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Mechanical Engineering, METU

Assist. Prof. Dr. Hakan Çalışkan
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ABSTRACT

MILLING FORCE ESTIMATION USING ANGULAR DOMAIN
HARMONICS WITH KALMAN FILTER USING ACCELERATION DATA

İlme, Mert
M.S., Department of Mechanical Engineering

Supervisor: Assist. Prof. Dr. Hakan Çalışkan

Co-Supervisor: Prof. Dr. R. Tuna Balkan

November 2024, 82 pages

In order to make a contribution to the Industry 4.0 concept, today’s milling research

is mainly focusing on the identification of the cutting process. To identify the cut-

ting process, it is vital to know the cutting forces. Since directly measuring the force

is costly and inconvenient, there is a need for a simpler way to indirectly estimate

the cutting forces. In this thesis, a novel model-based estimation algorithm using

the acceleration data is proposed. The model is based on a angular domain force

model which consists of the harmonics at the orders of the tooth passing frequency.

The force model is converted into the acceleration model by the frequency response

function of the workpiece. The acceleration model is integrated into the Kalman fil-

ter. With the measured acceleration feedback, the Kalman filter estimates the cutting

force. The proposed method is verified with experimental data.

Keywords: Milling, Cutting Force Estimation , Kalman Filtering
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ÖZ

AÇISAL ALAN HARMONİKLERİ İLE FREZELEME KUVVETLERİNİN
İVME VERİSİ KULLANILARAK KALMAN FİLTRE İLE TAHMİN

EDİLMESİ

İlme, Mert
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Hakan Çalışkan

Ortak Tez Yöneticisi: Prof. Dr. R. Tuna Balkan

Kasım 2024 , 82 sayfa

Endüstri 4.0 konseptine katkı sağlamak amacıyla, günümüzde frezeleme araştırmaları

ağırlıklı olarak kesme sürecinin tanımlanmasına odaklanmaktadır. Kesme sürecini ta-

nımlamak için kesme kuvvetlerini bilmek kritik öneme sahiptir. Kuvvetin doğrudan

ölçülmesi maliyetli ve zahmetli olduğundan, kesme kuvvetlerini dolaylı olarak tah-

min edebilecek daha basit bir yönteme ihtiyaç vardır. Bu tezde, ivme verilerini kul-

lanarak yeni bir model tabanlı tahmin algoritması önerilmektedir. Model, diş geçiş

frekansı harmoniklerini içeren açısal alan kuvvet modeline dayanmaktadır. Kuvvet

modeli, iş parçasının frekans tepki fonksiyonu ile ivme modeline dönüştürülmüştür.

İvme modeli, Kalman filtresine entegre edilmiştir. Ölçülen ivme geri bildirimi ile Kal-

man filtresi kesme kuvvetini tahmin etmektedir. Önerilen yöntem, deneysel verilerle

doğrulanmıştır.

Anahtar Kelimeler: Frezeleme, Kesme Kuvveti Tahmini, Kalman Filtre
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CHAPTER 1

INTRODUCTION

The growing demand for raw materials, driven by increasing production and con-

sumption, has made their efficient use essential in the manufacturing industries. To

improve the efficiency, production processes have been digitized through technolo-

gies such as the Internet of Things (IoT), Artificial Intelligence (AI), Big Data Man-

agement, collectively known as Industry 4.0. These advancements transform ma-

chines into intelligent systems capable of autonomous analysis and decision-making,

leading to more efficient production, fewer errors, and reduced costs.

In the manufacturing field of production, milling is one of the most common machin-

ing method. Current research in milling focuses on controlling the cutting process to

achieve benefits such as extended tool life, reduced tool and tool change costs, con-

trolled vibration and noise levels, and health monitoring to minimize maintenance

issues. Controlling the cutting process also enhances surface finish quality and gives

the ability to optimize the parameters for an efficient and safe process. Understand-

ing the cutting forces in milling, which consist of tangential, radial, and axial compo-

nents, is essential for achieving those benefits. The most guaranteed way to obtain the

cutting forces is measuring them using dynamometers, or piezoelectric force sensors

which is known for their high accuracies and high bandwidths but it is known that

those measuring devices are costly. They often need special arrangements in terms of

mounting issues. Installing all the production line with dynamometers would be chal-

lenging due to those reasons. As a result, there is a need for more straightforward and

more cost-effective ways to monitor cutting forces and milling conditions. Instead of

directly measuring the force, it can be found by making estimations using other data

in the system. Today’s sensor technology and computational techniques are capable
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of offering precise and cost-effective solutions using sensor data. Therefore, in this

thesis, it is aimed to find a simpler, cost-effective indirect force estimation method

using other sensor data.

1.1 Literature Review

There are several approaches used in the literature to make a force estimation. They

differ from each other by the measured data and the estimation algorithm developed.

The mostly used data is the acceleration data measured with accelerometers. They

provide high bandwidth, simplicity in mounting and data processing. In the other

works, capacitive displacement sensors are used in addition to the accelerometers.

Some other researchers tried to use servo-data of the CNC such as feed torque or

feed current etc. and end up with low bandwidth solutions. Furthermore, it is shown

that the motor drive current can also be used to estimate the cutting forces. In this

thesis, due to their advantages over the others, the accelerometers are preferred for

the estimation process. In the acceleration-based estimation algorithms worked on in

the literature, the base mathematical model is the vibration model of the workpiece or

the spindle box. However, in this thesis, a force model is directly used in the basis of

calculations and is converted into the acceleration model. Therefore, a force model is

needed in this thesis. Before the estimation algorithm, the literature is scanned for a

suitable force model which can be properly related with acceleration and applicable

to an estimation algorithm.

1.1.1 Force Models

For the cutting force model in milling process, there exist different approaches in the

literature. Traditionally, in the first years of milling force modelling, Boston et al.

[1], Armarego and Brown [2] found an experimental way in which the basic process

variables are correlated with average force components. After Martellotti [3] revealed

that average chip thickness oscillates depending on cutter rotation ,the chip formation

model made popular to use semi-empirical and mechanistic models. Koenigsberger

and Sabberwal [4] extended Martellotti’s assumption by including factors of tool and

2



workpiece properties and improved its accuracy. Kline et al. [5] proposed a mech-

anistic model that calculates the cutting forces by separating the components of cut-

ting force into tangential, radial, and axial components based on chip thickness and

cutting coefficients which are decided empirically. In [6-8], the force is calculated

with convolution multiplication of basic cutting functions. The cutting coefficients

are empirically obtained. In those models, the harmonics of the cutting forces are

acquired and are available to be converted into time or angular domain. The basic

cutting functions simplify the force expression into the process parameters such as

cutter geometry, axial and radial depth of cut, spindle speed and feed rate. However,

these semi-empirical mechanistic models needs new preliminary experiments to de-

cide cutting coefficients for new cutters which makes them unuseful for different and

complex geometries as mentioned by Yucesan and Altintas [9]. Alternatively, there

exists force models depending on the mechanics of orthogonal cutting. Armarego

and Uthaichaya [10] and Altintas and Budak [11] use basic cutting properties from

orthogonal cutting tests to create a common database adaptable to different tool ge-

ometries and scenarios. This orthogonal database is then used for different cutting

operations with kinematic transformations.

Although they are out of scope of this thesis since no mathematical expression is

included, with the help of computational power, FEM-based models are used to obtain

the cutting force by Movahhedy et al. [12]. In those models, temperature and stress

issues can be examined in details. Lastly, Zhu et al. [13] and Khan et al. (2020) [14]

used artificial intelligence (AI) and machine learning (ML) approaches to find forces

in cutting process. Since they are computationally expensive, their usage is limited.

After examining the different approaches for force models in the literature, the most

useful method that suits best to the aim of this thesis is the convolution models devel-

oped as in [6-8]. Their simplicity and the flexibility in tuning the cutting coefficients

are the main reasons to move on with those works. The mathematical structure of

them will be discussed in the following chapters.

3



1.1.2 Estimation of Cutting Forces and Coefficients

For the estimation model there are several approaches in the literature. In plenty of re-

searches, regression methods are used. This statistical method is advantageous when

unknown dynamics exist in the system. It needs sufficient data to train or to model

the system. It may need recalibration for changing parameters. Next, some decom-

position methods are preferred when the signal is needed to be decomposed into its

components. It provides to work in frequency domain. Singular value decomposition

or Fourier transform are the common type of decomposition methods. There exists

regularization methods in order to get over the ill-conditioned situation due to DC

component between acceleration and force like Tikhonov regularization. Lastly, the

most common estimation method is the observer-based methods. The Kalman filter

is widely used for that purpose which gives the ability to make real-time estimations

and to satisfy robustness against the discrepancies in the system. For the conversion

from the measured data to force, a transformation method is needed. For this purpose,

the frequency response function of the dynamic system which is obtained by utilizing

a modal test is used. Depending on the transformed data, some algebraic equations

are also used in some cases.

In [15], Kakkassery and Uthayakumar used the measurements from servo-controller

of the machine. They collect the motor drive current and some CNC measurements

such as position, speed and torque and by removing the feed dynamics using fre-

quency response they estimate the force. At the end, they concluded their work as a

simpler approach with less bandwidth and accuracy compared to direct measurement

of force. In [16], Albertelli et al. used multiple sensors which are accelerometers and

displacement sensors mounted in the workpiece and spindle in order to estimate the

cutting forces and tool tip vibrations to check the surface quality. As the estimator,

they developed a model-based one according to the Kalman filter. In [17], Kıran and

Kayacan aimed to find the cutting force for flexible parts such as thin walled pieces by

measuring the dynamic force and eliminating the dynamics with inverse filtering. The

similar work is done by Altıntaş [18], making force to force identification between

tool tip and force sensor integrated in spindle. Using Kalman filter, structural modes

are aimed to be filtered and undistorted force is found. In [19], Li et al. made force
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estimation using accelerometers mounted on the spindle box. They used Tikhonov

regularization method which they improved to decrease the process time for estima-

tions. In their work, it is mentioned that considerable research has been done for force

identification however the important point is about process time without decreasing

the accuracy. In [20], Wang et al. used accelerometers mounted on spindle box to es-

timate the force. For the estimator, truncated singular value decomposition (TSVD)

method is applied. In [21], Zhou et al. designed a Kalman filter with the vibration

acceleration for dynamic cutting force. For the static component of force, they used

a displacement sensor mounted on the spindle. In [22], Patil and Gombi estimated

the force using acceleration data with singular value decomposition (SVD) method.

In [23], Joddar and Ahmadi estimated the force using the Augmented Kalman filter

with the vibration model of the workpiece. In [24], Powalka et al. made force esti-

mation with accelerometer and Tikhonov regularization technique. In [25], Kouguchi

and Yoshioka eliminated high frequency components of acceleration with an approx-

imation of sequential quadratic regression method. With the vibration model of the

spindle box, the force is estimated. In [26], authors used spindle acceleration and

motor current data to estimate the cutting forces.

After examining the different approaches for estimation algorithms used in the liter-

ature, the most useful method that provides the simplicity and accordance to the aim

of the thesis is chosen to be the observer-based Kalman filter method. Its simplicity

and the flexibility combined with the force model in tuning the cutting coefficients

are the main reasons to move on with the Kalman filter. The mathematical structure

will be discussed in the following chapters.

