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ABSTRACT

AMBIGUITY RESOLUTION ALGORITHMS FOR DIRECTION OF
ARRIVAL ESTIMATION

Erol, ilker
Master of Science, Electrical and Electronic Engineering
Supervisor : Prof. Dr. T.Engin Tuncer

November 2024, 92 pages

In direction finding, it is well known that angular accuracy increases as the array
aperture increases. However, array aperture cannot be made larger than the
theoretical limit which indicates that inter-element spacing should be less than half
the wavelength. In the literature, there are methods which overcome this limit with
a trade off on the array robustness for different distortions. In this thesis, ambiguity
resolution techniques are investigated and a new array structure together with an
ambiguity resolution method is proposed. More specifically, it is proposed to use
SODA geometry in four elements planar structure and rotate the array to cover 360
degrees with high accuracy and isometric response. In this context, different methods
of ambiguity resolution such as amplitude and phase comparison methods, Hybrid
Amplitude/Phase, Hybrid Amplitude/MUSIC (MUItiple Signal Classification),
rotating interferometer, and SODA (Second Order Difference Array) interferometer
methods are considered and their performances are compared. Considering the
potential of the SODA array structure, SODA structure has been modified to have

four elements planar form. While this structure has no ambiguity, it is almost close



to a linear array and hence its performance is handicapped in certain directions. In
order to remove this deficiency and have an isometric angular response, it is
proposed to rotate the array to have 360 degrees of coverage. The Doppler effect due
to rotation is accounted for and the performance of a variety of SODA structures are
investigated by using both Cramér-Rao Bound (CRB) and simulations. It is shown
that the proposed SODA structure is very effective and the array accuracy is

significantly high without imposing ambiguity.

Keywords: Direction Finding, Ambiguity Resolution, Soda Array, Interferometer,
Rotating Arrays.
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GELIS YONU KESTIiRIMI iCIN BELIRSIZLiK COZME
ALGORITMALARI

Erol, ilker
Yiksek Lisans, Elektrik ve Elektronik Miithendisligi
Tez Yoneticisi: Prof. Dr. T.Engin Tuncer

Kasim 2024, 92 sayfa

Yon bulmada, anten agikliginin artmasi ile birlikte acisal dogrulugun da arttig
bilinmektedir. Ancak, aciklik teorik sinirin iizerinde biiyiitiillemez, bu da eleman
araliginin dalga boyunun yarisindan kiigiik olmasi gerektigi anlamina gelir.
Literatiirde, bu sinir1 asan ancak c¢esitli bozulmalar igin dizi performansindaki
dayanikliliktan 6dun verme gerektiren yontemler mevcuttur. Bu tezde, belirsizlik
¢oziimleme teknikleri incelenmis ve bir belirsizlik ¢ozimleme yontemi ile birlikte
yeni bir dizi yapisi Onerilmistir. Daha spesifik olarak, dort elemanh diizlemsel bir
yapida SODA (ikinci Derece Fark Dizi) geometrisi kullanilmasinin ve dizinin 360
derece yiiksek dogruluk ve izometrik yanit ile dondiiriilmesinin 6nerildigi bir yontem
sunulmustur. Bu baglamda, genlik ve faz karsilastirma yontemleri, Hibrit
Genlik/Faz, Hibrit Genlik/MUSIC (Coklu Sinyal Siniflandirmasi), doénen
interferometre ile SODA (Ikinci Derece Fark Dizi) interferometre yontemleri gibi
cesitli  belirsizlik ¢oziimleme yoOntemleri ele almmis ve performanslar
karsilagtirilmistir. SODA dizi yapisinin potansiyeli dikkate alinarak, SODA yapisi

dort elemanli dizlemsel bir formla degistirilmistir. Bu yap1 belirsizlik icermese de

vii



dogrusal bir diziye benzemekte ve bu nedenle belirli yonlerde performansi
kisitlanmaktadir. Bu eksikligi gidermek ve izometrik bir agisal yanit elde etmek igin
diziyi 360 derece dondiiriilmesi Onerilmistir. Dondurmenin Doppler etkisi dikkate
alinmis ve ¢esitli SODA yapilarin performanst hem Cramér-Rao Sinir1 (CRB) hem
de simiilasyonlar kullanilarak incelenmistir. Onerilen SODA yapisinin ¢ok etkili
oldugu ve dizinin dogrulugunun biiyiik ol¢iide arttigi, belirsizlik olusturmadan

yiiksek dogruluk sagladigi gosterilmistir.

Anahtar Kelimeler: Y6n Bulma, Belirsizlik C6zme, Soda Dizisi, Interferometre,

Donen Diziler.
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CHAPTER 1

INTRODUCTION

This work aims to investigate diverse techniques for resolving angular ambiguity
caused by spatial aliasing for Direction of Arrival (DOA) estimation. In the array
signal processing literature, DOA estimation is the crucial technique used for
determining the angular positions of the transmitted source signals. This estimation
holds significant importance in various applications such as radar, radio astronomy,
wireless communications sonar, commutations, direction finding, seismology,
medical diagnosis and treatment acoustic systems [1]. Under the scope of this study
the array structures of similar working manner passive systems such as Electronic
Surveillance (ES), Electronics Support System (ESS) and Anti-Radiation Seeker is
examined. Due the fact that these systems are operating at wide frequency range,
could have antenna placement and mounting limitation and need an accurate and

high DOA performance, the spatial aliasing problem could be emerged.

1.1 DOA Estimation

Electronic Support System is objected to identify the RF radiated target. The
flowchart of the operation mechanism of ESS could be summarized as follows. At
first the RF radiated targets are detected and separated with each other’s. Then RF
characteristics of the selected target are measured and correlated with other probable
target RF threat sensor parameters stored in the mission data file which enables the
identification of the RF target. The angular position information is also provided and

in some cases the location of targets could be monitored with implementing



localization algorithms [2]. The typical ESS operating requirements can be

summarized as follows [3]

e Operating in real-time at a wide-band frequency range for center frequency
as 2-18 GHz

e Having capability to observe a wide instantaneous bandwidth 500 MHz or
more

e To have a high probability of detection and low receiver noise figure

e To be able to identify multi RF target

e Be affordable cost

The RF characteristics such as pulse amplitude, pulse width, time of arrival, RF
center frequency and direction of arrival are able to be measured by ESS. The DOA
is the signification parameter for ESS because the angular position of RF target
signal cannot change in pulse to pulse manner which gives precious data for signal
identification [3].

1.2 Overview of DOA Estimation Techniques

The DOA performance is highly related with array geometry, antenna patterns,
polarization and the chosen estimation algorithms Considering the operating
frequency range of ESS, spiral and log-periodic antennas are preferred choices.
These antennas are known as wideband antenna where their pattern performance is
stable in terms of gain over the given frequency range. Especially spiral antennas
radiate circularly polarized waves providing a significant benefit to detect linearly
polarized target signals. Given the fact that ESS is operated in wide frequency range,
the shortest inter-element distance of physically large antenna array possibly could
not be designed to satisfy equal or less than A,,,/2 requirement, leading to
ambiguous DOA estimation where A,,;, the shortest wavelength is. On the other
hand, achieving high DOA performance requires a larger array aperture. Therefore,

to achieve high-accuracy direction-of-arrival (DOA) estimation, ambiguity



resolution techniques must be implemented using a specially designed array

structure or mechanism.

There are two main methods used in DOA are the amplitude-comparison and phase-
comparison or in another name interferometer. The phase comparison method offers
greater accuracy, although at a higher cost compared to the amplitude comparison
technique. While the typical DOA performance of amplitude comparison system
ranges from 3 to 10 degrees RMS, the DOA performance of phase comparison
system ranges from 0.1 to 3 degrees RMS [2]. In order to achieve unambiguous DOA
estimation, antenna spacing should be equal or less than A,,;,,/2 . The approximate

RMS angular error in radians of the phase comparison is defined as

o Acos VSNR (L.1)

? d

where, A is wavelength, ¢ is the target angle, SNR is signal-to-noise ratio, d is the
antenna spacing. In order to achieve 0.1 degrees RMS, SNR should be 50 dB for A/2
element distance. This SNR level is rarely available so that array aperture should be
increased. For instance, if the antenna spacing is expanded to164, then 20 dB SNR
would be sufficient to achieve the same DOA performance. However, this
adjustment introduces an ambiguity problem for 33 sectors within the 180-degree
search angle. In order to solve the ambiguity, additional antenna elements located
A/2 distance could be assigned. This type of interferometers built in long baseline
non-uniform-array structure are called multiple-baseline interferometers [2], shown

in Figure 1.1.



