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ABSTRACT

COMPUTATIONAL PARAMETRIC ANALYSES OF ENERGY
ABSORPTION CAPACITIES OF DIFFERENT LATTICE STRUCTURES

Karaca, Ismail Safa
M.S., Department of Aerospace Engineering

Supervisor: Prof. Dr. Ercan Gürses

December 2024, 140 pages

In this thesis study, the energy absorption capacities of three different lattice structures

were calculated depending on variable parameters. The three lattice structures were

created using hexagonal, re-entrant, and chiral unit cells. Five different parametric

studies were conducted for each model by making thickness changes, angle changes

of unit cells, and adding elements to unit cells. The first study engendered changes in

the thickness of the horizontal and vertical edges relative to each other while keeping

the weight in each model constant. The second and third studies were created by

adding horizontal and vertical elements to the unit cells and changing their thickness,

keeping the weight constant. In the fourth study, the angles of the unit cells were

altered, and their thickness was kept constant. The weight remained steady in this

case, but the relative density changed. In the fifth study, while the angles of the unit

cells were changed, their thickness was also changed. In this case, while the weight

varied from model to model, the relative density was kept constant.

Compression analyses of all created models were conducted in mode with

ABAQUS/Explicit. Then, force-displacement and stress-strain curves of the

structures are generated. The locking strains, critical stresses, and plateau stresses

v



were calculated from these curves. These values were then used to compare the

energy absorption capacities for each structure, depending on the parameters. The

Poisson’s ratios at different strain values were computed, the effects of parameter

changes on Poisson’s ratios were examined, and the relationship between Poisson’s

ratios and energy absorption capacities was investigated.

The structures with the highest energy absorption capacities were identified for each

model. Interestingly, in most cases, the structures with Poisson’s ratio close to

zero also have the highest energy absorption capacity. This finding has significant

implications for designing and optimizing lattice structures for energy absorption.

Keywords: Auxetic Lattice Structure, Specific Energy Absorption, Plateau Stress,

Locking Strain
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ÖZ

FARKLI KAFES YAPILARIN ENERJİ SOĞURMA KAPASİTELERİNİN
HESAPLAMALI PARAMETRİK ANALİZİ

Karaca, Ismail Safa
Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ercan Gürses

Aralık 2024 , 140 sayfa

Bu tez çalışmasında üç farklı kafes yapının enerji soğurma kapasiteleri değişken

parametrelere bağlı olarak hesaplanmıştır. Kullanılan üç kafes yapısı altıgen, girintili

ve kiral birim hücreler kullanılarak oluşturulmuştur. Her model için beş farklı

parametrik çalışma yapılmış olup bu çalışmalar bölgesel kalınlık değişimlerinden,

birim hücrelerin açı değişimlerinden ve birim hücrelere eleman eklenmesinden

oluşturulmuştur. İlk çalışma her modeldeki ağırlık sabit tutularak yatay ve dikey

kenarların kalınlıklarının birbirne göre değişimlerinden ortaya çıkmıştır. İkinci ve

üçüncü çalışma yine ağırlık sabit tutularak birim hücrelere yatay ve dikey elemanlar

ekleyip modelin bölgesel kalınlıklarının değişmesiyle oluşturulmuştur. Dördüncü

çalışmada birim hücrelerin açıları değiştirilmiş, kalınlıkları sabit tutulmuştur. Bu

durumda ağırlık sabit kalmıştır ancak bağıl yoğunluk değişmiştir. Beşinci çalışmada

ise birim hücrelerin açıları değiştirilirken kalınlıkları da değiştirilmiştir. Bu durumda

ise ağırlık modelden modele değişkenlik gösterirken bağıl yoğunluk sabit tutulmuştur.

Oluşturulan tüm modellerin sıkışma analizleri ABAQUS/Explicit yardımıyla

yapılmış, analiz sonuçlarından yapıların tepki kuvvetleri ölçülmüştür. Ölçülen tepki
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kuvvetlerinden yapıların gerilim-gerinim eğrileri çıkartılıp bu eğriler üzerinden

yoğunlaşma gerinimleri, kritik gerilim değerleri ve plato gerilimleri hesaplanmıştır.

Bu değerlerin sonucunda her yapı için enerji soğurma kapasiteleri parametrelere

bağlı olarak karşılaştırılmıştır. Tepki kuvvetlerine ek olarak yapının farklı gerinim

değerlerindeki Poisson oranları hesaplanmıştır. Parametre değişimlerinin Poisson

oranlarına ektisi ve Poisson oranları ile enerji soğurma kapasiteleri arasındaki ilişki

incelenmiştir.

Her model için enerji soğurma kapasitelerinin en yüksek olduğu yapılar çıkarılmıştır.

Poisson oranı sıfıra yakın olan yapıların çoğu durumda aynı zamanda en yüksek enerji

soğurma kapasitesine sahip olan yapılar olduğu orataya çıkmıştır. Latis yapıların

enerji soğurma kapasitelerini arttırmak için bu sonuç önemli olacaktır.

Anahtar Kelimeler: Ökzetik Kafes Yapılar, Özgül Enerji Emilimi, Plato Gerilmesi,

Yoğunlaşma Gerinimi
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CHAPTER 1

INTRODUCTION

1.1 Lattice Structures

Energy absorption is a critical issue for protecting the structures of vehicles like

aircraft and automobiles. For example, when an aircraft or a spacecraft touches the

ground during landing, the landing gear system needs to absorb a certain amount

of energy. However, weight is a parameter that seriously affects the vehicle’s

performance, especially in aviation structures. According to Schöder et al. [1],

shock absorbers integrated into the landing legs handle the impact during touchdown

for medium and large landers. However, alternative shock-reduction methods

are necessary for smaller landers, as the landing gear becomes disproportionately

heavy relative to the lander’s size. Cellular structures are widely used to keep

the weight constant or reduce it while increasing the energy absorption efficiency.

In nature, there are a lot of examples of the cellular structure that are suitable

for shock-reduction efficiency. The most famous examples are honeycombs and

spongy bones. The honeycomb structure shown in Figure 1.1, composed of periodic

thin-walled hollow cells, is a lightweight design inspired by nature and can be made

from materials like aluminum, carbon, steel, and fiberglass. Referenced studies in

Mohammadi et al. [2] conclude that it is highly effective for energy absorption,

making it an excellent and cost-efficient choice for crashworthiness applications. The

hexagonal cells in the honeycombs are incredibly efficient in terms of material usage

while providing strength and rigidity. The hexagonal pattern allows the honeycomb

to absorb energy and distribute loads evenly, which is crucial for the hive’s stability

and protection against external forces.
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Figure 1.1: Honeycomb Structure from [2]

Spongy bones, also known as trabecular or cancellous bones, are found at the ends of

long bones and in the vertebrae. It consists of a porous, lattice-like structure less dense

than compact bone. The trabecular structure is designed to absorb shock and reduce

the skeleton’s weight while providing enough strength to support the body’s load.

This ability to absorb energy helps protect the bone from fractures during impacts. A

demonstration of the difference between cancellous and cortical bone, which is the

dense and rigid outer layer of bone tissue that forms the outer shell of most bones in

the human body can be seen in Figure 1.2.
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Figure 1.2: Illustration of Cortical and Cancellous Bone from [3]

A lattice structure is a geometric framework composed of a repetitive pattern of

interconnected nodes and struts or beams, forming an open, cellular architecture.

These structures can vary in complexity, ranging from simple cubic or hexagonal

arrangements to more intricate designs with irregular or graded patterns. The defining

characteristic of lattice structures is their regular, repeating units, which can be

tailored to achieve specific mechanical properties, such as strength, stiffness, and

lightweight efficiency.

Lattice structures are particularly valued in engineering and material science because

they combine high strength with low weight. It makes them ideal for applications

where minimizing material use while maximizing load-carrying capacity is critical.

Additionally, the open-cell design of lattice structures allows them to show energy

absorption ability, as they can deform in controlled ways under stress, effectively

dissipating energy and reducing the force transmitted through the structure.

Energy absorption efficiency in lattice structures is primarily due to their ability to
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undergo both elastic and plastic deformation. When a lattice structure is compressed,

the struts or beams that make up the cells bend, buckle, or collapse, dissipating energy

through these mechanisms. The specific pattern of the lattice, such as the size and

shape of the cells, can be optimized to maximize energy absorption while maintaining

structural integrity.

Lattice structures, designed for high strength-to-weight ratios, are categorized into

foams, honeycombs, and lattice architectures in the review study of Khan and Riccio

[4]. Foams consist of randomly oriented unit cells with high porosity, as seen in

materials like cork and bone. Honeycombs feature uniform, extruded cells such

as hexagonal prisms and include auxetic structures with a negative Poisson’s ratio,

enhancing stiffness and resistance to indentation. Lattice structures, distinguished

by their periodic or pseudo-periodic arrangements, include gradients in size or

thickness, conformal lattices adapting to part boundaries, stochastic lattices with

random variations, and hybrid lattices combining different cell types for tailored

properties. Unit cell topologies are further classified as strut-based, like BCC and

FCC trusses, or surface-based, such as triply periodic minimal surfaces (TPMS) like

Gyroid and Diamond, offering reduced stress concentrations and enhanced strength.

Some types of lattice structures are shown in Figure 1.3. This diversity enables precise

customization for applications demanding lightweight and high-performance designs,

particularly in aerospace.
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Figure 1.3: Some types of lattice structures from [4]; (a) Foam structure, (b)

Honeycomb structures, (c) Auxetic structure (d) Lattice structure arrangement, (e)

Periodic lattice structure, (f) Gradient by cell size and (g) Gradient by lattice

thickness, (h) Conformal lattice (i) Stochastic lattice structure, (j) Hybrid lattice

(Gyroid + BCC)
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As mentioned in [4], recent advances in additive manufacturing, such as 3D printing,

have significantly expanded the potential of lattice structures. These technologies

enable the creation of complex geometries that were previously difficult or impossible

to produce with traditional manufacturing methods. As a result, lattice structures

can now be tailored with unprecedented precision, allowing for customized energy

absorption characteristics tailored to specific applications.

Figure 1.4 shows the stress-strain diagram of any cellular structure. σp in Figure 1.4 is

plateau stress refers to the relatively constant stress exhibited during the intermediate

stages of deformation when the structure absorbs energy through mechanisms like

strut buckling, bending, or collapse. This behavior is critical for ensuring controlled

energy dissipation and minimizing force transmission during impact. The region

where plateau stress is calculated, and the stress graph is considered relatively

constant, is called the plateau region. The boundaries of this region are formed

by critical strain and locking strain. Critical strain and locking strain are shown in

Figure 1.4 as ϵcr and ϵd respectively. Locking strain is the strain level at which the

structure transitions from the plateau phase to densification, where the cells collapse

completely, causing a rapid increase in stress. This point marks the limit of effective

energy absorption in the material. Critical strain, on the other hand, indicates the

onset of significant deformation, typically when the structure begins to lose its load-

bearing capacity. The region between critical strain and locking strain is where the

majority of energy absorption occurs. Energy absorption (EA) quantifies the total

energy dissipated by the structure during deformation derived from the area under

the stress-strain curve. This parameter is essential for evaluating the effectiveness

of lattice structures in mitigating impact forces. To compare the energy absorption

capabilities of different geometries with different weights, energy absorption (EA) is

divided by weight to give specific energy absorption (SEA). The calculation of EA

and SEA is explained in detail in Section 3.3.1.
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Figure 1.4: Stress-strain diagram of honeycombs from [5]

According to Zhang et al. [6], energy absorption in lattice structures is more efficient

in structures with a negative Poisson’s ratio. Structures with a negative Poisson’s

ratio can be called auxetic, expand transversely under stretching, or shrink under

compression, which allows them to exhibit enhanced energy-absorbing properties.

Auxetic material behavior is shown in Figure 1.5. Since these materials contact while

compression, the relative density of deformed geometry increases. Also, the edges

of auxetic structures start touching each other at small strains, creating frictional

energy. Therefore, the energy absorption of auxetic materials is expected to be

efficient. However, while the auxetic property increases, the stiffness of the global

lattice structure can be decreased. Thus, it should be examined in detail.
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Figure 1.5: Schematic diagrams of (a) conventional materials with a positive

Poisson’s ratio and (b) auxetic materials with a negative Poisson’s ratio under tensile

loading from [6] (Solid line and dash line respectively describe the materials before

and after deformation).

1.2 Literature Review

Ren et al. [7] explores the design, fabrication, and testing of auxetic nails. These

nails are specialized with negative Poisson’s ratio properties, designed to improve

push-in and pull-out performance in timber and medium-density fiberboard (MDF).

These nails, characterized by a shrinking lateral dimension under compression and

expansion under tension as shown in Figure 1.6, aim to reduce insertion resistance

while enhancing retention. Experimental comparisons between auxetic and non-

auxetic nails showed that auxetic nails do not consistently outperform traditional

designs, partly due to material inhomogeneity, surface roughness variations, and

limited deformation under loading. Finite element analysis confirmed minimal

auxetic deformation, prompting suggestions for enhanced designs with higher

compressive stiffness and improved tensile auxeticity. The study highlights both the

potential and challenges of applying auxetic materials in practical applications.
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Figure 1.6: Illustration of auxeticity for auxetic nails: (a) during push-in; (b) during

pull-out. (The nails in grey and red colour represent the configurations of the nails

before and after deformation, respectively) from [7].

The primary purpose of auxetic nail work is to ensure that the nail is easily driven into

the wood and difficult to remove. Since the nail exhibits expansion behavior during

the removal process, it is expected to create more friction force than a non-auxetic

nail. This behavior can be compared to auxetic materials absorbing more energy

while being compressed in energy absorption applications. In energy absorption

applications, the reaction forces on the structure serve to comment on the energy

absorption efficiency.

Another study was conducted by Li and Wang [8], which looked at the behavior

of the force on the structure with increasing auxetic properties. It investigates the

bending behavior of sandwich composite structures with 3D-printed core materials

featuring truss, conventional honeycomb, and re-entrant honeycomb designs. The

study integrates experimental tests, numerical analysis, and 3D printing techniques

to evaluate these cores in sandwich composites with carbon-fiber-reinforced polymer

face sheets. The re-entrant honeycomb, characterized by a negative Poisson’s ratio,

displayed sequential snap-through instabilities enhancing energy absorption. In

contrast, truss and conventional honeycomb cores offered higher flexural stiffness

but experienced earlier failure due to localized stress. An experimental comparison

of the applied loads towards three different core structures is given in Figure 1.7. The

findings demonstrate the potential to tailor core topologies for specific mechanical
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applications, balancing stiffness, strength, and energy absorption properties.

Figure 1.7: Bending characteristic of sandwich composite specimens. (a) Load-

deflection curves; (b) the images of deformed configuration of each sandwich

specimen at a deflection of 8 mm from [8].

Jiang et al. [9] show auxetic materials’ efficiency in the medical field. The study

proposes the development of a new type of artificial inter-vertebral disc (IVD) implant

designed for treating lumbar disc herniation. In this condition, a spinal disc bulges

out of place, pressing on nerves and causing pain or mobility issues. The implant

uses an innovative 3D-printed structure called a "modified Bucklicrystal," made of

thermoplastic polyurethane, a flexible and biocompatible material. The key feature of

this implant is its negative Poisson’s ratio (NPR), meaning it contracts inward when

compressed instead of bulging outward, as traditional materials do. This behavior

allows it to absorb and distribute stress more evenly, which can reduce pressure

on surrounding nerves and tissues. Finite element analysis showed that the implant

closely mimics the natural movement and load-bearing function of the spine. In in

vitro (lab-based) studies, the implant-supported cell growth showed no toxic effects,

indicating it is safe for use in the body. In vivo (animal-based) tests demonstrated

that the implant maintained spinal height, reduced tissue damage, and preserved

spinal mobility over eight weeks, suggesting it could effectively replace damaged

discs. This research offers a promising step toward better treatment options for

spinal conditions with improved functionality and bio-compatibility. In Figure 1.8,

the geometry in which non-auxetic and auxetic discs are produced, how they behave
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when compressed, and the stress distributions of the compression analyses are given.

Non-auxetic discs are named TPU-X, and auxetic discs are named TPU-A. The results

of compression tests of TPU-X and TPU-A specimens are given in Figure 1.9. The

test images and Poisson’s ratio graph show that the TPU-X geometry is non-auxetic,

while the TPU-A geometry is auxetic. The energy absorption graph indicates that

the TPU-A geometry, which shows auxetic properties, has a higher energy absorption

efficiency.

Figure 1.8: A) Schematic illustrating the SLS fabrication process and printed implants

with geometry mimicking the rabbit IVD, B) The stress and deformation distribution

within natural IVD, TPU-X and TPU-A under compression (the mid-sagittal plane

of 3D analyses), C) The behavior of TPU-X and TPU-A under compression using a

commercial lumbar disc herniation model from [9].
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Figure 1.9: A) Optical images showing TPU-X and TPU-A in compression, B)

The Poisson’s ratio of TPU-X and TPU-A during compression testing, C) The

compressive stress-strain curves, D) The global energy absorption curves of TPU-

X and TPU-A from [9].

As an example of the use of auxetic lattice materials in the defense industry,

Imbalzona et al. [10] investigate the comparative performance of Hybrid Auxetic

Composite Panels (HACPs) and conventional honeycomb panels (EPPs) under blast

loading, focusing on their structural and material responses. HACPs incorporate

auxetic cores characterized by a negative Poisson’s ratio, enabling them to contract

laterally when compressed, which leads to unique deformation and energy absorption

mechanisms. Auxetic and honeycomb unit cells are given in Figure 1.10. These

properties allow HACPs to draw material into the loaded zones, effectively localizing

and redistributing stresses while minimizing transmitted forces on underlying

structures, such as concrete foundations. This contrasts with EPPs, which exhibit a

bending-dominated response, leading to less effective load distribution and higher

peak stresses. Using areas of purposed HACPs panels shown in Figure 1.11.
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Figure 1.10: Schematic design of 2D auxetic unit cell (AU) (a) and honeycomb

unitcell (HU) (b) from [10].

Figure 1.11: An application of lightweight hybrid auxetic composite panels to

improve the blast resistance of armoured vehicles and protective structures from [10].

Numerical and analytical models, validated through finite element simulations and

empirical data, reveal that HACPs consistently outperform EPPs in blast resistance,

energy absorption, and stress redistribution. The auxetic behavior of HACPs ensures

that the energy from impulsive loads is dissipated more uniformly, reducing the

risk of localized failure and improving the overall structural integrity. Moreover,

HACPs’ ability to densify material in response to impact enhances their load-bearing

capacity and resistance to dynamic forces. Parametric studies further demonstrate

the influence of geometric factors, such as the angle (θ) and length ratio (rL), on the

performance of both panel types. For HACPs, smaller angles and specific length

ratios improve energy absorption and load resistance by increasing stiffness and

deformation adaptability. Effective Poisson’s Ratio (EPR) measurements indicate

that HACPs maintain a consistent negative EPR throughout deformation, with
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values ranging between -0.05 and -0.7, depending on the configuration. This

property enhances their capacity to adapt to extreme loading scenarios, making

them ideal for protective applications. Material selection also plays a critical role

in the superior performance of HACPs. The aluminum 5083-H116 used for auxetic

cores combines a high strength-to-weight ratio with excellent energy absorption

and ductility. Its rate-dependent properties, modeled using the Johnson-Cook

framework, allow HACPs to withstand high strain rates, further enhancing their

blast resistance. In comparison, EPPs rely on traditional honeycomb designs that,

while effective in some applications, lack the auxetic behavior critical for advanced

energy absorption and stress management. In terms of practical applications, HACPs

provide a lightweight yet highly efficient solution for protecting critical infrastructure

and vehicles from explosive threats. By combining auxetic cores with metallic

facets, these panels achieve superior structural performance while maintaining

manufacturability and cost-efficiency. Overall, HACPs demonstrate significant

advantages over EPPs, offering enhanced blast resistance, better energy dissipation,

improved load distribution, and greater adaptability, making them a promising choice

for modern protective systems.

