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Abstract: Approximate convex decomposition simplifies complex shapes into manageable convex components. In
this work, we propose a novel surface-based method that achieves efficient computation times and sufficiently convex
results while avoiding overapproximation of the input model. We start approximation using mesh simplification. Then
we iterate over the surface polygons of the mesh and divide them into convex groups. We utilize planar and angular
equations to determine suitable neighboring polygons for inclusion in forming convex groups. To ensure our method
outputs a sufficient result for a wide range of input shapes, we run multiple iterations of our algorithm using varying
planar thresholds and mesh simplification levels. For each level of simplification, we find the planar threshold that leads
to the decomposition with the least number of pieces while remaining under a certain concavity threshold. Subsequently,
we find the simplification level that houses the decomposition with the least concavity, and output that decomposition as
our result. We demonstrated experiment results that show the stability of our method as well as compared our work to
two convex decomposition algorithms, providing discussion on the shortcomings and advantages of the proposed method.
Notably, our main advantage turns out to be on time efficiency as we produce output faster than our competitors which,
however, outperform our results for some models from an accuracy perspective.

Key words: 3D approximate convex decomposition, mesh segmentation, shape abstraction, computer graphics

1. Introduction
Shape segmentation is the process of taking a 2D polygon or a 3D polyhedron, and systematically breaking
it down into multiple pieces. This is typically carried out in a semantic way where each piece is separated
meaningfully, such as separating the handle and spout from a teapot model. Such shape segmentation may be
required in many different areas ranging from medical imaging to autonomous vehicles.

Approximate convex shape segmentation, or approximate convex decomposition, is the process of seg-
menting a 2D or 3D concave shape into smaller, convex parts. It is, in other words, a variant of shape
segmentation where a concave mesh is divided into smaller pieces that are all convex and combined to form an
approximate of the original mesh. This is performed because there are many applications where the computation
being done requires convex shapes to proceed, or convex shapes make such computations much more efficient.
For example, video games and simulations make constant use of physics engines for efficient collision detection
queries. However, most engines cannot use concave objects in rigid body calculations, meaning concave objects
cannot be dynamic physics objects without taking their convex hull or decomposing them into convex parts.
Another example is in the area of 3D printing, where printing out convex segments that are assembled by hand
is much more material-efficient than having to print concave pieces that may need extra support structures
∗Correspondence: ys@ceng.metu.edu.tr
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printed alongside them. Other examples of the applications of convex decomposition include skeleton extrac-
tion and motion planning [17]. Segments that are not necessarily convex are also commonly used in computer
graphics for modeling [18], matching [19], and guarding [23] purposes.

The scope of this work is to analyze triangle meshes embedded in 3D and provide a simple method to find
an approximate convex decomposition by only taking its surface polygons into account in an iterative manner.
We then try to improve our result by automatically and systematically tweaking our parameters and finding
the best-performing decomposition.

The majority of convex decomposition algorithms are subtractive and top-down, meaning they start
with the overall shape, and repeatedly split it into smaller pieces until all pieces are convex. This often requires
complex cutting plane computations and in some cases only works on closed meshes. Other methods are additive
and bottom-up, meaning they start from small pieces of the mesh such as polygons or vertices, and combine
them until no larger convex pieces can be formed. These methods are either not surface-based, meaning they
combine volumes or tetrahedra instead of polygons, or they do not produce good results in a quick manner.

With this work, we provide an additive method for the convex decomposition of 3D meshes that is:

• Surface-based, with a focus on locality and simplicity. In other words, we take into account only the
surface polygons and iterate over them based on adjacency, without having to compute overall costs for
the entire shape, similar to a greedy approach.

• Self-improves its parameters by running the decomposition algorithm repeatedly with different inputs in
order to find the best-performing result.

• Relatively fast at providing sufficiently accurate convex decomposition results as shown in Section 4.

Section 2 presents a literature overview and Section 3 provides our algorithm whose results are discussed
in Section 4. Stating our limitations in Section 5, we conclude along with future work directions in Section 6.

2. Related work
The problem of convex decomposition boils down to the problem of finding a viable concavity metric in most
cases. Hierarchical approximate convex decomposition (HACD) [1] uses the distance between a point and its
projection to the convex hull of the surface it resides on as a basis of its concavity metric, before merging
surfaces by considering the two with the least combined concavity. In our concavity calculations, we have used
a similar method as described in subsection 3.4.3 and compared our results to that of HACD in subsection 4.3.1.
However, our method is more localized, forming groups by iterating over the polygons by adjacency as opposed
to calculating the cost of each possible merge option, which in turn leads to faster execution times.