1.2 Scope of the Thesis

Overall, in the literature, the most common method to estimate the cutting force is

seen as using the vibration data measured with accelerometers. The main reasons

beyond the accelerometer preference are mainly the simplicity of them in terms of

mounting and data collection, and higher bandwidth compared to CNC or motor drive

data. In this thesis, accelerometer mounted on the workpiece is used for force estima-

tion.
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In the literature, the acceleration signal is commonly processed to eliminate the un-

necessary components and the vibration model is obtained by an impact test. The

vibrational characteristics of the spindle or workpiece is included in the estimation

algorithms. The transfer matrix between acceleration and milling force is usually ill-

conditioned. The common challenge in the previous work is about finding the DC

or low-frequency components of the force since the piezoelectric accelerometers are

not suitable for static measurement of the acceleration. This ill-condition is mostly

solved by regularization algorithms in the literature. Authors made improvements

on their algorithms to achieve the static component of the force accurately. Regu-

larization algorithms are straightforward and quick to implement providing a direct

relation between acceleration and force. They have low computational costs, however

in complex conditions their ability is limited. For changing or non-linear conditions

they need recalibration. In order to have more accurate estimation algorithm, the

observer-based estimation algorithms could be chosen. It requires an accurate pro-

cess model. Although they would be robust against smaller modelling errors and

noises, some discrepancies might cause poor performance. For more robust estima-

tion, the Kalman filter could be adapted to the process. It would behave more flexible

to the discrepancies. However, for the Kalman filter structure, an accurate process

and a measurement model should be constructed. In addition, those models should

not be very complex to avoid process time. In this thesis, the existing methodologies

for estimating cutting forces with acceleration data is reviewed and the advantages of

different estimation methods tried to be joined together. The simplicity of regulariza-

tion methods, the accuracy of observer-based models and the flexibility of Kalman

filter are collected in this work. In the thesis, acceleration is chosen to be used as

the measured data to estimate the cutting force. For this purpose, an accelerometer is

mounted on the workpiece. One novel part of this work different from the literature

is that the force is not estimated using the vibration model. A force model is directly

used in the basis of calculations for robustness and accuracy. For the force model,

Zheng et al.’s "Angle Domain Analytical Model for End Milling Forces" [8] is cho-

sen. This model offers a simple structured, precise, adaptable, and computationally

efficient way to calculate cutting force. Most importantly, it provides the harmonics

of the cutting forces in tooth passing frequencies as a function of cutter angle. It

is already known that the force harmonics occur in the tooth passing frequencies in
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case of no run-out. Using that fact, unnecessary calculations and transfer function

estimations can be neglected. Since a force model is used in the algorithm, no ad-

ditional work is needed for mean value estimation of force. Moreover, it provides

flexibility in tuning and including the cutting coefficients in the calculations. These

benefits make this force model particularly valuable to be used in estimation algo-

rithm. This force model was constructed with two cutting coefficients. In this thesis,

two edge coefficients are added to the force model to increase the accuracy as a nov-

elty. Next, to reflect the vibration characteristics of the workpiece, an impact hammer

test is performed. Instead of using transfer function identification or reverse filtering

algorithms to relate the force with acceleration as in the literature, the force model

makes it available to convert the force harmonics to the acceleration harmonics with

basic mathematical operations. Using the results of the modal test, the gains are mul-

tiplied and the phases are added to the force harmonics at tooth passing frequencies

and the acceleration harmonics can be found with less computational work. The ac-

celeration model is rearranged and adapted for the Kalman filter structure. The states

of the Kalman is chosen to be the cutting coefficients only. The measurement ma-

trix of Kalman consists of the multiplicators of acceleration harmonics. No discrete

conversion of transfer functions is needed in the Kalman. The Kalman output gives

the acceleration in angular domain. Running the Kalman filter with process and mea-

surement data, the cutting coefficients are adjusted by Kalman and the cutting force is

estimated using acceleration measurement for a specific cutter angle. The schematic

representation of the algorithm can be seen on Fig. 1.1.

Figure 1.1: Schematic Representation of the Proposed Algorithm
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The work is divided into two parts which are online and offline parts. The cutting

tests and data collection is the online part. Acceleration, tool angle and position,

force data are collected online. After, the estimation part using the data is the offline

part. Axial (ap) and radial (ae) depth of cut, entrance (θst) and exit (θex) angles and

FRF results are processed with the algorithm after the tests. The algorithm is suitable

for online identification, however it is planned as future work for now. The algorithm

is supported with numerical simulations and experimental tests at the end. The results

seem to be satisfying. By enhancing the understanding of milling forces, the study

aims to contribute to the literature with a novel force-model based estimation algo-

rithm consisting of two cutting and two edge coefficients for indirect estimation of

cutting force in milling using acceleration measurement. With the work, it is aimed

to improve manufacturing efficiency, reduce environmental impact, and lower the

manufacturing costs. The structure of the thesis is as follows.

In Chapter 1, a review of the existing methodologies in the literature is presented. In

order to use acceleration to reach the force, a force model has to be used in the basis

of the algorithm. Different approaches for force expressions are discussed. After,

the force should be related to the acceleration. Further acceleration mappings are

reviewed in the chapter. Generally, these methods are based on the vibration model

of the workpiece. Various milling force estimation models developed by different

authors are discussed. Finally, the estimation algorithm developed in this thesis is

compared with the literature work. A summary of the work is given.

In Chapter 2, the main force model used in this thesis is explained. The steps of the

force model derivation is given. Additionally, in this thesis, an improvement on the

force model is done to get more accurate force expression. The details and the deriva-

tion of improved part is also clarified. To validate the improvement for increasing

the accuracy, a cutting test is planned to compare the original force expression with

improved one and the real cutting forces. The results are compared and necessity of

the improvement on the force model is expressed.

In Chapter 3, an explanation is given about how the estimation algorithm is developed.

In previous chapter, the force model was derived. In this chapter, the force model is

combined with the workpiece dynamics and an expression for the acceleration model
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is established. The conversion from force to acceleration is done by using the force

harmonics and the frequency response gains and phases in each relevant frequencies.

The acceleration expression is obtained as a harmonic sum. By rearranging the accel-

eration expression, the system model is stated. Next, the Kalman structure expressed.

To validate the estimation algorithm and Kalman structure mathematically, a simu-

lation model is constructed in Matlab/Simulink. The results are discussed and the

important points about the algorithm is clarified.

In Chapter 4, mathematically verified algorithm is tried in real cutting tests. Test setup

is introduced and various test scenarios in different configurations are planned. After

the real cutting tests, the results are discussed. They are compared with each other.

In the last Chapter 5, an overall conclusion is done. The method, test results, their

accuracies and precisions are evaluated. The advantages and disadvantages compared

with other methods are discussed. The accuracies are debated with roots and causes.

Lastly, the possible improvements that can be made as a future work to the proposed

method is examined.

The proposed method offers substantial potential for improving milling process mon-

itoring and control without relying on direct force sensors. The approach could be

integrated into adaptive control systems, enhancing milling precision and extending

tool life. This study marks progress toward developing more flexible, sensor-efficient

solutions for milling applications.
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CHAPTER 2

MILLING FORCE MODEL

In milling, the tool is fed towards the workpiece. When one of the cutting edge of

the tool penetrates into the workpiece, a resistive contact force starts to rise which

is called the cutting force. In Fig. 2.1, the representation of the cutting tool and

workpiece interaction can be seen. X is assumed as the feed direction. Z is the axial

direction of the cutting tool. The tangential cutting force occurs at the point that the

cutting edge touches the workpiece in the tangent direction. The radial cutting force

occurs at the normal direction inline with the touching point and cutter center. The

axial force occurs at the Z direction. ϕ is the absolute spindle angle, which can be

noted as the angular position of any cutting edge with respect to any reference. θ is

the angular position of any cutting point with respect to same reference as ϕ. β is the

angular position of that cutting point with respect to the relevant cutting edge tip. The

derivation of force expression is done according to the given variables and coordinate

systems.

(a) Isometric View (b) Top View

Figure 2.1: One Flute Cutting Forces

11



The force models in the literature are based on the relation between cutter and chip

thickness which is expressed by Martelotti [3], where tc is average chip thickness,

and tx feed per tooth and θ cutter position. It is mentioned as a good approximation

in the literature.

tc = tx · sinθ (2.1)

Koenigsberger and Sabberwal [4] suggested that local tangential cutting force can be

expressed in terms of average chip thickness.

ft(θ) = kt · tc(dz) = kt · txsinθ(dz) (2.2)

As shown in Figure 2.1, (dz) is the infinitesimal chip width, kt is empirically de-

termined tangential cutting coefficient. In order to reflect whether the cutter is in

workpiece or not, a window function is described. θ1 and θ2 are entrance and exit

angles of cutter. 2.2 is combined with window function.

w(θ) = 1 for θ1 ≤ θ ≤ θ2; w(θ) = 0 otherwise

ft(θ) = kt · tc(dz) = kt · txsinθ(dz) · w(θ) (2.3)

Tlusty and MacNeil [27] and Fu et al. [28] related the radial and axial cutting forces

to tangential cutting force using cutting ratios.

fr(θ) = kr · ft, fa(θ) = ka · ft (2.4)

Based on the coordinate system as in Figure 2.1, the tangential, radial and axial forces

are transformed into rectangular coordinate system.


fx(θ)

fy(θ)

fz(θ)

 =


cosθ sinθ 0

sinθ −cosθ 0

0 0 1



ft(θ)

fr(θ)

fa(θ)

 (2.5)

The local cutting forces expressed in Eqn. 2.5 are normalized with maximum tangen-

tial cutting force (ft = kttx) to obtain the elementary cutting forces px, py, pz which

gives the cutting forces on unit cutting area.
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
px(θ)

py(θ)

pz(θ)

 =
1

kt · tx(dz)


fx(θ)

fy(θ)

fz(θ)

 (2.6)

Eqn. (2.3-2.6) can be rearranged that:


px(θ)

py(θ)

pz(θ)

 =


1 kr 0

−kr 1 0

0 0 ka



p1(θ)

p2(θ)

p3(θ)

 (2.7)

where

p1(θ) =
1

2
·sin(2θ) ·w(θ), p2(θ) =

1

2
·(1−cos(2θ)) ·w(θ), p3(θ) = sin(θ) ·w(θ)

The derived force equations are cutting forces for a unit area of tc · dz. Total cutting

force can be found with the integration along the entire cutting flute.
fx(ϕ)

fy(ϕ)

fz(ϕ)

 =

∫ ϕ

0


f̄x(θ)

f̄y(θ)

f̄z(θ)

 (2.8)

Combining Eqn. 2.6, 2.7 and 2.8, total cutting forces can be rewritten with the relation

θ = ϕ− β where β is the angular position of the cutting point with respect to its flute

tip.


fx(ϕ)

fy(ϕ)

fz(ϕ)

 = kt · tx


1 kr 0

−kr 1 0

0 0 ka

∫ ϕ

0


p1(ϕ− β)

p2(ϕ− β)

p3(ϕ− β)

 dz (2.9)

The axial increment (dz) should be related with the rotation of cutting flute. It can be

rewritten in terms of β as:

dz = bh ·dβ where bh =
R

tan(α)
for 0 ≤ β ≤ ap · tan(α)

R
; 0 otherwise

(2.10)

where bh is the tool geometry factor which gives the idea whether the cutting tool

edge is axially in contact with the workpiece or not, R is the cutter radius, α is the
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helix angle of cutter, ap is the axial depth of cut. By substituting Eqn. 2.10 into Eqn.

