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ABSTRACT

HITTING PROBABILITIES OF CONSTRAINED SIMPLE RANDOM WALKS IN
THREE DIMENSIONS

Aktepe İlter, Cansu

Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Ali Devin Sezer

January 2025, 85 pages

We study the constrained simple random walk in three dimensions modeling the state
of a queueing system with three nodes working in parallel. The process is assumed to
be stable, i.e., the service rate at each node is greater than the arrival rate. The stability
assumption implies that the process follows a repeating cycle, starting anew each time
the process hits the origin. Consider the probability pn that the sum of the compo-
nents of the process equals n before the process hits the origin, which can be thought
of as the probability of a buffer overflow in a cycle. The stability assumption implies
that pn decays exponentially in n. The goal of the present thesis is to develop approx-
imation formulas for pn. In the literature, this problem is treated for two dimensional
simple walks using an affine transformation of the problem. We extend this analysis
to three dimensions. As in two dimensions, the affine transformation yields a limit
process and a limit hitting probability. We show, for the case of the three dimensional
stable constrained simple random walk, the limit probability approximates pn with
an exponentially diminishing relative error, assuming that the first component of the
initial point of the process is nonzero. We further approximate the limit probability
by harmonic functions of the limit process constructed from solutions of harmonic
systems associated with the problem. We provide a numerical example and discuss a
possible application to finance.
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Keywords: constrained simple random walks, rare events, queueing systems, finan-
cial modelling, harmonic systems
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ÖZ

ÜÇ BOYUTTA SINIRLI BASİT RASTGELE YÜRÜYÜŞLERİN ÇARPMA
OLASILIKLARI

Aktepe İlter, Cansu

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ali Devin Sezer

Ocak 2025, 85 sayfa

Çalışmada, üç ağın paralel olarak çalıştığı bir kuyruk sisteminin durumunu modelle-
yen üç boyutlu sınırlı basit rastgele yürüyüş incelenmektedir. Sürecin dengeli olduğu
varsayılmaktadır, diğer bir deyişle, her ağdaki servis oranı varış oranından daha bü-
yüktür. Dengelilik varsayımı, sürecin orijine her ulaştığında yeniden başlayarak tek-
rarlayan bir döngüyü takip ettiği anlamına gelmektedir. Sürecin başlangıç noktasına
ulaşmadan önce bileşenlerinin toplamının n’ye eşit olma olasılığı pn olsun. Bu ola-
sılık, bir döngüde bir arabellek aşım olasılığı olarak düşünülebilir. Sürecin dengeli
olması varsayımı, pn’nin n arttıkça üssel olarak azaldığını ima etmektedir. Bu tezin
amacı, pn için yaklaşık hesaplama formülleri geliştirmektir. Literatürde bu problem,
problemin afin dönüşümü kullanılarak iki boyutlu basit rastgele yürüyüşler için ele
alınmaktadır. Bu analiz, mevcut çalışmada üç boyuta genişletilmektedir. İki boyutta
olduğu gibi, afin dönüşüm sonrasında bir limit süreci ve bir limit çarpma olasılığı
elde edilmektedir. Üç boyutlu dengeli kısıtlı basit rastgele yürüyüş için, elde edilen
limit olasılığının, sürecin başlangıç noktasının ilk bileşeninin sıfır olmadığı varsayı-
larak, üstel olarak azalan bir göreli hata ile pn’ye yaklaştığı gösterilmektedir. Ayrıca,
problemle ilişkili olan harmonik sistemin çözümlerinden elde edilerek oluşturulan
harmonik fonksiyonlar ile limit olasılığı yaklaşık olarak hesaplanmaktadır. Sayısal
bir örnek sağlanmış ve finans sisteminde olası bir uygulamadan bahsedilmiştir.
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CHAPTER 1

INTRODUCTION

Constrained random walks are commonly used in queuing theory for modeling of

processes that have natural constraints forcing them to stay in a given specific set.

Such systems could be computer networks, sources of a company, or a business ser-

vicing customers. In the simplest term, one dimensional constrained random walk

can be used to model a single queue in which customers/objects arrive to the system

and get service with a specific service rate. Systems that have multiple components

can be modeled with multidimensional constrained random walks. In this thesis we

will focus on three dimensional constrained simple random walk model correspond-

ing to three parallel queues. An illustration of such a system is provided in Figure

1.1.

Figure 1.1: Three parallel queues

In this system, objects arrive to the system to get service with arrival rates Poisson

1



λi and serviced with service rates Exponential µi for i = 1, 2, 3. We assume without

loss of generality that the service and arrival rates sum to 1. The embedded random

walk X of this system is obtained by observing the system at its jump times (service

completion and customer arrival times). The embedded random walk is a simple

constrained random walk on the positive orthant Z3
+. Here each axis represents the

number of objects in the corresponding queue. A jump forward in the first [second,

third] axis occurring with probability λ1 [λ2, λ3] represents an arrival in the first

[second, third] queue and a jump backwards in the first [second, third] axis occurring

with probability µ1 [µ2, µ3] represents a completion of service in the first [second,

third] queue. The dynamics of three dimensional constrained simple random walk is

illustrated in Figure 1.2.

Figure 1.2: Dynamics of 3-dimensional constrained simple random walk

We assume that X is stable, i.e., λi < µi so that the serving performance of the

system is faster on average than the arrivals. We have this stability assumption since

it implies a functioning/reliable system.

Let us define the following hitting times:

τn
.
= inf{k > 0 : Xk(1) +Xk(2) +Xk(3) = n};

2



τn is the first time that the sum of the components of X equals n. An important

performance measure for the queuing system modeled by the random walk X is the

following probability:

pn(x)
.
= Px(τn < τ0) (1.1)

If we further make the following definition of the region An:

An
.
= {x ∈ Z3

+ : x(1) + x(2) + x(3) ≤ n}

and its boundary

∂An
.
= {x ∈ Z3

+ : x(1) + x(2) + x(3) = n}

Then pn is the probability that X hits the boundary of An before hitting 0. One

interpretation of this problem is to calculate the probability that the number of objects

in the system hits a certain amount, i.e., “n” before the entire system empties.

Calculation of the probability given in 1.1 has been treated with different dimensions

and different constraints. For one dimensional case, calculation of pn is straightfor-

ward, as explicit formulas can be derived by solving the corresponding one dimen-

sional recursive equation. The problem for two or more dimensional cases turn out

to be nontrivial. A natural approach to the computation of pn is through simulation;

see, for example, [20]. See [16] for the construction of asymptotically optimal impor-

tance algorithms for pn. The current thesis is related to the recent studies [38], [43],

[42], [6] and [39] which develop approximation formulas for pn (with relative error

decaying exponentially in n) for a range of constrained random walks based on an

affine transformation and limit analysis of the problem. The works [43] and [42], in

particular, treat the two dimensional simple constrained random walk.

The goal of this thesis is to extend the results in [43] for the two dimensional sim-

ple walk case to the three dimensions and prove that the relative error similarly ap-

proaches to 0. The main approach of this thesis is parallel with the studies aforemen-

tioned. Compared to [43], introduction of a third dimension to the problem signif-

icantly complicates the construction of the revelant upper and lower bounds. These

differences are discussed throughout the thesis.
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1.1 Definitions

We model three queues that work in parallel with a random walk X constrained to

the positive orthant Z3
+. Let us define the constraining boundaries for X as follows:

∂a
.
= {x ∈ Z3

+ : x(i) = 0 if i ∈ a}

for the set a ⊂ {1, 2, 3} and a ̸= ∅. x(i) = 0 means that there are no objects in the ith

queue. We will also need what we call as strict boundaries:

Πa
.
= {x ∈ Z3

+ : x(i) = 0 ⇐⇒ i ∈ a}.

Note that

∂a =
⋃
a⊃b

Πb,Πa = ∂a
⋂

(∂ac)
c.

As an example, for the point x = (0, 1, 0) we have x ∈ ∂1, x ∈ ∂1,3 and x ∈ Π1,3 but

x /∈ Π1.

We define the constraining map limiting X to remain on the positive orthant with the

function π:

π(x,w)
.
=

w, x+ w ∈ Z3
+

0, otherwise.

X has increments ei and −ei for i = 1, 2, 3 where {e1, e2, e3} are the unit vectors.

The probabilities for ei and −ei are λi and µi, respectively. Let Ik be an iid sequence

with values drawn from the set {e1, e2, e3,−e1,−e2,−e3}. Then we can write X

precisely as follows:

X0 = x ∈ Z3, Xk+1 = Xk + π(Xk, Ik), k = 1, 2, ..,

The dynamics of X at the boundaries is illustrated in Figure 1.3.

We define ρi as:

ρi =
λi

µi

, i = 1, 2, 3.

Since we assume X to be stable, we have that ρi =
λi

µi

< 1 for all i = 1, 2, 3. We

define the parameters ra for a ⊂ {1, 2, 3} as the following:

ra
.
=

∑
i∈a λi∑
i∈a µi

. (1.2)

4



(a) ∂1 (b) ∂2 (c) ∂3

(d) ∂2,3 (e) ∂1,2 (f) ∂1,3

Figure 1.3: Dynamics of X at the boundaries

Hence we have r1 = ρ1, r2 = ρ2 and r3 = ρ3.

Since pn does not depend on the order of the nodes, we can assume without loss of

generality that

ρ3 < ρ2 < ρ1.

Further assumptions needed for the construction of harmonic functions of Y and error

analysis are:

r21,2,3/ρ3, r
2
1,2,3/ρ2, r

2
1,2/ρ2, r

2
1,3/ρ3 < 1. (1.3)

In order to approximate pn, we will make use of an affine transformation of X as

done in [37, 38, 43]. Let

I .
=


−1 0 0

0 1 0

0 0 1


5



and describe the affine transformation functions with Tn = ne1 + I. With the trans-

formation Tn, we observe the random walk X from the hitting boundary. The natural

point of view on the hitting boundary is proposed as (n, 0, 0) [38]. Hence, we obtain

the following process:

Y n .
= Tn(X), Tn(x)

.
= y

Y n is a process on (n− Z+)× Z2
+. The components of Y n are defined as follows:

y(j)
.
=

n− x(i), if j = i

x(j), otherwise.
j = 1, 2, 3

Y n is the same process as X but viewed from the corner ne1 so that the probabilities

of the increments e1 and −e1 are interchanged. By applying Tn, the origin of the

coordinate system is shifted to ne1. Defining Bn = Tn(An), ∂An is mapped to:

∂Bn = {y ∈ (n− Z+)× Z2
+, y(1) = y(2) + y(3)}

Moreover, the set {x ∈ Z3
+ : x(1) = 0} is mapped to:

{y ∈ Z× Z2
+ : y(i) = n}

Taking the limits as n → ∞, Y n converges to the limit process Y on the domain

DY = Z×Z2
+. Y is a process on DY , i.e. it is not constrained on ∂1 : {y ∈ Z×Z2

+ :

y(1) = 0}. The set Bn is mapped onto

B
.
= {y ∈ Z× Z2

+ : y(1) ≥ y(2) + y(3)}

The boundary of B becomes the following:

∂B
.
= {y ∈ Z× Z2

+ : y(1) = y(2) + y(3)}

The constraining map π1 on Y is defined as:

π1(x, v)
.
=

v x+ v ∈ Z× Z2
+

0 otherwise

6



Let us denote the increments of the process Y with Jk where Jk
.
= IIk and

Yk+1 = Yk + π1(Yk, Jk), k = 1, 2, ..,

Let τ denote the first time Y hits the boundary, ∂B:

τ
.
= inf{k : Yk ∈ ∂B}

The hitting boundary for the limit problem becomes ∂B and the limit stopping time

turns into τ . Applying Tn and taking limits as n → ∞ leads to the limit problem of

computing Py(τ < ∞), i.e. if Y ever hits the boundary of B. Note that removing

the first boundary constraint ∂1 and the assumption of X being stable leads to the

unstable process Y .

1.2 Summary of the results

This thesis aims to approximate the probability Px(τn < τ0) for a three dimensional

constrained simple random walk X , the dynamics of which are defined as in the

previous subsection. In order to approximate such a probability, we implement the

arguments provided in previous works [37, 38, 43, 39]. We make an affine transfor-

mation Tn of X and observe the system from one of the exit points, e.g. (n, 0, 0).

The new process Y n = Tn(X) is basically the same process as X except for the first

coordinates are reversed (y(1) = n − x(1), y(2) = x(2), y(3) = x(3)). We would

like to approximate Px(τn < τ0) with the probability PTn(x)(τ < ∞). Applying the

affine transformation and taking limit as n goes to ∞ allows us to remove some of

the constraints and we are left with the limit problem of computing the probability

Py(τ < ∞).

For the case corresponding to the initial point of the process is fixed in y and if we set

xn = Tn(y), [38] states that Pxn(τn < τ0) converges to Py(τ < ∞) as n goes to ∞
for any dimension d. For the case where the initial position of the process is specified

in scaled x coordinates, a convergence analysis studying the following relative error

is provided for different cases.

7



|Pxn(τn < τ0)− PTn(xn)(τ < ∞)|
Pxn(τn < τ0)

(1.4)

With the process is fixed in scaled x, [38] treats the case for two dimensional tandem

walk, [43] treats the case for two dimensional constrained simple random walk and

[6] deals with the case where d = 2, and the dynamics of the constrained process is

Markov modulated. All of the studies mentioned prove that the relative error given in

Equation 1.4 decays exponentially to 0 with an amount in terms of x. [39] studies the

relative error given in Equation 1.4 for a d dimensional tandem system for an initial

point of unscaled x. In these studies, the probability Py(τ < ∞) is approximated (or

even explicitly formulated in some cases) by using the harmonic functions/systems

of the process Y and conjugate points on the characteristic surfaces.

In this thesis we extend the results for a two dimensional constrained simple random

walk given in [43] to three dimensional constrained simple random walk. We show

that Pxn(τn < τ0) can be approximated with PTn(xn)(τ < ∞) with exponentially

diminishing relative error. The main result of the thesis is the following:

Theorem 1.1. For any x ∈ R3
+, x(1) + x(2) + x(3) < 1, x(1) > 0, N > 0 such that

|Pxn(τn < τ0)− PTn(xn)(τ < ∞)|
Pxn(τn < τ0)

=
|Pxn(τn < τ0)− Pxn(τ̄n < ∞)|

Pxn(τn < τ0)
(1.5)

decays exponentially in n for n > N , where xn = ⌊xn⌋.

where we define

τ̄n
.
= inf{k > 0 :

3∑
j=1

X̄k(j) = n}

for X̄k
.
= Tn(Yk) and X̄k+1 = X̄k + π1(X̄k, Ik). Note that X̄k and Xk share similar

dynamics except for the boundary ∂1. Since the hitting time of Y on ∂B exactly

matches with the hitting time of X̄ on {x ∈ Z × Z2
+ : x(1) + x(2) + x(3) = n} we

have τ̄n = τ . Therefore, we can write:

Pxn(τ̄n < ∞) = PTn(xn)(τ < ∞). (1.6)

The proof of this theorem is provided in Subsection 3.4. We further construct a class

of harmonic functions of Y in order to approximate Py(τ < ∞).

8



1.3 Organization of the thesis

This thesis is organized as six chapters. In Chapter 1 an introduction to the problem

is provided. The subject of the thesis is defined and the construction of the problem is

explained. A brief background on the subject is also mentioned in this chapter. Defi-

nitions which are used in the rest of the thesis are provided. The method implemented

in addressing the problem is further clarified.

Chapter 2 covers the construction of the Y -harmonic functions from harmonic sys-

tems which are later on linearly combined in order to approximate the probability

Py(τ < ∞). Y -harmonic functions are built up using pair of nodes and using all

four nodes on the graph of the harmonic system; and a point in the intersection of

characteristic surfaces defined from the characteristic polynomials of Y .

Chapter 3 deals with the error analysis. In this chapter, we provide a convergence

analysis between the probabilities Pxn(τn < τ0) and PTn(x)(τ < ∞). Our main result

is provided in Theorem 3.1. For the proof of this theorem, upper bounds and lower

bounds on the probabilities are constructed.

Constrained random walk models, in addition to many other research areas related

to the queuing theory, arises also in finance applications. In Chapter 4 possible ap-

plication to the banking sector is provided in order to provide an example of such

application. Moreover, a numerical example is also given in order to demonstrate the

numerical performance of the approximation algorithm.

A study of the literature on the thesis subject is presented in Chapter 5. Background

on the subject and recent studies with which the thesis is related are further explained.

Lastly, conclusion of the thesis and a comparison to previous studies is given in Chap-

ter 6. Possible future work on the subject is also discussed in this chapter.