Similar to the method in [22], the approach in [9] employs the merging logic from HACD to form convex
hulls for collision detection [21] in complex virtual environments, such as those found in video games, using a
game semantics-based concavity metric. In contrast, a previously proposed method [2] uses the volume difference
between the mesh and its convex hull as the concavity metric. It tetrahedralizes the input mesh into the leaves
of a tree structure and merges the tetrahedra hierarchically.

Similar to our method, the approach described in [10] also iterates over the surface polygons of the mesh
and combines them; however, it does this with the goal of finding primitives such as planes, not a convex
decomposition. A study more closely aligned with ours is [11], where the triangles of a mesh are iterated to
form convex groups using a queue, followed by a final merging step that differs in implementation. However,
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this method performs scalar triple products to decide the concavity of a surface and the results are significantly
overdecomposed. In comparison, our method generally produces fewer convex pieces that capture the original
geometry more accurately.

There are also learning-based methods that utilize neural networks. For instance, the approach described
in [3] trains on the input shape and reconstructs it using primitive convex shapes. In contrast, the method
described in [4] is similar to [3], but while [3] focuses on smooth shapes, [4] generates sharper shapes with
lower resolutions by using binary space partitioning (BSP) trees to derive their primitives. Being a completely
rule-based method based on geometric optimization, we do not suffer from the poor generalizability of these
learning-based methods and also avoid labor-intensive training efforts specific to each object class.

Certain methods split the input mesh until a concavity threshold is met. A simple example is presented in
[12] where a 2D polygon is recursively split into two by drawing a line from a concave vector to its optimal visible
vertex. Visibility-based decomposition is also related to finding the kernel of a given polygon or polyhedron
[20]. The method described in [6] calculates its concavity metric based on the concept of filling a 2D polygon
with air and inflating it to its convex hull before iteratively splitting the polygon through its most concave
feature. The approach presented in [7] extends this concept to 3D, using the distance between a feature and
its convex hull to find the most concave feature and cut the mesh through it using 3D planes. In [8], this
method is advanced further by measuring the change in concavity that each cut will produce and selecting
features to divide the mesh accordingly for higher-quality decompositions. Another approach, as described in
[1], calculates its concavity based on the 2D shape formed by the projection of the Euclidean and geodesic
shortest paths between two points and segments the mesh down to convexity using this metric.

Volumetric hierarchical approximate convex decomposition (V-HACD) [14] compares the volume of the
convex hull of a mesh with its own volume to calculate the concavity, similar to the approach described in [2].
It then voxelizes the mesh and decomposes it using axis-aligned planes until each piece is sufficiently convex.
We use this method as the second comparison method in our test suite. A recent study by [15] presents a
similar method that does not voxelize the mesh and employs a multistep search to consider future cuts while
finding cutting planes. The method presented in [5] also employs a volume-based concavity metric and utilizes
3D planes to cut the mesh, extending the algorithm to animated meshes. By proposing a surface-based method,
we eliminate the additional distortions that these volumetric methods introduce during the switch from the
original surface representation to an alternate one.

3. Methodology

The fundamental premise of this algorithm is to iterate over each polygon, using planar and angular equations
to determine whether a neighboring polygon is sufficiently convex to be added to the currently forming convex
group or not. This process is repeated with different threshold values for the planar equations, as well as varying
degrees of mesh simplification applied to the input model. Figure 1 depicts two critical aspects of our algorithm:
threshold selection and resolution selection. The former is utilized to determine the optimal parameters, while
the latter is employed to adjust the mesh resolution for the best result. The decomposition branch with the
best-performing planar threshold within each simplification subtree is selected (Figure 1-left). Subsequently, we
select the branch that leads to the simplification with the lowest concavity cost (Figure 1-right). This ultimately
results in the final decomposition, which divides the original mesh into convex meshes.
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Figure 1. (Left) The first half of the method, threshold selection, with input parameters set to the values listed in
subsection 4.3. The algorithm is represented in a tree-like structure, where the input mesh branches into the simplified
meshes, each branching further using the possible planar thresholds. For each leaf node of the tree, the algorithm
described in subsection 3.4.1 is executed. From the leaves of each simplification subtree that have a cost below the input
concavity cost threshold (0.05 in this case), the leaf that has the smallest number of pieces in its decomposition (k )
is selected as the candidate decomposition (pink) for that simplification level. The figure illustrates the execution of
this step at the maximum resolution parameter r = 500. (Right) The second half of the method, resolution selection,
follows the threshold selection step shown on the left side. After each simplification branch has selected a candidate, the
one with the lowest cost is chosen as the output (green). Following the group merging step in subsection 3.6 and the
generation of the convex hulls of the polygon groups in the result, we obtain our final output.