2.9 the total force expression could be derived for single tooth only. Including the N

cutting flutes to the force expression, the total cutting force can be rewritten as the

following equation.


fx(θ)

fy(θ)

fz(θ)

 = kt ·K · tx · bh
N−1∑
m=0

∫ 2mπ/N+β0

2mπ/N


p1(θ)

p2(θ)

p3(θ)

 · w(θ) · dβ (2.11)

in which

K =


1 kr 0

−kr 1 0

0 0 ka

 ,


p1(θ)

p2(θ)

p3(θ)

 =


sin 2θ

2

1−cos 2θ
2

sin θ

 , bh =
R

tanα
, β0 =

ap tanα

R
,

(2.12)

w(θ) =

1, for 2πk + θ1 < θ < 2πk + θ2 with k being an integer,

0, otherwise.
(2.13)

In [8], Zheng et al. used Eqn. 2.11 to give an analytical force model in angular

domain using Fourier series expansion. For the derivation of the analytical model,

two coordinate systems are utilized. The rectangular X − Y − Z coordinate system

is used for force expressions and R − ϕ − Z cylindrical coordinate system for the

rotating cutter as seen in Fig. 2.1.

The explicit functions in Eqn. 2.11 should be rewritten in Fourier series expansion.

To start with, the windowing function can be expressed as the following equation in

Fourier series.

w(θ) =
a0
2

+
∞∑
k=1

ak cos kθ +
∞∑
k=1

bk sin kθ, (2.14)

where

a0 =
θ2 − θ1

π
, ak =

sin kθ2 − sin kθ1
kπ

, bk =
cos kθ1 − cos kθ2

kπ
(2.15)

To include the axial engagement for each of the cutting flute, the spindle position

should be converted into cutter position.

θ = ϕ− β (2.16)
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Combining Eqn. 2.14 and 2.16 to the general force expression Eqn. 2.11 one can get

the force expression.
fx(ϕ)

fy(ϕ)

fz(ϕ)

 = kt ·K · tx · bh
∫ β0

0

N−1∑
m=0


p1

(
ϕ− β − 2mπ

N

)
p2

(
ϕ− β − 2mπ

N

)
p3

(
ϕ− β − 2mπ

N

)


×

{
a0
2

+
∞∑
k=1

ak · cos k
(
ϕ− β − 2kπ

N

)

+
∞∑
k=1

bk · sin k
(
ϕ− β − 2kπ

N

)}
dβ. (2.17)

Using the equations of:

N−1∑
k=0

sin

(
θ +

2kπ

N

)
=

N sin θ, if k is harmonics of N,

0, otherwise
(2.18)

N−1∑
k=0

cos

(
θ +

2kπ

N

)
=

N cos θ, if k is harmonics of N,

0, otherwise
(2.19)

the elementary cutting function p1(θ) can be written as:
∞∑
k=0

p1(ϕ− β − 2mπ

N
) = N · p1(ϕ− β) = N · sin(2θ)

2
(2.20)

Using the coefficients as:

an0 =
1

π

∫ θ2

θ1

f(θ) dθ, an =
1

π

∫ θ2

θ1

f(θ) · cos(nθ) dθ bn =
1

π

∫ θ2

θ1

f(θ) · sin(nθ) dθ
(2.21)

the Fourier series coefficients for p1(θ) can be written using Eqn. 2.20 such that:

an0 =
1

π

∫ θ2

θ1

f(θ) dθ =
1

π

∫ θ2

θ1

N · sin(2θ)
2

dθ =
N

2π

cos(2θ1)− cos(2θ2)

2
=

N

2
· b2

(2.22)

where b2 is the equation of bk with k = 2 in Eqn. 2.15. Multiplying an0 with a0
2

of

the window function where θ1 = 0 and θ2 = β0 from the integration of Eqn. 2.17,

DC component of the first elementary cutting function is expressed as:

Ap1
0 = an0 · a0 =

N

2
· b2 ·

β0

2
=

b2
4
·Nβ0 (2.23)

For coefficient an:

an =
1

π

∫ θ2

θ1

f(θ) · cos(nθ) dθ =
1

π

∫ θ2

θ1

sin(2θ)

2
· cos(nθ) dθ (2.24)
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Using the Product-to-Sum conversion of sine and cosine;

an =
1

2π

∫ θ2

θ1

sin(2θ) · cos(nθ) dθ =
1

2π · 2

∫ θ2

θ1

[sin(2θ + nθ) + sin(2θ − nθ)] dθ

=
1

2π · 2

∫ θ2

θ1

(sin[(n+ 2)θ] + sin[(n− 2)θ]) dθ

=
−1

2π · 2
·
[
cos[(n+ 2)θ]

n+ 2
+

cos[(n− 2)θ]

n− 2

]θ2
θ1

Ap1
k =

bk+2 − bk−2

2k
(2.25)

where Eqn. 2.25 is the equation of bk with n = k + 2 and n = k − 2 in Eqn. 2.15.

Integrating the harmonic multiplicator cosine of the coefficient ak where θ1 = 0 and

θ2 = β0 from the integration of Eqn. 2.17, that term becomes:∫ β0

0

cos[k ·(ϕ−β)]·dβ =

[
sin[k ·(ϕ−β)]

]β0

0

= sin[k ·(ϕ−β0)]−sin(k ·ϕ) (2.26)

Using the trigonometric addition identities Eqn. 2.26 is rewritten as;∫ β0

0

cos[k · (ϕ− β)] · dβ = 2 · cos[k · (ϕ− β0

2
)] · sin(−k · β0

2
) (2.27)

For coefficient bn:

bn =
1

π

∫ θ2

θ1

f(θ) · sin(nθ) dθ =
1

π

∫ θ2

θ1

sin(2θ)

2
· sin(nθ) dθ (2.28)

Using the Product-to-Sum conversion of sine and cosine;

bn =
1

2π

∫ θ2

θ1

sin(2θ) · sin(nθ) dθ =
1

2π · 2

∫ θ2

θ1

[cos(2θ − nθ)− cos(2θ + nθ)] dθ

=
1

2π · 2

∫ θ2

θ1

(−cos[(n− 2)θ]− cos[(n+ 2)θ]) dθ

=
−1

2π · 2
·
[
sin[(n− 2)θ]

n− 2
+

sin[(n+ 2)θ]

n+ 2

]θ2
θ1

Bp1
k =

ak−2 − ak+2

2k
(2.29)

where Eqn. 2.29 is the equation of bk with n = k + 2 and n = k − 2 in Eqn. 2.15.

Integrating the harmonic multiplicator sine of the coefficient bk where θ1 = 0 and

θ2 = β0 from the integration of Eqn. 2.17, that term becomes:∫ β0

0

sin[k · (ϕ− β)] · dβ =

[
−cos[k · (ϕ− β)]

]β0

0

= −cos[k · (ϕ− β0)] + cos(k · ϕ)
(2.30)
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Using the trigonometric addition identities Eqn. 2.30 is rewritten as;∫ β0

0

sin[k · (ϕ− β)] · dβ = 2 · sin[k · (ϕ− β0

2
)] · sin(k · β0

2
) (2.31)

The components in Equations 2.23, 2.25, 2.27, 2.29, 2.31 are derived for the first el-

ementary cutting function p1(θ). It is already known that the cutting functions have a

value for the harmonics of tooth number. Otherwise they become zero. Therefore, the

term k is replaced with k ·N . With the same calculation process, the angular domain

Fourier series expansions can be obtained for p2(θ) and p3(θ). Finally, substituting

them all into the Equation 2.17, the angular domain force expression can be expressed

as the following equation with q number of harmonics as in [8].
fx(ϕ)

fy(ϕ)

fz(ϕ)

 = kt ·K · tx · bh


b2
4

a0−a2
4

b1
2

Nβ0

+

q∑
k=1

sin

(
kNβ0

2

)


akN−2−akN+2

2k

2bkN−bkN−2−bkN+2

2k

akN−1−akN+1

k

× sin

(
kN

(
ϕ− β0

2

))

+


bkN+2−bkN−2

2k

2akN−akN−2−akN+2

2k

bkN+1−bkN−1

k

× cos

(
kN

(
ϕ− β0

2

))
(2.32)

The Eqn. 2.32 gives the x, y and z components of the cutting force, with empirically

determined kt coefficient and K ratio matrix through angular convolution modelling.

The net force consists of the sum of pre-determined number of harmonics. The inputs

of the force model in addition to cutting coefficients are the tool geometry and process

parameters such as depths of cut, entrance and exit angles.

The force expression derived in Eqn. 2.32 is providing to calculate the forces with

two cutting coefficients. In [7] and [29-31], it is mentioned that edge coefficients play

an important role in the modeling of milling forces. They ensure that the effects of

the tool’s edge geometry and its engagement with the workpiece are included in the

calculations. The edge coefficients are describing the edge and friction characteristics

of the tool and provide more accurate cutting force values. Therefore, in this thesis, it
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is decided to work with two cutting and two edge coefficients. As discussed before,

Eqn. 2.32 calculates the force with two cutting coefficients in angular domain. In [7],

Wang and Zheng rewrites the Eqn. 2.3 by adding the edge coefficients.

ft(θ) = kt · tx · sinθ + kte and fr(θ) = kt · kr · tx · sinθ + kte · kre (2.33)

The elementary cutting coefficients in Eqn. 2.7 is rewritten for x and y coordinates

by adding the edge coefficients as follows:px(θ)

py(θ)

 = tx ·

 1 kr

−kr 1

p1(θ)

p2(θ)

+

 1 kre

−kre 1

p3(θ)

p4(θ)

 (2.34)

where

p1(θ) =
1

2
· sin(2θ), p2(θ) =

1

2
· (1− cos(2θ)) (2.35)

p3(θ) = cos(θ), p4(θ) = sin(θ) (2.36)

In this thesis, as a novelty, the elementary cutting functions for edge coefficients

p3(θ) and p4(θ) are added into the angular domain convolution force model. Since

the concern of the work is x and y force, the expression of z force is neglected for

simplicity.fx(ϕ)
fy(ϕ)

 = kt ·K · tx · bh

 b2
4

a0−a2
4

Nβ0

+

q∑
k=1

sin

(
kNβ0

2

) akN−2−akN+2

2k

2bkN−bkN−2−bkN+2

2k

× sin

(
kN

(
ϕ− β0

2

))

+

 bkN+2−bkN−2

2k

2akN−akN−2−akN+2

2k

× cos

(
kN

(
ϕ− β0

2

))
(2.37)

As mentioned in [7], the edge parameters are independent of chip thickness which

cancels the multiplication of those terms with feed rate, tx. Therefore, tx term is

moved into the cutting coefficients terms which are first two rows of the matrices.