9



10



CHAPTER 2

CONSTRUCTION OF Y-HARMONIC FUNCTIONS

This chapter is devoted to the construction of Y -harmonic functions that will be used

in the approximation of the probability Py(τ < ∞). We first define a Y -harmonic

function and how to construct such functions from characteristic surfaces of Y . We

introduce our four node harmonic system, points on which corresponds to the roots

on the characteristic surfaces. These roots are used in the construction of Y -harmonic

functions using all four nodes on the graph of the harmonic system and using pair of

nodes. Another harmonic function comes from the intersection of the characteristic

surfaces. Finally, a suitable linear combination of such functions will be the main

function in the approximation of Py(τ < ∞). In this chapter, for the ease of notation

we will call r1,2,3
.
= r.

2.1 Y-harmonic functions from harmonic systems

To approximate Py(τ < ∞), we construct a class of harmonic functions of Y and

apply superposition principle. These functions will be the solutions of a harmonic

system, which will be defined by a graph whose vertices indicate points on the char-

acteristic surface of Y . The approach is similar to the studies [38], [43] and [39].

Definition 2.1. A function h is Y -harmonic if it satisfies the following equation

h(y) = h(y−e1)λ1+h(y+e1)µ1+
3∑

i=2

(h(y+ei)λi+h(y+π1(y,−ei))µi) = Ey[h(Y1)]

(2.1)
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Let us define the region Do
Y as follows:

Do
Y

.
= {y ∈ Z× Z2

+ : y(2) > 0, y(3) > 0}

Define the characteristic polynomial of Y on Do
Y as follows:

p(β, α2, α3)
.
=

λ1

β
+ βµ1 +

α2λ2

β
+

βµ2

α2

+
α3λ3

β
+

βµ3

α3

(2.2)

We also define characteristic polynomials of Y on the constrained coordinates ∂2, ∂3,

∂2,3 as the following:

p2(β, α2, α3)
.
=

λ1

β
+ βµ1 +

α2λ2

β
+

α3λ3

β
+

βµ3

α3

+ µ2

p3(β, α2, α3)
.
=

λ1

β
+ βµ1 +

α2λ2

β
+

α3λ3

β
+

βµ2

α2

+ µ3

p2,3(β, α2, α3)
.
=

λ1

β
+ βµ1 +

α2λ2

β
+

α3λ3

β
+ µ2 + µ3

Y harmonic functions will be constructed from the equations p = 1 and pa = 1 for

a ⊂ {2, 3}, solutions of which define the following the characteristic surfaces H and

Ha:

H .
= {(β, α2, α3) ∈ C3 : p(β, α2, α3) = 1}

Ha
.
= {(β, α2, α3) ∈ C3 : pa(β, α2, α3) = 1}

We multiply both sides of Equation 2.2 by α2 and obtain:

α2
2

λ2

β
+ α2

[
λ1

β
+ βµ1 + λ3

α3

β
+ µ3

β

α3

− 1

]
+ µ2β = 0 (2.3)

If we solve Equation 2.3 for β and α3 fixed, and α2,1, α2,2 are distinct roots of Equa-

tion 2.3, then they will satisfy the following:

α2,1 =
1

α2,2

β2

ρ2

Likewise, we multiply both sides of Equation 2.2 by α3 and obtain:

α2
3

λ3

β
+ α3

[
λ1

β
+ βµ1 + λ2

α2

β
+ µ2

β

α2

− 1

]
+ µ3β = 0 (2.4)
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If we solve Equation 2.3 for β and α2 fixed, and α3,1, α3,2 are distinct roots of Equa-

tion 2.4, then they will satisfy the following:

α3,1 =
1

α3,2

β2

ρ3

Definition 2.2. The function

α(i, (β, αi,1)) = αi,2 (2.5)

for i = 2, 3 is called the conjugator function.

Distinct roots defined above will satify Equation 2.5. Such roots on H will be called

i-conjugate.

Note that (r, 1, 1) ∈ H as it satisfies the equation p = 1.

Now, let β = r and α3 = 1 be fixed. If we multiply both sides of Equation 2.2 with

α2, we get a second order equation:

α2
2

λ2

r
+ α2

(
−λ2

r
− rµ2

)
+ rµ2 = 0

∆ =

(
λ2

r
+ rµ2

)2

− 4λ2µ2 =
λ2
2

r2
+ 2λ2µ2 + r2µ2

2 − 4λ2µ2 =

(
λ2

r
− rµ2

)2

Roots of this polynomial will be

α2 =

λ2

r
+ rµ2 +

√(
λ2

r
− rµ2

)2

2λ2

r

= 1 =⇒ (r, 1, 1)

α2 =

λ2

r
+ rµ2 −

√(
λ2

r
− rµ2

)2

2λ2

r

=
r2

ρ2
=⇒ (r,

r2

ρ2
, 1)

Therefore, for β = r and α3 = 1 fixed, we obtain (r, 1, 1) and (r,
r2

ρ2
, 1) as 2-conjugate

points.
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Similarly, for fixed β = r and α2 = 1, we can obtain 3-conjugate points (r, 1, 1) and

(r, 1,
r2

ρ3
). For fixed β = r and α3 =

r2

ρ3
, we can derive 2-conjugate points (r, 1,

r2

ρ3
)

and (r,
r2

ρ2
,
r2

ρ3
).

These four roots are related to each other as shown in Figure 2.1. This is in fact a

graph of a harmonic system (see Definition 2.4) with four nodes. Points we found

from characteristic surfaces of Y are represented as nodes on the graph and edges

between the points denotes the conjugacy relation between them. The harmonic

Figure 2.1: The graph of a harmonic system for the three dimensional constrained
simple random walk

system and its solution given in Figure 2.1 are one of the important novelties of the

analysis of the constrained simple random walk in three dimensions. The analysis

in two dimensions depend only on systems with two nodes; the existence of the four

dimensional harmonic system given in Figure 2.1 and its solution do not directly

follow from the two node systems used in two dimensions.

For a point (β, α2, α3) ∈ H we introduce the following function:

y 7→ [(β, α2, α3), y]
.
= βy(1)−(y(2)+y(3))α

y(2)
2 α

y(3)
3

14



The following proposition is a special case of [39, Lemma 7]; we provide a full proof

for our special case for the reader’s convenience.

Proposition 2.1. [(β, α2, α3), y] is Y -harmonic for y ∈ Do
Y when (β, α2, α3) ∈ H.

Proof. Let us substitute [(β, α2, α3), y] into Equation 2.1:

Ey[hβ(Y1)]− hβ(y) = λ1β
y(1)−1−(y(2)+y(3))α

y(2)
2 α

y(3)
3

+ µ1β
y(1)+1−(y(2)+y(3))α

y(2)
2 α

y(3)
3

+ λ2β
y(1)−(y(2)+1+y(3))α

y(2)+1
2 α

y(3)
3

+ µ2β
y(1)−(y(2)−1+y(3))α

y(2)−1
2 α

y(3)
3

+ λ3β
y(1)−(y(2)+y(3)+1)α

y(2)
2 α

y(3)+1
3

+ µ3β
y(1)−(y(2)+y(3)−1)α

y(2)
2 α

y(3)−1
3 − βy(1)−(y(2)+y(3))α

y(2)
2 α

y(3)
3

= βy(1)−(y(2)+y(3))α
y(2)
2 α

y(3)
3 [β−1λ1 + βµ1 + β−1α2λ2

+ βα−1
2 µ2 + β−1α3λ3 + βα−1

3 µ3]− βy(1)−(y(2)+y(3))α
y(2)
2 α

y(3)
3

= 0

as inside of brackets is 1 since (β, α2, α3) ∈ H. Hence [(β, α2, α3), y] is Y -harmonic

for y ∈ Do
Y .

Now, the functions [(β, α2, α3), y] can be used to further introduce the following class

of Y -harmonic functions. The following proposition is a special case of [39, Lemma

10]. For reader’s convenience we provide a full proof for the three dimensional simple

random walk treated in the present work:

Proposition 2.2. Let (β, α2, α3) ∈ H ∩ Ha for a ⊂ {2, 3}. Then [(β, α2, α3), y] is

Y -harmonic.

Proof. We already have from Proposition 2.1 that for (β, α2, α3) ∈ H, [(β, α2, α3), y]

is Y -harmonic on Do
Y . Now we need to show that [(β, α2, α3), y] is Y -harmonic on

the boundaries ∂a for (β, α2, α3) ∈ Ha.
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On boundary ∂2 :

Ey[hβ(Y1)]− hβ(y) = λ1β
y(1)−1−(y(2)+y(3))α

y(2)
2 α

y(3)
3

+ µ1β
y(1)+1−(y(2)+y(3))α

y(2)
2 α

y(3)
3

+ λ2β
y(1)−(y(2)+1+y(3))α

y(2)+1
2 α

y(3)
3

+ µ2β
y(1)−(y(2)+y(3))α

y(2)
2 α

y(3)
3

+ λ3β
y(1)−(y(2)+y(3)+1)α

y(2)
2 α

y(3)+1
3

+ µ3β
y(1)−(y(2)+y(3)−1)α

y(2)
2 α

y(3)−1
3 − βy(1)−(y(2)+y(3))α

y(2)
2 α

y(3)
3

= βy(1)−(y(2)+y(3))α
y(2)
2 α

y(3)
3 [β−1λ1 + βµ1 + β−1α2λ2

+ µ2 + β−1α3λ3 + βα−1
3 µ3]− βy(1)−(y(2)+y(3))α

y(2)
2 α

y(3)
3

= 0

since (β, α2, α3) ∈ H2. Hence [(β, α2, α3), y] is Y -harmonic.

On boundary ∂3 :

Ey[hβ(Y1)]− hβ(y) = λ1β
y(1)−1−(y(2)+y(3))α

y(2)
2 α

y(3)
3

+ µ1β
y(1)+1−(y(2)+y(3))α

y(2)
2 α

y(3)
3

+ λ2β
y(1)−(y(2)+1+y(3))α

y(2)+1
2 α

y(3)
3

+ µ2β
y(1)−(y(2)−1+y(3))α

y(2)−1
2 α

y(3)
3

+ λ3β
y(1)−(y(2)+y(3)+1)α

y(2)
2 α

y(3)+1
3

+ µ3β
y(1)−(y(2)+y(3))α

y(2)
2 α

y(3)
3 − βy(1)−(y(2)+y(3))α

y(2)
2 α

y(3)
3

= βy(1)−(y(2)+y(3))α
y(2)
2 α

y(3)
3 [β−1λ1 + βµ1 + β−1α2λ2

+ βµ2α
−1
2 + β−1α3λ3 + µ3]− βy(1)−(y(2)+y(3))α

y(2)
2 α

y(3)
3

= 0

since (β, α2, α3) ∈ H3. Hence [(β, α2, α3), y] is Y -harmonic.
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On boundary ∂2,3 :

Ey[hβ(Y1)]− hβ(y) = λ1β
y(1)−1−(y(2)+y(3))α

y(2)
2 α

y(3)
3

+ µ1β
y(1)+1−(y(2)+y(3))α

y(2)
2 α

y(3)
3

+ λ2β
y(1)−(y(2)+1+y(3))α

y(2)+1
2 α

y(3)
3

+ µ2β
y(1)−(y(2)+y(3))α

y(2)
2 α

y(3)
3

+ λ3β
y(1)−(y(2)+y(3)+1)α

y(2)
2 α

y(3)+1
3

+ µ3β
y(1)−(y(2)+y(3))α

y(2)
2 α

y(3)
3 − βy(1)−(y(2)+y(3))α

y(2)
2 α

y(3)
3

= βy(1)−(y(2)+y(3))α
y(2)
2 α

y(3)
3 [β−1λ1 + βµ1 + β−1α2λ2

+ µ2 + β−1α3λ3 + µ3]− βy(1)−(y(2)+y(3))α
y(2)
2 α

y(3)
3

= 0

since (β, α2, α3) ∈ H2,3. Hence [(β, α2, α3), y] is Y -harmonic. Therefore,

for (β, α2, α3) ∈ H ∩Ha for a ⊂ {2, 3}, [(β, α2, α3), y] is Y -harmonic.

Parallel to the case treated in [43], note that the point (ρ1, ρ1, ρ1) lies on the intersec-

tion of the characteristic surfaces H and Ha for a ⊂ {2, 3}. By Proposition 2.2 we

attain our first nontrivial Y -harmonic function:

hρ1(y)
.
= [(ρ1, ρ1, ρ1), y] = ρ

y(1)−(y(2)+y(3))
1 ρ

y(2)
1 ρ

y(3)
1 = ρ

y(1)
1 . (2.6)

Let us define the following functions which can be used in the construction of further

harmonic functions of Y :

C(2, β, α2,i, α3)
.
= 1− β

α2,i

(2.7)

and

C(3, β, α2, α3,i)
.
= 1− β

α3,i

(2.8)

for i = 1, 2. The following proposition is a special case of [39, Proposition 3.1]; we

provide a proof for the reader’s convenience.

Proposition 2.3. Suppose that (β, α2,1, α3) and (β, α2,2, α3) are distinct 2-conjugate

points on the characteristic surface H. Then the function

hβ
.
= C(2, β, α2,2, α3)[(β, α2,1, α3), .]− C(2, β, α2,1, α3)[(β, α2,2, α3), .]

is Y -harmonic on ∂2.
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Proof. For y ∈ ∂2 let us look at

Ey[hβ(Y1)]− hβ(y) = C(2, β, α2,2, α3)Ey[(β, α2,1, α3), y + π1]

− C(2, β, α2,1, α3)Ey[(β, α2,2, α3), y + π1]

− C(2, β, α2,2, α3)[(β, α2,1, α3), y]

+ C(2, β, α2,1, α3)[(β, α2,2, α3), y]

= C(2, β, α2,2, α3)
[
Ey[(β, α2,1, α3), y + π1]− [(β, α2,1, α3), y]

]
− C(2, β, α2,1, α3)

[
Ey[(β, α2,2, α3), y + π1]− [(β, α2,2, α3), y]

]
We first look at C(2, β, α2,2, α3)

[
Ey[(β, α2,1, α3), y + π1]− [(β, α2,1, α3), y]

]
.

Ey[(β, α2,1, α3), y + π1]− [(β, α2,1, α3), y]

= λ1β
y(1)−1−y(3)α

y(3)
3 + µ1β

y(1)+1−y(3)α
y(3)
3

+λ2β
y(1)−1−y(3)α2,1α

y(3)
3 + µ2β

y(1)−y(3)α
y(3)
3

+λ3β
y(1)−y(3)−1α

y(3)+1
3 − βy(1)−y(3)α

y(3)
3

+µ3β
y(1)−y(3)+1α

y(3)−1
3

= βy(1)−y(3)α
y(3)
3

[λ1

β
+ µ1β +

λ2

β
α2,1 + µ2 +

λ3

β
α3

+
β

α3

µ3 − 1
]

Adding and subtracting the term
β

α2,1

µ2 inside brackets, we obtain the following

equation:

Ey[(β, α2,1, α3), y + π1]− [(β, α2,1, α3), y]

= βy(1)−y(3)α
y(3)
3

[
p(β, α2,1, α3)−

β

α2,1

µ2 + µ2 − 1
]

= βy(1)−y(3)α
y(3)
3

[
µ2(1−

β

α2,1

)
]

= βy(1)−y(3)α
y(3)
3 µ2C(2, β, α2,1, α3)

Since p(β, α2,1, α3) = 1 for (β, α2,1, α3) ∈ H.

Similar calculations can be done to obtain the equation:

Ey[(β, α2,2, α3), y + π1]− [(β, α2,2, α3), y]

= βy(1)−y(3)α
y(3)
3 µ2C(2, β, α2,2, α3)
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It follows that

Ey[hβ(Y1)]− hβ(y) = C(2, β, α2,2, α3)β
y(1)−y(3)α

y(3)
3 µ2C(2, β, α2,1, α3)

− C(2, β, α2,1, α3)β
y(1)−y(3)α

y(3)
3 µ2C(2, β, α2,2, α3)

= 0.

Hence, harmonicity condition is satisfied for y ∈ ∂2.

Note that similar proof can be done to show that

hβ
.
= C(3, β, α2, α3,2)[(β, α2, α3,1), .]− C(3, β, α2, α3,1)[(β, α2, α3,2), .]

is Y -harmonic on ∂3 for (β, α2, α3,1) and (β, α2, α3,2) being distinct 3-conjugate

points on the characteristice surface H.