3.1. Input and Output
For the method described in this paper, the primary input required is a 3D triangle mesh that will undergo
approximate convex decomposition. In addition to this, several input parameters are required to aid in selecting
the final decomposition in subsections 3.4.2 and 3.5. These are the concavity cost threshold (ϵ) which controls
the amount of concavity in the final result; the resolution cut-off parameter (µ) which is used to skip higher
resolutions when the decompositions do not become more complex as the resolution increases; the simplification
quality (Q) which affects the degree of simplification applied to the mesh; and a series of n maximum resolution
parameters that are used to select the best option among several possible simplified versions of the input mesh:

R = {r1, r2, r3, ..., rn}. (1)

The method results in a single output: the approximate convex decomposition of the input mesh. The
convex hulls of each polygon group are represented by separate meshes, which, when combined, form the overall
model.

Since our method works on the simplifications of a mesh, computation time primarily depends on the
input maximum resolution parameters rather than the original resolution of the input mesh. It is also inversely
proportional to the number of convex pieces found in the possible outputs. Fewer convex pieces imply that each
piece has a greater polygon count, leading to an increased number of planes to compare with each neighboring
polygon when deciding whether to add them to the convex group or not, during the formation of that piece.
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Therefore, the time complexity is O(N/kavg) where N is the sum of the maximum resolution parameters ri ,
and kavg is the average number of convex pieces across the decompositions achieved at each simplification level.
However, due to the performance shortcuts mentioned in subsections 3.4.2 and 3.5, the computation time of the
method is sometimes even faster than expected.

3.2. Mesh simplification

Finding an exact convex decomposition is known to be NP-hard and would yield too many convex pieces to
be computationally beneficial. Approximate convex decomposition through mesh simplification leads to more
desirable results. For a given iteration i of this method with the maximum resolution parameter ri , we first
simplify the mesh by the simplification quality Q (where Q ∈ R and 0 < Q ≤ 1), and repeat this process
until the polygon count of the mesh is less than or equal to ri . In our experiments, mesh simplification was
implemented using Unity Mesh Simplifier.1

3.3. Data structures
Once the mesh has been simplified, the next step would be to set up the data structures we use. The first
of these is a list of “Triangle” objects. An instance of a triangle holds an ID, a normal, three vertex ID’s
representing its vertices, the ID of the convex group it is in, and a boolean flag to discern whether the triangle
in question is already within a polygon group or not.

The second data structure is a list of “Vertex” objects solely used to increase the algorithm’s time
performance. This class holds a 3D coordinate designating the vertex’s position, and a list of adjacent triangle
objects for easy access to the polygons that a particular vertex is part of.

To fill out these two lists, we first iterate through the vertices of the input mesh, adding each one as a new
Vertex object into the vertex list. We then iterate through the polygons of the mesh and insert a new Triangle
object into the triangle list for each polygon, calculating and storing the polygon’s normal in the object as
well. During this iteration, each Vertex object related to a Triangle also has the corresponding Triangle object
inserted into its adjacent triangle lists. The third data structure necessary for the algorithm is a list of integers
we generate, that denote the adjacency data of each polygon. That is, for polygon i , its neighbors are the
polygons with the ID’s given by the indices 3i , 3i+ 1 , and 3i+ 2 of this adjacency list.

3.4. The decomposition algorithm

In this section, we focus on the algorithm that takes a simplified input mesh, along with the necessary data
structures to store information about it, and creates a grouping of its polygons to form convex pieces. This
process is examined independently from the remainder of the method, which involves iteratively adjusting the
mesh resolution and selecting the best result.

3.4.1. Convex polygon grouping

For a given planar threshold (p) and angular threshold (a), the mesh is processed in the main section of the
algorithm that computes the convex polygon groups. The selection of these thresholds will be described in
subsection 3.4.2.

1GitHub, Inc. (2024). Whinarn – Unity Mesh Simplifier [online]. Website https://github.com/Whinarn/UnityMeshSimplifier
[accessed 06 July 2024].
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We iterate over the Triangle objects stored in our triangle list using a queue structure. The first Triangle
is inserted into the queue before entering the main loop. Within the loop, a triangle is removed from the queue.
If it is not already in a convex group, it is added to the currently forming convex group, its group ID is stored
within the triangle, and a flag is set to indicate that it is now in a group. A new Plane object (a built-in class
found in Unity, our implementation environment, as mentioned in Section 4) is created to represent the plane
formed by the triangle, which is then added to a list of planes.

