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ABSTRACT

PREDICTING MECHANICAL BEHAVIOUR OF AUXETIC LATTICE
STRUCTURES USING FINITE ELEMENT ANALYSIS AND MACHINE

LEARNING

ARSLANCA, YAMAN
M.S., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Ulaş Yaman

Co-Supervisor: Assoc. Prof. Dr. Sezer Özerinç

December 2024, 103 pages

Mechanical properties of auxetic lattice structures have been extensively researched

in both academia and industry. Recent advancements in artificial intelligence, par-

ticularly in machine learning, have also been attracting significant attention. This

work aims to utilize machine learning to investigate, analyze and predict the me-

chanical behaviour of auxetic double arrow-head lattice structures. A total of 1401

double arrow-head lattice structures were generated using finite element analysis in

an automated manner. The analysis results, along with the input features, were used

to train three different machine learning models: Neural Network, Random Forest,

and Extreme Gradient Boosting. Prediction results from this training for eight output

variables are presented, and optimization studies using the Pareto set and a genetic

algorithm are conducted to identify the optimal design parameters for the structure.

Keywords: Auxetic Double Arrow-Head Lattice Structures, Finite Element Analysis,

Machine Learning, Neural Networks
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ÖZ

SONLU ELEMANLAR ANALİZİ VE MAKİNE ÖĞRENİMİ
KULLANILARAK ÖKSETİK KAFES YAPILARININ MEKANİK

DAVRANIŞININ TAHMİN EDİLMESİ

ARSLANCA, YAMAN
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ulaş Yaman

Ortak Tez Yöneticisi: Doç. Dr. Sezer Özerinç

Aralık 2024 , 103 sayfa

Öksetik kafes yapılarının mekanik özellikleri hem akademide hem de endüstride kap-

samlı bir şekilde araştırılmaktadır. Yapay zekadaki, özellikle makine öğrenimindeki

son gelişmeler de önemli ilgi görmektedir. Bu çalışma, makine öğrenimini kullanarak

öksetik çift ok başlı kafes yapıların mekanik davranışlarını araştırmayı, analiz etmeyi

ve tahmin etmeyi amaçlamaktadır. Sonlu elemanlar analizi kullanılarak otomatik bir

şekilde toplam 1401 çift ok uçlu kafes yapısı oluşturulmuştur. Analiz sonuçları, girdi

parametreleriyle birlikte, üç farklı makine öğrenimi modelini eğitmek için kullanıl-

mıştır: Sinir Ağları, Rastgele Orman ve Aşırı Gradyan Artırma. Bu eğitimden elde

edilen tahmin sonuçları sekiz çıktı değişkeni için sunulmuş ve yapı için optimum

tasarım parametrelerini belirlemek amacıyla Pareto kümesi ve genetik algoritma kul-

lanılarak optimizasyon çalışmaları yürütülmüştür.

Anahtar Kelimeler: Öksetik Çift Ok Başlı Kafes Yapıları, Sonlu Elemanlar Analizi,

Makine Öğrenmesi, Sinir Ağları
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CHAPTER 1

INTRODUCTION

Lattice structures are widely valued in both academia and industry due to their high

specific stiffness, specific strength, low weight, and high energy absorption capacity.

The advent of additive manufacturing has expanded the range of producible lattice

structures, while state-of-the-art, data-driven approaches, such as machine learning,

have enhanced the design process by facilitating pattern recognition and predictive

capabilities for optimizing structural performance.

In this work, a total of 1401 double arrow-head lattice structures were generated using

finite element analysis in an automated manner. The analysis results, along with the

input features, were pre-processed through outlier removal and scaling before being

used to train three different machine learning models: neural networks, random forest,

and extreme gradient boosting. Before evaluating the performance of the models,

the hyperparameters of all three machine learning estimators were optimized using

10-fold cross-validation. The prediction results of these optimized models for eight

output targets are then presented, and optimization studies using the Pareto set and

a genetic algorithm are conducted to identify the optimal design parameters for the

structure. Finally, the predicted optimal structure for maximizing energy absorption

efficiency, as determined by the genetic algorithm, is simulated, and this numerical

result is compared with the machine prediction.
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1.1 Background

Lattice structures and machine learning constitute the foundation of this study. By

enabling more possible solutions and improving the design of lattice structures, the

details of additive manufacturing are also worth mentioning. Moreover, since ma-

chine learning requires data for training and prediction, it is important to understand

the data extraction method employed in this thesis through finite element analysis.

This section provides insights into these fields by offering technical information on

additive manufacturing, lattice structures, the finite element method, and machine

learning.

1.1.1 Additive Manufacturing

Additive manufacturing (AM), also known as rapid prototyping (RP) or 3D printing,

dates back to the 1980s and is a cutting-edge technology for producing complex parts

[1]. In this manufacturing technique, parts are produced in a layer-by-layer fash-

ion through the addition or deposition of material onto a base [2]. This method has

brought about a significant transformation in many industries, including automotive,

aerospace, and medical. Despite certain downsides, such as reduced mechanical prop-

erties and longer production times, it offers significant advantages, such as the ability

to fabricate complex geometries, reduce waste, and customize components [3]. AM

encompasses various methods, including stereolithography (SLA), fused deposition

modeling (FDM), selective laser sintering (SLS), laminated engineered net shaping

(LENS), electron beam melting (EBM), direct energy deposition (DED), laminated

object manufacturing (LOM), and PolyJet [4, 5].

Although this work does not involve the physical production of parts using AM, and

manufacturing technique is not considered as a parameter, it is essential to recognize

AM as an enabling technology that has significantly enhanced the production of lat-

tice structures. AM has expanded the possibilities of unit cell geometries, which were

previously constrained by conventional methods, while also offering precise fabrica-

tion and high quality in lattice structure production [6].
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1.1.2 Lattice Structures

A lattice structure is a composition formed by spatially periodic or repeated unit cells

with their own geometrical features, such as faces and edges [7, 8]. These structures

possess highly desirable properties, such as being lightweight [9], having energy ab-

sorption capability [10, 11], and exhibiting high specific strength and stiffness [12],

as well as vibration damping [13]. Such properties make them attractive for use in

aviation, bio-engineering, automation, and other industrial fields [14]. Additionally,

advancements in additive manufacturing, a technique where parts are produced in a

layer-by-layer fashion through the addition or deposition of material [2], have en-

abled the production of lattice structures that were not achievable with conventional

manufacturing methods [7].

Figure 1.1: Representation of the stress-strain curve of a lattice structure under com-

pression load, adapted from ref. [15].

3



The energy absorption characteristics of lattice structures have been extensively stud-

ied and have found applications in engineering [16, 17, 18]. These structures can

absorb a significant amount of energy while undergoing large deformations under

nearly constant stress, as shown in Figure 1.1, thereby resisting the transfer of high

stress levels to the protected surface [19]. It can also be observed from the same fig-

ure that after a certain point, the structure becomes densified, behaves like a regular

solid, and loses its significant energy absorption capability.

The energy absorption capacity of lattice structures is highly dependent on the geom-

etry of their unit cells. The literature has explored various unit cell geometries, in-

cluding conventional designs such as centered honeycomb [20], body-centered cubic

(BCC), octahedron, and diamond face-centered cubic (FCC) [21], with some exam-

ples illustrated in Figure 1.2. In addition to these, auxetic unit cells have also been

investigated, including designs such as the auxetic re-entrant circular [22, 23], aux-

etic re-entrant honeycomb (NREH) [24], star auxetic honeycomb [25], auxetic chiral

[26], and auxetic double arrowhead [27, 28]. The negative Poisson’s ratio (NPR)

property of auxetic unit cells and lattice structures distinguishes them from conven-

tional ones. For instance, under compression, auxetic materials tend to shrink rather

than expand, and vice versa. This unique characteristic imparts resistance to inden-

tation, increased stiffness, and superior energy absorption properties, making auxetic

materials a widely preferred choice [27, 29, 30].

This study focused on using the double arrow-head unit cell to form a lattice struc-

ture. This unit cell, noted for its impact resistance and substantial energy absorption

performance, is a strong contender [27, 28].

4



Figure 1.2: Types of unit cells, adapted from ref. [21].
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1.1.3 Finite Element Method

The finite element method (FEM), also referred to as finite element analysis (FEA),

is a numerical approach for approximating solutions to partial differential equations.

This method involves discretizing the system into smaller, finite elements and impos-

ing boundary conditions to analyze its behavior [31]. The term discrete parts refers

to the division of a continuum body into relatively small elements with a finite num-

ber of degrees of freedom, which can then be represented as an algebraic system of

equations. These systems of equations can be solved manually or with the assistance

of a computer. Since most industrial applications involve a large number of unknown

degrees of freedom, these problems are typically solved using computers. The typical

process flow of a finite element analysis is illustrated in Figure 1.3.

Figure 1.3: Representative workflow of FEA, adapted from ref. [32]

FEM is also part of a software group called CAE (Computer-Aided Engineering),

where engineering problems are solved and simulated using the high computational

capabilities of computers. The method can solve linear and nonlinear problems in-

volving contact, large deformations, and elasto-plastic material behavior, and is widely

used in industries such as aerospace, medical, and automotive [33].

6



FEA consists of three principal steps [34]:

• Pre-processing: In this step, the CAD model is discretized or meshed, and

material properties as well as boundary conditions are applied.

• Solution: The pre-processed finite element model is solved in this step. Specif-

ically, an n by n matrix, derived from the system of algebraic equations, is

solved, and the desired results are obtained and stored.

• Post-processing: This final step involves visualizing, inspecting, and analyzing

the results to draw conclusions.

All of the aforementioned steps can be performed using commercial software such as

ABAQUS, NASTRAN, and ANSYS. Alternatively, these steps can also be completed

manually through programming. In this work, ABAQUS 2018 with its explicit solver

was utilized.

1.1.4 Machine Learning

Machine Learning (ML) is a highly prominent and widely utilized mathematical con-

cept in contemporary times. ML lies at the intersection of computer science and statis-

tics [35]. It is categorized as a branch of Artificial Intelligence (AI) [36, 37, 35]. ML

has been applied across various domains, including image recognition, cybersecurity,

agriculture, healthcare, natural language processing, manufacturing, education, and

e-commerce [38, 39]. ML is defined as the study of algorithms and statistical mod-

els that computers use to perform specific tasks without being explicitly programmed

[40, 36, 38]. It can also be described as the recognition of patterns in data or gener-

alization from examples [41]. As a subset of AI, ML emphasizes replicating human

cognitive processes, including learning and problem-solving [42].

In this context, "machine" refers to an algorithm that processes input into output based

on specified calculations [43]. In the ML framework, the goal of this algorithm is to

minimize or maximize a goal function, a process referred to as learning. It achieves

this by identifying patterns in an abstract manner and then applying these patterns to

solve related tasks. Generally, learning from patterns and applying them to associated

7



problems is similar to human behavior. An expert in a particular field may not need

to perform explicit calculations each time they face a problem. Instead, they rely on

patterns recognized from past experiences, which have been built through a learning

process. This allows them to make decisions automatically and efficiently. Similarly,

an ML model trains on historical data to identify patterns and make generalizations.

As a result, it can make predictions without requiring extensive, time-consuming cal-

culations.

There are mainly three ML approaches [44, 45]. However, it is important to note

that this generalization excludes hybrid techniques, such as semi-supervised learning,

due to their nature of combining more than one primary approach. The three main

approaches are mentioned below:

• Supervised learning — In this approach, labeled data consisting of both inputs

and corresponding outputs are fed into the machine. Figure 1.4 illustrates the

concept of labeled data, showing how different shapes are grouped into distinct

clusters based on their labels. Supervised learning is also noted as the most

common form of ML [39]. It can be further categorized into two based on the

objective: regression and classification. Regression aims to model the data,

while classification seeks to categorize the data [38]. For example, recognizing

images of cats and dogs is a classification task, whereas predicting the height

of those animals is a regression task.

Figure 1.4: Supervised learning: inputs are grouped into known classes, adapted from

ref. [45].

• Unsupervised learning — In contrast to supervised learning, this approach does

not involve labels; instead, the model clusters the given data based on similar-
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ities without prior knowledge of their identities, as illustrated in Figure 1.5,

where grayed-out shapes are grouped together based on their proximity. For in-

stance, given images of multiple animals without labels, the machine can group

them into species based on similarities. Although the machine may not know

the exact names of the species, it can identify that they share similar features

and should therefore be classified together.

Figure 1.5: Unsupervised learning: inputs are grouped into clusters based on their

similarity, adapted from ref. [45].

• Reinforcement learning — In this method, the machine (or agent) interacts with

the environment and, based on an action-reward loop, tries to maximize or min-

imize an objective function over time. This process is demonstrated in Figure

1.6. This learning occurs in an unknown, dynamic, and interactive environment

[35]. An example can be given as, an agent who is designed to play better game

of pong than humans, by trying to maximize its score.

Figure 1.6: Reinforcement learning: the agent perform actions and observe the envi-

ronment state to maximize reward, adapted from ref. [45].
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This work employs ML to predict mechanical properties, specifically the energy ab-

sorption characteristics of auxetic double arrow-head (DAH) lattice structures. It en-

riches the literature on this subject and contributes to the essential application of ML

in lattice structure problems. To achieve this, 1401 lattice structures with various unit

cell configurations, based on their two arrow-head coordinates and strut thickness,

were generated. These models were analyzed using FEA, producing raw data that

was subsequently post-processed and used to train three ML models to identify and

utilize complex trends in the data for predictions.

Prior to training, the data underwent pre-processing, which included trend observa-

tion, Pareto set extraction under specified conditions, outlier removal, and scaling.