2.1.1 Y-harmonic functions using four nodes

In order to construct a harmonic function using all of the four nodes appearing in

Figure 2.1, we will refer to the definition of a harmonic system proposed in [37]. Let

G be an adjacency matrix associated with any graph; VG denote the set of nodes of

G; L be a finite set representing the set of labels of edges in G. If distinct vertices

i, j ∈ VG are not connected, then G(i, j) = 0, and if they are connected by an

edge labeled l ∈ L (which will be called l-edge), then G(i, j) = l. For a node

j ∈ VG, G(j, j) denotes the set of the labels of the loops on node j. The following

two definitions are from [37].

Definition 2.3. Let G and L be defined as above. G is called edge-complete with

respect to L if each node j ∈ VG has a unique l-edge for all l ∈ L.

Definition 2.4. A Y -harmonic system consists of an edge-complete graph G with

respect to N = {2, ..., d}, the variables (β, αj) ∈ Cd, cj ∈ C, j ∈ VG, and these

constraints:

1. (β, αj) ∈ H, cj ∈ C− {0}, j ∈ VG,

2. αi ̸= αj, if i ̸= j, i, j ∈ VG,
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3. αi, αj are G(i, j)-conjugate if G(i, j) ̸= 0, i ̸= j, i, j ∈ VG,

4. If G(i, j) ̸= 0,
ci
cj

= −C(G(i, j), β, αj)

C(G(i, j), β, αi)
,

5. (β, αj) ∈ Hl for all l ∈ G(j, j), j ∈ VG.

The following proposition provides a harmonic function constructed from all four

nodes given in Figure 2.1.

Proposition 2.4. The coefficients

1,− 1− r

1− ρ3/r
,− 1− r

1− ρ2/r
,

(1− r)2

(1− ρ2/r)(1− ρ3/r)

for the points (r, 1, 1), (r, 1, r2/ρ3), (r, r
2/ρ2, 1), (r, r

2/ρ2, r
2/ρ3) respectively, solve

the harmonic system defined by the graph given in Figure 2.1.

Proof. It is enough to show that given coefficients satisfy the constraints given in

Definition 2.4. Now we know that all the points:

(r, 1, 1), (r, r2/ρ2, 1), (r, 1, r
2/ρ3), (r, r

2/ρ2, r
2/ρ3)

are already in H. Also, we know that;

(r, 1, 1)&(r, 1, r2/ρ3) =⇒ 3− conjugate

(r, 1, 1)&(r, r2/ρ2, 1) =⇒ 2− conjugate

(r, r2/ρ2, 1)&(r, r2/ρ2, r
2/ρ3) =⇒ 3− conjugate

(r, 1, r2/ρ3)&(r, r2/ρ2, r
2/ρ3) =⇒ 2− conjugate

from the Figure 2.1. It is only left to show that these coefficients satisfy the 4th

condition of the Definition 2.4.

• Let (r, 1, 1) be the 1st point and (r, 1, r2/ρ3) be the 2nd point:

c1
c2

= −C(3, β, α2)

C(3, β, α1)
= −C(3, r, 1, r2/ρ3)

C(3, r, 1, 1)
= −

1− r

r2/ρ3
1− r

= − r − ρ3
r(1− r)
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where we have used the definition provided in 2.8. The last value in the above equa-

tion can be rewritten as:

− r − ρ3
r(1− r)

= −1− ρ3/r

(1− r)
=

1

− 1− r

1− ρ3/r

The numerator and the denominator are actually the coefficients we defined for the

points (r, 1, 1) and (r, 1, r2/ρ3) in the Proposition 2.4. Hence, we have shown that

they satisfy the 4th condition of Definition 2.4.

• Let (r, 1, r2/ρ3) be the 2nd point and (r, r2/ρ2, r
2/ρ3) be the 3rd point:

c2
c3

= −C(2, β, α3)

C(2, β, α2)
= −C(2, r, r2/ρ2, r

2/ρ3)

C(2, r, 1, r2/ρ3)
= −

1− r

r2/ρ2
1− r

= − r − ρ2
r(1− r)

where we have used the definition provided in 2.7. The last value in the above equa-

tion can be rewritten as:

− r − ρ2
r(1− r)

= −1− ρ2/r

(1− r)
=

− 1− r

1− ρ3/r

(1− r)2

(1− ρ2/r)(1− ρ3/r)

The numerator and the denominator are actually the coefficients we defined for the

points (r, 1, r2/ρ3) and (r, r2/ρ2, r
2/ρ3) in this proposition. Hence, we have shown

that they satisfy the 4th condition of Definition 2.4.

• Let (r, r2/ρ2, r2/ρ3) be the 3rd point and (r, r2/ρ2, 1) be the 4th point:

c3
c4

= −C(3, β, α4)

C(3, β, α3)
= − C(3, r, r2/ρ2, 1)

C(3, r, r2/ρ2, r2/ρ3)
= − 1− r

1− r

r2/ρ3

= −r(1− r)

r − ρ3

where we have used the definition provided in 2.8. The last value in the above equa-

tion can be rewritten as:

−r(1− r)

r − ρ3
= − (1− r)2(1− ρ2/r)

(1− r)(1− ρ2/r)(1− ρ3/r)
=

(1− r)2

(1− ρ2/r)(1− ρ3/r)

− 1− r

1− ρ2/r
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The numerator and the denominator are actually the coefficients we defined for the

points (r, r2/ρ2, r
2/ρ3) and (r, r2/ρ2, 1) in this proposition. Hence, we have shown

that they satisfy the 4th condition of the Definition 2.4.

• Let (r, 1, 1) be the 1st point and (r, r2/ρ2, 1) be the 4th point:

c1
c4

= −C(2, β, α4)

C(2, β, α1)
= −C(2, r, r2/ρ2, 1)

C(2, r, 1, 1)
= −

1− r

r2/ρ2
1− r

= − r − ρ2
r(1− r)

where we have used the definition provided in 2.7. The last value in the above equa-

tion can be rewritten as:

− r − ρ2
r(1− r)

=
1− ρ2/r

1− r
=

1

− 1− r

1− ρ2/r

The numerator and the denominator are actually the coefficients we defined for the

points (r, 1, 1) and (r, r2/ρ2, 1) in the Proposition. Hence, we have shown that they

satisfy the 4th condition of Definition 2.4.

Using [[37], Proposition 5.2] and Proposition 2.4, the following function becomes a

Y -harmonic function constructed from all four nodes given in Figure 2.1:

hr
.
= [(r, 1, 1), .]− 1− r

1− ρ2/r
[(r, r2/ρ2, 1), .] (2.9)

− 1− r

1− ρ3/r
[(r, 1, r2/ρ3), .] +

(1− r)2

(1− ρ2/r)(1− ρ3/r)
[(r, r2/ρ2, r

2/ρ3), .]

or

hr(y) = ry(1)−y(2)−y(3)
[
1− 1− r

1− ρ2/r

(r2
ρ2

)y(2)
− 1− r

1− ρ3/r

(r2
ρ3

)y(3)
+

(1− r)2

(1− ρ2/r)(1− ρ3/r)

(r2
ρ2

)y(2)(r2
ρ3

)y(3)]
We look for harmonic functions which are positive and if possible take value 1 on ∂B.

As an example, if we choose λ1 = 0.15, λ2 = 0.10, λ3 = 0.10 and µ1 = 0.20, µ2 =

0.20, µ3 = 0.25, hr becomes positive for suitable choice of y(2) and y(3) on

∂B
.
= {y ∈ Z× Z2

+ : y(1) = y(2) + y(3)}
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2.1.2 Y-harmonic functions using pair of nodes

For the construction of Y -harmonic functions using the pair of nodes, we implement

the argument proposed in [37]. According to this argument, for a given harmonic sys-

tem and the solutions with respect to this system, it is possible to construct solutions

of harmonic systems for higher dimensional walks. And they will be extensions of the

given system. For a given harmonic system and edge-complete graph G0 with respect

to L0, its edge-complete extension G1 with respect to L1 is defined to be adding to

each node of G0 an l-loop where l belongs to the finite set L1−L0. [[37], Proposition

5.4] explains a way to build harmonic systems (and solutions) for the extension of a

given harmonic system. The proposition states that if the harmonic system with the

corresponding edge-complete graph G0 can be solved with (β, αj), cj, j ∈ VG0 , then

the harmonic system with the corresponding edge-complete graph G1 can be solved

with (β, α1
j ), cj, j ∈ VG1 = VG0 where

α1
j |N

.
= αj,

α1
j |N 1−N

.
= β

and N ⊂ N 1, N 1 being the set of constrained coordinates of the extended process.

In our case, we have a 3 dimensional constrained random walk. We first induce

the problem to 2 dimensional case by considering the boundaries 1 and 2, 1 and 3

together, and then implement the above given argument to construct harmonic func-

tions for the 3 dimensional case.

First, we consider the boundaries 1 and 2 together and ignore the third coordinate.

Previous work [42] shows that for the 2 dimensional case of the same problem,

there exists a Y -harmonic function constructed from the conjugate points (r1,2, 1)

and (r1,2,
r21,2
ρ2

), where r1,2 =
λ1 + λ2

µ1 + µ2

, ρ2 =
λ2

µ2

. Y -harmonic function constructed

from these conjugate points is:

hr1,2 = [(r1,2, 1), .]−
1− r1,2

1− ρ2/r1,2
[(r1,2, r

2
1,2/ρ2), .] (2.10)

An edge complete graph of this system consists of 2 conjugate points (one at each

node) connected with label 2. Now by adding each node a 3-loop, we obtain its

edge-complete extension. According to [[37], Proposition 5.4], we assign the value

r1,2 to the new component arising from the new dimension so that (r1,2, 1, r1,2),
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(r1,2, r
2
1,2/ρ2, r1,2) and the same coefficients 1 and − 1− r1,2

1− ρ2/r1,2
solve the harmonic

system associated with the edge-complete extended graph. Hence we obtain a Y -

harmonic function constructed from the points (r1,2, 1, r1,2), (r1,2, r21,2/ρ2, r1,2):

hr1,2 = [(r1,2, 1, r1,2), .]−
1− r1,2

1− ρ2/r1,2
[(r1,2, r

2
1,2/ρ2, r1,2), .] (2.11)

hr1,2(y) = [(r1,2, 1, r1,2), y]−
1− r1,2

1− ρ2/r1,2
[(r1,2, r

2
1,2/ρ2, r1,2), y]

= r
y(1)−y(2)
1,2

(
1− 1− r1,2

1− ρ2/r1,2

(r21,2
ρ2

)y(2))

Another harmonic function can be constructed by considering the boundaries 1 and 3

together. Similar to the above argument we consider the 2 dimensional walk and de-

fine r1,3 =
λ1 + λ3

µ1 + µ3

, ρ3 =
λ3

µ3

. Y -harmonic function constructed from the conjugate

points (r1,3, 1) and (r1,3,
r21,3
ρ3

) is:

hr1,3 = [(r1,3, 1), .]−
1− r1,3

1− ρ3/r1,3
[(r1,3, r

2
1,3/ρ3), .]

Following [[37], Proposition 5.4], we assign the value r1,3 to the new component com-

ing from the new dimension so that (r1,3, r1,3, 1), (r1,3, r1,3, r21,3/ρ3) and the same

coefficients 1 and − 1− r1,3
1− ρ3/r1,3

solve the harmonic system associated with the edge-

complete extended graph. Y -harmonic function which is built from these two points

is:

hr1,3 = [(r1,3, r1,3, 1), .]−
1− r1,3

1− ρ3/r1,3
[(r1,3, r1,3, r

2
1,3/ρ3), .] (2.12)

hr1,3(y) = [(r1,3, r1,3, 1), y]−
1− r1,3

1− ρ3/r1,3
[(r1,3, r1,3, r

2
1,3/ρ3), y]

= r
y(1)−y(3)
1,3

(
1− 1− r1,3

1− ρ3/r1,3

(r21,3
ρ3

)y(3))

Therefore, using the pairs of nodes, we obtained the Y harmonic functions hr1,2 and

hr1,3 . These functions are used in the calculation of our final Y harmonic function.

The following subsection is devoted to this end.
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2.1.3 The linear combination of Y-harmonic functions

Together with Equations 2.6, 2.9, 2.11 and 2.12 we have four Y -harmonic functions.

Efforts until here are made in order to obtain the following harmonic function, which

is a linear combination of harmonic functions given in Equations 2.6, 2.9, 2.11 and

2.12.

Proposition 2.5. There exists constants c1, c2 and c3 so that

hr
.
= hr(y) + c1hρ1(y) + c2hr1,2(y) + c3hr1,3(y) > 1/2 (2.13)

for y ∈ ∂B.

Proof. Note that

hr(y) = ry(1)−(y(2)+y(3)) − 1− r

1− ρ2/r
ry(1)−(y(2)+y(3))

(r2
ρ2

)y(2)
− 1− r

1− ρ3/r
ry(1)−(y(2)+y(3))

(r2
ρ3

)y(3)
+

(1− r)2

(1− ρ2/r)(1− ρ3/r)
ry(1)−(y(2)+y(3))

(r2
ρ2

)y(2)(r2
ρ3

)y(3)
This implies

hr(y) = 1− 1− r

1− ρ2/r

(r2
ρ2

)y(2)
− 1− r

1− ρ3/r

(r2
ρ3

)y(3)
+

(1− r)2

(1− ρ2/r)(1− ρ3/r)

(r2
ρ2

)y(2)(r2
ρ3

)y(3) (2.14)

for y ∈ ∂B.

First choose K2 > 0 and K3 > 0 so that∣∣∣∣ 1− r

1− ρ2/r

∣∣∣∣ (r2/ρ2)y(2) < 1/10

for y(2) > K2 and ∣∣∣∣ 1− r

1− ρ3/r

∣∣∣∣ (r2/ρ3)y(3) < 1/10
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for y(3) > K3. Next we note that

hr1,2(y) = r1,2
y(3) − 1− r1,2

1− ρ2/r1,2

(r1,22
ρ2

)y(2)
r1,2

y(3)

hr1,3(y) = r1,3
y(2) − 1− r1,3

1− ρ3/r1,3

(r1,32
ρ3

)y(3)
r1,3

y(2)

hρ1(y) = ρ1
y(2)+y(3)

(2.15)

for y ∈ ∂B. Now choose c2 and c3 so that

c2r1,2
y(3) − 1− r

1− ρ3/r

(
r2/ρ3

)y(3)
> 0

for y(3) ≤ K3 and

c3r1,3
y(2) − 1− r

1− ρ2/r

(
r2/ρ2

)y(2)
> 0

for y(2) ≤ K2. With these choices of c2, c3 we have

f1(y)
.
= 1− 1− r

1− ρ2/r

(
r2/ρ2

)y(2) − 1− r

1− ρ3/r

(
r2/ρ3

)y(3)
+ c2r1,2

y(3) + c3r1,3
y(2) > 8/10

(2.16)

for y ∈ ∂B. Define further

f2(y)
.
= −c2

1− r1,2
1− ρ2/r1,2

(
r21,2/ρ2

)y(2)
r
y(3)
1,2 − c3

1− r1,3
1− ρ3/r1,3

r
y(2)
1,3

(
r21,3/ρ3

)y(3)
+

(1− r)2

(1− ρ2/r)(1− ρ3/r)

(
r2/ρ2

)y(2) (
r2/ρ3

)y(3)
(2.17)

It follows from the above definitions and Equations 2.14, 2.15 that we can write

hr = f1(y) + f2(y) + c1ρ
y(2)+y(3)
1 , y ∈ ∂B, (2.18)

where c1 is still to be determined. The fact that r2/ρ2, r2/ρ3, r21,2/ρ2, r1,2, r1,3,

r21,3/ρ3 < 1 and the definition of f2 imply that there exists a constant K > 0 such that

|f2(y)| < 1/10, y ∈ {y ∈ ∂B, y(2) > K or y(3) > K}.

Since RK = {y ∈ ∂B, y(1) ≤ K and y(2) ≤ K} is finite, one can choose c1 large

enough so that

f2(y) + c1ρ
y(2)+y(3)
1 > 0
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holds for y ∈ RK . Combining the last two displays give

f2(y) + c1ρ
y(2)+y(3)
1 > −1/10, y ∈ ∂B.

This, 2.16 and 2.18 imply 2.13.

hr will be used as an approximating function for the probability Py(τ < ∞), see

subsection 4.1 of Chapter 4. A perturbation of hr will also be used in the error

analysis, see Proposition 3.2.
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CHAPTER 3

ERROR ANALYSIS

The goal of this chapter is to prove the following theorem:

Theorem 3.1. For any x ∈ R3
+, x(1) + x(2) + x(3) < 1, x(1) > 0, N > 0 such that

|Pxn(τn < τ0)− PTn(xn)(τ < ∞)|
Pxn(τn < τ0)

=
|Pxn(τn < τ0)− Pxn(τ̄n < ∞)|

Pxn(τn < τ0)
(3.1)

decays exponentially in n for n > N , where xn = ⌊xn⌋.

