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ABSTRACT 

 

ANALYSIS OF HLA AND RECEPTOR GENE POLYMORPHISMS IN 

MULTIPLE MYELOMA 

 

 

 

Akın, Hasan Yalım 

Doctor of Philosophy, Biochemistry 

Supervisor: Prof. Dr. N. Tülün Güray 

Co-Supervisor: Prof. Dr. Meral Beksaç 

 

 

November 2024, 66 pages 

 

Multiple myeloma (MM) is a treatable but rarely curable neoplastic plasma-cell 

disorder, primarily effecting elderly with a male predilection with a higher incidence 

rate in African ancestry. Natural killer (NK) cells are regulators of immune response 

against infections and cancer. Tumor cells are recognized through their human 

leukocyte antigen (HLA) ligands by killer cell immunoglobulin-like (KIR) receptors 

on NK cells. Due to their highly polymorphic structure, numerous combinations of 

KIR-HLA pairs result in underpowered statistical significance in KIR/HLA 

association studies. A few studies reported conflicting associations between 

KIR/HLA ligands and MM, due to the limited number of participants. In this study, 

an alternative approach was conducted to increase the sample size by using large 

existing data from various studies aiming to investigate the effect of KIR and HLA 

ligands on MM in different populations. Along with the local patients, KIR and HLA 

genes were imputed from the whole exome sequencing data belong to one of the 

largest MM datasets. The preliminary findings on a local cohort have revealed the 

protective role of activating KIR as well as an association between KIR/HLA ligands 

and age of MM onset. Remarkably, increasing the sample size uncovered the 

predisposing effect of Bw4 ligand (one of the public epitopes of HLA-B molecules), 
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and a bidirectional interaction between KIR genes 3DL1, 3DS1 and their cognate 

ligand Bw4, that had not been reported in prior studies. Moreover, low frequencies 

of the protective genotypes and high frequencies of the predisposing genotypes 

among African Americans suggests a relationship between KIR/HLA ligands and 

ethnic disparities in MM. Finally, this study provides a reference model for the 

association between KIR/ligand genotypes and MM. It also presents a validated 

methodology for the global integration of large genomic datasets, enabling accurate 

evaluation of KIR and HLA allotypes across various disease courses. 

Keywords: Multiple Myeloma, Innate Immunity, Human Leukocyte Antigen, Killer 

Cell Immunoglobulin-Like Receptors, Imputation
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ÖZ 

 

MULTİPL MYELOMDA HLA VE RESEPTÖR GEN 

POLİMORFİZMLERİNİN ANALİZİ 

 

 

Akın, Hasan Yalım 

Doktora, Biyokimya 

Tez Yöneticisi: Prof. Dr. N. Tülün Güray 

Ortak Tez Yöneticisi: Prof. Dr. Meral Beksaç 

 

 

Kasım 2024, 66 sayfa 

 

Multipl miyelom (MM), özellikle yaşlıları ve erkekleri etkileyen ve Afrika 

kökenlilerde daha sık görülen, tedavi edilebilen ancak nadiren iyileştirilebilen bir 

neoplastik plazma hücre hastalığıdır. Doğal öldürücü (NK) hücreler, enfeksiyonlara 

ve kansere karşı bağışıklık yanıtında rol oynarlar. Tümörlerin tanınması, NK hücre 

üzerindeki KIR reseptörleri ile hedef hücrelerdeki ligandlar aracılığıyla gerçekleşir. 

Polimorfik yapıları nedeniyle çok sayıda olan KIR-HLA kombinasyonları nedeniyle 

ilişkilendirme çalışmalarında istatistiksel güç zayıf kalmaktadır. Birkaç çalışmada 

KIR/HLA ligandları ile MM yatkınlığı arasında çelişkili sonuçlar rapor edilmiştir. 

Bu çalışmada, alternatif bir yaklaşımla örneklem büyüklüğünü arttırmak için çeşitli 

çalışmaların mevcut genomik verileri kullanılarak KIR ve HLA ligandlarının MM 

hastalarına etkisinin farklı popülasyonlarda araştırılması amaçlanmıştır. Yerel MM 

hastalarına ek olarak, en büyük MM veri tabanlarından birine ait tüm ekzom dizileme 

verisinden KIR ve HLA genleri impute edilmiştir. Yerel hastalarda yapılan ön 

çalışmada aktivatör KIR’ların koruyucu etkisi ve KIR/HLA ligandları ile MM tanı 

yaşı arasında ilişki saptanmıştır. Arttırılan örneklem büyüklüğü sayesinde önceki 

çalışmalarda rastlanmayan Bw4 ligandının (HLA-B moleküllerinin genel 

epitoplarından biri) MM yatkınlığına etkisi ve KIR 3DL1 ve 3DS1 genlerinin 
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karşılık gelen HLA ligandı Bw4 ile iki yönlü bir etkileşim gösterdiği saptanmıştır. 

Dahası, Afrikalı Amerikalılarda koruyucu genotiplerin düşük frekansta ve yüksek 

riskli genotiplerin ise daha sık görülmesi, KIR/HLA ligandları ile etnik farklılıklar 

arasında bir ilişki olabileceğine işaret etmektedir. Son olarak, bu çalışmada 

KIR/HLA-MM ilişkilendirme çalışmaları için bir referans model sunulmakta, 

ilaveten KIR ve HLA allotiplerinin çeşitli hastalıklar üzerindeki etkilerini 

araştırmaya yönelik dünya genelindeki büyük genomik veri setlerinin 

kullanılabilmesinin önünü açan valide edilmiş bir metodoloji ortaya konmaktadır. 

Anahtar Kelimeler: Multipl Miyelom, Doğal Bağışıklık, İnsan Lökosit Antijeni, 

Doğal Öldürücü Hücre İmmünoglobulin-Benzeri Reseptörler, İmputasyon
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CHAPTER 1  

1 INTRODUCTION  

1.1 Multiple Myeloma 

1.1.1 Disease Pathogenesis 

Multiple myeloma (MM), the second most common hematological disease, is a 

monoclonal gammopathy disorder characterized by anemia, lytic lesions in the bone 

marrow (BM) and immunoglobulin residues in blood and urine as a result of over-

secretion of monoclonal immunoglobulins by malign plasma cells proliferating at 

BM environment (Cowan et al., 2018; Dima et al., 2022; Kumar et al., 2017). MM 

is more common in males and being seen most frequently among people aged over 

50 with a median of 69 years old and it accounts for 1.0-1.8% of all neoplastic 

diseases (Dimopoulos et al., 2021; Kumar & Rajkumar, 2018; Cancer Stat Facts: 

Myeloma, 2024). The incidence rates vary among worldwide populations with regard 

of the geographical location as well as the ethnicity (Figure 1.1). African Americans 

(AFA), for instance, show 2-3 times higher incidence and death rates compared to 

Caucasians or Asian populations (Cancer Stat Facts: Myeloma, 2024; Röllig et al., 

2015). 
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Figure 1.1. Age-standardized worldwide incidence rate of MM (Cowan et al., 2018).  

MM pathogenesis is associated with acquired genetic mutations within the malignant 

plasma cells complicated with genomic instability leading to additional 

abnormalities. MM, carries a collection of numerical abnormalities plus several 

mutations or translocations evolving from pathologies such as smoldering myeloma 

(SMM) and monoclonal gammopathy of undetermined significance (MGUS) 

(Figure 1.2) (Kumar & Rajkumar, 2018; Pratt, 2002; van Nieuwenhuijzen et al., 

2018). While some SMM/MGUS patients rapidly progress to myeloma, some 

patients can be followed up with indigenous precondition states for many years or 

even for a lifetime (Kyle et al., 2010). 
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Figure 1.2. Clonal Evolution Stages of MM Premalignant Cells (van 

Nieuwenhuijzen et al., 2018).  

MGUS: monoclonal gammopathy of undetermined significance; SMM: smoldering 

myeloma, MM: Multiple myeloma, EMD; extramedullary disease. 

Progression of MM is regulated by multiple factors, such as cell signaling, certain 

cytokines and chemokines as well as the components of extracellular matrix and the 

tumor microenvironment, which includes the naturally occurring cell types in BM. 

The specificity of the immune microenvironment including the interactions between 

immunoreactive cells and malignant cells are of great importance in malignant 

plasma cell growth and escape from immune system and immunotherapies as well 

as the clonal evolution of the disease progression (Bila et al., 2021; García-Ortiz et 

al., 2021). Despite the numerous prognostic factors described for MM, such as age, 

comorbidities, tumor load, cytogenetic and molecular characteristics of tumor cells, 
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there is still need for a multiparameter characterization for understanding the 

dynamic risk factors affecting the outcome of MM patients (Aksenova et al., 2021; 

Corre et al., 2021; Dima et al., 2022).  

Individual genetic disparities have long been studied in the context of genetic 

polymorphism and disease association studies (Cooper & Clayton, 1988). Definition 

of polymorphism has been widely recognized as one or more nucleotide changes in 

the DNA, similar to mutations; however with a minor allele frequency of greater than 

1% in a population (Brookes, 1999). Although the earlier definitions of 

polymorphism and mutation are no longer consistent with the reality in population 

genomics, the fact that the polymorphic variations in the germ-line DNA have an 

impact on disease susceptibility as well as the prognosis and have been widely 

studied for many years (Chiarella et al., 2023; Karki et al., 2015). MM and its 

relationship with genetic polymorphisms have also been studied by many researchers 

around the globe. Genetic polymorphisms have been associated with not only 

susceptibility to MM, but also with their impact on the disease progression in 

response to certain therapies (Clavero et al., 2023; Sood et al., 2024). Among the 

many studies focusing on prognostic risk factors influenced by germ-line somatic 

alterations on predisposition to MM on an individual basis, Multiple Myeloma 

Research Foundation (MMRF) CoMMpass study holds one of the largest genomic 

MM datasets with the aim of understanding individual-level disease prognosis, risk 

stratification and exploring new targeting strategies., and it includes 1143 patients, 

mostly from the United States, Canada, Spain and Italy. Ancestry of the patients 

within the dataset was distributed as 81% “Caucasian”, 18% “African American or 

Black” and 2% Asian (Skerget et al., 2021). Moreover, recent studies focus on 

familial cases in order to unravel the genome-wide level risk factors (Akkus et al., 

2024; Pawlyn & Davies, 2019; Samur et al., 2020).  

Most of the MM patients are diagnosed by laboratory findings, including low blood 

count levels, renal disease, and/or increased protein levels. The differential diagnosis 

requires complete blood analysis; serum chemistries; creatinine, lactate 

dehydrogenase, and beta2-microglobulin tests; immunoglobulin studies; skeletal 
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survey; and evaluation of bone marrow (Dima et al., 2022; Kumar & Rajkumar, 

2018). Following the diagnosis of MM, therapy strategies are proceeded according 

to disease specific parameters; specific gene mutations of cytogenetic indications 

(translocations, deletions, or certain insertions) on clonal plasma cells derived from 

BM aspirates and age of patients (mostly considered according to be older or younger 

than 60 years old).  

MM has been recognized since 1800’s, and with substantial development of many 

treatment strategies, including the use of proteosome inhibitors and 

immunomodulatory agents following autologous stem cell transplantation, it has 

become a treatable disease but not curable yet (Beksaç et al., 2008; Cowan et al., 

2018; Rodriguez-Otero et al., 2021). According to SEER Statistics (2001-2021), 10 

years of remission within the patients adjusted for age, sex and ethnicity has only 

been increased to 47.5% from 22.4% in ten years; however, the complete remission 

is still an important challenge for MM in overall (Cancer Stat Facts: Myeloma, 2024; 

Dimopoulos et al., 2021). 

The classical and optimized approach to treat MM is autologous stem cell 

transplantation, if eligible, following a 2-3 drug myeloablative chemotherapy. While 

this optimized therapy provides long-term survival rate by 10%, older patients need 

to be reconsidered with regard to their biological fitness conditions. In addition to 

conventional therapies, patients need to be considered in their own conditions 

(Pawlyn & Davies, 2019). MM may progress accordingly with specific issues such 

as renal diseases, bone diseases, thromboembolic complications, neurologic 

diseases, and infections. Despite of these specific issues, MM itself a great challenge 

in diagnosis, follow-up of the disease progression as well as evaluation and 

understanding the reason underlying refractory/relapse state is crucial (Cowan et al., 

2018; Dimopoulos et al., 2021; Rodriguez-Otero et al., 2021).  

In the scope of personalized medicine, alternative to the conventional treatment in 

refractory/relapse MM, individualized immunotherapeutic strategies have been 

frequently used within the last decade. T cell and Natural Killer (NK) cell-mediated 
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immunotherapies have the highest potential regarding their specific anti-tumoral 

cytotoxic effect. Anti-tumoral effects of NK cells have been thoroughly analyzed 

and being tested in various clinical applications (Bila et al., 2021; X. Chen et al., 

2022; Clara & Childs, 2022; Marin et al., 2024). Although chimeric antigen receptor 

(CAR) T cell therapy show promising results, there are a number of challenges in 

use of this new therapy, such as the high risk of graft versus host disease, 

susceptibility of the cells to the inhibitory effects of the microenvironment and in 

vivo durability of the modified cells. Thus, NK cell mediated strategies remain as a 

safe and valuable choice for immunotherapeutic approaches (Daher & Rezvani, 

2018; Lin et al., 2024). 

The regulation of NK cell functions has been proven to play an important role in the 

pathogenesis of MM, and in addition to therapeutic strategies, it is also shown by 

few study groups that the NK cell biology may have an impact on age of disease 

onset and predisposition to MM (Beelen et al., 2024; M. Beksac et al., 2023; Hoteit 

et al., 2014; Martínez-Sánchez et al., 2015; Sun et al., 2021).  

1.2 NK Cell Mediated Anti-Tumor Immunity 

NK cells are one of the major components of the innate immune system and known 

by their role in immune response against virally infected cells or tumor cells. They 

reside in circulating blood with a ratio of 5%-15% and in various organs as well (Liu 

et al., 2021). NK cells, similar to T cells and B cells, originate from lymphoid 

progenitors; however, they differ from those antigen receptor-expressing similar 

subsets by their expression of receptors with activating or inhibitory properties in 

various combinations.  

NK cells are characterized by their CD56 CD16 expressions and are classified in two 

main phenotypes as CD56dimCD16+ cells, which exhibit highly cytotoxic profile, and 

CD56brightCD16- cells, which are responsible for cytokine secretion unless activated 

by external signals. In addition to their direct cytotoxicity on target cells, they are 



 

 

7 

also known as pro-inflammatory cytokine producers, by which they can induce 

adaptive immune responses, in addition to preventing angiogenic, proliferative 

abilities and initiate TNF-induced pro-apoptotic effects on target cells (Liu et al., 

2021; Myers & Miller, 2021).  

