

DEVELOPING A FRAMEWORK TO EVALUATE THE USABILITY OF

VIRTUAL AND MIXED REALITY ENVIRONMENTS TO PRACTICE

MODEL-BASED SYSTEMS ENGINEERING

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

KAAN KARATAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

 OF MASTER OF SCIENCE

IN

THE DEPARTMENT OF MULTIMEDIA INFORMATICS

NOVEMBER 2024

DEVELOPING A FRAMEWORK TO EVALUATE THE USABILITY OF

VIRTUAL AND MIXED REALITY ENVIRONMENTS TO PRACTICE

MODEL-BASED SYSTEMS ENGINEERING

Submitted by Kaan Karataş in partial fulfillment of the requirements for the degree of Master

of Science in Graduate School of Informatics, Middle East Technical University by,

Prof. Dr. Banu Günel Kılıç

Dean, Graduate School of Informatics

Assoc. Prof. Elif Sürer

Head of Department, Modeling and Simulation, METU

Assoc. Prof. Elif Sürer

Supervisor, Modeling and Simulation, METU

Examining Committee Members:

Prof. Dr. Alptekin Temizel

Modeling and Simulation, METU

Assoc. Prof. Elif Sürer

Modeling and Simulation, METU

Assoc. Prof. Ufuk Çelikcan

Computer Engineering, Hacettepe University

Date: 26.11.2024

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last Name : Kaan Karataş

 Signature :

iv

ABSTRACT

DEVELOPING A FRAMEWORK TO EVALUATE THE USABILITY OF

VIRTUAL AND MIXED REALITY ENVIRONMENTS TO PRACTICE

MODEL-BASED SYSTEMS ENGINEERING

Karataş, Kaan

MSc., Graduate School of Informatics

Supervisor: Assoc. Prof. Elif Sürer

November 2024, 48 Pages

Systems Engineering is an interdisciplinary engineering field that focuses on the identification

of the required components of a product and their specifications to achieve the purpose or

objective. The emergence of Model-Based Systems Engineering (MBSE) has shown that the

prominent approach, Document-Based Systems Engineering (DBSE), is prone to allow over

engineering of problems, having to follow a set process reducing flexibility in iterative

implementation and hinder effectiveness by having repeated redundant information in multiple

documents. In MBSE, the systems design process where the engineer is responsible for

defining the properties and interfaces of a system, is executed in digital workspaces. The focus

of this thesis is to define a framework to perform systems design with MBSE approach in

virtual reality (VR) or mixed reality (MR) environments and identify the benefits and

drawbacks of adapting to such environments compared to desktop environments. System

modeling language (SysML) is a general-purpose modeling language stated to be capable of

encapsulating all required information. A prototype application, MRSysML, as a proof-of-

concept for the framework is developed to support using SysML in VR or MR environments

and another prototype for desktop environments, 2DSysML, is developed for comparison.

User test sessions with 30 participants with equal number of participants from systems

engineering background and interactive design background are executed. The outcomes of

these sessions demonstrate that the VR or MR adaptation is a useful approach which increases

the enjoyability and engagement of the user while having room for improvement regarding

textual input and object manipulation.

Keywords: Mixed Reality, Virtual Reality, Model-Based Systems Engineering, Systems

Design, Framework

v

ÖZ

SANAL VE KARMA GERÇEKLİK ORTAMLARININ MODEL TABANLI

SİSTEM MÜHENDİSLİĞİ UYGULUANMASINDA

KULLANILABİLİRLİĞİNİN DEĞERLENDİRİLMESİ İÇİN ÇERÇEVE

YAZILIM GELİŞTİRİLMESİ

Karataş, Kaan

Yüksek Lisans, Enformatik Enstitüsü

Tez Yöneticisi: Doç. Dr. Elif Sürer

Kasım 2024, 48 Sayfa

Sistem mühendisliği bir ürünün alt bileşenlerinin ve bileşenlerin özelliklerinin belirlenmesi

amacına sahip bir disiplinlerarası mühendislik alanıdır. Yaygınlaşan Model Tabanlı Sistem

Mühendisliği (MTSM) yaklaşımı, önde gelen Doküman Tabanlı Sistem Mühendisliği

(DTSM) yaklaşımının gereğinden fazla mühendislik uygulanmasına yatkın olduğunu, sabit bir

süreç takip edilerek aşamalı geliştirmelerin yapılmasının esnekliği azalttığını ve tekrar eden

lüzumsuz bilgilerin birçok dokümanda tekrarlandığını göstermiştir. Mühendisin sistemin

özelliklerini ve arayüzlerini belirlemekle sorumlu oluğu MTSM tasarım süreçleri dijital

çalışma ortamlarında gerçekleştirilmektedir. Bu tezde, MTSM yaklaşımıyla sistem tasarım

süreçlerinin sanal gerçeklik (SG) ve karma gerçeklik (KG) ortamlarda yapabileceği bir çerçeve

yazılım tanımlanmıştır ve bu çerçeve yazılımın bilgisayar ortamlarına karşı yararlarını ve

eksikliklerini tanımlamaya odaklanılmıştır. Sistem modelleme dili (SysML) genel kullanıma

uyumlu ve bütün sistemleri tanımlama yeteneğine sahip olduğu belirtilen modelleme dilidir.

SysML dilini destekleyen, SG ve KG ortamlarında çalışan, soyut çerçeve yazılımına kavram

kanıtı olan, MRSysML isimli bir örnek yazılım ve karşılaştırma yapılması amacıyla bilgisayar

ortamlarında çalışabilen 2DSysML isimli bir yazılım geliştirilmiştir. Yarısı sistem

mühendisliği geçmişi olan ve diğer yarısı etkileşimli uygulama geliştirme geçmişi toplam 30

katılımcı ile kullanıcı test oturumları gerçekleştirilmiştir. Elde edilen bilgilere bağlı olarak SG

ve KG uyarlanması eğlenceyi ve etkileşimi arttıran, yazısal girdi ve nesne idaresinde

gelişmeye açık olan, kullanışlı bir yaklaşım olduğu tespit edilmiştir.

Anahtar Sözcükler: Karma Gerçeklik, Sanal Gerçeklik, Model Tabanlı Sistem Mühendisliği,

Sistem Tasarım, Çerçeve Yazılım

vi

DEDICATION

To My Dearest Family

vii

ACKNOWLEDGEMENTS

First of all, I would like to express my sincerest gratitude to my supervisor, Assoc. Prof. Elif

Sürer, for their immense support and guidance. Since the beginning of my admission to the

department, they have shared their astonishing knowledge and inspired me to aim for

accomplishments I did not believe I could have achieved. I am fortunate and grateful for

having the opportunity to work with them.

I want to express my appreciation to all participants in the user tests who have shared their

valuable time to attend the sessions. This work would not have been possible without their

insights, comments, and contributions.

I am thankful to my family for their encouragement. They motivate me to become an engineer

and want to explore the related fields. In turn, they are why I decided to study this field.

Especially my grandmother, Prof. Dr. Eren Kum, and my grandfather, Prof. Dr. İlhan Kum.

While they are no longer with us, their works and achievements have always inspired me.

Without their example, I may never have taken any steps in the academic path.

I am deeply grateful to my previous manager, Murat Şahin, and my current manager, Ertan

Eyimaya, who have supported my academic work and allowed me to prioritize it as needed.

They have shown me that while we have worked together, what we accomplish is more than

just our job.

To my lovely wife İpek İmdat Karataş, who has shown endless patience and heartened me

throughout this journey and since the day we met. You have always been a source of peace

and calm. You have stood by me in the good and the bad. Thank you for supporting me and

never giving up on me.

viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ... v

DEDICATION .. vi

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS .. viii

LIST OF TABLES ... x

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS ... xiii

CHAPTERS

INTRODUCTION .. 1

1.1 Foundation and Motivation of the Research ... 1

1.2 Purpose of the Research .. 2

1.3 Contributions to the Field ... 2

1.4 Thesis Outline ... 2

LITERATURE REVIEW ... 5

2.1 Standardization and Evolution of Systems Engineering ... 5

2.2 Model-Based Systems Engineering .. 6

2.3 Model-Based Systems Engineering through Virtual Reality 7

2.4 Application of Virtual Reality in Similar Practices .. 7

FRAMEWORK AND PROTOTYPES .. 9

3.1 Framework Architecture ... 9

3.2 Design Decisions for Prototypes ... 9

3.2.1 Development Environment ... 10

3.2.2 Third Party Dependencies .. 10

3.2.3 Modeling Language .. 10

3.2.4 Utilized Design Patterns ... 12

3.3 Prototype Implementation Details .. 14

3.3.1 OCL-Based Data Storage Manager .. 14

3.3.2 UML and SysML Data Structures .. 15

3.3.3 SysML Model Manager .. 16

3.3.4 User Interface ... 16

3.3.5 Visualization Adapters ... 18

EVALUATION PROCESS .. 21

ix

4.1 User Tests ... 21

4.1.1 Participant Selection ... 21

4.1.2 User Test Procedure ... 21

4.1.3 Data Collection ... 21

4.2 Standard Questionnaires ... 22

4.2.1 Immersive Tendencies Questionnaire (ITQ) .. 22

4.2.2 Presence Questionnaire (PQ) ... 22

4.2.3 System Usability Scale ... 23

4.2.4 User Experience Questionnaire .. 24

4.3 Open-Ended Questions ... 25

4.4 Determining Statistical Significance .. 25

4.4.1 Wilcoxon Signed-Rank Test .. 25

4.4.2 Mann-Whitney U-Test ... 26

RESULTS .. 27

5.1 Immersive Tendencies Questionnaire Results .. 27

5.2 Presence Questionnaire Results .. 27

5.3 System Usability Scale Results .. 28

5.4 User Experience Questionnaire Results.. 31

5.5 Open-Ended Questions Answers .. 32

5.5.1 Strong and Improvable Areas of Using VR and MR for MBSE 32

5.5.2 Work Environment Preferences ... 32

5.5.3 Interaction Device Preferences ... 33

5.5.4 Participants’ Improvement Suggestions ... 33

DISCUSSION .. 35

6.1 The Enjoyable Experience .. 35

6.2 Text Input Limitations .. 35

6.3 The Usability and The User Experience ... 36

6.4 Employability in the Industry ... 37

6.5 General Hesitation Towards VR and MR Devices ... 37

CONCLUSION AND FUTURE WORK .. 39

REFERENCES .. 41

APPENDICES ... 45

x

LIST OF TABLES

Table 1 – Description of SysML terms from a software development standpoint. 11
Table 2 – Grades of SUS by CGS and percentile of scores by Sauro and Lewis. 23
Table 3 – Acceptability rating ranges defined by Bangor et al.. .. 24
Table 4 – Adjective rating mean values and standard deviations defined by Bangor et al. based

on the number of survey results with that rating. ... 24
Table 5 – Distribution of UEQ attributes per scale in accordance with Laugwitz et al.. 24
Table 6 – Grades, percentiles, and ranges for each scale in the benchmark by Schrepp et al...