The Equation 2.37 is rewritten by adding elementary cutting functions of edge co-

efficients, multiplying feed rate with only cutting coefficient terms, combining kt

coefficient and K matrix in K4 matrix for coefficient simplicity. The elementary

cutting functions for edge coefficients given in Equation 2.36, have to be converted
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into Fourier series form in order to be combined to the force expression derived in

Equation 2.37. Following the Equations from 2.21 to 2.30, the elementary cutting

functions for edge coefficients can be transformed into Fourier harmonics and at the

end, the force can be expressed with two edge and two cutting coefficients as:

fx(ϕ)
fy(ϕ)

 = K4 · bh


tx·b2
4

tx·(a0−a2)
4

a1
2

b1
2

Nβ0

+

q∑
k=1

sin

(
kNβ0

2

)



tx·(akN−2−akN+2)

2k
)

tx·(2bkN−bkN−2−bkN+2)

2k

bkN−1+bkN+1

k

akN−1−akN+1

k

× sin

(
kN

(
ϕ− β0

2

))

+


tx·(bkN+2−bkN−2)

2k

tx·(2akN−akN−2−akN+2)

2k

akN+1+akN−1

k

bkN+1−bkN−1

k

× cos

(
kN

(
ϕ− β0

2

))


(2.38)

where the coefficient matrix is:

K4 =

 Kt Kr Kte Kre

−Kr Kt −Kre Kte


In order to validate the necessity of additional two edge coefficients, a real cutting

test with pre-known coefficients is conducted. The coefficients was found with aver-

age force method explained in [29] and given in Table 2.1. The process parameters

are as in Table 2.2. The cutting forces from Eqn.2.37 and Eqn.2.38 are calculated

using those parameters and compared in Figure 2.2 with real test force collected from

dynamometer.
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Table 2.1: Cutting and Edge Parameters for Cutting Test

Parameter Symbol Value Unit

Tangential Cutting Coefficient Kt 272.6 N/mm2

Radial Cutting Coefficient Kr 23.09 N/mm2

Tangential Edge Coefficient Kte 44.06 N/mm

Radial Edge Coefficient Kre 28.4 N/mm

Table 2.2: Process Parameters for Cutting Test

Parameter Symbol Value Unit

Spindle Speed Φ̇ 4500 rpm

Feed Speed tx 0.1111 mm/tooth

Cutter Diameter D 12 mm

Tooth Number N 3 -

Helix Angle α 45 deg

Depth of Cut ap 2 mm

Radial Depth of Cut ae 6 mm

Figure 2.2: Force Comparison
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The two cutting coefficient model is oscillating between 30 N and 0 N. As seen from

the difference of forces, it can be said that the dominant part of the cutting force for

this cutting case consists of the edge parameters. Adding the two edge coefficients

to the force model affected the force to oscillate between 80 N and -30 N as seen in

Figure 2.2. With the increasing number of harmonics, the simulation values can be

closer to the real experimental values. The calculation of cutting force including the

edge coefficients gives more accurate results as shown in Figure 2.2.
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CHAPTER 3

MILLING FORCE ESTIMATION MODEL

3.1 Milling Dynamics

After the mechanical interaction between tool and workpiece becomes steady, the

force starts to oscillate periodically for constant process parameters. This force causes

the workpiece to vibrate depending on its dynamic response characteristics which is

the Frequency Response Function. The FRF of the workpiece can be obtained with a

modal test.

The Frequency Response Function, FRF, is the characteristics of a system to a known

input. The input can be provided with an impact hammer or with a modal shaker and

the response is measured with a sensor. The sensor can be chosen according to the

type of the FRF. It can be accelerometer for accelerance which is acceleration per unit

force, velocity probe for mobility which is velocity per unit force or a displacement

sensor for receptance which is displacement per unit force. Accelerance and recep-

tance are the most common values to calculate frequency response functions. In this

study, accelerance is used to identify the workpiece.

In milling, the known input is the cutting force and the response is the acceleration.

The dynamic characteristics of the workpiece can be found and represented as a trans-

fer function. The acceleration due to cutting forces occurs according to the acceler-

ance of the workpiece. Mathematically, the cutting force multiplied with accelerance

gives the acceleration. Multiplication operation can be done in Laplace domain as

follows:

Y (s) = G(s) ·X(s)

where Y (s) is the output, G(s) is the transfer function and X(s) is the input. Rewrit-
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ing the multiplication according to milling cutting:

A(s) = Gacc(s) · F (s) (3.1)

where A(s) is the acceleration, Gacc(s) is the accelerance of workpiece and F (s) is

the cutting force.

In addition to Eqn. 3.1, the harmonics of force and acceleration can be related with

each other at specific frequencies using FRF. In other words, for a specific frequency,

the relation between acceleration and the force is a gain which can be taken from FRF

of the workpiece. It is valid for each frequency and can be expressed as:

|A(f1)| = |Gacc(f1)| · |F (f1)|

|A(f2)| = |Gacc(f2)| · |F (f2)|

...

|A(fn)| = |Gacc(fn)| · |F (fn)|

where f1, f2 and fn are the relevant frequencies.

In this study, the force expression developed in Chapter 2 is used. It does not in-

clude the run-out of the spindle, therefore the expression consists only the of the

harmonics at the orders of tooth passing frequency, which are the multiples of spindle

frequency multiplied with tooth number. Using the FRF of workpiece, for each order

of tooth passing frequency, the amplitudes of force harmonics found in Eqn. 2.38 are

multiplied with the gains of FRF at the related frequencies to find the acceleration.

Moreover, the phase delays of FRF should be added to the force harmonics’ phase

angles to find the phases of acceleration harmonics. Consequently, the acceleration

and force relation can be written as:

|A(fn)| = |G(fn)| · |F (fn)| (3.2)

∠A(fn) = ∠G(fn) + ∠F (fn) (3.3)

where A(fn) is the acceleration harmonics, F (fn) is the force harmonics from Eqn.

2.38 and G(fn) is the FRF gains for relevant frequencies. As an example, the gains

and the phase angles at the tooth passing frequencies used to convert the force har-

monics into the acceleration harmonics are the red marks on the Fig. 3.1.
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Figure 3.1: Tooth Passing Frequencies Marked on the FRF Results

Following the Equations 3.2 and 3.3, the acceleration which is derived using force

equation 2.38 and FRF can be expressed as:
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(3.4)
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ax(ϕ)
ay(ϕ)

 = K4 · bh

{
q∑

k=1

|G(fk)| · sin
(
kNβ0

2

)

{
tx·(akN−2−akN+2)

2k

tx·(2bkN−bkN−2−bkN+2)

2k

bkN−1+bkN+1

k

akN−1−akN+1

k

× sin

(
∠G(fk) + kN

(
ϕ− β0

2

))

+


tx·(bkN+2−bkN−2)

2k

tx·(2akN−akN−2−akN+2)

2k

akN+1+akN−1

k

bkN+1−bkN−1

k

× cos

(
∠G(fk) + kN

(
ϕ− β0

2

))}}

(3.5)

3.2 System Model

In the previous chapters, the force expression is given as explicit functions of cutting

process. After, in case of having FRF of the workpiece, it is clearly explained that how

the acceleration expression is derived. Consequently, the acceleration is expressed as

a function of some measure, known and unknown parameters.

Acceleration = f( ϕs, tx︸ ︷︷ ︸
Measured

, ϕst, ϕex, ap, ae, FRF︸ ︷︷ ︸
KnownPreviously

, Kt, Kr, Kte, Kre︸ ︷︷ ︸
Unknown

)

In the estimation part of the thesis, the Kalman filter will try to predict the cutting

force by iteratively solving the cutting coefficients. The state matrix of the system

consist of the cutting coefficients which are two shear and two edge coefficients.

x =
[
Kt Kr Kte Kre

]T
The states are assumed to be not changing with time, in other words, the coefficients

are not changing with time.

ẋ = 0 or in discrete form qk+1 = I · qk

If noise exists in system model:

qk+1 = Φ · qk + wk (3.6)
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The state equations can be written as following:

Φ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , q =


Kt

Kr

Kte

Kre

 (3.7)

qk+1 = Φqk, q̇ = 0 (3.8)

The measurement data is acceleration. All the acceleration calculations are included

in the measurement update equation. Measurement matrix (H) is relating the states

which are the coefficients with the measured acceleration. It includes the force model,

FRF gains and phases. Measurement matrix (H) can be expressed as follows by

rearranging Eqn. 3.5:
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(3.9)

where:
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H3 =
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3.3 Kalman Structure

Kalman filter is a common way of data fusion, which synthesizes the system’s dy-

namic model with sensor data to find the optimum state values for defined relation

of data and mathematical model. As explained in [32], it is an iterative solution to

discrete-data filtering. It is used to eliminate the effects of measurement noise and un-

certainties of the model. Kalman filter algorithm operates recursively in two phases

which are prediction phase and update phase.

In prediction phase, a priory prediction of states (q) and state covariance (P ) is done

using state transition matrix (Φ), initial or previous estimates (q0), process noise (w)

and process noise covariance (Q).

q−
k+1 = Φ · qk (3.10)

P−
k+1 = Φ ·Pk ·ΦT +Q (3.11)

After, the Kalman gain (K) is calculated using the state covariance (P ), measurement

matrix (H) which relates the estimated states with measurement data, and measure-

ment noise covariance (R).

Kk+1 = P−
k+1 ·H

T · (H ·P−
k+1 ·H

T +R)−1 (3.12)

In the update phase, the posterior estimate is done for states (q) and state covariance

(P ) using measurement data z, measurement matrix (H) and Kalman gain (K) in
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order to minimize the mean of squared error. Kalman filter balances the prediction

and measurement uncertainty and finds the optimum state variables.

qk+1 = q−
k+1 +Kk+1 · (zk+1 −H · q−

k+1) (3.13)

Pk+1 = (I−Kk+1 ·H) ·P−
k+1 (3.14)

In this study, Kalman filter is used to estimate the cutting forces using acceleration

measurement. For a basic Kalman filter structure, the states which are going to be

estimated should be separated from the equation set and should be written explicitly.

Moreover, since the Kalman filter measurement will be fed with time-series data, the

output of system model should also be in time-domain. In other words, measurement

matrix (H) and state vector (q) multiplication should give the output directly in time-

domain. Since the force calculation methods use the harmonics of the force in the

orders of tooth passing frequency, the summation of them should be done before

Kalman filter’s output calculation as in Eqn. 2.38. That is one of the reasons why that

force model is preferred in this thesis.

State matrix (q), state transition matrix (Φ), measurement data z and measurement

matrix (H) are given in the previous section. The states (q), are the cutting coef-

ficients. As the output of the Kalman filter, they are estimated depending on the

balance between measured and modelled acceleration. After, those coefficients are

used to calculate the estimated force using Eqn. 2.38.
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3.4 Simulation Model

In order to estimate the cutting forces using acceleration data and FRF of workpiece

using Kalman filter, a simulation model is created in MATLAB/Simulink R2020b. To

see the effects of workpiece dynamics to the solution, two models are built. In the

first model, in order to test the method with basic assumptions a simple second order

transfer function is proposed for the workpiece dynamics. In the second model, a

more complex workpiece dynamics is constructed. The complexity consists of more

than one peak in the bode magnitude plot and sideband frequencies in the results. The

transfer functions of the plants are given in Eqns. 3.15 and 3.16.