This generalizes [43, Theorem 6.1], which treats the case d = 2, to d = 3. The main

argument of the proof remains the same: since X and X̄ have the same dynamics

up to time σ1 the portion of the events {τn < τ0} and {τ < ∞} that happen before

time σ1 have the same probability. It turns out that the remaining parts, i.e., those

sample paths for which these events happen after time σ1 have very small probability

compared to the probability of interest Px(τn < τ0), if the initial position x is away

from the boundary ∂1. The implementation of this argument consists of the following

steps:

1. Derive an upper bound on Pxn(σ1 < τn < τ0) (Subsection 3.1).

2. Derive an upper bound on Pxn(σ1 < τ < ∞) (Subsection 3.2).

3. Derive a lower bound on Pxn(τn < τ0) (Subsection 3.3).

These steps are put together to produce a proof of Theorem 3.1 in Subsection 3.4. The

mathematical novelties compared to d = 2 treated in [43] are in the implementation

of the above steps, especially in the first and the third steps.
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As it is discussed in the previous works [38, 43, 6, 39], the proof is based on the

idea that the events {τn < τ0} and {τ < ∞} predominantly coincides since the two

processes X and Y differentiates only at the first constraining boundary, ∂1.

Let us define the following stopping time:

σ1
.
= inf{k > 0 : Xk(1) = 0} (3.2)

Let X̄k
.
= Tn(Yk) and X̄k+1 = X̄k + π1(X̄k, Ik). We assume the starting point of the

processes is X̄0 = X0. Note that X̄k and Xk share similar dynamics except for the

boundary ∂1 and the two processes move identically until the stopping time σ1. Let

us further define τ̄n as:

τ̄n
.
= inf{k > 0 :

3∑
j=1

X̄k(j) = n}

Since the hitting time of Y on ∂B = {y ∈ Z × Z2
+ : y(1) = y(2) + y(3)} exactly

matches with the hitting time of X̄ on {x ∈ Z × Z2
+ : x(1) + x(2) + x(3) = n} we

have τ̄n = τ . Therefore, we can write:

Pxn(τ̄n < ∞) = PTn(xn)(τ < ∞). (3.3)

Hence, if the starting point of the process X has a distance from the constraining

boundary ∂1, the difference between the events {τn < τ0} and {τ < ∞} lies in the

union of the events {σ1 < τn < τ0} and {σ1 < τ = τ̄n < ∞}. For the convergence

analysis, we find upper bounds on the probabilities P (σ1 < τn < τ0) and P (σ1 <

τ < ∞) by constructing a corresponding supermartingale; the supermartingale is

constructed by applying X-superharmonic functions to the process X .

For the error analysis, we first introduce some elementary facts. Lemma 1, Lemma 2,

Lemma 3 and Lemma 4 are used repeatedly in the convergence analysis proofs.

Lemma 1. Suppose a, b, c, d > 0 satisfy

a/b ≤ c/d. (3.4)

Then
a

b
≤ a+ c

b+ d
≤ c

d
. (3.5)

Furthermore, the equalities hold if and only if a/b = c/d.
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Proof. Let us define

d′ = c
b

a
,

d′′ = d− b+
ad

c
,

f : x 7→ a+ c

b+ x

where f is a strictly decreasing function for x > 0. From the definition of d′ we have

ad′ = bc. Now if we have the equality a/b = c/d then d = d′. So, the equalities

a/b = c/d′ = (a + c)/(b + d′) directly follow. (3.4) and the definition of d′ implies

c/d ≥ c/d′ and d′ ≥ d. On the other hand, (3.4) and the definition of d′′ implies

d′′ ≤ d. Then overall we have d′ ≥ d ≥ d′′. Applying the function f we have

f(d′) =
a

b
≤ f(d) =

a+ c

b+ d
≤ f(d′′) =

c

d
.

The statement on the equalities follows from the strict monotonicity of the function

f .

Recall that as in two dimensions we assume

ρ1 > ρ2 > ρ3. (3.6)

Moreover we define ra as in 1.2. In two dimensions the definition of ra reduces to

r1 = ρ1, r2 = ρ2 and r1,2. And r1 > r1,2 > r2 follows from the assumption ρ1 > ρ2.

In three dimensions we also need to compare ra and rb for a, b ⊂ {1, 2, 3}.

The necessary comparisons are listed in the lemmas below.

Lemma 2. Under assumption 3.6

ρ1 > r1,2 > ρ2, ρ2 > r2,3 > ρ3, ρ1 > r1,3 > ρ3, ρ1 > r1,2 > r1,2,3 > r2,3 > ρ3

(3.7)

always hold.

Proof. ρ1 > ρ2 implies λ1/µ1 > λ2/µ2. By Lemma 1 we have
λ1

µ1

>
λ1 + λ2

µ1 + µ2

>
λ1

µ1

.

Hence, ρ1 > r1,2 > ρ2; A similar argument applied to the pairs ρ2 > ρ3 and ρ1 > ρ3

gives ρ2 > r2,3 > ρ3 and ρ1 > r1,3 > ρ3.

31



We saw above that r1,2 > ρ2; by assumption we have ρ2 > ρ3, therefore r1,2 > ρ3.

Lemma 1 applied with c = λ1 + λ2, d = µ1 + µ2, c/d = r1,2 and a = λ3 b = µ3,

a/b = ρ3) imply r1,2 > r1,2,3 > ρ3.

The inequalities ρ1 > ρ2 and ρ2 > r2,3 > ρ3; imply ρ1 > r2,3; once again an

application of Lemma 1 (this time with a = λ2 + λ3, b = µ2 + µ3, a/b = r2,3

and c = λ1, b = µ1, c/d = ρ1) implies ρ1 > r1,2,3 > r2,3. Therefore we have

ρ1 > r1,2 > r1,2,3 > r2,3 > ρ3.

By the previous lemma, Assumption 3.6 allows us to compare most of the ra with each

other. However, the above lemma doesn’t resolve how r1,2,3, r1,3 and ρ2 compare with

each other. As already noted this situation does not arise in 2 dimensions, since the

only comparisons that arise in that case are included in ρ1 > r1,2 > ρ2, which always

holds under the assumption ρ1 > ρ2. The arguments below depend on the order of

r1,2,3 and r1,3 (see subsections 3.1.1 and 3.1.2 below).

As in previous works we find an upper bound on a probability by constructing a

corresponding supermartingale; the supermartingale is constructed by applying X-

superharmonic functions to the process X . Which functions are applied depends on

the probability being bounded.

For a ⊂ {1, 2, 3} let ac denote {1, 2, 3} − a. All of our functions will be constructed

by taking linear combinations of functions of the following form:

h(r, b, ·) : x 7→ .
= rn−

∑
j /∈b x(j), b ⊂ {1, 2, 3}, x ∈ Z3

+, r ∈ (0, 1). (3.8)

If r = ra for some a ⊂ {1, 2, 3} we will write h(a, b, ·) instead of h(ra, b, ·). The har-

monicity properties of these functions are established using the following two lem-

mas:

Lemma 3. For b ⊂ {1, 2, 3}, b ̸= ∅ the function f : x 7→
∑

i∈b
(
λi

1
x
+ µix

)
x > 0 is

strictly convex and satisfies:

1. f(rb) = f(1) =
∑

i∈b(λi + µi),

2. f(x) <
∑

i∈b(λi + µi) for x ∈ (rb, 1),

3. f(x) >
∑

i∈b(λi + µi) for x ∈ (0, rb) ∪ (1,∞).
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The proof follows from the definition of f .

Lemma 4. For a ⊂ {1, 2, 3}, the function = h(r, a, ·) : x 7→ rn−
∑

j /∈a x(j) satisfies

Ex[h(X1)] = h(x)

1 +
∑
j /∈a

(
λj

1

r
+ µjr − (λj + µj)

)
+
∑
i/∈a

1∂i(x)µi(1− r)

 .

(3.9)

For r ∈ [rac , 1], h(r, a, ·) is X-superharmonic on (∪i/∈a∂i)
c .

Proof. The case a = {1, 2, 3} is trivial. For a ̸= {1, 2, 3}, the proof of (3.9) follows

from the dynamics of X and the definition of h. For x ∈ (∪i/∈a∂i)
c we have x /∈ ∂i

for i /∈ a. Therefore for such x (3.9) reduces to

Ex[h(X1)] = h(x)

(
1 +

∑
i/∈a

(
λi
1

r
+ µir − (λi + µi)

))
.

For r ∈ [rac , 1], Lemma 3 (with b = ac) implies that the last sum is 0 or negative; this

implies that h is X-superharmonic on (∪i/∈a∂i)
c .

The functions we identify below to construct supermartingales slightly deviate from

being X-superharmonic (see, for example, (3.14)); this deviation causes errors to ac-

cumulate with each step of the processes X and Y . Therefore, to get meaningful

bounds, the number of steps X takes in the convergence argument must be bounded,

i.e., we need to truncate time. A similar truncation of time argument is used in all

of the previous works [16], [34], [37] [43], [6]. To truncate time for the X process

we use a general result from [42]. We need a new result for the truncation of time

for the Y process. For this we will generalize the argument given in [42] to three

dimensions: this consists of finding an upper bound on the moment generating func-

tion E[βτ1{τ<∞}] for some β > 1. In Subsection 3.1 we find an upper bound on the

probability Px(σ1 < τn < τ0).

3.1 Upper bound on the probability Px(σ1 < τn < τ0)

Let us now identify the ”almost” X-superharmonic functions that will be used to find

an upper bound on the probability of the the event {σ1 < τn < τ0}. This event

happens in two stages: first the process hits ∂1 without hitting 0 or ∂An and then hits
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∂An before hitting 0. We will use a different function for each stage. The functions

depend on whether r1,2,3 > r1,3 or otherwise. The functions for the case r1,2,3 ≥ r1,3

are presented in Theorems 3.2 and 3.3 in Subsection 3.1.1; the other case in Theorem

3.4 in Subsection 3.1.2 These theorems are verification arguments: they prove that

some proposed functions have the right properties. In the intervening paragraphs we

explain the process through which we identify the proposed functions.

The second stage of the event consists of X hitting ∂An before 0. This suggests that

we mimic the function x 7→ Px(τn < τ0) in trying to construct the X-superharmonic

function for this stage. Note that Px(τn < τ0) is the unique X-harmonic function

taking the value 1 on ∂An and 0 at (0, 0, 0). The simplest function of the form (3.8)

that equals 1 on ∂An is x 7→ h(r, a, x) = rn−
∑3

i=1 x(i) and for r = r1,2,3 this function

is X-harmonic on Z3,o
+ by Lemma 4.

The function h({1, 2, 3}, ∅, ·), however, can’t serve by itself as our function for the

second stage because it is not X-superhamonic on the constraining boundaries. To

get a function that is also X-superharmonic on these boundaries we can try to linearly

combine h({1, 2, 3}, ∅, ·) with functions that are superharmonic on Z3,o
+ as well as on

the constraining boundaries. Note that

h({1, 2, 3}, ∅, x) = h({1, 2, 3}, {i}, x) for x ∈ Πi. (3.10)

Recall that by Lemma 2 r1,2,3 > r2,3. Then by Lemma 4 (with a = {1} and r =

r1,2,3 > r2,3) h({1, 2, 3}, {1}, ·) is X-superharmonic on Z3
+ ∪ Π1 = (∂2 ∪ ∂3)

c. Then

nearly combining h({1, 2, 3}, ∅, ·) with may give a function that is X-superharmonic

on Z3,o
+ ∪ Π1. The usefulness of h({1, 2, 3}, {2}, ·) to treat the boundary Π2 in this

way depends on the order r1,2,3 and r1,3. The function h({1, 2, 3}, {3}, ·), on the

other hand, is X-subharmonic (this follows from (3.9) with a = {3}, r1,2,3 < r1,2

(Lemma 2)) and is therefore not useful to treat the boundary Π3. The right function

for this boundary turns out to be h(r̄1,2, {3}, ·) where r̄1,2 ∈ (r1,2, 1) is a variable

whose value will be fixed later. Since r̄1,2 > r1,2,3, we don’t have h({1, 2, 3}, ∅, x) =
h(r̄1,2, {i}, x) for x ∈ Π3. But r̄1,2 > r1,2,3 implies h({1, 2, 3}, ∅, x) ≤ h(r̄1,2, {i}, x)
x ∈ Π3, which suffices for our purposes (see (3.23) below).

Remark 1. Let us comment on the choice of the function h(r̄1,2, {3}, ·) for the bound-

ary Π3. The goal is to find a function that is X-superharmonic on Z3
+ ∪ Π3 so
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that when it is linearly combined with h({1, 2, 3}, ∅, ·) we end up with a function

that is also X-superharmonic on Π3. We may want to proceed as we did with Π1

and try h({1, 2, 3}, {3}, x) but as noted above this function is X-subharmonic. The

second natural choice is h({1, 2}, {3}, ·), which is the two dimensional version of

h({1, 2, 3}, ∅, ·) for the first two dimensions; but this function is X-harmonic on Π3

and cannot be used to cancel out the X-subharmonicity of h({1, 2, 3}, ∅, ·) on Π3. So

we perturb r1,2 slightly upward to obtain a strictly X-superharmonic function.

We have thus far have identified two additional functions: h({1, 2, 3}, {1}, ·) for the

boundary Π1 and h(r̄1,2, {3}, ·) for Π3. These functions however themselves fail to

be X-superharmonic on the lower dimensional boundaries Π3,1 = Π1,3 and Π3,2 and

Π1,2. To handle these we use a reasoning similar to above to identify further func-

tions of the form (3.8) with the right X-superharmonicity properties, which lead to:

h(r̄1,2, {1, 3}, ·) for Π1,3, h(ρ̄1, {2, 3}, ·) for Π2,3 and h(r1,2,3, {1, 2}, ·) for Π1,2.

These functions will suffice for the treatment of Π1 and Π3 and the lower dimensional

boundaries Π1,2, Π1,3 and Π3,2. The function for Π2 depends on the order of r1,3 and

r1,2,3. Let us continue our discussion with the case r1,3 ≤ r1,2,3.

3.1.1 The case r1,2,3 ≥ r1,3

In this subsection we assume

r1,2,3 ≥ r1,3. (3.11)

Note that (3.11) implies ρ2 ≥ r1,2,3 ≥ r1,3 by Lemma 1.

Our main function, h({1, 2, 3}, ∅, ·) satisfies

h({1, 2, 3}, ∅, x) = h({1, 2, 3}, {2}, x)

for x ∈ Π2. For r1,2,3 ≥ r1,3, h({1, 2, 3}, {2}, ·) is X-superharmonic on Z3
+ ∪ Π2 by

Lemma 4 (with a = {2} and r = r1,2,3 ≥ r1,3). and we will use this function as the

X-superharmonic function to deal with Π2 in our linear combination.

With this we have all of the functions we need to identify our X-superharmonic func-

tion corresponding to the second stage of the event {σ1 < τn < τ0} for the case

r1,3 ≤ r1,2,3 ≤ ρ2:
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1. For the interior Z3,o
+ : h({1, 2, 3}, ∅, ·),

2. For boundaries Π1, Π2: h({1, 2, 3}, {i}, ·), i = 1, 2,

3. For boundary Π3: h(r̄1,2, {3}, ·),

4. For boundaries Π2,3, Π1,3 and Π1,2: h(ρ̄1, {2, 3}, ·),
h(r̄1,2, {1, 3}, ·) and h({1, 2, 3}, {1, 2}, ·).

For ease of notation set:

h0(x) = h({1, 2, 3}, ∅, x) = r
n−

∑3
j=1 x(j)

1,2,3

h1(x) = h({1, 2, 3}, {1}, x) = r
n−(x(2)+x(3))
1,2,3

h2(x) = h({1, 2, 3}, {2}, x) = r
n−(x(1)+x(3))
1,2,3

h3(x) = h(r̄1,2, {3}, x) = r̄
n−(x(1)+x(2))
1,2 (3.12)

h4(x) = h(ρ̄1, {2, 3}, x) = ρ̄
n−x(1)
1

h5(x) = h(r̄1,2, {1, 3}, x) = r̄
n−x(2)
1,2

h6(x) = h({1, 2, 3}, {1, 2}, x) = r
n−x(3)
1,2,3 .

We want to linearly combine these functions to get a function that is “almost” X

superharmonic in all Z3
+. The linear combination is

h1
.
= h0 +

6∑
j=1

cjhj (3.13)

where ci > 0, i = 1, 2, 3..., 6 are constants to be determined.

