717 176

10 2 10 0.1 poly -32.9169 -21.1818 -47.7577 -33.9521 10.87423 177

10 2 5 auto poly -33.0238 -21.9496 -47.8266 -34.2667 10.60073 178

5 2 5 0.1 poly -33.0207 -21.9793 -47.8695 -34.2898 10.60763 179

10 2 1 auto poly -33.0179 -22.0574 -47.8323 -34.3025 10.56166 180

5 2 1 0.1 poly -33.0201 -22.0853 -47.8621 -34.3225 10.56357 181

10 2 10 auto poly -33.1006 -21.7825 -48.4411 -34.4414 10.92455 182

5 2 10 0.1 poly -33.0994 -21.8145 -48.4313 -34.4484 10.90803 183

5 2 5 auto poly -33.1343 -22.7797 -48.8969 -34.937 10.73823 184

5 2 1 auto poly -33.0675 -23.1003 -49.0366 -35.0681 10.68251 185

5 2 10 auto poly -33.1224 -22.5849 -49.7671 -35.1581 11.19006 186

1 2 10 0.1 poly -33.4612 -24.5411 -52.1359 -36.7127 11.49775 187

1 2 5 0.1 poly -33.9707 -24.5444 -52.1777 -36.8976 11.46952 188

1 2 1 0.1 poly -34.3256 -24.8685 -51.8959 -37.03 11.19838 189

1 2 10 auto poly -35.1491 -26.4755 -55.0957 -38.9068 11.98247 190

1 2 5 auto poly -35.3768 -26.6764 -55.2554 -39.1029 11.96115 191

1 2 1 auto poly -35.6474 -26.9019 -55.2274 -39.2589 11.84245 192

0.1 2 5 auto poly -35.1308 -30.2271 -54.8898 -40.0826 10.65998 193

0.1 2 1 auto poly -34.9467 -30.2879 -55.3183 -40.1843 10.86904 194

0.1 2 10 auto poly -35.3127 -30.4618 -55.0326 -40.269 10.6256 195

0.1 2 1 0.1 poly -37.2728 -30.3981 -58.4651 -42.0453 11.94493 196

0.1 2 5 0.1 poly -37.1566 -30.6681 -58.4202 -42.0816 11.85291 197

0.1 2 10 0.1 poly -37.0958 -30.6059 -58.6021 -42.1013 11.96488 198

1 1 10 auto sigmoid -50.6192 -45.5951 -59.1947 -51.803 5.614748 199

1 2 10 auto sigmoid -50.6192 -45.5951 -59.1947 -51.803 5.614748 199

1 3 10 auto sigmoid -50.6192 -45.5951 -59.1947 -51.803 5.614748 199

1 1 5 auto sigmoid -51.4764 -46.0727 -59.427 -52.3254 5.484846 202

1 2 5 auto sigmoid -51.4764 -46.0727 -59.427 -52.3254 5.484846 202

1 3 5 auto sigmoid -51.4764 -46.0727 -59.427 -52.3254 5.484846 202

1 1 1 auto sigmoid -52.161 -46.235 -59.3181 -52.5714 5.349031 205

1 2 1 auto sigmoid -52.161 -46.235 -59.3181 -52.5714 5.349031 205

1 3 1 auto sigmoid -52.161 -46.235 -59.3181 -52.5714 5.349031 205

1 1 10 0.1 sigmoid -103.567 -99.508 -127.888 -110.321 12.53187 208

1 2 10 0.1 sigmoid -103.567 -99.508 -127.888 -110.321 12.53187 208
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Table A.5: Grid Search Results for Model B_SVR (Cont’d)

param_SVM__C param_SVM__degree param_SVM__epsilon param_SVM__gamma param_SVM__kernel split0_test_score split1_test_score split2_test_score mean_test_score std_test_score rank_test_score