 .. 25
Table 7 – Mean Value and Mann-Whitney U Test results for immersive tendencies

questionnaire comparing systems engineering focus group and interactive applications and

game development focus group. ... 27
Table 8 – Mean Value and Mann-Whitney U Test results for presence questionnaire comparing

systems engineering focus group and interactive applications and game development focus

group... 28
Table 9 – Mean Value and Mann-Whitney U Test results for SUS scores comparing systems

engineering focus group and interactive applications and game development focus group. . 29
Table 10 – Mean Value and Wilcoxon Signed-Rank Test results for SUS score for prototypes

by systems engineering focus group, interactive applications and game development focus

group, and joint dataset. ... 29
Table 11 – 2DSysML and MRSysML mean value grades according to CGS by Sauro and

Lewis and acceptability and adjective ratings, according to Bangor et al.. 30
Table 12 – Summary of UEQ benchmark scores and ratings by prototype and focus group. 32
Table 13 – Strong and improvable areas of applying MBSE in VR and MR environments and

the number of responses for each area. .. 32

xi

LIST OF FIGURES

Figure 1 – The abstract architecture representation of the proposed framework. 9
Figure 2 – The hierarchy of type for diagrams in SysML.. 11
Figure 3 – Diagram of a singleton logger object shared by two services. 12
Figure 4 – Diagram of an abstract event listener pattern for visualization based on object

change. ... 13
Figure 5 – Diagram of an abstract context pattern for data storage. 13
Figure 6 – An example of the factory method pattern in the context of SysML to produce

model elements. ... 13
Figure 7 – The package structure of the prototypes and the components of these packages. 14
Figure 8 – Illustration of each software package’s responsibilities based on the framework

description. ... 14
Figure 9 – Package Diagram of OBDSM. ... 15
Figure 10 – Package Diagram of SDS and UDS.. 16
Figure 11 – Package Diagram of SMM. .. 16
Figure 12 – MRSysML user interface in perspective view with non-native keyboard. 17
Figure 13 – MRSysML user interface in isometric view with non-native keyboard. 17
Figure 14 – User interface of 2DSysML with new comment window. 17
Figure 15 – Abstract Package Diagram of MRVA and 2DVA. The objects with behavior

classifier implement Unity Engine’s MonoBehavior class. ... 18
Figure 16 – Diagram Element for VisualizationEventManager... 19
Figure 17 – Class Diagram of ProjectLoader. .. 19
Figure 18 – Class Diagram of ModelSummary and DiagramSummary with its relationship

lines to Event Managers. .. 20
Figure 19 – Box plots of ITQ results from both focus groups are shown side by side, with the

Systems Engineering focus group on left and interactive applications and game development

focus group on the right. .. 27
Figure 20 – Box plots of PQ results from both focus groups shown side by side, systems

engineering focus group on left and interactive applications and game development on the

right. ... 28
Figure 21 – Box plots of SUS scores for either group and joint dataset, systems engineering

focus group on left and interactive applications and game development in the middle and joint

dataset on the right. .. 29
Figure 22 – Mean values of grades in accordance with Sauro and Lewis’ CGS and the mean

values of each prototype and dataset. ... 30
Figure 23 – Mean values adjective ratings in accordance with Bangor et al. and the mean

values of each prototype by dataset. .. 30
Figure 24 – UEQ benchmark of MRSysML based on responses of the SE focus group. 31
Figure 25 – UEQ benchmark of MRSysML based on responses of the IAGD focus group. 31
Figure 26 – UEQ benchmark of 2DSysML based on responses of the SE focus group. 31
Figure 27 – UEQ benchmark of 2DSysML based on responses of the IAGD focus group. .. 31
Figure 28 – Pie chart of participants' work environment preferences. 33

xii

Figure 29 – Pie chart of interaction device preferences of participants. 33
Figure 30 – Pie chart of the summary of participants’ improvement suggestions. 34
Figure 31 – User using hand interaction to grab the top bar to move it around with view from

both eyes. .. 47
Figure 32 – User defining a new actor diagram element with the name driver with view from

both eyes ... 47
Figure 33 – Visualization of use case diagram in MRSysML designed by the user with

controller interaction method with view from both eyes. ... 48
Figure 34 – Visualization of use case diagram in 2DSysML designed by the user. 48

xiii

LIST OF ABBREVIATIONS

AADL Architecture Analysis and Design Language

AUTOSAR Automotive Open System Architecture

CGS Curved Grading Scale

DBSE Document-Based Systems Engineering

INCOSE International Council on Systems Engineering

IoT Internet of Things

ITQ Immersive Tendencies Questionnaire

MBSE Model-Based Systems Engineering

MIL-STD Military Standard

MR Mixed Reality

OCL Object Constraint Language

OMG Object Management Group

PQ Presence Questionnaire

SoS System-of-Systems

SoSE System-of-Systems Engineering

SUS System Usability

SysML System Modeling Language

UML Unified Modeling Language

UX User Experience

V&V Verification and Validation

VR Virtual Reality

XR Extended Reality

1

CHAPTER 1
CHAPTE RS

INTRODUCTION

1.1 Foundation and Motivation of the Research

Systems engineering is an interdisciplinary field of engineering that dates back to the early

1940s [1]. It aims to set the requirements and define the components and elements of a product.

To overcome the complexities of large-scale projects, systems engineering is key to

understanding the primary goal as individual simpler challenges instead of one complex

problem. The resulting base-level work packages can then be implemented with a divide-and-

conquer approach, where different teams work on separate packages simultaneously or by

applying the predefined requirements iteratively in multiple sequential phases.

With the ever-improving capabilities of computers, many engineering practices shifted to

using digital workspaces to design their products. From printed circuit boards to software

design, almost all engineering fields rely on some software. Systems engineering has not

adapted to these workspaces as quickly. The prominent methodology, Document-Based

Systems Engineering (DBSE), aims to define the products' requirements and design into

written documents. Therefore, digital workspaces are limited to documentation tools such as

Microsoft Word or Microsoft Excel for systems design.

The documents for DBSE are commonly standardized based on the industry and type of the

product. For example, MIL-STD-498 [2] is a military standard for software development and

documentation, which describes the requirements of a software system in the System

Subsystem Specification (SSS) document, the design decisions and architecture in the System

Subsystem Design Description (SSDD) document, and many other types of documents.

However, it is identified that the DBSE methodology may cause unnecessary complexity by

distributing information into too many sources and causing redundancy between the

documents [3]. In recent years, the solution to these problems has been proposed to adapt to a

different methodology named Model-Based Systems Engineering (MBSE). The history of

MBSE dates back to 1993 [3], the application of the methodology has not been widespread

until recently. MBSE describes that the systems’ design and architecture can be captured into

models, allowing the systems engineers to utilize the digital workspace to design and represent

their work.

Following the increasing adaptation of MBSE, several standard modeling languages have

become available, such as Architecture Analysis and Design Language (AADL)–a modeling

language for safety critical systems– standardized by the Society of Automotive Engineers [5]

and System Modeling Language (SysML)–an adaptive modeling language for general purpose

usage–standardized by Object Management Group (OMG) [6]. With standard modeling

languages, modeling tools such as Enterprise Architect by Sparx Systems or Engineering

Systems Design Rhapsody by IBM have started supporting modeling in these languages. Yet,

no commercially available system modeling tools allow systems engineers to work using

2

virtual reality (VR) or mixed reality (MR) devices. Furthermore, in the literature, while there

are works utilizing VR for systems design, no common framework is used in such research.

Using VR and MR devices provides unique capabilities compared to two-dimensional work

environments. Viewing something from multiple angles in three dimensions enables the

differentiation of objects. The controllers allow a more intuitive way of working since they are

designed to act similarly to hand-based actions such as grabbing, pointing, or pulling a trigger.

This sensation is advanced even further in the hand-interaction mode of MR devices.

Concurrent collaboration is one of the primary research topics. The capabilities of VR or MR

devices enhance the experience by letting one user see the other as virtual avatars. Finally, the

advancement of hardware suggests that in the future, people will be able to carry their devices

anywhere. The newest announced hardware, such as Snap Spectacles 5 or Meta Orion, shows

that carrying around the MR devices may be easier than laptops, and the ergonomics may

become even better than any computer environment.

1.2 Purpose of the Research

The purpose of this research is to evaluate the usability of VR or MR environments for

conducting MBSE and compare it to desktop environments. The objectives of the thesis are as

follows:

• To define a framework for system design using VR or MR devices alone without

needing to use desktop-based applications and provide the fundamental capabilities.

• To develop a prototype for the framework that works on commercially accessible

hardware.

• To compare the prototype to a desktop-based prototype to assess the advantages and

disadvantages of working in VR or MR environments.

• To evaluate the framework through different perspectives and identify the adjustments

required for future work.

1.3 Contributions to the Field

This thesis serves as a fundamental study to understand the benefits and needs of applications

where systems engineers can employ MBSE systems design practices in VR or MR

environments. The findings are supported by user testing sessions conducted with people

familiar and unfamiliar with such devices or systems engineering practices. Since there is a

lack of a common framework for such applications in the literature, the research describes an

abstract framework’s basic requirements and design. A prototype o framework is developed

to examine the possible capabilities and compare its usage to desktop applications. The

growing technologies in VR and MR devices may allow tools that utilize these environments

to replace desktop environments in specific fields. This thesis serves as a guideline for what

improvements must be made to achieve it for systems design tools. Future studies may use

this thesis’ outcomes to further investigate the framework or similar applications from

different perspectives, such as determining the productivity improvements or disadvantages of

using such applications.

1.4 Thesis Outline

The thesis has seven chapters, and the contents of each chapter are as follows:

3

• Chapter 1 contains the scope of the research and fundamental information about the

field, the purpose of the thesis, its contributions, and the thesis outline.

• Chapter 2 explains the state-of-the-art through recent work on systems engineering,

MBSE, utilizing VR for MBSE, and utilization of VR in similar fields such as software

development and design.

• Chapter 3 presents an abstract modeling framework’s fundamental requirements and

design along with the prototype’s design and implementation details.

• Chapter 4 describes the evaluation procedure through user tests, the tools used for data

collection, and the determination methods of the gathered data.

• Chapter 5 includes the results of each evaluation criterion.

• Chapter 6 discusses the gathered data results and explains the determined outcomes.

• Chapter 7 summarizes the thesis’s results and provides insight for future work in the

field.

4

5

CHAPTER 2

LITERATURE REVIEW

2.1 Standardization and Evolution of Systems Engineering

The origins of systems engineering practices date back to World War II [1]. The name of the

term was first introduced back in 1950, yet there is no single accepted definition for it in the

literature. Each organization or group redefines the term with slight differences and provides

its unique lifecycle. Military Standard Systems Engineering Management (MIL-STD-499) [7]

is the first formal systems engineering process standard dating back to 1969, and it was

introduced by the U.S. Air Force. Its applicability and maintenance were declared canceled in

1995 [8]. In 2017, the IEEE Standard for Application of Systems Engineering on Defense

Programs was declared as the replacement for the U.S. Department of Defense [9]. The

International Council on Systems Engineering (INCOSE) is another large organization that

attempts to standardize the meaning and practice of systems engineering, and it was formally

founded in 1990. It began as the National Council on Systems Engineering (NCOSE) to train

systems engineers and was later expanded to incorporate an international scope [1]. They

publish the “Systems Engineering” journal monthly, which contains the current advancements

in the systems engineering field, and host an annual international symposium and an annual

international workshop. The definition for the term by INCOSE is “a transdisciplinary and

integrative approach to enable the successful realization, use, and retirement of engineered

systems, using systems principles and concepts, and scientific, technological, and management

methods” [10]. MITRE Corporation is an organization founded back in 1958 that has worked

on applying systems engineering solutions to countless military and civilian projects [11].

They claim that there is no single definition of what systems engineering is, but its meaning is

defined as context-specific based on where and how it is employed [12]. While the definition

of the term may vary based on the context, the general practice in the industry and literature

seems to be consistent that it is an interdisciplinary engineering field ranging from chemistry

to software and more, and its purpose is to define the users’ needs and provide the architecture

and design that would accomplish it while providing a roadmap on when and what to do.

System of Systems Engineering (SoSE) is an expansion of classical systems engineering to

provide additional capabilities through the integration of multiple systems [13]. In SoSE, a

group of working systems, individual systems serve particular purposes independently and can

interact with other systems for further features. For example, in a home setting, some smart

home hub devices can allow the user to access an artificial intelligence (AI) assistant while a

smart light bulb can be programmed to turn on at specific times, but combining these two

systems can let your AI assistant to control the lights without the need of the programming

software of the light bulb. With the ever-expanding capabilities of computer networks and

technologies, SoSE has become one of the hot topics in the literature in recent years. It has its

unique standard definition and processes. Vargas and Braga [14] have systematically reviewed

31 studies filtered out from 3495 studies to identify the key and pain points of applying SoSE.

The primary issue defined in SoSE is SoS management, which requires having a holistic view

from the start. With a lack of tools to support SoS, management reduces the efficiency of

practicing SoSE.

6

2.2 Model-Based Systems Engineering

The Model-Based Systems Engineering term is coined by A. Wayne Wymore in their book

with the same name [4]. The MBSE process suggests that the architecture of the system and

its design should be encapsulated in visual models. Madni and Sievers [15] have investigated

the field in 2018 defining the less explored opportunities and explaining the status of the field.

They state that the effort in academia shows that the MBSE is beneficial compared to

document-centric practices. Still, there was not enough support from the management and

customers standpoint. They also list a set of required advancements regarding processes and

tools. Afterwards, in 2022, Campo et al. [16] conducted a similar investigation. The outcome

also suggested an overwhelming number of studies suggesting MBSE is beneficial. However,

they also noted that 47% were opinion-based, and most of the claims were not supported by

any metrics. Regarding the drawback against MBSE, only 37% were opinion-based. They

speculate that the increasingly positive outlook about MBSE may originate from unintentional

favoritism by large organizations such as INCOSE promoting MBSE’s benefits more than its

impediments. Even after removing the opinion-based studies, MBSE’s advantages and

preferences still outweigh its disadvantages, even though they are less overwhelming.