Figure 1.1. Multiply Base Line Interferometer

SODA (Second Order Difference Array) is the special case of multiple-baseline
interferometer. It is the non-uniform long baseline linear array with three antennas
shown in Figure 1.2. In SODA array design, Eqn. (1.2), Egn. (1.3), and Egn. (1.4)
are satisfied.

A
d23 >d12 » ’;m (1.2)
d23 —d12 = d, (1.3)
A-p;in > dA (14)

where, d,5 and d,, are the distances between antenna-2 and antenna-3, and between
antenna-1 and antenna-2, respectively [4]. Comparing to multiple-baseline
interferometer, SODA geometry does not require the A/2 distance antenna spacing

requirement, which is a significant advantage.



Figure 1.2. Soda Geometry

Amplitude comparison system does not require the antenna spacing to meet A, /2
requirement. As long as sufficient squint angles are maintained for the antennas, the
inter-element distance does not affect the direction-of-arrival (DOA) performance.
This provides ease of installation on several platforms. While phase comparison
systems are operating at high accuracy but having possible ambiguity problem,
additional amplitude comparison technique could be used in hybrid manner to

perform course DOA estimation and eliminating ambiguity phenomena.

Rotatory mechanism can be implemented on interferometer array named as rotary
interferometer [5] shown in Figure 1.3. The rotation axis is z plane with ® rotation
frequency, interferometer is located in x-y plane, and ¢-p are the DOA angles. This
type of array is used in anti-radiation seeker technology for continuously rolling
missiles. During rotation, additional spatial sampling points appear, allowing for the
monitoring of the phase variation enabling to solve ambiguity. Furthermore, this
spatial sampling process builds virtual planar circular array with two receiver

channels providing two-dimensional DOA estimation.



Target Location

r'.

/2 —

Figure 1.3. Rotary Interferometer

In array processing literature, there are well-known super resolution techniques such
as MUSIC (Multiple Signal Classification) to achieve a high-performance DOA
estimation. This method computes cross correlation matrix spectrum and perform an
eigen-decomposition in order to obtain orthogonal the signal and noise subspace
span vectors. However, the major drawback is to need high computational cost in

real time applications required fast response [1].



1.3  Objective of the Thesis

This thesis aims to implement and develop ambiguity resolution algorithms for DOA
estimation in long baseline arrays operated over a wideband frequency range. Several
algorithms are investigated and developed on linear, planar, rotated and stationary
designed arrays. Azimuth DOA estimation performances, under varying SNR,
rotation information, array aperture etc. are examined in the given scenario. The Root
Mean Square Error (RMSE) performance of all ambiguity resolution algorithms are
evaluated through Monte Carlo simulations and compared with the Cramér-Rao
Bound (CRB).

1.4 Outline of the Thesis

The organization of the thesis as follows: the diverse techniques for resolving angular
ambiguity caused by spatial aliasing is defined, formulated and the DOA
performance of these algorithms is analyzed under various scenario parameters in
Chapter 2. In Chapter 3, the SODA planar array and the rotated SODA planar array
are mathematically modeled, formulated, and investigated. The chapter defines these
arrays and calculates their performance with respect to the Cramér-Rao bound.
Additionally, it presents the Root Mean Square Error (RMSE) values to assess the
accuracy of the performance metrics. In Chapter 4, the summary of all results is

provided and some interpretations are made regarding the results.






CHAPTER 2

AMBUGITY RESOLUTION ALGORITHMS IN DIRECTION FINDING

In this chapter, DOA estimation techniques and ambiguity resolution algorithms are

described, theoretically formulated and analyzed.

2.1  Amplitude Comparison Technique

The N-element linear array structure is considered as in Figure 2.1. The one RF target
source is transmitted from an azimuth direction of ¢. Every i antenna element, is
squinted ¢; degrees for i = 1,2 ... N in order to make an amplitude difference for

receiver channels [6].

LY

YV VYV

Antennal Antennal Antenna N-1 Antenna N

Figure 2.1. Linear Array Geometry



The receive signal model is given by [7]

S; = AP (¢ — ¢;) + 1y (2.1)

where the §; is the received signal amplitude, A is the source signal amplitude, P; is
the antenna voltage pattern, ¢; is the squint angle, n; is the zero-mean independent
additive white Gaussian noise with variance a2, for i = 1,2 ... N. DOA estimation of
the azimuth angle, o, is intended. The probability density function of noise is given

as

1 =x2
= 202 22

The joint probability density of observations is described as follows;

N 2
£ ) l_l 1 —(Si—AIZ’i(;P—fpi)) 2.3)
, = e g .
® i1 \V2mo?

The maximum likelihood estimation ¢ of ¢, maximizes the density function given

in Eqgn. (2.3) as defined in Eqgn. (2.4) and Eqn. (2.5) respectively;

¢ = argmax,(f (4, ¢)) (2.4)

10



The maximum likelihood estimation @ of ¢ can be written, as the minimization of
negative logarithm of Eqgn. (2.3) with eliminating constants, given in Eqn. (2.5). Log-

likelihood estimation is defined in Eqn. (2.6).

N

J(A,9) = ) (S = AP.(9 — 9 (25)
i=1

@ = argmin, (/(4,¢)) 26)

The log-likelihood function consists of ¢ and A terms. In order to estimate ¢, the

estimation of A, should be found described in Eqn. (2.7).

A = argmina(J(4, ¢)) (2.7)

Taking derivate of Eqn. (2.5) with respect to A, setting to zero and solving for A,

gives A as in Eqn. (2.8) and Eqn. (2.9).

dJ(4, N
](dA(p) = Z(—ZSL-PL-OP — @) + 24P (9 — 9)) = 0 (2.8)
A/I\;L _ Yiz1(SiPi(@ — 1)) 2.9)

N PP (o — )

Substituting Eqgn. (2.9) in Egn. (2.6) results in Egn. (2.10) and Egn. (2.11),

respectively.

11



Iiv=1(SiPi((p - @)
N PP(o— @)

N
? = argming() (5, > Plp—9?)  (210)
i=1

L, SiPi(@ — )’
N PP — )

N
O = argminq,(z Siz — ) (2.11)
i=1

The term of ¥, 5;* doesn’t contain any expressions of ¢ that affects minimization
in the Eqn. (2.11). Hence, the simplified version of Eqgn. (2.11) becomes a

maximization of the log-likelihood function given in Eqn. (2.12)

2
G, = argmax ((Zliv=1 SiPi (¢ — @)
H EN P — )

) (2.12)

2.2 Phase Comparison Technique

The two-element interferometer array [8] is designed as in Figure 2.2.

12



Antennal d Antenna2

Figure 2.2. Phase Comparison Technique

The received signal models s;(t) and s,(t) for antenna-1 and antenna-2,

respectively is given [9] in Eqgn. (2.13) and Eqgn. (2.14)

s1(t) = cos(anRF(t + At)) + nl(t)) (2.13)

s2(6) = cos(2mfrr () + Nagr)) (2.14)

where frr is the source frequency, At is the time delay between antennas, n, and
ny(p) are zero-mean independent additive white Gaussian noise signals. Time delay

is calculated in Eqn. (2.15)

d cos
Ar =229 (2.15)

13



where d is the inter-element distance, c is the speed of light. Phase difference Ay ,
is defined in Eqn. (2.16) and Eqgn.(2.17)

AY = 27 frp At (2.16)

dcosg (2.17)

AY = 27 frp

The DOA estimation of ¢, is given in Eqgn. (2.18)

~

go=acos(

oy ) (2.18)

2nfrrd

The maximum likelihood estimation of the phase difference and DOA ¢, Ay are

given respectively [4] in Egn. (2.19) and Eqgn. (2.20)

WL = angle(s2(frr)S1" (frr)) (2.19)
Ay *
Py = aCos <%> (2.20)

where s,(frr) and s1(fzr) are the fourier transforms of s;(t) and s,(t) at the

frequency frr [10].