Next, we iterate over the triangles w0 to wn that neighbor the current triangle v , where n represents
the number of neighbors (acquired via the adjacency list data structure described in subsection 3.3). For each
neighbor not yet in a group, we calculate the dot product of vnormal and a vector drawn from a vertex of v to
the farther vertex of w , considering the 3D angle between the two triangles. If the dot product value is greater
than the angular threshold a , w is found to be sufficiently concave with respect to the current convex group
and is therefore disregarded, as seen in Figure 2a-left. Otherwise, w proceeds to the next check.

For each Plane object stored in the list of planes discussed earlier in this section (where each object holds
the plane of a triangle within the current convex group), the perpendicular distance from the farther vertex of
w to the plane is calculated. Taking the normal direction of the triangles as the positive side of the planes,
if the vertex is located “behind” every plane, w is considered convex with respect to the rest of the group, as
seen in Figure 2a-right, and the calculated distance for each plane will be negative. Conversely, if any of the
distances to planes is greater than the planar threshold p , w is deemed sufficiently concave and is disregarded
by the current convex group.

This loop continues until the queue is empty, indicating that the convex group can no longer add any
neighboring polygons into it. At this point, the group is added to the decomposition list, and the next triangle
in the triangle list that is not yet in a group is added to the queue, starting the building of the next convex
group. This process continues until all triangles have been iterated over. The resulting list of convex polygon
groups becomes the final outcome of this step, as seen in Figure 2b-left.

Figure 2. (a) (Left) Convex case where the neighbor w of the current triangle v is added to the current convex group,
shown in blue. The dot product between vnormal and the vector from v to the farther vertex of w (pink) is nonpositive.
(Right) Concave case where w is only added to the group if the dot product between vnormal and the pink vector is
smaller than the angular threshold a . (Right) Cases where the neighboring triangle w (green) of the current triangle v
(blue) is checked against the planes of the two other triangles in the convex group (orange and blue). The cross sections
of the planes are also depicted, showing their distance to the farther vertex of w (red). The yellow line segment indicates
the intersection of the two planes. (Left) In the convex case, the vertex lies behind each plane. (Right) In the concave
case, the vertex lies behind the orange plane but in front of the blue plane. The intersection of w and the blue plane
is shown in red, implying a bend outward; thus, w will not be added to the convex group unless the distance d is less
than the planar threshold p . (b) Various steps of the polygon grouping process. When one group can no longer grow,
the next group begins to form. (Right) Group merging removes small unnecessary pieces from the final decomposition.
This is illustrated by the white piece generated in the left image, where the stem of the cup meets the base, which has
been merged into the neighboring groups in the right image.
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3.4.2. Threshold selection

The process described in subsection 3.4.1 is repeated with different p values, where

p ∈ {0.01, 0.2, 0.4, 0.6, 0.8, 1}. (2)

The a threshold does not undergo this process and remains at a constant value of 0.01. Test results
described in Section 4 indicate that, given the same set of possible values as p (Equation 2), 0.01 was selected for
a in most instances, with negligible differences observed in the remaining cases. Among all the decompositions
obtained through these values, we then calculate their concavity and select the most suitable candidate for the
current resolution.

Given pi for iteration i , a list of convex polygon groups Gi is created using the method described in
subsection 3.4.1 as a possible decomposition of the mesh. In order to quantify the concavity of Gi , we utilize
a cost function in the form of (Equation 3), as described in subsection 3.4.3. Tis function returns the cost of a
single polygon group; therefore, we iterate over all the groups within Gi and calculate the cost of each one to
determine its average concavity cost. During this process, groups containing two or fewer polygons are excluded,
as they are likely to merge into larger neighboring groups in the merging step mentioned in subsection 3.6, and
their contribution to overall concavity can be considered negligible due to their small size.

While iterating over the groups, an intermediate average cost is maintained by summing the costs
calculated so far and dividing this total by the current number of iterations. This intermediate average is
a performance measure used to eliminate the remaining cost calculations of iteration i if it seems likely that the
resulting decomposition will be of high concavity, at which point we proceed to iteration i + 1 using pi+1 . If
at any point the intermediate average cost found on iteration i is greater than either three times the concavity
cost threshold (ϵ), or greater than three times the minimum average cost found on iterations 0 to i−1 , the cost
calculation is aborted with the assumption that the cost has already risen too high to yield a viable candidate
as output. Similarly, if it is determined that Gi consists of a single group, indicating that the decomposition
using this pi has failed, the remaining p values are not tested, and the loop for the current resolution is ended.
Any future p values will imply a greater threshold and therefore will not further decompose the mesh.