Three machine learning algorithms were then trained: Random Forest (RF), Extreme

Gradient Boosting (XGB), and Artificial Neural Network (ANN), also referred to as

Neural Network (NN). To further enhance performance, hyperparameter optimization

was applied to each algorithm. The prediction results were compared to simulation

results, and a Pareto set identifying the optimal design points within the given data

was presented. Additionally, a genetic algorithm was employed to find optimal design

points for a given objective beyond the training dataset. This approach demonstrated

the successful prediction capability of the ML model when coupled with an optimizer.

1.2 Literature Review

This chapter explores the mechanical characteristics, with a particular focus on the

energy absorption properties of auxetic DAH lattice structures from a literature per-

spective. It discusses common practices, challenges, and key considerations in de-

signing, modeling, and analyzing such structures. The chapter then transitions to

ML applications and reviews the contributions made by the research community and

practitioners in related areas.
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1.2.1 Double Arrowhead Auxetic Lattice Structures

Auxetic lattice structures offer researchers and industry the opportunity to use lighter,

noise- and vibration-dampening, indentation-resistant, and efficient energy-absorbing

materials [9, 10, 11, 13, 12]. They can be applied in various industries such as

aerospace, automotive, biomechanics, and others [14]. One example of such usage is

hail or bird strike protection [46] for aircraft radomes or leading edge regions, where

auxetic lattice structures are used to provide superior impact resistance with minimal

weight penalty.

As with classical honeycomb structures, which are a type of lattice structure, the

deformation behavior under impact energy depends on the microstructure arrange-

ment or topology of the lattice. By adjusting these parameters, unique properties can

be achieved [47]. The auxetic property, characterized by a negative Poisson’s ratio,

is one such unique characteristic. It enables lattice structures to resist compression

forces better by contracting under compression load and to expand under tension,

which can be useful for other applications. Typical auxetic lattice structures include

re-entrant structures [48, 49], chiral structures [50], star structures [25], and arrow-

head structures [51] which can be seen in Figure 1.7.

This study focuses on the DAH unit cell for forming lattice structures. This type of

unit cell, especially known for its impact resistance and notable energy absorption

performance, can be an important contender [27, 28]. Eren et al. [9] investigated

the effects of manufacturing and geometrical parameters on the performance of DAH

lattice structures. They performed a parametric optimization using a design of ex-

periments approach with FEA. From the design of experiments table they provided,

it is seen that shallow lattices with thick struts and relatively wide angles yielded the

highest specific energy absorption value. Another parametric study was conducted by

Qiang et al. [52] on DAHs. They noted that the crashworthiness performance of such

structures is more sensitive to the thickness of the long struts rather than the short

ones. Additionally, they showed that a higher slenderness ratio lowers the specific

energy absorption value. In another study, Chen et al. investigated the damping mech-

anism of 3D DAH structures [53]. They found that large deformations significantly

increase the energy dissipation of DAH lattice structures by enabling greater elas-
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tic buckling and macroscopic frictional energy consumption. Although these works

have made valuable contributions to the literature, they generally lack a mathematical

model to predict the mechanical properties of the structure due to the high defor-

mations and the non-linear nature of the problem. The current study addresses this

problem by using the latest data-driven problem-solving method in engineering and

science, ML, to understand trends in the related data and predict the behavior of dou-

ble arrow-head lattice structures.

(a) Re-entrant (b) Double arrow-head

(c) Star (d) Chiral

Figure 1.7: Illustration of various auxetic lattice structures, adapted from ref. [25, 49,

50].

1.2.2 Numerical Simulations of Lattice Structures

Numerous studies have explored the mechanical properties of lattice structures through

both physical experimentation and numerical simulations employing the finite ele-

ment method. While these studies may differ in their approaches such as using dif-
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ferent materials or types of analysis to obtain information about various properties of

the structures, they share a common goal: providing valuable insights into performing

structural analyses or simulations.

In their study, X. Deng et al. [24] investigated the energy absorption characteris-

tics of novel re-entrant honeycombs. They performed numerical simulations using

the Abaqus/Explicit solver and employed two rigid plate models to conduct crush-

ing tests with a friction coefficient of 0.2. They noted that, to perform a quasi-static

experiment, the ratio of kinetic energy to internal energy should be kept around 5%.

This indicates that the influence of inertial forces should be minimized as much as

possible. Similarly, Q. Gao et al. [52] and his team conducted FEA in LS-DYNA

to study the crashworthiness of double-arrowhead auxetic structures, using a friction

coefficient of 0.2. They also used two rigid walls to load the structure in compression

and constrained the bottom wall. Additionally, they introduced a mass scaling factor

of 0.9 to speed up the process without exceeding the critical time step for a stable

numerical solution and confirmed that the FE model was viable. In another study,

Z. Chen et al. [54] examined the energy absorption and stiffness of negative Pois-

son’s ratio lattice structures. They performed quasi-static compression analysis using

LS-DYNA and included material non-linearity through the Johnson-Cook plasticity

model, applying compression to a lattice structure with a rigid plate and a friction co-

efficient of 0.2. A similar study conducted by Smith et al. investigated the prediction

capability of FEA under quasi-static compression loads on BCC (body-centered cu-

bic) and BCC-Z (body-centered cubic with vertical strut) lattice structures [55]. They

compared modeling such structures using 1-D beam and 3-D solid elements and noted

the difficulty in accounting for beam element contacts in nodal regions. Additionally,

they found that, with the same element type, the inability to define individual con-

tacts between the struts resulted in the densification region of the stress-strain curve

remaining unpredictable. They also reported a significant increase in computation

time when using 3-D elements. Likewise, Cetin et al. studied the same BCC and

BCC-Z type lattice structures as a filling material for thin-walled tubes and inves-

tigated their energy absorption characteristics under impact load through FEA [56].

They also noted the simplicity and reduction in computation time by using beam el-

ements. However, they showed the comparison between numerical simulation and
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FEA in which beam element model correlated relatively poor with the experiment

compared to solid element model. They stated that, the reason behind is that self-

contact mechanism can not be simulated for beam elements, thus densification region

is not consistent with experimental data for this element type.

In this study, numerical simulation, specifically FEA, has been widely used. Tech-

niques and common practices, such as element categories, load and boundary con-

dition definitions, and analysis methods for building simulation models, have been

adapted with application-specific modifications based on the literature and past expe-

riences.

1.2.3 Related Machine Learning Studies

ML has found applications in many fields of science and engineering, additive man-

ufacturing and therefore lattice structures are no exception [57, 58, 59, 60, 61]. This

innovative approach introduces new methods for addressing problems in the field

and opens up opportunities for further development. It surpasses empirical meth-

ods and statistical modeling in accuracy and its capacity to handle a large number of

variables and their relationships. Figure 1.8, taken from the review by Meng et al.,

shows a broad overview of ML applications in additive manufacturing [62]. How-

ever, it should be noted that this is a rapidly developing field, and many new works

are emerging over time. The learning types depicted in the figure are explained in the

following pages of this work.

Research in this field is still ongoing, and researchers are using ML extensively. Dean

Grierson et al. [63] highlight five key application domains for ML in AM: computer

vision, prediction, semantic analysis, natural language processing (NLP), and infor-

mation retrieval. Similarly, a review by S. S. Razvi et al. [59] outlines several tasks

in additive manufacturing where ML can be utilized, such as build-time prediction,

cost estimation, porosity prediction, wear strength prediction, and anomaly or defect

detection. They also provide examples of algorithms used for these problems in the

literature, including Support Vector Machines (SVM), k-Nearest Neighbors (k-NN),

and Neural Networks (NN) for porosity detection, among others. In another study,

J. Zhang et al. Application-wise, Zhang [64] demonstrates the prediction of tensile
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Figure 1.8: A general overview of ML applications in the additive manufacturing

community, taken from ref. [62], where X represents the features and Y stands for

the label or target value.

strength for basic tensile specimens produced by the FDM method using a special-

ized deep learning architecture known as Long Short-Term Memory (LSTM). They

emphasize that the thermal history of the process is a crucial parameter, and by utiliz-

ing LSTM to account for this sequential or historical data, they were able to capture

inter-layer interactions and enhance prediction accuracy. For features, they included

material properties, extruder temperature, printing speed, layer height, and sequential

data from sensors such as deposition temperature, ambient temperature, and printer

vibration. As a result, they achieved an R2 score of 0.899 and a Root Mean Squared

Error (RMSE) of 0.58 on the testing data. A similar study by Manoharan et al. [65]

predicted the tensile strength of FDM-produced PLA tensile test specimens. The fea-

tures they used included layer thickness, infill density, printing speed, temperature,

and build orientation, with a total of 33 samples. They compared two statistical mod-

eling techniques with artificial neural networks (NN) and found that NN performed

the best with a 1.10% error. Additionally, Kim et al. [66] employed a Gaussian Pro-

cess, an ML algorithm, and trained it with data from 243 elastomer chi spring parts.

They used features such as spring width, height, and truss thickness, and labeled them
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with elastic stiffness, plateau stress, strain onset, and plateau width via compression

tests. Their predictions, based on 97 parts, resulted in a 3% error. They also noted that

traditional physics-driven design methods are unsuitable for chi-springs due to their

high non-linearity from asymmetrical buckling and self-contact. In another study,

Zhang et al. [64] utilized Long Short-Term Memory (LSTM) architecture to lever-

age sequential data. This type of neural network architecture uses gates to create an

artificial memory, allowing it to make predictions about the current state based on

previous data. They produced 144 tensile test samples using FDM and trained their

LSTM model. They achieved a Root Mean Squared Error (RMSE) of 0.57 with vari-

ous input parameters. A key finding from their work was that in-process data, such as

vibration or layer temperature, can significantly improve the accuracy of ML models.

In the lattice structure research community, ML-driven approaches have also found

their place. Reddy et al. examined the prediction of displacement under compres-

sion load, surface roughness, and micro-Vickers hardness [67]. For the combination

of features such as lattice volume, surface roughness, hardness, post-processing con-

ditions, lattice design (BCC, Honeycomb, Gyroid, etc.), and dimensions, their work

achieved 99% accuracy in displacement prediction using the Random Forest regres-

sion algorithm. Importantly, they also noted that ML algorithms are more effective

for modeling complex, non-linear relationships than classical statistical methods. In

another study, Wu et al. predicted the energy absorption effects of different unit cells

with R2 correlation values of 0.9558 and 0.8990 for the training and testing datasets,

respectively [68]. Their dataset consisted of 210 samples generated from 33 different

unit cells through FEA. They were also able to apply this prediction to three new

types of unit cells that were not included in the dataset, achieving a 13.1% relative

error compared to experiments. This underscores the generalization capability of ML

models across a wide range of problems within the trained domain. Sharing a similar

goal to this thesis, Shuai et al. predicted the mechanical properties of lattice structures

produced by 3D printing [69]. They used 57 samples with support vector regression

(SVR), in other words, support vector machines with a regression task. They noted

that predicting the mechanical properties of lattice structures in a fast and accurate

manner is a challenge, which is one of the reasons behind the study presented in these

papers as well. Aldair et al., in their work, aimed to accelerate lattice structure design
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using ML-based approaches [70]. They were also able to observe the impact of each

design variable on the result using Shapley additive explanation (SHAP) analysis.

They assigned five different triply periodic minimal surface (TPMS) unit cell types

and four geometric design parameters—height, width, depth, and thickness of the unit

cell as features. They generated 270 samples and, through an FEA pipeline, trained a

Gaussian Process (GP) model, reporting excellent prediction of elastic modulus with

R2 accuracy over 0.95. Additionally, they conducted an optimization process using

Bayesian optimization to maximize elastic modulus. Moreover, their work impor-

tantly emphasized the use of simulations with ML approaches to optimize designs

without losing comprehension of the impact of design parameters. Last but not least,

Adithya et al. intended to increase the load-carrying capacity of sandwich structures

that use lattice structures in their core by employing ML [71]. They built their dataset

through FEA combined with manual programming. From a representative volume

element (RVE), they generated different unit cells and assessed their buckling resis-

tance under compression using FEA. They reported that ML helped them achieve a

significant reduction in human effort and computation time for the task. Additionally,

they noted that optimized lattice unit cells achieved 28–67% higher compression and

13–35% higher flexural strength compared to the octet lattice unit cell.

As is apparent, extensive research is being conducted within the AM and lattice struc-

tures community using ML techniques, generating the much-needed data through

physical tests or numerical simulations, such as FEA. However, the amount of data

required to develop well-performing machine learning models remains a significant

challenge, especially for deep learning models that use deep neural network (DNN),

which particularly benefit from large volumes of data. This may prompt the commu-

nity to explore new methods or employ hybrid approaches, such as semi-supervised

learning, which can at least reduce the volume of labeled data, if not the total amount.

Additionally, new neural network architectures, such as transformers, may enhance

the performance of existing strategies. Ultimately, ML revolves around two important

concepts: data and the processing of data. Therefore, it is logical for related works to

focus on these two aspects.

This work, by utilizing ML to predict mechanical properties, specifically the energy

absorption characteristics of auxetic DAH lattice structures, enriches the literature on
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this topic and contributes significantly to the application of ML in lattice structure

problems. To achieve this, 1401 lattice structures were created with varying unit cell

configurations based on their two arrow-head coordinates and strut thickness. These

models were analyzed using finite element analysis, and the generated raw data was

post-processed and input into ML models to leverage the complex trends in the data

for predictions.

Three ML algorithms are employed for these predictions: RF, XGB, and NN. The

results demonstrate that these ML algorithms effectively capture trends in the data

and produce accurate predictions. Additionally, optimization studies were conducted

using a Pareto set to identify optimal points within the given data under the applied

constraints. A genetic algorithm was also utilized to discover optimal design points

that are not samples from the dataset, highlighting the valuable generalization capa-

bility of the ML model.

1.3 Problem Statement

Predicting and understanding the behavior and properties of natural systems is one

of the key driving forces in science and engineering. For example, engineers design

bridges, airplanes, and other structures based on predictions that they will meet their

intended objectives. However, acquiring such predictive knowledge relies on statisti-

cal, analytical, or numerical models, each of which has its own disadvantages.