14



2.2.1 Phase Ambiguity Phenomenon

As mentioned earlier, the DOA estimation becomes ambiguous when antenna
spacing exceeds 1/2, due to phase wrapping within the search sector. The ambiguity

problem can be mathematically defined as follows:

Recall the phase difference between two antennas Ay is defined as

dcos g (2.21)

AY = 27 frp

The maximum and minimum of the phase difference are observed when source is

located at ¢ = 0" and ¢ = 180°. So, the phase difference is bounded by

d d
_ZﬂfRFz <AY < 27TfRFE (2.22)

To obtain an unambiguous phase difference and estimate the direction of arrival
(DOA) angle unambiguously, all potential phase differences resulting from the
source's location must fall within the interval [— m, 7 |. Therefore, antenna spacing

d must be satisfied the following equation;

d< (2.23)

2frr 2

For the long-baseline arrays where d > 1/2, the unambiguous phase difference will

exceed the range [— 7, 7 | described as

15



A/I\I)ambiguous = A/l\l)measured + 2mp (2.24)

where  AY,,.asureq 1S the measured ambiguous phase difference, p is the integer
representing the ambiguity number associated with one of the possible 27 phase
differences of the measured phase difference. From Eqgn. (2.22) and Eqn.(2.24) , p is
bounded by

_ fRFd _ A’{/)measured
c 2pi

fRFd _ A/l\pmeasured
c 2pi

‘ <p< (2.25)

where operators [ ]and| | denote the ceiling and floor functions, respectively and
A neasureq 1S In the [— 7,7 | interval. Upper bound for Eqn. (2.25) can be written

as

d d
—round (ng ) <p < round (ng ) (2.26)

The total maximum number of ambiguities, N, can be defined as

k::round<ﬁfd> (2.27)

N =2k+1 (2.28)

Using Eqgn. (2.18), Eqgn. (2.24), Egn. (2.26) and Eqgn. (2.28), the corresponding

ambiguous DOA estimation angles can be written as
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Two cases

A/l\l)ambiguous: {E/)l' E/)Z 'Z\l/)Zk+1} = Epmeasured i_ an (2-29)

Alpambiguousc
O = — 5 2.30
P=a cos( 2 furd > (2.30)
(Alpmeasured + ZTIP)C
0) = 2.31
o) =a cos( T (2:31)

such as d = A with two phase-wrapping and d = 21 with four phase-

wrapping over full azimuth scan are shown in Figure 2.3 and Figure 2.4.

Phase Difference,y (Degree)

The Source Angle vs Phase Difference

200
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10071

S0

=50

=100

-150

—ZDD 1 1 1 1 1 1 1 1
0 20 40 60 B0 100 120 140 160 180
Source Angle,@ (Degree)
Figure2.3.d = 1
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The Source Angle vs Phase Difference
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Figure 2.4.d = 21

Consider a long baseline interferometer with d = 21, fzr = 18 GHz and the source

angle is ¢ = 120°. Eqn. (2.21) gives the unambiguous phase difference as

AP = —362.011° (2.32)

The measured ambiguous phase difference is

&z}measured = [Alp]ZTE = —2.011° (2.33)

The set of ambiguity numbers is computed from Eqn. (2.25) as

18



_ fRFd _ &\/)meas.ured < p < fRFd _ E/)meas.ured (2.34)
c 2pi 2pi

—1<p<2 (2.35)

Then the resultant corresponding ambiguous DOA estimation angles can be
calculated from Eqgn. (2.31) as

?(p) = {120°,90.159°,60.367°,7.402°} (2.36)

2.3  Amplitude and Phase Comparison Hybrid Technique

In order to resolve the ambiguity problem, amplitude comparison can be
implemented in addition to phase comparison [11]. Amplitude comparison DOA
estimation is less accurate and coarse however enables to resolve the ambiguity.
Consider the array in Figure 2.1 with two elements. Ambiguity resolution algorithm
flows as follows [12];
i.  Perform Fourier Transform on detected s, (t) and s,(t)

ii.  Perform the frequency estimation by finding the peak of spectrum, fxx

iii.  Find the phase of the detected signals at the estimated frequency

iv.  Perform the Phase Comparison in order to find phase difference

A/l\pMLambiguous

The above steps are shown in Figure 2.5

v.  Find magnitudes of the detected signals at the estimated frequency

vi.  Perform the Amplitude Comparison in order to find @mrcourse
The above steps are shown in Figure 2.6.

vii.  Find all possible ambiguous phase difference values, {Ay, A, ..., Ahopes1 }
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viii.  Find all possible DOA angles, {@uy,, Pur, - Pmrop,, )
ix.  Compare {@u,, Pu, - » PuL,x,,} With Pmrcourse, and find the closest

X.  Find the unambiguous angle, ®myfinal

The above steps are shown in Figure 2.7

5:(t)  Fourier Frequency Phase
Transform Estimation Estimation
Phase AlpMLumbiguous
Comparison
s;(t)  Fourier i Frequency Phase
Transform Estimation Estimation

Figure 2.5. Phase Comparison Block

Is1(frr) |
Amplitude (’ﬁMLcourse
Comparison
|52 (frE) |
Antenna-1 Antenna-2
Pattern Pattern

Figure 2.6. Amplitude Comparison Block
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PMLcourse
AY

MLtzmbiguDus

Ambiguity Resolution

+2m AY, Scan Block
+4m AP, _ AW s ¢

P =0\ d) g
481 @3 MLfinal

AY: {@1:---1@2“1}

Pmr: {Pmr 1= PML 2k+1}

‘T}MLfinal = min{|® y-Puicoursel}
tomk AW 14

Figure 2.7. Ambiguity Resolution Scan Block

2.3.1 Amplitude and Phase Comparison Hybrid Technique Simulation
Results

Consider two-element interferometry is given in Figure 2.2. The simulation

parameters are given in Table 2.1.
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Table 2.1 Simulation Parameters

Parameter Value
Frequency 18 GHz
SNR 20dB, 0dB
Search Angle 60" < ¢ < 120°
Scan Angle 0.1°
Sampling Frequency 125 MHz
Number of Trials 10
Number of Snapshots 125
Antenna Spacing 7.75)
Antenna Pattern Type Gaussian
Antenna 3dB Beamwidth 45°
Antenna Tilt Angle 15°

The antennas are physically tilted 15° from their standard orientation. Their radiation
patterns are given in Figure 2.8. The search is constrained to 60° < ¢ < 120° .
Because the difference in antenna patterns exhibits a steep curve within this range,

which enhances the performance of the amplitude comparison algorithm.
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Figure 2.8. The Patterns of the Left and Right Antennas

The performance of the algorithm is shown in Figure 2.9 and Figure 2.10. The
Amplitude-Phase Comparison Hybrid Method is a valuable approach for rapidly
resolving ambiguities and maintaining low computational complexity. While it
provides an efficient means of addressing ambiguities, the accuracy of the amplitude
comparison can sometimes constrain the overall performance of the system. This
trade-off between ambiguity resolution speed and precision is a key consideration,
as the method’s primary strength lies in its ability to quickly and efficiently solve
ambiguities, potentially at the expense of some level of accuracy in amplitude-based

measurements.
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2.4  Amplitude Comparison and MUSIC Hybrid Technique

While MUSIC algorithm [13] is a super resolution algorithm which offers high
accuracy and resolution in DOA estimation, it still encounters issues with ambiguity.
In order to overcome these issues, amplitude comparison method can be utilized. The

received signal model is defined as;

y(t) = As(t) + e(t) (2.37)

Where A is the steering matrix, e(t) is zero-mean independent additive white

Gaussian noise. Sample covariance matrix is calculated as;

N

~ 1

R, =% y(®Oy®)" (2.38)
t=1

After performing singular value decomposition (SVD), eigenvectors of noise

subspace are found. MUSIC pseudo spectrum is given as;

1
a(p)GGPa(p)

p(p) = (2.39)

where ¢ is the search angle, G represents the noise subspace vectors.