Among the known activating receptors of NK cells, CD16 is the most dominant one 

with the ability to be activated without requirement of any other receptor. When 

activated, it induces antibody-dependent cell-mediated cytotoxicity and 

subsequently downregulated by ADAM17, a metalloproteinase which removes 

CD16 from the cell surface. This process led to development of a novel treatment 

strategy targeting inhibition of ADAM17 and currently being tested on clinical trials 

(Cooley et al., 2018; Myers & Miller, 2021). Another approach regarding the CD16-

dependent activation of NK cells is to generate high-affinity CAR-NK cells and to 

genetically modify CD16 to prevent its cleavage by ADAM17. Both strategies are 

currently being tested on phase I/II clinical trials NCT02141451 and NCT04023071, 

respectively (Myers & Miller, 2021).  

Another group of activating receptors include the natural cytotoxicity receptors 

(NKp30, NKp44 and NKp46). NKp46 in particular has been recognized by its role 

in anti-MM NK cytotoxicity. NKp30 together with NKG2D receptor, which is 

another activating receptor expressed on NK cells, have been shown to be 

downregulated in the bone marrow niche in patients with monoclonal gammopathy 

disorders (Clara & Childs, 2022).  

In addition to above mentioned NK cell receptors, killer cell immunoglobulin-like 

receptors (KIR) represent the highest polymorphic characteristics among all 

(Amorim et al., 2021). NK cell functionality highly depends on the balance between 

activating KIR (aKIR) and inhibitory KIR (iKIR), and their state of steadiness or the 

regulation of the cytotoxic response through the interactions with their 

corresponding ligands. This process is regulated by complex KIR/ligand 

combinations in different individuals through numerous variations in the germ-line 

encoded polymorphic characteristics of KIRs on NK cells and HLA ligands on target 
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cells (Liu et al., 2021). Not only therapeutic approaches, but also many association 

studies and donor-patient matching strategies have been conducted regarding the 

interactions of KIR/HLA ligand variations and are detailed in the section below. 

1.2.1 KIRs and the Corresponding Ligands 

The independently inherited KIR and Human Leukocyte Antigen (HLA) genes are 

located at chromosome 19 and chromosome 6, respectively. They both display 

significant variations, resulting in a great diversity in the number of KIR-HLA 

combinations among individuals. KIR gene family consists of aKIRs (3DS1, 2DS1, 

2DS2, 2DS3, 2DS4 and 2SD5), iKIRs (2DL1, 2DL2, 2DL3, 2DL5A/B, 3DL1, 3DL2 

and 3DL3) and pseudogenes 2DP1 and 3DP1 which are not expressed on the cell 

surface. Figure 1.3 represents the known/unknown binding interactions of KIRs and 

their corresponding HLA ligands.  

Regarding the iKIR interactions with their corresponding ligands; 2DL1 interacts 

with HLA-C2 ligand, only with the exception of allele 2DL1*022, of which 

corresponding ligand is HLA-C1 instead of C2 due to the change in an amino acid 

residue at position 44 (methionine to lysine). 2DL2 and 2DL3 also binds with HLA-

C1 ligand. On the other hand, 3DL1 recognizes Bw4 allotypes. HLA-ligands 

recognized by 2DL5A and 2DL5B remain unknown. Regarding the aKIR-ligand 

interactions; 2DS1 is known to be acceptor of C2 ligand and 2DS2 binds with C1 

allotypes. There is no known ligand for 2DS3, and it is not expressed on the cell 

membrane. 2DS4 has two variants; one of which differs from the other with a 

deletion of 22 base pairs (truncated) and ends up in a soluble form instead of the 

transmembrane structure. Non-truncated form of 2DS4 recognizes both C1 and C2 

ligands in certain allotypes (Hadjis & McCurdy, 2024; Jennifer Zhang, 2022; 

Rajalingam, 2016). The corresponding ligand for 2DS5 is reported to be unknown 

by many researchers, however there are few reports suggesting its interaction with 

HLA-C2 (Blokhuis et al., 2017; Hadjis & McCurdy, 2024). There is also an 

uncertainty regarding the corresponding ligand of 3DS1. It is well known that 3DL1 
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is a strong receptor for Bw4 ligand. However, even though 3DS1 and 3DL1 are 

located in the same locus, the assumptions regarding the 3DS1-Bw4 binding 

capability lack evidence (Figure 1.3) (IPD-IMGT/HLA Database, 2024; Parham, 

2005; Pollock et al., 2022; Rajalingam, 2016). In addition to the ligands given in the 

figure, 3DS1 and 2DL4 receptors, which have only two allotypes for each, can also 

be presented by ligands from HLA-F and HLA-G molecules, although there is lack 

of evidence for those interactions (Pollock et al., 2022). Peptide-specific recognition 

by NK cell receptors has recently been studied in NK-cell mediated innate and 

adaptive responses to viral infections and cancer. Polymorphic heterogeneity 

between individuals determines the activation and expansion of NK cells, and the 

receptor-ligand binding specificities, which are altered by the substitutions of HLA 

peptides presented by tumor cells or viral factors in certain infectious diseases 

control the differential levels of immune response (Hammer et al., 2018; Sim et al., 

2023). 

Ligands of KIRs are mainly originated from class I HLA molecules (HLA-A, HLA-

B and HLA-C) carrying more than 20.000 known alleles. HLA-A and HLA-B are 

known by their roles in diverse expression of T cell receptor ligands in the 

evolutionary process, and it seems that together with HLA-C they have their role in 

the evolution as the predictors of ligands of KIRs (Capittini et al., 2012; Older 

Aguilar et al., 2010). 

 

Figure 1.3. Representative illustration of distribution of KIR genes. 

KIR haplotypes, based on both the content of A/B haplotypes and their chromosomal 

locations (telomeric or centromeric), and their KIR gene content with their binding 

ligands were illustrated. Grey boxes represent framework genes. Blue and orange 
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boxes show inhibitory and activating KIR receptors (aKIR and iKIR) and purple 

boxes represent the HLA ligands binding specifically with their corresponding 

receptors. Purple boxes with question marks represent the unknown or uncertain 

ligands. 

As mentioned before, the functional state of NK cells is regulated by the balance 

between activating and inhibitory signals upon interfering with cognate ligands 

presented by other interacting cells. Conventional knowledge suggests an imbalance 

towards predominancy of activating signals which will result in cytotoxic response 

of NK cells. This may occur in case of a missing cognate ligand of an aKIR or in 

case of alterations in expression profile of class I HLA molecules of tumor cells 

(Hadjis & McCurdy, 2024; Liu et al., 2021; Parham, 2005). 

Regarding the balance between aKIRs and iKIRs, KIR2DS1 is a known exception 

with its role in both activating an inhibitory effect depending on its interaction with 

HLA-C ligands, although it is classified within aKIRs. While 2DS1 and C2 ligand 

interaction results in a non-responsive state of the effector cells, 2DS1 interference 

with C1 ligand leads to interferon-gamma secretion and a cytotoxic response 

(Campbell & Hasegawa, 2013).  

Such interaction led researchers to search for an ideal KIR-ligand match/mismatch 

between the transplant patients and their donors. Following a pioneering study in 

2002 (Ruggeri et al., 2002), there have been numerous attempts to find an optimal 

KIR-ligand match/mismatch between donors and recipients (Beksaç & Dalva, 2012; 

Jennifer Zhang, 2022; Sahin et al., 2018). Donor selection algorithms have been 

developed for predicting NK cell alloreactivity to reduce relapse and increase overall 

survival rates for hematopoietic stem cell transplantations in hematologic 

malignancies and are being provided for public use in EMBL European 

Bioinformatics Institute website (IPD-IMGT/HLA Database, 2024). However, 

current donor selection strategies remain controversial as they do not consider 

individual-level KIR polymorphisms, but only focus on a single set of activating or 

inhibitory receptors (Jennifer Zhang, 2022). Thus, there is a need for a 
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comprehensive approach to understand NK cell alloreactivity in terms of KIR-ligand 

matching algorithms (Hadjis & McCurdy, 2024; Jennifer Zhang, 2022).  

NK cell mediated immune-checkpoint inhibition strategies have been testing in 

clinical trials. iKIR antagonists, such as anti-2DL1/2/3 or anti-3DL2, had 

controversial outcomes and some of the trials have been terminated due to inefficacy 

in clinical outcomes. However, there are also ongoing trials with promising results 

so far (NCT01714739) (Myers & Miller, 2021). Additionally, KIRs arises as one of 

the targets of recently developing CAR-NK mediated treatment strategies (Daher & 

Rezvani, 2021). A combination of iKIRs are currently being identified as novel 

targets, and the reason was reported that it would be a challenge to specifying a target 

at both population and sequence-level considering the highly polymorphic structure 

of KIRs (Graham et al., 2023). Currently, the experts of the field meet at the point of 

the requirement of larger cohorts for validation of the above mentioned clinical trials 

and for a better understanding of the KIR-ligand interactions (Hadjis & McCurdy, 

2024; Jennifer Zhang, 2022; Myers & Miller, 2021).  

In addition to donor selection algorithms and therapeutic strategies, KIR and HLA 

variants have been widely explored in terms of their contribution to 

individual/population-level disease susceptibility association studies regarding 

resistance to viral infection, cancer, or autoimmune diseases. 

1.3 KIR/HLA Ligand and MM Association Studies 

The genetic diversities have been widely explored in the context of presence/absence 

of KIR genes (receptors with or without their cognate ligands) and individual gene 

frequencies have been associated with viral infections, autoimmune disorders, 

pregnancy related complications and malignant diseases (K. Beksac et al., 2015; M. 

Beksac et al., 2021; Castaño-Núñez et al., 2019; Hematian Larki et al., 2022; Mori 

et al., 2019; Nakimuli et al., 2015; Orgul et al., 2021). KIR and HLA polymorphisms 

show distinct profiles among worldwide populations and KIR haplotypes have been 
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described across the globe (Amorim et al., 2021; Maxwell et al., 2004; Nakimuli et 

al., 2015; Ozturk et al., 2012; Rajalingam et al., 2008). Currently, there are 274 

published studies from 50 countries with a record of 1474 disease associations only 

within the Allele Frequency Net Database (Takeshita et al., 2013). However, 

KIR/HLA association studies reveal conflicting results, particularly among 

hematological malignancies (Augusto, 2016). 

There are a limited number of KIR-MM association studies. According to the 

literature, the first KIR-MM association was studied in 2010 by Gabriel et al. They 

reported that 3DS1 and 3DL1 positivity along with absence of Bw4 ligand was 

associated with shorter progression-free survival (PFS) in MM patients (n=182) after 

autologous hematopoietic stem cell transplantation (Gabriel et al., 2010). Just a few 

months later, another group in Germany focused on KIR haplotypes and suggested 

that B haplotype was associated with improved PFS in a cohort study including 118 

MM patients (Kröger et al., 2011). A comprehensive analysis published in 2015, 

proposed an impact of certain combinations of 2DL1, 2DL2 and 2DL3 genotypes 

and HLA-C ligands on susceptibility to MM as well as PFS of the patients. They 

have included 286 healthy control subjects and 164 Caucasian patients diagnosed 

with MGUS, SMM and MM, of which only 53 were MM and their results on PFS 

does not fully cover the findings from Gabriel et al  (Gabriel et al., 2010; Martínez-

Sánchez et al., 2015). Another study was conducted on Lebanese population 

including 120 control and 34 MM subjects. They have reported an association with 

2DS4 and 2DS5 in favor of susceptibility to MM; however, the sample size 

significantly lowers the statistical power in their analysis (Hoteit et al., 2014). Sun 

et al. reported KIR-dependent individual-level inconsistencies regarding the efficacy 

of an anti-MM drug combination in a Phase II clinical trial (NCT01749969). Their 

findings show that 3DL2 and its corresponding ligand was associated with prolonged 

PFS, while 2DL1 and HLA-C2 homozygosity was associated with a shorter PFS and 

a reduced response to the drug therapy (Sun et al., 2021). The most recent study 

regarding KIR-MM association has been published in 2024 and included a cohort 

from Netherlands (172 MM and 195 control subjects). Their findings differ from 
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those of Hoteit et al. and Martínez-Sánchez et al., and they explain the possible 

causation of the dissimilarity with the relatively small sample size included in the 

previous studies. However, their suggested association (HLA ligands C1-C2+Bw4+ 

and 3DL1+Bw4+ genotype in favor of MM occurrence) lack statistical power due to 

the low number of cases distributed among genotyping groups resulting in a false 

significance (OR [95% CI]: 1.996 [0.992–4.014], P=0.049 and OR [95% CI]: 1.557 

[0.999–2.427], P=0.050; respectively] (Beelen et al., 2024). 

Several HLA-MM association studies have been carried out and the biggest cohort 

study was published using the Center for International Blood and Marrow Transplant 

Research (CIBMTR) database. This study reported associations of HLA-C*07:02 

and HLA-B*07 with susceptibility to MM and HLA-C*05:01 and HLA-B*44:02 

were reported to be as protective variants in a population including 3724 MM cases 

and 50.000 control subjects (M. Beksac et al., 2016). Considering HLA-C*07:02 

belonging to C1 group ligands, HLA-C*05:01 belonging to C2 and HLA-B*44:02 

to Bw4 ligands; these results are consistent with the previous findings from the local 

cohort of MM patients, which demonstrated an association between KIR and age of 

onset (M. Beksac et al., 2023). 

Regarding the inconsistencies between the findings of all above-mentioned studies, 

the common interference clusters around the requirement of studies recruiting much 

higher number of patients due to the excessive number of variables resulting from 

KIR-HLA ligand combinations as well as the varying haplotypes among ethnically 

diverse populations, thus sample sizes remain small and most of the current studies 

are underpowered for statistical significance (Augusto, 2016; Gao et al., 2022; 

Jennifer Zhang, 2022; Myers & Miller, 2021).  

KIR/HLA genotyping from high number of patients from a single center requires 

time to reach patients and also it is not cost effective, since the high-resolution 

KIR/HLA genotyping kits are relatively expensive. One possible way to increase the 

sample size is to use available genome-wide association studies (GWAS), whole 

genome sequencing (WGS) or whole exome sequencing (WES) datasets providing 
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in large databases, which have been being accumulating data for decades from 

various research studies (Chattopadhyay et al., 2019; MacArthur et al., 2014). Many 

tools have been developed by researchers for using polymorphic regions from WGS 

data effectively, in disease association studies. These include HLA and KIR 

imputation tools, which are still under development (J. Chen et al., 2021; Sakaue et 

al., 2023; Ustunkar & Aydin-Son, 2011; Vukcevic et al., 2015). 