Adedjouma et al. explore the advantages and challenges of incorporating MBSE in a work

environment [3]. In their study, they investigate Plastic Omnium’s switch to MBSE in order

to comply with specific standards and share their designs with many suppliers while

developing an application using Automotive Open System Architecture (AUTOSAR), a

model-based architecture adopted by many automotive manufacturers. Plastic Omnium’s

previous work focused on text-based specifications. However, when adapting to AUTOSAR,

instead of preparing text-based specifications and converting them to system models, they

decided to embrace MBSE using SysML company-wide. SysML inherently satisfied

AUTOSAR’s compliance requirements, so they stopped producing text-based designs and

discovered that MBSE reduced the risks of human error and redundant work. Adedjouma et

al. noted that MBSE is beneficial for identifying the over-engineering done with the DBSE

approach and provides freedom in workflow since there is no need for a certain order of

procedures.

Yang et al. have utilized MBSE to simulate a battlefield environment and systems deployed

[17]. It is a SoS environment where each system, such as an early warning aircraft or drone,

can act independently while being able to interact and operate with one another as a joint force.

Their design allowed operators and commanders to exercise and plan many unique battlefield

scenarios. They used SysML as the modeling language and augmented it with an environment

simulation developed in Unreal Engine 4. They could follow the interaction of systems and

foresee problems. They have shown that system models are a strong tool for simulating and

preemptively solving interoperability problems that could arise during runtime operations, and

they have also provided proof-of-concept for digital twin implementations using MBSE.

While there are several works identifying the benefits of adapting MBSE, Cameron and Adsit

[18] conducted a poll to find industries’ tendencies to use MBSE. The poll was sent to the

4200 attendants of an online course, and around 1000 responded. They asked about the reason

behind their interest and their workplace’s stance on the subject, and 35% of the respondents

were from workplaces using the MBSE approach. Even though the years of work experience

were on the high end, over 10 years of experience, the usage of commercial programs and

modeling languages was comparatively low. 1% stated high usage, 2% stated moderate usage,

4% stated low usage, and 93% noted no usage, indicating an inefficient adaptation to the

model-based approach. Cameron and Adsit state that there are two outcomes of their poll

regarding the adoption of MBSE, the adoption rate is low, and the current form of adoption

may be ineffective; therefore, it should be evaluated further.

7

2.3 Model-Based Systems Engineering through Virtual Reality

Conducting MBSE in virtual environments is not a new topic. Lutfi and Valerdi [19] have

found Kande’s thesis [20] as one of the first attempts to integrate them, Kande used a VR

environment to display a simulated environment and connected it to a SysML model on the

back end. Lutfi and Valerdi explored other MBSE and VR integrations to identify what could

be built upon and stated that one of the missing elements was a common framework that

academic works can utilize. Therefore, they proposed to define a framework that can be used

by researchers. In their later work, they defined a framework that combined models developed

in Cameo System Modeler (CSM) and used Unity Engine to create an application to display

these models [21] in a virtual environment. They used MATLAB scripts to input and output

information between their VR tool and CSM. This way, the SysML model can be displayed

on the VR tool, and it can be simulated as a system as well. Furthermore, Lutfi and Valerdi

performed a case study that highlighted their framework [22]. In this case study, they designed

a ground-based telescope system and simulated it in the VR tool. It served as proof-of-concept

and displayed how the framework could be applied. They suggested this could also be used as

a Digital Twin technology. As long as data are gathered in the model form, it can be visualized

like simulated information.

Another strength of using virtual environments for system model display is the third

dimension. All commercially available modeling tools are limited to desktop environments,

and the number of displays required can get out of hand when it comes to data being distributed

into many diagrams, such as in SysML. Oberhauser defined a unique way where the third

dimension can be utilized [23]. In their early work, they identified that the third dimension can

be utilized to show the interaction of different diagrams within one another if each diagram is

displayed in a stacked manner. Their initial work suggested that as a standard feature that can

be utilized in any modeling language and used UML to create a prototype. They then expanded

this prototype to support SysML and compared their prototype to Enterprise Architect by

Sparx Systems [24]. They state that the three-dimensional virtual display allows for a better

understanding of the system, especially for stakeholders who are not familiar with systems

engineering processes. Finally, Oberhauser included test coverage and status to improve

further the already strong Verification and Validation capabilities of MBSE [25]. By adding

annotations to a program and test cases, they trace the code to the SysML model. This

generates new types of connectors to their diagrams that could show the test status by color

and coverage percentages.

2.4 Application of Virtual Reality in Similar Practices

While using VR or MR devices for MBSE is a relatively new topic, software architecture

design usage of VR has advanced. Yigitbas et al. [26] [27] have proposed using VR

environments as an immersive environment to train students on how to design UML diagrams.

They prepared three variant minigames to perform training scenarios in their application

named GaMoVR. The minigames contain a hangman-like figure that progresses based on the

mistakes made. The user aims to avoid making mistakes and finish the games before the

hangman gets hanged. In their design, Yigitbas et al. did not follow the diagram shapes of

UML specifications but customized them into three-dimensional objects. They plan on

improving their application by adding new minigames to encapsulate more aspects of UML

modeling. Additionally, GaMoVR also provides a baseline framework that supports multi-

viewpoint model visualization and interaction. Similar applications may become available for

MBSE to train beginners. Since systems engineering is an interdisciplinary field, the barrier

to entry is a difficult challenge to overcome.

8

The usage of VR for designing UML diagrams is also advanced in collaborative work

environments. Yigitbas et al. [28] have developed an application that allows class diagrams to

be designed collaboratively in VR. Two users could see and interact with the same class

diagram concurrently. They have gathered 24 participants as a case study to investigate the

effectiveness of such a work environment. Their findings suggested that users preferred using

desktop applications if the users were in the same physical space. Yigitbas et al. suggest that

a VR approach may be more applicable to remote work environments. Compared to web-based

collaborative design tools, sharing the virtual environment felt natural. The same arguments

can be claimed for MBSE using VR. It shows that while VR may not be the replacement for

the desktop environment, it may be an alternative for specific cases.

9

CHAPTER 3

FRAMEWORK AND PROTOTYPES

3.1 Framework Architecture

The proposed framework consists of four main components: 1) The modeling language data

structure library, which includes the metadata for forming the model, 2) A data storage

manager which stores the data in the applications’ cache or some form of database, 3) Model

accessor which provides the create, read, update, and delete (CRUD) functionality for the

model, and 4) A visualization adapter responsible for displaying the model information. The

data structure library must be accessible by all other components. The visualization adapter

sends CRUD queries received by the user through the model accessor. The accessor triggers

the data storage manager to update the model data in runtime without requiring any constant

save or load operation. The queries must utilize the data structures as properties. The

architecture of the framework is depicted in Figure 1:

Figure 1 – The abstract architecture representation of the proposed framework.

Having the abstraction of a model accessor, the framework can be further improved by adding

separate components for additional capabilities. Several examples of additional capabilities

are importing and exporting the model, digital twin representation, and system simulation.

3.2 Design Decisions for Prototypes

The MR or VR prototype is a proof-of-concept for the abstract framework. The capabilities of

modeling tools are vast. Therefore, the prototypes’ development processes are simplified by

building a monolithic software where each system component is a software package that is

part of the singular application. In an ideal scenario, for commercial products, it is more

beneficial to implement separate components that are unique applications and services that

support a distributed architecture. A distributed architecture could divide the workload from

the VR or MR device to a central server, allowing access to multiple actors for collaborative

work and reducing the processing done by the device.

To perform a comparative analysis of desktop applications with VR or MR applications, the

same framework is developed for both environments, implementing separate visualization

adapters based on the target environment. Since the data structure library, data storage, and

model accessor components are backend components without user interface components,

changing the visualization adapter is enough.

10

3.2.1 Development Environment

The prototypes are developed using Unity Engine [29]. It hosts a vast range of third-party

dependencies for VR or MR development, and several large companies, such as Meta, provide

their own integration tools and software development kits for that purpose. Unity Engine has

many features that reduce the effort required to develop any project. It has a package manager

to maintain the dependencies, tools, and assets. Unity Engine includes a physics engine that

supports two-dimensional (2D) and three-dimensional (3D) environments. Its editor also

provides inherent real-time visualization and debugging tools.

The prototypes are developed in C# high-level programming language [30]. Unity Engine

utilizes C# as the primary programming language, and it is possible to integrate different

languages through specific libraries. Due to the simplicity of the prototypes, there is no

significant advantage in favor of any programming language.

3.2.2 Third Party Dependencies

The prototypes employ Mixed Reality Toolkit version 2 (MRTK2) [31] for device integration,

look-and-feel, and user interface. MRTK2 is a toolkit that allows developers to integrate their

projects into many VR and MR devices easily. The primary configuration of the VR or MR

prototype is configured to run on Meta Quest 2. It can be reconfigured before compilation to

fit the other devices or capabilities, such as Meta Quest 2’s black-and-white passthrough

feature to enable mixed reality. Switching between VR and MR during runtime is not enabled

but has to be performed before the start of the prototype. It also has pre-defined materials that

can be used to keep a common look and feel for both the desktop and VR or MR applications.

MRTK2 supports the usage of Unity GUI. The raycast from the controllers can interact with

Unity GUI elements, and a set of Unity GUI elements can be implemented to work in all

environments.

Text Mesh Pro is a dependency utilized to display texts and their integration. MRTK2 also

depends on Text Mesh Pro for its prefabricated assets. All GUI elements that include textual

display use Text Mesh Pro and its accessory functions for user interaction.

3.2.3 Modeling Language

System Modeling Language (SysML) is a modeling language maintained by Object

Management Group (OMG) [6]. It is derived from Unified Modeling Language (UML), also

maintained by OMG [32]. SysML follows Object Oriented Systems Engineering Methodology

meaning every detail of the specification is described as objects. SysML is derived from UML

and uses Object Constraint Language (OCL) to define each object and expression [33]. The

use of SysML is widespread in the literature and industry. It is a general-purpose language that

is proclaimed to be able to contain all necessary information for a system. Thus, it is used as

the target modeling language for the prototypes.

In the specifications, each classifier has eight properties. These properties are name,

description, attributes, association ends, operations, generalizations, specifications, and

constraints. The name is a unique identifier of the type of classifier. The description is for users

to understand the purpose of the classifier. The attributes are the primitive variables each

classifier contains. The association ends are the relation of a classifier to others. The quantity

of each association end varies and may be one-to-one, one-to-many, many-to-one, many-to-

many, or any specific number of classifiers to classifiers. The association ends may be one of

three types, simple, derived, and composition. Also, association ends may have specific

properties, such as redefines. Operations are the types of functions the classifier can compute.

11

Generalizations are the parent classifier types where the classifier inherits all properties.

Specializations are the child classifier types that inherit their properties. Constraints are types

of calculations that prevent the classifiers from being initialized. A description of the

properties from a software development standpoint is listed in Table 1:

Table 1 – Description of SysML terms from a software development standpoint.

Property Description

Classifier Object type or object class

Name Objects name

Description Any form of documentation comment for the object

Attribute Object’s primitive non-static variables and enumerations

Association end Object’s non-primitive non-static variables except enumerations

Operation Object’s methods

Generalizations Object’s inherited object types

Specializations Object’s implementor object types

Constraints Logical validation operations that may result in exceptions during initialization

UML and SysML are designed so that each modeling language can be described through the

language. SysML utilizes a subset of UML object types grouped as UML4SYSML and

introduces its unique classifications for the existing object types.

There are three root object types where all other objects inherit at least one type. These root

object types are element, diagram, and diagram element. To avoid confusion, elements are

aliased as model elements. Diagram elements are visual objects such as shapes, edges, or

images. Each diagram element relates to a model element that contains its logical information.

Model elements are the actual sources of data and processing. Diagrams are containers for

diagram elements and have individual purposes. The hierarchy of type for diagrams in SysML

is as depicted in Figure 2:

Figure 2 – The hierarchy of type for diagrams in SysML.

Source: Adapted from [6].

White-colored diagram types are abstract diagram types used to categorize their

specializations. Yellow-colored diagram types are inherited from UML without any changes.

Red diagram types are inherited from UML but are altered in certain ways. Blue diagram types

are diagrams unique to SysML. A requirement diagram presents the requirements of a system

and the requirements’ relationships to other requirements and tests. A block definition diagram

includes the properties of a specific block, which can be described as a system component or

configuration item. An internal block diagram depicts the structural elements of a block, such

as a connector, interface, and part. A parametric diagram describes the arithmetic and logical

operations as constraint blocks. A package diagram contains the whole project and its objects.

12

An activity diagram instructs how the system behaviors are through control flow and object

flow. A sequence diagram illustrates the sequential information flow between two or more

blocks. A state machine diagram encompasses a block’s states and state transition flows. A

use case diagram highlights the actors, the use cases of the systems, and their relationships.

3.2.4 Utilized Design Patterns

Four main design patterns are utilized in the prototypes. These design patterns are the singleton

pattern [34], event listener pattern [35], context pattern [35] and factory method pattern [36].