1 3 10 0.1 sigmoid -103.567 -99.508 -127.888 -110.321 12.53187 208

1 1 5 0.1 sigmoid -103.438 -99.6904 -128.272 -110.467 12.68281 211

1 2 5 0.1 sigmoid -103.438 -99.6904 -128.272 -110.467 12.68281 211

1 3 5 0.1 sigmoid -103.438 -99.6904 -128.272 -110.467 12.68281 211

1 1 1 0.1 sigmoid -103.72 -99.9878 -128.601 -110.769 12.70039 214

1 2 1 0.1 sigmoid -103.72 -99.9878 -128.601 -110.769 12.70039 214

1 3 1 0.1 sigmoid -103.72 -99.9878 -128.601 -110.769 12.70039 214

5 1 5 auto sigmoid -386.93 -136.704 -358.297 -293.977 111.8213 217

5 2 5 auto sigmoid -386.93 -136.704 -358.297 -293.977 111.8213 217

5 3 5 auto sigmoid -386.93 -136.704 -358.297 -293.977 111.8213 217

5 1 1 auto sigmoid -386.43 -136.617 -360.652 -294.566 112.1817 220

5 2 1 auto sigmoid -386.43 -136.617 -360.652 -294.566 112.1817 220

5 3 1 auto sigmoid -386.43 -136.617 -360.652 -294.566 112.1817 220

5 1 10 auto sigmoid -388.235 -223.325 -359.428 -323.663 71.91747 223

5 2 10 auto sigmoid -388.235 -223.325 -359.428 -323.663 71.91747 223

5 3 10 auto sigmoid -388.235 -223.325 -359.428 -323.663 71.91747 223

5 1 10 0.1 sigmoid -732.592 -470.543 -656.762 -619.966 110.0998 226

5 2 10 0.1 sigmoid -732.592 -470.543 -656.762 -619.966 110.0998 226

5 3 10 0.1 sigmoid -732.592 -470.543 -656.762 -619.966 110.0998 226

10 1 10 auto sigmoid -761.337 -449.889 -724.395 -645.207 138.9318 229

10 2 10 auto sigmoid -761.337 -449.889 -724.395 -645.207 138.9318 229

10 3 10 auto sigmoid -761.337 -449.889 -724.395 -645.207 138.9318 229

10 1 1 auto sigmoid -761.034 -450.073 -724.889 -645.332 138.855 232

10 2 1 auto sigmoid -761.034 -450.073 -724.889 -645.332 138.855 232

10 3 1 auto sigmoid -761.034 -450.073 -724.889 -645.332 138.855 232

10 1 5 auto sigmoid -762.034 -450.345 -725.431 -645.937 139.1091 235

10 2 5 auto sigmoid -762.034 -450.345 -725.431 -645.937 139.1091 235

10 3 5 auto sigmoid -762.034 -450.345 -725.431 -645.937 139.1091 235

5 1 1 0.1 sigmoid -731.78 -471.659 -737.986 -647.142 124.1112 238

5 2 1 0.1 sigmoid -731.78 -471.659 -737.986 -647.142 124.1112 238

5 3 1 0.1 sigmoid -731.78 -471.659 -737.986 -647.142 124.1112 238

5 1 5 0.1 sigmoid -732.779 -471.605 -738.44 -647.608 124.4742 241

5 2 5 0.1 sigmoid -732.779 -471.605 -738.44 -647.608 124.4742 241

5 3 5 0.1 sigmoid -732.779 -471.605 -738.44 -647.608 124.4742 241

10 1 5 0.1 sigmoid -1463.58 -555.756 -1474.96 -1164.77 430.6608 244

10 2 5 0.1 sigmoid -1463.58 -555.756 -1474.96 -1164.77 430.6608 244

10 3 5 0.1 sigmoid -1463.58 -555.756 -1474.96 -1164.77 430.6608 244

10 1 1 0.1 sigmoid -1464.36 -911.593 -1477.28 -1284.41 263.6749 247

10 2 1 0.1 sigmoid -1464.36 -911.593 -1477.28 -1284.41 263.6749 247

10 3 1 0.1 sigmoid -1464.36 -911.593 -1477.28 -1284.41 263.6749 247

10 1 10 0.1 sigmoid -1465.79 -932.69 -1474.76 -1291.08 253.4462 250

10 2 10 0.1 sigmoid -1465.79 -932.69 -1474.76 -1291.08 253.4462 250

10 3 10 0.1 sigmoid -1465.79 -932.69 -1474.76 -1291.08 253.4462 250

100 1 5 auto sigmoid -7571.94 -4495.99 -7309.65 -6459.19 1392.318 253

100 2 5 auto sigmoid -7571.94 -4495.99 -7309.65 -6459.19 1392.318 253

100 3 5 auto sigmoid -7571.94 -4495.99 -7309.65 -6459.19 1392.318 253

100 1 1 auto sigmoid -7571.74 -4500.49 -7320.78 -6464.34 1392.423 256

100 2 1 auto sigmoid -7571.74 -4500.49 -7320.78 -6464.34 1392.423 256

100 3 1 auto sigmoid -7571.74 -4500.49 -7320.78 -6464.34 1392.423 256

100 1 10 auto sigmoid -7576.28 -4502.54 -7318.39 -6465.74 1392.177 259

100 2 10 auto sigmoid -7576.28 -4502.54 -7318.39 -6465.74 1392.177 259

100 3 10 auto sigmoid -7576.28 -4502.54 -7318.39 -6465.74 1392.177 259

100 1 1 0.1 sigmoid -14699 -9273.93 -14682.8 -12885.2 2553.58 262

100 2 1 0.1 sigmoid -14699 -9273.93 -14682.8 -12885.2 2553.58 262

100 3 1 0.1 sigmoid -14699 -9273.93 -14682.8 -12885.2 2553.58 262

100 1 5 0.1 sigmoid -14717.5 -9351.29 -14709.6 -12926.1 2527.791 265

100 2 5 0.1 sigmoid -14717.5 -9351.29 -14709.6 -12926.1 2527.791 265

100 3 5 0.1 sigmoid -14717.5 -9351.29 -14709.6 -12926.1 2527.791 265

100 1 10 0.1 sigmoid -14692.9 -9324.18 -14799.2 -12938.8 2556.258 268

100 2 10 0.1 sigmoid -14692.9 -9324.18 -14799.2 -12938.8 2556.258 268

100 3 10 0.1 sigmoid -14692.9 -9324.18 -14799.2 -12938.8 2556.258 268
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Table A.6: Grid Search Results for Model C_SVR

param_SVM__C param_SVM__degree param_SVM__epsilon param_SVM__gamma param_SVM__kernel split0_test_score split1_test_score split2_test_score mean_test_score std_test_score rank_test_score