1.4 KIR and HLA Imputation 

Given the significant importance of HLA and KIR variations in disease association 

studies, many researchers have been tended to expand their research on large-scale. 

However, high cost of conventional HLA/KIR genotyping methods led to 

development of other strategies. The increased availability of genome-wide 

association studies and whole genome/exome sequencing data draw attention to 

computational solutions. 

HLA*IMP and KIR*IMP are among the most frequently used HLA and KIR 

imputation tools, and they were developed by implementation of statistical methods 

to benefit from linkage disequilibrium of single nucleotide polymorphisms (SNPs) 

neighboring to genomic region of HLA and KIR genes (Figure 1.4) in high resolution 

SNP arrays from GWAS (Dilthey et al., 2013; Vukcevic et al., 2015). There are 

several other imputation methods developed for both HLA (J. Chen et al., 2021; 

Motyer et al., 2016), and KIR imputation (Ahn et al., 2021; Ritari et al., 2022; Sakaue 

et al., 2022) from GWAS arrays. These methods generally require multi-ancestry 

reference panels or panels specific to a particular ancestry. They also require datasets 

constructed by Immunochip-like SNP panels, which are enriched in SNPs and they 

reveal higher coverage in the HLA or KIR regions (J. Chen et al., 2021). 
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Figure 1.4. Informative clusters of SNPs aligned with genomic location of KIR genes 

according to the imputation algorithm of KIR*IMP (Vukcevic et al., 2015). 

As high-throughput next-generation sequencing (NGS) technique become more 

cost-effective and widespread in genomic studies, imputation tools using short-read 

NGS or long-read WGS/WES data have been developed (J. Chen et al., 2021; Gao 

et al., 2022; Roe et al., 2020; Roe & Kuang, 2019). Even though the most recent 

imputation tool, which was introduced as a model for both HLA and KIR imputation 

as well as for calling SNPs using either WGS, WES or even RNA-sequencing data 

was published in June 2023 (Song et al., 2023), the KIR-disease association studies 

performing KIR imputation methods are still very limited (Ahn et al., 2021; Bao et 

al., 2018; Gao et al., 2022). 

1.5 Scope of the Study 

MM is the second most prevalent hematological malignancy showing differences in 

disease pathogenesis among different ethnic groups and gender types. Disease 

progression is known to be profoundly influenced by germ-line genetic disparities 

influencing immune-response mediators, which still remain elusive according to the 

current scientific literature. 

NK cells are immune system regulators against viral infections and cancer, including 

MM. They recognize self-HLA missing tumor cells through the interaction between 
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their KIR receptors and HLA ligands on target cells. Polymorphic KIR and HLA 

genes display a wide range of variations resulting in an extensive diversity among 

individuals. There are few reports, including a published study by our study group, 

associating KIR/HLA variants with MM. Due to the high-level diversity in KIR-

HLA pairs, most of the current studies remain small-scaled and underpowered in 

terms of statistical significance. Expensiveness of conventional KIR/HLA 

genotyping method is another limitation against conducting large cohort studies. 

Thus, alternative strategies are required for better understanding the relationship 

between KIR and MM.  

In this study, allele-level imputation of HLA and KIR receptor genes in MM patients 

was performed using WES data of MM patients available in Database of Genotypes 

and Phenotypes (dbGaP) from the CoMMpass dataset. Results were compared with 

a local KIR/HLA ligand dataset to be acquired from conventional KIR and HLA 

ligand genotyping on MM patients from Ankara University Department of 

Hematology. Validation of the KIR and HLA imputation accuracy was performed 

on a randomly selected subgroup of local MM patients, which were subjected to both 

WES and targeted genotyping. 

Healthy subjects from Ankara University Donor Registry Database, of whom KIR 

and HLA ligand genotyping had been performed by conventional methods, were 

included as the local control group in this study. Healthy control group dataset was 

constructed using individual KIR/HLA ligand genotyping data from various 

countries provided in Allele Frequencies Net Database, so that the ethnic frequency 

distribution was matching with the patients from CoMMpass dataset. 

Distribution of HLA and KIR variants, including the individual KIR genes and 

haplotypes in addition to their relationship with their corresponding HLA ligands, 

was evaluated among the patient subgroups in terms of gender, age, and ethnicity. 

Additionally, KIR and HLA ligand frequencies were compared between MM 

patients and healthy subjects in order to achieve a better understanding of the effects 

of KIR-associated immune-checkpoints on susceptibility to MM. The use of the 
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largest sample size currently available in literature will provide clarifying evidence 

in order to resolve the inconsistent results obtained in earlier KIR-MM association 

studies. The results from this study are expected to be a significant contribution to a 

better understanding of the individual genetic disparities in predisposition to MM. 
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CHAPTER 2  

2 MATERIALS AND METHODS 

2.1 MM Patients 

Two separate groups of newly diagnosed MM patients were included in this study. 

One of the patient groups was selected among dbGaP controlled-access datasets and 

the other set of patients were recruited from Ankara University Hematology 

Department. 

2.1.1 Dataset of CoMMpass Study 

MM dataset has been queried from European Nucleotide Archive (ENA) and dbGaP. 

CoMMpass dataset provided by Multiple Myeloma Research Foundation (MMRF) 

includes well-documented patient characteristics and it is known as one of the largest 

MM datasets with a total of 978 participants including the data from WGS, WES and 

RNA sequencing assays. 

Authorized access has been granted (Project ID: 132438-1) for CoMMpass study 

(PRJNA248539, dbGaP: phs000748.v7.p4) and paired-end FASTQ files containing 

WES reads belong to non-tumor germline DNA derived from peripheral blood of 

707 MM patients have been downloaded in Sequence Read Archive (SRA) format, 

converted to FASTQ using SRA Toolkit (v3.1.0) and compressed by pigz (v2.6). 

Since it is known that the structural changes in the tumor DNA may occur in the 

locus where KIR gene sequences are located (Pratt, 2002), patients with a single data 

derived only from their bone marrows have been excluded. 
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2.1.2 Dataset of Local Patients from Ankara University 

Peripheral blood from a total of 218 newly diagnosed MM patients from Ankara 

University Hematology Department have been collected with the informed consent 

in scope of a conducted research project (Project ID: 115S579) with the approval of 

Ethical Committee of Ankara University (Approval number: 06-421-18). All 

patients were genotyped for their KIR and HLA ligands, among whom twenty were 

also subjected to WES assay. DNA isolation and targeted genotyping of KIR/HLA 

ligands were performed at Ankara University Hematology Laboratories. WES has 

been performed by Mikrogen Diagnostics and raw sequencing data was received in 

FASTQ format. 

2.2 Healthy Subjects 

KIR and HLA ligand genotyping data of healthy subjects from Ankara University 

Donor Registry were used as the local control group representing the Turkish 

population. 

Since the patients from CoMMpass dataset belong to different ethnic populations, 

individual KIR/HLA ligand genotyping data of ethnic groups from various countries 

has been collected from Allele Frequencies Net Database and included in this study 

as healthy controls for the CoMMpass dataset (Gonzalez-Galarza et al., 2011). Some 

of the datasets which do not include all KIR genes and HLA ligands were excluded 

from this study. Among 49 datasets from 31 different countries, the populations 

which can be classified as “Caucasians” have been selected and included in this 

study. The only dataset of Black individuals provided within the database belongs to 

South Africa Xhosa population. It was excluded from this study, as KIR and HLA 

ligand frequencies may differ within African American and African populations. 

The Allele Frequencies Database does not distinguish between 2DL5A and 2DL5B 

genes; it only provides the information on the presence or absence of 2DL5 gene. 

Both 2DL5A and 2DL5B are of substantial importance in haplotype-level analyses, 
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and they are located at distinct locations in terms of telomeric and centromeric 

regions. Therefore, a formula for the calculation of subtypes was generated using the 

known KIR motifs within the telomeric and centromeric haplotypes. 

2.3 Targeted Genotyping of KIR and HLA Ligands 

2.3.1 DNA Isolation 

DNA isolation from peripheral blood of MM patients was performed using EZ1 

DNA Blood Kit (Qiagen, Netherlands) on the Easy1 Advanced XL (Qiagen, 

Netherlands) instrument according to the manufacturer’s instructions. Quality and 

quantity of the isolated DNA were measured using Nanodrop 1000 

spectrophotometer (Thermo Fisher Scientific, US).  

2.3.2 KIR Genotyping 

KIR genotyping was performed by polymerase chain reaction (PCR) using KIR 

specific primers included in Olerup SSP KIR Genotyping kit (104.101-12u; Olerup, 

Sweden), for the detection of KIR2DL1, 2DL2, 2DL3, 2DL4, 2DL5A/B, 2DS1, 

2DS2, 2DS3, 2DS4, 2DS5, 3DL1, 3DL2, 3DL3, 3DS1, 2DP1 and 3DP1 genes. KIR-

specific PCR amplicons were run through the agarose gel electrophoresis and the 

bands were observed under UV light. Presence or absence of the KIR variants were 

determined according to the reference markers using manufacturer’s instructions. 

Both negative and internal controls were included in each experiment. 

2.3.3 HLA Ligand Genotyping 

Targeted genotyping of HLA ligands was performed using KIR HLA Ligand PCR 

SSP Kit (104.201-12u; Olerup, Sweden), which is able to detect HLA-ABw4+, 

HLA-B Bw4+Thr80, HLA-B Bw4+Ile80, HLA-B Bw4+Asp77, Thr80, HLA-C 
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Asn80 (group C1), and HLA-C Lys80 (group C2). Similar to KIR genotyping, DNA 

samples were amplified using HLA ligand specific primers and run on agarose gels 

along with negative and internal controls. Bands detected under UV light have been 

evaluated according to the manufacturer’s instructions.  

2.4 Whole Exome Sequencing 

In order to validate the KIR and HLA/HLA ligand imputation accuracy 20 MM 

patients from Ankara University, whose KIR and HLA ligands were determined by 

targeted KIR genotyping, were subjected to WES assay. WES was performed at 

Mikrogen. The assay was conducted on the Twist Bioscience technology platform 

using Twist Human Core Exome Plus Kit. Library construction was performed by 

ligation of adapters to the fragmented DNA samples. In order to amplify the exonic 

regions, oligonucleotide probes provided by the manufacturer were hybridized and 

captured by magnetic beads. Amplified fragments were sequenced on the high-

throughput Illumina Novaseq platform. FASTQ and Variant Call Format (VCF) files 

were directly received from Mikrogen. VCF files were used for KIR imputation by 

KIR*IMP tool. FASTQ files were used to impute both KIR and HLA variants using 

T1K imputation tool. 

2.5 KIR and HLA Imputation 

The basis of choosing the optimal imputation algorithm depends on the quality of 

the sequencing data, the presence of short or long reads, the quality of the reads, and 

the assay type (WGS, WES, RNA-seq, high/low coverage SNP panels). In 

accordance with the purpose of this study, KIR/HLA imputation tools have been 

reviewed and further selected according to their reported performance on WGS or 

WES datasets.  

KIR*IMP is the most frequently used and cited tool for KIR imputation and T1K is 

the latest tool published capable of imputing both KIR and HLA in a single platform. 
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Although it is reported by the developers that KIR*IMP requires the output of high 

coverage SNP panels, such as Immunochip assays, within the scope of this study 

only the WES dataset was used to test the imputation accuracy. Although T1K fits 

better in terms of the sequencing format of the datasets included in this study, both 

methods were practiced on a small set of patients. 

2.5.1 KIR Imputation Using KIR*IMP Software 

KIR*IMP software (version 1.2.0) requires phased SNP data in file formats HAPS 

and SAMPLE. WES outputs received from Mikrogen were imported to Galaxy 

platform (https://usegalaxy.eu) for data preparation steps (Galaxy Community, 

2022). WES reads were mapped against reference genome (hg19/GRCh37) and 

variant calling was performed using FreeBayes after quality control steps. 

Annotating, deduplication, and SNP filtering steps were performed by BCFtools 

(Figure 2.2). All patients’ data included in a VCF file was downloaded and subjected 

to the phasing step using SHAPEIT (O’Connell et al., 2014). HAPS and SAMLE 

files were uploaded to KIR*IMP (https://imp.science.unimelb.edu.au/kir/)  and the 

results were recorded. 

 

Figure 2.1. Data preparation workflow constructed in Galaxy platform. 

https://imp.science.unimelb.edu.au/kir/
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2.5.2 KIR and HLA Imputation Using T1K Software 

T1K is an open-source tool for allele level imputation of KIR and HLA genes from 

WGS, WES or RNA-seq data. FASTQ files are accepted as input without requiring 

pre-processing of the raw sequencing reads. KIR and HLA genes of all MM patients 

included in this study were imputed using T1K (version v1.0.6-r206). 

2.5.2.1 KIR Imputation and Data Stratification 

Paired-end sequencing reads in FASTQ format were introduced using preset 

parameters for WES data. Interpretation of the results in terms of presence or absence 

of KIR alleles were performed according to the quality score calculated from 

abundance level as per the instructions given by the developers. Two different 

variants of KIR2DS4 gene (normal and truncated) were determined according to the 

primary alleles. KIR2DS4*001, *011, *014 and *015 alleles were considered as 

normal variants, while KIR2DS4*003, *004, *006, *007, *008, *009, *010, *012 

and *013 alleles were recorded as the truncated version. For further improvement of 

the imputation accuracy for KIR2DL5A/B genotypes, minimum alignment similarity 

(-s) and the effect of relative gene expression (--crossGeneRate) parameters have 

been adjusted to -s 0.05 and --crossGeneRate 0.08 (https://github.com/mourisl/T1K).  

2.5.2.2 HLA Imputation and Classification of HLA Ligands 

Similar to KIR imputation, paired-end read files were used without pre-processing 

and HLA imputation was performed using the preset parameters specifically 

provided for WES data (https://github.com/mourisl/T1K). Default parameters did 

not require any adjustment for HLA alleles. HLA ligands were calculated manually 

using the information of HLA-KIR pairs provided in the Allele Query Database 

(IPD-IMGT/HLA Database, 2024). 

https://github.com/mourisl/T1K
https://github.com/mourisl/T1K
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2.6 Validation of Imputation Results 

KIR imputation results from KIR*IMP and T1K were compared with the targeted 

genotyping results of 20 MM patients from Ankara University. Optimal parameters 

for T1K were adjusted to reach the highest accuracy rate. The same parameters were 

used on CoMMpass dataset. HLA ligands were calculated according to the imputed 

HLA alleles and compared with the targeted genotyping results of 20 patients. 