Etemadi et al. [11] explore how auxetic meta-materials with a negative Poisson’s

ratio (NPR) relate to energy absorption, emphasizing mechanical performance and

structural efficiency improvements. Figure 1.12 depicts the schematics of an auxetic

structure and design parameters. Important parameters include strut thickness (t),

radius (r1 and r5), and overall unit cell connectivity, significantly influencing energy

absorption and auxeticity.

Figure 1.12: Designed structure in [11]

Figures 1.13 and 1.14 demonstrate how geometric parameters influence the specific
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energy absorption (SEA) and negative Poisson’s ratio (NPR) in the structure. SEA

increases significantly with strut thickness (t) due to greater resistance to collapse,

and it improves with smaller r1, which enhances energy dissipation through tighter

curvature. NPR is most affected by r1, with smaller values allowing more transverse

contraction and auxeticity, while t and r5 have minor impacts. Notably, SEA shows

non-monotonic behavior with r5, initially increasing and then decreasing as r5 grows.

These findings highlight the critical role of parameter optimization in balancing

energy absorption and auxeticity.

Figure 1.13: Effects of geometry parameters r1 and t on: (a) specific energy

absorption and (b) Poisson’s ratio from [11]
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Figure 1.14: Effects of geometry parameters: (a) r5 and t on specific energy

absorption and (b) r5 and r1 on Poisson’s ratio from [11]

Tan et al. [12] study the in-plane crashworthiness of re-entrant hierarchical

honeycombs with negative Poisson’s ratio (NPR), focusing on two configurations:

the Re-entrant Hierarchical Hexagonal (RHH) and Re-entrant Hierarchical Triangular

(RHT) honeycombs. These designs integrate the hierarchical structure concept with

auxetic characteristics by replacing the cell walls of traditional re-entrant honeycombs

(RH) with substructures of hexagons (RHH) or equilateral triangles (RHT). Using

finite element (FE) simulations validated against theoretical models, the study

explores their energy absorption performance, deformation mechanisms, and stress-

strain responses under quasi-static and dynamic compression. Geometries of the

re-entrant and hierarchical lattices are given in Figure 1.15.

Figure 1.15: Schematic illustrations of re-entrant honeycomb and hierarchical

honeycombs. (a) RH. (b) RHH. (c) RHT from [12]
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Results demonstrate that RHT and RHH exhibit significant improvements in energy

absorption and mechanical strength compared to RH. Specifically, under quasi-static

compression, RHT achieves 292% higher specific energy absorption (SEA) and 353%

higher stress at plateau regions, while RHH shows a 105% increase in SEA and

138% in stress compared to RH. Both hierarchical honeycombs maintain their NPR

characteristics, enhancing their ability to dissipate energy. The SEA and Poisson’s

ratio results of compression analyzes of RH, RHH, and RHT geometries are given in

Figure 1.16.

(a) (b)

Figure 1.16: SEA and Poisson’s ratio with respect to strain curves of RH, RHH and

RHT from [12].

Logakannan et al. [13] investigate a novel auxetic structure, the re-entrant diamond

design, developed to enhance energy absorption and mechanical performance

under quasi-static and dynamic compression. The structure demonstrated auxetic

behavior with a consistently negative Poisson’s ratio by replacing vertical walls in

conventional re-entrant cells with diamond-shaped elements. Cross-links introduced

in the diamond cells further increased stiffness and strength while reducing the

Poisson’s ratio. Illustrations of a re-entrant unit cell and re-entrant diamond unit cell

are given in Figure 1.17b. A re-entrant diamond unit cell with cross-link members is

shown in Figure 1.17c.
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(a) (b) (c)

Figure 1.17: Unit cells of re-entrant (a), re-entrant diamond without cross-link (b),

and re-entrant diamond with cross-link (c) geometries from [13].

In Figure 1.18, the stress and Poisson ratios of diamond re-entrant unit cells with

and without cross-link are given according to their strain values. The cross-linked

unit cell is more auxetic and can carry more load. The study conducted a parametric

analysis to evaluate the effects of diamond angle (θ2) and length ratio (L2/L1) on the

performance of the re-entrant diamond structures, both with and without cross-links.
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(a) (b)

Figure 1.18: FE simulated stress–strain curves (a) and Poisson’s ratio (b) of re-entrant

diamond structures with and without cross-link members from [13].

As a result of parametric studies, it was seen that a linear relationship could not be

established between Poisson’s ratio and energy absorption. Stress and Poisson’s ratio

results are given in Figures 1.19 and 1.20 of crosslinked re-entrant diamond structures

according to angles and length ratios, respectively.
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Figure 1.19: (a) Stress–strain curves; (b) Poisson’s ratio of re-entrant diamond

structures with cross-links for different diamond angles (θ2) from [13].
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Figure 1.20: (a) Stress–strain curves; (b) Poisson’s ratio of re-entrant diamond

structures with cross-links for different length ratios (L2/L1) from [13].

In addition, Tancogne-Dejean et al. [14], investigate the mechanical performance

of additively manufactured metallic micro-lattice materials, focusing on octet

truss lattice structures (shown in Figure 1.21) made from stainless steel 316L

using Selective Laser Melting (SLM). These materials are designed for high

specific energy absorption (SEA) under static and dynamic loading conditions,

achieving a relative density of around 30%. The study demonstrates that these

lattices exhibit a stable stress plateau during compression, enabling efficient energy

dissipation before densification. Simulations and experiments show that deformation
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mechanisms transition from localized failures, such as twisting and buckling, at

low densities to more uniform and stable deformation at higher densities. The

SEA increases with relative density, making the lattices ideal for energy-absorbing

applications. Compared to conventional honeycombs, these lattices provide higher

SEA and isotropic energy absorption, overcoming the limitations of honeycombs

under off-axis loading. Although the SLM process introduces slight geometric

and microstructural variations, the fabricated lattices closely match simulation

predictions. The study concludes that octet truss lattice, the plastic Poisson’s ratio

being close to zero is one of the factors that enables the material to exhibit a stable

stress plateau and achieve high SEA, particularly under compression.

Figure 1.21: Unit cell of the octet truss lattice material from [14].

The studies of Xiao et al. [15] and Lin and Liu [16] collectively emphasize the

development of advanced lattice and metamaterial structures, such as butterfly-

shaped mechanical metamaterials, multi-concave honeycombs, and metallic micro-

lattices, to achieve high energy absorption, mechanical stability, and adaptability.

Zero or near-zero Poisson’s ratio is central in these designs, enabling smooth

deformation and preventing out-of-plane warping, along with geometric optimization

to enhance stiffness, deformation range, and specific energy absorption (SEA).

Variable stiffness properties are also integrated to balance load-bearing capability

with adaptive deformation, addressing challenges in applications like deformable

wing skins. These innovations demonstrate significant potential for lightweight,

energy-efficient solutions in aerospace, automotive, and protective systems, offering

tailored performance for dynamic and high-impact scenarios.
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To understand more clearly the relationship between Poisson’s ratio and energy

absorption capability, this thesis focuses on how geometry affects lattices’ ability

to absorb and dissipate energy. Through analyzing various lattice designs, such as

variations in cell shape, thickness, and cell angle, the study aims to comprehend

their mechanical response under stress. Another purpose of the study is to create a

relationship between Poisson’s ratio and the energy absorption capacity of the lattice

structures. While investigating energy absorption capacity and its relationship with

the Poisson ratio, the definitions of some properties, such as plateau stress, critical

strain, locking strain, and densification, are also examined.

1.3 The Outline of the Thesis

This thesis includes five chapters, and the organization is as follows. Chapter 2

covers the comparison studies. In this chapter, several comparison studies with

literature are presented to verify the models and the analysis framework. In Chapter

3, three different lattice models and their parameters are given. Analyses are

detailed. Calculations of plateau stress, critical strain, locking strain, specific energy

absorption, and Poisson’s ratio value are explained. Chapter 4 includes results. The

energy absorption capacities of the five different variations of three lattice geometries

are presented and compared. The Poisson’s ratios of the models are also calculated,

and the relationship between energy absorption and Poisson’s ratio is constituted. In

Chapter 5, conclusions and future studies are presented.
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CHAPTER 2

COMPARISON STUDIES

2.1 Introduction

This chapter shows the results of two fundamental studies in the literature and

compares the results of the present work with the referenced studies. Karabatak

[17] has been a guide in examining the behavior of lattice materials and conducting

comparative studies; the same reference studies were used. The first of the studies

examines the results of the compression of hexagonal lattice geometries of different

thicknesses under different velocities. The second study compares the energy

absorption outputs of the lattice from cylindrical unit cells and the lattice from a new

type of unit cell named quadri-arc. In addition to the two literature comparisons, the

energy conservation of the explicit analyses is conducted, and the comparison of the

explicit and implicit analyses is given in Appendix B and Appendix F, respectively.

2.2 In-plane dynamic crushing of honeycombs—a finite element study

Ruan et al. [18] published a paper investigating the in-plane dynamic behavior

of hexagonal aluminum honeycombs under impact loading using finite element

simulations (via ABAQUS) in 2003. They focussed on the effects of cell wall

thickness and impact velocity on deformation modes and plateau stress. In the study, a

lattice geometry consisting of hexagonal unit cells was compressed in both x1 and x2

directions, and the behavior of the structure was investigated according to its thickness

and compression rate. The lattice model used and the compression in the x1 direction

are shown in Figure 2.1.
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Figure 2.1: FE model and a rigid impact plate used in the simulation of hexagonal

lattice from [18]

The edge thickness values of the hexagons were increased from 0.08 mm to 0.5 mm.

Five different thickness values were used. The compression velocity was increased

from 3.5 m/s to 280 m/s for the x1 direction, and analyses were performed for nine

different speeds. In other words, a total of forty-five studies were performed for

the x1 direction. The forty-five compression analyses in the referenced research

were repeated to check that the other lattice compression studies in this thesis were

performed with the proper modeling approach. In order to make a visual comparison

and examine the geometries’ deformation behavior, the situation where the thickness

is 0.2 mm, and the velocity is 3.5 m/s is shared in Figure 2.2. The images on the left

of the figure are from the reference study, and those on the right are from the analyses

performed in the current study. The ‘X’ shape can be seen in both outputs at small

strains from compression behavior at this thickness and velocity. As the strain level

increases, these ‘X’ shapes merge, forming a rhombus geometry. As the compression

increases, the rhombus narrows, and the geometry becomes tighter.
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Referenced study [18] Current study

Figure 2.2: Comparison between Ruan et al. [18] and current study of crushing of

honeycomb with thickness = 0.2 mm, impact velocity = 3.5 m/s

The deformed views of the structure at 14 m/s velocity with the same thickness are

given in Figure 2.3. This time, compression is similar to a ‘V’ shape at small strains

instead of an ‘X’ shape. The ‘V’ shape thickens as the strain increases, and the entire

geometry compresses.
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Referenced study [18] Current study

Figure 2.3: Comparison between Ruan et al. [18] and current study of crushing of

honeycomb with thickness = 0.2 mm, impact velocity = 14 m/s

If the compression velocity is increased even more and analyzed with the same

thickness, the comparative results are shown in Figure 2.4. Again, the images on

the left are taken from the reference article, and those on the right are taken from

the analyses made for this thesis. This time, the velocity is 70 m/s and compression

behavior creates an ‘I’ shape, not an ‘X’ or ‘V’ shape. Concentration starts directly

on the compression surface and grows in the concentrated area with increased strain.
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Referenced study [18] Current study

Figure 2.4: Comparison between Ruan et al. [18] and current study of crushing of

honeycomb with thickness = 0.2 mm, impact velocity = 70 m/s

To examine the effect of thickness on the compression behavior, the compression

behavior of the thicker lattice with a thickness of 0.5 mm at a velocity of 14 m/s

is given in Figure 2.5. When the thickness is 0.2 mm, it shows a ’V’ shape, while

when it is 0.5 mm, it compresses in an ’X’ shape. In Figure 2.6, a comparison of the

analysis with a thickness of 0.08 mm at a velocity of 14 m/s is shared. The ‘I’ shape

emerges when the lattice is compressed at this thickness.

When the structure is thicker, the ‘I’ shape is formed at high speeds, while thinner,

the same shape can emerge at lower velocities. Increasing the cell wall thickness of

the honeycomb has a similar effect on the deformation mode as reducing the impact

velocity.
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Referenced study [18] Current study

Figure 2.5: Comparison between Ruan et al. [18] and current study of crushing of

honeycomb with thickness = 0.5 mm, impact velocity = 14 m/s
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Referenced study [18] Current study

Figure 2.6: Comparison between Ruan et al. [18] and current study of crushing of

honeycomb with thickness = 0.08 mm, impact velocity = 14 m/s
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These deformation modes determine how the material absorbs and dissipates energy

during impact. The localized deformation patterns (e.g., X-shaped or I-shaped bands)

reflect how stresses are distributed and concentrated within the hexagonal lattice.

Understanding these patterns helps optimize the lattice designs for crash-worthiness

and impact resistance in various applications, such as the aerospace and automotive

industries. In this thesis, no optimization study is conducted according to deformation

behavior, but optimization studies specific to collision situations can be undertaken in

the future.

In addition to the deformed views of the structure, the force-displacement graph of

the compression analysis of the 0.2 mm thick lattice at a compression velocity of 14

m/s is given in [18]. Figure 2.7 compares the analyses made in the current study

and in [18]. The initial peak force is higher in [18] than the analysis made for the

current study. Still, when the plateau region is examined, similar values are obtained.

However, the peak stress/force does not influence the energy absorption calculations

which will be discussed in Chapter 3.

Figure 2.7: Comparison of force-displacement, h= 0.2 mm, v= 14 m/s between the

referenced study [18] and the current study

This referenced study [18] aimed to establish a relationship between plateau stress,
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compression rate, and structure thickness. The plateau stress is formulated as follows:

σp = σ0 + Av2, (2.1)

where σ0 is static plateau stress, and its value was taken from [19]. It is multiplied

by 1.15 to account for the plane strain condition of the cell walls. v is compression

velocity, and A is a coefficient that depends on the thickness and edge length. This

coefficient was calculated as follows in a way that is compatible with the least squares

method as a result of the finite element analyses of the referenced study.

A = 4742(
h

l
)2 + 3115(

h

l
) + 0.75 (2.2)

As a result, the plateau stress equation is:

σp = 0.8σys(
h

l
)2 + 4742(

h

l
)2 + 3115(

h

l
) + 0.75 (2.3)

The results of the present work are with Equation (2.3) in Figure 2.8. Five graphs

in the figure give the plateau stress of hexagonal lattices with different thickness

values depending on the velocity. The graphs’ lines simulate the equation where the

static plateau term is removed from the Equation (2.3). The dots show the results

of the analysis made for this thesis. The x and y axes of the graphs are given

in the logarithmic range. When the empirical equation in the article is compared

with the analyses made for this thesis, differences are seen at small velocities, but

these differences are very small in value. Similar differences were also found in the

reference study. The comparison of the empirical equation with the analyses made in

the reference study is shown in Figure 2.9.
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(a) h=0.08 mm (b) h=0.2 mm

(c) h=0.3 mm (d) h=0.4 mm

(e) h=0.5 mm

Figure 2.8: Plateau stress change in the x1 direction with the impact velocity with

analyses of the current study
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Figure 2.9: Plateau stress change in the x1 direction with the impact velocity with

analyses of the referenced study [18]

It is understood from both the comparisons in Figures 2.2- 2.6 and the comparison in

Figure 2.8 that the results of the current study are consistent with the analyses in the

reference study. However, while calculating the plateau stress in the reference study

[18], the locking strains for 0.08 mm, 0.2 mm, 0.3 mm, 0.4 mm, and 0.5 mm thickness

values are 0.95, 0.9, 0.85, 0.82, and 0.78, respectively. It was not fully explained how

these values were found. The locking strain calculation for this thesis is described in

detail in Section 3.3.1.
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2.3 In-plane dynamic crushing behavior and energy absorption of honeycombs

with a novel type of multi-cells

Zhang et al. [20] presented a geometry consisting of quadri-arc unit cells to increase

energy absorption in the lattice structure composed of cylindrical unit cells. The

visual of the two lattice structures is given in Figure 2.10.

Figure 2.10: 3D view of the numerical models from [20]

The material property of these two structures is aluminum. Young Modulus is 69

GPa, yield stress is 76 MPa, Poisson’s ratio is 0.33, and density is 2700 kg/m3. This

material property is also used in the parametric studies conducted in this thesis. In

the reference study [20], two lattices were compressed at three different velocities,

and the SEA results for all three velocities were examined. The velocities were

determined by the deformation modes mentioned in the previous study. The three

different deformation modes are defined as quasi-static mode, transition mode, and

dynamic mode. These modes are the X-shaped, V-shaped, and I-shaped deformation

modes mentioned in Section 2.2. A relative velocity is selected for each of these three

modes. This relative velocity is a parameter that depends on the compression speed

of the lattice and the yield speed:

V̄ = V0/Vy (2.4)

In the equation, V0 represents the compression speed, and Vy represents the yield
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velocity. Vy depends on the material properties:

Vy = c0ϵy, (2.5)

where c0 is the longitudinal elastic stress wave speed, ϵy is the yield strain, and their

equations are:

c0 =
√

Es/ρs (2.6)

ϵy = σys/Es (2.7)

In the equations, Es is Young’s modulus, ρs is the density of the material, and σys

is the yield stress. Yield velocity for aluminum is approximately 5.57 m/s. In the

reference study, the relative velocity for the quasi-static mode is selected as 0.4,

for the transition mode 4.0, and the dynamic mode 12.0. In the parametric studies

conducted in this thesis, the relative velocity is 0.4, and since aluminum is selected as

the material property, the applied compression velocity is applied as 2.23 m/s.

The compression analyses of the cylindrical lattice in the reference article are repeated

in this thesis to make a comparison. First of all, the reference article also compared

its work with the study conducted by Wang et al. [21]. Therefore, the results of Wang

et al. [21] are also included in the comparison. The force-displacement graphs of

the cylindrical lattice under compression at a velocity V=2.23 m/s are given in Figure

2.11. The agreement among the three results is very satisfactory.
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Figure 2.11: Comparison of force results of circular lattice in compression with the

studies of Wang et al. [21], and Zhang et al. [20]

In addition, the compression analyses of the lattice structure in [20] for the quasi-

static, transition, and dynamic modes are repeated. The stress-strain diagrams are

shown in Figure 2.12. In the quasi-static mode, good agreement with a slight

difference in the densification region. In the transition mode, the lattice in [20] starts

to densify earlier but slowly, see Figure 2.12b. However, the general agreement is

satisfactory. Although the stress outputs at the same strain values in the dynamic

mode comparison do not match, the plateau stress values in both studies seem to be

close. As a result of comparison studies, it is concluded that the finite element models

and analyses of the present work can regenerate the results from the literature with an

acceptable agreement.
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(a) Quasi-static (b) Transition

(c) Dynamic

Figure 2.12: Comparison of stress-strain diagrams with the reference study [20]
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CHAPTER 3

FINITE ELEMENT MODELS AND METHODS OF COMPUTATION

3.1 Introduction

This section explains all computational analysis models and calculation

methodologies for Poisson’s Ratio, plateau stress, critical and locking strains,

and specific energy absorption values.