100 1 1 auto poly -28.1628 -19.627 -22.6952 -23.495 3.530343 1

100 1 1 0.1 poly -28.1632 -19.6269 -22.6971 -23.4958 3.530382 2

10 1 1 0.1 poly -28.1521 -19.6359 -22.7238 -23.5039 3.520222 3

10 1 1 auto poly -28.1535 -19.6444 -22.7182 -23.5054 3.518165 4

5 1 1 0.1 poly -28.1307 -19.6248 -22.8329 -23.5295 3.507276 5

5 1 1 auto poly -28.1401 -19.6325 -22.8353 -23.536 3.508405 6

1 1 1 0.1 poly -27.9908 -19.776 -23.2545 -23.6738 3.366753 7

1 1 1 auto poly -28.0122 -19.7917 -23.2292 -23.6777 3.370923 8

100 1 5 auto poly -28.5437 -20.3132 -23.5472 -24.1347 3.385675 9

100 1 5 0.1 poly -28.5443 -20.3133 -23.5472 -24.1349 3.385873 10

10 1 5 0.1 poly -28.5292 -20.3395 -23.6189 -24.1625 3.365423 11

10 1 5 auto poly -28.5316 -20.3361 -23.621 -24.1629 3.367658 12

5 1 5 auto poly -28.5213 -20.3436 -23.6447 -24.1699 3.359148 13

5 1 5 0.1 poly -28.5182 -20.3447 -23.6607 -24.1745 3.356545 14

1 1 5 auto poly -28.3743 -20.4144 -24.0254 -24.2713 3.254261 15

1 1 5 0.1 poly -28.363 -20.4338 -24.1202 -24.3057 3.239743 16

0.1 1 1 auto poly -26.8746 -21.2103 -27.5074 -25.1974 2.831158 17

100 1 10 auto poly -29.1809 -21.3607 -25.1211 -25.2209 3.193349 18

100 1 10 0.1 poly -29.183 -21.3592 -25.126 -25.2227 3.194792 19

10 1 10 0.1 poly -29.17 -21.3714 -25.1869 -25.2428 3.184028 20

10 1 10 auto poly -29.1793 -21.3789 -25.1752 -25.2445 3.184882 21

5 1 10 auto poly -29.172 -21.3788 -25.2438 -25.2649 3.181596 22

5 1 10 0.1 poly -29.1785 -21.3843 -25.2501 -25.271 3.182011 23

0.1 1 1 auto sigmoid -26.779 -21.2094 -28.1319 -25.3734 2.995791 24

0.1 2 1 auto sigmoid -26.779 -21.2094 -28.1319 -25.3734 2.995791 24

0.1 3 1 auto sigmoid -26.779 -21.2094 -28.1319 -25.3734 2.995791 24

1 1 10 auto poly -29.0331 -21.5634 -25.5582 -25.3849 3.051956 27

1 1 10 0.1 poly -29.021 -21.5865 -25.5953 -25.4009 3.038215 28

0.1 1 1 0.1 poly -26.8229 -21.3871 -28.2463 -25.4854 2.955645 29

0.1 1 5 auto poly -27.1188 -21.5845 -28.2838 -25.6623 2.922426 30

0.1 1 1 0.1 sigmoid -26.6746 -21.5009 -28.884 -25.6865 3.094048 31

0.1 2 1 0.1 sigmoid -26.6746 -21.5009 -28.884 -25.6865 3.094048 31

0.1 3 1 0.1 sigmoid -26.6746 -21.5009 -28.884 -25.6865 3.094048 31

0.1 1 5 auto sigmoid -27.0036 -21.5418 -29.0744 -25.8733 3.177325 34

0.1 2 5 auto sigmoid -27.0036 -21.5418 -29.0744 -25.8733 3.177325 34

0.1 3 5 auto sigmoid -27.0036 -21.5418 -29.0744 -25.8733 3.177325 34

0.1 1 5 0.1 poly -27.0558 -21.8077 -28.9107 -25.9247 3.008069 37

0.1 1 5 0.1 sigmoid -26.9282 -21.8144 -29.5315 -26.0914 3.205585 38

0.1 2 5 0.1 sigmoid -26.9282 -21.8144 -29.5315 -26.0914 3.205585 38

0.1 3 5 0.1 sigmoid -26.9282 -21.8144 -29.5315 -26.0914 3.205585 38

0.1 1 10 auto poly -27.8465 -22.6342 -29.7941 -26.7583 3.022593 41

0.1 1 10 auto sigmoid -27.6739 -22.5637 -30.241 -26.8262 3.191019 42

0.1 2 10 auto sigmoid -27.6739 -22.5637 -30.241 -26.8262 3.191019 42

0.1 3 10 auto sigmoid -27.6739 -22.5637 -30.241 -26.8262 3.191019 42

0.1 1 10 0.1 poly -27.747 -22.8029 -30.2103 -26.92 3.08006 45

0.1 1 10 0.1 sigmoid -27.6264 -22.7872 -30.8191 -27.0776 3.301911 46

0.1 2 10 0.1 sigmoid -27.6264 -22.7872 -30.8191 -27.0776 3.301911 46

0.1 3 10 0.1 sigmoid -27.6264 -22.7872 -30.8191 -27.0776 3.301911 46

1 1 1 0.1 rbf -29.718 -20.551 -31.8787 -27.3825 4.910518 49

1 2 1 0.1 rbf -29.718 -20.551 -31.8787 -27.3825 4.910518 49

1 3 1 0.1 rbf -29.718 -20.551 -31.8787 -27.3825 4.910518 49

1 3 1 0.1 poly -31.653 -23.044 -27.7041 -27.4671 3.518591 52

1 3 1 auto poly -32.5696 -22.8088 -27.0256 -27.468 3.997122 53

1 1 1 auto rbf -29.8918 -20.729 -32.0713 -27.5641 4.914359 54

1 2 1 auto rbf -29.8918 -20.729 -32.0713 -27.5641 4.914359 54

1 3 1 auto rbf -29.8918 -20.729 -32.0713 -27.5641 4.914359 54

1 1 5 0.1 rbf -29.9916 -20.6672 -32.0651 -27.5746 4.957122 57

1 2 5 0.1 rbf -29.9916 -20.6672 -32.0651 -27.5746 4.957122 57

1 3 5 0.1 rbf -29.9916 -20.6672 -32.0651 -27.5746 4.957122 57

5 1 1 0.1 rbf -30.8976 -20.9305 -31.0661 -27.6314 4.73875 60

5 2 1 0.1 rbf -30.8976 -20.9305 -31.0661 -27.6314 4.73875 60

5 3 1 0.1 rbf -30.8976 -20.9305 -31.0661 -27.6314 4.73875 60

5 1 1 auto rbf -30.8884 -21.0185 -31.2265 -27.7111 4.734404 63

5 2 1 auto rbf -30.8884 -21.0185 -31.2265 -27.7111 4.734404 63

5 3 1 auto rbf -30.8884 -21.0185 -31.2265 -27.7111 4.734404 63

1 3 5 0.1 poly -31.7058 -23.4829 -27.947 -27.7119 3.361104 66

5 3 1 0.1 poly -34.8616 -22.6331 -25.6907 -27.7285 5.196079 67

1 1 5 auto rbf -30.113 -20.7886 -32.2853 -27.7289 4.987062 68

1 2 5 auto rbf -30.113 -20.7886 -32.2853 -27.7289 4.987062 68
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Table A.6: Grid Search Results for Model C_SVR (Cont’d)

param_SVM__C param_SVM__degree param_SVM__epsilon param_SVM__gamma param_SVM__kernel split0_test_score split1_test_score split2_test_score mean_test_score std_test_score rank_test_score