G1(s) =
0.067s2

s2 + 5.657s+ 2e6
(3.15)

G2(s) =
2.595e32s2

(4e9s8 + 1.425e13s7 + 2.639e18s6 + 6.131e21s5 + 5.254e26s4

+6.766e29s3 + 3.602e34s2 + 1.686e37s+ 6.919e41)

(3.16)

The bode magnitude plots can be seen in Figure 3.2 and Figure 3.3.

Figure 3.2: First Plant Bode Magnitude Plot
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Figure 3.3: Second Plant Bode Magnitude Plot

In Figure 3.4, a schematic representation of numerical simulation is built. The steps

for numerical simulation model beginning from force generation to the end force

estimation is summarized in that scheme.

Figure 3.4: Schematic Representation of Numerical Simulation

For the force generation, four parameters force model developed in this work is used

with a random set of two cutting, two edge parameters as in Table 3.1 and process

parameters as in 3.2. The generated force is seen in Figure 3.5.

31



Table 3.1: Cutting and Edge Parameters for Simulation Model

Parameter Symbol Value Unit

Tangential Cutting Coefficient Kt 700 N/mm2

Radial Cutting Coefficient Kr 300 N/mm2

Tangential Edge Coefficient Kte 25 N/mm

Radial Edge Coefficient Kre 35 N/mm

Table 3.2: Process Parameters for Numerical Simulation

Parameter Symbol Value Unit

Spindle Speed Φ̇ 3300 rpm

Feed Speed tx 0.1667 mm/tooth

Cutter Diameter D 12 mm

Tooth Number N 3 -

Helix Angle α 45 deg

Depth of Cut ap 2 mm

Radial Depth of Cut ae 6 mm

Figure 3.5: Generated Cutting Force for Simulation Model
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Using that force and two different workpiece dynamics, the acceleration data is gen-

erated for both model. Since the workpiece dynamics are constructed differently, the

generated acceleration data is different for each model whereas the exposed force is

the same. For the first model acceleration, the workpiece dynamics consists of one

natural frequency. The gains in other frequencies are negligible compared to the peak

gain. Therefore, the resultant acceleration also contains less number of dominant

harmonics and looks more periodic. In the second model acceleration, there exist

more than one natural frequencies in workpiece dynamics. The resultant acceleration

contains the summation of different dominant harmonics and it makes it harder to

dissolve its pattern from the plot. Before running the simulation, a random noise is

added to the generated acceleration data. The generated acceleration can be seen in

Figure 3.6 and Figure 3.7. The noisy acceleration data is used as the measurement

value in Kalman block.

Figure 3.6: First Simulation Plant Model Acceleration Data
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Figure 3.7: Second Simulation Plant Model Acceleration Data

For the Kalman estimation step, initial estimates for states, which are cutting and

edge coefficients (q0), state covariance (P ), measurement noise covariance (R) and

process noise covariance (Q) are chosen and given as input to Kalman block. The

measurement noise covariance is selected according to the random noise added to the

generated vibration and process covariance is tuned based on the performance of the

Kalman filter. The values are tabulated in Table 3.3. The structure of Kalman Block

is seen in Figure 3.8.

Table 3.3: Kalman Variables for Numerical Simulation

Parameter Symbol First Model Second Model

Measurement Covariance R 4 0.2

Process Covariance Q 0.5 0.25

3.5 Simulation Results

Kalman block finds the optimum cutting and edge coefficients which balance the mea-

surement acceleration data and calculated acceleration process data depending on the
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Figure 3.8: Simulink Scheme of Kalman

covariance values. Using those coefficients, the estimated acceleration is calculated

as an output of Kalman block and it is compared with measurement acceleration data.

In Figure 3.9 and Figure 3.10, it can be seen that Kalman filter estimates the acceler-

ation accurately.

Figure 3.9: First Model Generated and Estimated Acceleration
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Figure 3.10: Second Model Generated and Estimated Acceleration

When the states which satisfied the accurate acceleration estimates are checked, it is

seen in Figure 3.11 that the converged cutting and edge parameters differ from each

other in two models. They also differ from generated ones. The reason beyond this is

that in practice, same forces can be found with different set of cutting parameters. It

depends on the variables of the Kalman parameters. As a result of this, the converged

parameters are not expected to be the same in the simulations and tests. Therefore,

they can be called temporal parameters.
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Figure 3.11: Cutting Coefficient Comparison

The important point of the simulation is that the estimated forces should match with

each other and the generated force. Using the temporal cutting coefficients, the es-

timated forces of both model are compared with the generated force in Figure 3.12.

Figure 3.12: Simulation Models Force Comparison
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Table 3.4: Results of Simulation Models

Parameter
Generated

Force

First Model

Estimation

Second Model

Estimation

Peak Value 307.07 N 310.03 N 305.71 N

Peak Error - 1% 1%

RMS 200.05 207.27 157.26

RMS Error - 4% 21%

In Figure 3.12, it is seen that estimated force from acceleration data for both models

and generated force are in similar behaviours. The results are concluded in Table

3.4. The peak values of all forces are very close and the error is less than 1%. When

comparing the RMS force values it is seen that the RMS error of first basic model is

4%. The force profiles of first model and generated one are very close because the

workpiece has a basic dynamics as mentioned. Acceleration is dominantly related

with force harmonics frequencies. Natural frequency of the workpiece does not have

a major effect for the first model. The gains in other frequencies are negligible com-

pared to the peak gains. Therefore, it is possible to get a closer force estimation using

the resultant acceleration than the second complex dynamics model. In the second

model, the workpiece has more than one natural frequencies. The resultant accel-

eration consists of force harmonics frequencies as the first model and also sideband

frequencies of the natural frequencies. The frequency contents of two acceleration

data is seen in Figure 3.13.

38



(a) Plant 1

(b) Plant 2

Figure 3.13: Frequency Contents of Two Simulation Acceleration Data

Since the proposed method is using the FRF only in tooth passing frequencies, the

harmonics of acceleration in sideband frequencies mislead the Kalman and the esti-

mated force profile diverges from desired value. The estimation algorithm based on

the acceleration model derived from force model includes only the harmonics at tooth

passing frequencies. The other components are tried to be found also using the tooth

passing frequency harmonics which is a misleading way. Therefore, the RMS error

of the second plant is about 20% due to the different force profile. To avoid this, in

real tests, it is decided to use an acceleration reconstruction algorithm. The measured

acceleration will be separated into its frequency components. Starting from the first

harmonic to a specific number of harmonics, the acceleration will be recalculated. As

a result, despite the complex dynamics, the estimation algorithm was successful in

finding the peak values in both plants. In the second plant consisting of complex dy-

namics, the RMS error was quite higher than expected due to the misleading effects

of acceleration. From the results of both models, it is seen that the natural frequencies
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and side frequencies affect the Kalman in a wrong way. For more accuracy, the elim-

ination of frequencies other than the tooth passing ones and the structural vibrations

should be done before the estimation process. The acceleration data fed to the esti-

mation algorithm will only include the relevant tooth passing frequency components.

Combining all the important points from simulation the estimation algorithm can be

summarized as in the block diagram given in Figure 3.14.

Figure 3.14: Estimation Algorithm Block Diagram

The estimation algorithm starts with the collecting acceleration data. After, to elim-

inate the structural vibrations and side-frequency components, the acceleration mea-

surement is reconstructed. The measured acceleration data is separated into its har-

monics using the FFT algorithm. Next, a number of harmonics of the acceleration

FFT is converted into time-domain data with an IFFT algorithm. This operation con-

verts the acceleration data into an equivalent structure with the force model Eqn. 2.34

which forms the basis of the estimation calculations. Reconstructed acceleration data,

spindle angle and process parameters are given into the Kalman block. The Kalman

block adjusts the state matrix which consists of the cutting coefficients to balance

the measurement with the model. Those cutting coefficients are used to make force

estimation by using the Eqn. 2.34.
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CHAPTER 4

EXPERIMENTAL VERIFICATION

4.1 Test Setup

To support the method and results of simulation model, real cutting tests are done

in METU Automatic Control Laboratory. The cutting operation is done on a Deckel

FP5CC, 5 axis CNC milling machine which is retrofitted with Beckhoff servo motors,

drivers and BECKHOFF C6930 Industrial PC based industrial controller. Hardware

and software properties of the test setup is given in the 4.1.

Figure 4.1: Deckel FP5CC CNC Milling Machine

Cutting tests are done with an AL7075 aluminum alloy block. Before the real cutting

tests, the spindle run-out is measured via a dial indicator and minimized for a clean

cutting test. Otherwise, the method would not work since it does not include the run-

out calculations. After, the face which is to be cut is milled for a clean surface. From
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Table 4.1: Hardware and Software Properties of the Retrofitted CNC

Unit Parameter Description

CNC Unit

Beckhoff PC

TwinCAT-3 Software

ACC Task Sampling Time

C3690

Build 4022.29

125 µs

Spindle

Franz Kessler Motor

Beckhoff AX5125 Driver

HeidenHain ROD 480 1800

10 kW, 9000 rpm

25 A

2′′

X-Y Axes

Beckhoff AM8062 Motor

Beckhoff AX8640 Driver

Heidenhain LS 403-0870

3000 rpm, 29 Nm

40 A

1 µm

the clean surface, the axial and radial depths of cut can be set sensitively. All the tests

are done with same test setup. The equipments and their specifications are given in

the Table 4.2.

Table 4.2: Equipment List and Properties

Equipment Model Sensitivity Bandwidth

Workpiece Aluminum 7075 N/A N/A

Impulse Hammer
PCB 086C01

PCB 086D20

11.2 mV/N

0.23 mV/N

15 kHz

12 kHz

Accelerometer
Dytran 3049E3

PCB 352C22

99.44 mV/g

11.11 mV/g

10 kHz

10 kHz

Dynamometer Kistler 9257B 11.2 mV/N 2.3 kHz

Data Acquisition NI 9234 N/A Sampling @12.8 kHz

Data Process Matlab 2020b N/A N/A
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Figure 4.2: Experimental Test Setup

4.2 Frequency Response Function Derivation

Before the cutting test, a modal test is utilized to identify the workpiece dynamics. For

the estimation algorithm, the accuracy of FRF is important since it directly affects the

relation between force and acceleration. The force is calculated in X and Y directions.

To avoid perturbing the different modes of the workpiece during a cutting operation

when the cutter moves, the more stable direction should be decided. For this purpose,

the FRF’s in both directions is checked with a dummy cutting test. The real cutting

tests would be done in the short edge of the workpiece, along X direction shown in

Figure 4.2. Therefore, the dummy cutting test for FRF direction decision is also done

along X direction. During the dummy cutting test, the cutting forces in X and Y

directions are measured with dynamometer and accelerations in X and Y directions

are measured. In Figure 4.3, FFT plots of the whole cut can be seen. However, to see

the effect of position of the spindle to the FRF, FFT’s of force and acceleration should

be related with respect to the spindle position. As the spindle moves along X axis on

the workpiece during cutting, periodically in each 1 second, the force FFT and the

acceleration FFT is calculated for X and Y directions. From the dynamics of cutting,

it is known that the force harmonics occur in the order frequncies of tooth passing.