Each design pattern is utilized by multiple software packages.

Singleton pattern [34] suggests having a static object that is accessible by the whole

application. It is implemented by a class with a private constructor and a static function that

returns the static instance of the object. To prevent double instantiation, the instance function

has a thread lock in case multiple threads attempt to access the instance simultaneously. The

thread lock holder checks if the private static instance is initialized. If the instance is initialized,

it returns the instance. If not, it constructs the instance and returns it. After initialization or

before returning the instance, the thread lock is released. Having a singleton class can simplify

complicated algorithms and reduce the need for redundant passing of variables in function

calls. An example use case for the singleton pattern is using a logger object to log debug

information. The logger is initialized and configured once so that all classes can use the same

configuration without having to reconfigure the logger. The diagram of a singleton logger is

shown in Figure 3.

Figure 3 – Diagram of a singleton logger object shared by two services.

Event listener pattern [35] is utilized for real-time updates and visualization. The event listener

pattern defines events, invokers, and listeners. An event is an object that is accessed by both

the invoker and the listener. An invoker is the triggering object that invokes the event. A

listener is an object that performs a specific function when the event is invoked. The

implementation of the event listener pattern can use both multi-threaded or single-threaded

approaches where the listeners’ functions may be triggered in the order of listens or

concurrently by multiple threads. The design pattern is frequently used for front-end

development to trigger events based on user actions, such as a button press. Physics engines

like Unity Engine can also implement the event listener pattern to trigger time-based events

such as frame refresh. The prototypes utilize a single-threaded approach and use C#

programming language’s inherent EventHandler class and event primitive class defined in the

scope of the System namespace. Any modification in the SysML model is triggered as an event

at the visualization adapts accordingly. All user actions also invoke unique events that the

prototypes act accordingly. A diagram of the event listener pattern for dynamic visualization

is included in Figure 4.

13

Figure 4 – Diagram of an abstract event listener pattern for visualization based on object change.

The context pattern [35] requires having application-level shared objects registered to the

context, commonly known as application bundles. The context involves the registration of

each object to the context by keys. An id or the class of an object is generally used as the key.

In monolithic applications, classes responsible for main computation–also known as services–

are commonly initialized upon start-up and registered to a context. Each class that requires

access to a particular service can query it from the context. The context is similar to a database

where instead of storing the objects in the disk space, they are stored in the cache. Prototypes

employ context patterns to store the system model information. A diagram of the context

pattern for data storage is shown in Figure 5.

Figure 5 – Diagram of an abstract context pattern for data storage.

The factory method pattern [36] allows a creator interface to instantiate objects that implement

a standard abstract class or interface through a single factory method. By implementing the

creator interface differently, the objects instantiated can be modified. This pattern is beneficial

if the same kind of object has to be instantiated many times based on limited arguments. For

example, it can generate standard buttons shared amongst many windows where each

implementation of the creator instantiates different buttons. A depiction of the factory method

pattern in the context of SysML is exhibited in Figure 6.

Figure 6 – An example of the factory method pattern in the context of SysML to produce model elements.

14

3.3 Prototype Implementation Details

The prototypes developed for the study are named MRSysML and 2DSysML. The prototypes

consist of six software packages. These packages are OCL Based Data Storage Manager

(OBDSM), UML Data Structures (UDS), SysML Data Structures (SDS), SysML Model

Manager (SMM), MR Visualization Adapter (MRVA) and Two-Dimensional Visualization

Adapter (2DVA). The software packages of the prototypes are depicted in Figure 7.

Figure 7 – The package structure of the prototypes and the components of these packages.

The packages do not match with the framework’s components one-to-one, but they provide all

defined features. OBDSM acts as a basis for the data structure library and the data storage

manager. UDS and SDS contain the classes for the data structure library. SMM provides a

library and a service that the visualization adapters can use as the model accessor. MRVA and

DVA are the visualization adapters for the prototypes. The relationship of the packages’

components to the framework’s components is depicted in Figure 8.

Figure 8 – Illustration of each software package’s responsibilities based on the framework description.

3.3.1 OCL-Based Data Storage Manager

Since C# high-level programming language does not support multiple inheritance except for

interfaces, an implementation for an application-level context-based data storage design is

adopted. OBDSM contains two subcomponents. The OCLObject class is an abstract class that

declares the attributes of any object type and each data structure to implement, and the

OCLManager class acts as the data storage manager to contain any data structure that

implements OCLObject. The package diagram for OBDSM is depicted in Figure 9.

15

Figure 9 – Package Diagram of OBDSM.

The OBDSM provides the application with the capability of storing all objects in the cache. It

follows the context design pattern [35] where all model and diagram elements are registered

in the application context. The OCLManager is responsible for storing all objects in a two-

dimensional dictionary. It implements the singleton pattern [34] so that all packages of the

prototype use the same context. Each object is identified by its class and unique identifier

number. The OCLObject abstract class has four main attributes: the name of the class, its

generalizations, specializations, and unique identifier. The specializations and generalizations

of any OCLObject use the same identifier. Any instantiated OCLObject is responsible for

instantiating its generalizations and registers itself to the OCLManager. During construction,

if no identifier is provided as an argument, an OCLObject queries the next available identifier

from the OCLManager. OCLManager provides an identifier as a 64-bit integer in cyclic order,

skipping any occupied identifier. Each OCLObject instance can access a specialization or

generalization of itself by querying the same identifier and different class from the OCL

manager. Upon removal of any OCL object from OCLManager, all its generalizations are

recursively removed.

3.3.2 UML and SysML Data Structures

The SysML Data Structures (SDS) package contains all classifiers and associations defined in

the SysML specification by the Object Management Group (OMG) [6] and the UML Data

Structures (UDS) as a subpackage. UDS contains all classifiers and associations defined in the

SysML specification marked as UML4SysML in accordance with the UML specification by

the OMG [32]. Each root class of UML specification–model element, diagram element, and

associations–has its own abstract class, which implements the OCLObject. The distinction is

used to separate the events and arguments that utilize the several types of objects. For example,

the visualization adapter, when a diagram element information is changed, only modifies the

diagram information of the model and does not redefine the model elements. This reduces the

iteration required to find the desired element and provides a more understandable

implementation. The package diagram for SDS and UDS is depicted in Figure 10.

16

Figure 10 – Package Diagram of SDS and UDS.

All classes have all attributes defined in accordance with their specifications. The name of the

classifier, its description, generalizations, specializations, associations, and attributes can be

accessed as public variables. All classes access the generalizations of themselves through the

OCLManager and inherit the operations and attributes through this relationship. Any redefined

operation is re-implemented in the scope of the most specialized class.

3.3.3 SysML Model Manager

SysML Model Manager (SMM) is responsible for initializing the SysML model and providing

an application programming interface for the OBDSM package. It serves as the model accessor

in the framework. It enables CRUD operations and additional capabilities like saving or

loading a model. It provides an event-based notification for interacting with external packages.

It consists of two main components. The components are the SysMLProject object and the

SysMLEventManager service. The package diagram for SMM is depicted in Figure 11.

Figure 11 – Package Diagram of SMM.

The SysMLProject is an object that separates the application-level context from the project-

level context the user is working on. It directs CRUD operations to the OBDSM and stores the

related elements in its lists. Upon instantiation, it creates an empty model with a single empty

package diagram. Any form of modification to the project triggers SysMLEventManager to

invoke certain events. SysMLEventManager enables external packages to adjust any changes

caused by any packages through an event listener pattern. Each addition, deletion, or update

event contains the related OCL object so that the listeners can process it.

3.3.4 User Interface

The user interface (UI) for the prototypes consists of six sections. These sections are the top

bar, the action bar, the model summary panel, the diagram summary panel, the dynamic

17

window area, and the primary display area. All UI elements of the prototypes share a familiar

look and feel achieved by using the prefabricated materials of MRTK2. The UI of MRSysML

in perspective and isometric views and 2DSysML are shown in Figure 12, Figure 13, and

Figure 14, respectively.

Figure 12 – MRSysML user interface in perspective view with non-native keyboard.

Figure 13 – MRSysML user interface in isometric view with non-native keyboard.

Figure 14 – User interface of 2DSysML with new comment window.

18

The top bar is responsible for displaying the title of the loaded diagram. For MRSysML, it also

acts as an anchor bar to move the display around, zoom in, and zoom out. For 2DSysML, it

serves no additional purpose.

The action bar is located at the bottom of the display and has options to add certain diagram

elements to the diagram, either by defining a new one or importing an already existing diagram

element.

The model summary panel is on the left side of the view, allowing the user to see a list of all

elements in the model. The user can choose to delete a model element from the model or

navigate to a specific diagram from this panel. The diagram summary panel is located on the

right side of the panel and shows the loaded diagram and the included diagram elements. The

user can choose to delete any diagram element or reset the location of the diagram element.

On the summary panels, the user can see each object's label and unique identifier. Upon

removal of any model element, its related diagram elements are automatically removed.

The primary display area is where the diagram is displayed. In MRSysML, it is contained in a

box with thin black lines. There are invisible walls preventing the diagram elements from

leaving the display area.

The dynamic window area is a hidden frame where opened windows are shown. In MRSysML,

the dynamic window area follows the VR or MR device’s location and orientation, showing

in front of the user whenever a window is displayed. In 2DSysML, it is located in the middle

of the view. The user can drag and drop the window to move it around. Upon opening or

reopening any window, its view is reset back to the middle of the view. MRSysML includes a

non-native virtual keyboard modified from the MRTK2 non-native keyboard. The keyboard

is displayed in place of any dynamic window when any text field is selected.

3.3.5 Visualization Adapters

MRVA and 2DVA are designed to integrate the data into the user interface. It consists of seven

components. These components are the visualization event manager service, the project loader

behavior, the model summary behavior, the diagram summary behavior, the window behavior

subpackage, the UI element behavior subpackage, and the diagram visualization subpackage.

UI element behavior subpackage, diagram visualization subpackage, and window behavior

subpackage are customized to fit the unique needs of MRVA and 2DVA. The abstract package

diagram for visualization adapters is depicted in Figure 15.

Figure 15 – Abstract Package Diagram of MRVA and 2DVA. The objects with behavior classifier implement Unity

Engine’s MonoBehavior class.

MRVA and 2DVA also contain MRTK2 profiles, prefabricated objects for each UI element,

prefabricated objects for each window, and prefabricated displays for each diagram element.

VisualizationEventManager service serves as the primary middleware for all components of

the MRVA and 2DVA. It employs the singleton pattern so all services can access the same

instance. It contains events categorized as requests that are invoked with respect to user actions

19

and other events that are invoked based on computation. The class information of

VisualizationEventManager as a diagram element is shown in Figure 16.

Figure 16 – Diagram Element for VisualizationEventManager.

ProjectLoader behavior extends Unity Engine’s monobehavior and manages SSM’s

SysMLProject. It converts the user’s actions into SysMLProject object’s functions. During

instantiation, a new SysMLProject is initialized. Upon successful initialization, an

OnProjectLoad event is invoked. Afterward, the primary model’s package diagram is loaded,

and an OnDiagramLoad event is invoked. Whenever a new SysMLProject is loaded or

initialized or when a different diagram is loaded, these events are invoked, respectively. The

user’s actions are received as invoked events. The types of listened requests are model element

creation or removal requests and diagram element creation or deletion requests. ProjectLoader

uses a factory method pattern to create elements. It is a factory for individual model elements,

associations, and diagram elements. Upon invocation of a creation request, the ProjectLoader

initializes the specified model element and adds it to the SysMLProject. Upon invocation of a

deletion request event, the ProjectLoader calls the removal of the specified element from the

SysMLProject. ProjectLoader does not invoke any response events since SSM invokes specific

events for any addition, update, or removal. The class diagram for ProjectLoader is shown in

Figure 17.

Figure 17 – Class Diagram of ProjectLoader.

ModelSummary service and DiagramSummary service are the behavior classes for the model

summary panel and diagram summary panel, respectively. They utilize the factory method

pattern to instantiate new rows in the summary panel. The list rows are instantiated as buttons

that, when pressed, invoke OnModelElementSelected and OnDiagramElementSelected

events. When SSM invokes the OnModelElementAddition event, the ModelSummary service

finds the owner model element in the list and adds the new element as its child element. When

SSM invokes the OnDiagramElementAddition event, the DiagramSummary service checks if

the owner diagram is the currently displayed diagram and adds the element to the list

20

accordingly. Upon invocation of OnModelElementRemoval or OnDiagramElementRemoval,

the list rows are removed. This service also listens to the OnDiagramLoaded event and

refreshes the list based on the new diagram when invoked. The summary services can also

trigger deletion request events based on the most recent element selected. Class diagrams of

ModelSummary and DiagramSummary are displayed in Figure 18.