1 3 5 auto rbf -30.113 -20.7886 -32.2853 -27.7289 4.987062 68

5 3 1 auto poly -35.3449 -22.5645 -25.3669 -27.7588 5.484842 71

1 3 5 auto poly -32.7178 -23.3051 -27.3172 -27.78 3.856635 72

10 3 1 0.1 poly -35.6358 -22.6384 -25.4308 -27.9017 5.586424 73

5 1 5 0.1 rbf -31.2489 -20.9554 -31.7391 -27.9811 4.971955 74

5 2 5 0.1 rbf -31.2489 -20.9554 -31.7391 -27.9811 4.971955 74

5 3 5 0.1 rbf -31.2489 -20.9554 -31.7391 -27.9811 4.971955 74

10 3 1 auto poly -35.7443 -22.6795 -25.543 -27.989 5.607085 77

5 3 5 0.1 poly -35.4803 -22.711 -26.0938 -28.095 5.401715 78

5 1 5 auto rbf -31.309 -21.0908 -31.9003 -28.1 4.962154 79

5 2 5 auto rbf -31.309 -21.0908 -31.9003 -28.1 4.962154 79

5 3 5 auto rbf -31.309 -21.0908 -31.9003 -28.1 4.962154 79

5 3 5 auto poly -35.7505 -22.8105 -25.7434 -28.1015 5.539635 82

10 1 1 0.1 rbf -31.6018 -21.2119 -31.5668 -28.1268 4.889595 83

10 2 1 0.1 rbf -31.6018 -21.2119 -31.5668 -28.1268 4.889595 83

10 3 1 0.1 rbf -31.6018 -21.2119 -31.5668 -28.1268 4.889595 83

10 1 1 auto rbf -31.5127 -21.3724 -31.5887 -28.158 4.798196 86

10 2 1 auto rbf -31.5127 -21.3724 -31.5887 -28.158 4.798196 86

10 3 1 auto rbf -31.5127 -21.3724 -31.5887 -28.158 4.798196 86

1 1 10 0.1 rbf -30.3643 -20.9667 -33.2574 -28.1961 5.24666 89

1 2 10 0.1 rbf -30.3643 -20.9667 -33.2574 -28.1961 5.24666 89

1 3 10 0.1 rbf -30.3643 -20.9667 -33.2574 -28.1961 5.24666 89

10 3 5 0.1 poly -36.2474 -22.8867 -25.6282 -28.2541 5.761828 92

1 3 10 auto poly -32.861 -23.6132 -28.3598 -28.278 3.775832 93

10 1 5 0.1 rbf -31.6969 -21.2243 -31.9501 -28.2904 4.99755 94

10 2 5 0.1 rbf -31.6969 -21.2243 -31.9501 -28.2904 4.99755 94

10 3 5 0.1 rbf -31.6969 -21.2243 -31.9501 -28.2904 4.99755 94

1 3 10 0.1 poly -32.3382 -23.8612 -28.7935 -28.331 3.476143 97

1 1 10 auto rbf -30.4354 -21.0772 -33.5423 -28.3516 5.297909 98

1 2 10 auto rbf -30.4354 -21.0772 -33.5423 -28.3516 5.297909 98

1 3 10 auto rbf -30.4354 -21.0772 -33.5423 -28.3516 5.297909 98

5 3 10 0.1 poly -35.4598 -23.1505 -26.5675 -28.3926 5.188305 101

10 3 5 auto poly -36.8087 -22.9592 -25.5756 -28.4478 6.00775 102

10 1 5 auto rbf -31.6714 -21.4958 -32.2232 -28.4635 4.932009 103

10 2 5 auto rbf -31.6714 -21.4958 -32.2232 -28.4635 4.932009 103

10 3 5 auto rbf -31.6714 -21.4958 -32.2232 -28.4635 4.932009 103

5 3 10 auto poly -35.9537 -23.0126 -26.4492 -28.4718 5.473333 106

100 3 1 auto poly -37.4605 -22.4882 -25.5369 -28.4952 6.460458 107

100 3 1 0.1 poly -37.5168 -22.5226 -25.5255 -28.5216 6.477628 108

10 3 10 0.1 poly -36.766 -22.7414 -26.306 -28.6044 5.951744 109

10 3 10 auto poly -36.9542 -22.7672 -26.2693 -28.6636 6.034171 110

5 1 10 0.1 rbf -31.5108 -21.6879 -32.9142 -28.7043 4.994295 111

5 2 10 0.1 rbf -31.5108 -21.6879 -32.9142 -28.7043 4.994295 111

5 3 10 0.1 rbf -31.5108 -21.6879 -32.9142 -28.7043 4.994295 111

5 1 10 auto rbf -31.4857 -21.793 -33.0917 -28.7901 4.990966 114

5 2 10 auto rbf -31.4857 -21.793 -33.0917 -28.7901 4.990966 114

5 3 10 auto rbf -31.4857 -21.793 -33.0917 -28.7901 4.990966 114

100 3 5 auto poly -38.0037 -22.7955 -25.9705 -28.9232 6.550354 117

100 3 5 0.1 poly -37.9553 -22.8748 -25.9597 -28.93 6.504979 118

10 1 10 0.1 rbf -32.2118 -21.8241 -33.1421 -29.0594 5.130148 119

10 2 10 0.1 rbf -32.2118 -21.8241 -33.1421 -29.0594 5.130148 119

10 3 10 0.1 rbf -32.2118 -21.8241 -33.1421 -29.0594 5.130148 119

100 3 10 0.1 poly -38.1663 -22.7694 -26.4394 -29.1251 6.566328 122

100 3 10 auto poly -38.1561 -22.7408 -26.4842 -29.127 6.564884 123

10 1 10 auto rbf -32.2434 -21.9294 -33.3875 -29.1868 5.152974 124

10 2 10 auto rbf -32.2434 -21.9294 -33.3875 -29.1868 5.152974 124

10 3 10 auto rbf -32.2434 -21.9294 -33.3875 -29.1868 5.152974 124

0.1 3 1 auto poly -27.6135 -25.7456 -36.4099 -29.923 4.649864 127

0.1 3 5 auto poly -27.7444 -25.9215 -36.5677 -30.0779 4.64896 128

100 1 5 0.1 rbf -32.2279 -22.5573 -35.6476 -30.1443 5.543515 129

100 2 5 0.1 rbf -32.2279 -22.5573 -35.6476 -30.1443 5.543515 129

100 3 5 0.1 rbf -32.2279 -22.5573 -35.6476 -30.1443 5.543515 129

100 1 5 auto rbf -31.7943 -22.9109 -35.9772 -30.2275 5.448117 132

100 2 5 auto rbf -31.7943 -22.9109 -35.9772 -30.2275 5.448117 132

100 3 5 auto rbf -31.7943 -22.9109 -35.9772 -30.2275 5.448117 132

100 1 1 0.1 rbf -32.1126 -22.7828 -35.8745 -30.2566 5.503396 135

100 2 1 0.1 rbf -32.1126 -22.7828 -35.8745 -30.2566 5.503396 135

100 3 1 0.1 rbf -32.1126 -22.7828 -35.8745 -30.2566 5.503396 135

0.1 3 10 auto poly -28.0327 -26.1639 -36.7163 -30.3043 4.59771 138

100 1 10 0.1 rbf -32.3147 -22.6522 -36.0676 -30.3448 5.651142 139
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Table A.6: Grid Search Results for Model C_SVR (Cont’d)

param_SVM__C param_SVM__degree param_SVM__epsilon param_SVM__gamma param_SVM__kernel split0_test_score split1_test_score split2_test_score mean_test_score std_test_score rank_test_score