There are three different lattice units, each with five parametric studies. Thus, there

are fifteen models in total to compare energy capacity and investigate Poisson’s

ratios of the structures. These fifteen models are detailed in the section. Boundary

conditions and mesh properties are also explained.

Because the stress-strain curves of the compression analyses of the lattice geometries

are complex, specifying critical strain and locking strain values has limitations. So,

the geometries’ plateau stresses and specific energy absorption values can not be

calculated straightly. The Calculation Methodologies Section defines and instantiates

the situations and the keys. The calculation of the Poisson’s ratios of the models is

also explained in this section.

3.2 Models

Geometrical, mass properties and details of the finite element models are given in

the following sections for the fifteen different lattice models. These fifteen different

models are created from three geometry and five variational studies. Three geometries

are hexagonal, re-entrant, and chiral lattices. These are visualized in Figure 3.1 with

41



variable and fixed parameters. While the edge lengths (le) are fixed, angle (θ), and

thicknesses (tv and th) are variable. The reason why the thicknesses are divided into

two groups is that the thickness of the vertical (tv) and horizontal edges (th) can vary

depending on each other.

(a) Unit of hexagonal lattice (b) Unit of re-entrant lattice

(c) Unit of chiral lattice

Figure 3.1: Illustration of units of lattice structures

Some geometrical properties are similar or the same: edge length, material properties,

and depth. For all models, the depth is 2 mm. Material is modeled as elastic perfectly

plastic. For the elastic region, Young’s Modulus is 69 GPa, Poisson’s Ratio is 0.33,

and for the elastic to plastic passing, yield stress is 76 MPa. Density is 2700 kg/m3.

Material properties are taken from the study of Ruan et al. [18] and are similar to

aluminum. All edges of the hexagonal and chiral shapes are equal to each other, and

the values of them are 5 mm. In the re-entrant shape, the top and bottom edges are

twice as long as the other edges. So, the top and bottom edges are 10 mm, and the

other edges are 5 mm. On the other hand, some properties vary from model to model.

These are the thickness and angle of the unit cells. Concerning thickness and angle,
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some properties can be influenced. These are listed as follows.

• Length and Width Of Structure

• Mass

• Base Area

• Relative Density

• Theoretical Locking Strain

The length and width of the structures depend on the number, angle, height, and

width of the unit cells. Mass and base area are connected to thickness and angle,

respectively. The base area is critical to calculating stress values. Its value is the

multiplication of the width and depth of the body. Relative density is the ratio of the

mass of the cellular structure to the bulk structure, and in [5], it is defined as:

∆ρ =
ρ⋆

ρs
(3.1)

ρ⋆ is the volume of the cellular unit cell and ρs is the volume of the bulk unit cell.

Since the depths of the models are the same, we can also calculate from areas instead

of volume. For example, in the unmodified hexagonal shape, the area of the cellular

unit cell should be taken as three times the thickness. Since the model is created from

repeated unit cells, half the thickness on each edge must be considered in a unit cell.

The bulk area is the area of the equilateral hexagon. By using relative density, locking

strain defined in [19], and it is:

ϵd = 1− λ∆ρ (3.2)

λ can be defined as the coefficient of the locking strain and is given as 1.4 for

hexagonal honeycombs in [19]. In this study, λ is assumed to be 1.4 for all geometries.

In Equation (3.2), the locking strain value is theoretical, but in all compression

analyses, the locking strain value should be unique to the analyses. A detailed

explanation of the calculation of the locking strain is given in the relevant section. As

mentioned, depending on thickness and angle change, five variational studies were

created:
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• Thickness variation between vertical (tv) and horizontal (th) edges while

keeping weight constant

• Adding horizontal edges and changing the thickness of added and former edges

while keeping weight constant

• Adding vertical edges and changing the thickness of added and former edges

while keeping weight constant

• Changing unit angle (θ) while the weight is kept constant, but the specific

density changes

• Changing unit angle (θ) while the specific density is kept constant but weight

changes

3.2.1 Boundary Conditions for All Models

Two rigid plates were created to simulate compression during the analysis. Their

depth and width were adjusted to be greater than the lattice structures, and their

weight was given according to the density of 2700 kg/m3. The fixed plate is positioned

under the lattice structure, the movable one is positioned on top of the structure, and it

moves downwards. The compression amount must be greater than the locking strain

value of the structure so that the locking can be seen in the stress-strain curves. As

mentioned in Chapter 2, the compression speed was adjusted as if in quasi-static

mode. Therefore, the speed was chosen to be approximately 2.23 m/s. That is,

the upper solid plate was set to be compressed at a speed of 2.23 m/s throughout

the analysis. However, the velocity boundary condition was not applied to the

plate. Displacement boundary condition was applied, and analysis time was adjusted.

For example, for the main hexagonal model, the relative density is approximately

0.0693, so the theoretical locking strain is 0.903. The total model length is 104

mm. Accordingly, the structure should be compressed more than 94 mm, so the

compression amount was chosen as 96 mm. The selected compression rate must occur

within 0.043 seconds to adjust the quasi-static mode speed. Thus, a compression

speed of 2.23 m/s is reached. The compression speed is kept constant for all models.

Therefore, the strain rate may change according to the model length. In parametric
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studies, where the angles of the unit cells change, the model dimensions change. The

strain rate for the hexagonal and re-entrant models with initial angles is 21.4 s−1, and

for the chiral model, it is 23.4 s−1. These models are the shortest models for angle

change studies. The strain rate of the longest models is 18.6 s−1 for all three unit

cells. In Figure 3.2, the boundary conditions of the main hexagonal shape are given.

Figure 3.2: Boundary condition of hexagonal lattice structure

The boundary conditions of all models are similar to the boundary conditions in

Figure 3.2. If we examine the applied boundary conditions in more detail, the

boundary condition applied to the center of gravity of the lower plate fixes the six

degrees of freedom of the plate. It is shown in Figure 3.3.
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Figure 3.3: Boundary condition of fixed plate

The boundary condition applied to the center of gravity of the upper plate moves the

plate along the y-axis while fixing the other degrees of freedom. It is given in Figure

3.4. The value of the y-axis displacement of the upper plate can differ from model to

model. As explained, the value of it depends on the relative density and total length

of the body.

Figure 3.4: Boundary condition of moving plate

The only boundary condition applied to the lattice structure is the displacement

boundary condition to constraint z-displacement on one face to prevent global

buckling, as visualized in the figure below.
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Figure 3.5: Boundary condition of lattice structure

With the boundary conditions applied to the upper and lower plates, an interaction

must be established between the plates and the lattice structure for the lattice structure

to compress. The same relationship was established between the surfaces of the lattice

structure. In this way, the behavior of the surfaces after contact with each other while

the structure is compressed can be calculated. The normal behavior of this interaction

was chosen as hard contact. In this way, the surfaces do not penetrate each other

in the normal direction. Friction was created in tangential behavior. In the study of

Zhang et al. [20], a friction coefficient value of 0.3 was taken. This value was used

in the parametric studies, but the effect of the friction coefficient change on SEA and

plateau stress was examined. Since the friction energy will increase with the increase

of the friction coefficient, it is expected that the SEA and plateau stress will increase,

and this effect was observed. Details are given in Appendix D.

3.2.2 Mesh Properties and Convergence Study

The study of Ruan et al. [18] was taken as a reference for meshing.

Abaqus/EXPLICIT is used as the analysis program in the related study. S4R, a

four-node reduced integration element, was selected as the element type. This

element type is used for surfaces defined as shells. That study also selected 1 mm as

the element size, but a convergence study was performed for each lattice geometry

for the element size. Five different element sizes were selected for hexagonal and

re-entrant lattice models. The coarsest mesh was selected as 5 mm, and the finest
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mesh as 0.5 mm. For the chiral shape, four different element sizes were selected

between 2.5 mm and 0.5 mm. The element size is important for the lattice structure

but not the upper and lower rigid plates. Therefore, the element sizes of the rigid

plates were not changed in the convergence study. Figure 3.6 shows how much the

SEA value changes for each shape according to the element size. SEA was explained

in Chapter 1, and how it is calculated is explained in detail in Section 3.3.1.

(a) Hexagonal lattice (b) Re-entrant lattice

(c) Chiral lattice

Figure 3.6: SEA outputs of the three lattices according to element sizes

When looking at the outputs of the mesh convergence study, it will be sufficient to use

1 mm elements for the hexagonal and re-entrant models and 1.25 mm elements for the

chiral model. Considering the explicit analysis time, there is no need to choose the

finest element size to not increase the analysis time too much. In this case, there are

elements in the hexagonal model, 6620 elements in the re-entrant model, and 8256
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elements in the chiral model. The selected element density is shown on the models in

Figure 3.7.

(a) Hexagonal lattice (b) Re-entrant lattice

(c) Chiral lattice

Figure 3.7: Mesh densities of the lattices

In addition to the mesh convergence study, the explicit analysis method with the

selected mesh density was compared with the implicit analysis method for low-

strain values. However, in the comparison study, the difference between the explicit

solution and the implicit solution can be ignored. The study details can be examined

in Appendix F.
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3.2.3 Hexagonal Lattice Structures

A hexagonal lattice is created by repeating the unit seen in Figure 3.1a twelve times

in the x-direction and seven times in the y-direction of Figure 3.8. Representation of

the structure can be seen in Figure 3.8. In the study of Ruan et al. [18], eight unit

cells are used in the x-direction and sixteen in the y-direction. To properly display the

compression behavior of the lattice, the number of unit cells in the vertical direction

must be above a certain number. Twelve unit cells in this study are sufficient. While

determining the number of repetitions of horizontal and vertical unit cells, an attempt

was made to approximate the structure to a square. The width of the main hexagonal

structure was chosen as 100 mm and the height was approximately 104 mm.

Figure 3.8: Hexagonal lattice structure

It is the base structure for the five different studies listed above. The geometrical and

mass properties of the base model are given in Table 3.1.
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Edge Thickness 0.3 mm
Angle of Unit 120◦

Unit height 8.66 mm
Unit Width 15 mm
Relative Density 0.0693
Theoretical Locking Strain 0.903
Mass 4.042× 10−3 kg

Table 3.1: Properties of base hexagonal lattice

The first parametric study was the variation of the thickness of the horizontal and

vertical edges relative to each other. The thicknesses of the horizontal and vertical

edges are specified as th and tv, respectively, in Figure 3.1. While making this

thickness change, the weight of the lattice was preserved. Since the angle does not

change and the weight is kept constant, relative density does not change. So, the

locking strain and the total length do not change either according to Equation 3.2.

For this reason, the displacement values applied to the upper plate were kept constant

in all parametric studies.

In the FE models, three sections are created in the structure to make a thickness

difference between vertical and horizontal edges: base section, horizontal section,

and inclined section. The thickness of the base section is constant, while the thickness

of the horizontal and inclined sections is changed. The sections can be seen in

Figure 3.9. The base, horizontal, and inclined sections are green, cream, and red,

respectively. The thickness of the base section is kept constant to keep the distance

between the top and bottom plate constant in all models.
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Figure 3.9: Sections of hexagonal lattice structure for vertical and horizontal

thickness variation

Fourteen models were created to compare energy absorption capacity and Poisson’s

ratios. The thickness of the horizontal edges of these models varies from 0.35 mm to

0.001 mm. To maintain weight, the thickness of the inclined elements must increase

while the thickness of the horizontal elements must decrease. The most extreme

models have the following thicknesses; the inclined edge thickness of the model,

which has a horizontal edge thickness of 0.35 mm, is approximately 0.28 mm; the

model has the horizontal edge thickness of 0.001 mm, has the inclined edge thickness

of approximately 0.45 mm. The thickness of the base part does not change in any

model, and it is 0.3 mm.

The second parametric study was to add horizontal edges to the unit cells and change

their thickness. The thickness of the original lattice geometry was reduced to keep

the weight constant when adding elements and changing their thickness. Again,

three sections were created, and the thickness of additional and original sections was
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changed, but the thickness of the base section was kept constant. In Figure 3.10, the

green, red, and cream sections can be seen. These are the base section, the additional

section, and the original lattice section, respectively.

Figure 3.10: Sections of hexagonal lattice structure of the model with horizontal

edges added

In this study, the thickness of the added horizontal edges is increased from 0 mm to

0.4 mm. While increasing the thickness of the additional edges, the thickness of the

original lattice geometry should be reduced from 0.3 mm to 0.037 mm so that the

weight can be preserved. Sixteen models were created to observe the SEA change.

The third study was adding vertical elements to the unit cells. Similar to adding

horizontal elements, as the thickness of the added edges increased, the thickness of

the original geometry was reduced, but the thickness of the base section was not

changed. For this work, the visual of the vertically added section, the original section,

and the base section is shown in Figure 3.11. In the figure, the color of the base, the

additional, and the original sections are green, red, and cream, respectively.
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Figure 3.11: Sections of hexagonal lattice structure for additional vertical edge

thickness variation

In the additional vertical edge thickness variation study of the hexagonal shape, eleven

models are created. The thickness of the horizontal edges is decreased from 0.3 mm

to 0.073 mm, while the thickness of the vertical edges is increased from 0 mm to 0.4

mm.

In the fourth and fifth studies, the angle of the unit cell was changed. The changing

angle was shown as θ in Figure 3.1. In the fourth study, the thicknesses were kept

constant while the angle was changed. In this case, the weight was preserved, but the

relative density increased with the decrease in the angle. Figure 3.12 below shows the

difference between hexagonal lattice structures consisting of 120◦ and 70◦ unit cells.

The lattice structure consisting of the 70◦ unit cell is denser. In these studies, models

were not analyzed at angles lower than 70◦ since at 60◦, the two corners of the unit

cell touch each other anyway. Seventeen models were created from 120◦ to 70◦ for

the fourth and fifth parametric studies.
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(a) Structure for hexagonal geometry with unit

angle 120◦

(b) Structure for hexagonal geometry with unit

angle 70◦

Figure 3.12: Difference of hexagonal lattice geometries with two different angles

Since the length of the structure changes with the angle change, the amount of

compression applied to the upper plate should also be changed. When applying

displacements, it is necessary to ensure that the compression amount is greater than

the locking strain. Since the relative density changes with the angle change in the

fourth study, the locking strain value of each model will be different. The relative

density of the 120◦ model is 0.0693, the theoretical locking strain is 0.903, while

the relative density of the 70◦ model is 0.146, the theoretical locking strain is 0.796.

When we look at their lengths, the length of the 120◦ model is approximately 104

mm, the length of the 90◦ model is 120 mm, and the length of the 70◦ model is

approximately 113 mm. When we consider all these, a displacement of 96 mm

was applied to the 120◦ model, a displacement of 111 mm to the 90◦ model, and

a displacement of 104 mm to the 70◦ model.

In the fifth study, while changing the angle the thickness was changed to maintain the

relative density. As the angle decreased from 120◦ to 70◦, the thickness decreased

from 0.3 mm to 0.143 mm. In this case, while the theoretical locking strain remained

constant since the length changed, the given displacement values increased from 120◦

to 90◦ and decreased from 90◦ to 70◦. The displacement values of the 100◦ model and

the 80◦ models, which have the same total length, were given equally.
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3.2.4 Re-entrant Lattice Structures

The re-entrant lattice structure was created by shifting seven and twelve unit cells in

x-direction and y-direction, respectively, like the hexagonal lattice. The unit cell of

the re-entrant structure is given in Figure 3.1b, and its body is given in Figure 3.13.

Figure 3.13: Re-entrant lattice structure

It is the base structure for the five studies. For creating a same-weight model with

the hexagonal model, the thickness is set to 0.225 mm. The geometrical and mass

properties of the base model are given in Table 3.2

Edge Thickness 0.225 mm
Angle of Unit 60◦

Unit height 8.66 mm
Unit Width 15 mm
Relative Density 0.0693
Theoretical Locking Strain 0.903
Mass 4.042× 10−3 kg

Table 3.2: Properties of base re-entrant lattice

Again, three regions were created while changing the thickness of the inclined and

horizontal edges relative to each other. The thickness of the base region was kept

constant. The maximum value for the horizontal edge was 0.4 mm, and the minimum

56



value was 0.001 mm. When the horizontal edge was 0.4 mm, the inclined edges were

set to 0.056 mm, and when the horizontal edge was 0.001 mm, the inclined edges

were set to 0.442 mm. In Figure 3.14, the horizontal edges are cream-colored, the

inclined edges are red, and the base edges are green.

Figure 3.14: Sections of re-entrant lattice structure for vertical and horizontal

thickness variation

If horizontal edges are added to the original re-entrant lattice model and the thickness

of the added horizontal edges is increased from 0 mm to 0.8 mm, the thickness of

the original geometry should also be reduced from 0.225 mm to 0.027 mm. While

doing this, the thickness of the edges at the border of the top and bottom plates was

not changed. Visually, when looking at the re-entrant shape with the horizontal edge

added, the red-colored parts show the added parts, the cream-colored parts show the

original geometry, and the green parts show the parts at the border of the top plate,

see Figure 3.15. There are sixteen models for this study.
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Figure 3.15: Sections of re-entrant lattice structure for additional horizontal edge

thickness variation

When we add vertical edges to the re-entrant model, sections are formed as in Figure

3.16. The cream-colored area represents the original shape of the re-entrant model,

the red area represents the added vertical edges, and the green area represents the base

areas.
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Figure 3.16: Sections of re-entrant lattice structure for additional vertical edge

thickness variation

The thickness of the added edges was increased from 0 mm to 0.4 mm, while the

thickness of the original geometry was reduced from 0.225 mm to 0.054 mm. Eleven

models were created in this range.

Unlike the hexagonal lattice structure, the variable angle of the re-entrant model was

taken from a different corner. This angle is shown as θ in Figure 3.1b. In this case, the

angle of the model was increased from 60◦ to 120◦, and the relative density decreased

as the angle increased. In Figure 3.17, 60◦ and 120◦ models can be seen.

59



(a) Structure for re-entrant geometry with unit

angle 60◦

(b) Structure for re-entrant geometry with unit

angle 120◦

Figure 3.17: Difference of hexagonal geometries with two different angles

In the fourth parametric study, since only the angle changed and the thickness

remained constant, the relative density decreased, and the theoretical locking strain

increased from 60◦ to 120◦. Again, since the length changed with the angle change,

the applied displacement value of each model should be different. The longest

geometry, the 90◦ model, was compressed by 115 mm, while the 60◦ model was

compressed by 96 mm, and the 120◦ model was compressed by 101 mm. The length

of the 60◦ and 120◦ models is approximately 104 mm.

In the fifth parametric study, to maintain the relative density, the thickness was

increased from 0.225 mm at 60◦ to 0.375 mm at 120◦. In this case, since the

theoretical locking strain in all models was 0.903, all models were compressed to

0.924 strain. The applied displacement values were found by multiplying the length

of the models by 0.924. Nineteen models were created for the re-entrant model’s

fourth and fifth parametric studies.

3.2.5 Chiral Lattice Structures

The unit cell widths of the hexagonal and re-entrant models were greater than their

lengths. The unit cell width in both base models was 15 mm, while its length was

approximately 8.66 mm. However, the length and width of the chiral unit cell were

equal. The length and width of the 135◦ main model were approximately 9.24 mm.

Therefore, eleven repetitions in the x-direction of the chiral cell were chosen to make
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the width of the structure close to 100 mm. The number of repetitions in the y-

direction was the same as in the other models. In this case, the width of the main

model was approximately 99 mm, and its length was approximately 111 mm. The

main model made of 135◦ unit cells is given in Figure 3.18.