Recall that r̄1,2 ∈ (r1,2, 1) and ρ̄1 ∈ (ρ1, 1) are variables; their values will be fixed

later.

Theorem 3.2. The constants ci, i = 1, 2, 3..., 6 can be chosen so that h1 satisfies the

following

Ex[h1(X1)]− h1(x) ≤ c10ρ
n
1 (3.14)

for all x ∈ Z3
+ where c10 > 0 is a constant.

Proof. We begin by recalling that all of hi, i ∈ {0, 1, 2, 3, 4, 5, 6} are functions of the

form h(r, {a}, ·) with r ∈ [rac , 1]:
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1. h0: a = ∅, r = r1,2,3,

2. h1: a = {1}, r = r1,2,3, where we use r1,2,3 > r2,3 (Lemma 2),

3. h2: a = {2}, r = r1,2,3, where we use r1,2,3 ≥ r1,3 (Assumption 3.11),

4. h3: a = {3}, r = r̄1,2, where we use r̄1,2 > r1,2, by choice,

5. h4: a = {2, 3}, r = ρ̄1, where we use ρ̄1 > ρ1, by choice,

6. h5: a = {1, 3}, r = r̄1,2, where we use r̄1,2 > r1,2 > ρ2 (the second inequality

is by Lemma 2),

7. h6: a = {1, 2}, r = r1,2,3 where we use r1,2,3 > ρ3 (Lemma 2).

Therefore, by Lemma 4, all of the functions in the linear combination (3.13) are X-

superharmonic on Z3,o
+ . This and ci > 0 imply that h1 is X-superharmonic on Z3,o

+ .

Therefore, (3.14) holds with c10 = 0 for x ∈ Z3,o
+ . It remains to treat the constraining

boundaries which are Πi, i = 1, 2, 3, Π1,2, Π1,3, Π2,3 and Π1,2,3 = {0}.

x ∈ Π1: by Lemma 4:

Ex[h0(X1)]− h0(x) = r
n−(x(2)+x(3))
1,2,3 (µ1(1− r1,2,3))

Ex[h1(X1)]− h1(x) = −r
n−(x(2)+x(3))
1,2,3

(
λ1

r1,2,3
+ µ1r1,2,3 − (λ1 + µ1)

)
< 0

Ex[h2(X1)]− h2(x) ≤ r
n−x(3)
1,2,3 µ1(1− r1,2,3) (3.15)

Ex[h3(X1)]− h3(x) ≤ r̄
n−x(2)
1,2 µ1(1− r̄1,2)

Ex[h4(X1)]− h4(x) ≤ ρ̄n1µ1(1− ρ̄1)

Ex[h5(X1)]− h5(x) = −r̄
n−x(2)
1,2

(
λ2 + µ2 −

λ2

r̄1,2
− µ2r̄1,2

)
< 0

Ex[h6(X1)]− h6(x) = −r
n−x(3)
1,2,3

(
λ3 + µ3 −

λ3

r1,2,3
− µ3r1,2,3

)
.

Note that the difference associated with h4 already satisfies (3.14) when c10 is chosen

large enough. Then it suffices to choose c1, c5 and c6 so that the negative terms

associated with h1, h5 and h6 balance the positive terms associated with h0, h2 and

37



h3:

c1 ≥
µ1(1− r1,2,3)

λ1

r1,2,3
+ µ1r1,2,3 − (λ1 + µ1)

> 0,

c5 ≥ c3
µ1(1− r̄1,2)

λ2 + µ2 − λ2

r̄1,2
− µ2r̄1,2

> 0, (3.16)

c6 ≥ c2
µ1(1− r1,2,3)

λ3 + µ3 − λ3

r1,2,3
− µ3r1,2,3

> 0.

These choices of c1, c5 and c6 and (3.15) imply

Ex[h1(X1)]− h1(x) ≤ c4ρ̄
n
1µ1(1− ρ̄1). (3.17)

x ∈ Π2: by Lemma 4:

Ex[h0(X1)]− h0(x) = r
n−(x(1)+x(3))
1,2,3 (µ2(1− r1,2,3))

Ex[h1(X1)]− h1(x) ≤ r
n−x(3)
1,2,3 µ2(1− r1,2,3)

Ex[h2(X1)]− h2(x) = −r
n−(x(1)+x(3))
1,2,3

(
λ2

r1,2,3
+ µ2r1,2,3 − (λ2 + µ2)

)
< 0 (3.18)

Ex[h3(X1)]− h3(x) ≤ r̄
n−x(1)
1,2 µ2(1− r̄1,2)

Ex[h4(X1)]− h4(x) = −ρ̄
n−x(1)
1

(
λ1 + µ1 −

λ1

ρ̄1
− µ1ρ̄1

)
< 0

Ex[h5(X1)]− h5(x) ≤ r̄n1,2µ2(1− r̄1,2)

Ex[h6(X1)]− h6(x) = −r
n−x(3)
1,2,3

(
λ3 + µ3 −

λ3

r1,2,3
− µ3r1,2,3

)
< 0.

To balance the positive terms associated with h0, h1, h3 with the negative terms asso-

ciated with h2, h4 and h6 it suffices to choose c2, c4 and c6 as follows:

c2 ≥
µ2(1− r1,2,3)

λ2

r1,2,3
+ µ2r1,2,3 − (λ2 + µ2)

> 0,

c4 ≥ c3
µ2(1− r̄1,2)

λ1 + µ1 − λ1

ρ̄1
+ µ1ρ̄1

> 0 (3.19)

c6 ≥ c1
µ2(1− r1,2,3)

λ3 + µ3 − λ2

r1,2,3
+ µ2r1,2,3

> 0

These choices of c2, c4 and c6 and (3.18) imply

Ex[h1(X1)]− h1(x) ≤ c5r̄
n
1,2µ2(1− ρ̄1) (3.20)

for x ∈ Π2.

38



x ∈ Π3: by Lemma 4:

Ex[h0(X1)]− h0(x) = r
n−(x(1)+x(2))
1,2,3 (µ3(1− r1,2,3))

Ex[h1(X1)]− h1(x) ≤ r
n−x(2)
1,2,3 µ3(1− r1,2,3)

Ex[h2(X1)]− h2(x) ≤ r
n−x(1)
1,2,3 µ3(1− r1,2,3)

Ex[h3(X1)]− h3(x) = −r̄
n−(x(1)+x(2))
1,2

(
2∑

i=1

(
λi + µi − λi

1

r̄1,2
− µir̄1,2)

))
(3.21)

Ex[h4(X1)]− h4(x) = −ρ̄
n−x(1)
1

(
λ1 + µ1 −

λ1

ρ̄1
− µ1ρ̄1

)
Ex[h5(X1)]− h5(x) = −r̄

n−x(2)
1,2

(
λ2 + µ2 − λ2

1

r̄1,2
− µ2r̄1,2)

)
Ex[h6(X1)]− h6(x) ≤ rn1,2,3µ3(1− r1,2,3).

We now choose c3 so that the first three positive terms are balanced by the negative

term arising from h3:

c3 ≥
(1 + c1 + c2)µ3(1− r1,2,3)∑2

i=1

(
λi + µi − λi

1
r̄ 1,2

− µir̄1,2

) > 0. (3.22)

This choice of c3, (3.21), r̄1,2 > r1,2,3 imply

Ex[h1(X1)]− h1(x) ≤ c6r
n
1,2,3µ3(1− r1,2,3) (3.23)

for x ∈ Π3.

Let us now consider the lower dimensional boundaries; in all of the calculations below

we use Lemma 4:
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For x ∈ Π1,2:

Ex[h0(X1)]− h0(x) = r
n−x(3)
1,2,3

(
2∑

i=1

µi(1− r1,2,3)

)
Ex[h1(X1)]− h1(x) ≤ r

n−x(3)
1,2,3 µ2(1− r1,2,3)

Ex[h2(X1)]− h2(x) ≤ r
n−x(3)
1,2,3 µ1(1− r1,2,3)

Ex[h3(X1)]− h3(x) ≤ r̄n1,2

2∑
i=1

µi(1− r̄1,2) (3.24)

Ex[h4(X1)]− h4(x) ≤ ρ̄n1µ1(1− ρ̄1)

Ex[h5(X1)]− h5(x) ≤ r̄n1,2µ2(1− r̄1,2)

Ex[h6(X1)]− h6(x) = −r
n−x(3)
1,2,3

(
λ3 + µ3 −

λ3

r1,2,3
− µ3r1,2,3

)
< 0.

We choose c6 so that the last term balances the first three terms:

c6 ≥
(1 + c2)µ1(1− r1,2,3) + (1 + c1)µ2(1− r1,2,3)

λ3 + µ3 − λ3

r1,2,3
− µ3r1,2,3

. (3.25)

This choice, (3.24) and ρ̄1 > r̄1,2 imply

Ex[h1(X1)]− h1(x) ≤ c7ρ̄
n
1 (3.26)

for x ∈ Π1,2 where

c7
.
= c3

2∑
i=1

µi(1− r̄1,2) + c4µ1(1− ρ̄1) + c5µ2(1− r̄1,2).

For x ∈ Π1,3 we have:

Ex[h0(X1)]− h0(x) = r
n−x(2)
1,2,3

 ∑
i∈{1,3}

µi(1− r1,2,3)

 (3.27)

Ex[h1(X1)]− h1(x) ≤ r
n−x(2)
1,2,3 µ3(1− r1,2,3)

Ex[h2(X1)]− h2(x) ≤ rn1,2,3

 ∑
i∈{1,3}

µi(1− r1,2,3)


Ex[h3(X1)]− h3(x) ≤ r̄

n−x(2)
1,2 (µ1(1− r̄1,2))

Ex[h4(X1)]− h4(x) ≤ ρ̄n1µ1(1− ρ̄1)

Ex[h5(X1)]− h5(x) = −r̄
n−x(2)
1,2

(
λ2 + µ2 − λ2

1

r̄1,2
− µ2r̄1,2

)
< 0

Ex[h6(X1)]− h6(x) ≤ rn1,2,3µ3(1− r1,2,3).
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Now choose c5 so that the negative term associated with h5 balances the positive terms

associated with h0, h1 and h3:

c5 ≥
∑

i∈{1,3} µi(1− r1,2,3) + c1µ3(1− r1,2,3) + c3µ1(1− r̄1,2)

λ2 + µ2 − λ2
1

r̄1,2
− µ2r̄1,2

> 0. (3.28)

This choice, (3.27), r̄1,2 ≥ r1,2,3 and ρ̄1 > r1,2,3, r̄1,2 imply

Ex[h1(X1)]− h1(x) ≤ c8ρ̄
n
1 (3.29)

for x ∈ Π1,3 where

c8
.
= c2

 ∑
i∈{1,3}

µi(1− r1,2,3)

+ c4µ1(1− ρ̄1) + c6µ3(1− r1,2,3).

For x ∈ Π2,3:

Ex[h0(X1)]− h0(x) = r
n−x(1)
1,2,3

 ∑
i∈{2,3}

µi(1− r1,2,3)


Ex[h1(X1)]− h1(x) ≤ rn1,2,3

 ∑
i∈{2,3}

µi(1− r1,2,3)


Ex[h2(X1)]− h2(x) ≤ r

n−x(1)
1,2,3 (µ3(1− r1,2,3))

Ex[h3(X1)]− h3(x) ≤ r̄
n−x(1)
1,2 (µ2(1− r̄1,2)) (3.30)

Ex[h4(X1)]− h4(x) = −ρ̄
n−x(1)
1

(
λ1 + µ1 −

λ1

ρ̄1
− µ1ρ̄1

)
Ex[h5(X1)]− h5(x) ≤ r̄n1,2µ2(1− r̄1,2)

Ex[h6(X1)]− h6(x) ≤ rn1,2,3µ3(1− r1,2,3).

We choose c4 so that the negative term arising from h4 balances the positives terms

arising from h0, h2 and h3:

c4 ≥
(µ2(1− r1,2,3) + (1 + c2)µ3(1− r1,2,3)) + c3 (µ2(1− r̄1,2))(

λ1 + µ1 − λ1

ρ̄1
− µ1ρ̄1

) . (3.31)

This choice, (3.30), ρ̄1 > r̄1,2, r1,2,3 imply

Ex[h1(X1)]− h1(x) ≤ c9ρ̄
n
1 (3.32)
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for x ∈ Π2,3 where

c9
.
= c6µ3(1− r1,2,3) + c5µ2(1− r̄1,2) + c1

 ∑
i∈{2,3}

µi(1− r1,2,3)

 .

Finally we consider x ∈ Π1,2,3, i.e., x = (0, 0, 0):

Ex[h0(X1)]− h0(x) = rn1,2,3

 ∑
i∈{1,2,3}

µi(1− r1,2,3)


Ex[h1(X1)]− h1(x) ≤ rn1,2,3

 ∑
i∈{2,3}

µi(1− r1,2,3)


Ex[h2(X1)]− h2(x) ≤ rn1,2,3

 ∑
i∈{1,3}

µi(1− r1,2,3)


Ex[h3(X1)]− h3(x) ≤ r̄n1,2

2∑
i=1

(µi(1− r̄1,2)) (3.33)

Ex[h4(X1)]− h4(x) ≤ ρ̄n1µ1(1− ρ̄1)

Ex[h5(X1)]− h5(x) ≤ r̄n1,2µ2(1− r̄1,2)

Ex[h6(X1)]− h6(x) ≤ rn1,2,3µ3(1− r1,2,3).

Then ρ̄1 > r1,2,3, r̄1,2 implies

Ex[h1(X1)]− h1(x) ≤ c10ρ̄
n
1 (3.34)

for x = (0, 0, 0) where

c10
.
=

∑
i∈{1,2,3}

µi(1− r1,2,3) + c1
∑

i∈{2,3}

µi(1− r1,2,3) + c2
∑

i∈{1,3}

µi(1− r1,2,3)

+ c3

2∑
i=1

µi(1− r̄1,2) + c4µ1(1− ρ̄1) + c5µ2(1− r̄1,2) + c6µ3(1− r1,2,3).

Let us now combine the results above. First note that

c10 ≥ c4µ1(1− ρ̄1) ∨ c5µ2(1− r̄1,2) ∨ c6µ3(1− r1,2,3) ∨9
i=7 ci (3.35)

(the terms on the right are the constants appearing on the right of (3.17) (3.20) (3.23)

(3.26) (3.29) and (3.32)). Note further that:

1) (3.25) implies the constraints on c6 given in (3.16) and (3.19),
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2) (3.28) implies the constraint on c5 given in (3.16),

3) (3.31) implies the constraint on c4 given in (3.19).

Then if we choose ci, i = 1, 2, ..., 6 as below, all of (3.16), (3.19), (3.22), (3.25),

(3.28) and (3.31) are satisfied:

c1 ≥
µ1(1− r1,2,3)

λ1

r1,2,3
+ µ1r1,2,3 − (λ1 + µ1)

> 0,

c2 ≥
µ2(1− r1,2,3)

λ2

r1,2,3
+ µ2r1,2,3 − (λ2 + µ2)

> 0,

c3 ≥
(1 + c1 + c2)µ3(1− r1,2,3)∑2

i=1

(
λi + µi − λi

1
r̄ 1,2

− µir̄1,2

) > 0.

c4 ≥
(µ2(1− r1,2,3) + (1 + c2)µ3(1− r1,2,3)) + c3 (µ2(1− r̄1,2))(

λ1 + µ1 − λ1

ρ̄1
− µ1ρ̄1

) > 0

c5 ≥
∑

i∈{1,3} µi(1− r1,2,3) + c1µ3(1− r1,2,3) + c3µ1(1− r̄1,2)

λ2 + µ2 − λ2
1

r̄1,2
− µ2r̄1,2

> 0.

c6 ≥
(1 + c2)µ1(1− r1,2,3) + (1 + c1)µ2(1− r1,2,3)

λ3 + µ3 − λ3

r1,2,3
− µ3r1,2,3

> 0.

For these choices of ci, i = 1, 2, 3, 4, 5, 6, (3.17), (3.20), (3.23), (3.26), (3.29), and

(3.32) all hold and imply

Ex[h1(X1)]− h1(x) ≤ c10ρ̄
n
1 ,

for all x ∈ Z3
+ where we also used ρ̄1 ≥ r1,2,3, r̄1,2, (3.34) and (3.35).