Comparison was performed at both patient level and KIR/HLA ligand level in order 

to eliminate the effect of genetic disparities among individuals and the effect of 

diverse polymorphic characteristics of KIR/HLA genes. 

2.7 Statistical Analysis 

Statistical analyses were performed by IBM SPSS Statistics (version 26; IBM 

Corporation, Armonk, NY).  Descriptive statistics of normally distributed data were 

given as mean (standard deviation), while the non-normally distributed data was 

expressed as median (min-max). Significance level of the difference between the 

mean or median values of two groups were analyzed by t-test or Mann Whitney test, 

respectively. Mean values among three or more groups were compared using 

ANOVA and median values were compared by Kruskal Wallis test. Post-hoc 

comparisons were performed by Tukey or Dunn’s test for the mean and median 

values, respectively. p < 0.05 was considered as statistically significant, except for 

the cases where Bonferroni correction was applied for multiple hypothesis testing.





 

 

27 

CHAPTER 3  

3 RESULTS 

This study is structured in three main stages: Data collection, imputation of KIR and 

HLA genes from WES data and validation of the imputation accuracy using targeted 

genotyping of KIR/HLA ligands, and statistical analyses. 

3.1 MM Patients and Healthy Control Datasets 

Two different groups of datasets were included in this study. One of the datasets 

containing the WES data from non-tumor sites of 707 newly diagnosed MM patients 

from CoMMpass study was pulled from the database of Genotypes and Phenotypes 

(dbGaP). Healthy control group consisting of the similar ethnic populations was 

collected from Allele Frequencies Net Database (n=1803), in which KIR and HLA 

ligands for each subject was provided as presence/absence of the genes. The second 

dataset of patients consisted of 218 MM patients recruited from Ankara University 

Hematology Department, all of which were genotyped for KIR and HLA ligands by 

targeted PCR. Twenty of those patients were also subjected to WES assay. The local 

control group of this dataset consisted of 424 healthy donors from Ankara University 

Unrelated Donor Registry. Their KIR/HLA ligand data was collected as 

presence/absence of the genes (Table 3.1). 

Table 3.1 Patient and healthy control datasets included in this study. 

Group Data Origin Assay Type Number of Participants 

Patients 
dbGaP 

(phs000748.v7.p4) 
Whole exome sequencing 707 

Healthy 
Subjects 

Allele Frequencies Net 
Database 

Targeted genotyping 1803 

Patients Ankara University 
Targeted genotyping 218 

Whole exome sequencing 20 

Healthy 
Subjects 

Ankara University Targeted genotyping 424 
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3.2 Imputation and Validation of KIR and HLA Ligands 

3.2.1 Imputation Using KIR*IMP 

Data pre-processing steps are required for imputing KIR genes by KIR*IMP. SNP 

coverage data obtained after the processing steps of 20 patients was uploaded to 

KIR*IMP (https://imp.science.unimelb.edu.au/kir/). Outputs were provided in 

separate file formats containing various information, including the imputation 

results, KIR alleles, SNP alleles, posterior probabilities and the estimated accuracy 

of the imputation results (Figure 3.1).  

 

Figure 3.1. KIR imputation output graphics from KIR*IMP.  

A) SNP allele frequencies of the reference panel (KIR*IMP use UK reference panel 

as default) and input dataset, which includes 20 MM patients from Ankara 

University. B) Average imputation accuracy estimated for each locus. C) Posterior 

https://imp.science.unimelb.edu.au/kir/


 

 

29 

probabilities of the reference panel and the input dataset of patients. D) Intersecting 

allele frequencies of the reference panel and the patient dataset. 

Validation of the imputation results was performed on 20 patients, who were 

subjected to both WES and targeted genotyping of KIR genes. Overall median 

accuracy of the imputed genes was found to be 86% (14%-100%). The lowest correct 

imputation rate was observed on the non-truncated form of 2DS4 gene. 2DL2 and 

2DS2 showed the second lowest accuracy rate. Additionally, KIR*IMP was unable 

to impute the distinct A and B subtypes of the 2DL5 gene. Therefore, the comparison 

was made using the combined 2DL5A/B genotype with a correct imputation rate of 

57%. Considering KIR*IMP is an imputation tool optimized for high-coverage SNP 

datasets, a low rate of imputation accuracy was expected, as the input data was 

derived from a WES assay. Therefore, no further analyses were performed using 

KIR*IMP, since all the datasets included in this study were constructed by WES. 

3.2.2 Imputation Using T1K 

T1K is an all-in-one tool for both KIR and HLA imputation and it can be run using 

the input files generated from WGS, WES, and RNA sequencing data. The local 

patient dataset was constructed using raw output files from WES assays performed 

on the patients from Ankara University. The collected data was used directly without 

any manipulation. To collect data from the CoMMpass dataset, SRA files of each 

patient filtered for WES assays were downloaded from dbGaP using SRA Toolkit 

and converted to FASTQ files, and finally compressed by pigz in order to save 

storage space. Paired-end read files from both datasets were introduced to T1K 

separately for KIR and HLA imputation.  

3.2.2.1 KIR imputation 

Each run for KIR imputation resulted in seven output files. Table 3.2 shows an 

example of the output table from a single patient. For each patient, *.genotype.csv 
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files were used for interpretation of absence or presence of the KIR genes according 

to the instructions of the developers of T1K. For each KIR gene, a quality score less 

than or equal to 0 was interpreted as absence of the allele, while any score greater 

than 0 (out of 60) was considered as presence of the allele.  

Table 3.2 Representative sample of a KIR imputation output from T1K. 

 

Presence or absence of each KIR gene was determined based on to the quality scores 

of the corresponding alleles (columns “quality_1” and “quality_2”). Alleles with a 

quality greater than or equal to one were accepted as a positive (presence of the 

allele), according to the developers’ instructions. 

In the first attempt on 20 patients, the mean (SD) quality scores of 2DL5A and 

2DL5B genes were found to be lower than the others [15 (17) and 19 (24), 

respectively]. Therefore, the parameters of the imputation algorithm were adjusted 

to achieve the highest quality score possible for each allele. Optimal results were 

obtained by setting the minimum alignment similarity (-s) cutoff to 0.05 and by 

adjusting the effect of relative gene expression (--crossGeneRate) as 0.08. As a 

result, the mean (SD) quality scores of 2DL5A and 2DL5B were increased to 31 (2) 

and 35 (21), respectively. The comparison of the imputed KIR genes of 20 MM 

patients from Ankara University with the targeted KIR genotyping results of the 

same patients achieved a 100% accuracy for each KIR gene of each patient. 

gene_name num_diff_alleles allele_1 abundance_1 quality_1 allele_2 abundance_2 quality_2 secondary_alleles

KIR2DL1 1 KIR2DL1*003 222.912.282     60 . 0 -1

KIR2DL2 1 KIR2DL2*001 210.258.543     45 . 0 -1

KIR2DL3 1 KIR2DL3*001 236.244.937     59 . 0 -1

KIR2DL4 1 KIR2DL4*011 280.839.934     60 . -                       -1

KIR2DL5A 1 KIR2DL5A*027 0.827856 0 . 0 -1

KIR2DL5B 2 KIR2DL5B*006 222.601.562     60 KIR2DL5B*008 70.189.960        38

KIR2DP1 1 KIR2DP1*002 182.397.865     36 . -                       -1

KIR2DS1 1 KIR2DS1*002 184.223.377     36 . 0 -1

KIR2DS2 1 KIR2DS2*001 195.603.385     36 . 0 -1

KIR2DS3 0 . 0 -1 . 0 -1

KIR2DS4 1 KIR2DS4*010 165.619.572     38 . 0 -1

KIR2DS5 1 KIR2DS5*002 194.464.150     46 . 0 -1

KIR3DL1 1 KIR3DL1*005 245.923.015     60 . 0 -1

KIR3DL2 2 KIR3DL2*001 218.926.759     60 KIR3DL2*007 230.558.916     60

KIR3DL3 2 KIR3DL3*009 263.125.634     60 KIR3DL3*003 247.219.046     60

KIR3DP1 1 KIR3DP1*003 173.470.559     60 . 0 -1

KIR3DS1 1 KIR3DS1*013 1.136.333          0 . 0 -1
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3.2.2.2 HLA imputation 

Similar to the KIR imputation results, T1K resulted in seven output files and 

*.genotype.csv was used to interpret the HLA genotyping results (Table 3.3). 

Imputation of HLA-A, -B and -C alleles resulted in high quality scores of the 

abundance level of the genes for each patient. Therefore, the algorithm settings did 

not require any adjustment. According to the information given by Allele Query 

Database, cognate HLA ligands of KIR genes were calculated using the imputed 

HLA types (IPD-IMGT/HLA Database, 2024). 

Table 3.3 Representative sample of an HLA imputation output from T1K. 

 

Presence or absence of HLA alleles were determined based on to the quality scores 

of the corresponding alleles (columns “quality_1” and “quality_2”). Alleles with a 

gene_name num_diff_alleles allele_1 abundance_1 quality_1 allele_2 abundance_2 quality_2 secondary_alleles

HLA-A 2 HLA-A*33:01:01 301.629.079 60 HLA-A*11:01:01 301.171.486 60

HLA-B 2 HLA-B*14:02:01 312.321.511 60 HLA-B*40:02:01 287.693.190 60

HLA-C 2 HLA-C*02:02:02 331.366.885 60 HLA-C*08:02:01 262.960.250 60

HLA-E 1 HLA-E*01:01:01 624.552.052 60 . 0 -1

HLA-F 1 HLA-F*01:01:02 621.014.089 60 . 0 -1

HLA-G 2 HLA-G*01:03:01 326.883.511 60 HLA-G*01:01:03 318.491.359 60

HLA-H 2 HLA-H*02:12 288.538.252 60 HLA-H*02:07:01 258.506.139 60

HLA-J 1 HLA-J*01:01:01 569.013.383 60 . 0 -1

HLA-K 2 HLA-K*01:03 87.387.618 39 HLA-K*01:01:01 182.158.170 60

HLA-L 2 HLA-L*01:01:01 266.463.432 60 HLA-L*01:02 169.855.897 60

HLA-N 1 HLA-N*01:01:01 216.858.239 60 . 0 -1

HLA-P 2 HLA-P*02:01:01 108.966.078 60 HLA-P*01:01:01,HLA-P*01:02 55.590.053 33

HLA-S 1 HLA-S*01:02:01 253.639.236 60 . 0 -1

HLA-T 1 HLA-T*03:01 208.921.335 60 . 0 -1

HLA-U 2 HLA-U*01:04 175.537.686 60 HLA-U*01:01:01 127.333.940 60

HLA-V 1 HLA-V*01:01:01 442.793.468 60 . 0 -1

HLA-W 2 HLA-W*03:01:01 137.117.194 60 HLA-W*01:01:01 45.545.283 26

HLA-Y 1 HLA-Y*02:01 271.681.464 60 . 0 -1

HLA-DRA 1 HLA-DRA*01:01:01 590.593.045 60 . 0 -1

HLA-DRB1 2 HLA-DRB1*14:01:01 235.843.095 60 HLA-DRB1*11:01:01 211.194.993 60

HLA-DRB3 2 HLA-DRB3*02:24 178.213.881 60 HLA-DRB3*02:02:01 255.821.667 60

HLA-DRB4 1 HLA-DRB4*01:03:01 11.293.195 2 . 0 -1

HLA-DRB5 1 HLA-DRB5*02:02:01 1.781.896 0 . 0 -1

HLA-DQA1 2 HLA-DQA1*01:04:01 260.037.811 60 HLA-DQA1*05:05:01 249.097.828 60

HLA-DQA2 2 HLA-DQA2*01:01:02 335.695.820 60 HLA-DQA2*01:01:01 309.308.795 60

HLA-DQB1 2 HLA-DQB1*05:03:01 221.793.491 60 HLA-DQB1*03:01:01 199.259.398 60

HLA-DQB2 2 HLA-DQB2*01:01:01 229.448.459 60 HLA-DQB2*01:02:01 180.886.898 60

HLA-DPA1 1 HLA-DPA1*01:03:01 583.460.944 60 . 0 -1

HLA-DPA2 1 HLA-DPA2*01:01:01 56.864.864 50 . 0 -1

HLA-DPB1 1 HLA-DPB1*04:01:01 583.935.243 60 . 0 -1

HLA-DPB2 1 HLA-DPB2*03:01:01 274.531.054 60 . 0 -1

HLA-DMA 2 HLA-DMA*01:01:01 315.151.159 60 HLA-DMA*01:01:02 283.653.184 60

HLA-DMB 1 HLA-DMB*01:01:01 585.155.347 60 . 0 -1

HLA-DOA 2 HLA-DOA*01:01:01 244.882.816 60 HLA-DOA*01:01:02 237.058.835 60

HLA-DOB 1 HLA-DOB*01:01:01 648.517.941 60 . 0 -1

HLA-HFE 2 HLA-HFE*001:01:02 230.636.655 60 HLA-HFE*001:01:01 186.220.180 60

MICA 2 MICA*027:01:01 275.602.059 60 MICA*011:01:01 266.585.740 60

MICB 2 MICB*005:03:01 311.642.818 60 MICB*013:01:01 208.357.185 60

TAP1 1 TAP1*01:01:01 556.061.390 60 . 0 -1

TAP2 2 TAP2*01:03:04 229.105.797 60 TAP2*02:01:02 253.165.314 60 TAP2*01:03:02;111.441878;60
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quality greater than or equal to one were accepted as a positive (presence of the 

allele), according to the developers’ instructions. 

In Table 3.4 the imputed HLA alleles and their corresponding HLA ligands are 

given. For each patient a complete match in HLA ligands was observed when the 

calculated HLA ligands of 20 patients were compared to the targeted genotyping 

results. Further validation was performed at 6-digit allele level on 10 patients by 

comparing the imputed HLA types with the laboratory results, which were generated 

by NGS for diagnostic purposes at Ankara University Hematology Laboratories. 

Table 3.4 HLA alleles and the corresponding HLA ligands. 

 

3.3 Association Between KIR/HLA Ligands and MM 

A total of 925 MM patients and 2227 healthy subjects were included in this study. 