Figure 3.18: Chiral lattice structure

The thickness of the chiral main model was chosen as 0.15 mm to have a similar

weight to the other two models. Since there was a small difference in relative density,

there were also small differences in theoretical locking strain and weight compared

to the other two models. The numerical values of the properties for the main model

of chiral lattice are given in Table 3.3:

Edge Thickness 0.15 mm
Angle of Unit 135◦

Unit height 9.24 mm
Unit Width 9.24 mm
Relative Density 0.0703
Theoretical Locking Strain 0.902
Mass 4.18× 10−3 kg

Table 3.3: Properties of base chiral lattice

As in the other two models, the thickness of the close-to-vertical and close-to-

horizontal edges in the chiral lattice was changed in the first study. While the

61



thickness of close-to-horizontal edges were decreased from 0.275 mm to 0.025 mm,

the close-to-vertical edges were increased from 0.025 mm to 0.275 mm, and eleven

models were created. Figure 3.19 shows close-to-horizontal, close-to-vertical, and

base sections.

Figure 3.19: Sections of chiral lattice structure for vertical and horizontal thickness

variation

For the study where a horizontal edge was added to unit cells, fourteen models were

created. While the thickness of the horizontal element in the first model was taken

as 0 mm, the thickness of the horizontal element in the last model became 0.25 mm.

However, while the thickness of the original geometry of the first model was 0.15

mm, the thickness of the original geometry of the last model was decreased to 0.072

mm. The sections for this study are visualized in Figure 3.20.
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Figure 3.20: Sections of chiral lattice structure for additional horizontal edge

thickness variation

Fourteen models were created for the study, where vertical elements were added.

Since the lengths and widths of the unit cells are the same, the thickness changes are

the same as when we added horizontal edges. The sections of these models are shown

in Figure 3.21.
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Figure 3.21: Sections of chiral lattice structure for additional vertical edge thickness

variation

For angle change studies, twenty-one models were created for chiral lattice. Angle

values were studied from 105◦ to 235◦. Figure 3.22 below shows the 105◦ structure

and the 180◦ structure. Due to the geometric shape of the chiral unit cell, structures

created with degrees above and below 180◦ are identical. In other words, there is

a great visual similarity between the structure created with a 135◦ unit cell and the

structures created with 225◦ unit cells. The only difference between the two is that

the 225◦ structure looks like a half-unit shift of the 135◦ structure.
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(a) Structure for chiral geometry with unit angle

105◦

(b) Structure for chiral geometry with unit angle

180◦

Figure 3.22: Difference of chiral geometries with two different angles

In the first study, where the angle was changed, the thickness did not change, so the

relative density changed. In the second study, the thickness was 0.111 mm for 105◦,

0.176 mm for 180◦, and 0.138 mm for 235◦. For each model, the relative density,

theoretical locking strain, and lengths were calculated, and appropriate displacement

values were applied.
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3.3 Methods of Computation

3.3.1 Computation of Plateau Stress, EA, and SEA

The definitions of plateau stress, EA, and SEA are briefly given in Chapter 1. In

short, the plateau stress is the mean stress value between the critical strain and the

locking strain of the compressed structure, EA is the area of the stress-strain diagram

between these two strains, and the SEA value is EA divided by the weight. These

three parameters are essential when examining the energy absorption capabilities

of structures. This section presents how these values are calculated for the lattice

geometries. The equations are respectively:

σp =

∫ ϵd
ϵcr

σ(ϵ)dϵ

ϵd − ϵcr
(3.3)

EA =

∫ ϵd

ϵcr

σ(ϵ)dϵ (3.4)

SEA =

∫ ϵd
ϵcr

σ(ϵ)dϵ

ρsρ̄
, (3.5)

where ρ̄ is relative density and ρs is material density of the structure. ϵd and ϵcr are

the locking strain and critical strain values. Critical strain is a strain of the first peak

stress. Locking strain corresponds to the densification point of the cellular bodies.

These two strain points should be obtained from stress-strain curves. Although

defining locking strain is complicated, the critical strain point is generally clear. Thus,

coputation of locking strain should be described.

For locking strain, a theoretical equation is given in Equation (3.2), but it is valid for

simple hexagonal geometries. So, for all analyses, a locking strain has to be defined.

Thus, all models are compressed beyond the theoretical locking strain value, and a

slope is defined between 0.25 and 0.75 strains (it is assumed that the range between

0.25 and 0.75 strains is in the plateau region for all models), which can be called

the middle slope. Then using four consecutive data points all slope values in the

strain range from 0.25 to 0.75 are computed. Then the biggest value of these slope

values corresponds to the middle slope. For example, assume there exist one hundred

stress and strain data between 0.25 and 0.75 strains. Ninety-seven slope values are
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calculated using each of the four stress-strain data sets. These slopes are the average

values of each quart. The value of a quart is the average value of the slope of the

first and second stress-strain values, the slope of the second and third stress-strain

values, and the slope of the third and fourth stress-strain values. The middle slope is

the biggest value of these Ninety-seven slopes. It is later used to compare the slopes

of the locking regions. Slopes of the densification regions are calculated from ten

stress-strain data points. They are taken as the last ten strain values that are lower

than the theoretical locking strain. The average of these ten data points is called as

the densification slope.

In stress-strain diagrams, the middle and densification slopes are compared to find

locking strains. If the densification slope is smaller than the middle slope, the

locking strain is the theoretical locking strain, which is given in Equation 3.2. If

the densification slope is bigger than the middle slope, a line with the slope of the

densification slope is drawn from the theoretical locking strain, and the strain value

where it cuts the strain axis is found. It is the new locking strain value, and a

new densification slope can be found following the same procedure and compared

with the middle slope. However, there is a limitation to prevent the locking strain

from becoming too small and unfeasible. If the locking strain correction exceeds

ten percent of the strain space which is the total compressive strain, it is set as ten

percent of the strain range. In the second and third corrections, the limitation is

twenty and forty percent of the strain range. In Figure 3.23, the stress-strain diagram

of the chiral angular model (145◦) with the thickness of 0.15 mm can be seen. In this

diagram, there are three corrections, and the limitation is applied in each correction.

The theoretical locking strain of this model is 0.91. After the corrections, the locking

strain of 0.74 was calculated. In Figure 3.24, same stress-strain diagram is given but

without limitation. In this model, the locking strain of 0.67 is found.
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Figure 3.23: Stress strain diagram of the chiral angular model (145◦) with thickness

of 0.15 mm and its densification slopes, with limitation three locking strain correction

is aplied

Figure 3.24: Stress strain diagram of the chiral angular model (145◦) with thickness of

0.15 mm and its densification slopes, without limitation one locking strain correction

is applied
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The stress is was calculated by dividing the force on the upper plate by the cross-

sectional area of the lattice structure. The width of the hexagonal lattice is given as

100 mm. The depth of all lattices is 2 mm. In this case, the stress is calculated by

dividing the force by 200 mm2 in the models of the hexagonal lattice with no angle

change. Note that the area changes in each model. After finding the locking strain on

the stress-strain graph, the plateau region is found after the critical strain is defined

as the strain where the first stress peak occurs. The plateau stress is computed as the

average of the stresses in this region. In Figure 3.25, the plateau range and plateau

stresses are shown on the stress-strain graphs for model mentioned in the previous

paragraph.

Figure 3.25: Plateau stress of the chiral angular model (145◦) with thickness of 0.15

mm

Once the plateau stress, locking strain, and the critical strain are computed, the EA

and SEA values are computed Equations (3.4) and (3.5). However, SEA can also

be calculated from the energy outputs on the structure. A comparison of these two

approaches for the computation of SEA values is given in Appendix B for three base

models.
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3.3.2 Computation of Poisson’s Ratio

The Poisson’s ratio is a material property that quantifies the relationship between axial

and transverse strain when a material is stretched or compressed, and it can be defined

as:

ν = −Transverse Strain

Axial Strain
(3.6)

As in the study of Luo et al. [22], in analyses performed on Lattice geometries,

the Poisson’s ratio can be found by the horizontal and vertical displacements of four

points in the middle of the structure in the longitudinal direction and the outermost

points in the horizontal direction. For long lattice structures, calculating from four

points taken from the middle region in the longitudinal direction may prevent making

a correct inference because, in some models, the middle region of the structure in the

longitudinal direction may be deformed a lot. In contrast, the upper and lower parts

may be deformed less. Therefore, Poisson’s ratio calculation will yield more accurate

results by taking more points from the structure, like the study of Zhang et al. [23].

In this thesis, while calculating the Poisson’s ratio, it is aimed to consider points

from each unit cell in the longitudinal direction. In addition, not only the outermost

points in the horizontal direction are considered. In the computation of Poisson’s

ratio, points from the central region of the lattice structures are also considered. For

example, the points taken from the hexagonal lattice structure are seen in Figure 3.26.

Poisson’s ratio calculation includes the displacement of a total of 47 points on the

hexagonal structure. The longitudinal displacement in Equation (3.6) is calculated

from the displacement of the upper plate. The lateral displacement is calculated from

the horizontal displacements of 46 points taken from the structure which are shown in

red. In Figure 3.26, there are twelve red dots on the structure’s far right and twelve on

the far left. The average of twelve pairs is calculated after calculating the x-direction

displacement of each right-left point pair relative to each other. Similarly, for the 11

points on the right and left of the middle region, the x-axis displacement of each pair

relative to each other is calculated and averaged. Then, the x-displacements from the

outer region are divided by the distance of outer nodes, and the x-displacements from

the inner region are divided by the distance of inner nodes to find strains. The average
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of the x-direction strains calculated in the outer and inner regions is calculated and

divided by the y-direction strain to calculate the Poisson’s ratio. Similar sets of points

are generated for the computation of Poisson’s ratio for re-entrant and chiral models.

Figure 3.26: Nodes for Poisson’s ratio calculation of hexagonal lattice

The computation of Poisson’s ratio can be more precise by increasing the points taken.

Although Poisson’s ratio in this thesis is calculated using the method explained above,

an alternative approach is also considered. In the alternative approach, all the left and

right outermost points of the structure are included in the computation. The results of

two approaches are compared in Appendix C.
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CHAPTER 4

RESULTS

4.1 Introduction

As presented in Chapter 1, this study claims that when the energy absorption

capabilities of lattice structures are compared with Poisson’s ratio, the structures

with the highest energy absorption are generally those with a Poisson’s ratio around

zero. As mentioned in Section 3.2, fifteen different parametric models were created

to defend this argument. The outputs of the models are presented in this chapter.

However, Poisson’s ratio of all the models created did not show a change from

negative to positive or positive to negative with the parameter change. Therefore, this

chapter does not show the outputs of all parametric models.

The Poisson’s ratio of the base hexagonal lattice structure is positive. However,

the Poisson’s ratio becomes negative in all five parametric studies of the hexagonal

lattice. Therefore, all the outputs of the hexagonal lattice structure are presented

in this chapter. The base model of the re-entrant structure has a negative Poisson’s

ratio. Of the five parametric studies conducted for this model, only the second (study

with added horizontal edges), the fourth, and fifth (studies with angle change) show

a positive Poisson’s ratio or approach to zero. Therefore, only the results of these

three parametric studies are shared in this chapter. While the base geometry of the

chiral model has a positive Poisson’s ratio, except for the first parametric study (the

study in which the thicknesses of the horizontal and inclined elements were changed

relative to each other), it was observed that Poisson’s ratio becomes negative in all

four parametric studies and they are shared in this chapter. The results of the three

parametric studies not shared in this chapter are given in Appendix A.
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When structures are compressed, Poisson’s ratios are computed with the method

presented in Section 3.3 may vary depending on the amount of compression. The

base hexagonal lattice model can be given as an example. In Figure 4.1, the graph of

the Poisson’s ratio of the hexagonal model is given according to the strain value. In

addition, six different predetermined strain levels are drawn as lines. When Poisson’s

ratio in these strain values is examined, it is calculated as 1.304 when 0.004, 1.023

when the strain is approximately 0.015, 0.744 when the strain is 0.05, 0.479 when the

strain is 0.1, 0.324 when the strain is 0.2, and 0.276 when the strain is 0.5.

Figure 4.1: Variation of Poisson’s ratio of the hexagonal base model with strain

Since Poisson’s ratio changes with the strain, only Poisson’s ratios computed at 0.015

strain are presented in this section. The value of 0.015 was chosen because it was

observed that the lattice structures remained almost completely in the elastic range

at this strain. The strain range in which each parametric model remains completely

elastic differs. Still, since this value is suitable for most models, the results of the same

strain value are compared in all parametric studies. The general stress distribution on

the structure can be examined to check whether it is in the elastic region. When

the stress distributions of all parametric studies are discussed, although, in some

models, the Von Misses stress values in small local areas at 0.015 strain value can

reach 76 MPa, which is the yield stress, these regions are very local. Furthermore,
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when the Poisson’s ratios at different strain levels are compared with the analytical

values (whenever available) or unit cell calculations, the 0.015 strain value was found

to be the most appropriate. The analytical calculation method and comparisons are

given in detail in Appendix E. For these reasons, in this section, Poisson’s ratios of

all parametric models are presented at 0.015 strain value. However, Poisson’s ratios

at other strain values (0.004, 0.05, 0.1, 0.2) are also given in Appendix A together

with the strain value of 0.015 for completeness. In this chapter, numerical outputs of

compression analyses are given, but to better understand the compression behavior,

deformed geometries of some hexagonal lattices at 0.2 and 0.5 strain levels are shown

in Appendix G.

In this chapter, SEA values and Poisson’s ratios are shown in tabular form and on

the graph according to the changing parameter. In the given tables, the first three

columns show the parametric changes in the models. The SEA value is given in

the fourth column, and the Poisson’s ratios are presented in the fifth column. In the

SEA column, three cells are colored blue because these cells have higher SEA than

others. If there are models with the same SEA value, the number of blue-colored

unit cells can exceed three. In the Poisson’s ratio column, some cells are colored

mustard. The mustard-colored cells mean that Poisson’s ratio changes its sign. The

x-axes in the graphs show the thickness or angle in increasing order: the left y-axes

show Poisson’s ratio, and the right y-axes show the SEA value. For clarity, the plots

showing the results of Poisson’s ratio and SEA values are shown in the same color as

the corresponding axes. Mustard is used for Poisson’s ratio, and blue is used for the

SEA value. In addition, a dashed line, which is zero Poisson’s ratio line, is added to

the graphs.

4.2 Results of Hexagonal Lattices

As mentioned in the previous section, Poisson’s ratio changes from positive to

negative in the five parametric studies with the hexagonal unit cell. The outputs of the

first parametric study, the change of horizontal and inclined edge thicknesses relative

to each other, are given in Table 4.1 and Figure 4.2. The first three columns in the

table show the thicknesses of the sections in Figure 3.9. The thickness of the regions
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close to the upper and lower plates where the original thickness is preserved and

given in the first column. The calculated SEA values are given in the fourth column,

and Poisson’s ratios at 0.015 strain are given in the fifth column. The variation of

Poisson’s ratio and the SEA value with the thickness of the horizontal edge can be

seen in Figure 4.2. The thickness of the horizontal edges is 0.3 mm in the unchanged

hexagonal model. As the thickness of the horizontal edges decreases, Poisson’s ratio

decreases, and after a specific thickness value, it becomes negative. It can be observed

that the SEA first increases and then decreases with the decrease in thickness. In the

region where the SEA is the largest, Poisson’s ratio starts to decline rapidly, but it

cannot be said that the SEA has the highest value for the region where the Poisson’s

ratio changes its sign. However, in the following parametric studies, the models where

the SEA is the largest are very close to the transition point of Poisson’s ratio.

Thickness of Sections (mm) SEA Poisson’s
Base Horizontal Inclined (kj/kg) ratio

0.3 0.350 0.276 0.740 1.030

0.3 0.300 0.300 0.887 1.023

0.3 0.250 0.324 1.114 1.017

0.3 0.200 0.348 1.199 1.009

0.3 0.150 0.373 1.282 0.983

0.3 0.125 0.459 1.327 0.955

0.3 0.100 0.397 1.185 0.774

0.3 0.075 0.483 1.060 0.310

0.3 0.050 0.495 0.833 0.138

0.3 0.025 0.507 0.839 -0.183

0.3 0.010 0.440 0.722 -0.379

0.3 0.008 0.516 0.666 -0.352

0.3 0.005 0.443 0.473 -0.238

0.3 0.001 0.446 0.392 -0.147

Table 4.1: Model parameters and

outputs of the first parametric

study of the hexagonal lattice

Figure 4.2: Variation of Poisson’s ratio and

SEA values with the thickness change for the

first parametric study of the hexagonal lattice

In the second parametric study, where horizontal edges are added, and their

thicknesses are changed, the SEA and Poisson’s ratio values are given in Table 4.2.

The first column of the table shows the thickness of the regions close to the plates

where the original thickness is constant. The second column gives the thickness

of the original hexagonal shape. The thickness of the added horizontal edges is

shown in the third column. Note that while the thickness of the added horizontal
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edge increases, the thickness of the original hexagonal shape decreases to keep the

weight constant. As the thickness of the added horizontal edges increases, the SEA

value first increases and then decreases. It can be seen that Poisson’s ratio sign

change occurs in the region where SEA is the maximum. In this parametric study,

it is seen that the SEA value decreases continuously after a specific thickness value.

The reason for this is that the horizontally added edges are thick, and the remaining

geometry is too thin. When the thickness of the hexagonal lattice elements becomes

too thin, the structure becomes unable to carry loads.

Thickness of Sections (mm) SEA Poisson’s
Base Hexagon Additional (kj/kg) ratio

0.3 0.300 0.000 0.887 1.023

0.3 0.299 0.001 0.956 1.021

0.3 0.297 0.005 0.959 1.018

0.3 0.293 0.010 1.117 1.011

0.3 0.267 0.050 2.065 0.863

0.3 0.251 0.075 2.070 0.303

0.3 0.234 0.100 1.880 -0.165

0.3 0.226 0.113 1.848 -0.183

0.3 0.218 0.125 1.623 -0.125

0.3 0.210 0.138 1.618 -0.113

0.3 0.202 0.150 1.506 -0.008

0.3 0.185 0.175 1.380 -0.176

0.3 0.169 0.200 1.304 -0.259

0.3 0.136 0.250 1.021 -0.123

0.3 0.103 0.300 0.730 -0.132

0.3 0.037 0.400 0.128 -0.153

Table 4.2: Model parameters and

outputs of the second parametric

study of the hexagonal lattice

Figure 4.3: Variation of Poisson’s ratio and

SEA values with the thickness change for

the second parametric study of the hexagonal

lattice

In the third parametric study, vertical edges are added to the hexagonal unit cells. The

thicknesses of the added vertical edges are shown in the third column of Table 4.3.

The thickness is increased from 0 mm to 0.526 mm. Accordingly, the thickness of

the original hexagonal geometry is reduced, as seen in the second column. Figure

4.4 shows how the SEA and Poisson’s ratios change with the thickness of the added

edges. As the thickness increases, SEA first increases and then decreases, and

Poisson’s ratio decreases until the last two models and increases in the last two

models. The region where SEA is the maximum is very close to the region where

the Poisson’s ratio changes sign. Again, the SEA value decreases after a specific
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thickness. This is because the original hexagon elements become too thin, and the

structure becomes almost unstable.