Figure 18 – Class Diagram of ModelSummary and DiagramSummary with its relationship lines to Event Managers.

The window behavior subpackage contains the behaviors for each dynamic window and the

non-native virtual keyboard. Each model element has unique dynamic windows that contain

the input fields for the attributes of each element. The dynamic windows have two standardized

buttons to apply or cancel the operation. A new element creation request event is invoked after

pressing the apply button. Upon selection of the cancel button, the window is hidden. When

the window is reopened, all of its fields are cleared.

The Diagram Visualization subpackage contains the required behaviors for the primary display

area, the top bar, and the individual diagram element displays. The primary display area

behavior listens to the OnDiagramLoad event, destroying the previous loaded diagram element

displays and instantiates new displays for all owned diagram elements of the loaded diagram.

Furthermore, it listens to the OnDiagramElementAddition and OnDiagramElementRemoval

events to instantiate or destroy the diagram element displays. The process is only applicable if

the owner diagram for the diagram element is the currently displayed diagram. The top bar

behavior listens to the OnDiagramLoad event and displays the title for the loaded diagram

accordingly.

21

CHAPTER 4

EVALUATION PROCESS

4.1 User Tests

User test sessions are conducted to investigate the advantages and disadvantages of VR or MR

environments compared to the desktop environment. Each participant is requested to perform

a simple scenario to design certain aspects and capabilities of a calculator as a system of

interest. An example of a calculator is selected to ensure all participants are familiar with it.

The scenario is performed in both environments, and the users are asked to fill in multiple

standard questionnaires and answer some open-ended questions.

4.1.1 Participant Selection

The participants are divided into two groups. The first group is people with experience working

as or with systems engineers. They are referred to as the Systems Engineering (SE) focus

group. The second group is people who study or work in developing interactive applications

and video games. They are called interactive application and game development (IAGD) focus

groups. The participants were invited to the user tests and their attendance was on a voluntary

basis. Thirty participants attended the user tests, with an equal number of participants from

both focus groups.

4.1.2 User Test Procedure

The test scenario consisted of designing four diagrams: 1) A package diagram that defines the

components of the calculator, 2) A block definition diagram that defines the attributes of the

calculator, 3) A use case diagram that shows the primary use cases of a calculator and its actor,

and 4) An activity diagram that defines the algorithm of calculating expression. These

diagrams are selected so that the user can interact with the prototype to design both the

structural and behavioral sides of a system. After the execution of the scenario, the users were

allowed to freely explore additional features of the prototypes. Each participant had a 45-

minute time limit for their session, excluding the time to fill in the questionnaires, and only

one participant was attending at a time. The set scenario in both environments took 15 to 25

minutes in total, based on the performance of the participant.

4.1.3 Data Collection

The participants are asked to fill in four standard questionnaires and respond to four open-

ended questions. These questionnaires are the Immersive Tendencies Questionnaire (ITQ) [37]

[38], the Presence Questionnaire (PQ) [37] [39], the System Usability Scale (SUS) [40] and

the User Experience Questionnaire (UEQ) [41] Each questionnaire attempts to evaluate a

different aspect of the application through responses within itself or correlation with each

other. Scores in the standard questionnaires are compared regarding the two focus groups and

based on the environments to find any statistically significant differences.

22

4.2 Standard Questionnaires

Each questionnaire attempts to identify a different attribute of the prototype. Each

questionnaire has different evaluation methods and scoring methods.

4.2.1 Immersive Tendencies Questionnaire (ITQ)

Immersive Tendencies Questionnaire (ITQ) [37] [38] is a questionnaire that attempts to

identify the participants’ responses to immersive media. The immersive media can be

something watched similar to a movie, something played such as a video game, something

read like a novel, or anything that keeps the person's attention. It scores the participant in four

main factors. The factors are focus, involvement, emotion, and game. Focus measures how

easily the participant focuses on the instrument and disconnects from what is happening

around them. Involvement weighs how likely the participant feels as if they are part of what is

going on in the environment. Emotion estimates how emotional the person reacts to the events

in the media. Games assess how inclined the person is to make a game out of their situation

and increase the enjoyability or competitiveness of the task.

ITQ was initially designed by Witmer and Singer [37]. UQO Cyberpsychology Lab [38] have

simplified the original questionnaire from 29 to 18 questions by removing redundant ones and

updating the scoring of each attribute accordingly. The participants answer questions with a

score ranging from one to seven, where each question focuses on one factor, and the score in

each factor is calculated as follows:

 𝑄𝑁 = 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑁 (1)

 𝐹𝑜𝑐𝑢𝑠 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑄1, 𝑄2, 𝑄3, 𝑄4, 𝑄5) (2)

 𝐼𝑛𝑣𝑜𝑙𝑣𝑒𝑚𝑒𝑛𝑡 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑄4, 𝑄5, 𝑄10, 𝑄12, 𝑄18) (3)

 𝐸𝑚𝑜𝑡𝑖𝑜𝑛 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑄11, 𝑄15, 𝑄16, 𝑄17) (4)

 𝐺𝑎𝑚𝑒𝑠 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑄6, 𝑄9, 𝑄14) (5)

The participants are asked to fill in the ITQ based on themselves and not the prototype. Its

results are not used to evaluate the prototype but are used to identify if any statistically

significant difference exists between the two focus groups and attempt to find any correlation

between these factors and other attributes of the framework or the prototype.

4.2.2 Presence Questionnaire (PQ)

Presence Questionnaire (PQ) is another questionnaire designed by Wither and Singer [37].

The main focus of this questionnaire is to investigate the sense of presence in a virtual

environment. The questionnaire is conducted in reference to any specific VR experience. For

the study, it is utilized to understand the strengths and weaknesses of the MRSysML

prototype’s virtual environment variant.

PQ includes 32 questions, which the participants answer with a score from one to seven. The

original design suggested computing seven unique factors to evaluate the presence, but Witmer

et al. [39] have discovered that the correlation deemed some factors unnecessary and assessed

using four distinct factors is more beneficial. These factors are involvement, sensory fidelity,

adaptation and immersion, and interface quality. The scores of each factor are calculated as

follows:

 𝑄𝑁 = 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑁 (6)

 𝐼𝑛𝑣𝑜𝑙𝑣𝑒𝑚𝑒𝑛𝑡 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑄1, 𝑄2, 𝑄3, 𝑄4, 𝑄6, 𝑄7, 𝑄8, 𝑄10, 𝑄14, 𝑄17, 𝑄18, 𝑄29) (7)

 Sensory Fidelity = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑄5, 𝑄11, 𝑄12, 𝑄13, 𝑄15, 𝑄16) (8)

 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 & 𝐼𝑚𝑚𝑒𝑟𝑠𝑖𝑜𝑛 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑄9, 𝑄20, 𝑄21, 𝑄24, 𝑄25, 𝑄30, 𝑄31, 𝑄32) (9)

 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑄19, 𝑄22, 𝑄23) (10)

23

Involvement is how inclusive the virtual environment feels to the user. Sensory fidelity

evaluates the precision of their senses regarding the events happening and their actions.

Adaptation and immersion determine how realistic the environment feels and how hard it is to

adapt to the virtual experience. Interface quality weighs how intuitive the user interface is.

The participants are asked to complete the questionnaire based solely on their experience using

MRSysML in a VR environment. It is used as a general evaluation of the experience and in

correlation with the System Usability Scale. The result is also evaluated to see if there is a

statistically significant difference in the experience of the focus groups on any factor.

4.2.3 System Usability Scale

System Usability Scale (SUS) [40] is a questionnaire designed by Brooke that estimates the

usability of a system in relation to its applicability, understandability, and ease of use. It

consists of 10 statements with a score of one to five, where one is equivalent to strongly

disagree, and five is equivalent to strongly agree. The consecutive questions alternate positive

and negative statements starting with positive. The responses are used to determine the single

factor of usability. The formulas to calculate the usability score ranging from 0 (worst) to 100

(best) are as follows:

 𝑄𝑁 = 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑁 (11)

 𝑆+ = 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒 = 𝑄1 + 𝑄3 + 𝑄5 + 𝑄7 + 𝑄9 (12)

 𝑆− = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒 = 𝑄2 + 𝑄4 + 𝑄6 + 𝑄8 + 𝑄10 (13)

 𝑆𝑈𝑆 𝑆𝑐𝑜𝑟𝑒 = (20 + 𝑆+ − 𝑆−) × 2.5 (14)

The participants are asked to fill out the SUS questionnaire regarding MRSysML and

2DSysML. A comparative analysis compares the focus groups’ scores and two environments.

Grading and ratings in accordance with Sauro and Lewis [42], and Bangor et al. [43] [44] are

applied to measure the usability of the prototypes on a generalized scale.

The most recent commonly used grading system for SUS score is the Curved Grading Scale

(CGS), defined by Sauro and Lewis [42]. They studied hundreds of studies with thousands of

individual responses to calculate the CGS. The CGS follows the common grading scale with

letter grades F, D, C, B, and A with plus or minus for intermediate grades. The grading scale

and their percentile ranges are listed in Table 2.

Table 2 – Grades of SUS by CGS and percentile of scores by Sauro and Lewis.

Grade Threshold Percentile

A+ 84.1-100 96-100

A 80.8-84.0 90-95

A- 78.9-80.7 85-89

B+ 77.2-78.8 80-84

B 74.1-77.1 70-79

B- 72.6-74.0 65-69

C+ 71.1-72.5 60-64

C 65.0-71.0 41-59

C- 62.7-64.9 35-40

D 51.7-62.6 15-34

F 0.0-51.7 0-14

In their early work, Bangor et al. studied over 2,300 SUS surveys [43] to define acceptability

ratings and around 1,000 SUS surveys [44] to give ratings to different scores. They compared

the surveys in environments similar to web interface applications, desktop applications, and

24

cellphone equipment. They separate acceptability ratings using quartile ranges of the results

into not acceptable range, marginal low range, marginal high range, and acceptable range, with

marginal meaning the product requires improvements to be satisfactory. The separation of low

and high marginal ranges is done at the end of the first quartile range, with an SUS score of

50. They have also defined adjective ratings as worst imaginable, awful, poor, OK, good,

excellent, and best imaginable. All ratings except the worst imaginable and awful are found to

be significantly different, and awful ratings joined into the worst imaginable rating. The

acceptability ranges and adjective ratings are quantified in Table 3 and Table 4.

Table 3 – Acceptability rating ranges defined by Bangor et al. [43].

Acceptability Rating Range

Acceptable 70-100

Marginal (High) 60-70

Marginal (Low) 50-60

Not Acceptable 0-50

Table 4 – Adjective rating mean values and standard deviations defined by Bangor et al. [44] based on the number

of survey results with that rating.

Adjective Rating Survey Count Mean Value Standard Deviation

Best imaginable 16 90.9 13.4

Excellent 289 85.5 10.4

Good 345 71.4 11.6

OK 211 50.9 13.8

Poor 72 35.7 12.6

Awful 22 20.3 11.3

Worst imaginable 4 12.5 13.1

4.2.4 User Experience Questionnaire

The User Experience Questionnaire (UEQ) is designed by Laugwitz et al. [41] as a way of

determining the user’s experience when using a product, it contains a total of 26 attribute pairs,

each including two ends of a measurement. Three examples of such pairs are annoying and

enjoyable, complicated, and easy or conservative and innovative. Attractiveness is an overall

scale that determines whether the user has liked the product. Perspicuity is how quickly the

user adapted to the product and learned to use it. Efficiency is how easy it is to use the product.

Dependability is the measurement of the sense of control over the product. Stimulation is how

exciting and enjoyable the product is to use. Novelty determines the uniqueness of the

experience. Each attribute is assigned to one scale, and the score on each scale is determined

based on these attributes alone. The number of attributes per scale is summarized in Table 5.

Table 5 – Distribution of UEQ attributes per scale in accordance with Laugwitz et al. [41].

Attractiveness Perspicuity Efficiency Dependability Stimulation Novelty

6 4 4 4 4 4

Schrepp et al. [45] defined a benchmark for grading the attributes. To calculate a score for

each scale, they designed a matrix transform that would change the value from a range of one

to seven to a range of negative three to positive three. They also flipped the scores if the left

side of the pair had a positive meaning instead of the right side. The final score of each scale

is calculated by averaging the score of each related attribute. Schrepp et al. gathered a dataset

of 21,175 responses from 468 unique studies to calculate percentile thresholds for each scale.

They have defined six ranges and assigned adjective grades for each range. These grades are

25

bad, below average, above average, good, and excellent. Their findings also suggest that while

the possible range of scores varied from negative three to positive three, in the application, the

scores would be in the range from negative one to positive two and a half. The grades,

percentiles, and ranges for each scale are provided in Table 6.

Table 6 – Grades, percentiles, and ranges for each scale in the benchmark by Schrepp et al. [45].