Ambiguity resolution algorithm flows as follows;
I.  Perform Fourier Transform on detected s, (t) and s, (t)

ii.  Perform the frequency estimation by finding the peak of spectrum, fxx

iii.  Find magnitudes of the detected signals at the estimated frequency
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iv.  Perform the Amplitude Comparison in order to find @mrcourse
v.  Calculate the sample covariance matrix, R,
vi.  Performthe SVD on R,
vii.  Find the noise space vectors and construct MUSIC pseudo spectrum
viii.  Find all peaks in the spectrum corresponding to possible ambiguous DOA
angles, {{U\MUSICU Pmusic, - @MUSICK}

ix.  Compare {@Muswl:(ﬁmusmz ---»@MUSICK} With @mpcourse: and find the
closest

X.  Find the unambiguous angle, @musicfinal

24.1 Amplitude Comparison and MUSIC Hybrid Technique Simulation
Results

Consider two-element interferometry is given in Figure 2.2. The simulation

parameters are given in Table 2.2.

Table 2.2 Simulation Parameters

Parameter Value
Frequency 18 GHz
SNR 20dB, 0dB
Search Angle 60° < ¢ < 120°
Scan Angle 0.1°
Sampling Frequency 125 MHz
Number of Trials 10
Number of Snapshots 125
Antenna Spacing 7.75\
Antenna Pattern Type Gaussian
Antenna 3dB Beamwidth 45°
Antenna Tilt Angle 15°
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The type, specifications, and setup of the antennas are identical to those outlined in
Section 2.3.1

The performance of the algorithm is given in Figure 2.11 and Figure 2.12. By
utilizing the super-resolution algorithm MUSIC, the accuracy of the amplitude
comparison method is enhanced. However, the inherent limitations of the amplitude
comparison method still lead to subpar performance, which impacts the overall
effectiveness of the system, albeit at the cost of increased complexity in resolving

ambiguities.

3 J' “’

60 70 80 90 100 110 120
DOA (degrees)

Figure 2.11. SNR=0dB
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Figure 2.12. SNR=20 dB

2.5 Rotary Interferometer

Rotary or rotating interferometer is shown in Figure 2.13. The array is continuously

rolling in X-y plane. The rotation frequency is ®, the rotation axis is z plane, ¢-f are

the DOA angles of the source [5] [14] [15].
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Target Location

/2

Figure 2.13. Rotating Interferometry

The relationship of phase difference between two antennas is given as:

a(n) = #sinﬁ cos(wAt(n — 1) + @) (2.40)

where At is the sampling interval or pulse repetition interval, n is the pulse number
from 1to N, ¢ , B are the azimuth and elevation angle of the source and estimation

of a(n), @(n) € (—m, ). In order to obtain a(n) unambiguously, the integrator c(n)
is utilized as;

c(n) =an) —a'(n) (2.41)

c(n) = 2nk (2.42)
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where K is an integer value and a(n) has the cycle ambiguity.

Rotating interferometry employs an integrator to execute a phase accumulation

sequence for eliminating phase ambiguity. The accumulated phase is then adjusted

using the following procedure;

c(1)=0

é(n) =¢(n—1) + 2m, an)—an—-1)<-m

¢(n) =¢n—-1) —2m, an)—an—-1)>-n

é(n) =¢n—-1), otherwise

Also amended phase, @.(n), is defined as;

c(n)=¢n)+U

ac(n) =am) +¢é(n)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

where U is the bias term. @.(n), is in the sinusoidal form seen in Eqgn. (2.40), such

as

y(t) = Acos(wt) + Bsin(wt) + D

30
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Three parameters of least square estimate for A, B and D is done to estimate
amplitude, initial phase and bias of @.(n). y;(i = 1,2, ...n) is the amended phase

difference at the time t;. We have to minimize following equation

&= Z[yi — Acos(wt) — Bsin(wt) — D]? (2.50)

i=

To estimate A, B and D, following matrix is constructed

cos(wty) sin(wt;) 1
Y = ( ; : > (2.51)
cos(wt,) sin(wt,) 1
V1
y = [ : (2.52)
Yn
A
X = [Bl (2.53)
D
where w is the rotation frequency. Eqn.(2.51) can be written as
e=— ¥v0)'(y— ¥x) (2.54)

The least square solution of x can be written as
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=YW (2.55)

The fitting function can be defined as

y, = Acos(wt;) + Bcos(wt;) + D (2.56)
y, = Ccos(wt; + @) + D (2.57)
where C = VA? + B?
—B
¢ = tan™" |—~|, A=0 (2.58)
-B
@ =tan™" I + m, A<O (2.59)

where @ is the DOA estimation of the source signal.

25.1 Rotary Interferometer Simulation Results

For two-element rotating interferometry is given in Figure 2.13. The simulation

parameters are given in Table 2.3
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Table 2.3 Simulation Parameters

Parameter Value
Frequency 18 GHz
SNR 20dB, 0dB
Search Angle 0" < ¢ <180°
Scan Angle 0.1°
Sampling Frequency 125 MHz
Number of Trials 10
Number of Snapshots 125
Antenna Spacing 7.75)
Revolution Frequency (f;-) 7,5, 10 Hz
Processed Number of Pulse 75, 100

The performance of the algorithm is presented in Figure 2.14, Figure 2.15, Figure
2.16 and Figure 2.17 . Due to its rotation, interferometry exhibits an isometric
response and very good accuracy. However, its performance is highly dependent on
the illumination of the source signal. When the number of pulses used is reduced, or
if the source has a high pulse repetition interval, the performance degrades

significantly.
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Figure 2.15. SNR=0dB, f, = 75 Hz
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Figure 2.17. SNR=20 dB, f,, = 100 Hz
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2.6 SODA Interferometer

SODA geometry is given in Figure 2.18 [4] [16] [17]. The SODA array requires a

minimum of three antenna elements.

d12 d23

Figure 2.18. Linear SODA Array

Phase differences between antenna couples are written as;

2nfd

D1y = ”’; 12 o5 @ (2.60)
2nfd

Yoz = ﬂi 23 cos @ (2.61)

The antenna distances are defined as;
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min

dy3 —diz = dj
Amin
>
7 =
The second order phase delay is given as;
Ya =23 — P12

A

_ 2nf(da)
A=———=COSQ
c
— _1_C¥a
Yp = cos 2nfd,

_ 2nf (dyz — dy2)
= p co

S

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

The unambiguous DOA estimation is achieved using the designed SODA array,

along with a virtual array consisting of two elements spaced by d, < ’1"‘7‘” spacing.

2.6.1 SODA Interferometer Simulation Results

For the given array in Figure 2.18, the simulation is performed according to Table

2.4.
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Table 2.4 Simulation Parameters

Parameter Value
Frequency 18 GHz
SNR 20dB, 0dB
Search Angle 40° < @ < 140°
Scan Angle 0.1°
Sampling Frequency 125 MHz
Number of Trials 10
Number of Snapshots 125
Total Antenna Aperture 7.75)

Due to the linear array structure of the SODA array, its performance degrades at the
end-fire points of the array. Therefore, the search is constrained to 40° < ¢ < 140°
which provides a clearer indication of the SODA array's performance. The
performance of the SODA array is presented in Figure 2.19 and Figure 2.20. The
SODA array is presented the robust ambiguity resolution however due to short-
baseline virtual array characteristics, the DOA performance is limited. Therefore,
additional technique has to be applied such as SODA-Based Inference (SBI) or
MUSIC [4]. The SODA array offers robust ambiguity resolution; however, its
performance is limited by the characteristics of the short-line virtual array.
Therefore, additional techniques, such as SODA-Based Inference (SBI) or MUSIC,

need to be applied to enhance performance.
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2.7  Comparison of the Ambiguity Resolution Algorithms

Overall comparison is shown in Figure 2.21. All simulations are performed

according to parameters in Table 2.5.