Thickness of Sections (mm) SEA Poisson’s
Base Hexagon Additional (kj/kg) ratio

0.3 0.300 0.000 0.887 1.023

0.3 0.299 0.001 0.900 1.022

0.3 0.297 0.005 0.871 1.023

0.3 0.294 0.010 0.846 1.024

0.3 0.272 0.050 0.837 1.031

0.3 0.243 0.100 0.952 0.969

0.3 0.215 0.150 1.257 0.649

0.3 0.186 0.200 1.450 0.481

0.3 0.158 0.250 1.644 0.356

0.3 0.129 0.300 1.664 0.364

0.3 0.073 0.400 1.135 -0.134

0.3 0.044 0.450 0.907 -1.326

0.3 0.030 0.475 0.753 -1.347

0.3 0.016 0.500 0.563 -1.412

0.3 0.002 0.525 0.303 -0.586

0.3 0.001 0.526 0.298 -0.627

Table 4.3: Model parameters and

outputs of the third parametric

study of the hexagonal lattice

Figure 4.4: Variation of Poisson’s ratio and

SEA values with the thickness change for the

third parametric study of the hexagonal lattice

The variations of SEA and Poisson’s ratios while changing the angle, are given in

Table 4.4. The relative density increases with the angle since the thickness is kept

constant. The angle, thickness, and relative density values are given in the first three

columns of the table. The fourth and fifth columns provide the SEA and Poisson’s

ratios. The base model of the hexagonal lattice is the 120◦ model. While it has a

positive Poisson’s ratio at 120◦, Poisson’s ratio becomes negative for angles smaller

than 90◦, and the transition in Poisson’s ratio occurs in the region where the SEA is

the highest. It can be observed more clearly in Figure 4.5.
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Angle Thickness Relative SEA Poisson’s
(Degree) (mm) Density (kj/kg) ratio

120 0.300 0.069 0.887 1.023

115 0.300 0.070 1.038 1.353

110 0.300 0.071 1.167 1.808

105 0.300 0.074 1.173 2.444

100 0.300 0.078 1.427 3.234

97.5 0.300 0.080 1.365 3.740

95 0.300 0.083 1.415 4.353

93 0.300 0.086 1.395 4.561

91 0.300 0.088 1.497 0.999

90 0.300 0.090 1.431 0.254

89 0.300 0.092 1.474 -1.347

87 0.300 0.095 1.400 -4.664

85 0.300 0.099 1.468 -5.077

82.5 0.300 0.104 1.254 -4.638

80 0.300 0.111 0.873 -4.548

75 0.300 0.126 1.181 -4.233

70 0.300 0.146 0.990 -3.951

Table 4.4: Model parameters and

outputs of the fourth parametric

study of the hexagonal lattice

Figure 4.5: Variation of Poisson’s ratio and

SEA values with the angle change for the

fourth parametric study of the hexagonal lattice

In the fifth parametric study, the angle is changed together with the thickness to keep

the relative density constant. Again, the angle, thickness, SEA, and Poisson’s ratio

values are shown in Table 4.5. The outputs are similar to the previous angle change

study. Since the thickness decreases with the angle change, there is a general decrease

in SEA values. However, it can be said that the region where Poisson’s ratio changes

sign is the region where the SEA is the highest, like the previous parametric study.

In models where the angle is changed, it is seen that SEA reaches high values around

90◦. Again, this is an output related to the load-carrying capacity of the inclined

edges. The more parallel the edges are to the compression direction, the more energy

absorption occurs because it can carry loads.
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Angle Thickness Relative SEA Poisson’s
(Degree) (mm) Density (kj/kg) ratio

120 0.300 0.069 0.887 1.023

115 0.298 0.069 1.046 1.353

110 0.291 0.069 1.155 1.806

105 0.281 0.069 1.112 2.422

100 0.267 0.069 1.242 3.192

97.5 0.259 0.069 1.242 3.746

95 0.250 0.069 1.281 4.496

93 0.243 0.069 1.173 4.860

91 0.235 0.069 1.208 1.407

90 0.231 0.069 1.317 0.377

89 0.227 0.069 1.215 -0.765

87 0.219 0.069 1.078 -5.196

85 0.210 0.069 1.127 -5.506

82.5 0.199 0.069 0.896 -4.890

80 0.188 0.069 0.812 -4.686

75 0.165 0.069 0.700 -4.291

70 0.143 0.069 0.410 -3.960

Table 4.5: Model parameters and

outputs of the fifth parametric

study of the hexagonal lattice

Figure 4.6: Variation of Poisson’s ratio and

SEA values with the angle change for the fifth

parametric study of the hexagonal lattice

4.3 Results of Re-entrant Lattices

In the base cell of the re-entrant lattice, Poisson’s ratio is negative, and for the three

parametric studies, Poisson’s ratio approaches zero from the negative side or switches

the sign and becomes positive. The results are not shared in the first parametric study

because the Poisson’s ratio remained negative. The outputs of the second parametric

study, in which the horizontal edge is added and its thickness is increased, are given

in Table 4.6 and Figure 4.7. For the case where no horizontal edge is added, the edge

thickness of the re-entrant lattice is selected as 0.225 mm. To protect the weight, as

the thickness of the added horizontal element increases, the thickness of the original

geometry decreases. When Poisson’s ratios of the models are examined, there is no

transition from negative to positive, but as the thickness increases, Poisson’s ratio

approaches zero. The SEA value first increases and then decreases with the thickness

of the added edges. As a result of this parametric study, it cannot be said that the

highest value of SEA is seen in the region where Poisson’s ratio negative to positive

transition is seen, but it can be said that SEA is maximum in the first region where the
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Poisson’s ratio approaches zero. The structure cannot carry loads with the increased

thickness of the added horizontal element and the excessive decrease in the thickness

of the other edges. In cases where the thickness of the added horizontal elements

exceeds 0.6 mm, the energy absorption ability of the structure has reached a point

where it becomes meaningless.

Thickness of Sections in mm SEA Poisson’s
Base Re-entrant Additional (kj/kg) ratio

0.225 0.225 0.000 0.563 -1.020

0.225 0.225 0.001 0.547 -1.018

0.225 0.224 0.005 0.571 -1.022

0.225 0.223 0.010 0.613 -1.018

0.225 0.200 0.100 1.027 -0.758

0.225 0.194 0.125 1.311 -0.432

0.225 0.188 0.150 1.320 -0.244

0.225 0.182 0.175 1.383 -0.146

0.225 0.175 0.200 1.276 -0.181

0.225 0.163 0.250 1.133 -0.201

0.225 0.151 0.300 1.272 -0.181

0.225 0.126 0.400 0.863 -0.070

0.225 0.101 0.500 0.616 -0.042

0.225 0.076 0.600 0.365 -0.059

0.225 0.052 0.700 0.115 -0.012

0.225 0.027 0.800 0.028 -0.018

Table 4.6: Model parameters and

outputs of the second parametric

study of the re-entrant model

Figure 4.7: Variation of Poisson’s ratio and

SEA values with the thickness change for

the second parametric study of the re-entrant

model

In the study where the vertical elements are added and the thicknesses are changed,

Poisson’s ratios remained negative in all models, so it was not shared here. In the

fourth study, where the angle is changed, the transition of Poisson’s ratio can be seen

in Table 4.7 and Figure 4.8. As the angle approaches from 60◦ to 85◦, Poisson’s ratio

decreases. From 85◦ to 95◦, it reaches a positive value with a significant increase

and decreases again until 120◦ after 95◦ but maintains its positive value. The region

where SEA is maximum is also around 90◦. In this model, the region where SEA is

maximum coincides with the region where Poisson’s ratio is around zero.
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Angle Thickness Relative SEA Poisson’s
(Degree) (mm) Density (kj/kg) ratio

60 0.225 0.069 0.563 -1.020

65 0.225 0.063 0.632 -1.222

70 0.225 0.058 0.841 -1.469

75 0.225 0.054 0.771 -1.730

80 0.225 0.050 0.803 -2.062

82.5 0.225 0.049 0.780 -2.331

85 0.225 0.047 0.847 -2.687

87 0.225 0.046 0.805 -1.800

89 0.225 0.045 0.829 0.015

90 0.225 0.045 0.905 -0.027

91 0.225 0.045 0.919 0.473

93 0.225 0.044 0.877 1.726

95 0.225 0.043 0.924 2.301

97.5 0.225 0.043 0.843 2.060

100 0.225 0.042 0.833 1.692

105 0.225 0.041 0.763 1.290

110 0.225 0.041 0.692 0.995

115 0.225 0.041 0.647 0.764

120 0.225 0.042 0.623 0.582

Table 4.7: Model parameters and

outputs of the fourth parametric

study of the re-entrant model

Figure 4.8: Variation of Poisson’s ratio and

SEA values with the angle change for the

fourth parametric study of the re-entrant model

The second angle change study yields very similar results. Since the thickness is

increased in this parametric study to maintain the relative density, the SEA values

increase slightly compared to the previous parametric angle change study. When

looking at Poisson’s ratio and SEA values, it is seen that the models with the largest

SEA are the models where Poisson’s ratio changes from negative to positive. The

results of the last parametric study of the re-entrant lattice are shown in Table 4.8 and

Figure 4.9.
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Angle Thickness Relative SEA Poisson’s
(Degree) (mm) Density (kj/kg) ratio

60 0.225 0.069 0.563 -1.020

65 0.248 0.069 0.684 -1.227

70 0.270 0.069 0.930 -1.469

75 0.291 0.069 0.925 -1.722

80 0.312 0.069 1.058 -2.021

82.5 0.321 0.069 1.066 -2.235

85 0.330 0.069 1.206 -2.553

87 0.337 0.069 1.133 -2.501

89 0.343 0.069 1.083 -0.569

90 0.346 0.069 1.328 0.283

91 0.349 0.069 1.351 0.566

93 0.355 0.069 1.314 2.358

95 0.360 0.069 1.394 2.249

97.5 0.366 0.069 1.302 1.900

100 0.371 0.069 1.245 1.666

105 0.378 0.069 1.167 1.300

110 0.381 0.069 1.100 1.000

115 0.380 0.069 1.018 0.772

120 0.375 0.069 0.909 0.596

Table 4.8: Model parameters and

outputs of the fifth parametric

study of the re-entrant model

Figure 4.9: Variation of Poisson’s ratio and

SEA values with the angle change for the fifth

parametric study of the re-entrant model

4.4 Results of Chiral Lattices

The first of the parametric studies of chiral lattice, the model in which the thicknesses

of the close-to-horizontal and close-to-vertical edges change relative to each other,

is not shared here because there is no Poisson’s ratio sign change. The results of

the study in which the horizontal edge is added are shown in Table 4.9 and Figure

4.10. Since the behavior of SEA changes very rapidly with the addition of a very

thin horizontal edge, many models with very thin horizontal edges are created, i.e.,

the first five data points in Figure 4.10. The largest two values of SEA are found in

the models in which the added horizontal edge thickness is 0.01 mm and 0.02 mm.

Poisson’s ratios of these models are also close to zero. While a serious decrease is

seen in SEA as the added edge thickness increases, Poisson’s ratio does not change

much in a few models. With the further increase of the thickness of the added edge,

the thickness of the original structure becomes too thin to carry, and SEA decreases.

In this study, the maximum value of SEA is in the region where Poisson’s ratio first
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approaches zero.

Thickness of Sections in mm SEA Poisson’s
Base Hexagon Additional (kj/kg) ratio

0.15 0.150 0.000 0.743 0.660

0.15 0.150 0.001 0.675 0.640

0.15 0.148 0.005 0.810 0.414

0.15 0.148 0.008 0.864 0.190

0.15 0.147 0.010 0.978 0.090

0.15 0.144 0.020 0.972 -0.004

0.15 0.141 0.030 0.913 0.028

0.15 0.137 0.040 0.891 0.025

0.15 0.134 0.050 0.777 0.021

0.15 0.127 0.075 0.706 -0.035

0.15 0.119 0.100 0.796 -0.163

0.15 0.103 0.150 0.855 -0.319

0.15 0.087 0.200 0.771 -0.115

0.15 0.072 0.250 0.664 -0.473

Table 4.9: Model parameters and

outputs of the second parametric

study of the chiral model

Figure 4.10: Variation of Poisson’s ratio and

SEA values with the thickness change for the

second parametric study of the chiral model

The results of the third parametric study where a vertical edge is added to the

chiral lattice are shown in Table 4.10 and Figure 4.11. In this particular study,

the Poisson’s ratio almost monotonously decreases and shows a clear sign change,

while SEA increases almost monotonously with the added vertical edge thickness.

However, the region where the Poisson’s ratio changes sign is not close to the region

where the maximum SEA is found. In the case where we add vertical elements

to the chiral lattice and increase its thickness, the added vertical edges affect the

load-carrying capacity of the structure. SEA increases up to the additional edge

thickness of 0.2 mm and decreases at 0.25 mm. At the value of 0.25 mm, the load-

carrying capacity decreases because the thickness of the structures that establish the

connection between the vertical elements becomes too low.
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Thickness of Sections in mm SEA Poisson’s
Base Hexagon Additional (kj/kg) ratio

0.15 0.150 0.000 0.743 0.660

0.15 0.150 0.001 0.753 0.663

0.15 0.148 0.005 0.652 0.684

0.15 0.147 0.010 0.655 0.686

0.15 0.142 0.025 0.645 0.669

0.15 0.134 0.050 0.686 0.032

0.15 0.130 0.063 0.743 -0.056

0.15 0.127 0.075 0.813 -0.093

0.15 0.123 0.088 0.962 -0.095

0.15 0.119 0.100 1.123 -0.092

0.15 0.111 0.125 1.361 -0.088

0.15 0.103 0.150 1.439 -0.152

0.15 0.087 0.200 1.687 -0.200

0.15 0.072 0.250 1.454 -0.229

Table 4.10: Model parameters and

outputs of the third parametric

study of the chiral model

Figure 4.11: Variation of Poisson’s ratio and

SEA values with the thickness change for the

third parametric study of the chiral model

In the study where the angle of the chiral lattice changes, while keeping the edge

thicknesses constant, Poisson’s ratio shows two sign changes. There is first a change

from positive to negative around 180◦ and then from negative to positive around 200◦.

The outputs are shown in Table 4.11 and Figure 4.12. The highest value of SEA is

obtained in the second sign change region.
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Angle Thickness Relative SEA Poisson’s
(Degree) (mm) Density (kj/kg) ratio

105 0.150 0.095 0.465 0.594

115 0.150 0.084 0.523 0.611

125 0.150 0.076 0.594 0.674

135 0.150 0.070 0.648 0.660

145 0.150 0.066 0.744 0.694

155 0.150 0.063 0.749 0.716

165 0.150 0.061 0.820 0.467

170 0.150 0.060 0.784 0.210

175 0.150 0.060 0.749 0.045

177 0.150 0.060 0.779 -0.058

179 0.150 0.060 0.782 -0.058

180 0.150 0.060 0.706 -0.006

181 0.150 0.060 0.782 -0.058

183 0.150 0.060 0.779 -0.058

185 0.150 0.060 0.742 -0.352

190 0.150 0.060 0.718 -0.239

195 0.150 0.061 0.894 -0.120

205 0.150 0.063 0.780 0.207

215 0.150 0.066 0.735 0.308

225 0.150 0.070 0.644 0.346

235 0.150 0.076 0.602 0.414

Table 4.11: Model parameters and

outputs of the fourth parametric

study of the chiral model

Figure 4.12: Variation of Poisson’s ratio and

SEA values with the angle change for the

fourth parametric study of the chiral model

In the second angular study of the chiral model, the results are similar to those of

the first angular study as in the hexagon and re-entrant models. The results are

given in Table 4.12 and Figure 4.13. The angle of the base chiral model is 135◦.

While the thickness of the 135◦ model is 0.15 mm, the edges become thinner at lower

angles. Similarly, the edge thicknesses increase from 135◦ to 180◦. After 180◦, the

edge thicknesses drop again. This model also shows two distinct regions where the

Poisson’s ratio changes sign. These are at 180◦ and 200◦. Indeed, the Poisson’s ratio

finely oscillates around zero for the range 177◦-183◦. However, as in the case of

the previous model, the maximum value of SEA is found in the region where the

Poisson’s ratio changes its sign from negative to positive, i.e., around 200◦.
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Angle Thickness Relative SEA Poisson’s
(Degree) (mm) Density (kj/kg) ratio

105 0.111 0.070 0.348 0.712

115 0.125 0.070 0.439 0.574

125 0.138 0.070 0.556 0.670

135 0.150 0.070 0.648 0.660

145 0.160 0.070 0.789 0.685

155 0.168 0.070 0.875 0.706

165 0.173 0.070 0.936 0.420

170 0.174 0.070 0.893 0.230

175 0.175 0.070 0.908 0.013

177 0.176 0.070 0.908 -0.009

179 0.176 0.070 0.888 -0.012

180 0.176 0.070 0.760 0.075

181 0.176 0.070 0.889 -0.012

183 0.176 0.070 0.911 -0.009

185 0.175 0.070 0.910 -0.296

190 0.174 0.070 0.902 -0.233

195 0.173 0.070 0.963 -0.136

205 0.168 0.070 0.881 0.202

215 0.160 0.070 0.783 0.299

225 0.150 0.070 0.668 0.346

235 0.138 0.070 0.566 0.410

Table 4.12: Model parameters

and outputs of the fifth parametric

study of the chiral model

Figure 4.13: Variation of Poisson’s ratio and

SEA values with the angle change for the fifth

parametric study of the chiral model

When all the results are considered, it seems that there is a relationship between the

SEA value and the angle between the inclined edges and the compression direction.

In the six angular change studies conducted in three different lattice geometries, it is

observed that the energy absorption capacity increases as inclined edges are aligned

with the compression direction. Another result that can be concluded from the angle

change studies is that, although SEA is obtained by normalizing the energy absorption

by the weight, the change in thickness, that is, the weight of the model, has an effect

on the SEA. When the thickness is increased together with the angle to maintain the

relative density, the SEA value also increases, and when the thickness is decreased

together with the angle, the SEA value also decreases. If the SEA values are examined

by increasing the thickness in the models, meaningful values may not be obtained

after a certain thickness. Because with the excessive increase in thickness, the locking

strain decreases, and the Plateau region and SEA decrease too much. For example,

if the thickness is 3.0 mm instead of 0.3 mm in the hexagonal lattice model, the
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theoretical locking strain becomes 0.03 according to Equation (3.2). In this case,

there may be no gap between the locking and critical strains from which plateau

stress and SEA were calculated.

Another significant output is the thickness of the edges perpendicular and parallel to

the compression direction. Especially in models where vertical and horizontal edges

are added, and the thickness of these edges is increased, the increase in SEA is visible.

However, the increase only continues up to a certain thickness. Suppose the thickness

of the vertical or close-to-vertical elements is too high. In that case, the horizontal

or close-to-horizontal elements that provide the connection between the vertical and

close-to-vertical elements become too thin, and the load cannot be carried properly.

Suppose the thickness of the horizontal or close-to-horizontal elements is too much.

In that case, the SEA value decreases due to very low thicknesses of the vertical or

close-to-vertical elements already carrying the load. Here, an optimization study can

be conducted between the thicknesses of the edges.

As mentioned in the introduction, some studies in the literature claim that the

auxetic properties of structures and energy absorption are proportional. Since auxetic

materials contract in the direction perpendicular to the main compression direction,

it is expected that they can better resist external loads, and since the edges start to

touch each other at small strain values, the friction energy, and therefore the SEA

value, is expected to increase. In addition, since the relative density of the deformed

structure increases as it is compressed, it is logical that it can carry more load

because of its relative density. When looking at the studies where horizontal elements

are added to the chiral model, a linear relationship can be established between the

auxetic properties of the model and the SEA. Again, when looking at the angular

studies of the chiral model, the largest values of SEA occur when the structure is

auxetic. However, when all studies are considered, the load-carrying capabilities of

the edges of the lattice seriously affect the SEA value. Increasing the thickness of

the vertical edges or aligning inclined elements towards the compression direction

directly increases the SEA value. When examining the energy absorption capabilities

of lattice structures, this feature should be considered at least as much as the auxetic

property. According to the results of most studies, SEA is not high in models that

show very auxetic properties because the structure’s stiffness is sacrificed to make it
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auxetic. It is observed in most models that Poisson’s ratios being zero or close to zero

rather than being negative (auxetic) causes SEA to increase more.
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CHAPTER 5

CONCLUSION

This thesis provides a comprehensive computational exploration of the energy

absorption capacities of hexagonal, re-entrant, and chiral lattice structures. By

systematically varying geometric parameters such as thickness, angle, and additional

elements, this study has uncovered critical insights into the interplay between

lattice geometry and mechanical performance, particularly emphasizing the role of

Poisson’s ratio.