100 2 10 0.1 rbf -32.3147 -22.6522 -36.0676 -30.3448 5.651142 139

100 3 10 0.1 rbf -32.3147 -22.6522 -36.0676 -30.3448 5.651142 139

100 1 1 auto rbf -31.6285 -23.1632 -36.2707 -30.3541 5.42645 142

100 2 1 auto rbf -31.6285 -23.1632 -36.2707 -30.3541 5.42645 142

100 3 1 auto rbf -31.6285 -23.1632 -36.2707 -30.3541 5.42645 142

100 1 10 auto rbf -32.0323 -23.0865 -36.3428 -30.4872 5.521046 145

100 2 10 auto rbf -32.0323 -23.0865 -36.3428 -30.4872 5.521046 145

100 3 10 auto rbf -32.0323 -23.0865 -36.3428 -30.4872 5.521046 145

0.1 3 1 0.1 poly -27.7016 -26.4978 -38.7753 -30.9916 5.525845 148

0.1 3 5 0.1 poly -27.7858 -26.6576 -39.056 -31.1665 5.597746 149

0.1 3 10 0.1 poly -27.9704 -26.8167 -38.8876 -31.2249 5.438793 150

0.1 1 1 0.1 rbf -29.4445 -24.5818 -39.7565 -31.2609 6.326801 151

0.1 2 1 0.1 rbf -29.4445 -24.5818 -39.7565 -31.2609 6.326801 151

0.1 3 1 0.1 rbf -29.4445 -24.5818 -39.7565 -31.2609 6.326801 151

0.1 1 5 0.1 rbf -29.7802 -24.5519 -39.839 -31.3903 6.343948 154

0.1 2 5 0.1 rbf -29.7802 -24.5519 -39.839 -31.3903 6.343948 154

0.1 3 5 0.1 rbf -29.7802 -24.5519 -39.839 -31.3903 6.343948 154

0.1 1 1 auto rbf -29.6537 -24.8611 -40.4431 -31.6526 6.516482 157

0.1 2 1 auto rbf -29.6537 -24.8611 -40.4431 -31.6526 6.516482 157

0.1 3 1 auto rbf -29.6537 -24.8611 -40.4431 -31.6526 6.516482 157

0.1 1 10 0.1 rbf -29.945 -24.9511 -40.2043 -31.7001 6.349573 160

0.1 2 10 0.1 rbf -29.945 -24.9511 -40.2043 -31.7001 6.349573 160

0.1 3 10 0.1 rbf -29.945 -24.9511 -40.2043 -31.7001 6.349573 160

0.1 1 5 auto rbf -29.9498 -24.8705 -40.4421 -31.7541 6.483852 163

0.1 2 5 auto rbf -29.9498 -24.8705 -40.4421 -31.7541 6.483852 163

0.1 3 5 auto rbf -29.9498 -24.8705 -40.4421 -31.7541 6.483852 163

0.1 1 10 auto rbf -30.1314 -25.0888 -40.7197 -31.98 6.5138 166

0.1 2 10 auto rbf -30.1314 -25.0888 -40.7197 -31.98 6.5138 166

0.1 3 10 auto rbf -30.1314 -25.0888 -40.7197 -31.98 6.5138 166

100 2 5 auto poly -34.7138 -25.63 -47.2501 -35.8647 8.863797 169

100 2 5 0.1 poly -34.715 -25.6265 -47.2746 -35.872 8.875584 170

100 2 10 auto poly -34.337 -25.7943 -47.5233 -35.8849 8.938074 171

100 2 10 0.1 poly -34.3349 -25.7961 -47.5615 -35.8975 8.954108 172

100 2 1 0.1 poly -34.9843 -25.7044 -47.2399 -35.9762 8.819771 173

10 2 5 auto poly -34.633 -25.7085 -47.5962 -35.9792 8.986168 174

100 2 1 auto poly -34.9837 -25.7443 -47.2321 -35.9867 8.800959 175

10 2 10 auto poly -34.3577 -25.8317 -47.9438 -36.0444 9.105682 176