The patient cohort included 218 cases from Ankara University Hematology 

Department and 707 cases from CoMMpass dataset. Healthy control group was 

consisted of 424 subjects from Ankara University Donor Registry and 1803 subjects 

from Allele Frequency Net Database. Among all MM patients, 40.8% were female 

Patient ID HLA-A1 HLA-A2 HLA-B1 HLA-B2 HLA-C1 HLA-C2 C2 C1 Bw4

126813_3221 24:02:01 24:02:01 08:01:01 48:01:01 08:01:01 07:02:01 0 1 1

MG107982_S38 03:01:01 26:01:01 38:01:01 18:01:01 12:03:01 12:03:01 0 1 1

MG107987_S39 03:02:01 02:01:01 35:03:01 18:01:01 07:01:01 04:01:01 1 1 0

MG107988_S40 02:01:01 02:11:01 58:01:01 52:01:01 03:02:02 12:02:02 0 1 1

MG108001_S42 32:01:01 32:01:01 35:01:01 56:01:01 01:02:01 04:01:01 1 1 1

MG112973_S25 26:01:01 29:01:01 38:01:01 41:02:01 17:03:01 12:03:01 1 1 1

MG112974_S24 29:02:01 30:01:01 45:01:01 13:02:01 06:02:01 06:02:01 1 0 0

V300114923_L02_64 11:01:01 02:01:01 40:02:01 51:01:01 02:02:02 04:01:01 1 0 1

V300114923_L03_65 33:01:01 11:01:01 14:02:01 40:02:01 02:02:02 08:02:01 1 1 0

V300114923_L03_66 32:01:01 24:02:01 50:01:01 51:01:01 14:02:01 06:02:01 1 1 1

V300114923_L03_67 03:01:01 24:02:01 07:02:01 51:01:01 07:02:01 14:02:01 0 1 1

V300114923_L03_68 32:01:01 02:01:01 50:01:01 51:01:01 06:02:01 04:01:01 1 0 1

V300114923_L03_69 32:01:01 24:02:01 50:01:01 51:01:01 14:02:01 06:02:01 1 1 1

V350080493_L02_91 02:01:01 26:01:01 08:01:01 35:215:02 04:01:01 05:01:01 1 0 0

V350080493_L02_92 02:01:01 24:02:01 51:01:01 35:57 04:01:01 07:02:01 1 1 1

V350080493_L04_125 68:02:01 02:01:01 46:01:01 15:73:01 01:02:01 03:03:01 0 1 0

V350080493_L04_126 68:02:01 02:01:01 13:02:01 15:73:01 03:03:01 06:02:01 1 1 0

V350160404_L02_90 11:01:01 30:04:01 35:01:01 35:01:01 04:01:01 16:02:01 1 0 0

V350160404_L02_91 11:01:01 68:01:01 35:03:01 35:01:01 04:01:01 04:01:01 1 0 0

mg107999 29:02:01 01:01:01 35:01:01 45:01:01 06:02:01 04:01:01 1 0 0
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and 59.2% were male, and among the healthy controls 52.9% were female and 47.1% 

were male. Median age of the patients at diagnosis was 61 (27-89) with a distribution 

of ISS I/II/III: 36.1%/31.8%/32.1%. Frequency distribution of KIR and HLA ligand 

genotypes between all MM patients and all healthy controls were evaluated using 

chi-square or 2-tailed Fisher’s exact test as appropriate. Bonferroni correction was 

applied to multiple testing of aKIR and iKIR genes, KIR genotypes (A/B, 

centromeric and telomeric), HLA ligands and KIR-HLA ligand pairs (Table 3.5, 

Table 3.6, Table 3.7, Table 3.8). 

Among iKIR genes, 2DL5AB and 2DL5A were found to be more frequent among 

the control group, however the significance level did not survive the Bonferroni 

correction (uncorrected P values: 0.032 and 0.019, respectively). Among aKIR, 

2DS1, 2DS3 and 3DS1 were more frequent among healthy subjects compared to MM 

patients. Only 2DS1 (41.4% vs 35.7%, OR: 0.786 [0.671-0.922], Pc=0.042) and 

3DS1 (40.9% and 34.5%, OR: 0.762 [0.649-0.894], Pc=0.012) remained significant 

after correcting for multiple testing. The mean number of aKIRs was slightly higher 

in the control group compared to MM patients (3.0 and 2.8, P=0.031), however there 

was no significant difference between the mean numbers of iKIRs (Table 3.5). 

In order to analyze the clustered KIR genotypes, classification was performed based 

on the gene motifs used for defining the A/B haplotypes, centromeric haplotypes and 

telomeric haplotypes as illustrated in Figure 1.3. AX genotype represents individuals 

carrying AA or AB genotypes, while BX represents the individuals with BB or AB 

genotypes. There was no significant association between A/B genotypes and 

predisposition to MM. Centromeric or telomeric motifs were classified as AA, B1B1, 

B2B2, B1B2, AB1 and AB2 according to the information in Figure 1.3. There was 

no individual with cB1B1 genotype within the entire dataset. Only 9 subjects were 

tB2B2, and all of them were belong to the healthy control group. Frequency 

distribution of ambiguous genotypes, which include KIR motifs that do not fit any 

classification of centromeric or telomeric haplotypes, was similar between MM 

patients and healthy subjects (3.3% and 5.3%, respectively). Among centromeric 

genotypes, cAB1 and cAB2 were found to be significant in opposite directions (OR: 
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0.828 [0.685-1.000], P=0.050 and OR: 1.262 [1.054-1.511], P=0.011; respectively); 

however, the significance level did not survive the Bonferroni correction. tAB2 was 

the only genotype that survived the correction for multiple testing and was found to 

be more frequent among healthy controls compared to MM patients (7.9% and 5.1%, 

OR: 0.628 [0.451-0.874], Pc=0.033) (Table 3.6). 

Table 3.5 KIR frequencies among control groups and MM patients. 

 

AF: Allele Frequencies Net Database, AU: Ankara University, MM: Multiple 

Myeloma, NA: Not applicable, ND: Not done, ns: non-significant. *Statistical 

analyses on differences in frequencies of KIR genes between all MM patients and all 

healthy subjects were performed using Pearson chi-square or two-tailed Fisher’s 

exact tests as appropriate. §Bonferroni correction was applied for multiple testing of 

inhibitory and activating KIR genes. ¥Number of aKIR and iKIR genes of MM 

patients and healthy subjects were compared using Mann-Whitney U test. P<0.05 

was accepted as statistically significant. 

 

AF Healthy 

Subjects

(n=1803)

AU Healthy 

Subjects

(n=424)

AU 

MM Patients

(n=218)

CoMMpass 

MM Patients

(n=707)

All Healthy 

Subjects

(n=2227)

All MM 

Patients

(n=925)

P 

value*

Pc 

value§

2DL1 1735 (96.2%) 408 (96.2%) 214 (98.2%) 683 (96.6%) 2143 (96.2%) 897 (97.0%) 0,304

2DL2 975 (54.1%) 264 (62.3%) 125 (57.3%) 404 (57.1%) 1239 (55.6%) 529 (57.2%) 0,423

2DL3 1603 (88.9%) 392 (92.5%) 212 (97.2%) 623 (88.1%) 1995 (89.6%) 835 (90.3%) 0,561

2DL4 1803 (100%) 424 (100%) 218 (100%) 707 (100%) 2227 (100%) 925 (100%) NA

2DL5AB 898 (49.8%) 262 (61.8%) 116 (53.2%) 327 (46.3%) 1160 (52.1%) 443 (47.9%) 0,032 ns

2DL5A 665 (36.9%) 209 (49.3%) 92 (42.2%) 230 (32.5%) 874 (39.2%) 322 (34.8%) 0,019 ns

2DL5B 509 (28.2%) 165 (38.9%) 64 (29.4%) 195 (27.6%) 674 (30.3%) 259 (28.0%) 0,205

3DL1 1714 (95.1%) 396 (93.4%) 198 (90.8%) 680 (96.2%) 2110 (94.7%) 878 (94.9%) 0,842

3DL2 1803 (100%) 424 (100%) 218 (100%) 707 (100%) 2227 (100%) 925 (100%) NA

3DL3 1803 (100%) 424 (100%) 218 (100%) 707 (100%) 2227 (100%) 925 (100%) NA

2DS1 709 (39.3%) 212 (50.0%) 98 (45.0%) 232 (32.8%) 921 (41.4%) 330 (35.7%) 0,003 0,042

2DS2 975 (54.1%) 264 (62.3%) 127 (58.3%) 393 (55.6%) 1239 (55.6%) 520 (56.2%) 0,765

2DS3 583 (32.3%) 175 (41.3%) 68 (31.2%) 211 (29.8%) 758 (34.0%) 279 (30.2%) 0,035 ns

2DS4 total 1715 (95.1%) 395 (93.2%) 199 (91.3%) 677 (95.8%) 2110 (94.7%) 876 (94.7%) 0,960

2DS5 537 (29.8%) 160 (37.7%) 80 (36.7%) 211 (29.8%) 697 (31.3%) 291 (31.5%) 0,929

3DS1 705 (39.1%) 205 (48.3%) 91 (41.7%) 228 (32.2%) 910 (40.9%) 319 (34.5%) 0,001 0,012

2DP1 1739 (96.5%) 409 (96.5%) 211 (96.8%) 682 (96.5%) 2148 (96.5%) 893 (96.5%) 0,903

3DP1 1803 (100%) 424 (100%) 218 (100%) 707 (100%) 2227 (100%) 925 (100%) NA

Number of aKIRs¥ 3 (0-6) 3 (1-6) 2 (1-6) 3 (0-6) 3 (0-6) 3 (1-6) 0,031 ND

Number of iKIRs¥ 6 (4-7) 6 (4-7) 6 (4-7) 6 (4-7) 6 (4-7) 6 (4-7) 0,785 ND

Number of aKIR/iKIR genes

Comparison of KIR Frequencies 

Among Healthy Subjects and 

MM Patient Datasets

Control Group Datasets MM Patient Datasets All Healthy Subjects vs All MM Patients

Inhibitory KIR Genes

Activating KIR Genes
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Table 3.6 KIR genotype frequencies among control groups and MM patients. 

 

AF: Allele Frequencies Net Database, AU: Ankara University, MM: Multiple 

Myeloma, NA: Not applicable, ND: Not done, ns: non-significant. *Statistical 

analyses on differences in frequencies of KIR genotypes between all MM patients 

and all healthy subjects were performed using Pearson chi-square or two-tailed 

Fisher’s exact tests as appropriate. §Bonferroni correction was applied for multiple 

testing of each cluster. P<0.05 was accepted as statistically significant. 

HLA-C1 and C2 ligands were evaluated according to their presence either in 

homozygous or in heterozygous genotype for each individual. C2C2 homozygous 

genotype was found to be more frequent in MM patients compared to control group 

(19.7% vs 16.4%, OR: 1.250 [1.026-1.522], P=0.027), however the significance was 

lost after applying correction for multiple testing of all ligand combinations. There 

was no significant association among other HLA-C ligands. Strikingly, Bw4 ligand 

was found to be significantly more frequent among MM patients (79.6% vs 65.7%, 

OR: 2.034 [1.695-2.440], Pc<0.001). Its frequency distribution showed an increasing 

trend towards MM patients. The trend was consistent either between the local 

AF Healthy 

Subjects

(n=1803)

AU Healthy 

Subjects

(n=424)

AU 

MM Patients

(n=218)

CoMMpass 

MM Patients

(n=707)

All Healthy 

Subjects

(n=2227)

All MM 

Patients

(n=925)

P 

value*

Pc 

value§

KIR AX 1508 (83.6%) 363 (85.6%) 187 (85.8%) 596 (84.3%) 1871 (84%) 783 (84.6%) 0,657

KIR BX 1276 (70.8%) 326 (76.9%) 168 (77.1%) 486 (68.7%) 1602 (71.9%) 654 (70.7%) 0,485

KIR AB 981 (54.4%) 265 (62.5%) 137 (62.8%) 375 (53%) 1246 (55.9%) 512 (55.4%) 0,758

cAA 806 (44.7%) 156 (36.8%) 78 (35.8%) 300 (42.4%) 962 (43.2%) 378 (40.9%) 0,228

cB1B1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) NA

cB2B2 54 (3%) 9 (2.1%) 1 (0.5%) 23 (3.3%) 63 (2.8%) 24 (2.6%) 0,715

cB1B2 126 (7%) 20 (4.7%) 1 (0.5%) 56 (7.9%) 146 (6.6%) 57 (6.2%) 0,682

cAB1 376 (20.9%) 138 (32.5%) 45 (20.6%) 139 (19.7%) 514 (23.1%) 184 (19.9%) 0,050 ns

cAB2 380 (21.1%) 89 (21%) 66 (30.3%) 167 (23.6%) 469 (21.1%) 233 (25.2%) 0,011 ns

Ambiguous 61 (3.4%) 12 (2.8%) 27 (12.4%) 22 (3.1%) 73 (3.3%) 49 (5.3%) ND

tAA 1016 (56.4%) 211 (49.8%) 106 (48.6%) 433 (61.2%) 1227 (55.1%) 539 (58.3%) 0,102

tB1B1 28 (1.6%) 9 (2.1%) 10 (4.6%) 10 (1.4%) 37 (1.7%) 20 (2.2%) 0,337

tB2B2 8 (0.4%) 1 (0.2%) 0 (0%) 0 (0%) 9 (0.4%) 0 (0%) 0,053

tB1B2 33 (1.8%) 18 (4.2%) 5 (2.3%) 17 (2.4%) 51 (2.3%) 22 (2.4%) 0,881

tAB1 400 (22.2%) 128 (30.2%) 54 (24.8%) 146 (20.7%) 528 (23.7%) 200 (21.6%) 0,205

tAB2 128 (7.1%) 47 (11.1%) 12 (5.5%) 35 (5%) 175 (7.9%) 47 (5.1%) 0,006 0,033

Ambiguous 190 (10.5%) 10 (2.4%) 31 (14.2%) 66 (9.3%) 200 (9%) 97 (10.5%) ND

KIR Genotypes (A/B)

KIR genotypes (Centromeric)

KIR genotypes (Telomeric)

Comparison of KIR Genotype 

Frequencies Among Healthy 

Subjects and MM Patient Datasets

Control Group Datasets MM Patient Datasets All Healthy Subjects vs All MM Patients
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patients and its local control group (77.5% vs 73.1%) or between the CoMMpass 

dataset and its healthy control group (80.2% vs 63.9%) (Table 3.7). 

Table 3.7 HLA ligand frequencies among control groups and MM patients. 

 

AF: Allele Frequencies Net Database, AU: Ankara University, MM: Multiple 

Myeloma, ns: non-significant. *Statistical analyses on differences in frequencies of 

HLA ligands between all MM patients and all healthy subjects were performed using 

Pearson chi-square or two-tailed Fisher’s exact tests as appropriate. §Bonferroni 

correction was applied for multiple testing of HLA ligands. P<0.05 was accepted as 

statistically significant. 