Once the iteration of Gi is complete and its final average concavity cost is calculated, this value undergoes
several checks to determine whether it will replace the existing candidate for the final output decomposition of
the current resolution rcurr .

First, if the calculated value is found to be less than 10−6 , it is considered sufficiently convex to be
immediately selected as the candidate decomposition for rcurr . Following this, a primary check is conducted,
where this decomposition is stored as the candidate if and only if its average concavity cost is less than the
concavity cost threshold ϵ and the number of convex groups it contains is fewer than that of the previously
recorded candidate for the current resolution. In other words, among all the decompositions found for different
values of p at a given resolution, the one that decomposed into the least pieces while still staying within the
cost threshold ϵ is selected to be the outcome of said resolution. This approach aims to preserve the main
aspects of the original mesh while achieving sufficiently simple convex pieces and avoiding overdecomposing.

There is a fail-safe in place in case no candidate decomposition can be selected by the end of this process
for any reason. In such a case, we simply select the decomposition that resulted in the smallest average concavity
cost.
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3.4.3. Cost function
To calculate the convexity of a given surface, we could not use any volume-based techniques such as V-HACD
[14] due to the fact that the convex polygon groups formed were almost always open meshes. For this reason, we
have looked into the cost function used in HACD [13]. In this work, the concavity cost consists of two elements:
a concavity factor that quantitatively measures a surface’s concavity and a shape factor that promotes compact
surfaces, where a surface is defined as a set of adjacent polygons. We have decided that the concavity factor
used in HACD alone is sufficient as our cost function, making the cost of a given group of polygons:

cost(S) =
argmaxM∈S∥M − PS(M)∥

DS
, (3)

where S is the set of vertices forming the given polygon group, or surface, DS is the 3D bounding box
diagonal of S for normalization, and PS(M) is acquired by projecting a point M to the convex hull of S , via
the normal of M with respect to S . We compute convex hulls using the quickhull algorithm.2

3.5. Resolution selection
We mentioned in subsection 3.4.2 how the decomposition algorithm repeats itself using different planar thresh-
olds, and how a final result out of these outputs is selected for a given resolution. This algorithm as a whole
is then repeated for each of the ri maximum resolution values given in the input set R (Equation 1). This
leads to the same mesh input being simplified to varying levels, as described in subsection 3.2, and returning a
decomposition candidate for each resolution. Our goal is to select one final output decomposition among these
candidates.

One performance measure implemented is our input resolution cut-off parameter (µ). This value is a
small positive integer, set to 5 in all experiments detailed in Section 4. After the candidate decomposition for a
resolution ri is found, if ri is greater than 500 and the decomposition still only contains fewer than µ pieces,
the remaining resolutions ri+1 to rn are aborted. This decision is based on the assumption that the input mesh
represents a simple shape that easily decomposes into only a few convex parts, rendering the computation of
higher resolution decompositions unnecessary.

Following the computation of all the candidate decompositions, we aim to select the decomposition with
the smallest average concavity cost. However, we encounter another challenge: the current method favors higher
resolutions that may lead to overdecomposition of the mesh, as this often results in a lower cost. To address
this issue, we calculate the average number of convex pieces contained in each candidate decomposition (k ).
Subsequently, all decomposition candidates consisting of greater than k+ k

2 convex pieces are eliminated. This
approach ensures that the candidate selection favors decompositions with a number of pieces closer to or below
the average. The selected candidate then becomes the final decomposition.

3.6. Group merging

After obtaining the convex decomposition of the output, consisting of a set of adjacent polygon groups forming
convex pieces, we perform a final step called group merging. In this step, any small convex group composed
of one or two polygons is assessed for merging with neighboring groups. This is performed by checking if its
polygons share two or three sides with a neighboring group. In this case, said polygons are made to be part of

2GitHub, Inc. (2024). OskarSigvardsson – unity-quickhull [online]. Website https://github.com/OskarSigvardsson/
unity-quickhull [accessed 06 July 2024].
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the larger neighboring group and removed from the original one. This is performed because such small groups
of polygons are better merged into larger ones, to avoid the formation of tiny convex group islands that do not
significantly affect the overall result. An example of this is shown in Figure 2b-right.