Developing analytical formulas can be challenging; they often struggle to manage

hundreds or thousands of variables and are frequently simplified representations of

the actual phenomena being studied. In his well-known study, which has garnered

over 1,800 citations, Ashby investigated lattice structures and proposed methods for

calculating their mechanical properties [15]. His calculations were based on an ide-

alized cell, shown in Figure 1.10, where L represents cell length and t denotes strut

thickness. Ashby derived proportional relationships rather than exact equations, pro-

viding approximations as the result.
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Figure 1.9: The ideal cell used for mechanical property calculations in the work of

Ashby, adapted from ref. [15]

(
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Above equation, with constrained to bending-dominated behaviour as it is noted by

Ashby is made proportional relation for modulus of elasticity (E), where Es is the

elasticity modulus of solid material, ρ̃ is density of the foam and ρs is density of the

solid by him.
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(1.2)

Another equation made by Ashby, with constrained to bending-dominated behaviour

again, shows proportional relation for plateau stress (σ̃), where σy,s is the yield strength

of the solid, ρ̃ is density of the foam and ρs is density of the solid by him.

As can be inferred from these pseudo-equations, they establish proportional relation-

ships between mechanical properties, which are applied to an idealized unit cell. It

is also important to note that Ashby presents different equations for various loading

conditions, such as bending-dominated, stretch-dominated, and buckling-dominated

behavior. Therefore, their suitability for auxetic lattice structures subjected to varying

loading conditions may be subject to scrutiny. Furthermore, and perhaps more impor-

tantly, these equations primarily provide insights into properties within the elastic
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region. However, they do not account for properties exhibiting non-linear behavior,

such as energy absorption. One possible reason for this omission is that properties in-

fluenced by the non-linear region may be difficult, or perhaps impossible, to quantify

with high accuracy through analytical formulations.

Figure 1.10: Unconstrained BCC unit-cell and deformation of its strut, adapted from

ref. [72].

A similar observation is made in the study by Shang et al., where an analytical for-

mulation is presented to predict the elastic modulus of a body-centered cubic (BCC)

lattice structure [72]. However, they clearly state that their assumption relies on a

linear change in the elastic modulus, highlighting the challenges in predicting non-

linear properties. Their formulation for the elastic modulus of an unconstrained BCC

lattice is shown in Equation 1.3, where Eue represents the elastic modulus of the unit

cell in the Z-direction, k is the shear coefficient of the Timoshenko beam, νm is the

Poisson’s ratio of the material, and Em is the elastic modulus of the material.

Eu
e = 9

√
3π4 Em

12k2νm + 17k2 + 2
(1.3)

Lastly, regarding the prediction performance of analytical formulations for lattice

structures, it is worth considering the work of Silva et al., in which they investi-

gated several analytical models from different sources in the literature for truncated

octahedron and cubic diamond lattices, comparing these models with compression

test results of samples produced via additive manufacturing (AM) [73]. They noted
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that geometry-based analytical models exhibited significant discrepancies from test

results, with up to 98% average relative error for plateau stress prediction and 91%

for elastic modulus. For the truncated octahedron, one analytical formula cited from

another study performed with a 14% average relative error, the lowest reported error

among the two different analytical approaches examined. Furthermore, Silva et al.

also explored scaling law models based on experimental data, which demonstrated

substantial improvement over the analytical models they reviewed. As one of their

conclusion, they stated that the nonlinear, anisotropic behavior of the building mate-

rial resulting from AM production led to a significant divergence from the assump-

tions underlying the analytical models.

As a conclusion it can be said that statistical models, derived from empirical data,

may offer insights into the relationships between parameters. However, they often

suffer from low accuracy, which is a crucial requirement. Numerical methods, such

as FEM, also have drawbacks. They require extensive pre-processing, which con-

sumes significant time and computational resources. Additionally, these numerical

simulations lack generalization, meaning that each problem must be solved individ-

ually to achieve accurate results. Therefore, it is logical to seek an approach for

predicting the mechanical behavior of lattice structures that is fast, efficient, easy to

implement, and accurate. With the increasing computational power and the growing

volume of data due to advancements in hardware and digitalization in recent years,

ML offers a promising solution. By recognizing patterns in the data, ML can handle

billions of variables, generalize across a wide range of similar problems, and pro-

vide results that are faster, easier to develop, and often more accurate compared to

traditional techniques such as statistical modeling.

1.4 Objectives

The objective of this study is to build a ML model that can be trained with data gener-

ated through FEA and subsequently make predictions about the mechanical properties

of double-arrowhead lattice structures, particularly their energy absorption character-

istics. The model should be robust, fast, and efficient, providing answers about the

energy absorption performance of the structure with an acceptable margin of error.
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Additionally, the ML model should be compatible with a genetic algorithm to facili-

tate information exchange and assist users in finding optimal design parameters for a

given property within seconds.

To achieve this objective, this work follows the below procedure:

1. Construct a unit cell in the FEA interface using three variables: px and py,

which represent spatial coordinate points, and t, which denotes the thickness of

the unit cell and, consequently, the lattice structure, as explained in the follow-

ing pages.

2. Replicate this unit cell to create a structure of 6 cells in height and 8 cells in

width. During this process, apply symmetrical features to avoid eccentricity

and secondary bending while respecting the given constraints.

3. Apply the necessary boundary conditions to the lattice structure and perform

the analysis as a quasi-static type. Save the results in a file along with the

corresponding input variables

4. Perform mathematical operations using the raw output data to obtain the me-

chanical properties of the structure.

5. Automate the steps outlined above using the Python-ABAQUS API to generate

the required number of samples.

6. Conduct exploratory data analysis (EDA) on the inputs and outputs of all sam-

ples, interpret the results, and present a showcase of the Pareto set.

7. Pre-process the data as needed, then feed it into various ML models. Train the

models and compare their results.

8. Select the most effective ML model and perform optimization by integrating

ML with a genetic algorithm.
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1.5 Scope of the Study

The ML methodology presented in this study can be used to predict the mechanical

properties of arrowhead lattice structures with a proper amount of training data. Since

one of the hardest problems in training a ML model is acquiring data, this study also

demonstrates how such data can be generated artificially through structural simula-

tions. Once the model is trained and deployed, it can be used to predict and provide

information about the desired mechanical properties of an arrowhead lattice structure

in seconds, almost effortlessly.

For this task, the data generated through finite element analysis is converted into valu-

able information regarding the mechanical properties of the lattice structures under

investigation. Pre-processing techniques applied to this data include outlier removal

and standardization. Following these steps, the data is divided into two subsets: a

training set and a test set. The test set is reserved until the evaluation phase of the

models. The three ML models, RF, XGB, and NN, are trained using the training

dataset, with hyperparameter optimization applied to each. Their performance is then

evaluated using the test dataset. The results demonstrate that the ML algorithms ef-

fectively captured trends in the data and produced accurate predictions. Additionally,

a Pareto set was employed to identify optimal points within the dataset under the

applied constraints. After selecting the most effective ML model, a genetic algo-

rithm was used to find optimal design points for the structure by exploring design

parameters not present in the dataset, thereby showcasing the valuable generalization

capability of the ML model. A representative summary of the study is illustrated in

Figure 1.11.

An important aspect that lies beyond the scope of this study is the fracture or rupture

of lattice structures under loading. This study disregards such damage behaviors and

assumes that the structure under investigation behaves in an elasto-plastic manner,

without any occurrence of damage.
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Figure 1.11: Summary of the study
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CHAPTER 2

DESIGN AND FINITE ELEMENT MODELING

This chapter examines the design and analysis of DAH lattice structures. The discus-

sion begins with the formation of the unit cell, followed by an explanation of how this

unit cell is replicated to construct the overall lattice structure. FEA is then performed

on this lattice structure to extract valuable information about its structural behavior.

The resulting data is systematically organized to facilitate pre-processing and training

of the machine learning models. The design and analysis process is executed within

the ABAQUS interface. Rather than manual execution, the process is automated us-

ing Python programming language. This automation involves defining points, lines,

materials, loads, boundary conditions, and other necessary entities, as well as extract-

ing force-displacement data from the finite element solution. The pseudo-code for the

algorithm responsible for this process is presented in Algorithm 1.

2.1 Geometry of the Unit Cell

The unit cell serves as the foundational building block of the lattice structure. While

various types of unit cells exist, such as honeycomb, chiral, and re-entrant honeycomb

[20, 22, 23, 24, 25, 26], this study focuses specifically on the double arrow-head

(DAH) configuration. Figure 2.1a illustrates the construction of a lattice structure

by depicting four spatial points (P1, P2, P3, P4). Points P1 and P2 are designated

as fixed, whereas P3 and P4 are variable, with P3 being dependent on P4. The Y-

coordinate of P3 is fixed at 20 mm, while its X-coordinate is equal to that of P4. This

alignment ensures that there is no eccentricity between the two arrow-head points and

improves structural integrity. Figure 2.1b demonstrates the generation of unit cells for
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Algorithm 1 Data generation
1: begin

2: number of models← 1401

3: count← 0

4: thicknesses← [0.8, 1.2, 1.6, 2.4, 3.2]

5: while count < number of models do

6: px← random between [0, 20]

7: py ← random between [0, 20]

8: t← random choice from thicknesses

9: if (px, py) violates geometric constraints then

10: go back to line 6

11: else

12: generate a lattice structure

13: perform FEA on the lattice structure

14: extract force-displacement values and store them

15: count← count + 1

16: end if

17: end while

18: end

different geometries within a 20 mm by 20 mm space around these four points. As

P3-X is identical to P4-X, these two variables are defined as px, with P4-Y defined

as py. Additionally, the uniform thickness of the lattice structure is set as another

independent variable, denoted as t.

Figure 2.1b further highlights that although the point constraints range from 0 to 20,

the distribution never reaches these extremes due to applied constraints. These con-

straints are crucial for maintaining structural integrity by preventing eccentricity or

secondary bending effects. Any violation of these constraints results in the termi-

nation of the unit cell formation process, prompting the selection of a new set of

variables to restart the process.
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(a) (b)

Figure 2.1: (a) Schematic description of the unit cell. (b) Node locations selected for

the generation of the double-arrowhead lattices. Two instances are shown here.

The applied constraints are listed below:

• Θ1 + Θ3 < 80o and Θ2 + Θ4 < 80o

• Θ1 ≥ 10o and Θ3 ≥ 10o

• Θ3 > 10o and Θ4 > 10o

• Solid volume fraction < 0.8

• (px, py) must be unique.

A brief summary of the design parameters is provided in Table 2.1. These parameters

are matched with the results to establish a supervised learning environment for the

machine learning task in the subsequent steps of this work. The parameters px, py,

and t, as shown in the table, represent the point coordinate variables and thickness in

millimeters, respectively, as previously mentioned. It is worth mentioning that, not

including too many features can be a beneficial by reducing the complexity of ML

model. Adding more variables increases the model’s dimen- sionality, which in turn

exponentially increases the amount of data required to main- tain model accuracy.

To keep the required training data manageable, it is beneficial to limit the number of

variables [41].
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Table 2.1: Design parameters

Design Parameter Description

px coordinate point of point 3 and 4 in the width direction

py coordinate point of point 4 in the height direction

t thickness (mm) of all struts used in building the unit-cell

The procedure described above resulted in the creation of 1401 DAH unit cells, which

were subsequently transformed into lattice structures. Six examples from this dataset

are depicted in Figure 2.2, where line widths denote the strut thickness.

Figure 2.2: Six examples of generated unit-cells

2.2 Formation of Lattice Structures

The lattice structure is the primary focus of this investigation, with its properties being

utilized in this work. It is generated through the repetitive arrangement of unit cells.

Once the unit-cell geometry is established, it can be replicated within the in-plane

spatial space. The unit cell is multiplied eight times along the width (x-direction) and

six times along the height, resulting in 6 × 8 (height × width) lattice structures for

various unit cells. The thickness of the struts or beams is a critical parameter in this

study, selected randomly from a set of values for each lattice structure and applied
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uniformly throughout the structure. Additionally, the lattice structures are designed

to minimize eccentricity and secondary bending effects by incorporating a symmetry

line between consecutive unit cells. This approach is illustrated in Figure 2.3, where

the symmetry line is also visible.

Figure 2.3: Representation of one lattice structure, (px=7.1, y=7.6, t=1.6)

Twelve examples of lattice structures, created using the aforementioned procedure,

are provided in Figure 2.4, with line widths adjusted according to their respective

thicknesses.
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Figure 2.4: Twelve examples of the generated lattice structures, different line widths

represents different strut thicknesses.

2.3 Finite Element Analysis

FEA is a widely used numerical modeling technique in both academia and industry.

It is especially useful for solving structural problems that are particularly challenging

to address with manual calculations. Its primary purpose is to discretize a continu-

ous space, whether a structure or a fluid, and solve for each discretized point under

given boundary conditions. In this work, FEA is extensively utilized for each lattice

structure, with structural simulations performed to acquire raw data. ABAQUS com-
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mercial finite element package, specifically its Explicit solver, has been employed for

this task.

2.3.1 Material Selection

Accurately capturing material behavior is a crucial step in finite element analysis

(FEA). In this study, the Al-7075 alloy was selected due to its ductility and the avail-

ability of data for Johnson-Cook plasticity modeling [54], as detailed in Table 2.2.

In this hardening model, static yield stress σ0 has the following form [74],

σ0 =
[
A+B(εpl)n

] (
1− θ̂m

)
(2.1)

where ϵpl is equivalent plastic strain, A is initial yield stress, B is hardening constant,

n is hardening exponent and m is thermal softening exponent [75]. These are the

material parameters at or below transition temperature [74]. θ̂ is the non-dimensional

temperature which is 273 K as default value in ABAQUS and this makes the result of

the below equation 0,

θ̂ ≡


0 for θ < θtransition

(θ − θtransition)/(θmelt − θtransition) for θtransition ≤ θ ≤ θmelt

1 for θ > θmelt

(2.2)

As can be seen from Equation 2.1, the Johnson-Cook hardening model does not nec-

essarily require the inclusion of strain rate. A strain-rate-independent variant of the

model is also valid and was employed in this study to reduce computation time by

simplifying the analysis and to prevent potential convergence issues during the data

generation process. This approach has also been observed in the literature [76, 52].