10 2 5 0.1 poly -34.6816 -25.7193 -47.7822 -36.061 9.059778 177

10 2 10 0.1 poly -34.3805 -25.8215 -48.0297 -36.0772 9.145499 178

5 2 10 auto poly -34.324 -25.8964 -48.2091 -36.1432 9.199483 179

10 2 1 auto poly -35.0334 -25.8988 -47.6285 -36.1869 8.908565 180

5 2 10 0.1 poly -34.3633 -25.9259 -48.4396 -36.2429 9.286765 181

5 2 5 auto poly -34.7937 -25.8394 -48.1581 -36.2637 9.17066 182

10 2 1 0.1 poly -35.0578 -25.9537 -47.7821 -36.2645 8.952155 183

5 2 5 0.1 poly -34.7734 -25.8639 -48.1839 -36.2737 9.173664 184

5 2 1 auto poly -35.0788 -26.0134 -47.9974 -36.3632 9.02077 185

5 2 1 0.1 poly -35.0322 -26.0192 -48.2742 -36.4419 9.140049 186

1 2 10 auto poly -34.9371 -26.679 -50.7875 -37.4679 10.00365 187

1 2 5 auto poly -35.4753 -26.7369 -50.2567 -37.4896 9.706984 188

0.1 2 1 0.1 poly -33.804 -28.6468 -50.2745 -37.5751 9.223343 189

1 2 1 auto poly -35.573 -26.7453 -50.4884 -37.6022 9.798719 190

0.1 2 1 auto poly -33.9907 -28.4609 -50.6555 -37.7024 9.433326 191

0.1 2 5 0.1 poly -33.9028 -28.851 -50.5278 -37.7605 9.260387 192

1 2 5 0.1 poly -35.6238 -26.9839 -50.7758 -37.7945 9.833519 193

1 2 10 0.1 poly -35.362 -26.9052 -51.1242 -37.7971 10.03618 194

1 2 1 0.1 poly -35.7463 -26.9584 -50.8455 -37.8501 9.864679 195

0.1 2 5 auto poly -34.0858 -28.7196 -50.9059 -37.9038 9.451315 196

0.1 2 10 0.1 poly -34.1016 -29.1927 -51.0319 -38.1087 9.355226 197

0.1 2 10 auto poly -34.2771 -28.9583 -51.2071 -38.1475 9.486379 198

1 1 10 0.1 sigmoid -63.2803 -35.0187 -52.6194 -50.3061 11.65314 199

1 2 10 0.1 sigmoid -63.2803 -35.0187 -52.6194 -50.3061 11.65314 199

1 3 10 0.1 sigmoid -63.2803 -35.0187 -52.6194 -50.3061 11.65314 199

1 1 5 0.1 sigmoid -64.096 -34.8728 -52.2076 -50.3921 11.99916 202

1 2 5 0.1 sigmoid -64.096 -34.8728 -52.2076 -50.3921 11.99916 202

1 3 5 0.1 sigmoid -64.096 -34.8728 -52.2076 -50.3921 11.99916 202

1 1 1 0.1 sigmoid -64.8777 -34.6094 -52.1646 -50.5506 12.4096 205

1 2 1 0.1 sigmoid -64.8777 -34.6094 -52.1646 -50.5506 12.4096 205

1 3 1 0.1 sigmoid -64.8777 -34.6094 -52.1646 -50.5506 12.4096 205

1 1 10 auto sigmoid -77.4767 -41.7304 -63.652 -60.953 14.71761 208

1 2 10 auto sigmoid -77.4767 -41.7304 -63.652 -60.953 14.71761 208
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Table A.6: Grid Search Results for Model C_SVR (Cont’d)

param_SVM__C param_SVM__degree param_SVM__epsilon param_SVM__gamma param_SVM__kernel split0_test_score split1_test_score split2_test_score mean_test_score std_test_score rank_test_score