At those frequencies, the amplitude of acceleration FFT is divided by the amplitudes

of force FFT to form the Bode gain plot. The Bode gain plots for X and Y direction
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is seen in Figure 4.4. In both directions, the gains in resonance frequencies change

depending on the spindle position. However, for the other relevant frequencies, the

gains are more stable in Y direction. Therefore, the estimation algorithm is decided

to be used with Y direction FRF. Tipping direction is chosen as Y direction and in

Figure 4.3: X and Y Direction FFT of Force and Acceleration

Figure 4.4: X and Y Direction FRF Calculation

the same direction, an accelerometer is attached onto the workpiece as seen in Figure

4.2. The workpiece is tipped in the middle of the short edge and FRF is obtained for

Y direction. In Figure 4.6, the FRF of the workpiece in Y direction is plotted. For the

estimation algorithm, that FRF is used to relate acceleration and force.

44



Figure 4.5: Impact Hammer Test

Figure 4.6: Impact Hammer Test Results
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4.3 Cutting Tests

To verify the proposed method, real cutting tests are done with different configura-

tions. During cutting, acceleration and force data in Y direction are collected. The

acceleration data is processed and an estimation is made for the cutting force. After,

the estimated force is compared with the dynamometer force.

In the cutting tests, the following assumptions are made in order to simplify the pro-

cess.

1. Since the force model Eqn.2.38 is derived for no run-out conditions, it is as-

sumed that no unbalance exists in the spindle. Using a dial indicator the cutter

is examined physically. In addition, after each test the FFT of measured force

and acceleration is checked. In the existence of a significant run-out, it is ex-

pected that some dominant magnitudes are seen in the magnitude plot of FFT

at the rotating frequency. For an healthy condition, the dominant magnitudes

should be at tooth passing frequencies. With a physical and mathematical con-

firmation, no run-out is validated for each test.

2. During the cutting process, the spindle moves along the workpiece. When in-

terpreted in terms of FRF inputs and outputs, the input point changes while

cutting and mathematically the relation between input and output changes. Al-

though the estimation algorithm is expected and succeed in compensating that

change, it should be noted that a constant FRF is used in the calculations.

3. The Kalman filter adjusts the cutting coefficients in order to balance the mea-

sured and modeled results of acceleration data. Using the converged coeffi-

cients, the force is calculated using Eqn. 2.38. However, the same force can

be achieved with different set of cutting parameters. Depending on the cases

especially when structural vibrations are dominant, the coefficients may con-

verge to physically meaningless values although the estimated force is in the

accepted range. Therefore, the converged coefficients are called the temporal

cutting coefficients and the main focus of the work is the estimated force.

4. For adjustment of Kalman covariance values, the measurement covariance is
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chosen as the variance of free state acceleration data, without any interference

of tool and workpiece. The process covariance is tuned based on the perfor-

mance of the Kalman filter. For all the tests, the same covariance values are

used. They are not controlled for each test.

Table 4.3: Kalman Variables for Estimation Calculations

Parameter Symbol Value

Measurement Covariance R 0.28

Process Covariance Q 0.10

5. In the test setup, it is realized that the spindle speed changes very slightly during

the cutting operation. It causes shifts in the data which is accumulated in the

process of time during cutting. Moreover, it produces numerical deviations. In

order to eliminate those effects, the constant spindle speed is fed numerically

to the model instead of direct measurement.

6. Lastly, initial spindle angle assumption is needed for the algorithm to converge.

The force model, 2.38 is derived in angular domain and strictly depends on

the spindle angle. In the test setup, the CNC controlling software and force-

acceleration data acquisition systems are not synchronized. The time difference

between spindle angle and acceleration must be coherent for the estimation

process since the algorithm takes the spindle angle as an input. Initial spindle

angle is explained in Subsection 4.3.1.

4.3.1 Initial Spindle Angle Assumption

As mentioned before, the synchronization between spindle angle and acceleration

data is vital for the estimation process since the spindle angle is the input of force/ac-

celeration expression. For this purpose, Kline’s force model is [5] used as a reference

model. With a set of cutting parameters, a simulation is run. The generated force is

plotted with the cutter angle in the same plot for three main cases which are half slot

up milling, half slot down milling and full slot milling. The purpose of the plot is to
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realize the overlapping points of peaks, anti-peaks, zero-crossings etc. of the force

and the spindle angle.

1. For half slot up milling it is seen in Figure 4.7 that the peak force is at 90°

spindle angle.

Figure 4.7: Force and Angle Comparison for Half Slot Up Milling

2. For half slot down milling it is seen in Figure 4.8 that the force is zero and at

the next step it will start to rise when the angle is 90°.

3. In full slot milling it is seen in Figure 4.9 that the angle is 0° when the force

starts to descend.
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Figure 4.8: Force and Angle Comparison for Half Slot Down Milling

Figure 4.9: Force and Angle Comparison for Full Milling

Before processing the data of real cutting test, the synchronization of angle and

force/acceleration data should be done. In each test, the force is plotted. Depend-

ing on the type of the cut as explained above, the force peak, force rise or force

descend point is selected and its time is noted. At that time, the spindle angle guess

is known from the simulation. The acceleration data is processed to start from that

time. In ideal conditions, if the force was purely ideal, the desired force point and the
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assumed spindle angle should be correct. However, due to measurement noise and

dynamometer dynamics, the force is oscillating and it is not possible to exactly select

the relevant point for the test. Therefore, a "fine tuning" of the initial spindle angle is

needed. If the initial spindle angle is tuned well enough, the force can be estimated.

In the real cutting tests, the need for the initial spindle angle assumption obligated

to make some changes in the estimation algorithm given in Figure 3.14. In the algo-

rithm, some sub-steps are added and marked with red in Figure 4.10 to overcome the

initial spindle angle necessity. The algorithm with spindle angle assumption update

is explained in the following section.

Figure 4.10: Block Diagram of Estimation Algorithm with Spindle Angle Offset
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4.3.2 Estimation Algorithm

In previous chapters, it is stated that the estimation part of the work is done offline

due to synchronization issues of collected data and spindle angle. In addition, as

mentioned in the assumptions, the shift in the time-based acceleration data also con-

tradicts with the measurement matrix modeling. Therefore, there occurs a need for

the reconstruction of acceleration data before the estimation algorithm runs. In the

previous subsection, the initial spindle angle assumption was discussed. During the

decision steps of initial spindle angle, the starting time of the collected data was noted

for each test. The estimation algorithm starts with the reconstruction of acceleration

data starting from the time value decided for the initial spindle angle. The measured

acceleration data starting from the specified time is divided into its harmonics using

the FFT algorithm. Next, twenty of its harmonics are converted into time-domain

data with an IFFT algorithm. Twenty harmonics is chosen empirically but it can be

changed depending on the cutting conditions. For the scope of this thesis, twenty

harmonics can cover all the tests conducted in this work. After this process, the time

shift of the acceleration data is eliminated. Moreover, this operation also provides to

naturally eliminate the structural vibration in the original data. Reconstructed accel-

eration data, pre-determined Kalman parameters as in Table 4.3, spindle angle whose

initial value was decided at the beginning of the algorithm and process parameters are

given into the Kalman block. It includes the measurement matrix of the system which

combined the force model and workpiece FRF to reflect the milling dynamics. The

Kalman block adjusts the state matrix which consists of the cutting coefficients and

outputs an estimated acceleration. The estimated acceleration can be compared with

the reconstructed acceleration. Besides, the Kalman block outputs the adjusted tem-

poral cutting coefficients for the ill-posed system. Those temporal cutting coefficients

are used to calculate the estimated force by using the Eqn. 2.38. If the estimated force

is diverged, the fine tuning should be re-done for the spindle angle and the estimation

block of Kalman is re-run. When the spindle angle is truly tuned, the algorithm gives

the estimated force. The estimated force can be compared with the dynamometer

force.
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4.3.3 Cutting Test Results

In order to follow a controlled path for validation, the tests are planned group by

group. In the first group the tests are conducted with more sensitive impact hammer

(Hammer 1) and the 12 mm diameter cutting tool with 3 number of teeth. With

independently selected cutting type, spindle speed, feed rate, radial and axial depth

of cuts, the cutting tests are utilized. After, the second cutting group is established

by changing the impact hammer. The less sensitive impact hammer (Hammer 2)

covers a wider frequency range. The sensitivities of the impact hammers was given

in Table 4.2. The tipping points are shown in Figure 4.11. The magnitude plots for

two hammers are plotted for comparison in Figure 4.12 with the coherence.

(a) Tipping Direction with Hammer 1 (b) Tipping Direction with Hammer 2

Figure 4.11: Tipping Directions from Top View

Furthermore, the third group is set by changing the cutting tool. In this group the tests

are done with a larger diameter cutting tool with the same number of teeth. Lastly,

in the forth test group, the cutting diameter is hold the same but the number of teeth

is increased to 4. The tool properties are seen in Table 4.4. The list of tests are

summarized in Table 4.5.

Table 4.4: Cutting Tool List

Parameter Tool 1 Tool 2 Tool 3

Diameter 12 mm 16 mm 16 mm

Number of Teeth 3 3 4

Helix Angle 45° 45° 45°
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(a) Modal Test with Hammer 1 (b) Modal Test with Hammer 2

Figure 4.12: Modal Test Results for Two Hammers

Table 4.5: Description of the Cutting Tests

Test ID
Impact

Hammer

Cutting

Tool

Milling

Type

Spindle

Speed

[rpm]

Feed

Speed

[mm/min]

Axial

Depth

[mm]

Radial

Depth

[mm]

1 1 1 Down 4500 1500 2 6

2 1 1 Full 4800 1500 1 12

3 1 1 Down 3000 1000 2 6

4 2 1 Full 2000 1500 2 12

5 2 1 Full 2500 1500 2 12

6 2 1 Up 3000 1800 4 6

7 2 2 Full 2400 1000 3 16

8 2 2 Full 4800 500 4 16

9 2 2 Down 2400 500 11 2

10 2 3 Down 3000 1000 3 8

11 2 3 Down 3000 1500 1 8

12 2 3 Down 2400 1200 1 8
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In the results starting from Figure 4.13 to Figure 4.24, for each test, the frequency

content of force and acceleration data is plotted in Figure (a)’s. This should be done

to check whether the test is valid in terms of the assumptions made. The dominant

frequencies are expected to be at the tooth passing frequencies. Any harmonics at

spindle frequency means that a run-out at the spindle exists. After, original accelera-

tion and reconstructed acceleration are plotted together in Figure (b)’s. It is done to

validate the acceleration reconstruction is made correctly. These are the process of

the collected data. Next, the estimation algorithm is run and the estimated accelera-

tion is compared with the reconstructed acceleration in Figure (c)’s. The estimation

acceleration is calculated based on the acceleration model and the adjusted cutting

coefficients. To check their convergence, in Figure (d)’s the temporal cutting coeffi-

cients are given. This plot shows whether the estimation algorithm worked correctly.

Lastly, in Figure (e)’s, the estimated force calculated using the temporal cutting co-

efficients is plotted and compared with the measured force. It should be noted that

the dynamometer force which is marked as "Dyno Force" at the plot, contains the

dynamometer dynamics and measurement noise. Finally, in the Figure (f)’s, the nu-

merical percentage errors of peak, anti-peak if exists and RMS values are compared.