This merging process is repeated until no groups containing one or two polygons remain, or until such
groups can no longer be merged with neighboring groups due to having three different groups on three different
sides of its polygon(s). Additionally, a group consisting of one or two polygons will not be merged into its
neighbors if the diagonal of its bounding box is sufficiently large to be considered significant. This prevents the
incorrect merging of large surfaces composed of few polygons, which could result in deformations in the final
mesh.

At this point, we have acquired the polygon groups that form our convex decomposition. We can then
create meshes containing the convex hulls of each group, which together form the final output.

4. Experimental results

We have created a test dataset of meshes and conducted experiments to evaluate the performance of our method
in terms of timing and accuracy. Additionally, we have implemented another published method for convex
decomposition of 3D meshes and ran the same tests to enable a direct comparison, allowing us to identify the
advantages and limitations of our algorithm.

As noted in Section 1, one application of convex decomposition is in game development, where it enables
nonconvex objects to utilize rigidbody physics. Accordingly, the tests explained in this section were implemented
within the Unity game development engine using the C# programming language.

4.1. Dataset

For the purposes of experimentation, we have compiled a test suite of meshes using Princeton University’s 3D
Mesh Segmentation Benchmark dataset [16]. This dataset comprises 400 meshes, divided into 20 categories,
each containing 20 meshes. The meshes in each category have a similar theme, such as vases, planes, and
animals. Each mesh was manually triangulated by 80 individuals to observe how humans decompose a model
into functional pieces. For our dataset, we have selected 10 categories, with 10 meshes from each category,
resulting in a total of 100 meshes. Additionally, a model homeomorphic to a sphere, named “Spot,”3 was used
as an experimental mesh.

4.2. Comparison algorithms

To compare our results with other published methods, we have used the public source of V-HACD [14] and
implemented the HACD algorithm [13], from which we derived our cost function in subsection 3.4.3. The latter
algorithm operates based on a graph data structure, where each node initially represents a surface composed
of a single polygon from the mesh, and each edge denotes the adjacency between two polygons. For each edge,
the cost of combining the surfaces at both of its nodes is then calculated using:

3Crane K (2024). 3D Model Repository [online]. Website https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/#spot
[accessed 06 July 2024].
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cost(S) =
argmaxM∈S∥M − PS(M)∥

DS
+ αEshape(S),

α =
β

10DS
,

Eshape(S) =
ρ2(S)

4πσ(S)
,

(4)

where S is the surface formed by the union of the surfaces within the two end nodes of an edge in the
graph, DS is the 3D bounding box diagonal of S , PS(M) is the projection of a point M to the convex hull of
S , Eshape(S) is a shape factor that facilitates more compact polygon grouping, α is a parameter that reduces
the contribution of Eshape(S) as the algorithm progresses, since the polygon groups begin to become concave,
β is an input parameter that determines the concavity threshold, and ρ(S) and σ(S) represent the perimeter
and area of S , respectively.

After this cost calculation, a half-edge collapse is performed on the edge that results in the smallest cost
surface, combining both polygon surfaces into the remaining node and updating the costs of its surrounding
edges. This process is repeated until no further edges that would result in a surface with a cost less than β

remain. The resulting nodes each contain a surface that corresponds to a convex polygon group, effectively
decomposing the mesh.

In our implementation, we modularly replaced the algorithm described in subsection 3.4 with this method,
while maintaining the steps outlined in other sections, such as simplification, resolution selection, and group
merging. This method was applied to ensure accurate comparisons by minimizing the number of variables,
with only the actual calculation of the polygon groups changing in each iteration. Additionally, the resolution
selection step was preserved because, similar to our method, different resolutions of meshes yield different results,
and we aim to select the best one based on concavity cost and the number of pieces.

4.3. Results
In this section, we applied our method to the input meshes and presented the resulting outcomes. Each polygon
group is displayed alongside its generated convex hull, with a unique randomized color assigned. All tests were
conducted with the simplification quality (Q) set to 0.8, the concavity cost threshold (ϵ) at 0.05, the resolution
cut-off parameter (µ) at 5, and the maximum resolution parameters defined as R = {250, 500, 1000, 2000,
3000}, resulting in a total of N = 6750. Unity was utilized to implement both our method and the comparison
algorithm, as well as to visualize the results.

In addition to the figures illustrating our outcomes, we also present Table that details relevant data
regarding the decomposition process. The data provided includes the following: the number of convex pieces
found, the average number of pieces found across all resolutions, the computation time, the average concavity
cost, the selected planar threshold p , the maximum resolution r , the final simplified polygon count, and the
initial polygon count of the mesh.