Table 2.5 Simulation Parameters

Parameter Value
Frequency 18 GHz
SNR 20 dB
Search Angle 60° < ¢ < 120°
Scan Angle 0.1°
Sampling Frequency 125 MHz
Number of Trials 10
Number of Snapshots 125
Total Antenna Aperture 7.75)

Amplitude comparison provides relatively poor performance and a narrow field of
view but has low computational complexity. Its performance can be improved with
the use of super-resolution algorithms. Rotating interferometers offer the best
accuracy with an isometric response, but their robustness is relatively poor, heavily
depending on the source signal parameters. The SODA array delivers moderate
performance and is affected by end-fire angles due to its short-line linear array
behavior. However, it demonstrates good robustness. To enhance the performance
of the SODA array, additional algorithms such as SODA-Based Inference (SBI) [18]
or MUSIC can be implemented. Hence, throughout this thesis, particular emphasis
is placed on the rotated SODA array structure, which offers not only fast, accurate,

and robust ambiguity resolution but also an isometric array response.
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Figure 2.21. Comparison of Ambiguity Resolution Algorithms
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CHAPTER 3

AMBIGUITY RESOLUTION WITH SODA ARRAY

In this chapter, a novel planar SODA array design is introduced, differing from the
conventional linear SODA array approaches found in the literature. First, a planar
SODA array is designed to meet specific constraints. The new approach is introduced
in order to eliminate the Field-of-View (FOV) limitation of the designed planar
array. Next, a rotary mechanism with an appropriate rotation frequency is applied to
the array to enhance direction of arrival (DOA) estimation performance. Finally, all

performance evaluations are compared against the Cramér-Rao Bound.

3.1  Planar SODA Array Design

The SODA array is typically examined in the literature with a linear configuration.
However, in practical scenarios, linear arrangements are often impractical due to
mounting constraints on ships, aircraft, or other vehicles. To address these issues, a

planar SODA array structure can be employed.

Consider the SODA array with three elements given in Figure 3.1.Here, d;, denotes
the distance between antenna 1 and antenna 2, d,5 represents the distance between
antenna 1 and antenna 3, and d,5 is the distance between antenna 2 and antenna 3.
The angle between baselines d;5; and d;, is o, where 0 < a < 1/2, A,in/2 K
dy, <dqi3 and where 4,,;,, the shortest wavelength is. The first order phase

difference is introduced by

= WCOS(QO - ) (3.1)

21
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var = 7% cos() 32)

y
diz -T2 e d23
i A X
! d13

Figure 3.1. Planar SODA Array Geometry

The second order phase difference is given as

ZﬂfdA
c

Ya =31 — 2¢y = cos(p — 0) (3.3)

where d, is the second order distance and © is the rotation angle, and these are

provided from cosine theorem as

dA = \/d213 — 4‘d212 — 4‘d12d13COS a (34)
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—2d,sina

) (3.5)

0 = arct
are an(d13 — 2d,,cosx

The second order phase difference term ), is unambiguous when the following

equation is satisfied.

0<dy < Amin (3.6)

The corresponding the DOA estimation angle can be written as

¢ = arccos (Z:Il]/:fiA> -0 (3.7)

The distance d;, and the angle o can be described as [4]

+=+/d2, — d?,3sina (3.8)

d
a < arcsin (d—A) (3.9)

13

The second order phase difference y, and second order distance d, corresponds to

virtual linear array with two elements rotated in angle ©

The second-order phase difference ¥, and the second-order distance d, correspond

to a virtual linear array consisting of two elements rotated by an angle 0.
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A planar SODA array with three elements functions similarly to a linear array,
limiting its field of view (FOV) to 180°. Overcome this limitation, a novel planar
SODA array design is proposed that allows for scanning the entire azimuth sector,
thereby achieving a full 360° FOV.

3.2  Proposed Planar SODA Array Geometry

The proposed planar SODA array geometry given in Figure 3.2.

Y
1 diz2 2 d23
-X A 4
@ d13 ;; X
—a -3

d14< ;'_,,-""’dqa

Figure 3.2. Proposed Planar SODA Array Geometry

The addition of a fourth antenna to this SODA array geometry allows for the design
to achieve a 360° field of view (FOV) for direction of arrival (DOA) estimation. This
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array structure enables accurate DOA estimation across the entire azimuth sector

without ambiguity.

The second order phase differences can be written as follows;

fda,

2
W, = a1 — 2z = —LLeos(p— 0,) = Qs cos(p — ;) (3.10)

ZﬂfdAz

- cos(@ — 0,) = Q, cos(p — 03) (3.11)

ll’Az =31 — 2y, =

ZﬂfdAl d 2Tl'fdA2
C

Cc

where Q, and Q, are defined as an respectively. d,, and d,, can be

found from Eqgn. (3.4) ©, and ©, are described in Eqgn. (3.5). By using cosine sum
formula, Eqn. (3.10) and (3.11) can be rewritten as

Q4 cos(p — 0;) = Q1(cospcosO; + sinpsinBd,) (3.12)
Q, cos(p — 0;) = Q,(cospcosO, + singsin®,) (3.13)
Egn. (3.10), Egn. (3.11), Egn. (3.12) and Eqgn. (3.13) can be combined in AX = B

form as

‘ l/JAI/
cos0, Sln@1] [COSQO — Q1 (3.14)

cos@, sin®,]| lsing] tpAz/
Q2
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wAl/ 0,

_[cos®; sin® _[cosg B
where, A = cos0, sin(é)z] and X = [sin (p] and B = l/JAz/
Q2
In order to find, the pseudo-inverse of A can used as
X = (4"A)"1AHB (3.15)

where A is the hermitian of a matrix and (4¥A)~1A¥ is the pseudo-inverse of A.

The DOA estimation angle can be found as [19]

¢ = atan <X(2)> (3.16)

where X (1) and X (2) are the first and second row of X respectively. This gives us
Least Square Solution of DOA estimation angle ¢ [20].

3.3 Design Parameters of Proposed Planar SODA Array Geometry

Using Eqn. (3.4) , Egn. (3.8) and (3.9) a planar SODA array geometry is designed as
shown in Figure 3.2. This design allows for unambiguous DOA estimation over 360°

FOV up to 18 GHz. Physical design parameters for the array are shown in Table 3.1.
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Table 3.1 Planar SODA Array Design Parameters

Parameters Value
dis 0.07 meter
dq3 0.14 meter
dis 0.07 meter
o 3’
Position of Antenna-1 (0,0

Position of Antenna-3

(0.07,0) meter

At 18 GHz operating frequency, the derived parameters are listed in Table 3.2

Table 3.2 Planar SODA Array Derived Parameters

Parameters Value
da, 0.0073 meter
da, 0.0073 meter
0, —88.5°
0, 88.5°

Notice that for 18 GHz, 1/2 =0.0084 and d,,, < /1/2. Hence ambiguity is solved

for full azimuth scan of 360°. Figure 3.3 shows the two virtual SODA linear array

which is equivalent to designed array shown in Figure 3.2 with the design parameters

listed in Table 3.1 and Table 3.2.
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Figure 3.3. Equivalent Virtual SODA Array

3.4 Cramer-Rao Bound

Cramer-Rao bound (CRB) gives a lower bound of unbiased parameter estimation.
An array comprising sensors that receives the signal emitted by far-field one
narrowband source with direction parameters denoted by {¢,}. Some assumptions
are made in this section. The noise is a white Gaussian distributed noise, the source
and signal are uncorrelated and there is only one target and only an azimuth scan is
performed. The covariance matrix can be calculated as follows [21]

R = APA" + ol (3.17)
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where P is the signal covariance matrix, o is noise variance and A is the steering

vector defined as

A = [a(¢1)] (3.18)

Due to the fact that we have only one source and perform only azimuth scan, we
have an unknown parameter as

a=q (3.19)

The Fisher information matrix (FIM) can be written as

AR dR
FIM = NTr (—R-l—R-l) (3.20)
da da

FIM = F,,, (3.21)

where N is the number of data snapshots, T7(.) is the trace operation and Fy,, is the

azimuth estimator. The CRB of the angle parameter is defined as
CRB = FIM™! (3.22)

CRB(¢p) = %{Re(D*l’[jD) O (PA*RAP)T}? (3.23)
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where = (%) , I =1—A(A*A)~14*, © is the Hadamard-Schur product,
1

(.)*is the conjugate transpose operator and (.)7is the transpose operator.