Peak value is the maximum value of the force. Anti-peak values are the minimum

force value seen in full slot tests. In half slot tests, since the minimum force is zero

when the dynamometer harmonics neglected, anti-peak values are not included for

half slot tests in comparison tables. RMS values give information about the force

profile. Although peaks and anti-peaks match, RMS can differ when the force pro-

file is different. For those results, it should be realized that some of the dominant

harmonics did not match with the measured ones.
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(a) Frequency Contents of Force and Ac-

celeration

(b) Reconstructed Acceleration Com-

parison

(c) Estimated Acceleration Comparison (d) Temporal Cutting Coefficients

(e) Estimated Force (f) Error Percentages

Figure 4.13: Results of Test 1 D12 N3 S4500 f1500 ap2 ae6
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In Test 1, Figure 4.13, when looked into the frequency content of the acceleration, the

most dominant harmonic is around the natural frequency of the workpiece as seen in

modal test results, Figure 4.12. Also in Figure 4.4, it was seen that the FRF results

are inconsistent around the natural frequencies due to the movement of the spindle

during the cut. In this test, the dominant frequency component of the acceleration

is around the natural frequency however the inconsistency of the FRF at the first

mode is around 25% at its maximum which is not a big problem for that mode. As

a result, although the first mode is perturbed, since the deviation of FRF is not high,

the estimated force error percentages came around 5% which can be accepted as an

accurate result compared to the literature. However, it should be noted that the natural

frequencies are the dangerous regions due to the variable FRF gains. The acceleration

and the force is estimated and it highly matches with the reconstructed and measured

values. The cutting coefficients are converged but their values are not physical due to

the ill-posed situation between acceleration and force.

In Test 2, Figure 4.14, when looked into the frequency content of the acceleration,

the most dominant harmonic is again around the natural frequency but the mode is

not directly perturbed. If the algorithm has run directly with the collected accelera-

tion data, the dominance of natural vibrations would cause the algorithm to diverge

because the model does not include the frequency components other than the tooth

passing frequencies. In this test, the importance of the acceleration reconstruction can

be seen. Since it is a full slot test, one should realize that there is a minimum point

of the force which is called anti-peak value in comparison table. With the truly tuned

spindle angle, the error percentages are less than 10% and the cutting coefficients are

more physical due to the large force offset and the minimum value.
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(a) Frequency Contents of Force and Ac-

celeration

(b) Reconstructed Acceleration Com-

parison

(c) Estimated Acceleration Comparison (d) Temporal Cutting Coefficients

(e) Estimated Force (f) Error Percentages

Figure 4.14: Results of Test 2 D12 N3 S4800 f1500 ap1 ae12
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(a) Frequency Contents of Force and Ac-

celeration

(b) Reconstructed Acceleration Com-

parison

(c) Estimated Acceleration Comparison (d) Temporal Cutting Coefficients

(e) Estimated Force (f) Error Percentages

Figure 4.15: Results of Test 3 D12 N3 S3000 f1000 ap2 ae6
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In Test 3, Figure 4.15, when looked into the frequency content of the acceleration, the

most dominant harmonics are around the two natural frequencies of the workpiece

as seen in modal test results, Figure 4.12. Also in Figure 4.4, it was seen that the

FRF results are inconsistent around the natural frequencies due to the movement of

the spindle during the cut especially in the second mode. In this test, the dominant

frequency component of the acceleration is around the second natural frequency and

the inconsistency of the FRF at the second mode is more than 60%. That huge error

diverged the results from the real values. Despite the FRF inconsistency, force-model

based algorithm tried to be near the mathematical values of force depending on the

pre-known process variables. With the non-physical values of adjusted cutting coef-

ficients the force errors become about 20% of the measured ones.

In Test 4, Figure 4.16, the modal test results changed. The hammer used in this test is

less sensitive but it covers a wider frequency range. When looked into the frequency

content of the acceleration, the most dominant harmonic is around the second natural

frequency but the mode is not directly perturbed. If the algorithm has run directly with

the collected acceleration data, the dominance of natural vibrations would cause the

algorithm to diverge because the model does not include the frequency components

other than the tooth passing frequencies. It is a full slot test, therefore as mentioned

before, the cutting coefficients are more physical due to the large force offset and the

minimum value. With the truly tuned spindle angle, the error percentages are less than

10%. The effect of hammer change is seen in the first harmonics since the coherence

values are lower in lower frequencies (lower than 500 Hz) as seen in Figure 4.12. The

cause of the increasing error is the deviations in the first harmonics.
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(a) Frequency Contents of Force and Ac-

celeration

(b) Reconstructed Acceleration Com-

parison

(c) Estimated Acceleration Comparison (d) Temporal Cutting Coefficients

(e) Estimated Force (f) Error Percentages

Figure 4.16: Results of Test 4 D12 N3 S2000 f1500 ap2 ae12
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(a) Frequency Contents of Force and Ac-

celeration

(b) Reconstructed Acceleration Com-

parison

(c) Estimated Acceleration Comparison (d) Temporal Cutting Coefficients

(e) Estimated Force (f) Error Percentages

Figure 4.17: Results of Test 5 D12 N3 S2500 f1500 ap2 ae12
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In Test 5, Figure 4.17, when looked into the frequency content of the acceleration,

the most dominant harmonic is the first harmonic. The components due to natural vi-

brations, in other words, the frequency contents of the acceleration around the natural

frequencies, are not perturbed. The acceleration content is crowded due to natural

vibrations. The acceleration reconstruction provided them to be eliminated in the es-

timation algorithm. The relevant acceleration harmonics are used to find the relevant

force harmonics with the consistent part of the FRF results. It is a full slot test, there-

fore as mentioned before, the cutting coefficients are more physical due to the large

force offset and the minimum value. As a result of those, the error percentage values

are less than 4% and an accurate force estimation is utilized for this test.

In Test 6, Figure 4.18, when looked into the frequency content of the acceleration, the

most dominant harmonics are around the two natural frequencies of the workpiece

as seen in modal test results, Figure 4.12. Also in Figure 4.4, it was seen that the

FRF results are inconsistent around the natural frequencies due to the movement of

the spindle during the cut especially in the second mode. In this test, the dominant

frequency components of the acceleration are around the two natural frequencies and

the inconsistency of the FRF at the second mode is more than 60%. The huge error

in the FRF increased the error between measured force and the estimated force. Two

dominant natural frequency components prevented the algorithm from using the re-

maining components for estimation. With the non-physical values of adjusted cutting

coefficients the force errors become more than 20%. From the results, it is realized

that the frequency interval of interest should be away from the natural frequencies of

the workpiece. The mode shapes should not be perturbed since the amplitude gains

cannot be predicted correctly especially when they are dominating.
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(a) Frequency Contents of Force and Ac-

celeration

(b) Reconstructed Acceleration Com-

parison

(c) Estimated Acceleration Comparison (d) Temporal Cutting Coefficients

(e) Estimated Force (f) Error Percentages

Figure 4.18: Results of Test 6 D12 N3 S3000 f1800 ap4 ae6
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(a) Frequency Contents of Force and Ac-

celeration

(b) Reconstructed Acceleration Com-

parison

(c) Estimated Acceleration Comparison (d) Temporal Cutting Coefficients

(e) Estimated Force (f) Error Percentages

Figure 4.19: Results of Test 7 D16 N3 S1400 f1000 ap3 ae16

In Test 7 and Test 8, Figure 4.19 and 4.20, the cutting tool diameter has changed.

There is no obvious effect of diameter change in terms of the estimation accuracy.

When looked into the frequency content of the acceleration, a balanced acceleration

profile is seen for both tests. The mode shapes are not perturbed. For the elimination
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of high frequency natural vibrations, the acceleration reconstruction is a helpful. They

are full slot tests, therefore the cutting coefficients are more physical due to the large

force offset and the minimum value. Their values are estimated very close to each

other. With the truly tuned spindle angle, the error percentages are less than 5%.

(a) Frequency Contents of Force and Ac-

celeration

(b) Reconstructed Acceleration Com-

parison

(c) Estimated Acceleration Comparison (d) Temporal Cutting Coefficients

(e) Estimated Force (f) Error Percentages

Figure 4.20: Results of Test 8 D16 N3 S2400 f500 ap4 ae16
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(a) Frequency Contents of Force and Ac-

celeration

(b) Reconstructed Acceleration Com-

parison

(c) Estimated Acceleration Comparison (d) Temporal Cutting Coefficients

(e) Estimated Force (f) Error Percentages

Figure 4.21: Results of Test 9 D16 N3 S2400 f500 ap11 ae2
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In Test 9, Figure 4.21, when looked into the frequency content of the acceleration,

the most dominant harmonic is the first natural frequency of the workpiece as seen

in modal test results, Figure 4.12. The other frequency content of acceleration is bal-

anced. The second and even the third natural frequency contribute the same as the

first two harmonics. In Figure 4.12, it was seen that the FRF results are inconsistent

around the second natural frequency due to the movement of the spindle during the

cut. Moreover, as seen in Figure 4.12, the coherence of the low frequency compo-

nents are lower. The low consistency of first natural frequency, inconsistency of the

second natural frequency and the lower coherence in lower frequencies caused the

error percentage to increase in this test. With the non-physical values of adjusted

cutting coefficients the force errors become around 20%.

In Test 10, Figure 4.22, the number of teeth of the cutting tool increased to 4 from

3. When there are 3 teeth, the angle between them is 120°. During a half slot cutting

test, which the difference between entrance and exiting angles is 90°, for a time inter-

val the tooth and workpiece interaction cancels for that 30° difference. However, in 4

teeth cutting tool, the interaction always continues. When looked into the frequency

content of the acceleration, the tooth passing frequencies are the dominant compo-

nents compared to the natural vibration of the workpiece. There always exists a force

that perturbs the workpiece. In this test, a high frequency component is amplified

which may cause due to dynamometer dynamics. Since it is not one of the orders

of the tooth passing frequency, it is not included in the acceleration thanks to the ac-

celeration reconstruction. Due to the dominance of force harmonics and consistent

dominant FRF, the estimation errors are less than 4%. The force is predicted with

high accuracy.
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(a) Frequency Contents of Force and Ac-

celeration

(b) Reconstructed Acceleration Com-

parison

(c) Estimated Acceleration Comparison (d) Temporal Cutting Coefficients

(e) Estimated Force (f) Error Percentages

Figure 4.22: Results of Test 10 D16 N4 S3000 f1000 ap3 ae8
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(a) Frequency Contents of Force and Ac-

celeration

(b) Reconstructed Acceleration Com-

parison

(c) Estimated Acceleration Comparison (d) Temporal Cutting Coefficients

(e) Estimated Force (f) Error Percentages

Figure 4.23: Results of Test 11 D16 N4 S3000 f1500 ap1 ae8

In Test 11 and Test 12, Figure 4.23 and 4.24, different from the Test 10, there is no

high frequency structural component of the acceleration. Due to the continuous tooth

and workpiece interaction, the tooth passing frequencies are the dominant compo-

nents compared to the structural vibration of the workpiece. There always exists a
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force that perturbs the workpiece. Due to the dominance of force harmonics and con-

sistent dominant FRF, the estimation errors are less than 5%. The force is predicted

with high accuracy.