From the results presented in Figure 3-left, it is evident that our algorithm successfully distinguishes
convex features, including the limbs of a human, the wings of a plane, the legs of a chair, and the humps of a
camel. In curved structures, such as the cup or the curved tentacles of an octopus, the mesh is divided into
multiple small convex pieces to account for continuous concavity. Moreover, the shapes all retain their original
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basic structure. Notably, small gaps, such as those between the arms and torso of the human figure or between
the fingers on the hand, are properly maintained, and the hollow structure of the cup is also mostly preserved.

Figure 3. (Left) An example result from each model category in our input database, with models labeled by their dataset
numbering. (Right) Comparative outcomes between our method (center) and the results generated by the comparison
algorithm HACD (right) for the same input mesh, with the original mesh shown for reference (left). Models are labeled
according to their dataset numbering.

Table 1. *
Data related to the results shown in Figure 3-left.

Model Number of
pieces

Average number
of pieces

Computation time
(s) Cost p r

Polygon
count

Initial polygon
count

7 38 58 11.27 0.009591 0.01 500 494 11258
15 15 39 8.16 0.021415 0.2 500 430 30008
29 12 19 13.05 0.012669 0.6 500 462 13170
32 18 43 9.67 0.011501 0.8 500 450 31456
44 53 68 5.89 0.009776 0.01 500 442 12646
60 20 44 14.29 0.016998 0.6 1000 990 3026
67 6 5 4.75 0.025047 0.4 250 212 11936
72 2 2 0.88 0.000007 0.2 250 218 29994
89 8 31 43.25 0.007944 0.2 250 246 13842
96 21 49 6 0.035519 0.2 500 436 19510

Examining Table, we observe that cases where 0.01 is selected as the planar threshold corresponds to
models with small gaps, specifically the human and the octopus. This occurs because these gaps are quickly
filled when higher thresholds are applied.

The concavity costs are consistently low, particularly for model number 72, where the simple nature of
the shape appears to facilitate efficient decomposition. In this specific test, the resolution cut-off parameter
(µ) was used to skip resolutions from 1000 to 3000, as the number of pieces remained less than µ=5 after the
second iteration with r=500, resulting in the low time required.

4.3.1. Comparisons

As discussed in subsection 4.2, we have selected HACD [13] as the established algorithm for comparison with
our method as an evaluation metric. For this purpose, all the input meshes were processed using HACD, and
some of these results, along with the corresponding decomposition generated by our method, are displayed in
Figure 3-right.

784



KUŞKONMAZ and SAHİLLİOĞLU/Turk J Elec Eng & Comp Sci

From the comparisons presented in the right column, it is evident that HACD attempts to group vertices
in a more simplified way. For instance, in the chair model, the entire back is represented as a single piece, while
our method decomposes the curved surface of the chair’s back into multiple pieces. The same logic applies to
the wings of the bird and the neck of the vase.

However, the approach employed by HACD is not always advantageous compared to our method, as
illustrated by the examples in the left column. While attempting to simplify the convex pieces, HACD has
resulted in significant deformation, whereas our model maintains the overall shape of the input meshes. In
particular, HACD has filled the cup with a solid hull. This behavior is also evident in other similar examples;
while our method effectively decomposes hollow objects, HACD tends to fill them in, as observed in Figure 4-left.

We highlight the main advantages of our method over HACD, specifically the lower concavity cost and
reduced time required for each case. In particular, the latter is significantly better in certain cases, such as
models 82 and 99, where our method achieved the convex decomposition much more quickly than HACD.
Conversely, HACD produced decompositions with smaller resolutions and fewer pieces than our method in
some cases, but not in all. This observation is consistent with the earlier results discussed.

In addition to HACD, we utilized V-HACD [14] as an alternative comparison algorithm, employing its
released library. The results can be seen in Figure 4-right.

Figure 4. (Left) Comparison of results for hollow input meshes, showing outputs from our method (center) and those
generated by HACD (right), with the original mesh for reference (left). Models are labeled according to their dataset
numbering. Our method mostly or fully preserves hollow spaces (e.g., the interiors of cups), while HACD tends to fill
these spaces. (Right) A comparison using a different method, V-HACD. One key input for V-HACD is the target number
of convex hulls the algorithm aims to generate in the final output. We first decomposed each input mesh into the same
number of pieces (k) as in our method (center). In the column marked with an asterisk (*), we adjusted this parameter
until significant features—such as the hands in model 1 or the hole in model 80—became visible. For model 1, V-HACD
required fewer pieces than our method to achieve a satisfactory decomposition. However, for model 80, neither the initial
nor the adjusted number of pieces allowed V-HACD to produce a better decomposition than our method. Thus, while
V-HACD can yield more accurate results in certain cases with trial and error, it may be less effective in others due to
the lack of automatic parameter selection.