3.5  Simulation Results of Proposed Planar SODA Array Geometry

The design parameters are given in Table 3.1 and Table 3.2. The simulation is
performed according to parameters listed in Table 3.3

Table 3.3 Simulation Parameters

Parameter Value
Frequency 18 GHz
SNR 40 dB,30 dB,20 dB,10 dB
Sampling Frequency 125 MHz
Number of Trials 100
Number of Snapshots 125

The performance results are given in Figure 3.4, Figure 3.5 and Figure 3.6
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Figure 3.6. RMSE vs DOA, SNR =20 dB

In Figure 3.7, the performance of planar SODA array is compared with the CRB at

an angle ¢ = 60°,
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Figure 3.7. Planar Soda Array Performance, ¢ = 60°

Figure 3.4, Figure 3.5, Figure 3.6 and Figure 3.7 show that the performance of the

array is compromised in certain directions because of the linear structure of the
virtual equivalent array. Additionally, due to the virtual small aperture d,, , < ’1/2

achieving good performance requires a high SNR. To address these issues and

achieve better, more robust performance, it is proposed to rotate the array to provide

360 degrees of coverage.
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3.6  Proposed Rotating Planar SODA Array

The rotating SODA planar structure is shown in Figure 3.8. The source signal is
observed by rotation SODA planar array with four antenna elements, 1, 2, 3 and 4

with initial (original) position is named as 1 and 4

Dinitial’ Zpinitial’ 3pinitial Dinitial
respectively as discussed previously. Assume that the base-line 1-3 is rotating at a
costant velocity by anticlockwise direction around Z-axis in XY plane. The angular
rotation frequency is w, = 2mf, where £, is the rotation frequency and the rotation
speed is v, = 2mf,.. T is the rotation period. After At time all antenna elements are
rotating from their own p,, location to p;.,, location. For example, after At time, the
array formation rotate from Figure 3.8 to Figure 3.9 or from Figure 3.10 to Figure

3.11. M is the number of data sampling points per rotation.

e

Pinitial

) d13 e X
Pinitial ) - _,“"F )
dl" h_"-.—"f ﬁﬂa 3piliisiml

Pinitial

Figure 3.8. Rotating SODA Planar Array

56



Figure 3.9. Rotating SODA Planar Array at p,
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Figure 3.11. Rotating SODA Planar Array at py,
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To develop the proposed algorithm, we first need to clarify a few assumptions.

» Base-line 1-3 is rotating at a constant velocity.
» Select 4M elements at uniform time intervals to form a virtual SODA planar
array within a time period of T

» The source signal remains unchanged during the measurement period.

The signal model can be written as;

X(t) = As(t) + N(t) (3.24)

where X (t) is 4MxL array output vector, A is 4Mx1 array steering vector and s(t)

IS 1xL signal vector, N(t) is 4Mx1 noise vector and L is the number of snapshots.

The steering vector A can be expressed as

A(p) = [a1(9), az(@), ..., au(p)]" (3.25)
A (@) = [a1m (@), A2 (@), A3 (@), Agm (@)] (3.26)

wherem =1,2---,M
an(9) = exp(~jri g cos(p—a;—rm=1) @20

Whel‘e i = 1,2,3,4‘, rn = O, T, = d12, r3 = d13, = d14 and a, = OO, Uy =

3,a3=0,a4=_3
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Eqn. (3.24) can be described as

Xim(tm) = aim((p)s(tm) + Nip (tm) (3.28)

where at the t,,, all four antennas begin sampling the signal. Phase differences can

be written as

T Wy
Tim (@) = —cos(p —ai— - (m —1))) (3.29)
tn, Can be written as

tm =t + (m—1)At (3.30)

where t; =0, m = 1,2,...M and At is the time delay is the two neighboring data

sampling point. After implementing (m — 1)At in Eqn. (3.28), it can be written as

xim(tm) = exp(_jw(rim + (m - 1)AT))S(tm) + Nim(tm) (331)
xim(tm) = exp(—jw(m - 1)AT)aim(§0)S(tm) + Nim(tm) (3-32)

It is assumed that source signal remains static, the rotation of array will cause

Doppler frequency shift. Doppler frequency can be defined as [22]
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2nf,risin(p — w,t
o = IO Z 0 t)] (3.33)

where f is the source frequency. Hence w in Egn. (3.31) and (3.32) is updated as

w; =2n(f + fiq) (3.34)

Define ¢, = exp(—jw;(m — 1)At) as the phase difference of i" antenna element
at time t,,, relative to their initial position. The phase difference matrix for all antenna

elements at t,,, can be defined as

¢tm = diag [¢t1m' ¢t2m T ¢tim] (3.35)

For all data sampling positions m = 1,2, ... M. Total phase difference matrix for all

rotation points, M, can be written as

¢ = diag[Pe,, t, ) Peyyl (3.36)

Finally, the signal model in Eqn. (3.24) is modified as

X(t) = pAs(t) + N(t) (3.37)

where X(t) is 4MxL array output matrix, ¢ is 4Mx4M phase difference matrix, the
A is 4Mx1 array steering vector and s(t) is 1xL signal vector, N(t) is 4Mx1 noise

vector and L is the number of snapshots.
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3.7 Array Rotation Frequency

As the array rotates, the received signal data is sampled, leading to a small phase

difference between each pair of sampled data points. To ensure the stability of the

sampled data, At must satisfy the following condition

1
T >ATt > —
fs

where f; is the sampling frequency. The time, Az, can be defined as

The number of snapshots is L, then using Eqgn. (3.38), it can be written as;

11 L
fr Mfr fs

11 L
fr Mfr fs

i

fr<<ML

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

Given a system sampling frequency of 125 MHz, 360 sampling points, and 125

snapshots, Eqn. (3.42) vyields f, = 2.78 kHz. If the array rotation frequency is
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significantly lower than 2.78 kHz, the stability of the sampled data will be

guaranteed.

3.8 DOA Estimation Algorithm

Recall from Eqn.(3.14), generalized form of AX = B for rotation is given as

————

[ cos0,

| cos0O,

where, A =
|cos®1M
cosO,y

vector and B =

cos®; sinB®;
cos®, sin0B,

cos0Oqy SinO;y
cos0,y SinO,y

sin®, |

: sin@lM‘
e,
1l)AZ:/QZ

Ve o
Voo,

— zA/ o |
o0 “/e,

= (3.43)

Ve o
A

sin @

N ——

sin®; 1
coS
is the 2Mx2 matrix and X = [sin Z] is the 2x1

Sin®,,

is the 2Mx1 vector.

For all M points data sampling positions, elements of A and B is calculated.
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Then in similar manner as discussed before, in order to find, the pseudo-inverse of

A can used as

X = (A"A)"1AHB (3.44)

where A is the hermitian of a matrix and (4¥A)~1A¥ is the pseudo-inverse of A.

The DOA estimation angle can be found as

X(z)) (3.45)

$ = atan (X(l)

where X (1) and X (2) are the first and second row of X respectively. This gives us

Least Square Solution of DOA estimation angle ¢.