1 3 10 auto sigmoid -77.4767 -41.7304 -63.652 -60.953 14.71761 208

1 1 1 auto sigmoid -78.041 -41.6441 -63.3768 -61.0206 14.95208 211

1 2 1 auto sigmoid -78.041 -41.6441 -63.3768 -61.0206 14.95208 211

1 3 1 auto sigmoid -78.041 -41.6441 -63.3768 -61.0206 14.95208 211

1 1 5 auto sigmoid -78.4135 -41.4243 -63.5757 -61.1378 15.19886 214

1 2 5 auto sigmoid -78.4135 -41.4243 -63.5757 -61.1378 15.19886 214

1 3 5 auto sigmoid -78.4135 -41.4243 -63.5757 -61.1378 15.19886 214

5 1 10 0.1 sigmoid -321.623 -211.257 -286.281 -273.054 46.01734 217

5 2 10 0.1 sigmoid -321.623 -211.257 -286.281 -273.054 46.01734 217

5 3 10 0.1 sigmoid -321.623 -211.257 -286.281 -273.054 46.01734 217

5 1 5 0.1 sigmoid -319.384 -215.261 -287.285 -273.977 43.53751 220

5 2 5 0.1 sigmoid -319.384 -215.261 -287.285 -273.977 43.53751 220

5 3 5 0.1 sigmoid -319.384 -215.261 -287.285 -273.977 43.53751 220

5 1 1 0.1 sigmoid -321.632 -215.139 -289.127 -275.299 44.56143 223

5 2 1 0.1 sigmoid -321.632 -215.139 -289.127 -275.299 44.56143 223

5 3 1 0.1 sigmoid -321.632 -215.139 -289.127 -275.299 44.56143 223

5 1 1 auto sigmoid -396.196 -260.527 -364.619 -340.447 57.9637 226

5 2 1 auto sigmoid -396.196 -260.527 -364.619 -340.447 57.9637 226

5 3 1 auto sigmoid -396.196 -260.527 -364.619 -340.447 57.9637 226

5 1 5 auto sigmoid -394.342 -275.656 -364.055 -344.684 50.35233 229

5 2 5 auto sigmoid -394.342 -275.656 -364.055 -344.684 50.35233 229

5 3 5 auto sigmoid -394.342 -275.656 -364.055 -344.684 50.35233 229

5 1 10 auto sigmoid -395.585 -274.245 -364.294 -344.708 51.43647 232

5 2 10 auto sigmoid -395.585 -274.245 -364.294 -344.708 51.43647 232

5 3 10 auto sigmoid -395.585 -274.245 -364.294 -344.708 51.43647 232

10 1 1 0.1 sigmoid -629.183 -424.51 -580.745 -544.813 87.33473 235

10 2 1 0.1 sigmoid -629.183 -424.51 -580.745 -544.813 87.33473 235

10 3 1 0.1 sigmoid -629.183 -424.51 -580.745 -544.813 87.33473 235

10 1 5 0.1 sigmoid -637.203 -424.633 -579.985 -547.274 89.81109 238

10 2 5 0.1 sigmoid -637.203 -424.633 -579.985 -547.274 89.81109 238

10 3 5 0.1 sigmoid -637.203 -424.633 -579.985 -547.274 89.81109 238

10 1 10 0.1 sigmoid -644.247 -424.647 -580.155 -549.683 92.20439 241

10 2 10 0.1 sigmoid -644.247 -424.647 -580.155 -549.683 92.20439 241

10 3 10 0.1 sigmoid -644.247 -424.647 -580.155 -549.683 92.20439 241

10 1 1 auto sigmoid -780.265 -516.682 -733.822 -676.923 114.8826 244

10 2 1 auto sigmoid -780.265 -516.682 -733.822 -676.923 114.8826 244

10 3 1 auto sigmoid -780.265 -516.682 -733.822 -676.923 114.8826 244

10 1 5 auto sigmoid -786.542 -515.641 -732.61 -678.264 117.0808 247

10 2 5 auto sigmoid -786.542 -515.641 -732.61 -678.264 117.0808 247

10 3 5 auto sigmoid -786.542 -515.641 -732.61 -678.264 117.0808 247

10 1 10 auto sigmoid -786.248 -516.753 -732.486 -678.496 116.4563 250

10 2 10 auto sigmoid -786.248 -516.753 -732.486 -678.496 116.4563 250