KIR genes are known for their binding capabilities with certain HLA ligands. In this 

study, KIR and HLA ligand pairs were constructed according to their known 

interactions given in the literature as shown in Figure 1.3. In addition to evaluating 

the matching pairs, individuals with KIR genes but without their cognate ligands 

were also assessed. 3DL1+Bw4+, an inhibitory KIR together with its HLA ligand, 

was found to be associated with a predisposing effect towards MM (73.2% vs 62.2%, 

1.660 [1.402-1.965], Pc<0.001). As expected from an opposite interaction, subjects 

carrying 3DL1, but lacking Bw4 ligand were significantly more frequent among 

healthy subjects (19.7% vs 32.6%, OR: 0.507 [0.422-0.610], Pc<0.001). An 

activating KIR gene 2DS1 pairing with its ligand C2 was found to have a potential 

protective role against MM (21.8% vs 27.3%, OR: 0.744 [0.620-0.892], Pc=0.011). 

However, there was no significant association with the 2DS1 positive and C2 ligand 

negative genotype. The frequency of an activating KIR in the absence of its ligand 

(3DS1+Bw4-) was found to be significantly higher in the healthy control group 

compared to MM patients (8% vs 14.8%, OR: 0.502 [0.385-0.654], Pc<0.001). 

AF Healthy 

Subjects

(n=1803)

AU Healthy 

Subjects

(n=424)

AU 

MM Patients

(n=218)

CoMMpass 

MM Patients

(n=707)

All Healthy 

Subjects

(n=2227)

All MM 

Patients

(n=925)

P 

value*

Pc 

value§

C1C1 658 (36.5%) 140 (33%) 69 (31.7%) 241 (34.1%) 798 (35.8%) 310 (33.5%) 0,214

C2C2 301 (16.7%) 64 (15.1%) 62 (28.4%) 120 (17%) 365 (16.4%) 182 (19.7%) 0,027 ns

C1C2 844 (46.8%) 220 (51.9%) 87 (39.9%) 346 (48.9%) 1064 (47.8%) 433 (46.8%) 0,621

Bw4 1153 (63.9%) 310 (73.1%) 169 (77.5%) 567 (80.2%) 1463 (65.7%) 736 (79.6%) <0.001 <0.001

HLA ligands

Comparison of HLA Ligand 

Frequencies Among Healthy 

Subjects and MM Patient Datasets

Control Group Datasets MM Patient Datasets All Healthy Subjects vs All MM Patients
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Regarding the pair of KIR haplotype motifs and their ligands, only the AA genotype 

with its ligands was included in the analysis, as the BB genotype displays numerous 

different motif combinations, unlike the AA genotype, which is defined by a single 

combination of specific KIR genes (2DL1+2DL3+2DP1+3DL1+2DS4+). However, 

there was no significant difference in frequencies between MM patients and healthy 

subjects (Table 3.8). 

Table 3.8 Frequencies of KIR genes with or without their cognate ligands among 

control groups and MM patients. 

 

AF: Allele Frequencies Net Database, AU: Ankara University, MM: Multiple 

Myeloma, ns: non-significant. *Statistical analyses on differences in frequencies of 

KIR/HLA genotypes between all MM patients and all healthy subjects were 

performed using Pearson chi-square or two-tailed Fisher’s exact tests as 

appropriate. §Bonferroni correction was applied for multiple testing of each group. 

P<0.05 was accepted as statistically significant. 

The age of MM onset is known to vary among different subsets of patients, and the 

exact mechanism remains unknown. Age of all patients at diagnosis is known for all 

datasets included in this study, and the study cohorts included only the newly 

AF Healthy 

Subjects

(n=1803)

AU Healthy 

Subjects

(n=424)

AU 

MM Patients

(n=218)

CoMMpass 

MM Patients

(n=707)

All Healthy 

Subjects

(n=2227)

All MM 

Patients

(n=925)

P 

value*

Pc 

value§

2DL1+C2+ 1102 (61.1%) 273 (64.4%) 146 (67%) 455 (64.4%) 1375 (61.7%) 601 (65%) 0,088

2DL2+C1+ 819 (45.4%) 219 (51.7%) 92 (42.2%) 344 (48.7%) 1038 (46.6%) 436 (47.1%) 0,788

2DL3+C1+ 1328 (73.7%) 337 (79.5%) 152 (69.7%) 513 (72.6%) 1665 (74.8%) 665 (71.9%) 0,094

3DL1+Bw4+ 1100 (61%) 285 (67.2%) 152 (69.7%) 525 (74.3%) 1385 (62.2%) 677 (73.2%) <0.001 <0.001

2DS1+C2+ 467 (25.9%) 141 (33.3%) 66 (30.3%) 136 (19.2%) 608 (27.3%) 202 (21.8%) 0,001 0,011

2DS2+C1+ 817 (45.3%) 219 (51.7%) 93 (42.7%) 336 (47.5%) 1036 (46.5%) 429 (46.4%) 0,942

2DS5+C2+ 356 (19.7%) 108 (25.5%) 54 (24.8%) 125 (17.7%) 464 (20.8%) 179 (19.4%) 0,347

3DS1+Bw4+ 430 (23.8%) 151 (35.6%) 70 (32.1%) 171 (24.2%) 581 (26.1%) 241 (26.1%) 0,984

2DL1+C2- 633 (35.1%) 135 (31.8%) 68 (31.2%) 228 (32.2%) 768 (34.5%) 296 (32%) 0,179

2DL2+C1- 156 (8.7%) 45 (10.6%) 33 (15.1%) 60 (8.5%) 201 (9%) 93 (10.1%) 0,366

2DL3+C1- 275 (15.3%) 55 (13%) 60 (27.5%) 110 (15.6%) 330 (14.8%) 170 (18.4%) 0,013 ns

3DL1+Bw4- 614 (34.1%) 111 (26.2%) 46 (21.1%) 136 (19.2%) 725 (32.6%) 182 (19.7%) <0.001 <0.001

2DS1+C2- 242 (13.4%) 71 (16.7%) 32 (14.7%) 96 (13.6%) 313 (14.1%) 128 (13.8%) 0,873

2DS2+C1- 158 (8.8%) 45 (10.6%) 34 (15.6%) 57 (8.1%) 203 (9.1%) 91 (9.8%) 0,525

2DS5+C2- 181 (10%) 52 (12.3%) 26 (11.9%) 86 (12.2%) 233 (10.5%) 112 (12.1%) 0,178

3DS1+Bw4- 275 (15.3%) 54 (12.7%) 21 (9.6%) 53 (7.5%) 329 (14.8%) 74 (8%) <0.001 <0.001

KIR genes and HLA ligand pairs (unmatching corresponding ligands)

Comparison of KIR/HLA Ligand 

Frequencies Among Healthy 

Subjects and MM Patient Datasets

Control Group Datasets MM Patient Datasets All Healthy Subjects vs All MM Patients

KIR genes and HLA ligand pairs (matching corresponding ligands)
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diagnosed MM patients. Median age at diagnosis of the patients from Ankara 

University and CoMMpass datasets were 56 (28-85) and 63 (27-89), respectively. 

Distribution in this study mirrors the worldwide MM patient statistics 61 (27-89) 

according to SEER Statistics (Cancer Stat Facts: Myeloma, 2024). To evaluate the 

possible effects of KIR and HLA ligands on age at diagnosis, only the genotypes 

found to be associated with MM occurrence (without considering Bonferroni 

corrections) were included in the analysis of age of onset associations (Table 3.9 and 

Table 3.10).  

Table 3.9 KIR genes significantly associated with MM occurrence and their effects 

on age of MM onset.  

 

MM: Multiple Myeloma, OR: Odds Ratio, NA: Not Applicable, ns: non-significant. 

*Statistical analyses on differences in frequencies of KIR/HLA genotypes between all 

MM patients and all healthy subjects were performed using Pearson chi-square or 

two-tailed Fisher’s exact tests as appropriate. §Bonferroni correction was applied 

for multiple testing of inhibitory and activating KIR genes. ǂAge at index of healthy 

subjects is provided only for Ankara University population. ɸSignificance of 

difference between the mean age at diagnosis of MM patients and KIR genotypes 

was analyzed using t test. P<0.05 was accepted as statistically significant. 

All Healthy 

Subjects

(n=2227)

All MM

Patients

(n=925)

OR (95% CI)
P 

value*

Pc 

value§

Age at 

Diagnosis

P 

valueɸ

Gender (male/female) 47.1%/52.9% 59.2/40.8%

Age at index (median [min-max]) 42 (18-83)ǂ 63 (27 - 96)

Age at Diagnosis (median [min-max]) NA 61 (27 - 89)

ISS I/II/III NA 36.1/31.8/32.1%

2DL5AB 1160 (52.1%) 443 (47.9%) 61 (27 - 89)

not 2DL5AB 1067 (47.9%) 482 (52.1%) 62 (29 - 88)

2DL5A 874 (39.2%) 322 (34.8%) 62 (28 - 89)

not 2DL5A 1353 (60.8%) 603 (65.2%) 61 (27 - 88)

2DS1 921 (41.4%) 330 (35.7%) 61 (28 - 89)

not 2DS1 1306 (58.6%) 595 (64.3%) 61 (27 - 88)

2DS3 758 (34.0%) 279 (30.2%) 61 (27 - 88)

not 2DS3 1469 (66.0%) 646 (69.8%) 62 (29 - 89)

3DS1 910 (40.9%) 319 (34.5%) 62 (28 - 89)

not 3DS1 1317 (59.1%) 606 (65.5%) 61 (27 - 88)
0.762 (0.649 - 0.894) <0.001 0,008 0,567

Activating KIR Genes

0.786 (0.671 - 0.922) 0,003 0,042 0,626

0.837 (0.709 - 0.988) 0,035 ns 0,156

0.845 (0.725 - 0.986) 0,032 ns 0,024

0.827 (0.705 - 0.970) 0,019 ns 0,591

Association of KIR/HLA Ligand 

Frequencies Between MM Patients 

and Healthy Subjects and Their 

Effects on Age of MM Onset

Healthy Subjects vs MM Patients Age at Diagnosis

Characteristics of MM Patients and Healthy Subjects

NA

Inhibitory KIR Genes
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Among the KIR and HLA ligand genotypes associated with MM occurrence, only 4 

were found to be significantly associated with age of MM onset. Three of which were 

found to be associated with a delay in age at diagnosis compared to patients lacking 

those genotypes: KIR 2DL5AB (62 [29-88] vs 61 [27-89]; P=0.024) (Table 3.9); 

HLA ligand C2C2 (62 [29-89] vs 59 [27-84]; P=0.047) and unmatching KIR-ligand 

pair 2DL3+ C1-genotype (62 [27-89] vs 59 s[28-84]; P=0.046). In contrary, 

genotype AA together with C1C1 ligands was found to be associated with an earlier 

age of MM onset (61 [27 – 89] vs 63 [39-87]; P=0.036) (Table 3.10). 

Table 3.10 KIR genes with or without their cognate ligands significantly associated 

with MM occurrence and their effects on age of MM onset.  

 

All Healthy 

Subjects

(n=2227)

All MM

Patients

(n=925)

OR (95% CI)
P 

value*

Pc 

value§

Age at 

Diagnosis

P 

valueɸ

C2C2 365 (16.4%) 182 (19.7%) 59 (27 - 84)

not C2C2 1862 (83.6%) 743 (80.3%) 62 (29 - 89)

Bw4 1463 (65.7%) 736 (79.6%) 62 (28 - 89)

not Bw4 764 (34.3%) 189 (20.4%) 61 (27 - 84)

3DL1+Bw4+ 1385 (62.2%) 677 (73.2%) 61 (28 - 89)

not 3DL1+Bw4+ 842 (37.8%) 248 (26.8%) 62 (27 - 84)

2DS1+C2+ 608 (27.3%) 202 (21.8%) 62 (28 - 86)

not 2DS1+C2+ 1619 (72.7%) 723 (78.2%) 61 (27 - 89)

2DL3+C1- 330 (14.8%) 170 (18.4%) 59 (28 - 84)

not 2DL3+C1- 1897 (85.2%) 755 (81.6%) 62 (27 - 89)

3DL1+Bw4- 725 (32.6%) 182 (19.7%) 61 (27 - 84)

not 3DL1+Bw4- 1502 (67.4%) 743 (80.3%) 61 (28 - 89)

3DS1+Bw4- 329 (14.8%) 74 (8.0%) 62 (29 - 84)

not 3DS1+Bw4- 1898 (85.2%) 851 (92.0%) 61 (27 - 89)

cAB1 514 (23.1%) 184 (19.9%) 62 (28 - 86)

not cAB1 1713 (76.9%) 741 (80.1%) 61 (27 - 89)

cAB2 469 (21.1%) 233 (25.2%) 61 (30 - 89)

not cAB2 1758 (78.9%) 692 (74.8%) 61 (27 - 88)

tAB2 175 (7.9%) 47 (5.1%) 64 (34 - 86)

not tAB2 2052 (92.1%) 878 (94.9%) 61 (27 - 89)

KIR AA and C1C1 225 (10.1%) 90 (9.7%) 63 (39 - 87)

not KIR AA and C1C1 2002 (89.9%) 835 (90.3%) 61 (27 - 89)

KIR AA and C2C2 113 (5.1%) 63 (6.8%) 59 (29 - 84)

not KIR AA and C2C2 2114 (94.9%) 862 (93.2%) 62 (27 - 89)

KIR AA and C1C2 287 (12.9%) 118 (12.8%) 61 (34 - 86)

not KIR AA and C1C2 1940 (87.1%) 807 (87.2%) 61 (27 - 89)
0.988 (0.786 - 1.243) 0,921 ns 0,982

0.959 (0.741 - 1.241) 0,750 ns 0,036

1.367 (0.995 - 1.880) 0,053 ns 0,196

KIR genotypes (Telomeric)

0.628 (0.451 - 0.874) 0,006 0,033 0,072

KIR Genotypes (A/B)

KIR genotypes (Centromeric)

0.828 (0.685 - 1.000) 0,050 ns 0,539

1.262 (1.054 - 1.511) 0,011 ns 0,697

0.507 (0.422 - 0.610) <0.001 <0.001 0,299

0.502 (0.385 - 0.654) <0.001 <0.001 0,812

0.744 (0.620 - 0.892) 0,001 0,011 0,673

1.294 (1.056 - 1.586) 0,013 ns 0,046

2.034 (1.695 - 2.440) <0.001 <0.001 0,278

KIR genes and HLA ligand pairs

1.660 (1.402 - 1.965) <0.001 <0.001 0,317

HLA ligands

1.250 (1.026 - 1.522) 0,027 ns 0,047

Association of KIR/HLA Ligand 

Frequencies Between MM Patients 

and Healthy Subjects and Their 

Effects on Age of MM Onset

Healthy Subjects vs MM Patients Age at Diagnosis



 

 

40 

MM: Multiple Myeloma, OR: Odds Ratio, ns: non-significant. *Statistical analyses 

on differences in frequencies of KIR/HLA genotypes between all MM patients and 

all healthy subjects were performed using Pearson chi-square or two-tailed Fisher’s 

exact tests as appropriate. §Bonferroni correction was applied for multiple testing of 

each cluster. ɸSignificance of difference between the mean age at diagnosis of MM 

patients and KIR genotypes was analyzed using t test. P<0.05 was accepted as 

statistically significant. 