Grade Percentile Attractiveness Perspicuity Efficiency Dependability Stimulation Novelty

Excellent 90-100 > 1.84 > 2.00 > 1.88 > 1.70 > 1.70 > 1.60

Good 75-90 1.58-1.84 1.73-2.00 1.50-1.88 1.48-1.70 1.35-1.70 1.12-1.60

Above Avg. 50-75 1.18-1.58 1.20-1.73 1.05-1.50 1.14-1.48 1.00-1.35 0.70-1.12

Below Avg. 25-50 0.69-1.18 0.72-1.20 0.60-1.05 0.78-1.14 0.50-1.00 0.16-0.70

Bad 0-25 < 0.69 < 0.72 < 0.60 < 0.78 < 0.50 < 0.16

The participants are asked to fill in UEQ twice, once for MRSysML and again for 2DSysML.

The results from both focus groups and for both prototypes are compared to find any

statistically significant difference.

4.3 Open-Ended Questions

The participants are asked to answer four open-ended questions that encapsulate the broad

experience they had. The first question asked for the strong and improvable areas of applying

MBSE in a VR or MR environment. The second question asked which environment, VR, MR,

or Desktop, they would prefer to work in and why. The third question asked which input

system (keyboard, mouse, controller, or hand interaction) they preferred to work with and why.

The last question asked what improvements they would like to see in such a prototype or

framework. The answers gathered are used in correlation with the standard questionnaires and

as possible groundwork for future improvements.

4.4 Determining Statistical Significance

To evaluate the prototype and framework using the scores from the standard questionnaires, it

is crucial to understand which data gathered are different in comparison. Statistical

significance allows the researchers to determine if the data are different enough to be

significant where the data are consistent with the null hypothesis. The consistency of the data

is measured using the p-value with 0.05 as the threshold for statistical significance. Since the

data gathered are not normally distributed, usage of parametric tests such as independent

sample t-test and paired samples t-test are not applicable. Wilcoxon Signed-Rank Test [46] is

used for dependent datasets and Mann-Whitney U-Test [47] is used for independent datasets

are applied. The non-parametric tests result in Z-scores, which are converted to p-values. The

critical threshold of the Z-score for a two-tailed p-value of 0.05 is roughly 1.96. Any absolute

Z-score above this threshold is considered statistically significant.

For this thesis, the calculations for statistical significance are done using the Social Science

Statistics website’s pre-defined Wilcoxon Signed Rank Test Calculator [48] and Mann-

Whitney U Test Calculator [49].

4.4.1 Wilcoxon Signed-Rank Test

Wilcoxon Signed-Rank Test, also known as Wilcoxon Test or Wilcoxon T-Test, is proposed

by Frank Wilcoxon in 1945 [46]. This non-parametric test is used to find significant

differences in dependent samples from two datasets that are not normally distributed. For

26

example, participants’ SUS scores for MRSysML and 2DSysML are compared as paired

samples. The absolute value of the difference in each pair is ranked starting with one and going

up to the number of paired samples. The difference between the total of positive and negative

ranks should satisfy the null hypothesis. The Z-score is calculated using the following

formulas. The critical W value for a Z-score above 1.96 with 15 participants is 25, and with

30 participants, it is 137.

 𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑖𝑟𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 (15)

 𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑎𝑛𝑘𝑠 𝑤𝑖𝑡ℎ 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 (16)

 𝑐𝑖 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑡 𝑅𝑎𝑛𝑘 𝑖 (17)

 𝑅+ = 𝑆𝑢𝑚 𝑜𝑓 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑛𝑘𝑠 (18)

 𝑅− = 𝑆𝑢𝑚 𝑜𝑓 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑛𝑘𝑠 (19)

 𝑊 = 𝑚𝑖𝑛(𝑅+, 𝑅−) (20)

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 = 𝜇𝑊 =

𝑛 ∙ (𝑛 + 1)

4
 (21)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝜎𝑊 =
√𝑛 ∙ (𝑛 + 1) ∙ (2𝑛 + 1) − ∑

𝑡𝑖
3 − 𝑡𝑖

2
𝑘
𝑖=1

24

(22)

𝑍 =

𝑊 − 𝜇𝑊

𝜎𝑊

 (23)

4.4.2 Mann-Whitney U-Test

Mann-Whitney U-Test, also known as Mann-Whitney-Wilcoxon, is proposed by Henry Mann

and Donald Ransom Whitney in 1947 [47]. This non-parametric test is used to find significant

differences in two non-dependent datasets with equal or unequal number of samples measuring

the same score. This test aims to calculate a U-value based on the number of samples and the

sum of the rank for the dataset. The Z-score is calculated based on the lesser U-value, expected

value, and standard deviation of the joint dataset. For example, focus groups’ PQ scores are

compared using this test. The Z-score is calculated using the following formulas. The critical

U value for a Z-score above 1.96 with 15 participants is 64.

 𝑛1 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑓𝑟𝑜𝑚 𝐹𝑖𝑟𝑠𝑡 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 (24)

 𝑛2 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑓𝑟𝑜𝑚 𝑠𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 (25)

 𝑅1 = 𝑆𝑢𝑚 𝑜𝑓 𝑅𝑎𝑛𝑘𝑠 𝑓𝑜𝑟 𝐹𝑖𝑟𝑠𝑡 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 (26)

 𝑅2 = 𝑆𝑢𝑚 𝑜𝑓 𝑅𝑎𝑛𝑘𝑠 𝑓𝑜𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 (27)

𝑈1 = 𝑛1 ∙ 𝑛2 +

𝑛1 ∙ (𝑛1 + 1)

2
− 𝑅1 (28)

𝑈2 = 𝑛1 ∙ 𝑛2 +

𝑛2 ∙ (𝑛2 + 1)

2
− 𝑅2 (29)

 𝑈 = min (𝑈1, 𝑈2) (30)

 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 = 𝜇𝑈 =
𝑛1 ∙ 𝑛2

2
 (31)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝜎𝑈 = √
𝑛1 ∙ 𝑛2 ∙ (𝑛1 + 𝑛2 + 1)

12
 (32)

𝑍 =

𝑈 − 𝜇𝑈

𝜎𝑈

 (33)

27

CHAPTER 5

RESULTS

5.1 Immersive Tendencies Questionnaire Results

The data collected from SE and IAGD focus groups are depicted as box plots in Figure 19.

Since the results from both groups are independent and the distribution is not a normal

distribution, the results are compared using the Mann-Whitney U Test to find any statistically

significant difference. The statistical information is shown in Table 7.

Figure 19 – Box plots of ITQ results from both focus groups are shown side by side, with the Systems Engineering

focus group on left and interactive applications and game development focus group on the right.

Table 7 – Mean Value and Mann-Whitney U Test results for immersive tendencies questionnaire comparing

systems engineering focus group and interactive applications and game development focus group.

Factor Mean (SE) Mean (IAGD) U value Z-score p-value

Focus 4.91 5.04 101.5 0.436 0.660

Implication 4.57 4.35 101.0 0.456 0.646

Emotion 4.03 5.15 61.0 2.115 0.034

Games 3.16 4.29 63.0 2.032 0.042

The differences and variances of focus and implication factors have Z-scores below 1.96 and

p-values above 0.05, which indicates that the differences between these factors are not

statistically significant. However, the differences in the emotion and games factors are

statistically significant.

5.2 Presence Questionnaire Results

SE and IAGD focus groups’ responses to the PQ regarding MRSysML in the VR environment

are depicted as box plots in Figure 20. Since the results from both groups are independent and

the distribution is not a normal distribution, the results are compared using the Mann-Whitney

28

U Test to find any statistically significant difference. The statistical information is shown in

Table 8.

Figure 20 – Box plots of PQ results from both focus groups shown side by side, systems engineering focus group

on left and interactive applications and game development on the right.

Table 8 – Mean Value and Mann-Whitney U Test results for presence questionnaire comparing systems engineering

focus group and interactive applications and game development focus group.

Factor Mean (SE) Mean (IAGD) U value Z-score p-value

Involvement 5.60 5.24 81.5 1.265 0.204

Sensory Fidelity 4.91 5.12 89.5 0.933 0.352

Adaptation / Immersion 5.83 5.55 93.0 0.788 0.430

Interface Quality 4.16 3.56 78.0 1.410 0.159

The differences and variances of all factors have Z-scores below 1.96 and p-values above 0.05,

indicating that none are statistically significant.

5.3 System Usability Scale Results

The system usability scale (SUS) scores are put through comparative analysis in two separate

ways. Firstly, the scores of both groups are compared. Since the distribution is not a normal

distribution, and the two groups are independent, the Mann-Whitney U Test is applied to find

any statistically significant difference and variance. Secondly, each focus group and a joint

dataset of both groups are compared regarding MRSysML and 2DSysML. While the

distribution is not a normal distribution, the samples are paired based on the participant. The

Wilcoxon Signed-Rank Test is applied to investigate statistically significant differences and

variances.

The mean values of either focus group’s SUS score and the joint datasets’ SUS scores are

compared within the scope of the CGS by Sauro and Lewis [42] and acceptability and adjective

ratings by Bangor et al. [43] [44] to put a generalized perspective on the usability of the

prototypes and framework.

The SUS scores by SE focus group, IAGD focus group and joint dataset for MRSysML and

2DSysML prototypes are depicted in Figure 21.

29

Figure 21 – Box plots of SUS scores for either group and joint dataset, systems engineering focus group on left and

interactive applications and game development in the middle and joint dataset on the right.

The SUS score comparison based on focus groups is investigated using the Mann-Whitney U

Test since the focus groups are independent, and the scores are not of a normal distribution.

The mean values per focus group and p-value for both prototypes are listed in Table 9.

Table 9 – Mean Value and Mann-Whitney U Test results for SUS scores comparing systems engineering focus

group and interactive applications and game development focus group.

Prototype Mean (SE) Mean (IAGD) U value Z-score p-value

2DSysML 88.0 79.3 71.0 1.701 0.089

MRSysML 76.7 69.5 71.5 1.680 0.092

SUS scores by both groups show a statistically significant difference and variance in favor of

2DSysML. The mean difference in scores is 11.3 for the SE focus group and 9.8 for the IAGD

focus group.

The SUS score comparison based on prototypes is evaluated using the Wilcoxon Signed-Rank

Test since the scores for either prototype can be paired based on the participant, and the scores

are not of a normal distribution. The mean value per prototype and p-value for each focus

group and joint dataset are listed in Table 10.

Table 10 – Mean Value and Wilcoxon Signed-Rank Test results for SUS score for prototypes by systems

engineering focus group, interactive applications and game development focus group, and joint dataset.

Dataset Mean (2DSysML) Mean (MRSysML) W value Z-score p-value

SE 88.0 76.7 14.0 2.612 0.009

IAGD 79.3 69.5 20.5 2.243 0.025

Joint 83.7 73.1 67.5 3.393 0.001

SUS score difference and variance for both prototypes are statistically significant independent

of the focus group.

Based on the SUS score CGS by Sauro and Lewis [42], the MRSysML is a B- grade tool

within the 65-69 percentile. However, within the IAGD focus group’s perspective, it is

lowered to a C grade tool, and within the SE focus group’s perspective, it is increased to a B

0

 0

20

30

40

 0

 0

 0

 0

 0

 00

System Usability Scale

(SE)

2DSysML MRSysML

0

 0

20

30

40

 0

 0

 0

 0

 0

 00

System Usability Scale

(IAGD)

2DSysML MRSysML

30

grade. On the other hand, 2DSysML is an A grade tool according to the joint dataset, A+ for

the SE focus group and A- according to the IAGD focus group. The acceptability rating,

according to Bangor et al. [43], is Acceptable for all datasets and prototypes except for

MRSysML based on the IAGD focus group, which has a mean value of the High Marginal

range. The adjective rate, according to Bangor et al. [44], is rated closest to Excellent for the

2DSysML prototype and rated closest to Good for MRSysML. The detailed graph of the grades

and ratings are shown in Figure 22 and Figure 23, respectively. A summary is listed in Table

11.

Figure 22 – Mean values of grades in accordance with Sauro and Lewis’ CGS [42] and the mean values of each

prototype and dataset.

Figure 23 – Mean values adjective ratings in accordance with Bangor et al. [44] and the mean values of each

prototype by dataset.

Table 11 – 2DSysML and MRSysML mean value grades according to CGS by Sauro and Lewis [42] and

acceptability and adjective ratings, according to Bangor et al. [43] [44].

Dataset
2DSysML MRSysML

Acceptability Adjective CGS Grade Acceptability Adjective CGS Grade

SE Acceptable Excellent A+ Acceptable Good B

IAGD Acceptable Good A- Marginal Good C

Joint Acceptable Excellent A Acceptable Good B-

31

5.4 User Experience Questionnaire Results

The benchmark graphics of prototypes by different focus groups are provided in Figure 24,

Figure 25, Figure 26 and Figure 27, respectively.