We next identify a function h0 for the first stage of the event {σ1 < τn < τ0}.
The first stage consists of the process hitting ∂1 at time σ1 before hitting ∂An and

(0, 0, 0). Upon hitting ∂1 the process enters the second stage for which we have

constructed the function h1 above. Recall that we will apply these functions to X

to get a supermartingale. For this construction to work we need h0(x) ≥ h1(x) for

x ∈ ∂1. The function h1 restricted to ∂1 equals:

h1(x) = h0(x)+
6∑

j=1

cjhj(x) = (1+c1)h1(x)+(c2+c6)h6(x)+(c3+c5)h5(x)+c4ρ̄
n
1

(3.36)

where we used h0(x) = h1(x), h2(x) = h6(x), h3(x) = h5(x) for x ∈ ∂1.
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Our starting point for choosing a function for the first stage is the right side of (3.36).

We will follow a process similar to above to modify the coefficients in (3.36) so that

the resulting function is “almost” X-superharmonic. Define

h0
.
= (1 + c1)h1(x) + c′5h5(x) + c′6h6(x) + c4ρ̄

n
1 (3.37)

Theorem 3.3. The constants c′5 > 0, c′6 > 0 can be chosen so that h0(x) ≥ h1(x),

x ∈ ∂1 and h0 satisfies

Ex[h0(X1)]− h0(x) ≤ c′10ρ
n
1 , x ∈ Z3

+, (3.38)

for some constant c′10 > 0

Proof. The functions h1, h5 and h6 are all X-superharmonic on Z3,o
+ so (3.38) holds

for x ∈ Z3,o
+ with c′10 = 0. The treatment of the constraining boundaries proceed

similar to the proof of Theorem 3.2. The function h1, h5 and h6 depend only on x(2)

and x(3); therefore it suffices to consider only the boundaries Π2, Π3 and Π2,3. For

x ∈ Π2: (3.18) implies the following choice for c′6:

c′6 ≥ (1 + c1)
µ2(1− r1,2,3)

λ3 + µ3 − λ3

r1,2,3
− µ3r1,2,3

> 0. (3.39)

This choice of c′6 and (3.18) imply

Ex[h0(X1)]− h0(x) ≤ c′5µ2(1− r̄1,2)r̄
n
1,2, x ∈ Π2. (3.40)

For x ∈ Π3: (3.21) implies the following choice for c′5:

c′5 ≥ (1 + c1)
µ3(1− r1,2,3)

λ2 + µ2 − λ2
1

r̄1,2
− µ2r̄1,2

. (3.41)

This choice of c′5, r̄1,2 > r1,2,3 and (3.21) imply

Ex[h0(X1)]− h0(x) ≤ c′6µ3(1− r1,2,3)r
n
1,2,3, x ∈ Π3. (3.42)

For x ∈ Π2,3 (3.30) and ρ̄1 > r̄1,2, r1,2,3 imply

Ex[h0(X1)]− h0(x) ≤ c10′ ρ̄
n
1 (3.43)

where

c′10
.
= (1 + c1)

∑
i∈{2,3}

µi(1− r1,2,3) + c′5µ2(1− r̄1,2) + c′6µ3(1− r1,2,3). (3.44)
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Putting all of the above together we have: choose c′5, c
′
6 and c′10 as in (3.41), (3.39) and

(3.44); (3.40), (3.42), (3.43), c′10 > c′5µ2(1− r̄1,2), c′6µ3(1−r1,2,3) and ρ̄1 > r̄1,2, r1,2,3

imply (3.38).

Finally, increase c′5 and c′6 if necessary so that c′5 > c2+c6 and c′6 > c3+c5; this choice

of the constants c′5 and c′6, (3.36) and the definition (3.37) of h0 imply h0(x) ≥ h1(x)

for x ∈ ∂1.

3.1.2 The case r1,2,3 < r1,3

Note that r1,2,3 < r1,3 implies ρ2 < r1,2,3 < r1,3 by Lemma 1.

Recall from Subsection 3.1.1 that in the case r1,2,3 ≥ r1,3 we used the function

h({1, 2, 3}, {2}, ·) : x 7→ r
n−(x(1)+x(3)
1,2,3 to deal with the constraining boundary Π2.

The Equation (3.9) (with a = {2} and r = r1,2,3), the assumption r1,2,3 < r1,3 and

Lemma 3 (with b = ac = {1, 3}) imply that h({1, 2, 3}, {2}, ·) : x 7→ r
n−(x(1)+x(3)
1,2,3 is

strictly X-subharmonic even on Z3,o
+ . So this function is not useful to treat Π2 when

r1,2,3 < r1,3 and we need to identify another function to deal with this constraining

boundary. In the construction of h1 of (3.13) we used the function h(r̄1,2, {3}, ·)
to deal with the boundary Π3. The corresponding function for Π2 is h(r̄1,3, {2}, ·)
where r̄1,3 is a variable to be chosen in the interval (r1,3, ρ1). By Lemma 4 (with

a = {2} and r = r̄1,3 > r1,3) this function is X-superharmonic on Z3,o
+ ∪ Π2. Re-

call that h({1, 2, 3}, {2}, x) = h({1, 2, 3}, ∅, x) for x ∈ Π2; h(r̄1,3, {2}, ·) doesn’t

have this property but the assumption r1,3 > r1,2,3 implies r̄1,3 > r1,2,3 and hence

h(r̄1,3, {2}, x) ≥ h({1, 2, 3}, ∅, x) for x ∈ Π2, which is sufficient for our purposes.

We need one further modification: the function h(r̄1,3, {2}, ·) is X-subharmonic on

Π1 and Π3 and this needs to be balanced by some X-superharmonic functions on

these boundaries. The function h4 = h(ρ̄1, {2, 3}, ·) can serve this purpose since

ρ̄1 > ρ1 > r̄1,3. Using a similar reasoning we replace h({1, 2, 3}, {1, 2}, ·) with

h(r̄1,3, {1, 2}, ·) Since r̄1,3 > r1,3 > ρ3 (Lemma 2) this function is X-superharmonic

on (∪i∈1,2∂i)
c.

With these modifications, the construction of the functions h1 and h0 proceed as in
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the previous subsection. We modify the following functions in (3.12):

h2 = h(r̄1,3, {2}, ·) : x 7→ r̄
n−(x(1)+x(3))
1,3 (3.45)

h6 = h(r̄1,3, {1, 2}, ·) : x 7→ r̄
n−x(3)
1,3 .

After this change the definitions of h1 and h0 ((3.13) and (3.37)) remain the same for

the current case and we have the following theorem:

Theorem 3.4. Suppose r1,3 > r1,2,3. Let h1 and h0 be defined as in (3.13) and (3.37)

with h2 and h6 as in (3.45). Then Theorems 3.2 and 3.3 continue to hold.

Proof. The proof proceeds exactly as the proofs of Theorems 3.2 and 3.3 where we

only modify calculations pertaining to h2 and h6.

Proof of Theorem 3.2 for the case r1,3 > r1,2,3:

Let us rewrite hi, i ∈ {0, 1, 2, 3, 4, 5, 6} where h(r, {a}, ·) with a ∈ [rac , 1] as in the

proof of Theorem 3.2:

1. h0: a = ∅, r = r1,2,3, h0(x) = r
n−

∑3
j=1 x(j)

1,2,3

2. h1: a = {1}, r = r1,2,3, h1(x) = r
n−(x(2)+x(3))
1,2,3

3. h2: a = {2}, r = r̄1,3, h2(x) = r̄
n−(x(1)+x(3))
1,3

4. h3: a = {3}, r = r̄1,2, h3(x) = r̄
n−(x(1)+x(2))
1,2

5. h4: a = {2, 3}, r = ρ̄1, h4(x) = ρ̄
n−x(1)
1

6. h5: a = {1, 3}, r = r̄1,2, h5(x) = r̄
n−x(2)
1,2

7. h6: a = {1, 2}, r = r̄1,3, h6(x) = r̄
n−x(3)
1,3

Once again, by Lemma 4, all of the functions in the linear combination (3.13) are

X-superharmonic on Z3,o
+ . This and ci > 0 imply that h1 is X-superharmonic on

Z3,o
+ . We only to treat the constraining boundaries Πi, i = 1, 2, 3, Π1,2, Π1,3, Π2,3 and

Π1,2,3 = {0}.
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x ∈ Π1: Using Lemma 4:

Ex[h0(X1)]− h0(x) = r
n−(x(2)+x(3))
1,2,3 (µ1(1− r1,2,3))

Ex[h1(X1)]− h1(x) = −r
n−(x(2)+x(3))
1,2,3

(
λ1

r1,2,3
+ µ1r1,2,3 − (λ1 + µ1)

)
< 0

Ex[h2(X1)]− h2(x) ≤ r̄
n−x(3)
1,3 µ1(1− r̄1,3) (3.46)

Ex[h3(X1)]− h3(x) ≤ r̄
n−x(2)
1,2 µ1(1− r̄1,2)

Ex[h4(X1)]− h4(x) ≤ ρ̄n1µ1(1− ρ̄1)

Ex[h5(X1)]− h5(x) = −r̄
n−x(2)
1,2

(
λ2 + µ2 −

λ2

r̄1,2
− µ2r̄1,2

)
< 0

Ex[h6(X1)]− h6(x) = −r̄
n−x(3)
1,3

(
λ3 + µ3 −

λ3

r̄1,3
− µ3r̄1,3

)
.

Choose c1, c5 and c6 so that the negative terms coming from h1, h5 and h6 balance

the positive terms coming from h0, h2 and h3:

c1 ≥
µ1(1− r̄1,3)

λ1

r1,2,3
+ µ1r1,2,3 − (λ1 + µ1)

> 0,

c5 ≥ c3
µ1(1− r̄1,2)

λ2 + µ2 − λ2

r̄1,2
− µ2r̄1,2

> 0, (3.47)

c6 ≥ c2
µ1(1− r̄1,3)

λ3 + µ3 − λ3

r̄1,3
− µ3r̄1,3

> 0.

These choices of c1, c5 and c6 and (3.46) imply

Ex[h1(X1)]− h1(x) ≤ c4ρ̄
n
1µ1(1− ρ̄1). (3.48)

for x ∈ Π1.
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x ∈ Π2: Using Lemma 4:

Ex[h0(X1)]− h0(x) = r
n−(x(1)+x(3))
1,2,3 (µ2(1− r1,2,3))

Ex[h1(X1)]− h1(x) ≤ r
n−x(3)
1,2,3 µ2(1− r1,2,3)

Ex[h2(X1)]− h2(x) = −r̄
n−(x(1)+x(3))
1,3

 ∑
i∈{1,3}

(
λi + µi − λi

1

r̄1,3
− µir̄1,3

) < 0

(3.49)

Ex[h3(X1)]− h3(x) ≤ r̄
n−x(1)
1,2 µ2(1− r̄1,2)

Ex[h4(X1)]− h4(x) = −ρ̄
n−x(1)
1

(
λ1 + µ1 −

λ1

ρ̄1
− µ1ρ̄1

)
< 0

Ex[h5(X1)]− h5(x) ≤ r̄n1,2µ2(1− r̄1,2)

Ex[h6(X1)]− h6(x) = −r̄
n−x(3)
1,3

(
λ3 + µ3 −

λ3

r̄1,3
− µ3r̄1,3

)
< 0.

Choose c2, c4 and c6 so that the negative terms coming from h2, h4 and h6 are balanced

by the positive terms associated with h0, h1, h3:

c2 ≥
µ2(1− r̄1,3)∑

i∈{1,3}

(
λi + µi − λi

1
r̄1,3

− µir̄1,3

) > 0,

c4 ≥ c3
µ2(1− r̄1,2)

λ1 + µ1 − λ1

ρ̄1
− µ1ρ̄1

> 0 (3.50)

c6 ≥ c1
µ2(1− r̄1,3)

λ3 + µ3 − λ3

r̄1,3
− µ3r̄1,3

> 0

These choices of c2, c4, c6 and (3.49) together with r̄1,3 > r1,2,3, ρ̄1 > r̄1,2 imply

Ex[h1(X1)]− h1(x) ≤ c5r̄
n
1,2µ2(1− ρ̄1) (3.51)

for x ∈ Π2.
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x ∈ Π3: Using Lemma 4:

Ex[h0(X1)]− h0(x) = r
n−(x(1)+x(2))
1,2,3 (µ3(1− r1,2,3))

Ex[h1(X1)]− h1(x) ≤ r
n−x(2)
1,2,3 µ3(1− r1,2,3)

Ex[h2(X1)]− h2(x) ≤ r̄
n−x(1)
1,3 µ3(1− r̄1,3)

Ex[h3(X1)]− h3(x) = −r̄
n−(x(1)+x(2))
1,2

(
2∑

i=1

(
λi + µi − λi

1

r̄1,2
− µir̄1,2

))
(3.52)

Ex[h4(X1)]− h4(x) = −ρ̄
n−x(1)
1

(
λ1 + µ1 −

λ1

ρ̄1
− µ1ρ̄1

)
Ex[h5(X1)]− h5(x) = −r̄

n−x(2)
1,2

(
λ2 + µ2 − λ2

1

r̄1,2
− µ2r̄1,2)

)
Ex[h6(X1)]− h6(x) ≤ r̄n1,3µ3(1− r̄1,3).

Choose c3, c4, c5 so that the positive terms are balanced by the negative terms arising

from h3, h4 and h5:

c3 ≥
(1 + c1 + c2)µ3(1− r̄1,3)∑2

i=1

(
λi + µi − λi

1
r̄ 1,2

− µir̄1,2

) > 0,

c4 ≥ c2
µ3(1− r̄1,3)

λ1 + µ1 − λ1

ρ̄1
− µ1ρ̄1

> 0 (3.53)

c5 ≥ c1
µ3(1− r1,2,3)

λ2 + µ2 − λ2

r̄1,2
− µ2r̄1,2

> 0

This choice of c3, (3.52), r̄1,3 > r1,2,3 imply

Ex[h1(X1)]− h1(x) ≤ c6r̄
n
1,3µ3(1− r̄1,3) (3.54)

for x ∈ Π3.
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For x ∈ Π1,2:

Ex[h0(X1)]− h0(x) = r
n−x(3)
1,2,3

(
2∑

i=1

µi(1− r1,2,3)

)
Ex[h1(X1)]− h1(x) ≤ r

n−x(3)
1,2,3 µ2(1− r1,2,3)

Ex[h2(X1)]− h2(x) ≤ r̄
n−x(3)
1,3 µ1(1− r̄1,3)

Ex[h3(X1)]− h3(x) ≤ r̄n1,2

2∑
i=1

µi(1− r̄1,2) (3.55)

Ex[h4(X1)]− h4(x) ≤ ρ̄n1µ1(1− ρ̄1)

Ex[h5(X1)]− h5(x) ≤ r̄n1,2µ2(1− r̄1,2)

Ex[h6(X1)]− h6(x) = −r̄
n−x(3)
1,3

(
λ3 + µ3 −

λ3

r̄1,3
− µ3r̄1,3

)
< 0.

We choose c6 so that the last term balances the first three terms:

c6 ≥
(1 + c2)µ1(1− r̄1,3) + (1 + c1)µ2(1− r̄1,3))

λ3 + µ3 − λ3

r̄1,3
− µ3r̄1,3

. (3.56)

This choice, (3.55), ρ̄1 > r̄1,2 and r̄1,3 > r1,3 > r1,2,3 imply

Ex[h1(X1)]− h1(x) ≤ c7ρ̄
n
1 (3.57)

for x ∈ Π1,2 where

c7
.
= c3

2∑
i=1

µi(1− r̄1,2) + c4µ1(1− ρ̄1) + c5µ2(1− r̄1,2).

For x ∈ Π1,3 we have:

Ex[h0(X1)]− h0(x) = r
n−x(2)
1,2,3

 ∑
i∈{1,3}

µi(1− r1,2,3)

 (3.58)

Ex[h1(X1)]− h1(x) ≤ r
n−x(2)
1,2,3 µ3(1− r1,2,3)

Ex[h2(X1)]− h2(x) ≤ r̄n1,3

 ∑
i∈{1,3}

µi(1− r̄1,3)


Ex[h3(X1)]− h3(x) ≤ r̄

n−x(2)
1,2 (µ1(1− r̄1,2))

Ex[h4(X1)]− h4(x) ≤ ρ̄n1µ1(1− ρ̄1)

Ex[h5(X1)]− h5(x) = −r̄
n−x(2)
1,2

(
λ2 + µ2 − λ2

1

r̄1,2
− µ2r̄1,2

)
< 0

Ex[h6(X1)]− h6(x) ≤ r̄n1,3µ3(1− r̄1,3).
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Choose c5 so that the negative term coming from h5 balances the positive terms com-

ing from h0, h1 and h3:

c5 ≥
∑

i∈{1,3} µi(1− r1,2,3) + c1µ3(1− r1,2,3) + c3µ1(1− r̄1,2)

λ2 + µ2 − λ2
1

r̄1,2
− µ2r̄1,2

> 0. (3.59)

This choice, (3.58), r̄1,2 ≥ r1,2,3 and ρ̄1 > r1,3, r̄1,2 imply

Ex[h1(X1)]− h1(x) ≤ c8ρ̄
n
1 (3.60)

for x ∈ Π1,3 where

c8
.
= c2

 ∑
i∈{1,3}

µi(1− r̄1,3)

+ c4µ1(1− ρ̄1) + c6µ3(1− r̄1,3).