Through five detailed parametric studies, the analyses revealed the relationships

between geometric configurations and energy absorption properties. Specifically, it

was observed that lattice structures with transitions in Poisson’s ratio sign consistently

demonstrated superior energy absorption capacities in most cases.

The computational approach employed in this research, utilizing finite element

analysis in ABAQUS/Explicit, has proven to be a robust method for evaluating the

mechanical performance of complex lattice geometries. The ability to simulate and

analyze stress-strain responses, reaction forces, and deformation patterns provides

a solid foundation for understanding and optimizing lattice structures without the

immediate need for costly experimental setups.

The study also highlighted the sensitivity of specific energy absorption (SEA) and

plateau stress to geometric modifications. For instance, increasing the thickness of

specific struts or altering the angle of unit cells significantly influenced the stress-

strain behavior, densification, and overall energy dissipation. The thickness of the

edges parallel or close to parallel to the compression direction and vertical or close

to vertical, as well as the angles of these edges to the compression vector, affect
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the plateau stress, locking strain, Poisson’s ratio, and SEA parameters. Although

a significant relationship has been established between Poisson’s ratio and SEA,

there may be parameters other than Poisson’s ratio that affect the SEA value. More

comprehensive studies should be conducted to examine what affects the SEA value.

In the studies conducted in this thesis, the unit cell numbers forming the lattice

structure were kept constant in parametric studies. Therefore, the aspect ratios of

the structures changed in studies where the angle was changed. Since the models

created have finite sizes, the side boundaries will affect the results at different rates

in each angular model. To keep the results’ effect rate constant, parametric studies

can be conducted with a fixed aspect ratio. For this, the unit cell numbers should

vary from model to model. Changing the aspect ratio also changes the strain rate.

Analyses with constant strain rate values can also be compared.

While this thesis focuses on a particular low-velocity compression, the findings open

avenues for further research into dynamic and multi-axial loading conditions. Future

studies could explore multi-material lattice configurations, the impact of different

speeds, and the integration of machine learning techniques for predictive modeling

and optimization. Additionally, real-world validation of these computational results

through experimental testing would strengthen the applicability of the insights gained.

In conclusion, this thesis bridges fundamental research and practical application

by elucidating the mechanisms governing energy absorption in lattice structures.

The findings advance the understanding of the relationship between geometry and

mechanical behavior and provide a road map for designing advanced materials

tailored for high-performance engineering applications. The work presented here

contributes to the growing knowledge of lattice structure optimization. It underscores

the transformative potential of these structures in fields ranging from aerospace to

biomedical engineering.
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Appendix A

RESULTS OF ALL PARAMETRIC MODELS

As mentioned in Chapter 4, the results of all models created parametrically are not

shared because, in some models, the Poisson ratio does not change the sign or does

not approach zero. In addition, the Poisson ratios of the structures are shared only

at 0.015 strain. This section shares the SEA results of all parametric studies and the

Poisson’s ratios at strain values of 0.004, 0.015, 0.05, 0.1. A table was given for each

parametric study. The geometric parameters are shown in the first three columns of

the tables, the SEA results are shown in the fourth column, and the Poisson ratios

at strain values of 0.004, 0.015, and 0.1 are shown in the fifth, sixth, seventh, and

eighth columns, respectively. Four graphs show how the Poisson ratio and SEA values

change for each parametric model according to the thickness or angle change in the

models. Each graph shows a different strain value. The Poisson ratio axis and line

in the graphs are the same color as the corresponding column in the table, and the

SEA axis and line are shown in blue. The results for all models are shown below,

respectively.

97



A.1 Hexagonal Lattice

Thickness of Sections (mm) SEA Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
Base Horizontal Inclined (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

0.3 0.35 0.2758 0.74 1.36 1.03 0.77 0.49

0.3 0.3 0.3 0.89 1.30 1.02 0.74 0.48

0.3 0.25 0.3242 1.11 1.24 1.02 0.75 0.48

0.3 0.2 0.3484 1.20 1.16 1.01 0.69 0.39

0.3 0.15 0.3726 1.28 1.10 0.98 0.58 0.31

0.3 0.125 0.4588 1.33 1.07 0.96 0.52 0.28

0.3 0.1 0.3968 1.18 1.03 0.77 0.08 0.06

0.3 0.075 0.4830 1.06 0.97 0.31 -0.07 -0.03

0.3 0.05 0.4951 0.83 0.90 0.14 0.03 -0.08

0.3 0.025 0.5072 0.84 0.59 -0.18 -0.55 -1.43

0.3 0.01 0.4403 0.72 0.27 -0.38 -1.05 -1.97

0.3 0.0075 0.5157 0.67 0.21 -0.35 -1.07 -2.04

0.3 0.005 0.4427 0.47 0.17 -0.24 -0.92 -1.70

0.3 0.001 0.4464 0.39 0.08 -0.15 -0.47 -0.80

Table A.1: Model parameters, SEA, and Poisson’s ratio for 0.004, 0.015, 0.05, and

0.1 strains of the first parametric study of the hexagonal lattice

(a) at strain 0.004 (b) at strain 0.015

(c) at strain 0.05 (d) at strain 0.1

Figure A.1: Variation of Poisson’s ratio and SEA values with the thickness change

for the first parametric study of the hexagonal lattice
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Thickness of Sections (mm) SEA Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
Base Hexagonal Additional (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

0.3 0.300 0 0.89 1.30 1.02 0.74 0.48

0.3 0.299 0.001 0.96 1.25 1.02 0.73 0.47

0.3 0.297 0.005 0.96 1.11 1.02 0.74 0.47

0.3 0.293 0.01 1.12 1.00 1.01 0.74 0.45

0.3 0.267 0.05 2.06 0.86 0.86 0.45 0.20

0.3 0.251 0.075 2.07 0.63 0.30 0.04 -0.05

0.3 0.234 0.1 1.88 -0.02 -0.17 -0.12 -0.14

0.3 0.226 0.1125 1.85 -0.09 -0.18 -0.18 -0.19

0.3 0.218 0.125 1.62 -0.07 -0.13 -0.14 -0.15

0.3 0.210 0.1375 1.62 -0.11 -0.11 -0.14 -0.17

0.3 0.202 0.15 1.51 -0.05 -0.01 -0.06 -0.08

0.3 0.185 0.175 1.38 0.22 -0.18 -0.35 -0.28

0.3 0.169 0.2 1.30 0.36 -0.26 -0.49 -0.39

0.3 0.136 0.25 1.02 0.14 -0.12 -0.10 -0.11

0.3 0.103 0.3 0.73 0.04 -0.13 -0.11 -0.13

0.3 0.037 0.4 0.13 -0.08 -0.15 -0.16 -0.14

Table A.2: Model parameters, SEA, and Poisson’s ratio for 0.004, 0.015, 0.05, and

0.1 strains of the second parametric study of the hexagonal lattice

(a) at strain 0.004 (b) at strain 0.015

(c) at strain 0.05 (d) at strain 0.1

Figure A.2: Variation of Poisson’s ratio and SEA values with the thickness change

for the second parametric study of the hexagonal lattice
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Thickness of Sections (mm) SEA Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
Base Hexagonal Additional (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

0.3 0.300 0 0.89 1.30 1.02 0.74 0.48

0.3 0.299 0.001 0.90 1.30 1.02 0.74 0.48

0.3 0.297 0.005 0.87 1.29 1.02 0.74 0.48

0.3 0.294 0.01 0.85 1.28 1.02 0.74 0.48

0.3 0.272 0.05 0.84 1.09 1.03 0.79 0.51

0.3 0.243 0.1 0.95 1.13 0.97 0.73 0.49

0.3 0.215 0.15 1.26 1.00 0.65 0.33 0.21

0.3 0.186 0.2 1.45 0.91 0.48 0.18 0.15

0.3 0.158 0.25 1.64 0.94 0.36 0.09 0.09

0.3 0.129 0.3 1.66 0.86 0.36 0.00 -0.04

0.3 0.073 0.4 1.14 0.93 -0.13 -1.38 -2.12

0.3 0.044 0.45 0.91 0.97 -1.33 -2.77 -3.35

0.3 0.030 0.475 0.75 0.63 -1.35 -3.16 -3.66

0.3 0.016 0.5 0.56 0.35 -1.41 -3.42 -4.25

0.3 0.002 0.525 0.30 0.09 -0.59 -1.16 -1.79

0.3 0.001 0.526 0.30 0.09 -0.63 -1.07 -1.44

Table A.3: Model parameters, SEA, and Poisson’s ratio for 0.004, 0.015, 0.05, and

0.1 strains of the third parametric study of the hexagonal lattice

(a) at strain 0.004 (b) at strain 0.015

(c) at strain 0.05 (d) at strain 0.1

Figure A.3: Variation of Poisson’s ratio and SEA values with the thickness change

for the third parametric study of the hexagonal lattice
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Angle Thickness Relative SEA Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
(Degree) (mm) Density (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

120 0.300 0.0693 0.89 1.30 1.02 0.74 0.48

115 0.300 0.0698 1.04 1.75 1.35 0.95 0.59

110 0.300 0.0714 1.17 2.36 1.81 1.23 0.75

105 0.300 0.0740 1.17 3.26 2.44 1.66 1.08

100 0.300 0.0779 1.43 5.22 3.23 1.81 1.01

97.5 0.300 0.0803 1.37 6.75 3.74 1.96 1.09

95 0.300 0.0831 1.41 7.86 4.35 2.11 1.24

93 0.300 0.0856 1.40 6.63 4.56 2.16 1.23

91 0.300 0.0885 1.50 2.60 1.00 0.40 0.19

90 0.300 0.0900 1.43 -0.18 0.25 0.28 0.28

89 0.300 0.0916 1.47 -2.78 -1.35 -0.71 -0.32

87 0.300 0.0951 1.40 -7.54 -4.66 -2.35 -1.64

85 0.300 0.0990 1.47 -9.64 -5.08 -2.72 -2.21

82.5 0.300 0.1044 1.25 -9.07 -4.64 -2.93 -2.31

80 0.300 0.1106 0.87 -7.72 -4.55 -3.06 -2.32

75 0.300 0.1257 1.18 -5.91 -4.23 -3.31 -2.51

70 0.300 0.1456 0.99 -5.24 -3.95 -3.45 -2.01

Table A.4: Model parameters, SEA, and Poisson’s ratio for 0.004, 0.015, 0.05, and

0.1 strains of the fourth parametric study of the hexagonal lattice

(a) at strain 0.004 (b) at strain 0.015

(c) at strain 0.05 (d) at strain 0.1

Figure A.4: Variation of Poisson’s ratio and SEA values with the thickness change

for the fourth parametric study of the hexagonal lattice
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Angle Thickness Relative SEA Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
(Degree) (mm) Density (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

120 0.300 0.0693 0.89 1.30 1.02 0.74 0.48

115 0.298 0.0693 1.05 1.73 1.35 0.96 0.60

110 0.291 0.0693 1.16 2.28 1.81 1.27 0.79

105 0.281 0.0693 1.11 3.14 2.42 1.70 1.18

100 0.267 0.0693 1.24 4.86 3.19 1.98 1.15

97.5 0.259 0.0693 1.24 6.43 3.75 2.19 1.26

95 0.250 0.0693 1.28 6.80 4.50 2.37 1.38

93 0.243 0.0693 1.17 6.02 4.86 2.45 1.64

91 0.235 0.0693 1.21 2.18 1.41 0.65 0.27

90 0.231 0.0693 1.32 0.07 0.38 0.19 0.13

89 0.227 0.0693 1.22 -2.19 -0.76 -0.44 -0.16

87 0.219 0.0693 1.08 -6.55 -5.20 -3.09 -2.13

85 0.210 0.0693 1.13 -7.08 -5.51 -3.21 -2.43

82.5 0.199 0.0693 0.90 -8.20 -4.89 -3.00 -2.34

80 0.188 0.0693 0.81 -6.17 -4.69 -3.03 -2.31

75 0.165 0.0693 0.70 -5.10 -4.29 -3.17 -2.50

70 0.143 0.0693 0.41 -4.15 -3.96 -3.24 -2.10

Table A.5: Model parameters, SEA, and Poisson’s ratio for 0.004, 0.015, 0.05, and

0.1 strains of the fifth parametric study of the hexagonal lattice

(a) at strain 0.004 (b) at strain 0.015

(c) at strain 0.05 (d) at strain 0.1

Figure A.5: Variation of Poisson’s ratio and SEA values with the thickness change

for the fifth parametric study of the hexagonal lattice
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A.2 Re-entrant Lattice

Thickness of Sections (mm) SEA Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
Base Horizontal Inclined (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

0.225 0.4 0.056 0.10 -0.85 -1.07 -0.93 -0.80

0.225 0.35 0.104 0.19 -1.29 -1.21 -0.97 -0.80

0.225 0.3 0.152 0.26 -1.27 -1.03 -0.93 -0.73

0.225 0.25 0.201 0.45 -1.22 -1.02 -0.85 -0.63

0.225 0.225 0.225 0.56 -1.19 -1.02 -0.80 -0.63

0.225 0.2 0.249 0.76 -1.15 -1.02 -0.79 -0.62

0.225 0.15 0.298 0.70 -1.06 -0.99 -0.67 -0.53

0.225 0.1 0.346 0.60 -0.98 -0.94 -0.71 -0.59

0.225 0.05 0.394 0.77 -0.97 -1.22 -1.68 -1.41

0.225 0.01 0.433 0.71 -0.52 -1.45 -1.98 -3.31

0.225 0.001 0.442 0.31 -0.27 -0.81 -0.96 -1.07

Table A.6: Model parameters, SEA, and Poisson’s ratio for 0.004, 0.015, 0.05, and

0.1 strains of the first parametric study of the re-entrant lattice

(a) at strain 0.004 (b) at strain 0.015

(c) at strain 0.05 (d) at strain 0.1

Figure A.6: Variation of Poisson’s ratio and SEA values with the thickness change

for the first parametric study of the re-entrant lattice
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Thickness of Sections (mm) SEA Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
Base Re-entrant Additional (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

0.225 0.225 0 0.56 -1.19 -1.02 -0.80 -0.63

0.225 0.225 0.001 0.55 -1.19 -1.02 -0.81 -0.64

0.225 0.224 0.005 0.57 -1.20 -1.02 -0.82 -0.64

0.225 0.223 0.01 0.61 -1.22 -1.02 -0.84 -0.65

0.225 0.200 0.1 1.03 -0.50 -0.76 -0.49 -0.48

0.225 0.194 0.125 1.31 -0.08 -0.43 -0.37 -0.32

0.225 0.188 0.15 1.32 -0.02 -0.24 -0.20 -0.17

0.225 0.182 0.175 1.38 0.02 -0.15 -0.13 -0.15

0.225 0.175 0.2 1.28 0.03 -0.18 -0.14 -0.16

0.225 0.163 0.25 1.13 0.04 -0.20 -0.16 -0.16

0.225 0.151 0.3 1.27 0.03 -0.18 -0.16 -0.16

0.225 0.126 0.4 0.86 0.03 -0.07 -0.11 -0.10

0.225 0.101 0.5 0.62 0.01 -0.04 -0.12 -0.14

0.225 0.076 0.6 0.36 -0.06 -0.06 -0.12 -0.18

0.225 0.052 0.7 0.12 -0.02 -0.01 -0.10 -0.08

0.225 0.027 0.8 0.03 -0.06 -0.02 -0.07 -0.07

Table A.7: Model parameters, SEA, and Poisson’s ratio for 0.004, 0.015, 0.05, and

0.1 strains of the second parametric study of the re-entrant lattice

(a) at strain 0.004 (b) at strain 0.015

(c) at strain 0.05 (d) at strain 0.1

Figure A.7: Variation of Poisson’s ratio and SEA values with the thickness change

for the second parametric study of the re-entrant lattice
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Thickness of Sections (mm) SEA Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
Base Re-entrant Additional (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

0.225 0.225 0 0.56 -1.19 -1.02 -0.80 -0.63

0.225 0.225 0.001 0.56 -1.17 -1.02 -0.79 -0.64

0.225 0.223 0.005 0.54 -1.13 -1.02 -0.78 -0.59

0.225 0.221 0.01 0.54 -1.11 -1.02 -0.81 -0.63

0.225 0.204 0.05 0.62 -1.04 -1.03 -0.89 -0.71

0.225 0.182 0.1 0.87 -1.04 -0.98 -0.65 -0.46

0.225 0.161 0.15 0.89 -1.16 -0.99 -0.60 -0.18

0.225 0.139 0.2 0.82 -1.24 -1.02 -0.76 -0.37

0.225 0.118 0.25 0.87 -1.27 -1.17 -1.40 -1.00

0.225 0.096 0.3 0.58 -1.33 -0.82 -0.85 -0.84

0.225 0.054 0.4 0.85 -1.05 -1.25 -0.69 -0.84

Table A.8: Model parameters, SEA, and Poisson’s ratio for 0.004, 0.015, 0.05, and

0.1 strains of the third parametric study of the re-entrant lattice

(a) at strain 0.004 (b) at strain 0.015

(c) at strain 0.05 (d) at strain 0.1

Figure A.8: Variation of Poisson’s ratio and SEA values with the thickness change

for the third parametric study of the re-entrant lattice
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Angle Thickness Relative SEA Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
(Degree) (mm) Density (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

60 0.225 0.0693 0.56 -1.19 -1.02 -0.80 -0.63

65 0.225 0.0630 0.63 -1.53 -1.22 -0.90 -0.72

70 0.225 0.0578 0.84 -1.89 -1.47 -1.08 -0.78

75 0.225 0.0535 0.77 -2.25 -1.73 -1.10 -0.84

80 0.225 0.0500 0.80 -2.97 -2.06 -1.12 -0.84

82.5 0.225 0.0486 0.78 -4.33 -2.33 -1.20 -0.87

85 0.225 0.0472 0.85 -2.91 -2.69 -1.60 -1.08

87 0.225 0.0463 0.81 -2.10 -1.80 -0.82 -0.47

89 0.225 0.0454 0.83 -0.72 0.02 -0.01 -0.07

90 0.225 0.0450 0.90 0.02 -0.03 -0.16 -0.25

91 0.225 0.0446 0.92 0.86 0.47 0.21 0.14

93 0.225 0.0439 0.88 2.10 1.73 0.77 0.44

95 0.225 0.0433 0.92 2.53 2.30 1.16 0.73

97.5 0.225 0.0426 0.84 3.75 2.06 1.03 0.62

100 0.225 0.0420 0.83 2.43 1.69 0.91 0.54

105 0.225 0.0412 0.76 1.57 1.29 0.81 0.46

110 0.225 0.0409 0.69 1.20 0.99 0.73 0.50

115 0.225 0.0410 0.65 0.87 0.76 0.57 0.37

120 0.225 0.0416 0.62 0.60 0.58 0.46 0.29

Table A.9: Model parameters, SEA, and Poisson’s ratio for 0.004, 0.015, 0.05, and

0.1 strains of the fourth parametric study of the re-entrant lattice

(a) at strain 0.004 (b) at strain 0.015

(c) at strain 0.05 (d) at strain 0.1

Figure A.9: Variation of Poisson’s ratio and SEA values with the thickness change

for the fourth parametric study of the re-entrant lattice
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Angle Thickness Relative SEA Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
(Degree) (mm) Density (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