Figure 24 – UEQ benchmark [45] of MRSysML based on responses of the SE focus group.

Figure 25 – UEQ benchmark [45] of MRSysML based on responses of the IAGD focus group.

Figure 26 – UEQ benchmark [45] of 2DSysML based on responses of the SE focus group.

Figure 27 – UEQ benchmark [45] of 2DSysML based on responses of the IAGD focus group.

32

The UEQ scores for each scale differ based on the prototype and focus group. The scores and

ratings in each factor are summarized in Table 12. For both focus groups, 2DSysML is stronger

on the Perspicuity, Efficiency, and Dependability scales, while MRSysML is higher on the

Attractiveness, Stimulation, and Novelty scales.

Table 12 – Summary of UEQ benchmark [45] scores and ratings by prototype and focus group.

Attribute
2DSysML MRSysML

SE IAGD SE IAGD

Attractiveness 1.14 (Below Avg.) 0.76 (Below Avg.) 1.99 (Excellent) 1.21 (Above Avg.)

Perspicuity 2.23 (Excellent) 1.73 (Good) 1.73 (Good) 1.07 (Below Avg.)

Efficiency 1.98 (Excellent) 1.28 (Above Avg.) 1.27 (Above Avg.) 0.27 (Bad)

Dependability 1.72 (Excellent) 1.53 (Good) 1.58 (Good) 0.78 (Below Avg.)

Stimulation 0.78 (Below Avg.) 0.43 (Bad) 2.05 (Excellent) 1.72 (Excellent)

Novelty -0.48 (Bad) -0.43 (Bad) 1.70 (Excellent) 1.32 (Good)

5.5 Open-Ended Questions Answers

5.5.1 Strong and Improvable Areas of Using VR and MR for MBSE

The most common strong area is enjoyability, where the user has found the scenario and uses

the application to be enjoyable and wants to use the application further. The second most

common strong area is immersion, where the users find the experience helping them focus and

feel like a part of the environment. The third strong area is 3D viewing, where the users find

the depth that allows them to differentiate shapes and edges of diagram elements more easily.

The final strong area is intuitiveness, where the users feel similar to holding objects in real life

and can perform the scenario without requiring external help.

Two areas are tied for the most common improvable area. Text input difficulty, where users

find using the non-native keyboard difficult, and cumbersomeness of the general usage, where

the user felt they had to take more steps than necessary to achieve any specific goals. The third

most common improvable area is unfamiliarity, where the users are not experienced with using

VR or MR devices and have to overcome a learning curve. The fourth improvable area is

health concerns. The users hesitate to use the devices long-term due to possible ergonomic

issues and face certain health troubles such as neck pain or headaches.

The strong areas had more average participant responses than the improvable areas. The

number of responses for the most common strong and improvable areas are summarized in

Table 13.

Table 13 – Strong and improvable areas of applying MBSE in VR and MR environments and the number of

responses for each area.

Strong Areas Improvable Areas

Enjoyability (12) Cumbersomeness (11)

Immersion (11) Text Input Difficulty (11)

3D View (10) Unfamiliarity (8)

Intuitiveness (8) Health Concerns (5)

5.5.2 Work Environment Preferences

When asked about the preferred work environment, VR, MR, or desktop, an equal number of

participants answered that they preferred either environment. Four participants responded that

33

they preferred VR or MR for short-term work but the desktop environment for long-term work.

These four participants are marked as “depends”. Two participants do not specify preference

in either work environment. The graphic view of the work environment preferences is shown

in Figure 28.

Figure 28 – Pie chart of participants' work environment preferences.

5.5.3 Interaction Device Preferences

Regarding the interaction devices–controllers, hand or keyboard, and a mouse–the participants

favor the keyboard due to the cumbersomeness and unfamiliarity of a virtual keyboard.

However, some explain that designing with a controller is more enjoyable and interactive

compared to using a mouse. They have created their own category and suggested combining

controllers with physical keyboards would be their preference. Only four of the participants

preferred using their hands as the primary interaction method. The summary of the interaction

device preferences is shown in Figure 29.

Figure 29 – Pie chart of interaction device preferences of participants.

5.5.4 Participants’ Improvement Suggestions

Participants suggested multiple ways to improve the prototype in its current form. They have

not provided any improvement regarding the framework. The primary source of suggestions

is based on the look and feel of the prototype, such as changing the color of certain elements

and ordering of buttons or labels. The second most common advice is to add alternative text

input methods, such as a physical keyboard interacting during MR usage or speech-to-text.

Four of the participants said some texts are blurry, and an increased resolution could help with

34

such a problem. One participant suggested using improved hardware, such as Meta Quest 3,

to feel more comfortable. One participant proposed adding a panel to navigate diagram

elements, while another recommended that selection through the model’s diagram elements

can be beneficial. Finally, one participant indicated that collaborative work could be much

better in MR environments, with an increase in remote work and concurrent work not being

ideal in current MBSE applications. The suggestions are categorized and listed in Figure 30.

Figure 30 – Pie chart of the summary of participants’ improvement suggestions.

35

CHAPTER 6

DISCUSSION

Extended Reality (XR)–a term that simultaneously covers virtual, augmented, and mixed

reality–is becoming even more widespread with devices designed by large corporations. With

so many actors competing in this single field, technological advancements are also gaining

momentum. The technical specifications of these devices have become similar to cellphones

and many base-level laptops. With the increased processing power and storage, many

previously known desktop-only applications may be ported over to these devices. This study

proposes that modeling tools for MBSE can be used with VR or MR devices and investigates

the advantages and disadvantages of such applications. The outcomes of the research can be

gathered into five key points.

6.1 The Enjoyable Experience

The strongest point of the MRSysML compared to 2DSysML identified by the participants is

the enjoyable experience. They enjoyed spending their time in MR and VR when working on

the task. Even though the emotion scores and games scores of the SE group are significantly

lower, the number of participants listed enjoyability as the strength is roughly the same for

each group. The primary source of enjoyment originates from object manipulation. Compared

to using a mouse, being able to use hand interaction or hand-imitating controllers feels more

intuitive and allows the user to feel in control. Instead of observing the elements as small

windows on the screen, having them as virtual objects in the work environment can feel more

stimulating and attractive, which in turn increases the enjoyability of the process. However, it

should be noted that the enjoyability of the experience for the SE group may be biased by the

novelty of the experience of VR or MR. Many participants had no experience using any XR

devices and may find the experience of using the XR enjoyable instead of the actual

application.

The enjoyability of the product can assist the user in long-term work by reducing boredom.

Working on models for long hours can become repetitive and tiresome, with the added benefit

of a more enjoyable experience that may balance it out for a longer work period. An additional

advantage of the more enjoyable experience can be using this environment to train beginner

systems engineers. Gamification is a field that uses game features to incentivize the user to

complete certain tasks. Combining gamification and virtual environments can be an enhanced

method of training similar to research by Yigitbas et al. [26] [27].

6.2 Text Input Limitations

The primary issue faced for modeling in VR or MR environments is text input. All participants

were familiar with using keyboards and have been doing so for many years. There is an

experience bias towards using keyboards, and virtual keyboards do not feel the same way in

VR or MR. If the user is using hand interaction, there is no haptic feedback, and for controllers,

the kinds of haptic feedback that can be given may feel uncanny when typing. This may

frustrate the user and reduce the usability. Over a third of the participants noted this as the

weakness of the MRSysML prototype. All modeling languages rely heavily on the texts in the

diagram shapes or over the connector edges. Having difficulty entering this information is a

significant issue regarding adaptation of the framework in the industry.

36

There are alternative solutions to these problems that come with newer hardware. Firstly, some

of the latest AR and MR hardware can identify the room around the user as meshes and help

define a room-scale workspace. These virtual keyboards can be placed on the virtual mesh and

assist the user with an actual keyboard feeling. However, this may still struggle with haptic

feedback. A second alternative is integrating physical keyboards to work with these devices.

This can be done easily with devices such as Meta Orion or Snap Spectacles, where the virtual

elements are overlayed on the users’ visuals. For devices that employ spatial reconstruction

technologies to reconstruct the surroundings using cameras on the device, this can be more

troublesome since most devices have problems reconstructing objects nearby and struggle to

keep them in focus. The third alternative for text input is speech-to-text. Virtual assistants are

seen in everyday products such as phones, home hubs, and cars. It comes with any form of

new operating system and relies heavily on speech-to-text. The same technology can be used

to input text in any form of application. The primary limiting factor is that many corporations

decide to develop their own speech-to-text technology, which is commonly not open to the

public to implement anywhere and for commercial products might be costly. This requires

integrating the device’s specific speech-to-text feature in the application and increases the

workload development of the applications adapted to multiple devices.

6.3 The Usability and The User Experience

According to CGS by Sauro and Lewis [42] and the ratings by Bangor et al. [43] [44] the

prototypes are above average in general scales. However, 2DSysML has surpassed MRSysML

in SUS score by all participants. This highlights the general bias towards the desktop work

environment. Familiarity with the mouse and keyboard increases the efficiency of the

participant and allows them to complete their tasks more intuitively. While some participants

had experience with VR or MR devices, almost none had used its capabilities as a workspace,

and adaptation to the environment was necessary. For almost all participants from the SE focus

group, the fundamental actions, such as dragging an object, zooming in or out, and selecting,

had to be explained before the start of the test sessions.

Another subject that reduced usability is imprecise object manipulation. Having the 3D model

use the physics engine’s capabilities through MRTK2, the movements of the object are

smoother; however, some participants found it to be more troublesome than pleasing. There

are no capabilities to align any objects, causing the accelerating movement of objects to cause

alignment issues.

According to the acceptability rating by Bangor et al. [43], the SE group found the MRSysML

prototype acceptable, while the IAGD group found it marginal. The SE group finding the

prototype acceptable shows that the features required to develop SysML models are there, but

the marginal rating from the IAGD group shows that the user experience had certain

shortcomings. The UEQ benchmark [45] scores have shown that the MRSysML is more novel,

attractive, and stimulating, while 2DSysML is more dependable, efficient, and perspicuous.

Several aforementioned problems with textual input and object manipulation reduce the

dependability of the product. Unfamiliarity with the devices also reduces the perspicuity since

the user not just adapts to the prototype but to the environment as well. One of the expressed

improvements for the prototypes is to reduce the cumbersomeness of the user actions. Several

users stated that the number of steps to complete certain tasks felt more than necessary, and

the user experience should be improved to reduce the required number of actions. Several

possible improvements are adding additional selection methods, implementing shortcut

actions, supporting different model navigation methods, and displaying multiple diagrams

concurrently to adjust diagrams simultaneously. The lower score of interface quality of PQ

and the improvement suggestions to increase resolution and look and feel changes suggest that

the user interface can be improved upon.

37

6.4 Employability in the Industry

The VR and MR prototype, as it stands, can be used in industry as a basic modeling tool.

However, it lacks the wide range of language support and certain quality-of-life features that

are provided by commercial modeling tools. While the prototype may not become a

widespread tool in the industry, for large corporations that have modeling application products,

support for VR and MR can be explored following the findings of this thesis. The prototype

shows that while it performs worse compared to the desktop environment prototype, on a

global scale, the usability and efficiency are above-average products in different fields, and

with further investment, the tool may catch up or even surpass the available desktop variants.

Any newly developed tool – for utilizing VR or MR environments for MBSE should follow

the defined abstract architecture and should be inspired by the capabilities of the developed

framework. It can be developed as a standalone product that can exchange information with

other products or as a plug-in to the currently existing products.

6.5 General Hesitation Towards VR and MR Devices

Some of the responses to the open-ended questions have highlighted another issue in the

adaptation of XR devices for workspaces. Participants, mainly from the SE group, have raised

health concerns such as headaches or neck pain and found the devices’ price to make them

inaccessible. It is clear that these concerns are based on inexperience with the devices. It is not

correct to judge the devices based on a single sample. The types of VR or MR devices are vast.

There are certain MR glasses that weigh down to around 250 grams, and the prices of certain

commercially available devices can be as low as the cost of a base-level office laptop. The

prototype can be run on a newer model VR and MR device, which weighs roughly 503 grams

and has customized straps for different health problems and long-term usage. Either way, the

general hesitation seems to be a barrier to a more widespread adaptation.