For x ∈ Π2,3:

Ex[h0(X1)]− h0(x) = r
n−x(1)
1,2,3

 ∑
i∈{2,3}

µi(1− r1,2,3)


Ex[h1(X1)]− h1(x) ≤ rn1,2,3

 ∑
i∈{2,3}

µi(1− r1,2,3)


Ex[h2(X1)]− h2(x) ≤ r̄

n−x(1)
1,3 (µ3(1− r̄1,3))

Ex[h3(X1)]− h3(x) ≤ r̄
n−x(1)
1,2 (µ2(1− r̄1,2)) (3.61)

Ex[h4(X1)]− h4(x) = −ρ̄
n−x(1)
1

(
λ1 + µ1 −

λ1

ρ̄1
− µ1ρ̄1

)
Ex[h5(X1)]− h5(x) ≤ r̄n1,2µ2(1− r̄1,2)

Ex[h6(X1)]− h6(x) ≤ r̄n1,3µ3(1− r̄1,3).

Choose c4 so that the negative term stemming from h4 balances the positive terms

arising from h0, h2 and h3:

c4 ≥
(µ2(1− r̄1,3) + (1 + c2)µ3(1− r̄1,3)) + c3 (µ2(1− r̄1,3))(

λ1 + µ1 − λ1

ρ̄1
− µ1ρ̄1

) . (3.62)

This choice of c4, (3.61), r̄1,3 > r̄1,3 > r1,2,3, ρ̄1 > r̄1,2, r1,3 imply

Ex[h1(X1)]− h1(x) ≤ c9ρ̄
n
1 (3.63)

for x ∈ Π2,3 where

c9
.
= c6µ3(1− r̄1,3) + c5µ2(1− r̄1,2) + c1

 ∑
i∈{2,3}

µi(1− r1,2,3)

 .
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For x ∈ Π1,2,3, i.e., x = (0, 0, 0) applying Lemma 4 we obtain:

Ex[h1(X1)]− h1(x) ≤ c10ρ̄
n
1 (3.64)

for x = (0, 0, 0) where

c10
.
=

∑
i∈{1,2,3}

µi(1− r1,2,3) + c1
∑

i∈{2,3}

µi(1− r1,2,3) + c2
∑

i∈{1,3}

µi(1− r̄1,3)

+ c3

2∑
i=1

µi(1− r̄1,2) + c4µ1(1− ρ̄1) + c5µ2(1− r̄1,2) + c6µ3(1− r̄1,3).

Combining the results above implies:

c10 ≥ c4µ1(1− ρ̄1) ∨ c5µ2(1− r̄1,2) ∨ c6µ3(1− r̄1,3) ∨ c7 ∨ c8 ∨ c9 (3.65)

Choose ci, i = 1, 2, ..., 6 as below so that all the conditions provided in (3.47), (3.50),

(3.53), (3.56), (3.59) and (3.62) are satisfied:

c1 ≥
µ1(1− r̄1,3)

λ1

r1,2,3
+ µ1r1,2,3 − (λ1 + µ1)

> 0,

c2 ≥
µ2(1− r̄1,3)∑

i∈{1,3}

(
λi + µi − λi

1
r̄1,3

− µir̄1,3

) > 0,

c3 ≥
(1 + c1 + c2)µ3(1− r̄1,3)∑2

i=1

(
λi + µi − λi

1
r̄ 1,2

− µir̄1,2

) > 0.

c4 ≥
(µ2(1− r̄1,3) + (1 + c2)µ3(1− r̄1,3)) + c3 (µ2(1− r̄1,2))(

λ1 + µ1 − λ1

ρ̄1
− µ1ρ̄1

) > 0

c5 ≥
∑

i∈{1,3} µi(1− r1,2,3) + c1µ3(1− r1,2,3) + c3µ1(1− r̄1,2)

λ2 + µ2 − λ2
1

r̄1,2
− µ2r̄1,2

> 0.

c6 ≥
(1 + c2)µ1(1− r̄1,3) + (1 + c1)µ2(1− r̄1,3)

λ3 + µ3 − λ3

r̄1,3
− µ3r̄1,3

> 0.

For these choices of ci, i = 1, 2, 3, 4, 5, 6, (3.48), (3.51), (3.54), (3.57), (3.60), and

(3.63) all hold and imply

Ex[h1(X1)]− h1(x) ≤ c10ρ̄
n
1 ,

for all x ∈ Z3
+ where we also used, (3.64) and (3.65)

Proof of Theorem 3.3 for the case r1,3 > r1,2,3.:

Similar to the arguments provided in Subsection 3.1.1, for the first stage of the event
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{σ1 < τn < τ0}, we can identify h0 as in 3.37 where the functions h1, h5 and h6 are

provided in Subsection 3.1.2. The functions h1, h5 and h6 are in terms of x(2) and

x(3); hence, it is enough to check only the boundaries Π2, Π3 and Π2,3.

For x ∈ Π2: (3.49) indicates the choice of c′6 as follows:

c′6 ≥ (1 + c1)
µ2(1− r1,2,3)

λ3 + µ3 − λ3

r̄1,3
− µ3r̄1,3

> 0. (3.66)

This choice of c′6 and (3.49) imply

Ex[h0(X1)]− h0(x) ≤ c′5µ2(1− r̄1,2)r̄
n
1,2, x ∈ Π2. (3.67)

For x ∈ Π3: (3.52) indicates the choice for c′5 as follows:

c′5 ≥ (1 + c1)
µ3(1− r1,2,3)

λ2 + µ2 − λ2
1

r̄1,2
− µ2r̄1,2

. (3.68)

This choice of c′5, r̄1,2 > r1,2,3 and (3.52) imply

Ex[h0(X1)]− h0(x) ≤ c′6µ3(1− r̄1,3)r̄
n
1,3, x ∈ Π3. (3.69)

For x ∈ Π2,3 (3.61) and ρ̄1 > r̄1,3 > r1,2,3, ρ̄1 > r̄1,2 imply

Ex[h0(X1)]− h0(x) ≤ c′10ρ̄
n
1 (3.70)

where

c′10
.
= (1 + c1)

∑
i∈{2,3}

µi(1− r1,2,3) + c′5µ2(1− r̄1,2) + c′6µ3(1− r̄1,3). (3.71)

Now, taking into account all of the calculations above, we have: choose c′5, c
′
6 and c′10

as in (3.68), (3.66) and (3.71); (3.67), (3.69), (3.70), c′10 > c′5µ2(1 − r̄1,2), c′6µ3(1 −
r̄1,3) and ρ̄1 > r̄1,3, r1,2,3 imply (3.38).

Finally, we can increase c′5 and c′6 so that c′5 > c2 + c6 and c′6 > c3 + c5 holds. this

choice of the constants c′5 and c′6, and the definition of h0 and h1 imply h0(x) ≥
h1(x) for x ∈ ∂1.
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3.1.3 Statement of the upperbound

Using the functions constructed in the previous sections we can now derive our upper

bound on the probability Px(σ1 < τn < τ0):

Proposition 3.1. There exists a constant c11 > 0 and N0 > 0 such that

Pxn(σ1 < τn < τ0) ≤ h0(xn) + c11nρ
n
1 . (3.72)

for any x ∈ An and n > N0

Proof. Define

Mn = h0(Xn)1{n≤σ1} + h1(Xn)1{n>σ1} − c12nρ
n
1 .

By Theorems 3.2, 3.3 and 3.4, Mn is a supermartingale if we choose c12 > max(c10, c
′
10).

To deal with the last term in the definition of M , we need to argue that X cannot spend

too much time without hitting the origin or ∂An. This is accomplished by using the

following result ([32, Theorem A.1.13]): there exists c13 > 0 and N0 such that for

any x ∈ An

Px(τn ∧ τ0 > c13n) ≤ ρ2n1 (3.73)

for n > N0. This implies

Px(σ1 < τn < τ0) ≤ ρ2n1 + Px(σ1 < τn < τ0 ≤ c13n) (3.74)

for n > N0. To bound the last probability we apply the optional sampling theorem to

the supermartingale M at the bounded stopping time τn ∧ τ0 ∧ c13n:

h0(x) = M0 ≥ Ex[Mτn∧τ0∧c13n]

≥ Ex[h1(Xτn)1{σ1<τn<τ0∧c13n}]− c12c13nρ
n
1 .

By its Definition (3.13), h1(x) ≥ h0(x) and for x ∈ ∂An we have
∑3

j=1 x(j) = n

and h0(x) = 1 (see (3.12)). Then if we replace h1(Xτn) in the above display with 1

we get something smaller:

≥ Ex[1{σ1<τn<τ0∧c13n}]− c12c13nρ
n
1

= Px(σ1 < τn < τ0 ≤ c13n)− c12c13nρ
n
1 .

Now choose c11 > c12c13; the last display, ρn1 > ρ2n1 and (3.74) imply (3.72) for

n > N0.
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3.2 Upper bound on the probability Px(σ1 < τ < ∞)

The main difference between the events {σ1 < τ < ∞} and {σ1 < τn < τ0} is

that X is constrained on ∂1 whereas X̄ is not. This implies that the supermartingale

constructed in the previous section for the event {σ1 < τn < τ0} can also be used

to bound the event {σ1 < τ < ∞}; in fact, since X̄ is not constrained on ∂1, the

terms introduced into the functions hi to deal with ∂1 can be omitted which leads

to a tighter upperbound for the probability Px({σ1 < τ < ∞}). The only nontriv-

ial change that is needed to adapt the supermartingale of the previous section to the

event {σ1 < τ < ∞} is in the truncation of time argument. Recall that we used the

bound (3.73), [32, Theorem A.1.13] for this purpose. This result covers only the fully

contrained process X and not X̄ so it can’t be used for truncation of time in deriving

an upperbound for Px({σ1 < τ < ∞}). The work [43] obtains an an upperbound

of the form (3.73) by finding an upper bound on the probability generating function

y 7→ Ey[z
τ1{τ<∞}] for some z > 1; to find the upper bound on the probability gen-

erating function, it introduces and uses the concept of Y -z-harmonic functions. The

following subsection gives a definition of these functions in the current context and

constructs Y -z-harmonic functions to find an upperbound on the probability generat-

ing function.

3.2.1 Y -z-harmonic functions and their construction

A function h is said to be Y -z-harmonic if it satisfies

zEy[h(Y1)] = h(y).

Recall that we constructed Y -harmonic functions from points on the characteristic

surface H. In an entirely similar way one can define a characteristic surface H(z) and

construct Y -z-harmonic functions from points on this surface. A two dimensional

version of this construction was done in [43]. Let us now do it for our case.

For z ∈ C, the characteristic surface H(z) is defined as

H(z) = {(β, α2, α3) ∈ C3 : p(β, α2, α3) = 1/z}, (3.75)
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where

p(β, α2, α3) =
λ1

β
+ µ1β + λ2

α2

β
+ µ2

β

α2

+ λ3
α3

β
+ µ3

β

α3

.

Note that H = H(1). Recall that the function hr was constructed from points (r, 1, 1),

(r, r2/ρ2, 1), (r, 1, r2/ρ3) and (r, r2/ρ2, r
2/ρ3) on the surface H. This construction

continues to work with minor modifications when we introduce the 1/z term above.

We identified the value r by solving p(β, 1, 1) = 1 which is a quadratic equation in

β. To find the corresponding value for z, we solve p(β, 1, 1) = 1/z which is again

quadratic. Denote the solution by β(z). Being the solution of a quadratic equation

β(z) is continuous in β and we already know from Chapter 2 that β(1) = r < 1.

Then for z near 1 we have β(z) < 1. Now one solves p(β(z), α2, 1) = 1/z for α2

to find the value corresponding to r2/ρ2. Multiplying p − 1/z = 0 by α2 gives the

following quadratic equation in α2:

α2
2

λ2

β
+ α2

[
λ1

β
+ µ1β + λ3

1

β
+ µ3β − 1/z

]
+ µ2β = 0

where we take β = β(z). Note that α2 = 1 is already a solution to this equation

(since p(β(z), 1, 1) = 1/z). Then the other root must be

β(z)2

ρ2
.

The point corresponding to r2/ρ3 is identified similarly to be β(z)2

ρ3
. These calculations

yield us the following points on H(z):

(β(z), 1, 1), (β(z),β(z)2/ρ2, 1), (β(z), 1,β(z)
2/ρ3), (β(z),β(z)

2/ρ2,β(z)
2/ρ3).

Each of these points define a corresponding Y -z-harmonic function on Do
Y . We now

want to linearly combine them to obtain a Y -z-harmonic function on DY . To identify

the coefficients to be used in this linear combination we need to generalize the func-

tions C given in Equations (2.7) and (2.8) to the current case. Following the definition

for the case d = 2 given in [43], the correct generalization turns out to be:

Cz(i, β, α2, α3) = z (1− β/αi) .

Once the Cz and the above characteristic points are available the coefficients directly

generalize from those identified in Proposition 2.4: 1, − 1−β(z)
(1−ρ2/β(z))

, − 1−β(z)
(1−ρ3/β(z))

,
1−β(z)

(1−ρ2/β(z))
1−β(z)

(1−ρ3/β(z))
.

All of these considerations give the following Y -z-harmonic version of hr:

56



Proposition 3.2.

hr,z = [(β(z), 1, 1), ·]− 1− β(z)

(1− ρ2/β(z))
[(β(z),β(z)2/ρ2, 1), ·]

− 1− β(z)

(1− ρ3/β(z))
[(β(z), 1,β(z)2/ρ3), ·]

+
1− β(z)

(1− ρ2/β(z))

1− β(z)

(1− ρ3/β(z))
[(β(z),β(z)2/ρ2,β(z)

2/ρ3), ·]

defines a Y -z-harmonic function on DY .

Proof. The proof proceeds exactly as the proof of Proposition 2.4 and uses the calcu-

lations given above.

To find a bound on the probability generating function we need a Y -z-harmonic func-

tion that is strictly positive on ∂B; the function hr,z identified is not even positive on

∂B. So we need further Y -z-harmonic functions. We can get these by generalizing

hr1,2 , hr1,3 and hρ1 identified in Chapter 2. Since all of these functions are constructed

from points on the characteristic surface H their generalization to the current case

proceeds exactly as the generalization of hr to hr,z given above. For this we need

the following functions. Let β2(z) denote the solution of p(β, 1, β) = 1/z such that

β2(1) = r1,2; β2 is continuous since it is defined as the root of a quadratic equa-

tion. In particular β2(z) < 1 for z near 1. Similarly, let β3(z) denote the solution of

p(β, β, 1) = 1/z such that β3(1) = r1,3. Finally, we define β4(z) to be the solution

of p(β, β, β) = 1/z with β4(1) = ρ1.

Proposition 3.3.

h2,z
.
= [(β2(z), 1,β2(z)), ·]−

1− β2(z)

1− ρ2
β2(z)

[(β2(z),β2(z)
2/ρ2,β2(z)), ·]

h3,z
.
= [(β3(z),β3(z), 1), ·]−

1− β3(z)

1− ρ3
β3(z)

[(β3(z),β3(z),β3(z)
2/ρ3), ·]

h4,z
.
= [(β4(z),β4(z),β4(z)), ·]

define Y -z-harmonic functions.

Proof. The proof is based on the preceding calculations and proceeds as the deriva-

tions of hr1,2 , hr1,3 and hρ1 given in Equations 2.11, 2.12, and 2.6.
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Proposition 3.4. There exist z0 > 1, c2,z0 , c3,z0 and c4,z0 such that

hr,z0
.
= hr,z0 + c2,z0h2,z0 + c3,z0h3,z0 + c4,z0h4,z0 (3.76)

satisfies hr,z0 > 1/2 on ∂B and

β(z0),β2(z0),β3(z0),β4(z0) < 1,

β2(z0)
2/ρ2,β3(z0)

2/ρ3 < 1 (3.77)

Proof. First recall that β(1) = r < 1, β2(1) = r1,2 < 1 and β3(1) = r1,3 < 1

β4(1) = ρ1 < 1 by the stability assumption and β2(1)
2/ρ2 < 1,β3(1)

2/ρ3 < 1 by

assumption 1.3. Since all of these functions are continuous in z, if we choose z0 > 1

close to 1 all of these inequalities will continue to hold. Once z0 > 1 is chosen in this

way the choice of the constants ci,z0 , i = 1, 2, 3, 4 proceeds exactly as in Proposition

2.5.