However, it should be noted that such neglect can result in higher elastic modulus

values and plateau stresses compared to reality. Additionally, the omission of such a

variable constrains ML models from capturing different patterns arising from strain

rate changes.
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Table 2.2: Properties of the Al 7075-T6 material which are used in the Johnson-Cook

formulation, taken from [75].

Parameter Unit Value

Density kg/mm3 2.7×10−6

Young’s Modulus GPa 72

Poisson’s Ratio GPa 0.32

A - 520

B - 477

n - 0.52

m - 1

θmelt Kelvin 893

θtransition Kelvin 403

It is important to note that the same material model was maintained for all lattice

structures generated in this investigation. However, although this base material is con-

sistent, the overall mechanical behavior of the lattice structures, such as elastic stiff-

ness, can differ, as presented later. While some literature utilizes an elastic-perfectly

plastic model [24, 77, 23, 78], a plastic material model incorporating strain hardening

provides a closer approximation to physical reality. Additionally, since the material

is an aluminum alloy, the lattice structures can also be produced using metal additive

manufacturing (MAM), an advanced manufacturing technique [79].

2.3.2 Discretization of the Structures

Similar to material selection, the proper element size is critical for accurately cap-

turing the behavior of the modeled structure. In this study, the lattice structure is

discretized, or meshed, with an element size determined by dividing the minimum

strut length by 5. As each lattice structure has different geometrical dimensions, the

element size varies accordingly. This dynamic scaling of the mesh size is designed

to capture adequate buckling behavior while minimizing computational power and

time requirements. It is known that, an excessively coarse mesh can result in exces-

sive stiffness and misrepresentation of the structural behavior, whereas an overly fine
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mesh can lead to increased computational time.

For instance, Figure 2.5a illustrates a lattice structure with (px = 10, py = 5, t = 1),

where the strut length is divided by factors of 5, 8, and 10. The results reveal similar

force-displacement curves, leading to the selection of 5 as the optimal mesh size for

effectively capturing structural behavior while reducing computation time.

Additionally, 1-D beam elements are inadequate for accurately representing the con-

tact behavior of lattice struts [55, 56] whereas 3-D elements has relatively high cost of

computation which is an important aspect of this study. Moreover, 3-D elements also

introduce the difficulty names as shear locking in which, inadequate element num-

ber of elements through thickness may introduce artificial shear stress and stiffness.

Therefore, to address these challenges, this study utilizes 2-D shell elements with

four nodes and a reduced integration formulation (S4R) to balance computational

efficiency, mitigate shear locking effects and capture frictional dissipations.

(a) Strut length divided by different numbers. (b) Lattice structure extruded with different depths.

Figure 2.5: Comparison of mesh size and depth for a lattice with parameters (px=10,

py=5, t=1)

2.3.3 Boundary Conditions

Boundary conditions are applied to the top and bottom rigid plate components [80,

24]. The top plate is displaced downward to deform the initial height by 80% [52], as
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described in Equation 2.3, where V represents velocity, hlattice denotes lattice struc-

ture height, and ttotal is the total simulation time of 0.1 seconds. The bottom plate is

fixed in all spatial degrees of freedom (Figure 2.6). Additionally, all nodes are con-

strained in the out-of-plane direction to impose a plane-strain condition on the model

[81], which significantly reduces computational time.

To evaluate the effect of the plane-strain condition on the structure’s depth, the same

model with parameters px = 10, py = 5, and t = 1 is analyzed with depths of 2, 4, 8,

and 16 mm, as shown in Figure 2.5b. The force-displacement plots converge at lower

depth values; thus, a depth of 4 mm is selected for the analysis.

V =
hlattice × 0.8

ttotal
(2.3)

Lastly, contact interactions are incorporated into all models with a friction coefficient

of 0.2 [54, 24, 47]. This friction value ensures the symmetry of the stiffness matrix,

thus contributing to reduced computation time [82]. By including these interactions,

all models address three types of non-linearity: elasto-plastic material behavior, con-

tact interaction, and geometrical non-linearity, which accounts for changes in geo-

metrical stiffness due to large deformations. Although these considerations increase

computational demands, they enable a more accurate representation of structural be-

havior, as observed in real-life scenarios.

Figure 2.6: Load and boundary conditions applied to the models

34



2.3.4 Analysis Type

Finally, for all lattice structures considered in this study, the Dynamic/Explicit type of

analysis was selected within the ABAQUS environment, with the compression load

applied as a velocity, as previously described. Considering the extensive amount of

data to be generated, this type of analysis was deemed appropriate due to its abil-

ity to reduce computation time. Additionally, it was ensured that the analysis re-

mained within the quasi-static region, where inertial effects are negligible, a com-

mon approach for analyzing the energy absorption characteristics of lattice structures

[23, 24, 52, 54, 55]. To satisfy this requirement, the ratio of kinetic energy to internal

energy was kept below 5% [80]. As demonstrated in Figure 2.7, this condition was

met, with kinetic energy remaining well below internal energy, thereby confirming

the quasi-static nature of the analysis.

Figure 2.7: Internal energy vs Kinetic energy comparison

2.3.5 Comparison with a Literature Work

Although the core idea of this study is to demonstrate a methodology for obtaining

data through finite element analysis, training a machine learning model, and perform-

ing optimization with the trained model, without claiming exact quantitative results

regarding the DAH structure, it is still beneficial to verify the logical soundness of the

numerical models used. To achieve this, the experimental results of Eren et al. [9] was
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used as the reference for comparison. First, the finite element model from the work

of Eren et al. was replicated in the ABAQUS environment, with deviations noted

in Table 2.3 and this model made the comparison model. It can be seen as a model

between the reference model and final FEA models which is labeled as final model in

the table to carry the differences with minimal impact and have a sound comparison.

As it can be seen from the table that the major difference is taking account of damage

model which means that after a certain point, some elements which satisfies the dam-

age model starts to carry less load and eventually gets deleted. This is not modeled in

this study, and therefore, it is not included in the comparison model. Three parame-

ters in the table which are not provided in the work of Eren et al. which are analysis

time, element size and friction coefficient. These are taken as the decided values for

this study which are outlined earlier and minimum strut length of the unit-cell divided

by five for the element size as it is the case for the all models that are planned to be

generated. After achieving logically consistent results in the comparison, the study

proceeded with final adjustments to model options for data generation through FEA.

The two main adjustment are applying plane strain condition and changing material

from Ti-6Al-4V alloy to Al-7075 alloy.

FEA option Eren et al. [9] Comparison Model Final Model

Material Ti-6Al-4V Ti-6Al-4V Al-7075

Plasticity Model Johnson-Cook Johnson-Cook Johnson-Cook

Strain Rate Yes No No

Damage Model Yes No No

Strut Thickness 1 mm 1 mm 0.8 mm to 3.2 mm

Element Type 3-D 2-D 2-D

Analysis Type Quasi-static Quasi-static Quasi-static

Element Size Not provided min(Lstrut)/5 min(Lstrut)/5

Analysis Time Not provided 0.1 s 0.1 s

Friction Coefficient Not provided 0.2 0.2

Table 2.3: FEA parameters used in the comparative study.
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Figure 2.8: Side by side view of (a) the experimental setup used in the work of Eren

et al, adapted from ref. [9], (b) the virtual comparison model generated in this study

The result of the comparison can be seen in Figure 2.9, which shows the force-

displacement plots of both the comparison model and the experimental results from

the work of Eren et al. The plot displays the approximate average load-displacement

behavior under compressive loading for five samples built at a 0-degree orientation,

meaning they were produced parallel to the X-Y powder bed plane using an additive

manufacturing (AM) method, with no relative angle. In the figure, the linear regions

in both models are similar. For instance, in Figure 2.9, the plot representing Eren et

al.’s work reaches 114 kN before dropping at around 2.1 mm displacement, while the

comparison model shows a load of 123.2 kN at the same displacement, resulting in an

error of 8.8%. The difference can be attributed to strain rate effects, which were omit-

ted in the comparison model, as mentioned earlier, and may have resulted in a slightly

steeper linear curve. Another factor contributing to this difference could be manufac-

turing defects present in the experimental model, which are not accounted for in the

comparison model. Furthermore, the comparison model, which employs a plasticity

approach without damage parameters, displays a logical yet distinct response com-

pared to Eren et al.’s experimental results. In Eren et al.’s reference model, fluctua-

tions occur as the structure sustains damage and undergoes load redistribution, effects

that the comparison model does not capture. This difference arises because this study

adopts a plastic modeling approach without damage parameters, a common method in

the literature [26, 51, 54]. Consequently, this modeling difference contributes to vari-

ations in the non-linear region between the virtual and physical environments. Since
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both models show damage initiation and plateau behavior beginning at approximately

120 kN, it can be inferred that if the reference model excluded damage and exhibited

strain hardening, its behavior would align more closely with the comparison model,

displaying a more stable plateau without fluctuations.

Figure 2.9: Force-displacement curves comparison with a literature work.

2.4 Analysis Results and Discussion

With the aforementioned geometrical definitions, material selection, and application

of boundary conditions and loads, results were obtained through computer simula-

tions. It took approximately 303 hours to solve 1401 models and extract the data.

The models were run on a hardware with 32 GB of RAM and 6 to 12 cores, including

hyper-threads, depending on the processor temperature. Results were extracted as

force-displacement data from the analysis steps and saved as output files. The data in

these files were then plotted, and additional properties were calculated. Figure 2.10

illustrates the force-displacement plot for all the data. Although the trends in the plots

are similar, variations in the yield point, densification threshold, and area under the

curve are evident.
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Figure 2.10: Force-displacement plot of 1401 samples

Apart from analyzing the overall plots, the behavior of individual lattice structures can

also be extracted and processed from the data. For example, Figure 2.11 illustrates

the stress-strain and absorbed energy efficiency plots for a model with parameters

px = 7.5, py = 7.1, and t = 1.2. This figure also displays deformation frames

and stress fields at various strain levels. Notably, the figure shows that the model

undergoes quasi-static deformation, with the bottom portion of the model deforming

concurrently with the top portion, indicating no delay in the stress field due to the

highly explicit behavior. Additionally, the absorbed energy efficiency peaks around

a strain value of 0.55, marking the densification strain and corresponding densifica-

tion stress. The auxetic behavior of the DAH lattice structure, characterized by its

tendency to shrink under compression and its classification as a NPR (Negative Pois-

son’s Ratio) structure, is apparent from the figure, particularly between strains of 0.2

and 0.4.
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Figure 2.11: Deformation and result plots of one of the FE models, (px = 7.5, py =

7.1, t = 1.2)

Figure 2.12 shows the auxetic behavior of the same lattice structure (px = 7.5, py =

7.1, t = 1.2). In this configuration, a constant downward velocity is applied to the

top plate, while the bottom plate is fixed and subjected to a plane-strain condition

as previously described. The figure demonstrates that as the compression load in-

creases, the lateral displacement vectors shift inward, characteristic of structures with

Negative Poisson’s Ratio (NPR). This notable property enhances the structure’s re-

sistance to buckling and indentation by increasing its stiffness, making it a promising

candidate for energy absorption applications.
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Figure 2.12: Displacement vectors in lateral direction of a lattice structure (px = 7.5,

py = 7.1, t = 1.2) for different strain levels. At the bottom, the contraction of the

structure can be clearly seen, indicating auxetic or NPR behavior, with the gray trans-

parent model representing the undeformed structure and the green model representing

the deformed structure.
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The mechanical properties calculated from the raw data include: stress (σ), strain (ϵ),

solid volume fraction (svf ), effective density (ρeffective), yield stress (σyield), yield

strain (ϵyield), modulus of elasticity (E), densification stress (σdens.), densification

strain (ϵdens.) which is also denoted as ϵdens., plateau stress (σplateau), work (W ) or

energy absorption (EA), useful work (Wuseful), specific useful work (SWuseful), and

energy absorption efficiency (n) [83]. The formulas related to these properties are

provided in Table 2.4. Note that the term densification is abbreviated as dens. in

the equations shown in the table, and V represents volume whereas wlattice, dlattice,

hlattice stands for width, depth and height of the lattice structure respectively.

It can be seen from the table that stress and strain calculated in a straight forward

manner. For stress Equation 2.4 is used and applied force value at each time increment

which is taken from the finite element analysis result, divided by the whole lattice

structure cross section area as if it is a conventional solid structure. Equation 2.5

used to calculate strain and deformation at each time increment divided by the lattice

structure height.

Solid volume fraction is a crucial parameter for lattice structures, calculated by di-

viding the lattice volume by the volume of the equivalent solid structure, based on

its height, depth, and width (Equation 2.6). This property directly affects the stiff-

ness, strength, and energy absorption capacity of the structure, but it also increases its

weight. Therefore, while higher solid volume fractions are necessary for high energy

absorption applications, an optimal value should be determined, taking the associ-

ated increase in weight into consideration. Another parameter related to solid volume

fraction is effective density, which is calculated by multiplying the material density,

in this case aluminum alloy, by the solid volume fraction (Equation 2.7).

After converting force-displacement values into stress-strain values, maximum stress

value in the elastic region is taken as yield stress which is denoted in Equation 2.8 and

corresponding strain value taken as yield strain, Equation 2.9. Similarly, densification

stress is calculated by looking at the corresponding densification strain (Equation

2.11) which is calculated by mapping the strain value that is corresponding to the

maximum energy absorption efficiency, Equation 2.12. From here it is also possible

to calculate modulus of elasticity of the lattice structure by dividing the yield stress

42



to the yield strain as it shown in Equation 2.10. This value essentially represents the

slope in the linear region of the stress-strain curve.