3.9 Rotating Planar SODA Array Simulation Results

The design parameters are given in Table 3.1 and Table 3.2. The rotation frequency
is assumed to be 20 Hz, which is physically reasonable and ensures the stability of
the algorithm. Additionally, M data sampling points in a rotation are considered.
CRB is calculated according to the signal model described in Section 3.6. The

simulation is performed according to parameters listed in Table 3.4
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Table 3.4 Rotating Array Simulation Parameters

Parameter Value
Frequency 18 GHz
SNR 40 dB,30 dB,20 dB
Rotation Frequency 20 Hz
Sampling Frequency 125 MHz
Number of Trials 10
Number of Snapshots 125
Number of Sampling Points 4 and 12

Increasing SNR and the data sampling points M significantly enhances the
performance of the SODA array, as illustrated in Figure 3.12, Figure 3.13, Figure
3.14 and Figure 3.15. Specifically, when M is 4 and 12, the angular spacing between
sampling points is /2, and 1t /6, respectively. Comparing the rotating SODA array
to the planar SODA array, the rotating configuration demonstrates a notable
improvement in performance. Additionally, the rotating SODA array achieves an

isometric array response, further optimizing its accuracy and effectiveness.
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Rotating SODA array performance respect to Planar SODA array and CRB is given
in Figure 3.16, and Figure 3.17. The CRB curves, as the number of sampling points
M increases, demonstrate that the performance of the rotating SODA array improves
more significantly compared to the planar SODA array. Specifically, these curves
reveal that the rotating SODA array achieves greater accuracy and lower estimation

errors, showcasing its superior ability to resolve ambiguities and enhance overall

performance.

Planar Soda Array
Ratating SODA Array
CRB

o 5 10 15 20 25 30 35 40
SNR (dB)

Figure 3.16. M = 4

67



102 T T T T T T T

Planar Soda Array
Retating Soda Array
CRB

RMSE (degrees)
3
f
)

1072

0 5 10 15 20 25 30 35 40
SNR (dB)

Figure 3.17. M = 12

3.10 The DOA Performance with Varying Rotation Frequencies

In Section 3.7 of this thesis, it is explained that the rotation frequency is set to a
reasonable level to maintain signal coherence during data collection. In other words,
since the sampling frequency is significantly higher than the rotation frequency, the
array appears stationary during the data collection process. For instance, with a
rotation frequency of 100 Hz and a total data sampling time of 1usec at a sampling
frequency 125 MHz, 125 snapshots are captured. The angular displacement in this
case will be 2m =100 = 107 = 6.283210~* radian. Therefore, the goal is to
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examine the DOA performance of the rotating SODA array as the rotation frequency

varies. The simulation is performed according to parameters listed in Table 3.5

Table 3.5 Rotating Array Simulation Parameters

Parameter Value
Frequency 18 GHz
SNR 20 dB
Rotation Frequency, f; 1-100 Hz
Frequency Increment Step 1Hz
Sampling Frequency 125 MHz
Number of Trials 100
Number of Snapshots 125
Number of Sampling Points 4

Figure 3.18, illustrates how the DOA performance varies with changes in rotation
frequency. It is observed that although any phase compensation is not applied, the
DOA performance for all angles of the rotating SODA array is good at certain
rotation frequencies. However, at other frequencies, the DOA performance

deteriorates.
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For example, the rotation frequencies of 9 Hz and 10 Hz are examined. At 9 Hz, the
performance of the rotating SODA array deteriorates, while at 10 Hz, the
performance is good. The phase disturbance of the phase difference between
Antenna-1 and Antenna-3 (y3,) is calculated and presented in the figures for 9 Hz
and 10 Hz frequencies at four data sampling points. M is equal to four and the angular
spacing between sampling points is /2. The phase disturbance refers to the phase
deviation that occurs when the array rotates, compared to when it remains stationary.
This deviation arises due to the relative motion between the array elements and the
signal sources, resulting in changes in the phase of the received signals. As the array
rotates, the time delay and Doppler shift introduce phase changes that can affect the
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Figure 3.18. RMSE vs Rotating Frequency

accuracy of DOA estimation if not properly compensated.
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The phase disturbance of the phase difference between Antenna-1 and Antenna-3
(¥31) for 9 Hz is shown in Figure 3.19, Figure 3.20, Figure 3.21and Figure 3.22.

In Figure 3.19, it is observed that phase disturbance solely due to Doppler shift,
which starts to occur as the rotation begins. In Figure 3.20, when the array rotation
angle is 90°, phase disturbance caused by both time delay and Doppler shift is

observed.

In Figure 3.21 and Figure 3.22 when the array rotation angle is 180° and 270°,
respectively, we observe further phase disturbance caused by both time delay and
Doppler shift. In fact, at this rotation frequency, the phase disturbance due to time

delay is more significant than the disturbance from Doppler shift.

The phase disturbance of the phase difference between Antenna-1 and Antenna-3
(¥31) for 10 Hz is shown in Figure 3.23 Figure 3.24 Figure 3.25 and Figure 3.26.
From these figures, it is observed that there is no additional disturbance from time
delay for all rotation angles. The phase disturbance is primarily attributed to the

Doppler frequency alone.
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Consider, ¢4, = exp(—jw(m —1)A7) as the phase difference of i*" antenna

element at time t,, relative to their initial position, sampling points m = 1,2, ... M

1

At = Y

is the time delay is the two neighboring data sampling point, w is the radial

frequency of the source signal. If Eqgn. (3.46) is satisfied, the phase disturbance

¢gq,, is due to time delay could be eliminated.

mod(w(m — 1)At,2m) = 0 (3.46)

When examining the phase disturbance, it arises from the time delay between data
sampling points and the Doppler frequency due to the rotation frequency. At a
reasonable rotation frequency, the phase disturbance caused by the Doppler
frequency is negligible compared to the phase disturbance caused by the time delay.
At 9 Hz, itis observed that the phase disturbance is influenced by both the time delay
and the Doppler effect. In contrast, at 10 Hz, the phase disturbance is primarily due
to the Doppler frequency alone. In other words, in the case of f. = 10, Eqn. (3.46)

is satisfied.

To achieve more stable and robust DOA performance for the SODA rotating array
across different operating frequencies, the phase disturbance caused by the time

delay must first be compensated.

3.11 Phase Compensation Due to Time Delay

Time Delay Compensation procedure is explained in this section.

Define, ¢q., = exp(jw(m — 1)A7) as the time-delay compensation element of ith

antenna element at time t,, relative to their initial position where sampling points
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m=12 .M, At = —

is the time delay is the two neighboring data sampling

*Jr

point, w is the radial frequency of the source signal, £, is the rotation frequency.

The time-delay compensation matrix for all antenna elements at ¢,,, can be defined
as

¢dcm = diag [¢dclm' ¢d62m t ¢dcim] (3.47)

For all data sampling positions m = 1,2, ... M. Total time-delay compensation matrix

for all rotation points, M, can be written as

Pac = diag [¢dcll ¢dcz ) ¢ch] (3.48)

Finally, the signal model in Eqgn. (3.37) is modified to incorporate the time-delay

compensation, resulting in the following time-delay compensated signal model;

Xac(t) = PacX(t) (3.49)

where X (t) is 4MxL array output matriX, ¢4, is 4Mx4M time-delay compensation
matrix, X4.(t) is 4MxL time-delay compensated array output matrix and L is the

number of snapshots.

After the time-delay compensation process, the simulation is performed again using
the parameters listed in Table 3.5. The results are shown in Figure 3.27. After the
time-delay compensation process, the rotating SODA array performs well across all

relevant rotation frequencies. Additionally, specifically when f,, = 9 Hz, following
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the time-delay compensation process, the rotating SODA array performs effectively
shown in the Figure 3.28.
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Figure 3.27. RMSE vs Rotating Frequency (After Time-Delay Compensated)
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3.12 Rotating Planar SODA Array and MUSIC Hybrid Technique

The MUSIC algorithm is a super-resolution technique that provides high accuracy
and resolution in DOA estimation. However, it still faces issues with ambiguity,
which can be resolved by using the SODA method. Furthermore, when the MUSIC
algorithm is combined with the rotating SODA array, the array manifold vector is
virtually increased, improving the system's resolution and accuracy in DOA

estimation, which enables optimal DOA performance.

The details about MUSIC and rotating SODA algorithms are given in Section 2.4.and
Section 3.8 respectively. The received signal is given in Eqgn. (3.49).

Rotating SODA and MUSIC Hybrid algorithm flows as follows;
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i.  Perform Rotating SODA algorithm and obtain the unambiguous DOA angle

Psopa

ii.  Perform MUSIC algorithm and angle-search in the MUSIC pseudo spectrum

within @sopa — 3 * Psopagys < IMUSIC,pqren, = Psopa T 3 * PsoDARys
iii.  Find the DOA angle @ inq; Of the corresponding peak in the MUSIC pseudo

spectrum within the given interval

3.13 Rotating Planar SODA Array and MUSIC Hybrid Technique Results

The simulation is performed according to parameters listed in Table 3.6.