It is known that African Americans (AFA) are more prone to MM, with an increased 

incidence rate compared to so-called Caucasians. CoMMpass dataset was grouped 

by race of MM patients, and included 449 Caucasians, 92 AFA, 11 Asians, 5 others 

and 150 unknowns. Our local population was also grouped in Caucasians, as 

populations from Turkey have been considered as Caucasians in similar association 

studies. In this study, analysis of KIR/HLA ligand distributions among ethnic 

populations was performed on 667 Caucasians and 92 AFA, and only the genotypes 

found to be associated with MM occurrence were included in the analyses. The 

median age at diagnosis was 62 (27-89) for Caucasians and 62 (32-87) for AFA, with 

a distribution of ISS I/II/III 35.6%/28.8%/35.6% and 26.1%/42.0%/31.8%, 

respectively. Gender distribution was also homogeneous across the patient datasets 

(male/female: 59.8/40.2% and 58.7/41.3%, respectively). A plausible association 

was found between KIR/HLA ligand genotypes and the predisposition of the AFA 

population to MM. Interestingly, all of the KIR and HLA ligand genotypes 

associated with a protective role against MM occurrence were found to have a lower 

frequency among AFA compared to Caucasians. Furthermore, all genotypes which 

were found to be associated with predisposition to MM, were found to be more 

prevalent among the AFA population (Table 3.11). Statistical significance was found 

in the frequency distribution between these populations for both protective 

genotypes (2DL5AB, 2DL5A, 2DS1, 3DS1 and 3DS1+Bw4) and genotypes 

associated with a risk of MM occurrence (Bw4 and 3DL1+Bw4+) (Table 3.11). 
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Table 3.11 Comparison of KIR/HLA ligand genotypes between Caucasian and 

African American patients. 

 

MM: Multiple Myeloma, OR: Odds Ratio, NA: Not Applicable, ns: non-significant. 

*Statistical analyses on differences in frequencies of KIR/HLA genotypes were 

performed using Pearson chi-square or two-tailed Fisher’s exact tests as 

appropriate. §Bonferroni correction was applied for multiple testing of inhibitory 

and activating KIR genes. P<0.05 was accepted as statistically significant. 

Finally, to evaluate the association between gender and KIR/HLA ligands, females 

(n=377) and males (n=548) were analyzed as independent variables, and tested for 

any difference in frequencies across the genotypes which were associated with MM 

occurrence. There was no statistically significant difference among the genotypes in 

terms of gender (Table 3.12). 

 

 

 

 

 

 

OR (95% CI)
P 

value*

Pc 

value§

Caucasian

(n=667)

African American

(n=92)

P 

value*

Gender (male/female) 59.2/40.8% 59.8/40.2% 58.7/41.3% 0.837

Age at Diagnosis (median [min-max]) 61 (27 - 89) 65 (27 - 89) 62 (32 - 87) 0.076

2DL5AB 0.845 (0.725 - 0.986) 0.032 ns 443 (47.9%) 328 (49,2%) 32 (34,8%) 0.010

2DL5A 0.827 (0.705 - 0.970) 0.019 ns 322 (34.8%) 253 (37,9%) 13 (14,1%) <0.001

2DS1 0.786 (0.671 - 0.922) 0.003 0.042 330 (35.7%) 255 (38,2%) 18 (19,6%) <0.001

2DS3 0.837 (0.709 - 0.988) 0.035 ns 279 (30.2%) 196 (29,4%) 27 (29,3%) 0.994

3DS1 0.762 (0.649 - 0.894) <0.001 0.008 319 (34.5%) 252 (37,8%) 12 (13%) <0.001

2DS1+C2+ 0.744 (0.620 - 0.892) 0.001 0.011 202 (21.8%) 153 (22,9%) 15 (16,3%) 0.151

3DL1+Bw4- 0.507 (0.422 - 0.610) <0.001 <0.001 182 (19.7%) 145 (21,7%) 12 (13%) 0.054

3DS1+Bw4- 0.502 (0.385 - 0.654) <0.001 <0.001 74 (8%) 66 (9,9%) 1 (1,1%) 0.005

cAB1 0.828 (0.685 - 1.000) 0.050 ns 184 (19.9%) 132 (19,8%) 14 (15,2%) 0.297

tAB2 0.628 (0.451 - 0.874) 0.006 0.033 47 (5.1%) 36 (5,4%) 1 (1,1%) 0.072

C2C2 1.250 (1.026 - 1.522) 0.027 ns 182 (19.7%) 135 (20,2%) 19 (20,7%) 0.927

Bw4 2.034 (1.695 - 2.440) <0.001 <0.001 736 (79.6%) 517 (77,5%) 80 (87%) 0.038

3DL1+Bw4+ 1.660 (1.402 - 1.965) <0.001 <0.001 677 (73.2%) 466 (69,9%) 80 (87%) 0.001

2DL3+C1- 1.294 (1.056 - 1.586) 0.013 ns 170 (18.4%) 125 (18,7%) 18 (19,6%) 0.850

cAB2 1.262 (1.054 - 1.511) 0.011 ns 233 (25.2%) 172 (25,8%) 18 (19,6%) 0.197

Among All MM Patients

Characteristics of MM Patients and Healthy Subjects

KIR/HLA ligand genotypes associated with protection against MM

KIR/HLA ligand genotypes associated with predisposition to MM

Healthy Subjects vs MM Patients All MM

Patients

(n=925)

Comparison of Significantly Associated 

Genotypes Between Caucasian and 

African-American Patients

NA
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Table 3.12 Comparison of KIR/HLA ligand genotypes between female and male 

patients. 

 

MM: Multiple Myeloma, OR: Odds Ratio, ns: non-significant. *Statistical analyses 

on differences in frequencies of KIR/HLA genotypes were performed using Pearson 

chi-square or two-tailed Fisher’s exact tests as appropriate. §Bonferroni correction 

was applied for multiple testing of inhibitory and activating KIR genes. P<0.05 was 

accepted as statistically significant. 

OR (95% CI)
P 

value*

Pc 

value§

Female

(n=377)

Male

(n=548)

P 

value*

Age at Diagnosis (median [min-max]) 61 (27 - 89) 62 (27 - 89) 62 (32 - 87) 0.790

2DL5AB 0.845 (0.725 - 0.986) 0.032 ns 443 (47.9%) 175 (46.4%) 268 (48.9%) ns

2DL5A 0.827 (0.705 - 0.970) 0.019 ns 322 (34.8%) 130 (34.5%) 192 (35%) ns

2DS1 0.786 (0.671 - 0.922) 0.003 0.042 330 (35.7%) 133 (35.3%) 197 (35.9%) ns

2DS3 0.837 (0.709 - 0.988) 0.035 ns 279 (30.2%) 110 (29.2%) 169 (30.8%) ns

3DS1 0.762 (0.649 - 0.894) <0.001 0.008 319 (34.5%) 128 (34%) 191 (34.9%) ns

2DS1+C2+ 0.744 (0.620 - 0.892) 0.001 0.011 202 (21.8%) 84 (22.3%) 118 (21.5%) ns

3DL1+Bw4- 0.507 (0.422 - 0.610) <0.001 <0.001 182 (19.7%) 71 (18.8%) 111 (20.3%) ns

3DS1+Bw4- 0.502 (0.385 - 0.654) <0.001 <0.001 74 (8%) 27 (7.2%) 47 (8.6%) ns

cAB1 0.828 (0.685 - 1.000) 0.050 ns 184 (19.9%) 73 (19.4%) 111 (20.3%) ns

tAB2 0.628 (0.451 - 0.874) 0.006 0.033 47 (5.1%) 23 (6.1%) 24 (4.4%) ns

C2C2 1.250 (1.026 - 1.522) 0.027 ns 182 (19.7%) 72 (19.1%) 110 (20.1%) ns

Bw4 2.034 (1.695 - 2.440) <0.001 <0.001 736 (79.6%) 302 (80.1%) 434 (79.2%) ns

3DL1+Bw4+ 1.660 (1.402 - 1.965) <0.001 <0.001 677 (73.2%) 275 (72.9%) 402 (73.4%) ns

2DL3+C1- 1.294 (1.056 - 1.586) 0.013 ns 170 (18.4%) 67 (17.8%) 103 (18.8%) ns

cAB2 1.262 (1.054 - 1.511) 0.011 ns 233 (25.2%) 100 (26.5%) 133 (24.3%) ns

KIR/HLA ligand genotypes associated with predisposition to MM

Comparison of Significantly 

Associated Genotypes Between 

Female and Male Patients

Healthy Subjects vs MM Patients All MM

Patients

(n=925)

Among All MM Patients

Characteristics of MM Patients and Healthy Subjects

KIR/HLA ligand genotypes associated with protective against MM

NA
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CHAPTER 4  

4 DISCUSSION AND CONCLUSION 

4.1 Discussion 

Multiple myeloma is the second most prevalent hematologic malignancy and 

treatment options are still limited due to several factors leading to refractory relapses. 

Individualized immunotherapeutic approaches have become prominent due to 

several genetic factors influencing the disease progression differently for each 

patient (Pawlyn & Davies, 2019; Skerget et al., 2021). KIR variants and their 

corresponding HLA ligands have been extensively studied in almost all cancers in 

terms of the interactions between NK cells and tumor cells. Effect of KIR genes on 

MM occurrence and transplantation success has been studied by several research 

groups (Beelen et al., 2024; Beksaç & Dalva, 2012; Jennifer Zhang, 2022; Kröger et 

al., 2011; Sahin et al., 2018). However, frequential disparities among different ethnic 

populations and the high number of combinations of polymorphic haplotypes result 

in conflicting results among studies (Augusto, 2016; Gao et al., 2022; Myers & 

Miller, 2021). High cost of KIR and HLA ligand genotyping by conventional 

methods and difficulties in reaching a large number of patients in limited local cohort 

studies result in relatively small-scaled and statistically under-powered results in 

KIR/HLA–disease association studies. Out of 14 KIR genes, 8 are known for their 

interactions with HLA ligands. Besides, certain combinations of the genes have been 

defined as haplotypes, and the frequencies of these gene motifs vary among 

worldwide populations (Liu et al., 2021). These high number of combinations 

involving KIRs, haplotypes and their presence with or without the cognate HLA 

ligands eventually result in a very small number of patients per genotype.  

Over the years there has been an extensive accumulation of the whole genome/exome 

sequencing data, which were primarily used for genome-wide association studies. 
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These large datasets include valuable information about HLA or KIR genes, which 

were not the focus of the original studies. A few strategies have been developed 

within the last decade for imputation of KIR and HLA genes from genomic or 

transcriptomic sequencing data. HLA*IMP and KIR*IMP are among the most 

frequently used imputation tools to this end (Dilthey et al., 2013; Vukcevic et al., 

2015). These tools were mainly developed for datasets enriched in SNP panels, and 

a high coverage rate within the genomic region where the KIR and HLA genes are 

located is required (J. Chen et al., 2021). As high-throughput NGS data accumulated 

in genomic studies, imputation tools that can use data directly from WGS/WES 

assays have been developed. Recently, a tool capable of imputing both KIR and HLA 

alleles from WGS, WES or RNA-seq data was introduced (Song et al., 2023). 

In this study, KIR genes with or without their corresponding HLA ligands were 

analyzed using a large cohort of MM patients and healthy control subjects. A local 

cohort of MM patients from Ankara University Hematology Department was 

included in the study. Additionally, KIR/HLA genes were imputed from WES data 

of patients from CoMMpass study, which is one of the largest MM datasets. In 

addition to a worldwide-level analysis of KIR/HLA genotypes among MM patients, 

population-level distribution of these polymorphic genes was included in the 

analysis and the effect of immunomodulatory KIR genes on age of disease onset has 

been investigated. The aim of this study is to provide clarifying evidence on the 

relationship between KIR/HLA ligands and MM by integrating the methods for 

imputation of KIR and HLA genes from genomic studies and finally to resolve the 

conflicting results in the literature. Additionally, this study aims to investigate 

KIR/HLA-MM interactions on a population-level basis and to discuss the role of 

KIR-associated immune checkpoints on susceptibility to MM. 

Despite the availability of HLA and KIR imputation tools for a considerable amount 

of time, only a few studies have used these tools to investigate the effects of KIR and 

HLA ligands across different types of cancer. While most of these studies focus on 

autoimmune diseases and viral infections, a few of them have integrated imputation 

methods to investigate cancer predisposition or transplantation outcomes (Ahn et al., 
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2021; Diaz-Peña et al., 2020; Matzaraki et al., 2017). GWAS studies hold great 

potential for post-GWAS analyses, and many researchers focus on HLA types 

instead of NK-cell specific KIR genotypes. Moreover, imputing KIR genes has been 

a challenge because of their highly polymorphic character. T1K is the most recent 

tool with promising accuracy rates and has been implemented in a few immuno-

oncology studies (Bonfiglio et al., 2024; Li et al., 2024; Song et al., 2023). However, 

to the best of our knowledge, this is the first study to use the KIR and HLA 

imputation method in a cohort of MM patients. 

The role of KIR and HLA ligands in susceptibility to MM has been reported in a few 

studies. In one of the earliest studies in this regard, 34 MM patients were compared 

to 120 healthy controls in terms of KIR genotypes within the Lebanese population 

(Hoteit et al., 2014). However, HLA ligands were not included in their study. They 

reported an association of 2DS4 and 2DS5 with susceptibility to MM (52.9% vs 

28.3%, P=0.007). These genes were reported to be present in only 11 and 18 patients, 

respectively. Thus, the inadequate number of patients per genotype lowers 

confidence in the statistical power. In our study neither 2DS4 nor 2DS5 were 

significantly differ in frequency between the MM patients and healthy controls 

(31.3% vs 31.5%, respectively; P=0.929). In fact, the frequency distribution of these 

genes was similar within the local cohort as well as in the CoMMpass dataset when 

compared to their corresponding healthy control subsets (Table 3.5). In addition to 

the low number of participants in the study by Hoteit et al., the reported significance 

level would not have survived an appropriate correction for multiple testing. 