785



KUŞKONMAZ and SAHİLLİOĞLU/Turk J Elec Eng & Comp Sci

4.3.2. Ablation study
Finally, we will compare our method to itself by keeping all variables constant except for one and observing
the results. Specifically, we aim to examine the differences arising from changing the two main factors of our
method: the planar threshold and the maximum resolution parameter.

First, we will fix the maximum resolution to 500 and generate decompositions using every planar threshold
employed in our algorithm (Equation 2). Selecting a few example inputs, the results are presented in Figure5-
right.

In the usual operation of our algorithm, we would select the decomposition with a cost lower than the
specified concavity cost threshold, ϵ , while minimizing the number of pieces to identify the candidate for this
maximum resolution. If no suitable decomposition is found, we would then choose the result with the lowest
cost.

Data on the decompositions using each planar threshold for Model 2 reveals that at ϵ = 0.05, the value
used in our tests, we would select the first option with p = 0.01 as it is the only option below the cost threshold.
However, if ϵ were set to be 0.1, the decomposition with p = 0.2 would be chosen due to its fewer pieces. The
reason the timing increases as p increases is that with larger and less decomposed convex groups, there are
more polygons to consider during the planar calculations when adding a new polygon. We will then fix the
planar threshold at 0.1 and apply additional input models through the algorithm for each maximum resolution
parameter used in our method.

In the usual operation of our algorithm, this step involves finding the average number of convex pieces k ,
removing decompositions with more than k+ k

2 pieces, and selecting the one with the lowest average concavity
cost among the remaining decompositions as the final result.

5. Limitations
The success rate of our method is highly dependent on the quality of the input parameters, particularly the
maximum resolution settings that determine which simplified versions of the input mesh will be tested to identify
a satisfactory output. If the specified resolutions are too low, the mesh may become overly deformed, leading
to an unviable output. Conversely, if the resolutions are excessively high, our method may yield an excessive
number of unnecessary pieces, complicating the decomposition process. This reasoning extends to other input
parameters as well.

Examining our experiments and comparisons in Section 4, we observe cases where the decomposition
exhibits noticeable convex features that have been separated; however, some pieces still appear to be combinable
into simpler forms. Thus, while the resulting decompositions are adequate, there is potential for improvement
by eliminating unnecessary pieces in certain cases, as demonstrated by our comparisons to HACD. This behavior
is particularly evident when no simplification is applied to the input mesh, as illustrated in Figure 5-left.

Our method is likely to produce overlapping convex groups due to the use of convex hulls for polygon
groups. While this may not pose a problem in certain applications, such as collision detection where collisions
between these convex hulls can be disregarded, it could be undesirable in other contexts, such as in 3D printing
[24].
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Figure 5. (Left) Failure case using the input model “Spot.” In this experiment, no mesh simplification or resolution
selection was performed. Our method (top) resulted in a more overdecomposed model compared to the result of HACD
(center). However, our method completed this decomposition in approximately 1 min, while HACD required over 14.5 h.
This issue was resolved by applying simplification with r = 900, enabling our method to generate a significantly improved
decomposition (bottom) in just 1.75 s. (Right) Evolution of several input models at a fixed maximum resolution (r =
500), as the planar threshold (p) is varied through all possible values. Models are labeled according to their dataset
numbering.

6. Conclusion and future work
We have presented a method for decomposing 3D meshes into convex parts by iterating over the polygons of
the mesh from a bottom-up perspective. Through multiple iterations with varying thresholds, we select the
most effective decomposition to ensure an output that balances the formation of simple convex pieces with
the preservation of the original mesh shape. Although some input meshes may result in existing methods
outperforming ours in terms of accuracy, a significant advantage of our approach is the reduced time required
to achieve a sufficiently good convex decomposition.

Future work may involve adjusting the core components of our method, including the selection of maxi-
mum resolution parameters, the planar thresholds for generating candidate decompositions, and the threshold
values for simplification quality and cost concavity. Adjusting these parameters could lead to higher-quality
decompositions for certain input meshes, making it beneficial to conduct additional tests to identify the opti-
mal combination of values for our algorithm. Moreover, other promising directions for future research include
computing convex decomposition in dynamic scenes and exploring 3D data representations beyond triangle
meshes, such as quad meshes, NURBS, and point clouds. Each maximum resolution parameter corresponds to
an independent iteration of our algorithm, suggesting that parallel programming can be effectively integrated
into our approach.
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