Table 2.4: Equations used to calculate the mechanical properties of lattices structures

Property Equation

Stress (MPa) σ =
Fapplied

wlattice × dlattice
(2.4)

Strain (mm/mm) ϵ =
∆hlattice

hlattice
(2.5)

Solid volume fraction (mm3/mm3) svf =
Vlattice

Vsolid
(2.6)

Effective density (g/mm3) ρeffective = svf × ρ (2.7)

Yield stress (MPa) σyield = max (σ | elastic region) (2.8)

Yield strain (mm/mm) ϵyield = ϵ | σ = σyield (2.9)

Elasticity modulus (MPa) E =
σyield

ϵyield
(2.10)

Densification stress (MPa) σdens. = σ | ϵ = ϵdens. (2.11)

Densification strain (mm/mm) ϵdens. = ϵ | n = max(n) (2.12)

Plateu Stress (MPa) ϵplateau =

∫ ϵdens.

ϵyield
σ(ϵ)dϵ

ϵdens. − ϵyield
(2.13)

Work or Energy Absorption (J) W or EA =

∫ ϵ

0

σ(ϵ)dϵ (2.14)

Useful work (J) Wuseful =

∫ ϵdens.

0

σ(ϵ)dϵ (2.15)

Specific Useful work (J.mm3/g) SWuseful =
W

ρeffective
(2.16)

Energy absorption efficiency (%) n =

∫ ϵ

0
σ(ϵ)dϵ∫ 1

0
σideal(ϵ)dϵ

× 100 (2.17)
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Figure 2.13: Ideal absorber properties, adapted from ref. [83].

Lastly, energy absorption efficiency is determined by dividing the energy absorbed

by the lattice structure up to a specific strain value by the total energy absorption

of an ideal absorber [83, 19] and is shown in Equation 2.17. An ideal absorber is

a theoretical structure designed to absorb the maximum possible amount of energy

while staying within a specified stress limit, plateau stress in this case. It immediately

rises to this stress level and stays at this stress until 100% strain. This behaviour can

be seen in Figure 2.13. It is desirable to achieve high energy efficiency values for an

optimized lattice structure in impact-absorbing applications [83].

After calculating various mechanical properties of the lattice structures, common data

exploration techniques are employed. Data exploration involves extracting informa-

tion or knowledge from data [84]. This process may include detecting anomalies such

as outliers, identifying trends, observing correlations between variables, and obtain-

ing statistical values such as minimum, mean, and maximum. In this work, various

data exploration techniques were applied to the tasks at hand.
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Figure 2.14: Trends in the data: (a) illustrates the relationship between thickness and

the three output results, (b) depicts the trends between px and these outputs, and (c)

highlights the correspondence between py and the same results.

From Figure 2.14, the different trends in the data can be seen. Figure 2.14a shows the

effect of thickness on three important outputs. The average slenderness ratio in this

figure, as formulated in Equation 2.18, is defined as the average length of the four

main beams forming the unit cell divided by the unit cell thickness, t. It is observed

that as the thickness increases, both the plateau stress and the useful work or energy

also increase. However, no clear correlation or effect between thickness and energy

absorption efficiency is observed. A reversed trend of it applies to the average slen-

derness ratio in which increasing average slenderness ratio decreases plateau stress

and useful work with no effect on energy absorption efficiency. These observations

suggest that higher thickness values enhance the unit cells’ resistance to buckling,

thereby increasing the plateau threshold. This effect also raises the useful energy

by increasing the work required to buckle the unit cell beams. However, since en-

ergy absorption efficiency depends on both absorbed energy and the maximum stress
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absorbed, an increase in both parameters does not result in a clear correlation with

thickness in this case.

SRavg =
1

4t

4∑
i=1

Strut Lengthi (2.18)

Figure 2.14b illustrates the effect of px on the same three outputs. It shows no signifi-

cant relationship with plateau stress and useful energy. However, px exhibits a subtle

correlation with energy absorption efficiency. Although this correlation may not be

immediately apparent, as px approaches its boundary values (e.g., 4 or 16 in the fig-

ure), energy absorption efficiency tends to increase, forming a recognizable V-shaped

trend. This observation is further detailed in the correlation matrix discussed in the

following sections.

Lastly, Figure 2.14c illustrates the effect of py on the same properties. It reveals a

subtle relationship between py and plateau stress, as well as useful work. By examin-

ing the data with the same thickness values, an exponential curve is discernible. This

trend can be attributed to the following: as py increases, the second arrowhead point

(P4) becomes more vertically oriented, which allows the structure to absorb more

energy before buckling, thereby increasing both plateau stress and useful work. Con-

versely, py exhibits a more pronounced negative relationship with energy absorption

efficiency, as clearly depicted in the figure.

Another examination of the variable py, as depicted in Figure 2.15, reveals a positive

correlation between py and energy absorption. Counter-intuitively, higher energy ab-

sorption values are associated with lower energy absorption efficiencies. Thus, while

energy absorption increases with py, the energy absorption efficiency decreases.
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Figure 2.15: Relation between four parameters: Plateau Stress, Energy Absorption,

Energy Absorption Efficiency and py.

Another method for analyzing the data is through a correlation matrix, which visu-

ally represents pairwise correlations between variables. This matrix provides a clear

overview of trends: light colors indicate positive correlations, dark colors denote neg-

ative correlations, and intermediate colors reflect weak correlations.

Figure 2.16 presents the correlation matrix derived in this study. Examination of the

figure reveals that the average slenderness ratio exhibits a negative correlation with

most mechanical properties, with the exceptions of energy absorption efficiency and,

to a lesser extent, densification strain. In contrast, thickness (t) generally demonstrates

a positive correlation with most properties, excluding densification strain and energy

absorption efficiency.

The parameter py shows a strong negative correlation with energy absorption effi-

ciency and densification strain but displays a positive correlation with energy ab-

sorption, modulus of elasticity, densification stress, and the average slenderness ra-

tio. Conversely, px does not exhibit significant correlation with any specific outputs.

However, applying the transformation defined by Equation 2.19 to convert px into px’

uncovers notable relationships. This transformation emphasizes the lateral displace-

ment of px from the center of the unit cell. Specifically, as px’ increases, the second

arrowhead point moves farther from the center, leading to an asymmetrical unit cell.
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Following this transformation, px’ is observed to have a positive association with

energy absorption efficiency and the modulus of elasticity, while generally showing

a negative correlation with energy absorption and yield strain. While this behavior

may initially seem counterintuitive, machine learning models are capable of capturing

the V-shaped trend exhibited by px (Figure 2.14b) in relation to energy absorption

efficiency. Consequently, px was retained in its original form for training the models

rather than using the transformed version, px’.

Figure 2.16: Correlation matrix

The figure also reveals that stress-related properties and energy absorption character-

istics, with the exception of energy absorption efficiency, exhibit a positive correla-

tion, as indicated by the light colors in the matrix.
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px′
i = pxi −

Unit cell width
2

(2.19)

where px’ represents the lateral distance from the center of the unit cell, px is the

default value, and the unit cell width divided by two provides the lateral coordinate

of the center of the unit cell.

Moreover, Figure 2.16 shows a notable negative correlation between densification

strain and py, with no similar correlation observed with px or t. Furthermore, den-

sification strain does not significantly correlate with other outputs, in contrast to the

mutual correlations observed among those outputs. This lack of correlation may sug-

gest less reliable predictions for densification strain. While a simulation error could

potentially explain this anomaly, it is unlikely given that densification strain is the

only output exhibiting this trend. Consequently, this study excludes the prediction

of densification strain and yield strain to avoid incorporating strain value predictions

into the results.

(a) (b)

Figure 2.17: Pareto plots: a) Pareto set obtained in this work for the following objec-

tives in the data: maximize specific useful work, minimize the yield stress, minimize

mass of the structure, b) Pareto set from the work of Wang et al. [85] with the objec-

tives of: maximize specific energy absorption, minimize the yield strength)

Additionally, multi-objective optimization can be performed using the Pareto set tech-

nique. It is generally used where several conflicting objectives need to be optimized

at once. Figure 2.17 illustrates the application of this method. In the figure, the
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Pareto set identifies optimal points within the data, achieving the objective of maxi-

mizing specific useful work while minimizing the yield stress and mass of the struc-

ture. These three objectives are selected based on the work of Wang et al. [85]. A

second-order curve can be fitted to the Pareto set to delineate the edge of the optimal

design space. This construction is consistent with the findings of Wang. Such a curve

provides flexibility in selecting solutions optimized for this multi-objective task.
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CHAPTER 3

MACHINE LEARNING METHODOLOGY AND MODEL TRAINING

The research outlined in the preceding chapters produced a dataset of 1401 sam-

ples, comprising features and corresponding mechanical properties derived through

mathematical operations. Subsequently, the data was explored to extract meaningful

insights. This dataset was then prepared and utilized to train three machine learning

models. After presenting the results, an optimization study was performed by inte-

grating machine learning with a genetic algorithm, which significantly enhanced the

efficiency of the optimization task.

3.1 Pre-processing the Data

The extracted mechanical properties and input features are compiled into a structural

dataset, which is then utilized to train three machine learning models: Neural Net-

works (NN), Random Forest (RF), and Extreme Gradient Boosting (XGB). These al-

gorithms were chosen for their advantages, including popularity, accuracy, resistance

to overfitting, and suitability for structural data.

Before training the model, to enhance its generalization capabilities and avoid over-

fitting, outliers among the features of Young’s modulus, energy absorption, and use-

ful work were detected and removed from the dataset. These features were selected

based on trial and error, aiming to balance prediction accuracy with retaining a sig-

nificant number of samples. Figure 3.2 shows the data distribution before and after

the outlier removal process. Outliers were detected using Equation 3.1, which is a

well-established method for such tasks [86].
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As shown in Figure 3.1, the interquartile range (IQR) was calculated based on Q1 (the

lower quartile), which represents the lowest 25% of the data, and Q3 (the upper quar-

tile), which represents the lowest 75% of the data. Upper and lower thresholds were

then determined using these values, and data outside these thresholds were removed.

This technique reduced the sample size from 1401 to 1293. The figure also illustrates

that most outliers were removed from the energy absorption (EA) and densification

stress (Dens. Stress) features.

Q1 = 0.25× (n+ 1)th sample

Q3 = 0.75× (n+ 1)th sample

IQR = Q3−Q1

Tupper = Q3 + 1.5× IQR

Tlower = Q3 + 1.5× IQR

data = Tlower ≤ data ≤ Tupper

(3.1)

Figure 3.1: IQR box representation and outliers detection, adapted from ref. [87].

Another crucial step before training and prediction is data scaling, if necessary. Scal-

ing is required because features with higher gradients can disproportionately influence

the model weights, potentially dominating the model. This is particularly relevant for

gradient-based algorithms, such as neural networks, which benefit from such prepro-

cessing. In contrast, tree-based models, such as random forests and extreme gradient

boosting, are less affected by feature scaling, even though extreme gradient boosting

utilizes gradient-based operations.
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(a) Data distribution before outliers are removed.

(b) Data distribution after outliers are removed.

Figure 3.2: Detecting and removing the outliers
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(a) Before standardization

(b) After standardization

Figure 3.3: Standardization of target values is illustrated, with the y-axis representing

the density which is the smoothed approximation of the probability distribution of a

dataset at a specific point.
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In this study, standardization was employed as the scaling method for the data. This

process adjusts the data by setting its mean to zero and scaling it to unit variance, as

outlined in Equation 3.2. Through trial and error, it was observed that standardization

offered superior benefits to neural networks compared to normalization, making it

the preferred scaling technique. Additionally, the literature indicates that effective

regularization requires all features to be on comparable scales [44], a requirement

that standardization fulfills effectively.

x′ =
x− x̄

σ
(3.2)

where x′ is the standardized value, x is the raw value, x̄ is the mean of the feature

across all samples, and σ is the standard deviation. The result of this operation is

illustrated in Figure 3.2.

3.2 Hyperparameter Optimization

Machine learning algorithms are known to have numerous hyperparameters that can

be adjusted to enhance model performance [41]. This process, known as hyperparam-

eter optimization, is crucial and should not be overlooked. In this study, the hyperpa-

rameters for three models were tuned using the grid search method. This technique

evaluates all possible combinations of given parameters and identifies the optimal hy-

perparameters within the specified search space based on their performance scores.

Essentially, it involves systematically searching a grid space and storing the results.

This search method also incorporates the k-fold cross-validation technique, with 10

folds (k = 10) used in this study. Cross-validation is employed to mitigate overfit-

ting [41]. The search space and optimal hyperparameters are detailed in Table 3.1. It

is important to note that hyperparameter optimization was performed using only the

training dataset to avoid data leakage; the test dataset was not used during this pro-

cess. The dataset, consisting of 1293 samples after outlier removal, was divided into

1163 training samples and 130 test samples, with the latter constituting 10% of the

data. A representative workflow of hyperparameter optimization, cross-validation,

and subsequent performance evaluation is illustrated in Figure 3.4.

55



Figure 3.4: The training and evaluation workflow includes cross-validation and hy-

perparameter tuning, adapted from ref. [88].

Another important point is that hyperparameter optimization was not performed for

each individual output, although such an approach would be valid. Instead, it was

performed on a combined output vector, termed the hypervector, with each selected

output being scaled prior to their combination. This process is illustrated in Equation

3.3, where H represents the hypervector, serving as the basis for hyperparameter

optimization, and yi denotes the individual target values.