38

39

CHAPTER 7

CONCLUSION AND FUTURE WORK

The continuously evolving fields of MBSE and XR complement one another with mutual

benefits. Systems engineering is shifting focus from document-based methodology to model-

based methodology to provide a holistic view in a simpler and more understandable practice,

with reduced redundant information and over-engineering problems. The XR devices are

expanding to newer fields, and workplaces are one of the key target areas. With the increasing

interest in VR and MR devices, systems engineers may be able to utilize these technologies as

an alternative to desktop environments. This study proposed a basic framework for using MR

or VR devices to conduct MBSE. It includes developing a monolithic MBSE tool prototype

supporting SysML–a general-purpose modeling language for systems–running on MR or VR

devices named MRSysML and another that runs on desktop environments named 2DSysML.

With assistance from 30 participants who have either systems engineering or interactive

applications and game development backgrounds, user testing sessions are conducted using

these prototypes. With an equal number of participants from both backgrounds, the experience

from these sessions’ participants evaluated the prototypes based on presence, usability, user

experience, and general opinions. The data collected suggest that the MR or VR variant of the

prototypes is a useful application for performing MBSE, providing an enjoyable experience

with possible improvements to increase efficiency. It should be noted that while the VR or MR

variant is acceptable, the desktop variant seems to get more attention and preference. There is

a bias towards using desktop environments due to familiarity and experience. It may not be

possible to change this in the short term, but for future generations, this may not be an issue.

The defined abstract framework can be applied to many types of prototypes and can be

expanded upon with additional features to incorporate similar to simulation, digital twin, or

collaborative work. It can be adjusted as a distributed software system with separate

applications conforming to each individual component or to utilize the stronger processing

powers of servers and use the devices solely for displaying models and obtaining user actions.

To the best of the author’s knowledge, there is no common framework in academia for

designing diagrams on VR or MR devices without requiring any third-party application, but

there are for visualization and simulation of the models. The abstract framework can be

implemented in a different software architecture, or the MRSysML can be improved upon to

build a fully functional framework with additional capabilities.

The groundwork done by this study highlights multiple issues that need to be considered for

the widespread utilization of MR and VR devices. The first one is the biases of the people

unfamiliar with these devices. There are certain hesitations towards the usability of MR and

VR devices for long-term work, which seems to originate from a lack of knowledge. The

second one is that the text input feels difficult with virtual keyboards and has to be replaced

with an alternative. Speech-to-text seemingly is the best alternative since almost all new

technologies seem to support such features.

Additional studies should be conducted to expand the usability of MBSE in VR or MR

environments. Due to the high enjoyability, combining gamification with MBSE can be a

strong training tool. Systems engineering, being an independent engineering discipline that

utilizes information from all engineering disciplines, creates a barrier to entry, and the barrier

40

can be surpassed with better interactive training methods other than learning by experience,

supplementary courses, or postgraduate education.

Collaborative work can be enhanced with the usage of MR devices. Being able to see the

avatars of other collaborators in real-time can improve the experience. Findings of Yigitbas et

al. [28] can be explored in the MBSE domain to see if any differences exist between software

design and systems design. The effectiveness of collaborative work done remotely over MR

devices should also be investigated.

41

REFERENCES

[1] R. Cloutier and M. Pennotti, “A brief history of systems engineering,” Systems

Engineering Body of Knowledge (SEBoK),

https://sebokwiki.org/wiki/A_Brief_History_of_Systems_Engineering

(accessed Oct. 26, 2024).

[2] “MIL-STD-498: SOFTWARE DEVELOPMENT AND

DOCUMENTATION.” Department of Defense, Washington D.C., 4

[3] M. Adedjouma, T. Thomas, C. Mraidha, S. Gerard, and G. Zeller, “From

Document-Based to Model-Based System and Software Engineering,” in Joint

Proceedings of EduSymp 2016 and OSS4MDE 2016, 2016, pp. 27–36

[4] A. W. Wymore, Model-Based Systems Engineering, 1st ed. CRC Press, 1993.

[5] J. Hugues, “About AADL,” Open AADL, http://www.openaadl.org (accessed

Oct. 26, 2024).

[6] “OMG Systems Modeling Language (OMG SysML).” Object Management

Group® Standards Development Organization (OMG® SDO), Nov. 2019

[7] “MIL-STD-4 : Military Standard System Engineering Management.”

Department of Defense, 1969

[8] “MILL-STD-4 A: Military Standard Engineering Management Notice .”

Department of Defense, 1995

[9] “MIL-STD-4 A: Military Standard Engineering Management Notice 2.”

Department of Defense, 2017

[10] “About systems engineering,” INCOSE, https://www.incose.org/about-

systems-engineering (accessed Oct. 26, 2024).

[11] “Our story,” MITRE, https://www.mitre.org/who-we-are/our-story (accessed

Oct. 26, 2024).

[12] Systems Engineering Guide. MITRE, 2014.

[13] G. Rebovich, “The Evolution of Systems Engineering,” in SysCon 2008 - IEEE

International Systems Conference, 2008

[14] I. G. Vargas and R. T. Braga, “Understanding System of Systems Management:

A systematic review and Key Concepts,” IEEE Systems Journal, vol. 16, no. 1,

pp. 510–519, Mar. 2022. doi:10.1109/jsyst.2020.3018068

[15] A. M. Madni and M. Sievers, “Model‐based systems engineering: Motivation,

current status, and research opportunities,” Systems Engineering, vol. 21, no. 3,

pp. 172–190, May 2018. doi:10.1002/sys.21438

42

[16] K. X. Campo et al., “Model‐based systems engineering: Evaluating perceived

value, metrics, and evidence through literature,” Systems Engineering, vol. 26,

no. 1, pp. 104–129, Oct. 2022. doi:10.1002/sys.21644

[17] H. Yang et al., “Research on visual simulation for complex weapon equipment

interoperability based on MBSE,” Multimedia Tools and Applications, vol. 83,

no. 5, pp. 13463–13482, Jul. 2023. doi:10.1007/s11042-023-15950-5

[18] B. Cameron and D. M. Adsit, “Model-based systems engineering uptake in

engineering practice,” IEEE Transactions on Engineering Management, vol.

67, no. 1, pp. 152–162, Feb. 2020. doi:10.1109/tem.2018.2863041

[19] M. Lutfi and R. Valerdi, “Virtual reality in Model Based Systems Engineering:

A review paper,” Communications in Computer and Information Science, pp.

197–205, 2020. doi:10.1007/978-3-030-60703-6_25

[20] A. Kande, thesis, 2011

[21] M. Lutfi and R. Valerdi, “Framework for integration of virtual reality into

model based systems engineering approach,” Lecture Notes in Networks and

Systems, pp. 131–139, 2021. doi:10.1007/978-3-030-80091-8_16

[22] M. Lutfi and R. Valerdi, “Integration of SysML and virtual reality environment:

A ground based telescope system example,” Systems, vol. 11, no. 4, p. 189, Apr.

2023. doi:10.3390/systems11040189

[23] R. Oberhauser, “VR-UML: The Unified Modeling Language in virtual reality

– an immersive modeling experience,” Lecture Notes in Business Information

Processing, pp. 40–58, 2021. doi:10.1007/978-3-030-79976-2_3

[24] R. Oberhauser, “VR-SysML: SysML Model Visualization and Immersion in

Virtual Reality,” in MODERN SYSTEMS 2022, 2022

[25] R. Oberhauser, “VR-SysML+Traceability: Immersive Requirements

Traceability and Test Traceability with SysML to Support Verification and

Validation in Virtual Reality,” International Journal On Advances in Software,

vol. 16, no. 2, pp. 23–35, Jun. 2023.

[26] E. Yigitbas, M. Schmidt, A. Bucchiarone, S. Gottschalk, and G. Engels,

“Gamification-based UML Learning Environment in virtual reality,”

Proceedings of the 25th International Conference on Model Driven

Engineering Languages and Systems: Companion Proceedings, vol. 2145, pp.

27–31, Oct. 2022. doi:10.1145/3550356.3559088

[27] E. Yigitbas, M. Schmidt, A. Bucchiarone, S. Gottschalk, and G. Engels,

“GAMOVR: Gamification-based UML Learning Environment in virtual

reality,” Science of Computer Programming, vol. 231, p. 103029, Jan. 2024.

doi:10.1016/j.scico.2023.103029

[28] E. Yigitbas, S. Gorissen, N. Weidmann, and G. Engels, “Collaborative software

modeling in virtual reality,” 2021 ACM/IEEE 24th International Conference on

Model Driven Engineering Languages and Systems (MODELS), pp. 261–272,

Oct. 2021. doi:10.1109/models50736.2021.00034

43

[29] “Unity Engine,” Unity, https://unity.com/products/unity-engine (accessed Oct.

26, 2024).

[30] B. Wagner, Overview - A tour of C#, https://learn.microsoft.com/en-

us/dotnet/csharp/tour-of-csharp/overview (accessed Oct. 26, 2024).

[31] What is Mixed Reality Toolkit 2, https://learn.microsoft.com/en-

us/windows/mixed-reality/mrtk-unity/mrtk2/?view=mrtkunity-2022-05

(accessed Oct. 26, 2024).

[32] “OMG Unified Modeling Language (OMG UML).” Object Management

Group® Standards Development Organization (OMG® SDO), Dec. 2017

[33] “OMG Object Constraint Language (OCL).” Object Management Group®

Standards Development Organization (OMG® SDO), Jan. 2012

[34] J. E. McDonough, “Singleton Design Pattern,” in Object-Oriented Design with

ABAP: A Practical Approach, 2017, pp. 137–145

[35] M. Richards, Software Architecture Patterns, st ed. O’Reilly Media, 20 .

[36] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software, 1st ed. Addison-Wesley Professional,

1994.

[37] B. G. Witmer and M. J. Singer, “Measuring presence in virtual environments:

A presence questionnaire,” Presence: Teleoperators and Virtual Environments,

vol. 7, no. 3, pp. 225–240, Jun. 1998. doi:10.1162/105474698565686

[38] “Immersive Tendencies Questionnaire.” UQO Cyberpsychology Lab, Mar.

2013

[39] B. G. Witmer, C. J. Jerome, and M. J. Singer, “The Factor Structure of the

presence questionnaire,” Presence: Teleoperators and Virtual Environments,

vol. 14, no. 3, pp. 298–312, Jun. 2005. doi:10.1162/105474605323384654

[40] J. Brooke, “SUS: A ‘quick and dirty’ usability scale,” Usability Evaluation In

Industry, pp. 207–212, Jun. 1996. doi:10.1201/9781498710411-35

[41] B. Laugwitz, T. Held, and M. Schrepp, “Construction and evaluation of A user

experience questionnaire,” Lecture Notes in Computer Science, pp. 63–76,

2008. doi:10.1007/978-3-540-89350-9_6

[42] J. Sauro and J. R. Lewis, Quantifying the User Experience. Elsevier Science,

2012.

[43] A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical evaluation of the

system usability scale,” International Journal of Human-Computer Interaction,

vol. 24, no. 6, pp. 574–594, Jul. 2008. doi:10.1080/10447310802205776

[44] A. Bangor, P. Kortum, and J. Miller, “Determining What Individual SUS Scores

Mean: Adding an Adjective Rating Scale,” Journal of Usability Studies, vol. 4,

no. 3, pp. 114–123, May 2009.

44

[45] M. Schrepp, A. Hinderks, and J. Thomaschewski, “Construction of a

benchmark for the User Experience Questionnaire (UEQ),” International

Journal of Interactive Multimedia and Artificial Intelligence, vol. 4, no. 4, p.

40, 2017. doi:10.9781/ijimai.2017.445

[46] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics

Bulletin, vol. 1, no. 6, pp. 80–83, Dec. 1945. doi:10.2307/3001968

[47] H. B. Mann and D. R. Whitney, “On a test of whether one of two random

variables is stochastically larger than the other,” The Annals of Mathematical

Statistics, vol. 18, no. 1, pp. 50–60, Mar. 1947. doi:10.1214/aoms/1177730491

[48] “The Wilcoxon signed-ranks Test Calculator,” Social Science Statistics,

https://www.socscistatistics.com/tests/signedranks/default2.aspx (accessed

Oct. 26, 2024).

[49] “Mann-Whitney U Test Calculator,” Social Science Statistics,

https://www.socscistatistics.com/tests/mannwhitney/default2.aspx (accessed

Oct. 26, 2024).

45

APPENDICES

APPENDIX A

A.1. ETHICAL APPROVAL

46

47

APPENDIX B

B.1. SUPPLEMENTARY FIGURES OF THE PROTOTYPES (PART 1)

Figure 31 – User using hand interaction to grab the top bar to move it around with view from both eyes.

Figure 32 – User defining a new actor diagram element with the name driver with view from both eyes

48

B.2. SUPPLEMENTARY FIGURES OF THE PROTOTYPE (PART 2)

Figure 33 – Visualization of use case diagram in MRSysML designed by the user with controller interaction method

with view from both eyes.

Figure 34 – Visualization of use case diagram in 2DSysML designed by the user.