(a) Frequency Contents of Force and Ac-

celeration

(b) Reconstructed Acceleration Com-

parison

(c) Estimated Acceleration Comparison (d) Temporal Cutting Coefficients

(e) Estimated Force (f) Error Percentages

Figure 4.24: Results of Test 12 D16 N4 S2400 f1200 ap1 ae8
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Table 4.6: Comparison of Dynamometer and Estimated Forces Across Tests

Test ID 1 Test ID 2 Test ID 3

Parameter
Dyno

Force [N]

Estimated

Force [N]

Dyno

Force [N]

Estimated

Force [N]

Dyno

Force [N]

Estimated

Force [N]

Peak Value 217.1 205.4 106.7 97.8 226.3 181.4

Peak Error - 5.4% - 8.3% - 19.8%

RMS 114.4 108.8 76.8 77.8 131.3 103

RMS Error - 4.8% - 1.3% - 21.6%

Anti Peak Value N/A N/A 55.8 59.2 N/A N/A

Anti Peak Error N/A N/A - 6.1% N/A N/A

Test ID 4 Test ID 5 Test ID 6

Parameter
Dyno

Force [N]

Estimated

Force [N]

Dyno

Force [N]

Estimated

Force [N]

Dyno

Force [N]

Estimated

Force [N]

Peak Value 348 379.3 329.8 342.8 514.3 434

Peak Error - 9.0% - 3.9% - 15.6%

RMS 268.1 288.1 264.1 263.1 220.1 283.1

RMS Error - 7.5% - 0.0% - 28.6%

Anti Peak Value 206 186.8 176.2 174.9 N/A N/A

Anti Peak Error - 9.3% - 0.7% N/A N/A

Test ID 7 Test ID 8 Test ID 9

Parameter
Dyno

Force [N]

Estimated

Force [N]

Dyno

Force [N]

Estimated

Force [N]

Dyno

Force [N]

Estimated

Force [N]

Peak Value 389.6 373.7 315.4 309 199.4 174

Peak Error - 4.3% - 2.1% - 12.7%

RMS 307.3 303.8 249.5 256.2 159.9 125.4

RMS Error - 1.3% - 2.6% - 21.5%

Anti Peak Value 242.8 256.5 197.2 202.5 N/A N/A

Anti Peak Error - 5.3% - 3.9% N/A N/A

Test ID 10 Test ID 11 Test ID 12

Parameter
Dyno

Force [N]

Estimated

Force [N]

Dyno

Force [N]

Estimated

Force [N]

Dyno

Force [N]

Estimated

Force [N]

Peak Value 293.4 302.7 145.3 139.8 121.8 120.6

Peak Error - 3.2% - 3.7% - 0.9%

RMS 211.9 203.4 76.2 80.4 60.0 61.2

RMS Error - 4% - 5.5% - 2.0%

Anti Peak Value N/A N/A N/A N/A N/A N/A

Anti Peak Error N/A N/A N/A N/A N/A N/A
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The results are collected in Table 4.6. In each cutting case, the peak force values of

both the measured and estimated ones are compared. It is vital to estimate the maxi-

mum force during a cutting operation. For half-slot tests, when the further harmonics

are neglected, the minimum force is nominally zero. Therefore for half slot tests the

minimum values are not compared. However, in full slot tests, the force behavior

is different. It has a mean value and includes the magnitudes of harmonics. In full

slot tests, the maximum and minimum force values exist. For that reason, peak and

anti-peak values are compared for full slot cases. Besides the minimum and maxi-

mum force values, the force profile should be checked. Although the peak values of

the forces match each other, the types of oscillations may differ. To check this, RMS

values of the forces in a specific time period are calculated and tabulated. The per-

centage values of error are given in Figure 4.25. X axis is the Test ID’s and Y axis is

the percentage error in %. The first columns are the peak errors, the second ones are

the RMS errors and the third one is the anti peak errors for full slot cutting tests. In

order to increase the perception, a constant line is drawn at 10% error because when

compared with the literature work, that 10% error value is accepted as a successful

value among the estimation algorithms.

Figure 4.25: Error Percentages of Cutting Tests
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4.4 Discussion

By examining the overall results, the average error percentage of this work is be-

tween 5-10%. Comparing with the literature work, the proposed algorithm seem to

be a good alternative for indirect force estimation. However, the error of three of the

twelve cutting tests are higher than the others. The possible reasons beyond this will

be discussed in this section. For the Test 3, the results are examined by looking at

Figure 4.15. When the frequency content is checked, it can be seen that the first two

dominant acceleration harmonics are around the natural frequencies of the workpiece

as in FRF plots, 4.12. In the frequency content of the acceleration, those dominant

modes are perturbed either with force component or naturally, in other words, the

magnitudes of the acceleration in natural frequencies can be due to cutting force and

due to structural vibration. The FRF result gives the relation between the force and

acceleration. However, like in Figure 4.4, as the spindle moves along the workpiece,

although the FRF is very stable over the frequency range, in natural frequencies the

magnitude values change significantly. As the FRF value is not exact in the domi-

nant acceleration frequencies especially in natural frequencies, the algorithm did not

work successfully as the other cases. Moreover, the modal test of this case was done

with highly sensitive but covering a narrower frequency range hammer. As a result

of those, the accuracy of the test decreased. When looked at the Test 6, it is seen that

the same scenario happened. The effect of the structural vibration and force contribu-

tion cannot be separated. The algorithm could not find the contribution of the force

harmonics at the dominant frequencies which are natural frequencies. As a result of

this, the first harmonic contribution did not match with the real one. Consequently,

the error percentage values increased. In Test 9, the common reasons cause the force

estimation value differ from the expected value. The mutuality between those three

tests with higher error percentage values is that they all are kind of half slot tests. In

actual, Test 3 and 6 are directly half slot tests. In Test 9, the radial depth is less than

the radius of the tool but the force behavior is similar to the half slot cuts. A mismatch

of the force harmonics at the dominant acceleration frequencies, causes the DC com-

ponent or the first harmonic force of the half slot cut to diverge from the real value.

As a result of this, the errors in peak values increase. Moreover, since the force profile

changes, the RMS errors increase more. When dived into the Test 7 or 8, which are
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full slot tests, although there exist dominant acceleration harmonics around natural

frequencies of the workpiece as in Test 3, 6 and 9, the estimated force is not affected

badly as much as the half slot tests. In full slot tests, the force profile is different than

the half slot ones. In full cutting, the DC component of the force is more dominant

and the minimum force value is not zero. The oscillation of the cutting force is does

not start from zero as in half slot cutting. When spindle angle is tuned properly, a mis-

match in the dominant frequencies causes the DC component and the first harmonic

of the force differ from the real value. In that case, due to the nature of the Kalman

filter, it continues to iterate for the solution because DC or first harmonic component

difference should be compensated. At the end, since the contribution of them is more

dominant in full slot tests, the Kalman converges the DC offset and the first harmonic

of the force. Therefore, the estimation algorithm works more stable in full slot tests.

Even better, the temporal cutting coefficients that the Kalman filter adjusts, are more

prone to converge to the real values in full slot tests. The converged values of the

coefficients in full slot tests in this thesis are physically relevant. According to the

results of the cutting tests, it can be stated that the conducted cutting tests gave a deep

insight of the proposed algorithm. The tests are utilized in different and controlled

configurations. The error percentages are less than 5% for most of the tests.
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CHAPTER 5

CONCLUSIONS

Among the researchers working on milling process, indirect calculation of the cut-

ting force is a popular topic. Using some traditional, statistical, mathematical or

technological methods, the cutting force can be estimated. There is huge number of

researches that use the same methodologies from their own perspectives. By adding

some improvements to the existing methods, the milling process is tried to be im-

proved in the literature. Today, there exist different methods to estimate the cutting

forces, but the main challenge has become to find the most accurate force in the

fastest and cheapest way. In other words, the researches are mainly focusing on the

most simple, cost-effective, accurate, adaptable, robust and easy-implementable so-

lutions. Moreover, the methods are intended to be adapted to online systems and give

the estimation in milliseconds with high accuracy. The common idea in the litera-

ture is that the accelerometers are the most useful instruments that satisfies most of

the requirements to make cutting force estimation. When dived into the research re-

sults, the least error percentages are achieved by accelerometer-based methods. Their

common usage, ease of mounting and data processing availability made them the first

choice. Therefore, the instrument of this thesis is chosen as the accelerometers. The

open-for-improvement part of the force estimation became the algorithm.

As a contribution to the literature about force estimation in milling process, this thesis

work is managed. Generally, the common methods are used in the literature and tried

to do some performance improvements for the common methods. However, in this

thesis, a novel method for force estimation is attempted. Different from the previous

work, a force-model based algorithm using the Kalman filter is developed. The us-

age of force model provides a more stable structure against the discrepancies in the
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experiments. The force model narrows down the final estimation in a possible inter-

val with the known parameters. To convert this force model to the acceleration, FRF

of the workpiece is used which can be acquired easily with an impact hammer. The

usage of the FRF is also different from the literature work. The force model provided

the harmonics of the force depending on the fact that its components are occurring

in tooth passing frequencies. With the help of this, there was no need to make a

complex transfer function estimations. Rather, with basic mathematical operations,

the dynamics of the workpiece is reflected to the acceleration model. The gains in

FRF are multiplied with the amplitude of force harmonics and the phase angle of the

FRF is added to the phases of the force harmonics to get the acceleration harmon-

ics. Adapting the acceleration expression derived from force model and FRF to the

Kalman filter, a flexibility against the noise is gained in the estimation model. Thanks

to the structure, accurate force estimations are done as verified with real cutting tests.

Besides its advantages, there are some points that should be improved in the pro-

posed algorithm. One of them is that the model does not include the run-out of the

cutter. In the tests, run-out of the spindle is checked at the beginning, however for the

method to be used in the industrial applications, run-out effects should be included.

Another disadvantage of the model is that a structural vibration elimination process

is needed. Since the force model only includes the tooth passing frequency harmon-

ics, the existence of the dominant structural vibrations affect the Kalman in a bad

way. The algorithm tries to compensate the non-harmonic terms with the harmonic

terms which misguide the results. Lastly, one of the most important issue about the

algorithm is that it requires the spindle angle synchronized with the acceleration. The

force model, Eqn. 2.38, calculates the force magnitude as a function of spindle angle.

Thinking the mechanics of the process, the engagement or the disengagement of the

tool and the workpiece is needed accurately. However, in today’s technology, it would

not be a hard issue to collect spindle angle data synchronized with the acceleration.

Overall, investigating the experiments to verify the method, the proposed method pro-

vides valuable insights for force estimation by using a novel approach. The accuracy

of the method is high compared to the literature work. With the lessons learned from

the real cutting tests, this work is open to be improved and get more stable, accurate

estimation results. As the models of force, acceleration, FRF and Kalman blocks
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are in discrete domain, the algorithm is applicable for real-time applications. With

properly implemented and calibrated instruments and additional signal processing al-

gorithms, more accurate results can be achieved.
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