60 0.225000 0.0693 0.56 -1.19 -1.02 -0.80 -0.63

65 0.247613 0.0693 0.68 -1.60 -1.23 -0.89 -0.70

70 0.269852 0.0693 0.93 -1.97 -1.47 -1.05 -0.76

75 0.291305 0.0693 0.92 -2.61 -1.72 -0.98 -0.78

80 0.311528 0.0693 1.06 -3.59 -2.02 -1.07 -0.81

82.5 0.321032 0.0693 1.07 -3.91 -2.23 -1.14 -0.85

85 0.330054 0.0693 1.21 -3.89 -2.55 -1.29 -0.89

87 0.336883 0.0693 1.13 -2.57 -2.50 -1.36 -1.02

89 0.343335 0.0693 1.08 -0.74 -0.57 -0.25 -0.23

90 0.346410 0.0693 1.33 0.05 0.28 0.05 -0.05

91 0.349380 0.0693 1.35 0.76 0.57 0.08 -0.12

93 0.354988 0.0693 1.31 2.41 2.36 1.18 0.76

95 0.360130 0.0693 1.39 3.44 2.25 1.14 0.66

97.5 0.365861 0.0693 1.30 3.25 1.90 0.98 0.58

100 0.370767 0.0693 1.25 2.74 1.67 0.90 0.52

105 0.377908 0.0693 1.17 1.72 1.30 0.79 0.42

110 0.381186 0.0693 1.10 1.16 1.00 0.71 0.44

115 0.380296 0.0693 1.02 0.85 0.77 0.58 0.37

120 0.375000 0.0693 0.91 0.69 0.60 0.46 0.31

Table A.10: Model parameters, SEA, and Poisson’s ratio for 0.004, 0.015, 0.05, and

0.1 strains of the fifth parametric study of the re-entrant lattice

(a) at strain 0.004 (b) at strain 0.015

(c) at strain 0.05 (d) at strain 0.1

Figure A.10: Variation of Poisson’s ratio and SEA values with the thickness change

for the fifth parametric study of the re-entrant lattice
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A.3 Chiral Lattice

Thickness of Sections (mm) SEA Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
Base Horizontal Inclined (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

0.15 0.275 0.025 0.44 0.11 0.12 0.12 0.10

0.15 0.25 0.050 0.47 0.16 0.18 0.08 0.10

0.15 0.225 0.075 0.51 0.24 0.23 0.12 0.11

0.15 0.2 0.100 0.65 0.36 0.35 0.17 0.13

0.15 0.175 0.125 0.71 0.49 0.57 0.34 0.23

0.15 0.15 0.150 0.74 0.55 0.66 0.41 0.32

0.15 0.125 0.175 0.67 0.51 0.70 0.28 0.26

0.15 0.1 0.200 0.69 0.40 0.58 0.22 0.22

0.15 0.075 0.225 0.51 0.27 0.16 0.25 0.12

0.15 0.05 0.250 0.48 0.19 0.32 0.13 -0.08

0.15 0.025 0.275 0.30 0.12 0.10 0.08 -0.69

Table A.11: Model parameters, SEA, and Poisson’s ratio for 0.004, 0.015, 0.05, and

0.1 strains of the first parametric study of the chiral lattice

(a) at strain 0.004 (b) at strain 0.015

(c) at strain 0.05 (d) at strain 0.1

Figure A.11: Variation of Poisson’s ratio and SEA values with the thickness change

for the first parametric study of the chiral lattice
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Thickness of Sections (mm) SEA Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
Base Chiral Additional (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

0.15 0.150 0 0.74 0.55 0.66 0.41 0.32

0.15 0.150 0.001 0.68 0.51 0.64 0.32 0.26

0.15 0.148 0.005 0.81 0.23 0.41 0.27 0.17

0.15 0.148 0.0075 0.86 0.04 0.19 0.19 0.14

0.15 0.147 0.01 0.98 -0.15 0.09 0.11 0.09

0.15 0.144 0.02 0.97 -0.45 0.00 -0.03 -0.04

0.15 0.141 0.03 0.91 -0.51 0.03 -0.07 -0.07

0.15 0.137 0.04 0.89 -0.56 0.03 -0.10 -0.09

0.15 0.134 0.05 0.78 -0.60 0.02 -0.10 -0.09

0.15 0.127 0.075 0.71 -0.67 -0.04 -0.10 -0.07

0.15 0.119 0.1 0.80 -0.73 -0.16 -0.12 -0.08

0.15 0.103 0.15 0.85 -0.79 -0.32 -0.17 -0.19

0.15 0.087 0.2 0.77 -0.79 -0.11 -0.27 -0.31

0.15 0.072 0.25 0.66 -0.64 -0.47 -0.33 -0.29

Table A.12: Model parameters, SEA, and Poisson’s ratio for 0.004, 0.015, 0.05, and

0.1 strains of the second parametric study of the chiral lattice

(a) at strain 0.004 (b) at strain 0.015

(c) at strain 0.05 (d) at strain 0.1

Figure A.12: Variation of Poisson’s ratio and SEA values with the thickness change

for the second parametric study of the chiral lattice

109



Thickness of Sections (mm) SEA Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
Base Chiral Additional (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

0.15 0.150 0 0.74 0.55 0.66 0.41 0.32

0.15 0.150 0.001 0.75 0.49 0.66 0.39 0.30

0.15 0.148 0.005 0.65 0.27 0.68 0.40 0.29

0.15 0.147 0.01 0.66 0.13 0.69 0.40 0.28

0.15 0.142 0.025 0.65 -0.02 0.67 0.38 0.27

0.15 0.134 0.05 0.69 -0.16 0.03 0.11 0.11

0.15 0.130 0.0625 0.74 -0.18 -0.06 0.00 0.04

0.15 0.127 0.075 0.81 -0.18 -0.09 -0.04 0.00

0.15 0.123 0.0875 0.96 -0.18 -0.10 -0.17 -0.08

0.15 0.119 0.1 1.12 -0.18 -0.09 -0.19 -0.16

0.15 0.111 0.125 1.36 -0.19 -0.09 -0.21 -0.31

0.15 0.103 0.15 1.44 -0.19 -0.15 -0.21 -0.31

0.15 0.087 0.2 1.69 -0.21 -0.20 -0.25 -0.31

0.15 0.072 0.25 1.45 -0.18 -0.23 -0.25 -0.31

Table A.13: Model parameters, SEA, and Poisson’s ratio for 0.004, 0.015, 0.05, and

0.1 strains of the third parametric study of the chiral lattice

(a) at strain 0.004 (b) at strain 0.015

(c) at strain 0.05 (d) at strain 0.1

Figure A.13: Variation of Poisson’s ratio and SEA values with the thickness change

for the third parametric study of the chiral lattice

110



Angle Thickness Relative SEA Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
(Degree) (mm) Density (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

105 0.150 0.0953 0.47 0.17 0.59 0.55 0.56

115 0.150 0.0844 0.52 0.25 0.61 0.52 0.46

125 0.150 0.0763 0.59 0.36 0.67 0.42 0.38

135 0.150 0.0703 0.65 0.55 0.66 0.41 0.32

145 0.150 0.0660 0.74 0.77 0.69 0.42 0.12

155 0.150 0.0629 0.75 0.90 0.72 0.24 0.11

165 0.150 0.0610 0.82 0.81 0.47 0.11 0.03

170 0.150 0.0605 0.78 0.93 0.21 0.03 -0.01

175 0.150 0.0601 0.75 0.93 0.05 -0.02 -0.09

177 0.150 0.0600 0.78 0.75 -0.06 -0.06 -0.12

179 0.150 0.0600 0.78 0.78 -0.06 -0.05 -0.12

180 0.150 0.0600 0.71 0.09 -0.01 -0.13 -0.10

181 0.150 0.0600 0.78 0.77 -0.06 -0.05 -0.12

183 0.150 0.0600 0.78 0.74 -0.06 -0.06 -0.12

185 0.150 0.0601 0.74 -0.56 -0.35 -0.19 -0.17

190 0.150 0.0605 0.72 -0.12 -0.24 -0.13 -0.08

195 0.150 0.0610 0.89 0.01 -0.12 -0.14 -0.12

205 0.150 0.0629 0.78 0.36 0.21 0.00 -0.03

215 0.150 0.0660 0.73 0.37 0.31 0.14 -0.06

225 0.150 0.0703 0.64 0.25 0.35 0.24 0.15

235 0.150 0.0763 0.60 0.13 0.41 0.26 0.23

Table A.14: Model parameters, SEA, and Poisson’s ratio for 0.004, 0.015, 0.05, and

0.1 strains of the fourth parametric study of the chiral lattice

(a) at strain 0.004 (b) at strain 0.015

(c) at strain 0.05 (d) at strain 0.1

Figure A.14: Variation of Poisson’s ratio and SEA values with the thickness change

for the fourth parametric study of the chiral lattice
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Angle Thickness Relative SEA Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
(Degree) (mm) Density (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

105 0.111 0.0703 0.35 0.13 0.71 0.57 0.13

115 0.125 0.0703 0.44 0.21 0.57 0.46 0.21

125 0.138 0.0703 0.56 0.33 0.67 0.40 0.33

135 0.150 0.0703 0.65 0.55 0.66 0.41 0.55

145 0.160 0.0703 0.79 0.78 0.69 0.41 0.78

155 0.168 0.0703 0.88 0.86 0.71 0.24 0.86

165 0.173 0.0703 0.94 0.81 0.42 0.09 0.81

170 0.174 0.0703 0.89 0.87 0.23 0.04 0.87

175 0.175 0.0703 0.91 0.88 0.01 -0.03 0.88

177 0.176 0.0703 0.91 0.69 -0.01 -0.04 0.69

179 0.176 0.0703 0.89 0.71 -0.01 -0.04 0.71

180 0.176 0.0703 0.76 0.16 0.07 0.02 0.16

181 0.176 0.0703 0.89 0.71 -0.01 -0.04 0.71

183 0.176 0.0703 0.91 0.68 -0.01 -0.04 0.68

185 0.175 0.0703 0.91 -0.49 -0.30 -0.13 -0.49

190 0.174 0.0703 0.90 -0.14 -0.23 -0.11 -0.14

195 0.173 0.0703 0.96 0.03 -0.14 -0.12 0.03

205 0.168 0.0703 0.88 0.33 0.20 -0.01 0.33

215 0.160 0.0703 0.78 0.40 0.30 0.13 0.40

225 0.150 0.0703 0.67 0.25 0.35 0.24 0.25

235 0.138 0.0703 0.57 0.11 0.41 0.24 0.11

Table A.15: Model parameters, SEA, and Poisson’s ratio for 0.004, 0.015, 0.05, and

0.1 strains of the fifth parametric study of the chiral lattice

(a) at strain 0.004 (b) at strain 0.015

(c) at strain 0.05 (d) at strain 0.1

Figure A.15: Variation of Poisson’s ratio and SEA values with the thickness change

for the fifth parametric study of the chiral lattice
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Appendix B

ENERGY CONSERVATION AND SEA CALCULATION

A comparison was made with two studies in the literature to check the accuracy of the

analysis methods in the parametric studies in Chapter 2. In addition, the conservation

of energy of the structures can be examined throughout the analysis. Especially in

explicitly solved analyses, energy conservation should be checked throughout the

analysis. Tables B.1, B.2, and B.3 give the energy results at different strain values

during the compression analysis of the three base models in milijoules. The energy

results are the values from Abaqus, and energy terms of a compressed structure are

described in [24] as follows.

ETOTAL = EI + EV + EKE + EFD − EW (B.1)

EI = EE + EP + ECD + EA, (B.2)

where EW is external work, EFD is frictional dissipated energy, EKE is kinetic

energy, EV is viscous dissipated energy, and EI is internal energy. Internal energy is

given as the sum of four energies. EE is elastic strain energy, EP is plastic dissipated

energy, EA is artificial strain energy. ECD is energy dissipated by viscoelasticity, but

since the material model is elastic perfectly plastic, this energy was read as zero in all

models.
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ϵ EE EP EA EV EFD EKE EW ETOTAL

ϵ0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 1.6

ϵ0.004 7.1 1.6 0.1 0.3 0.6 7.0 15.1 1.6

ϵ0.015 19.0 39.1 0.8 1.0 2.0 6.6 67.1 1.6

ϵ0.05 12.8 167.9 0.9 1.1 2.0 9.0 192.2 1.6

ϵ0.1 14.7 317.9 1.1 1.2 2.4 6.0 341.8 1.6

ϵ0.2 15.6 647.2 1.6 3.0 2.9 6.7 673.4 1.6

ϵ0.5 22.8 1726.6 3.9 21.6 12.9 9.5 1771.5 1.6

ϵ0.75 24.5 2882.5 9.4 92.7 122.8 3.3 3029.7 1.7

ϵd 27.3 3270.0 13.2 135.7 165.9 6.5 3465.0 1.7

Table B.1: Energy values in milijoules of the base hexagonal model at different strains

ϵ EE EP EA EV EFD EKE EW ETOTAL

ϵ0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 1.6

ϵ0.004 3.6 0.8 0.1 0.2 0.3 7.1 10.6 1.6

ϵ0.015 13.4 14.5 0.4 1.0 0.9 6.8 35.6 1.6

ϵ0.05 9.9 87.8 0.6 1.0 0.9 11.9 110.7 1.6

ϵ0.1 11.4 184.7 0.8 1.1 1.1 8.6 206.2 1.6

ϵ0.2 12.7 347.7 1.0 1.5 2.0 8.7 372.0 1.6

ϵ0.5 19.9 890.1 2.0 6.4 5.4 5.5 922.9 1.6

ϵ0.75 22.7 1629.5 5.0 37.7 30.3 4.8 1690.1 1.7

ϵd 17.5 2052.8 10.0 102.0 123.1 3.8 2196.8 1.7

Table B.2: Energy values in milijoules of the base re-entrant model at different strains

ϵ EE EP EA EV EFD EKE EW ETOTAL

ϵ0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 1.6

ϵ0.004 4.5 0.3 0.1 0.1 0.8 7.4 11.6 1.6

ϵ0.015 26.5 14.8 0.4 0.1 3.0 4.6 48.0 1.6

ϵ0.05 27.9 121.3 1.1 0.2 17.5 4.2 170.7 1.6

ϵ0.1 35.0 288.4 2.1 1.5 31.0 2.9 358.3 1.6

ϵ0.2 32.3 614.1 3.7 7.9 34.6 3.1 684.8 1.6

ϵ0.5 38.3 1625.3 9.1 71.9 53.8 6.5 1711.9 1.7

ϵ0.75 41.5 2576.4 15.4 157.5 74.9 7.5 2674.4 1.6

ϵd 47.5 3048.5 18.2 237.1 104.0 6.2 3158.3 1.5

Table B.3: Energy values in milijoules of the base chiral model at different strains

The total energy is conserved with small errors in Tables B.1, B.2, and B.3. Most

of the work applied to the structures appears as plastic dissipated energy. The entire

structure has undergone plastic deformation at high strain values. When looking at

the kinetic energy values, there is initial kinetic energy in all models, and its value

is 1.6 milijoules. Initial kinetic energy is the kinetic energy of the upper plate. The

weight of the upper plate is 0.648 gr, its speed is 2.23 m/s. Accordingly, its kinetic
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energy is calculated as 1.6 milijoules according to EKE = 0.5mv2.

The calculation of SEA is given in Section 3.3.1, but it can also be calculated from

the energy results. The sum of the elastic dissipated, inelastic dissipated, viscous

dissipated, and frictional dissipated energies in the locking strain of the models

represents the absorbed part of the work applied to the structure. SEA is calculated

by dividing the sum of the dissipated energies by the weight. The SEA value of the

base hexagonal model is 0.89 kJ/kg when calculated from the stress output, and 0.89

kJ/kg is calculated from the energies. The SEA value of the base re-entrant structure

is 0.56 kJ/kg when calculated from the stress and 0.57 kJ/kg when calculated from

the energies. The SEA calculation for the base chiral model is 0.74 kJ/kg from the

stress diagram and 0.82 kJ/kg from the energy. While almost identical values were

calculated for the hexagon and re-entrant base models with the two methods, similar

SEA values were calculated with a small error for the base chiral model. After finding

the locking strain, both approaches can be preferred.
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Appendix C

COMPUTATION OF POISSON RATIO FROM AREA AND AREA CHANGE

OF DEFORMED SHAPE FOR THE PARAMETRIC HEXAGONAL STUDY

In this section, an alternative method for the computation of Poisson’s ratio is

presented. In the alternative method, displacements of all side boundary points of the

lattice are used. To get all points on the lattice, black and white pixels in the images

were separated with a code written in Matlab. Black pixels define the lattice geometry.

Figure C.1 gives the undeformed hexagonal base model taken from ABAQUS and

the image defined in Matlab. The red dots in Figure C.1b indicate the entire lattice

geometry, and the blue dots indicate the points on the side boundaries of the lattice.

As the lattice is compressed, the images are processed in Matlab, and the area change

is calculated. Figure C.2 shows the base hexagonal model compressed by 0.2 strain

taken from ABAQUS and processed in Matlab.

(a) From ABAQUS (b) From Matlab

Figure C.1: Undeformed base hexagonal lattice
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(a) From ABAQUS (b) From Matlab

Figure C.2: Base hexagonal lattice compressed by 0.2 strain

While creating points on the lattice from pixels in Matlab, coordinate information of

the points is also stored. Areas of structures can be calculated from these coordinates.

Area change can be calculated from the computed areas at each strain value. Poisson’s

ratio can be calculated from the area changes by following the flow below. The

geometrical parameters of the equations are given in Figure C.3. A0 is the initial

area, A is the deformed area of the structure. δx and δy are displacements, L0x and

L0y are initial lengths, Lx and Ly are deformed lengths in the x and y directions,

respectively.

Figure C.3: Geometric parameters related with the inital and deformed structure
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νyx = −ϵx
ϵy

(C.1)

ϵx =
δx
L0x

(C.2)

ϵy =
δy
L0y

(C.3)

A0 = L0yL0x (C.4)

A = (L0x + δx)(L0y + δy) (C.5)

A− A0 = δxL0y + δyL0x + δxδy = ϵxL0xL0y + ϵyL0yL0x + ϵxL0xϵxL0x (C.6)

∆A = A− A0 = L0xL0y(ϵx + ϵy + ϵxϵy) = Aϵy + Aϵx(1 + ϵy) (C.7)

∆A− Aϵy = Aϵx(1 + ϵy) (C.8)

ϵx =
∆A− Aϵy
A(1 + ϵy)

(C.9)

νxy =
∆A− Aϵy
Aϵy(1 + ϵy)

(C.10)

From Equation (C.10), Poisson ratio results for hexagonal lattice are given in Tables

C.1-C.5. Poisson’s ratios in Table A.1-A.5 are computed using forty-seven points.

When the Poisson’s ratio is calculated using all side boundary points, similar results

are obtained.