H =

√√√√ n∑
i=1

y2i (3.3)

In Table 3.1, for the Neural Network (NN), the hidden layer size provides information

about the number of hidden layers and neurons in the network, excluding the input

and output layers. For instance, 6, 12, 6 indicates three hidden layers with 6, 12,

and 6 neurons, respectively. To optimize the number of neurons and layers, two

configurations were considered during hyperparameter optimization: 6, 12, 6 neurons

with 3 layers, and 3, 6, 6, 3 neurons with 4 layers. The rationale behind this choice

is to avoid introducing too many neurons, which could lead to overfitting, while also

exploring the effects of deep learning by increasing the number of hidden layers to

more than three [44].
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These two neuron configurations used to initiate hyperparameter optimization in the

Neural Network algorithm are consistent with the number of neurons suggested by

Sheela et al. [89], which is 39, as shown in Equation 3.4, where Nh represents the

number of neurons in the hidden layers, and n denotes the number of inputs. Fur-

thermore, it should be noted that the number of neurons required to build the network

may increase as the number of samples used to train the Neural Network grows [90].

Another alignment can be found in the work of Xu et al., where Equation 3.5 provides

a rounded value of 28 neurons, ensuring that this value does not exceed the suggested

threshold. This work satisfies the equation with options of 24 and 18 neurons [91].

In this equation, Nt denotes the number of training samples, and Ni represents the

number of inputs. Ultimately, it should be noted that, at the time this study was

conducted, there is no golden rule for determining the optimal number of neurons

and layers for Neural Networks. Such parameters must be tailored to each specific

problem individually [90].

Nh =
4n2 + 3

n2 − 8
(3.4)

Nh =


1
2

Nt

Ni logNt
, if Nt

Ni
> 30,

Nt

Ni
, else Nt

Ni
≤ 30

(3.5)

For the ensemble methods of Random Forest (RF) and Extreme Gradient Boosting

(XGB), hyperparameter options are broadly chosen as multiples of the default value

of 100, which is provided by the machine learning library. This parameter is repre-

sented as n estimators in Table 3.1. The starting value of 100 decision trees aligns

with the findings of Oshiro et al., who suggested using trees in the range of 64 to 128,

although their work is based on classification rather than regression [92]. However,

in a more recent work, Curth et al. noted that using more trees does not increase the

generalization error and it results in smoother forest predictions by reducing the ten-

dency to fit noise in the data [93]. Since many decision trees share their own portion

of this noise, while others share no noise in this case, having more trees averages the

model fit down to smoother levels. Consequently, the default value of 100 decision

trees is retained, while additional options of 200 and 400 are explored to determine
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if the model benefits from an increased number of trees. As it is mentioned before,

there is no universal guideline for hyperparameters applicable to all problems when

utilizing these models; thus, hyperparameter selection is problem-dependent and re-

quires a trial-and-error approach. By employing the grid search algorithm within

this parameter space, it is possible to identify optimal parameters for the problems

under investigation. Furthermore, the grid search algorithm systematically searches

through the parameter space to discover optimal values, but it necessitates a relatively

high computational effort. Therefore, the provided options for each hyperparameter

are limited to two to four choices.

Another important hyperparameter observed in the neural network algorithm is the

activation function. This function introduces non-linearity to the network by apply-

ing either the hyperbolic tangent function (tanh) or the rectified linear unit (relu) to

the nodal values. The L2 regularization term, represented by alpha in Table 3.1, is

employed to prevent overfitting by appending a penalty to the loss function that is

proportional to the summation of the squared values of the weights. Thus, it effec-

tively penalizes excessive weight accumulation, contributing to better generalization.

Other parameters such as the type of learning rate, in conjunction with the learning

rate itself, determines whether the learning rate should vary during training. This can

be set as either constant or adaptive. For the tree ensemble algorithms, Random Forest

(RF) and Extreme Gradient Boosting (XGB), the max depth hyperparameter controls

the depth of the trees, while min child weight sets the minimum weight threshold

required to create a new node in the tree. The max features parameter defines the

number of features considered when selecting the optimal split, and min samples split

determines the minimum number of samples necessary to split an internal node.
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Table 3.1: Hyperparameter optimization results

Algorithm Search Space Optimum Hyperparameters

Neural

Network

hidden layer size: [(6,12,6), (3,6,6,3)]

activation function: [tanh, relu]

alpha: [0.0001, 0.001]

learning rate type: [constant, adaptive]

learning rate: [0.001, 0.01, 0.1]

hidden layer size: (6,12,6)

activation function: tanh

alpha: 0.0001

learning rate type: constant

learning rate: 0.01

XGBoost

n estimators: [100, 200, 400, 1000]

max depth: [4, 8, 16, None]

min child weight: [1, 2, 4, 8]

learning rate: [0.0001, 0.001, 0.01, 0.1]

n estimators: 100

max depth: 4

min child weight: 1

learning rate: 0.1

Random

Forest

n estimators: [100, 200, 400, 1000]

max features: [’sqrt’, ’log2’, None]

max depth: [4, 8, 16, None]

min samples split: [2, 4, 8, 16]

n estimators: 1000

max features: None

max depth: 16

min samples split: 8

3.3 Training of the Models

After removing outliers, scaling the data, and performing hyperparameter optimiza-

tion, the data was ready for model training. In this study, three machine learning

models were employed: NN, RF, and XGB. These models were chosen based on

their accuracy, computational efficiency, compatibility with the data, ease of use, and

widespread popularity.

3.3.1 Neural Network

The neural network (NN) architecture used in this thesis, as shown in Figure 3.5,

comprises three hidden layers with 6, 12, and 6 neurons, respectively. These con-

figurations were determined through hyperparameter optimization, as discussed in

the previous chapter. Although there is no strict rule regarding the subject, a neural

network with three hidden layers can be considered a deep artificial neural network,

and training such models is referred to as deep learning [44]. This type of neural net-
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work, referred to as a multi-layer perceptron (MLP), serves as a foundational architec-

ture in neural networks. More advanced architectures, including convolutional neural

networks (CNNs), recurrent neural networks (RNNs), and long short-term memory

(LSTM) networks, are developed based on this core structure.

The goal of training a neural network model is to optimize the weights, which repre-

sent the connections between neurons, in order to minimize the output error, which is

the difference between the true and predicted values. This optimization process uses

a method known as backpropagation, which involves calculating the gradient of the

error with respect to each weight in the network to determine how the error changes

as each weight is adjusted. The weights are then iteratively updated during each batch

of data until a stopping criterion is satisfied, such as reaching a predefined maximum

number of iterations or attaining an acceptable error tolerance. Once this process is

complete, the neural network is trained and ready for making predictions.

Figure 3.5: Neural network representation used in this study, adapted from [94].
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3.3.2 Extreme Gradient Boosting

To understand the logic behind Extreme Gradient Boosting (XGB), it is essential

to first grasp the concept of decision trees. Decision trees are a machine learning

algorithm used for both regression and classification tasks. At each node of the tree,

a condition is applied to the data. Depending on whether the condition is met, the

data is split into subsets. This process continues recursively until the tree meets a

stopping criterion, such as reaching an impurity level or a maximum depth. The final

prediction is made by aggregating the target values of the data points in the terminal

nodes (or leaves) of the tree. By combining multiple decision trees through various

ensemble methods, algorithms such as XGB are developed. The basic structure of

XGB is illustrated in Figure 3.6.

XGBoost (XGB) is widely recognized as one of the most effective models for re-

gression tasks involving tabular data [95] and is frequently recommended for such

applications [96, 97]. XGB utilizes the boosting technique, where each subsequent

decision tree is constructed to correct the errors made by the preceding trees, thereby

aiming to minimize residuals. This correction is achieved by employing the gradi-

ent of the loss or error with respect to the previous predictions, along with additional

regularization terms to enhance model performance and make it extreme. Hence, the

algorithm is called extreme gradient boosting, which highlights its advanced opti-

mization techniques and robust regularization methods.
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Figure 3.6: XGBoost illustration, adapted from ref. [98].

In Figure 3.6, fk denotes an individual decision tree, while fk(xi) represents the pre-

diction of the kth tree for the input xi. The symbol ŷi indicates the predicted value

for the ith sample [98]. Unlike Random Forest, which aggregates tree predictions

by averaging, XGBoost combines them by summing, as illustrated in the figure with

ŷ. In this study, hyperparameter tuning determined that the number of trees used in

XGBoost, denoted as n in the figure, is 100.

3.3.3 Random Forest

Another ensemble method utilizing decision trees is Random Forest (RF). In this

regard, it is comparable to XGBoost (XGB). An illustration of the Random Forest

model is provided in Figure 3.7. In this study, hyperparameter optimization estab-

lished that the Random Forest model comprises 1000 decision trees. Predictions in

Random Forest are generated using a technique known as bagging. This technique

involves training each decision tree on a randomly selected subset of the dataset, with

each subset corresponding to a distinct tree. Additionally, Random Forest employs

random feature selection at each split of the decision trees, further enhancing the

model’s robustness. The term random in its name reflects the use of randomness in
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both data subset selection and feature choice, while forest denotes the ensemble of

multiple decision trees. Hence, the name Random Forest.

Figure 3.7: Random Forest illustration, adapted from ref. [98].

The final prediction in Random Forest is obtained by averaging the outputs of all

the decision trees, as illustrated in Figure 3.7. Consequently, Random Forest can

be described as a method for averaging decision trees. This approach enhances the

model’s robustness and reduces the risk of overfitting by reducing variance. However,

it may also lead to increased bias and reduced interpretability of the model.

3.4 Predictions and Discussion

The training was performed on NN, RF and XGB models. A common mistake among

beginners in the field is to evaluate performance based on the training data, which can

create an illusion of model accuracy [41]. To avoid this error, performance evaluation

in this study is conducted using the test set, which was held out and not used until this

point in the process to ensure an unbiased assessment of model performance.
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Figure 3.8: Scatter plot of model predictions versus simulation results (ground truth).

Figure 3.8 presents the prediction results from the three machine learning models for

three different outputs. The results are depicted with scaled axes. The ground truth

axis represents the true values obtained from the simulations, while the predictions

axis displays the values predicted by the models. The gray line with a 1:1 slope

denotes ideal prediction accuracy; points lying on this line correspond to accurate

predictions, whereas deviations from the line indicate varying degrees of prediction

accuracy.

Although the visual results are generally satisfactory, the prediction accuracy for

plateau stress and useful work decreases as the values increase. This trend is also

observed in other studies in the literature [71, 70]. This decreased accuracy for higher

values may be due to low probability outcomes or skewness in the training data, as

seen in Figure 3.9. Addressing this issue would require exponentially more data, as

each sample is more likely to be closer to the average rather than being an extreme

value.
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Figure 3.9: Skewness in the data distribution of two outputs

The final results of the predictions, along with quantitative metrics, are presented in

Table 3.2. Two regression metrics are used in this study: mean absolute percentage

error (MAPE) and correlation coefficient (R2). Lower percentage values for MAPE

indicate better results, while R2 ranges between 0 and 1, with higher values closer

to 1 indicating a stronger correlation between the predictions and the test data. The

mathematical formulas for these two metrics are provided in Equation 3.6 and 3.7.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
(3.6)

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (3.7)

where n is the number of samples, yi represents the ground truth values, ȳ is the mean

of the ground truth values, and ŷi denotes the predicted values.

From the results shown in Table 3.2, the RF model achieved the best performance with

an average R2 of 0.936 and a mean absolute percentage error (MAPE) score of 1.775.

This outcome is consistent with the observation that tree-based methods, particularly

XGB, often outperform NN on tabular or structured data [95, 96, 97]. Conversely,

DNNs generally excel with larger datasets compared to traditional methods [99]. Ta-

ble 3.2 also reveals that specific useful work exhibited the poorest performance, with

an average error of 11.7% across the three models. This target value is calculated by
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Table 3.2: Prediction results of the machine learning models

NN RF XGB

Young’s Modulus 0.30 0.93 0.33 0.91 0.37 0.92

Energy Absorption 0.23 0.99 0.20 0.98 0.19 0.98

Useful Work 1.53 0.93 1.44 0.94 1.48 0.94

S. Useful Work 14.23 0.86 8.43 0.85 12.46 0.84

Plateau Stress 0.23 0.98 0.19 0.99 0.22 0.98

Yield Stress 0.15 0.99 0.09 0.99 0.15 0.99

Dens. Stress 2.40 0.91 2.35 0.91 2.25 0.91

Energy Absorp. Eff. 1.37 0.88 1.18 0.91 1.37 0.90

MAPE R2 MAPE R2 MAPE R2

dividing the effective density, which reduces the correlation between thickness and

this target. Since independent variables with strong correlations to the target value

are crucial for accurate predictions, this calculation adversely affects performance.

Additionally, the table indicates that as R2 increases, MAPE tends to decrease, sug-

gesting that improved correlation is associated with reduced percentage error.

In this study, the performance differences between the models were not substantial

enough to justify selecting one over another based solely on accuracy. Consequently,

other factors, such as ease of use and optimization, preprocessing requirements, sam-

ple size needs, computational efficiency, and interpretability, were taken into account.

Considering these criteria, tree-based methods such as RF and XGB are preferable for

their interpretability, ease of use, and relatively faster computation. Thefore, the study

proceeds with the XGB model for further optimization.

Another insight into the performance of the XGB model can be derived from Figure

3.10. In this figure, XGB predictions are compared with two traditional methods: lin-

ear regression using Python and the LINEST function from Microsoft Excel, based on

the R2 metric. Both of these statistical methods attempt to fit a linear four-dimensional

geometry (three inputs and one output) into the design space, minimizing error by

evaluating the distance to given points within the space. As a result, such models

can be used to predict or interpolate unknown values. However, when examining the

figure, there is only a minor difference between linear regression and LINEST. This
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is because these built-in functions use different hyperparameters, leading to LINEST

performing slightly better. On the other hand, the overall results indicate that the

XGB machine learning model outperforms both of these traditional, relatively basic

methods, especially in predicting outputs such as Young’s Modulus and energy ab-

sorption. In the latter case, XGB achieves an R2 score of 0.98, while linear regression

and LINEST obtain scores of 0.79 and 0.8, respectively. It is important to note that

accurately predicting the energy absorption properties of a lattice structure with mini-

mal error is crucial for designing it for related applications, and from this perspective,

the performance boost provided by XGB is significantly valuable.