10 3 10 auto sigmoid -786.248 -516.753 -732.486 -678.496 116.4563 250

100 1 10 0.1 sigmoid -6280.34 -4079.74 -5919.25 -5426.45 963.6058 253

100 2 10 0.1 sigmoid -6280.34 -4079.74 -5919.25 -5426.45 963.6058 253

100 3 10 0.1 sigmoid -6280.34 -4079.74 -5919.25 -5426.45 963.6058 253

100 1 5 0.1 sigmoid -6212.6 -4080.24 -6116.73 -5469.86 983.3876 256

100 2 5 0.1 sigmoid -6212.6 -4080.24 -6116.73 -5469.86 983.3876 256

100 3 5 0.1 sigmoid -6212.6 -4080.24 -6116.73 -5469.86 983.3876 256

100 1 1 0.1 sigmoid -6286.74 -4099.34 -6118.14 -5501.4 993.7974 259

100 2 1 0.1 sigmoid -6286.74 -4099.34 -6118.14 -5501.4 993.7974 259

100 3 1 0.1 sigmoid -6286.74 -4099.34 -6118.14 -5501.4 993.7974 259

100 1 10 auto sigmoid -7739.18 -5144.42 -5801.75 -6228.45 1101.436 262

100 2 10 auto sigmoid -7739.18 -5144.42 -5801.75 -6228.45 1101.436 262

100 3 10 auto sigmoid -7739.18 -5144.42 -5801.75 -6228.45 1101.436 262

100 1 5 auto sigmoid -7638.54 -5155.71 -7432.59 -6742.28 1125.021 265

100 2 5 auto sigmoid -7638.54 -5155.71 -7432.59 -6742.28 1125.021 265

100 3 5 auto sigmoid -7638.54 -5155.71 -7432.59 -6742.28 1125.021 265

100 1 1 auto sigmoid -8331.34 -5048.41 -7430.4 -6936.72 1384.966 268

100 2 1 auto sigmoid -8331.34 -5048.41 -7430.4 -6936.72 1384.966 268

100 3 1 auto sigmoid -8331.34 -5048.41 -7430.4 -6936.72 1384.966 268
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Appendix B

B.1 Tables of Metric Analysis

B.1.1 Daily - Weekly Tables

Table B.1: Daily-Weekly Metric Values of MAE for Model B_mae

Comb Metric Week Max Week Min Day Max Day Min Week Mean Day Mean Week Error Day Error Week Confidence Interval Day Confidence Interval

1 MAE 32.915 9.706 68.184 11.470 9.684 9.656 0.956 0.573 8.728 10.640 9.083 10.229

2 MAE 36.672 13.393 69.925 10.680 9.922 9.900 1.014 0.611 8.908 10.936 9.290 10.511

1-2 MAE 35.156 12.810 69.101 12.730 9.909 9.886 0.988 0.600 8.921 10.898 9.286 10.486

1-4 MAE 32.756 10.222 62.933 10.113 9.901 9.874 0.917 0.571 8.984 10.817 9.302 10.445

1-2-4 MAE 31.834 11.883 63.421 13.442 9.933 9.899 0.949 0.591 8.984 10.882 9.309 10.490

Table B.2: Daily-Weekly Metric Values of SMAPE for Model B_mae

Comb Metric Week Max Week Min Day Max Day Min Week Mean Day Mean Week Error Day Error Week Confidence Interval Day Confidence Interval

1 SMAPE (%) 141.960 48.977 184.398 17.971 17.542 17.532 3.285 1.806 14.257 20.827 15.725 19.338

2 SMAPE (%) 145.423 47.859 189.628 21.038 17.979 17.986 3.398 1.877 14.581 21.377 16.109 19.863

4 SMAPE (%) 138.771 51.463 188.078 10.824 17.912 17.903 3.297 1.809 14.615 21.209 16.094 19.713

1-4 SMAPE (%) 140.856 51.879 188.675 16.976 17.859 17.856 3.248 1.801 14.612 21.107 16.055 19.657

1-2-4 SMAPE (%) 140.913 55.407 189.393 21.260 17.885 17.876 3.302 1.834 14.583 21.187 16.042 19.709

B.1.2 Hourly Table
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