Thickness of Sections (mm) Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
Base Horizontal Inclined at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

0.3 0.35 0.2758 1.711 0.985 0.687 0.439

0.3 0.3 0.3 0.936 0.883 0.703 0.452

0.3 0.25 0.3242 0.857 0.866 0.675 0.439

0.3 0.2 0.3484 0.800 0.849 0.621 0.335

0.3 0.15 0.3726 0.776 0.821 0.517 0.263

0.3 0.125 0.4588 0.744 0.793 0.464 0.226

0.3 0.1 0.3968 0.731 0.657 0.113 0.058

0.3 0.075 0.4830 0.692 0.298 -0.105 -0.064

0.3 0.05 0.4951 0.628 0.133 0.027 -0.125

0.3 0.025 0.5072 0.434 -0.156 -0.444 -1.207

0.3 0.01 0.4403 0.225 -0.579 -1.594 -2.511

0.3 0.0075 0.5157 0.189 -0.559 -1.711 -2.530

0.3 0.005 0.4427 0.178 -0.258 -1.434 -2.246

0.3 0.001 0.4464 0.124 -0.071 -0.611 -1.315

Table C.1: Poisson’s ratio calculation from area change for the models of the first

parametric study of the hexagonal lattice
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Thickness of Sections (mm) Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
Base Hexagonal Additional at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

0.3 0.300 0 1.711 0.985 0.687 0.439

0.3 0.299 0.001 1.622 0.976 0.676 0.433

0.3 0.297 0.005 0.781 0.868 0.670 0.437

0.3 0.293 0.01 0.699 0.857 0.680 0.409

0.3 0.267 0.05 0.594 0.722 0.411 0.177

0.3 0.251 0.075 0.531 0.645 0.343 0.116

0.3 0.234 0.1 0.441 0.240 0.071 0.037

0.3 0.226 0.1125 0.265 -0.200 -0.369 -0.234

0.3 0.218 0.125 0.104 -0.052 -0.030 -0.014

0.3 0.210 0.1375 0.046 -0.056 -0.052 -0.043

0.3 0.202 0.15 0.002 -0.097 -0.056 -0.057

0.3 0.185 0.175 -0.018 -0.096 -0.089 -0.052

0.3 0.169 0.2 -0.026 -0.089 -0.086 -0.101

0.3 0.136 0.25 -0.019 -0.050 -0.063 -0.073

0.3 0.103 0.3 -0.050 -0.041 -0.090 -0.126

0.3 0.037 0.4 -0.043 -0.020 -0.049 -0.030

Table C.2: Poisson’s ratio calculation from area change for the models of the second

parametric study of the hexagonal lattice

Thickness of Sections (mm) Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
Base Hexagonal Additional at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

0.3 0.300 0 1.711 0.985 0.687 0.439

0.3 0.299 0.001 1.709 0.983 0.683 0.438

0.3 0.297 0.005 0.885 0.873 0.677 0.440

0.3 0.294 0.01 0.881 0.873 0.674 0.438

0.3 0.272 0.05 0.759 0.875 0.694 0.472

0.3 0.243 0.1 0.760 0.808 0.627 0.444

0.3 0.215 0.15 0.680 0.434 0.251 0.136

0.3 0.186 0.2 0.623 0.340 0.143 0.108

0.3 0.158 0.25 0.660 0.278 0.075 0.071

0.3 0.129 0.3 0.603 0.271 -0.012 -0.019

0.3 0.073 0.4 0.613 -0.319 -1.051 -1.516

0.3 0.044 0.45 0.611 -1.305 -2.370 -2.692

0.3 0.030 0.475 0.453 -1.385 -3.053 -3.177

0.3 0.016 0.5 0.302 -1.744 -3.433 -3.663

0.3 0.002 0.525 0.058 -0.375 -1.568 -2.071

0.3 0.001 0.526 0.064 -0.338 -1.412 -1.920

Table C.3: Poisson’s ratio calculation from area change for the models of the third

parametric study of the hexagonal lattice
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Angle Thickness Relative Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
(Degree) (mm) Density at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

120 0.300 0.0693 1.711 0.985 0.687 0.439

115 0.300 0.0698 1.166 1.141 0.831 0.529

110 0.300 0.0714 1.570 1.500 1.107 0.677

105 0.300 0.0740 2.088 1.938 1.414 0.912

100 0.300 0.0779 3.288 2.523 1.518 0.871

97.5 0.300 0.0803 4.235 2.831 1.616 0.921

95 0.300 0.0831 4.975 3.285 1.655 1.014

93 0.300 0.0856 4.451 3.473 1.690 0.991

91 0.300 0.0885 3.194 1.318 0.509 0.204

90 0.300 0.0900 -0.624 -0.271 -0.026 -0.004

89 0.300 0.0916 -3.827 -2.019 -0.893 -0.284

87 0.300 0.0951 -5.072 -3.499 -1.841 -1.216

85 0.300 0.0990 -5.944 -3.710 -2.092 -1.690

82.5 0.300 0.1044 -5.409 -3.358 -2.319 -1.853

80 0.300 0.1106 -4.686 -3.347 -2.428 -1.845

75 0.300 0.1257 -3.579 -3.126 -2.664 -2.009

70 0.300 0.1456 -6.069 -3.251 -2.741 -1.611

Table C.4: Poisson’s ratio calculation from area change for the models of the fourth

parametric study of the hexagonal lattice

Angle Thickness Relative Poisson’s ratio Poisson’s ratio Poisson’s ratio Poisson’s ratio
(Degree) (mm) Density at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

120 0.300 0.0693 1.711 0.985 0.687 0.439

115 0.298 0.0693 1.160 1.138 0.846 0.536

110 0.291 0.0693 1.525 1.557 1.136 0.710

105 0.281 0.0693 2.027 1.921 1.445 0.981

100 0.267 0.0693 3.067 2.825 1.662 0.965

97.5 0.259 0.0693 4.045 3.098 1.806 1.026

95 0.250 0.0693 4.425 3.385 1.857 1.111

93 0.243 0.0693 4.259 3.665 1.917 1.337

91 0.235 0.0693 3.124 1.681 0.645 0.253

90 0.231 0.0693 -1.473 0.172 0.099 0.058

89 0.227 0.0693 -3.503 -1.827 -0.755 -0.262

87 0.219 0.0693 -4.749 -4.618 -2.564 -1.697

85 0.210 0.0693 -9.110 -4.586 -2.535 -1.889

82.5 0.199 0.0693 -4.923 -3.554 -2.350 -1.842

80 0.188 0.0693 -7.490 -3.933 -2.391 -1.861

75 0.165 0.0693 -6.043 -3.622 -2.501 -1.992

70 0.143 0.0693 -4.847 -3.379 -2.482 -1.622

Table C.5: Poisson’s ratio calculation from area change for the models of the fifth

parametric study of the hexagonal lattice

The hexagonal model’s first and fourth parametric studies are presented to determine

whether there is a relationship between SEA and area change. Area change is the

difference between the area of the deformed structure and the undeformed structure,
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and it is formulated in Equation (C.7). In Table C.6, the area change values of the

first parametric study are given, and the areas of the models decreased in all strain

values. The area change is directly proportional to Poisson’s ratios given in Table

C.1. When Poisson’s ratio is around 1, there seems to be no area change, but the

area decreases as Poisson’s ratio values decrease. The fourth parametric study of the

hexagonal lattice in Table C.7 revealed that the areas of models with an angle larger

than 90◦ increased, and the areas of models smaller than 90◦ decreased. The size of

the area change is again directly proportional to the Poisson’s ratios given in Table

C.4. Similar comments can be made as before. In other words, the area change of

the lattice structures is directly proportional to Poisson’s ratio. If Poisson’s ratio is

greater than 1, the area becomes larger; if it is smaller, the area becomes smaller.

Thickness of Sections (mm) SEA Area Change Area Change Area Change Area Change
Base Horizontal Inclined (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

0.3 0.35 0.2758 0.74 0.002 -0.001 -0.016 -0.055

0.3 0.3 0.3 0.89 0.000 -0.003 -0.015 -0.054

0.3 0.25 0.3242 1.11 -0.001 -0.003 -0.017 -0.055

0.3 0.2 0.3484 1.20 -0.001 -0.003 -0.019 -0.064

0.3 0.15 0.3726 1.28 -0.001 -0.004 -0.024 -0.069

0.3 0.125 0.4588 1.33 -0.001 -0.004 -0.026 -0.073

0.3 0.1 0.3968 1.18 -0.001 -0.007 -0.042 -0.087

0.3 0.075 0.4830 1.06 -0.002 -0.014 -0.052 -0.097

0.3 0.05 0.4951 0.83 -0.002 -0.017 -0.046 -0.102

0.3 0.025 0.5072 0.84 -0.003 -0.023 -0.067 -0.192

0.3 0.01 0.4403 0.72 -0.004 -0.031 -0.118 -0.300

0.3 0.0075 0.5157 0.67 -0.004 -0.031 -0.123 -0.301

0.3 0.005 0.4427 0.47 -0.004 -0.025 -0.111 -0.278

0.3 0.001 0.4464 0.39 -0.004 -0.018 -0.074 -0.201

Table C.6: Area changes for 0.004, 0.015, 0.05, and 0.1 strains of the first parametric

study of the hexagonal lattice
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Angle Thickness Relative SEA Area Change Area Change Area Change Area Change
(Degree) (mm) Density (kj/kg) at strain 0.004 at strain 0.015 at strain 0.05 at strain 0.1

120 0.300 0.0693 0.89 0.002 -0.001 -0.016 -0.055

115 0.300 0.0698 1.04 0.001 0.002 -0.010 -0.049

110 0.300 0.0714 1.17 0.003 0.009 0.003 -0.035

105 0.300 0.0740 1.17 0.005 0.018 0.016 -0.016

100 0.300 0.0779 1.43 0.011 0.029 0.021 -0.019

97.5 0.300 0.0803 1.37 0.016 0.035 0.025 -0.015

95 0.300 0.0831 1.41 0.020 0.044 0.028 -0.008

93 0.300 0.0856 1.40 0.017 0.048 0.030 -0.009

91 0.300 0.0885 1.50 0.011 0.006 -0.025 -0.074

90 0.300 0.0900 1.43 -0.008 -0.022 -0.048 -0.092

89 0.300 0.0916 1.47 -0.024 -0.052 -0.087 -0.115

87 0.300 0.0951 1.40 -0.030 -0.088 -0.136 -0.192

85 0.300 0.0990 1.47 -0.034 -0.092 -0.148 -0.237

82.5 0.300 0.1044 1.25 -0.032 -0.085 -0.151 -0.245

80 0.300 0.1106 0.87 -0.028 -0.085 -0.155 -0.245

75 0.300 0.1257 1.18 -0.023 -0.080 -0.166 -0.258

70 0.300 0.1456 0.99 -0.018 -0.073 -0.170 -0.226

Table C.7: Area changes for 0.004, 0.015, 0.05, and 0.1 strains of the fourth

parametric study of the hexagonal lattice
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Appendix D

EFFECT OF FRICTION COEFFICIENT ON PLATEAU STRESS AND SEA

FOR HEXAGONAL BASE MODEL

In all parametric studies conducted within the scope of the thesis, it is stated in Section

3.2.1 that the friction coefficient is taken as 0.3. The increase in the friction coefficient

is expected to increase the stress on the structure because extra forces arise due to the

contact of the surfaces. The analyses were repeated in the base hexagonal model for

the three additional friction coefficients. Except for 0.3, the friction coefficients were

selected as 0.0, 0.6, and 1.0. The plateau stress and SEA results of the analyses are

shown in Table D.1. The energy absorption value, which is 0.824 kJ/kg when the

friction coefficient is 0.0, increased to 0.887 kJ/kg at the friction coefficient of 0.3

and 1.075 at 0.6. However, when the friction coefficient is 1.0, the SEA is slightly

lower than 0.6. The plateau stress values of the models with 0.6 and 1.0 friction

coefficients were 0.25 MPa. The SEA is found to be lower in the model with a 1.0

friction coefficient because the gap between the locking strain and critical strain is

smaller. It can be concluded that the increase in the friction coefficient leads to larger

SEA values up to a particular value beyond which SEA decreases.

Friction Coefficient Plateau Stress (MPa) SEA (kj/kg)

0 0.1914 0.8235

0.3 0.2082 0.8873

0.6 0.2502 1.0751

1 0.2502 1.0654

Table D.1: Effect of friction coefficient on Plateau Stress and SEA in hexagonal base

model
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Appendix E

ELASTIC POISSON’S RATIOS OF UNIT CELLS

Analytical elastic Poisson’s ratio of the hexagonal unit cell is given in [19] as:

ν =
cos2θ

(h/l + sinθ)sinθ
, (E.1)

where θ is the unit angle, h is the horizontal edges, l is the inclined edges. In the

parametric studies, edge lengths are constant at 5 mm, and h equals l. So, Equation

(E.1) only depends on θ and is calculated in the second column of Table E.2. In

addition, unit cell compression analysis was performed for three randomly selected

angles. Unit cell analyses were completed with ABAQUS/Implicit with 0.005 strain.

The figure below shows the displacement of the 120◦ hexagonal unit cell under 0.005

strain. When calculating Poisson, the strain calculated from the displacements of the

two extreme points in the vertical direction was divided by 0.005. Results for 120◦,

105◦, and 70◦ unit cell compression are given in the third column of Table E.2, also

the y-displacement contour of the deformed hexagonal unit cell with undeformed

geometry is shown in Figure E.1. A compression strain of 0.005 is determined to

stay in the elastic region. From Table E.2, analytical Poisson’s ratio and Poisson’s

ratio from unit cell analysis are consistent. According to Table A.4 and Table E.2,

the strain value for the hexagonal lattice at which it can be assumed that the entire

structure remains in the elastic region is 0.015.
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Angle Analytical Unit Cell
(Degree) Poisson’s Ratio Poisson’s Ratio

120 1.000 0.980

115 1.366

110 1.924

105 2.864 2.630

100 4.759

97.5 6.661

95 10.474

93 18.107

91 56.299

90 -

89 -58.299

87 -20.107

85 -12.474

82.5 -8.661

80 -6.759

75 -4.864

70 -3.924 -3.740

Table E.1: Analytical elastic Poisson’s ratio and Poisson’s ratio from unit cell

analyses for hexagonal shape

Figure E.1: Undeformed and deformed hexagonal unit cell at 0.005 strain

Analytical elastic Poisson’s ratio of the re-entrant unit cell is calculated in [25] as:

ν =
hsin2θ

(l − hcosθ)sinθ
, (E.2)

where θ is the unit angle, again, but h is the inclined edges, l is the horizontal edges.

In the parametric studies, h and l are also constant values for re-entrant unit cells. h

is 5 mm, and l is 10 mm for the re-entrant configuration. Equation E.2 is calculated

in Table E.2. A similar unit cell study is conducted for re-entrant lattice; results are
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given in the third column of Table E.2, and the deformed shape is shown in Figure

E.2. The results of analytical calculations and unit cell study are consistent. From

Table A.9 and Table E.2, elastic region strain can be selected as 0.015.

Angle Analytical Unit Cell
(Degree) Poisson’s Ratio Poisson’s Ratio

60 -1.000 -1.000

65 -1.232

70 -1.557

75 -2.070 -1.940

80 -3.058

82.5 -4.028

85 -5.953

87 -9.784

89 -28.893

90 - 0.005

91 28.393

93 9.285

95 5.456

97.5 3.535

100 2.569

105 1.596 1.490

110 1.102

115 0.802

120 0.600 0.590

Table E.2: Analytical elastic Poisson’s ratio and Poisson’s ratio from unit cell

analyses for hexagonal shape
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Figure E.2: Undeformed and deformed re-entrant unit cell at 0.005 strain

No analytical Poisson’s ratio calculation is found in the literature for the chiral unit

cell, but compression analyses are performed on the unit cell with a strain of 0.005 for

six different angles. The analysis results are shown in Table E.3, and the visuals of the

deformed and undeformed structures are shown in Figure E.3. From Table A.14 and

Table E.3, to use the same value as the hexagonal and re-entrant cells, 0.015 strain

can be used for the chiral lattice.

Angle Unit Cell
(Degree) Poisson’s Ratio

105 0.726

135 0.710

155 0.654

170 0.430

180 0.001

225 0.710

Table E.3: Poisson’s ratio from unit cell analyses for chiral shape
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Figure E.3: Undeformed and deformed chiral unit cell at 0.005 strain
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Appendix F

COMPARISON OF EXPLICIT AND IMPLICIT ANALYZES FOR BASE

HEXAGONAL MODEL

In this section, a comparison of implicit and explicit solutions analyzed at small strain

values of the hexagonal base model is given. Since it becomes difficult to perform

implicit analysis as the strain value increases, comparing the strain values of 0.02,

0.04, 0.16, and 0.2 is sufficient. The geometries, mesh properties, and boundary

conditions were applied in the same way in both solution methods. The reaction

force on the upper plate is given in Table F.1. Since the plate moves downwards,

the forces are negative. In the fourth column of the table, the difference between the

explicit analysis and the implicit analysis is given. The difference of explicit solution

is slightly high at 0.04 and 0.2 strain values, and the difference is negligible for 0.02

and 0.16. It clearly shows that the explicit analysis has adequate performance.

Reaction Force at Absolute Difference

Strain Upper Surfaces (N) Difference in

Implicit Explicit (N) Percentage

0.02 -47.24 -49.80 2.56 5%

0.04 -41.79 -35.62 6.17 15%

0.16 -35.44 -35.81 0.37 1%

0.20 -34.40 -28.90 5.50 16%

Table F.1: Explicit and implicit analyzes results for the hexagonal base model at 0.02,

0.04, 0.16, and 0.2 strains
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Appendix G

ILLUSTRATION OF SOME DEFORMED HEXAGONAL LATTICES

This chapter provides the deformed geometries of the hexagonal lattice under 0.2

and 0.5 strains of the two models in each of the five parametric studies. First, the

undeformed hexagonal lattice is shown in Figure 3.8. The deformed geometries of

the base hexagonal model are given in Figure G.1. While some models of other

deformed geometries are stacked on each other, it can be seen that some models are

not compressed stably. These models are models where the edge thickness changes

are extreme. When the thickness changes reach extreme points, the load-carrying

capacity of the structure decreases significantly. At the angle change studies, it is

seen that the 90◦ models are compressed by deformation from the upper boundary,

while there is buckling in models whose angle is far from 90◦. Compression behavior

is one of the reasons why the SEA is high at around 90◦ and a specific thickness

variation.

(a) at 0.2 strain (b) at 0.5 strain

Figure G.1: Deformed geometry of the base hexagonal lattice
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(a) at 0.2 strain (b) at 0.5 strain

Figure G.2: Deformed geometry of hexagonal lattice of the first parametric study with

the inclined edge thickness of 0.397 mm

(a) at 0.2 strain (b) at 0.5 strain

Figure G.3: Deformed geometry of hexagonal lattice of the first parametric study with

the inclined edge thickness of 0.446 mm

136



(a) at 0.2 strain (b) at 0.5 strain

Figure G.4: Deformed geometry of hexagonal lattice of the second parametric study

with the additional edge thickness of 0.1 mm

(a) at 0.2 strain (b) at 0.5 strain

Figure G.5: Deformed geometry of hexagonal lattice of the second parametric study

with the additional edge thickness of 0.25 mm
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(a) at 0.2 strain (b) at 0.5 strain

Figure G.6: Deformed geometry of hexagonal lattice of the third parametric study

with the additional edge thickness of 0.15 mm

(a) at 0.2 strain (b) at 0.5 strain

Figure G.7: Deformed geometry of hexagonal lattice of the third parametric study

with the additional edge thickness of 0.475 mm
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(a) at 0.2 strain (b) at 0.5 strain

Figure G.8: Deformed geometry of hexagonal lattice of the fourth parametric study

with the angle of 70◦

(a) at 0.2 strain (b) at 0.5 strain

Figure G.9: Deformed geometry of hexagonal lattice of the fourth parametric study

with the angle of 90◦
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(a) at 0.2 strain (b) at 0.5 strain

Figure G.10: Deformed geometry of hexagonal lattice of the fifth parametric study

with the angle of 70◦

(a) at 0.2 strain (b) at 0.5 strain

Figure G.11: Deformed geometry of hexagonal lattice of the fifth parametric study

with the angle of 90◦
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