Table 3.6 Rotating Array Simulation Parameters

Parameter Value
Frequency 18 GHz
SNR 20 dB
Rotation Frequency 20 Hz
Sampling Frequency 125 MHz
Number of Trials 100
Number of Snapshots 125
Number of Sampling Points 4

The DOA performance of SODA and MUSIC Hybrid Technique is shown in Figure
3.29. It can be seen that the MUSIC algorithm significantly enhances the rotating
SODA array with respect to Figure 3.12. It effectively behaves like an M-element
circular virtual array, providing an isometric, ambiguity-free, and high-accuracy

DOA response.
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Figure 3.29. M = 4,SNR = 20 dB

Rotating SODA array and SODA+MUSIC Hybrid techniques performance respect
to CRB are given in Figure 3.30. It can be seen from the figure that while MUSIC
enhances the performance of the rotating SODA array, the MUSIC+SODA
performance does not converge to the Cramer-Rao Bound due to phase imbalance
caused by the Doppler effect during the M data sampling points. In other words,
MUSIC algorithm is significantly affected by the Doppler effect due to rotation.
Therefore, a phase compensation approach to address the Doppler effects must be

utilized [23].
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Figure 3.30. M = 4

3.14 Phase Compensation Due to Doppler Effects

Due to the proposed planar SODA array geometry and its rotation mechanism, the
Doppler frequency for the three rotating antennas is measured relative to the first
antenna, as the first antenna remains stationary and experiences zero Doppler shift.

This can be used to estimate the Doppler frequencies for the three rotating antennas.

Define ¢y, (t) = exp(—jwg,,, (t — (m —1))At) as the doppler phase
compensation element of i*" antenna element at time t,, relative to their initial
position where sampling points m = 1,2,...M , wg,, is the radial doppler frequency

of i*" antenna element attime t,,,, At = le is the time delay is the two neighboring

*Jr

data sampling, L is the number of snapshots.
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Phase Compensation Procedure flows as follow;

Obtain s;,,,[n] signal at t,,,. Where s;,,[n] is the sampled signal of i*" antenna

element at time t,, relative to their initial position where sampling points

1

m=12,..Mi=12341t; =0ty =t; + (m—DAT, Ar = is the
time delay is the two neighboring data sampling
Estimate wq,,, at t,, [24]
argmax|DFT (s, [n])| — argmax|DFT (sy, [n])|
Kim kim
“tim = 27 L 5 (@as0)

Where wg, . is the radial doppler frequency of i" antenna element at time t,,,, DFT

is the Discrete Fourier Transform, f; is the sampling frequency, L is the number of

snapshots, k;,,, corresponds to the largest magnitude in Hertz in the DFT of s;,,,[n].

Obtain ¢y, (n) = exp(—jwg,,,(n — (m —1))At) as the 1xL doppler
compensation array of i** antenna element at time t,,,

Obtain ¢, the 4xL doppler compensation matrix for all antennas at time

tm

¢fcm = [¢f‘:1mT’ ¢f‘:2mT T ¢fcimT]T (351)

Obtain ¢ the 4MxL total doppler compensation matrix for all antennas for

all t,,,
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Gre = [Pac,’ Pac, » Pacy 1 (3.52)

vi.  Obtain the signal model in Eqgn.(3.49) which is updated to include doppler
compensation, resulting in the following 4MxL time-delay and doppler-

compensated signal model, Xq_

Xfa,(t) = Pse © Xgc(2) (3.53)

where © is the Hadamard-Schur product, (.)7is the transpose operator, X fa (t) is
4MxL time-delay and doppler compensated array output matrix, ¢y is 4MxL total

doppler compensation matrix, X4.(t) is 4MxL only time-delay compensated array

output matrix and L is the number of snapshots.

3.15 Revisited Rotating Planar SODA Array and MUSIC Hybrid Technique
Results

In this section X¢4_(t), the time-delay and Doppler-compensated array output matrix

given in Eqn.(3.53), is used to analyze the DOA performance of the rotating SODA
array. The simulation is performed according to parameters listed in Table 3.6.

The DOA performance of the SODA-MUSIC hybrid algorithm on time-delay and
Doppler-compensated data are shown in Figure 3.31. The performance of the SODA-
MUSIC hybrid algorithm is better than the case where only time-delay compensation
is applied, as depicted in the Figure 3.29.
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Figure 3.31. M = 4,SNR = 20 dB

The performance of the rotating SODA array and the SODA+MUSIC hybrid
technique with respect to the Cramer-Rao Bound (CRB) is shown in Figure 3.32.
After the Doppler compensation process, the rotating SODA and MUSIC Hybrid
algorithm performs close-to-optimum DOA estimation, and the estimation error
asymptotically approaches the Cramer-Rao Bound. Although the MUSIC algorithm
shows improved performance after Doppler compensation, the performance of the
rotating SODA algorithm does not change significantly which is also shown in
Figure 3.33
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CHAPTER 4

CONCLUSION

In this thesis, the focus is on improving ambiguity resolution for large
aperture arrays to enhance accuracy in direction-of-arrival (DOA) estimation.
A four-element planar SODA array is employed to address ambiguity issues
associated with large aperture arrays. This array structure, however, has
limitations due to its narrow configuration, similar to a linear array, which

affects its performance at end-fire angles.

To overcome this limitation, we propose rotating the four-element array. This
rotation introduces the Doppler Effect as a new parameter that must be
corrected. We analyzed this approach using the Cramér-Rao Bound and
practical simulation results. Our findings indicate that the performance of the

SODA array can be significantly improved by incorporating rotation.

The study highlighted the effects of phase disturbances resulting from time
delay and Doppler shifts in rotating SODA arrays. A compensation method
was developed to address these issues, improving the accuracy and stability

of DOA estimation across varying operating conditions.

By incorporating the MUSIC (Multiple Signal Classification) algorithm into
the rotating SODA array, this work demonstrated a significant increase in
DOA accuracy. The hybrid system effectively behaves like a larger, virtual
array, providing improved performance in terms of DOA estimation.
However, it was also noted that phase imbalance due to Doppler effects
hindered the convergence of the system’s performance to the Cramer-Rao

Bound in certain cases.

The research showed that after Doppler compensation, the rotating MUSIC
algorithm yielded close-to-optimum DOA estimation, with the estimation
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error converging to the Cramer-Rao Bound. Although the rotating SODA
array was less affected by Doppler shifts, the MUSIC algorithm showed
considerable improvement after Doppler compensation. The simulation
results confirmed that the SODA-MUSIC hybrid approach outperformed the
pure time-delay compensated case, providing more accurate and robust DOA
estimates, particularly in the presence of Doppler shifts. The study
highlighted the effects of phase disturbances resulting from time delay and
Doppler shifts in rotating SODA arrays. A compensation method was
developed to address these issues, improving the accuracy and stability of

DOA estimation across varying operating conditions.

This thesis has contributed to the understanding of rotating SODA arrays and
the application of the MUSIC algorithm in improving DOA estimation
performance. The proposed methods, including Doppler and time-delay
compensation, significantly enhance the reliability and accuracy of DOA

estimation in rotating systems.

This array structure and its rotation mechanism offer substantial benefits for
radar and electronic support measures (ESM) applications, especially at high
operating frequencies with very short wavelengths. Given the impracticality
of constructing an antenna array with A/2 spacing when wavelengths are very
small, ambiguity issues arise. The proposed array structure combines the
advantages of rotation and SODA, effectively resolving ambiguities over a
360° field of view (FOV), and achieving integration gains by creating a
virtual array. It also provides an isotropic array response. Furthermore, the
use of super-resolution algorithms enables performance close to the CRB.
Future work could explore further optimizations in the compensation
techniques and expand the integration of advanced signal processing

algorithms to achieve even higher performance in real-world applications.
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