Figure 3.10: Performance comparison of XGB with two traditional linear regression

methods
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Figure 3.11 illustrates the learning curves of XGB for different outputs. In this figure,

the y-axis represents the number of samples, while the x-axis represents the perfor-

mance metric of the model. The R2 score is used as the metric, calculated using

10-fold cross-validation, consistent with the method applied during hyperparameter

optimization. From the figure, it is observed that while the performance gap between

training and test scores diminishes toward the end of the dataset, outputs with a sig-

nificant remaining gap, such as densification stress or specific useful work, exhibit

relatively lower prediction performance. Additionally, it appears that convergence

has not yet been reached for these outputs, suggesting that additional data may be

beneficial to narrow the gap between training and test performance and to achieve

convergence. In contrast, well-performing outputs, such as energy absorption (EA)

or yield stress, demonstrate a different trend. They converge to a point with a minimal

gap between training and test scores, indicating a satisfactory training process. This

suggests that the predictions for these outputs were notably accurate by the end of the

training, and no further data is required for their improvement [100].

Overall, the learning curves demonstrate no apparent tendency towards overfitting

in any of the outputs. Overfitting is typically characterized by a marked divergence

between training and testing scores, indicating that the model is excessively fitting

the training data while performing poorly on the testing data, thus exhibiting sub-

optimal performance characteristics [101]. In such cases, different hyperparameters,

including higher regularization strength, could be employed to mitigate overfitting.
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Figure 3.11: Learning curves of XGB
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The interpretability of the XGB model is illustrated in Figure 3.12. XGB allows for

the extraction of feature importances, revealing which parameters most significantly

influence the desired property. This capability helps mitigate the black-box nature

of the model. The feature importance scores are based on the gain metric, which

indicates the relative contribution of each feature to the model. A higher gain value

indicates a more significant impact on the prediction. From Figure 3.12, it can be

observed that, overall, thickness is the most important parameter, except in the case

of energy absorption efficiency, where py emerges as the most critical parameter. In

contrast, the least important parameter is px.

Figure 3.12: Feature importances for different properties provided by XGB

Achieving sufficient results with machine learning often requires considerable effort

before training. Essential preprocessing steps, such as removing outliers, scaling data,

and optimizing hyperparameters, were demonstrated in this section. Once these steps

were completed, the models achieved sufficient accuracy, making them ready for de-

ployment and prediction tasks. These predictions can be utilized independently, such

as in design for additive manufacturing (DfAM) to estimate manufacturing costs or

part quality [79], or as part of a larger framework, including integration into optimiza-

tion processes discussed later in this study.
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3.5 Optimization with Genetic Algorithm

Optimization is a fundamental aspect of engineering, focused on finding the most

optimal or near-optimal solutions to complex problems. In this study, a genetic al-

gorithm (GA) is employed alongside machine learning to identify these optimal so-

lutions. GA serves as both a research and optimization tool, applicable to a broad

range of problems [102]. It utilizes a computational approach to achieve its objec-

tives, searching for optimal solutions within a candidate population [103]. However,

it does not guarantee the discovery of the absolute best solution. Therefore, it can be

categorized as a heuristic method.

In this study, the trained ML model serves as the fitness function within the GA

framework. Specifically, candidate solutions are evaluated by the ML model, which

provides predictions used as fitness scores. These scores help identify the best solu-

tions in the population for the given objective.

Algorithm 2 Basic Genetic Algorithm
1: begin

2: generations← 600

3: population size← 12

4: count← 0

5: Set boundary values for solutions

6: Initialize a population

7: while count < generations do

8: calculate fitness

9: select parents from the population

10: perform crossover and mutation

11: update the population with the new generation

12: count← count + 1

13: end while

14: Give the best individual

15: end
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The input parameters are the features px, py, and t, with the objective of maximizing

energy absorption efficiency (n) and having approximately a given plateau stress of

40 MPa is set for the GA. This process can be simplified as shown below,

Maximize n (%)

Subject to σplateau ≈ 40 MPa

Variables px, py, t

The stopping criterion is based on number of generations which is set to 600. When

the count number being equal to number of generations, the algorithm terminates.

The number of parents selected per generation is set to 12, which each generation

must satisfy. After setting these parameters, selected parents undergo mutation and

crossover to generate a new population. This process continues in a loop until the

convergence criterion is met, with each new generation’s fitness score determined by

the ML model. The related algorithm is outlined in Algorithm 2. Boundary values

are set to range from 6 to 14 for px and py by considering constraints applied to

data generation phase which can also serve as ease for manufacturing. For the other

parameter t (thickness, mm) the range is set to 0.8 to 3.2.

After setting the values, the optimization process is conducted, and the identified

optimal values are px = 6.04, py = 8.66, and t = 1.63, as shown in Figure [?

]. In this figure, the axes denoted as px and py represent the coordinate points of

two design parameters, while the dark blue tones indicate the accumulation of these

design points across generations. It can be observed from the figure that, although

py consistently remains around 8, px fluctuates between approximately 10 and 5,

resulting in a significant peak region around 5, ultimately leading to the value of 6.04.

On the right-hand side of the same figure, the optimum shape of the unit cell derived

from this result is depicted.

From the optimization results, it is noted that the energy absorption efficiency value is

30.53% and the plateau stress is 39.95 MPa, as can be seen in [? ]. The optimization

results begin at zero and exhibit a sharp increase to higher values in the first iteration,

which accounts for the steep slope at the beginning. Throughout the generations, it
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can be indicated from the figure that, while the energy absorption efficiency stabilizes

around 30%, the plateau stress exhibits greater fluctuations around 40 MPa. The

reason for this fluctuation is a variable introduced to the genetic algorithm in this

study, referred to as the mutation rate.

xi+1 = xi + random(−1, 1)× mutation rate (3.8)

Mutation rate adjusts the magnitude of change or mutation strength for each indi-

vidual solution across generations, as shown in Equation 3.8. In this equation, xi

represents an individual value of a member in the current generation (e.g. px), while

xi+1 represents the corresponding value in the next generation. The mutation is per-

formed by adding a value between -1 and 1, multiplied by the mutation rate, to the

current solution. As a result, a higher mutation rate allows for greater exploration of

different values, which helps to avoid local minima. However, this also introduces

fluctuations. In this study, the mutation rate was set to 1. Despite these fluctuations,

the end result demonstrates that the genetic algorithm (GA) and machine learning

(ML) operate effectively to maintain the plateau stress at approximately 40 MPa, as

intended.

Figure 3.13: Objectives history of GA and ML integration include maximizing energy

absorption efficiency (n) and having plateau stress close to 40 MPa. Both values are

predicted by using the trained ML model, XGB.
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The optimization results of px = 6.04, py = 8.66, and t = 1.63 align with the

study’s findings, which indicate that plateau stress is highly correlated with thick-

ness. Consequently, the relatively low thickness value of 1.63 mm maintains the

plateau stress around 40 MPa, which is significantly lower than the maximum thick-

ness of 3.2 mm. Additionally, py exhibits a subtle positive correlation with plateau

stress while demonstrating a negative correlation with energy absorption efficiency.

This relationship explains why a py value of 8.66 helps to achieve an almost 39.95

MPa plateau stress, albeit at the cost of energy absorption efficiency, which is approx-

imately 30.52%. Lastly, although px does not correlate with plateau stress, it appears

to be optimized in relation to energy absorption efficiency concerning its boundary

values. In other words, it reflects its lateral distance from the center of the unit cell,

resulting in a value of 6.04. This explains the right-side bias observed in the px value

in Figure 3.14.

Figure 3.14: Optimum shape of the unit-cell given by GA and ML integration which

is px = 6.04, py = 8.66, and t = 1.63. The blue color tones in the figure indicate the

accumulation of design points at specific locations throughout the generations.

Applying the specified parameters in the finite element analysis (FEA) environment

produces the model shown in Figure 3.15. The same boundary conditions and ma-

terial model are applied to this optimized model to compare the predicted plateau

stress and energy absorption values from the genetic algorithm (GA) with those ob-

tained from the FEA results. This comparison indicates that while the GA yields an

energy absorption efficiency of 30.53% and a plateau stress of 39.95 MPa, the FEA
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provides values of 32.56% and 43.44 MPa for these properties, resulting in errors of

6.23% and 8.05%, respectively. As error values below 10% are generally satisfactory,

these results are considered adequate. Further reduction in error may be achievable

by focusing the optimization on a single objective.

Figure 3.15: FEA model of the optimum result (px = 6.04, py = 8.66, t = 1.63)

given by the GA and ML.

(a) (b)

Figure 3.16: Plots of the same optimum structure (px = 6.04, py = 8.66, t = 1.63),

(a) stress-strain plot (b) energy absorption efficiency plot

Since the ML model was employed as the provider of fitness scores in this context,

the entire optimization process required approximately 2465 seconds for 600 genera-

tions, with each prediction taking less than 1 second. In contrast, a single simulation

in this study took about 780 seconds. It is also important to note that each individual

in the population must have its fitness score assessed, resulting in a total of 7200 fit-

ness evaluations for the GA (600 generations multiplied by a population size of 12).
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If FEA had been used to evaluate these fitness scores, it would have required approx-

imately 5616000 seconds, or 1560 hours, or 65 days. It is worth noting that these

times may vary depending on the hardware used. Moreover, while FEA provides var-

ious data about the structure, such as stress or displacement, obtaining a property like

energy absorption efficiency necessitates additional calculation steps. This compara-

tive estimate is illustrated in Table 3.3. As demonstrated, integrating the ML model

as the fitness function estimator significantly accelerated the optimization process.

Although an analytical function could be utilized for the fitness function, it may lack

the complexity necessary to accurately capture the real behavior of the problem and

manage the numerous variables required in more complex scenarios than those pre-

sented in this study. Additionally, in terms of speed, analytical formulations might not

provide any advantage over ML models after the training phase. Therefore, the effi-

ciency and capability of ML models to capture complexity in a time-efficient manner

make them valuable tools for optimization tasks, as evidenced by this study.

Table 3.3: Comparison of different approaches in terms of tasks and the estimated

time required to perform them.

Approach Task Time (seconds)

ML One property estimation <1

FEA One property estimation 780

ML and GA Structural optimization 2465

FEA and GA Structural optimization 5616000

It can be concluded that the machine learning model was successfully integrated with

the genetic algorithm, providing essential fitness scores required for the optimization

process. This integration demonstrates the model’s capability to be effectively uti-

lized within other pipelines. Moreover, it has the potential to substantially reduce

computation time, as evidenced in this study.
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CHAPTER 4

CONCLUSION

4.1 Summary of the Key Findings

In this study, the highly nonlinear mechanical behavior of auxetic lattice structures is

investigated. To facilitate this investigation, a double-arrowhead unit cell is selected

as the fundamental building block for the lattice structures. These structures were

constructed by replicating the unit cell in a two-dimensional array with dimensions of

6 cells in width and 8 cells in height. A total of 1401 models were digitally generated

and analyzed using finite element analysis (FEA). These models incorporated mate-

rial, geometric, and contact non-linearities, rendering analytical formulation of the

problem extremely difficult. Consequently, to predict the outcomes, a state-of-the-art

data-driven technique, machine learning, was employed.

In the exploration of the data which is generated through finite element analysis it is

seen that px, it appeared insignificant across all eight predicted properties. However,

its lateral distance from the middle of the unit cell, px’, demonstrated a positive cor-

relation with energy absorption efficiency and modulus of elasticity, and a negative

correlation with energy absorption and yield strain, as indicated by the correlation ma-

trix. On the other hand py showed a subtle relationship with plateau stress and useful

work whereas strong negative correlation with energy absorption efficiency observed

for it. Lastly, t showed positive correlations with most properties with exception of

densification strain and energy absorption efficiency. These findings suggest that,

maximize the energy absorption efficiency of a lattice structure with double-arrow

head, a low py value and a px value further from the middle should be used regardless

of the thickness. Additionally, the correlation among the data revealed that stress-
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related properties are positively aligned with energy absorption characteristics of the

structure with the exception of energy absorption efficiency. Moreover, a Pareto set

and a corresponding Pareto fit curve were provided to illustrate the optimum design

points for the multi-objective optimization task, which seeks to maximize useful work

while minimizing plateau stress and mass.

After data exploration, outlier removal, and scaling were applied, three machine

learning models were optimized through hyperparameter tuning on the training dataset.

The dataset was divided into training and test sets, with 10% reserved for testing.

The machine learning models utilized three features (px, py, and t) to predict eight

mechanical properties of the structure, making this a regression task. The models, in-

cluding the neural network, random forest, and extreme gradient boosting, achieved

an average R2 score of 0.936 and a mean absolute percentage error (MAPE) of 1.775

on the test dataset, which was held out until this evaluation point, indicating high pre-

diction performance. It was observed that the lower prediction accuracy for higher

values of plateau stress and useful work is due to sparse data in these high-value re-

gions, leading to less accurate pattern capture by the machine learning models. How-

ever, the overall impact of these high values on accuracy was minimal. Although the

random forest model performed best on average, the prediction metrics among the

models were closely aligned. This minor performance difference may be due to vari-

ations in hyperparameter optimization. Consequently, extreme gradient boosting was

selected for the optimization task. Additionally, the learning curves of extreme gra-

dient boosting revealed notable R2 score differences between training and test scores

for certain outputs, such as densification stress and specific useful work, suggesting

that these targets could benefit from more training data. No significant overfitting ten-

dency was observed from the same curves. The interpretative capabilities of extreme

gradient boosting also indicated that t (thickness) is the most important feature, being

effective for seven out of eight outputs, followed by py. For the remaining output,

py was identified as the most crucial parameter, specifically for energy absorption

efficiency, although it negatively impacts this property.