Therefore, their study should not be considered comparable to our results. 

In another study published in 2015, KIR/HLA ligands were associated with both 

susceptibility to MM and PFS among MM patients (Martínez-Sánchez et al., 2015). 

They showed an association of 2DL1, 2DL3, 3DL1 and 2DS4 genes as well as the 

2DL1+2DL2+2DL3+ genotype with a decreased risk of MM occurrence. They also 

reported a significant association between the 2DL1-2DL2+2DL3- genotype and 

susceptibility to MM. In our study, neither of the individual KIR genes given in this 

report were found to be differ between MM patients and healthy controls. Instead of 
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analyzing inhibitory or activating receptors in random clusters, we preferred to 

perform a haplotype-level analysis. Nevertheless, there was no evidence to show a 

difference in frequency distribution of KIR2D combinations. To see if we could 

replicate their results, we analyzed the genotypes 2DL1+2DL2+2DL3+ and 2DL1-

2DL2+2DL3- within the “Caucasian” population in our dataset. However, there was 

no significant difference between the MM patients and healthy control subjects 

(44.9% vs 47.1%; P=0.323 and 3.2% vs 2.8%; P=0.658, respectively). There were 

7/53 patients and 8/286 healthy controls with 2DL1-2DL2+2DL3- within their study. 

In return, there were 19/668 patients and 71/2227 healthy controls with the same 

genotype in our dataset. Instead of randomly analyzing KIR2DL combinations, 

haplotype-level assessment would cover a wider range of populations. 

A comprehensive analysis was performed on 182 MM patients by Gabriel et al. in 

2010. They associated shorter PFS with the 3DS1+3DL1+ genotype along with the 

absence of their cognate ligand Bw4, although they did not analyze any effect of 

KIR/HLA ligand on MM susceptibility (Gabriel et al., 2010). Despite not being 

exactly comparable, their findings were in the opposite direction from our results, 

which suggest that both 3DL1+Bw4- and 3DS1+Bw4- genotypes were associated 

with a significantly reduced risk of susceptibility to MM (OR: 0.507 [0.422-0.610]; 

P<0.001 and 0.502 [0.385-0.654]; P<0.001, respectively). These results may seem 

conflicting due to the different immune-modulatory effects of KIR-ligand 

interactions on susceptibility to MM and PFS of patients after autologous stem cell 

transplantation. However, unlike KIR 2D receptors, alleles of 3DL1 and 3DS1 genes 

are encoded within the same locus. 3DL1 is an inhibitory receptor and it exhibits a 

stronger interaction with its corresponding ligand Bw4 compared to the activating 

receptor 3DS1. Upon binding with Bw4, 3DL1 transmits signals through the 

immunoreceptor tyrosine-based inhibitory motifs (ITIMs) on its cytoplasmic tail. 

These signals lead to dephosphorylation of the key molecules in the activation 

pathways of NK cells, resulting in a reduced cytotoxic response against target cells. 

3DS1, on the other hand, is a receptor with short cytoplasmic tail, which does not 

contain ITIMs, similar to any other activating DS receptor, but interacts with 
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immunoreceptor tyrosine-based activation motifs (ITAMs). This interaction requires 

an adaptor protein, namely DAP12. Although it is known that 3DS1 also interacts 

with Bw4, this type of indirect interaction may result in a weaker association 

compared to 3DL1 (O’Connor & McVicar, 2013). The directional imbalance 

between the ligand interactions of 3DL1 and 3DS1 may explain the conflicting 

results from Gabriel et al. and our study. In our study, the 3DL1+Bw4+ genotype 

was associated with susceptibility to MM. This can be explained by NK cells 

remaining inactive due to the strong inhibitory effects of 3DL1 in the presence of its 

ligand. In contrast, the frequency of 3DL1+Bw4- genotype was higher in healthy 

controls. This association with a reduced risk of MM occurrence may be due to the 

activation of NK cells due to lack of inhibition in the absence of the ligand. 

3DS1+Bw4- genotype was also significantly associated with reduced susceptibility 

to MM. Since the binding affinity of Bw4 is stronger with the inhibitory 3DL1 

receptor, the absence of Bw4 in the presence of 3DS1 may contribute to enhancement 

in immune surveillance without being obstructed by the inhibitory effects of 3DL1. 

Gabriel et al. also reported that 3DS1+3DL1+Bw4- genotype was associated with 

shorter PFS compared to the patients with 3DS1+3DL1+Bw4+ genotype (Gabriel et 

al., 2010). This may be explained by overactivation of the immune response due to 

insufficient inhibition from the lack of interaction between the 3DL1 receptor and its 

ligand in case of 3DS1+3DL1+Bw4- genotype. Conversely, the balance of inhibitory 

and activating signals in patients with 3DS1+3DL1+Bw4+ genotype may lead to 

improved PFS. Comparison of these findings once again highlights the importance 

of the balance and complexity in the interplay between inhibitory and activating 

signals mediated by KIR and HLA ligand interactions. It also provides evidence for 

possible associations of KIRs with either susceptibility to MM or the progression of 

the disease course. 

In another KIR/HLA ligand-PFS association study, 3DL2 and its corresponding 

ligand HLA-A3/11 was reported to be associated with improved survival in MM 

patients, while 2DL1 receptor along with C2C2 genotype was significantly 

associated with a reduced PFS (Sun et al., 2021). In our study, 3DL2 was present in 
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all cases including MM patients and healthy controls, and this was an expected result 

as it is known to be a framework gene. Within our patient cohort, although not 

significant, allele-level assessment of 2DS1+C2+ genotype was slightly more 

frequent among MM patients compared to healthy controls (65% vs 61.7%, 

P=0.088). Replicating the exact genotype analyzed by Sun et al., our study found 

that 2DS1+C2C2+ genotype was more frequent among MM patients compared to 

healthy controls (18.9% vs 15.8%, P=0.033). However, the significance level would 

not survive the correction for multiple testing. As previously discussed regarding the 

results from Gabriel et al., KIR and HLA ligands may act differently as risk factors 

for susceptibility to MM compared to their role as prognostic factors. 

The most recent KIR-MM association study was conducted on a cohort from 

Netherlands including 172 MM patients and 195 healthy controls (Beelen et al., 

2024). They have reported no differences in frequency of individual KIR genes or 

HLA ligands between MM patients and healthy controls. Among HLA ligands and 

KIR-ligand pairs, C1-C2+Bw4+ and 3DL1+Bw4+ genotypes were found to be 

associated with MM occurrence, although the reported significance level was 

borderline (OR [95% CI]: 1.996 [0.992–4.014], P=0.049 and OR [95% CI]: 1.557 

[0.999–2.427], P=0.050; respectively]. Our study did not include the combinations 

of C1, C2 and Bw4 ligands, namely C1-C2+Bw4+ genotype in their analyses; 

however, our findings confirm their reported association between 3DL1+Bw4+ 

genotype and MM occurrence with a high level of statistical significance (OR: 1.660 

[1.402-1.965], Pc<0.001). 

According to the results from the preliminary study conducted by using the local 

cohort only (204 MM patients and 404 healthy controls), among the individual KIR 

genes, 2DL3 was found to be more frequent among MM patients, while 2DL5B and 

2DS3 were less frequent compared to healthy controls (M. Beksac et al., 2023). 

Analysis of HLA ligands alone revealed a significant association between C2C2 and 

susceptibility to MM (OR: 2.128 [1.417-3.196], P<0.001), and a protective effect of 

C1C2 against MM (0.623 [0.444-0.874], P=0.006). Moreover, AA genotype in the 

presence of homozygous C2 ligands were more frequent among MM patients (OR: 
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2.509 [1.171-5.378], P=0.015). Frequency distribution of centromeric and telomeric 

genotypes cAB1, cAB2, cB1B2 and tAB2 was found to be different between the 

patients and healthy controls (M. Beksac et al., 2023). In this study, the total number 

of patients and healthy controls was increased to 925 and 2227, respectively. Among 

the individual KIR genes, association of 2DS3 with MM occurrence was common 

with the previous findings. However, it did not survive the Bonferroni correction in 

this study. Our extended sample size revealed additional findings, with 2DS1 and 

3DS1 being significantly more frequent among the control group. Although the 

frequency distribution of C2C2 ligand was consistent between the studies and it was 

more frequent among MM patients, the significance level was not maintained after 

correction for multiple testing. In this study, Bw4 was the most prominent finding 

associated with high risk of MM occurrence (2.034 [1.695-2.440], P<0.001), 

whereas it was not observed in the previous report. Among the A/B and the 

telomeric/centromeric KIR genotypes; cAB1, cAB2 and tAB1 were common with 

the previous study, but only showed a borderline level of significance. Previous 

results also suggested that KIR-ligand genotypes have an effect on age of MM onset. 

Among the local cohort from Turkey, AA genotype in the presence of C1C1 ligands 

was found to be associated with a delay in age of MM onset, while genotype AA 

with C2C2 was associated with earlier onset of MM (M. Beksac et al., 2023). 

Delaying effect of genotype AA with C1C1 genotype was also confirmed in this 

study (median age of onset: 63 [39-87] vs 61 [27-89], P=0.036). Although the 

frequency distribution of genotype AA with C2C2 was not statistically significant, 

C2C2 ligands alone were found to be associated with an earlier onset of MM, 

consistent with the previous findings (59 [27-84] vs 62 [29-89], P=0.047). Although 

the significance levels were borderline, an association between KIR/HLA ligands 

and age of MM onset was still observed in our extended patient cohort. 

One of the most striking findings of this study appeared when the KIR and HLA 

ligand genotypes, which were significantly associated with MM occurrence, were 

compared between Caucasian and AFA patients. It is known that MM occurs in 2-3 

times higher incidence rates in the AFA/Black population compared to 
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Caucasian/White populations (Cancer Stat Facts: Myeloma, 2024; Röllig et al., 

2015). In our study, all genotypes significantly associated with a high-risk of MM 

occurrence were also found to be significantly more frequent among the AFA 

population. Additionally, all genotypes significantly associated with a reduced risk 

of MM predisposition were less frequent in the AFA population. This trend was 

observed among all genotypes, but only certain genotypes were statistically 

significant (protective genotypes: 2DL5AB, 2DL5A, 2DS1, 3DS1 and 3DS1+Bw4-

; high risk genotypes: Bw4 and 3DL1+Bw4+). The frequency distribution of these 

genotypes is in line with the worldwide differences in MM incidence rates between 

AFA and other populations. As a widely recognized fact, Bw4 is more prevalent in 

AFA compared to other populations in worldwide studies, and our results might 

contribute to explaining the high rates of MM incidence among AFA (Nemat-

Gorgani et al., 2019). Moreover, a study from 2016 has reported a strong association 

between 3DL1+Bw4+ genotype and Multiple Sclerosis (MS). MS is more common 

in European Americans compared to African Americans (Hollenbach et al., 2016). 

In MM patients, we found an opposite effect of the 3DL1+Bw4+ genotype on 

susceptibility to MM. The inverse relationship between the prevalence rates of MM 

and MS among different populations might support the true effect of 3DL1 and Bw4 

on both MM and MS, but in the opposite directions. 

African Americans are also known to experience MM onset at earlier ages (Cancer 

Stat Facts: Myeloma, 2024). Our findings regarding the age at diagnosis of the 

populations in our study were consistent with the findings from the original 

CoMMpass study (Manojlovic et al., 2017). Although not statistically significant, 

the median age at diagnosis was higher in Caucasians compared to AFA (65 [27-89] 

and 62 [32-87], P=0.076). Statistical insignificance may be due to the heterogeneous 

distribution of the number of patients among ethnic populations. Although the 

CoMMpass study provides one of the largest MM datasets, population-level 

inequalities in accessing healthcare services, especially for AFA, remains to be a 

problem in constructing a homogeneous patient cohort. Increasing the number of 

African American participants may contribute to achieving statistical significance in 
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our findings, which are already consistent with the worldwide statistics and 

previously reported data. 

Gender is another universal factor influencing the incidence rates of MM. In this 

study, we have finally analyzed the frequency distribution of significant genotypes 

between male and female patients in order to eliminate any misleading effect 

originating from gender. There was no significant difference between males and 

females in the frequencies of the significant genotypes, suggesting that our patient 

cohort had a homogeneous distribution, allowing for a reliable association. 

4.2 Conclusion 

• Most of the findings from earlier studies lack statistical power and generate 

inconsistency and conflicting results among each other due to the limited 

number of participants included in their studies and the high-level diversity 

of KIR/HLA ligands. This study expanded the sample size using KIR/HLA 

imputation from genomic datasets in order to maintain the statistical 

confidence and can be used as a reference model for defining the effects 

KIR/HLA ligand on MM.  

• With the inclusion of the largest dataset of MM patients and healthy controls 

in the literature, most of the risk-associated genes reported in earlier studies 

(2DL1-2DL2-2DL3, 2DS4 and 2DS5) were found to be non-significant. 

3DL1 and group-C HLA ligands along with the AA genotype were confirmed 

to be significantly associated with MM occurrence and age of disease onset, 

respectively. 

• This study uncovered additional KIR and HLA ligands significantly 

contributing to susceptibility to MM. 3DS1 receptor was found to be 

significantly associated with MM occurrence, possibly through the 

bidirectional interaction of 3DL1 and 3DS1 with their cognate ligand Bw4, 

which was found to exhibit the most significant association among all KIR 

genes and HLA ligands.  
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• One of the most striking results from this study is the association of 

KIR/HLA ligands with the increased prevalence of MM in African 

Americans. 3DL1 and/or Bw4 might be associated with higher incidence 

rates of MM among African Americans. 

• Imputation accuracy of KIR and HLA alleles from WES data using T1K was 

validated in this study. However, further validation is required on other 

datasets constructed using different reference panels. 

• This study highlights the importance of the evolutionary role of selection 

pressure on KIR/HLA genotypes and provides a universal level association 

model for predisposition to MM. 

• A major limitation of this study is that it did not include ethnic populations 

other than Europeans and African Americans, which can be overcome by 

imputing KIR/HLA genotypes from other sources of MM datasets. 

• Another limitation of this study is that it did not include expression-level 

analysis of KIR/HLA genes, which can be performed by expanding the data 

using RNA sequencing datasets. 
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