The trained Extreme Gradient Boosting (XGB) model was employed to provide the

fitness score, while a genetic algorithm was utilized as the optimizer, demonstrating

the feasibility of using machine learning models to predict the mechanical properties
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of lattice structures and optimize their design accordingly. This combined approach of

machine learning and genetic algorithms was applied to identify a double arrow-head

lattice structure, with the objective of maximizing energy absorption efficiency, while

constraining the plateau stress to approximately 40 MPa. The optimization process,

which spanned 600 generations and took 2,465 seconds, yielded an estimated en-

ergy absorption efficiency of 30.53% and a plateau stress value of 39.95 MPa. These

results correspond to error percentages of 6.23% and 8.05%, respectively, when com-

pared to the finite element analysis (FEA) solution. The optimization results align

well with the trends observed in the data, further demonstrating the effectiveness of

integrating machine learning with genetic algorithms for optimization tasks.

Lastly, it should be noted that although this study has demonstrated the methodology

of training ML models using FEA solutions with three variables, the same approach

could be applied to problems with significantly more variables and may also extend

to other types of engineering challenges with similar methodologies. Therefore, this

data-driven approach, utilizing machine learning, has the potential to open new av-

enues for addressing complex engineering problems.

4.2 Suggestions for Future Works

As is often the case in science and engineering, there are still opportunities for im-

provement in this work and related topics. Potential enhancements include, but are

not limited to:

• This study exclusively uses the double arrowhead unit cell geometry, with no

consideration of other geometries. As the machine learning model is trained

solely on this structure, its predictions cannot be generalized to other lattice

geometries. However, by including different unit cell types in the training data,

the model could learn to recognize and predict across various structures.

• Similarly, the study is limited in predicting results for different materials, as

it was trained with only one material. Incorporating a range of materials as

variables could be considered for future research and applications.
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• Another limitation of this study is the absence of damage modeling. The finite

element analysis employed in this work considers only plastic behavior with

strain hardening, without accounting for any damage occurrence. Future stud-

ies may overcome this limitation by incorporating damage modeling to capture

material degradation under loading.

• The accuracy of estimator predictions can be further enhanced by adopting al-

ternative approaches, such as utilizing an ensemble of multiple machine learn-

ing models.

• The number of samples required to train the model can and should be reduced

through novel approaches, as achieving accurate results with less data is a crit-

ical challenge in machine learning. Semi-supervised learning may be applica-

ble to the problems addressed in this study. While it may not reduce the entire

dataset size, it can decrease the need for labeled data, representing a significant

improvement.

• Unstructured data types, such as images of lattice structures, could be utilized

instead of the structured (tabular) data employed in this study. Such data might

enable neural network to outperform tree-based algorithms, such as extreme

gradient boosting or random forest. Additionally, this approach could offer

new insights into mechanical property prediction and other related areas.

It is hoped that implementing these improvements and suggestions, along with the

latest machine learning techniques, could advance the field by enabling the design of

more efficient structures and contribute to the benefit of humanity.
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APPENDIX A

THE CODE USED IN THIS STUDY

The code or scripts used in to generate lattice structures, to perform data analysis, to

train machine learning models, to conduct optimization with genetic algorithm and to

plot various figures are shared in the below link:

https://github.com/ymnpy/LatticeStru_FEAvML

Some of the parts of the code are also presented below:

"""

THE MAIN SCRIPT FOR ABAQUS COMMANDS,

generating, solving, storing FEA results of lattice structures in a loop

"""

def findintersection(p1,p2,p3,p4):

px=((p1[0]p2[1]p1[1]p2[0])(p3[0]p4[0])(p1[0]p2[0])(p3[0]p4[1]p3[1]p4[0]))

/((p1[0]p2[0])(p3[1]p4[1])(p1[1]p2[1])(p3[0]p4[0])+1e6)

py=((p1[0]p2[1]p1[1]p2[0])(p3[1]p4[1])(p1[1]p2[1])(p3[0]p4[1]p3[1]p4[0]))

/((p1[0]p2[0])(p3[1]p4[1])(p1[1]p2[1])(p3[0]p4[0])+1e6)

return [px,py]

def getprevdata():

storage=[]

count=0

path=r"C:/temp/data.log"
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with open(path,"r") as fin:

for line in fin.readlines():

try:

count+=1

a=line.split(()[4].split())[0]

x,y=float(a.split(,)[0]),float(a.split(,)[1])

storage.append((x,y))

except:

pass

return storage,count1

""" INPUTS """

now=time.time()

storage,count=getprevdata() residual aldigim yer

cellsx,cellsy=8,6

depthlength=4

print(storage)

offset=2

count=0

nomodels=1400

massscale=1

steptime=0.1

density=2.7e9

thicknesslist=[0.8,1.2,1.6,2.4,3.2]

jobrun=True

emptypass=0
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if len(storage)==0:

with open("data.log","w") as fout:

fout.write("check out github for this")

while count = nomodels:

r1x,r1y=0,0

r2x,r2y=20,0

r3x,r3y=round(random.random()20,1),20

r4x,r4y=r3x,round(random.random()20,1)

thickness=random.choice(thicknesslist)

modelname=str(count)+"Al"

+"X"+str(r3x).replace(".","")

+"Y"+str(r4y).replace(".","")

+"T"+(str(thickness).replace(".",""))

angle check for p4

a13=(r3yr1y)/(r3xr1x+0.001)

a23=(r3yr2y)/(r3xr2x+0.001)

a14=(r4yr1y)/(r4xr1x+0.001)

a24=(r4yr2y)/(r4xr2x+0.001)

lengths of a cell

l1=((r3xr1x)2+(r3yr1y)2)(0.5)

l2=((r3xr2x)2+(r3yr2y)2)(0.5)

l3=((r4xr2x)2+(r4yr2y)2)(0.5)

l4=((r1xr4x)2+(r1yr4y)2)(0.5)

lmin=min(l1,l2,l3,l4)

meshauxetic=lmin/5

p1,p2,p3,p4=(r1x,r1y),(r2x,r2y),(r3x,r3y),(r4x,r4y)
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off=p3[1]p4[1]

p1top,p1bot=[p1[0],p1[1]+off],[p1[0],p1[1]off]

p2top,p2bot=[p2[0],p2[1]+off],[p2[0],p2[1]off]

p3top,p3bot=[p3[0],p3[1]+off],[p3[0],p3[1]off]

p4top,p4bot=[p4[0],p4[1]+off],[p4[0],p4[1]off]

t1top,t1bot=[0,20],[0,0]

t2top,t2bot=[20,20],[20,0]

pp=findintersection(p1top,p3top,t1top,t2top)

l5=((pp[0]p1top[0])2+(pp[1]p1top[1])2)0.5

pp=findintersection(p1top,p4top,t1top,t2top)

l6=((pp[0]p1top[0])2+(pp[1]p1top[1])2)0.5

pp=findintersection(p2top,p3top,t1top,t2top)

l7=((pp[0]p2top[0])2+(pp[1]p2top[1])2)0.5

pp=findintersection(p2top,p4top,t1top,t2top)

l8=((pp[0]p2top[0])2+(pp[1]p2top[1])2)0.5

pp=findintersection(p1bot,p3bot,t1bot,t2bot)

l9=((pp[0]p4[0])2+(pp[1]p4[1])2)0.5

pp=findintersection(p2bot,p3bot,t1bot,t2bot)

l10=((pp[0]p4[0])2+(pp[1]p4[1])2)0.5

solid volume frac / line density

solidvol=2020

latticevol=(l1+l2+l3+l4+l5+l6+l7+l8+l9+l10)thickness

svf=latticevol/solidvol

roeffective=svfdensity
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thetas

theta1=180(degrees(atan(a13))+degrees(atan(a23)))

theta2=180(degrees(atan(a14))+degrees(atan(a24)))

horx=p1[0]p2[0]

hory=p1[1]p2[1]

verx=p3[0]p4[0]

very=p3[1]p4[1]

for assembly

height=(r3yr4y)cellsy+r4y

width=r2xcellsx

crushheight=height0.8 making it a variable

velocity=crushheight/steptime

breaking after n amounts of repetitive failures

if emptypass200: break

angle sartlari, svf sarti, noktalar unique

if degrees(atan(a13))80 or degrees(atan(a23))80:

emptypass=+1

continue

if degrees(atan(a14))10 or degrees(atan(a24))10:

emptypass=+1

continue

if not degrees(atan(a13))=degrees(atan(a14))+10:

emptypass=+1

continue

97



if not degrees(atan(a23))=degrees(atan(a24))+10:

emptypass=+1

continue

if svf0.8:

emptypass=+1

continue

if (r4x,r4y) in storage:

emptypass=+1

continue

emptypass=0 unique parameters are found, zeroing it

count+=1

storage.append((r4x,r4y))

make model

mdb.Model(modelType=STANDARDEXPLICIT, name=modelname)

UNIT CELL

mdb.models[modelname].ConstrainedSketch(name=profile, sheetSize=200.0)

mdb.models[modelname].sketches[profile].Spot(point=p1)

mdb.models[modelname].sketches[profile].Spot(point=p2)

mdb.models[modelname].sketches[profile].Spot(point=p3)

mdb.models[modelname].sketches[profile].Spot(point=p4)

mdb.models[modelname].sketches[profile].Line(point1=p1, point2=p3)

mdb.models[modelname].sketches[profile].Line(point1=p3, point2=p2)

mdb.models[modelname].sketches[profile].Line(point1=p2, point2=p4)

mdb.models[modelname].sketches[profile].Line(point1=p4, point2=p1)
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"""

THE MAIN SCRIPT FOR MACHINE LEARNING STUFF, including:

Three models training NN, RF, XGB

Hyperparameter optimization

Scaling by standardization

Outlier detection and removal by IQR method

AND GENETIC ALGORITHM OPTIMIZATION

"""

def plotlearningcurve(model, modelname, cols, X, y):

sns.settheme(style="ticks", fontscale=2.4)

fig, axes = plt.subplots(nrows=5, ncols=10, figsize=(15, 20))

plt.subplotsadjust(left=0.12, bottom=0.08, right=0.95,

top=0.92, wspace=0.4, hspace=0.3)

handles = []

labels = []

for i, (ax, col) in enumerate(zip(axes.flat, cols)):

trainsizes, trainscores, testscores = learningcurve("check out git")

linetrain, = ax.plot(trainsizes, np.mean("check out git")

linetest, = ax.plot(trainsizes, np.mean("check out git")

colname=col.split("(")[0]

Collect handles and labels for the legend

if i == 0:

handles.extend([linetrain, linetest])

labels.extend(["Training Score", "Test Score"])
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Set yticks for all axes

ax.setyticks([0.8, 0.88, 0.95, 1.02])

Add "R2" only to the leftmost subplots

if i 2 == 0:

ax.setylabel(f"R2",labelpad=10)

else:

ax.setylabel(f" ")

if i == 6 or i == 7: indices for the 4th and 8th subplots

ax.setxlabel(f"Number of samples", labelpad=10)

Only set xticks for the bottom row

if i len(cols) 2:

ax.setxticklabels([])

Only set yticks for the leftmost column

if i 2 != 0:

ax.setyticklabels([])

ax.text(1.06, 0.5, colname, va=center, ha=center,

rotation=90,transform=ax.transAxes)

Create a single legend for all subplots

fig.legend(handles[:2], labels[:2], loc=upper center,

bboxtoanchor=(0.5, 0.99), ncol=2,

shadow=True, fancybox=True)

plt.savefig("learningcurve.png")

plt.show()

return None
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def removeoutliers(df,columns):

"""

columns list

df data frame

takes columns, loop them through remove outliers based on

upper and lower quartile values, a proven method

"""

for col in columns:

Q1=np.percentile(df[col],25,method=midpoint)

Q3=np.percentile(df[col],75,method=midpoint)

IQR=Q3Q1

upper=Q3+1.5IQR

lower=Q11.5IQR

df=df[(df[col]=lower) (df[col]=upper)]

return df

def normalize(dfin):

normalizer=MinMaxScaler()

for col in dfin.columns:

try: dfin[col]=normalizer.fittransform(dfin[[col]])

except: pass

return dfin

def standardize(dfin):

standizer=StandardScaler()

for col in dfin.columns:

try: dfin[col]=standizer.fittransform(dfin[[col]])

except: pass

return dfin
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def xgbhpopt(model,Xvalid,yvalid):

kf = KFold(nsplits=5, shuffle=True)

parameters =

nestimators: [100,200,400,1000],

maxdepth: [4,8,16, None],

minchildweight:[1,2,4,8],

learningrate: [1e4, 1e3, 1e2,0.1], so called eta value

xgbgrid = GridSearchCV(model,

parameters,

cv = 10, KFold number

njobs = 1, processors

verbose=False)

xgbgrid.fit(Xvalid,yvalid)

print(xgbgrid.bestparams)

return xgbgrid.bestestimator,xgbgrid.bestparams

def runmodel(model,modelname,output,Xtrain,ytrain,Xtest,ytest):

model.fit(Xtrain,ytrain)

ypred=model.predict(Xtest)

r2=r2score(ytest, ypred)

mape=meanabsolutepercentageerror(ytest, ypred)

rmse=meansquarederror(ytest, ypred)

ss[output]=(r2,mape,rmse)

plot=True
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if plot:

plt.figure(figsize=(16,12),layout="constrained")

scatter

if modelname=="MLP": color="crimson"

if modelname=="XGB": color="steelblue"

if modelname=="RF": color="green"

else: color="orange"

plt.scatter(ytest,ypred,s=400,color=color,edgecolors="black",linewidths=1)

plt.savefig(f"modelnameoutput[0:3].png")

"and it goes on"""
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