Using the function constructed in the previous proposition we can establish our up-

perbound on the probability generating function:

Proposition 3.5. Let z0 be as in the previous proposition. Then there exists c14 > 0

such that

Ey[z
τ
01{τ<∞}] < c14 (3.78)

for y ∈ B.

The difficult part of this result was the construction of the hr,z0 which was given

above. Once this function is available the proof of Proposition 3.5 is essentially un-

changed from the case d = 2 presented in [43]. For completeness we provide a proof

below.

Proof. The inequality (3.77) implies that hr,z0 is bounded on ∂B. The same inequal-

ity also implies that hr,z0 , h2,z0 , h3,z0 and h4,z0 are exponentially decreasing in y(1).

These imply that hr,z0(y) is bounded by some constant c14/2 > 0 for y ∈ B. That

hr,z0 is Y -z-harmonic implies that znhr,z0(Yn) is a martingale. An application of the

optional sampling theorem to this martingale at the time τ gives (3.78).
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3.2.2 The bound on the probability Py(c15n < τ < ∞)

Using the bound (3.78) we can now derive a bound on Py(c15n < τ < ∞), which

will be used in the truncation of time when bounding Py(σ1 < τ < ∞).

Proposition 3.6. There exists c15 > 0 such that

Py(c15n < τ < ∞) < ρ2n1 (3.79)

for y ∈ B.

Proof. As in [43] the proof consists of an application of Markov’s inequality to the

random variable zτ0 :

zc15n0 P(c15n < τ < ∞) ≤ Ey[z
τ
01τ<∞]

P(c15n < τ < ∞) ≤
(
z−c15
0

)n
c14.

Now choose c15 large enough so that z−c15
0 c14 < ρ21, which is possible since z0 >

1.

3.2.3 The bound on the probability Py(σ1 < τ < ∞)

With the truncation bound provided by Proposition 3.6 we are able to derive the up-

perbound we seek on Py(σ1 < τ < ∞):

Proposition 3.7. Let c11 and N0 be as in Proposition 3.1. Then

Px(σ1 < τ < ∞) ≤ h0(x) + c11nρ
n
1 . (3.80)

for any x ∈ An and n > N0.

Proof. The proof proceeds exactly as the proof of Proposition 3.1 except that instead

of truncating time using (3.73) we use the bound (3.79).
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3.3 Lower bound on the probability Px(τn < τ0)

Recall that for the 3-dimensional case we defined the parameters ra for a ⊂ {1, 2, 3}
and ρi for i = 1, 2, 3 as the following

ra
.
=

∑
i∈a λi∑
i∈a µi

(3.81)

Furthermore, we assumed that ρ3 < ρ2 < ρ1.

Proposition 3.8. Let

fn(x)
.
= rn−[x(1)+x(2)+x(3)] ∨ r

n−[x(1)+x(2)]
1,2 ∨ ρ

n−x(1)
1 (3.82)

Then fn(x) is a subharmonic function of X on An − ∂An.

Proof. Firstly, write

r1,2
n−[x(1)+x(2)] = r1,2

n−[x(1)+x(2)+x(3)]r1,2
x(3)

= r1,2
n−[x(1)+x(2)+x(3)]1x(2)r1,2

x(3)

= [(r1,2, 1, r1,2), Tn(x)]

Since for (β, α2, α3) ∈ H, x −→ [(β, α2, α3), Tn(x)] is X-harmonic on Z3
+−

⋃
a⊂{1,2,3}

∂a,

and we know that (r1,2, 1, r1,2) ∈ H, we have r1,2
n−[x(1)+x(2)] is X-harmonic for

x ∈ Z3
+ −

⋃
a⊂{1,2,3}

∂a. Similarly, write

rn−[x(1)+x(2)+x(2)] = rn−[x(1)+x(2)+x(3)]1x(2)1x(3)

= [(r, 1, 1), Tn(x)]

we know that (r, 1, 1) ∈ H. So rn−[x(1)+x(2)+x(3)] is X-harmonic for x ∈ Z3
+ −⋃

a⊂{1,2,3}
∂a. Also write

ρ
n−x(1)
1 = ρ

n−[x(1)+x(2)+x(3)]
1 ρ

x(2)
1 ρ

x(3)
1

= [(ρ1, ρ1, ρ1), Tn(x)]

we know that (ρ1, ρ1, ρ1) ∈ H. So ρ
n−x(1)
1 is X-harmonic for x ∈ Z3

+ −
⋃

a⊂{1,2,3}
∂a.

Hence, their maximum fn(x) is subharmonic on Z3
+ −

⋃
a⊂{1,2,3}

∂a. Now we need to

check if fn(x) is subharmonic on the boundaries.

For x ∈ ∂1, let x(1) = 0, x(2), x(3) > 0.
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• r1,2
n−[x(1)+x(2)]

Ex[h(X)] = λ1r1,2
n−[1+x(2)] + µ1r1,2

n−x(2) + λ2r1,2
n−[x(2)+1] + µ2r1,2

n−[x(2)−1]

+ λ3r1,2
n−x(2) + µ3r1,2

n−x(2)

= r1,2
n−x(2)[λ1r1,2

−1 + µ1 + λ2r1,2
−1 + µ2r1,2 + λ3 + µ3]

= r1,2
n−x(2)[λ1r1,2

−1 + µ1 + λ2r1,2
−1 + µ2r1,2 + λ3 + µ3

+ µ1r1,2 − µ1r1,2]

= r1,2
n−x(2)[1 + µ1(1− r1,2)]

> r1,2
n−x(2)

So, r1,2n−[x(1)+x(2)] is subharmonic on ∂1.

• ρ
n−x(1)
1

Ex[h(X)] = λ1ρ
n−1
1 + µ1ρ

n
1 + λ2ρ

n
1 + µ2ρ

n
1 + λ3ρ

n
1 + µ3ρ

n
1

= ρn1 [λ1ρ
−1
1 + µ1 + λ2 + µ2 + λ3 + µ3]

= ρn1 [µ1 + µ1 + λ2 + µ2 + λ3 + µ3 + λ1 − λ1]

= ρn1 [1 + (µ1 − λ1)]

> ρ
n−x(1)
1

where we have used the stability assumption. So, ρn−x(1)
1 is subharmonic on ∂1.

• rn−[x(1)+x(2)+x(3)]

Ex[h(X)] = λ1r
n−[1+x(2)+x(3)] + µ1r

n−[x(2)+x(3)] + λ2r
n−[x(2)+1+x(3)]+

µ2r
n−[x(2)−1+x(3)] + λ3r

n−[x(2)+x(3)+1] + µ3r
n−[x(2)+x(3)−1]

= rn−[x(2)+x(3)][λ1r
−1 + µ1 + λ2r

−1 + µ2r + λ3r
−1

+ µ3r + µ1r− µ1r]

= rn−[x(2)+x(3)][µ1 + µ2 + µ3 + r(µ1 + µ2 + µ3) + µ1 − µ1r]

= rn−[x(2)+x(3)][1 + µ1(1− r)]

> rn−[x(1)+x(2)+x(3)]
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So, rn−[x(1)+x(2)+x(3)] is subharmonic on ∂1. Hence their maximum fn(x) is subhar-

monic on ∂1. Similar arguments prove that fn(x) is subharmonic on ∂2 and ∂3.

For x ∈ ∂1,2 let x(1) = 0, x(2) = 0, x(3) > 0.

• r
n−[x(1)+x(2)]
1,2

Ex[h(X)] = λ1r
n−1
1,2 + µ1r

n
1,2 + λ2r

n−1
1,2 + µ2r

n
1,2 + λ3r

n
1,2 + µ3r

n
1,2

= rn1,2[λ1r
−1
1,2 + µ1 + λ2r

−1
1,2 + µ2 + λ3 + µ3 + λ1 + λ2 − λ1 − λ2]

= rn1,2[1 + (µ1 − λ1) + (µ2 − λ2)]

> r
n−[x(1)+x(2)]
1,2

where we have used the stability assumption. So, rn−[x(1)+x(2)]
1,2 is subharmonic on

∂1,2.

• ρ
n−x(1)
1

Ex[h(X)] = λ1ρ
n−1
1 + µ1ρ

n
1 + λ2ρ

n
1 + µ2ρ

n
1 + λ3ρ

n
1 + µ3ρ

n
1

= ρn1 [λ1ρ
−1
1 + µ1 + λ2 + µ2 + λ3 + µ3]

= ρn1 [µ1 + µ1 + λ2 + µ2 + λ3 + µ3 + λ1 − λ1]

= ρn1 [1 + (µ1 − λ1)]

> ρ
n−x(1)
1

where we have used λi + µi = 1 for i = 1, 2, 3 and the stability assumption. So,

ρ
n−x(1)
1 is subharmonic on ∂1,2.

• rn−[x(1)+x(2)+x(3)]

Ex[h(X)] = λ1r
n−[1+x(3)] + µ1r

n−x(3) + λ2r
n−[1+x(3)] + µ2r

n−x(3) + λ3r
n−[x(3)+1]

+ µ3r
n−[x(3)−1]

= rn−x(3)[λ1r
−1 + µ1 + λ2r

−1 + µ2 + λ3r
−1 + µ3r

+ µ1r+ µ2r− µ1r− µ2r]

= rn−x(3)[1 + µ1(1− r) + µ2(1− r)]

> rn−[x(1)+x(2)+x(3)]
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So, rn−[x(1)+x(2)+x(3)] is subharmonic on ∂1,2. Hence their maximum fn(x) is subhar-

monic on ∂1,2. Similar arguments prove that fn(x) is subharmonic on ∂1,3 and ∂2,3.

Therefore fn(x) is a subharmonic function of X on An − ∂An.

Proposition 3.9.

fn(x)− ρn1 ≤ Px(τn < τ0)

Proof. By previous calculations we know that fn(x) is a subharmonic function of X .

Therefore fn(Xk) is submartingale. By optional sampling theorem applied to fn(Xk)

at the bounded stopping time τn ∧ τ0 we have:

fn(x) ≤ Ex[fn(Xk)(τn∧τ0)]

= Ex[fn(xτn)1{τn<τ0}] + Ex[fn(0)1{τn>τ0}]

Since fn(x) ≤ 1 on ∂An and fn(0) = ρn1 :

fn(x) ≤ Px(τn < τ0) + ρn1

fn(x)− ρn1 ≤ Px(τn < τ0)

3.4 Completion of error analysis

We can now give a proof of our main Theorem 3.1:

Proof of Theorem 3.1. The processes X and X̄ have the same dynamics up to time

σ1. This implies:

|Pxn(τn < τ0)− PTn(xn)(τ < ∞)| ≤ Pxn(σ1 < τn < τ0) + PTn(xn)(σ1 < τ < ∞).

This and Propositions 3.1 and 3.7 imply that there exists N0 > 0 such that

|Pxn(τn < τ0)− PTn(xn)(τ < ∞)| ≤ 2h0(xn) + 2c11nρ
n
1

for n > N0. This and the lower bound on Px(τn < τ0) given in Proposition 3.9 imply

|Pxn(τn < τ0)− PTn(xn)(τ < ∞)|
Pxn(τn < τ0)

≤ 2h0(xn) + 2c11nρ
n
1

fn(xn)− ρn1
.
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Comparing the components of h0 (see (3.37) and (3.12) ) and fn (see 3.82 we note

that both h0 and ρn1 decay exponentially faster than fn(xn) if x(1) > 0. This implies

(3.1).
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CHAPTER 4

A NUMERICAL EXAMPLE AND AN APPLICATION TO

FINANCE

4.1 A numerical example

In this chapter, we present an example that demonstrates the numerical performance

of the approximation algorithm.

For paramater values we take:

λ1 = 0.13, λ2 = 0.1, λ3 = 0.12 (4.1)

µ1 = 0.21, µ2 = 0.19, µ3 = 0.25.

For these parameter values we have:

ρ1 = 0.6190 > ρ2 = 0.5263 > ρ3 = 0.48

and

r2/ρ2 = 0.5509, r2/ρ3 = 0.6040,

r21,2/ρ2 = 0.6282, r21,3/ρ3 = 0.6154.

Therefore, these parameter values satisfy all of the assumptions made in Chapter 1.

Recall our probability of interest P(τn < τ0). The approximation formula that we

developed for this probability is given in Proposition 2.5 where the coefficients c1, c2

and c3 need to be chosen for the parameter values above. We would like to choose

these coefficients so that hr is as close to 1 as possible on ∂B. This can be done by a
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calculation similar to the one given in the proof of Proposition 2.5, which gives:

c1 = 4.5367, c2 = 20.7079, c3 = 16.3512.

The graph of hr on ∂B = {y(1) = y(2) + y(3), y(2), y(3) ≥ 0} for these choices

of c and the parameter values listed in (4.1) is shown in Figure 4.1. Different colors

corresponds to different values of the function.

Figure 4.1: The graph of hr on ∂B

We see from this figure that hr varies between approximately 1.3 and 0.8 along the

y2 and y3 axes and quickly converges to 1 for y2, y3 > 0. More precisely we have:

max
y∈∂B

hr(y) = 1.2857, min
y∈∂B

hr(y) = 0.8535.

The functions y 7→ Py(τ < ∞) and hr are both ∂B determined Y -harmonic func-

tions. This and the above display imply

1

1.2857
hr(y) ≤ Py(τ < ∞) ≤ 1

0.8535
hr(y) (4.2)

for y ∈ B. Note that we cannot directly compute the probability Py(τ < ∞). We

use the function hr to approximate this probability. In particular, hr approximates

Py(τ < ∞) with relative error bounded by 0.2857.

By Theorem 3.1 we know that for x(1) > 0, PTn(x)(τ < ∞) approximates Px(τn <

τ0) with vanishing relative error. Then by (4.2) hr(Tn(x)) approximates Px(τn < τ0)

with relative error bounded by 0.2857 for n large.
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Define

p(0)n (x) =

1, x ∈ ∂An

0, x ∈ An − ∂An.
(4.3)

then we recursively define p
(k)
n as

p(k+1)
n (x) = Ex[p

(k)
n (X1)], x ∈ An. (4.4)

The Markov property of X implies that:

Px(τn < τ0 ≤ k) = p(k)n (x).

Letting k → ∞ in the above display gives:

Px(τn < τ0) = lim
k→∞

p(k)n (x).

Note that p(k)n can be computed recursively starting from (4.3) and iterating (4.4)

k times. This iteration can be done computationally for small values of n. If we

choose k large enough, this gives a very precise computation of Px(τn < τ0). In the

computations below we will use the result of this computation as the exact value of

Px(τn < τ0).

Since pn(x) decays exponentially in n, to get more easily interpretable graphs we will

plot pn and its approximation by hr in log scale. For this purpose define

Vn(x) = − log(Px(τn < τ0))/n,

Wn(x) = − log(hr(Tn(x)))/n.

Figure 4.2 shows the graphs of Vn (computed using the iteration procedure outline

above) and Wn for x(1) = 3, n = 60 and the parameter values listed in (4.1). We

note that both functions qualitatively look similar.

Figure 4.3 shows the relative error (Wn(x) − Vn(x))/Vn(x) for the same parameter

values.

We see from this figure that Wn provides an excellent approximation of Vn; around

the x2 and x3 axes the relative error remains between −0.2 and 0.3 and away from

the axes it is mostly near 0.
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Figure 4.2: Graphs of − log(Px(τn < τ0))/n and − log(hr(Tn(x)))/n for x(1) = 3,
n = 60 and the parameter values listed in (4.1)

Figure 4.3: The relative error (Vn −Wn)/Vn for n = 60 and x(1) = 3

Let us also give a numerical comparison of the actual probability values for a partic-

ular value of x: for x = (3, 1, 1), pn(x) (as computed with the iterative procedure

(4.4)) turns out to be 1.2766 × 10−11. The approximation of the same probability by

hr is: 1.3380 × 10−11 which corresponds to a relative error of 0.04. If we take the

computation of the expectation in (4.4) for a single x value as one computational step,

the total iteration of (4.4) to compute pn takes approximately around 3.8× 107 steps.

While the computation of hr takes approximately only 2 computational steps. For

moderately large values of n, the iteration (4.4) becomes no longer feasible. For ex-

ample, for n = 104, it is no longer possible to compute pn via iterating (4.4). On the

other hand, the evaluation of hr is essentially independent of n and happens practi-

cally instantly. A numerical example: for n = 104, and x = (9900, 10, 10), hr yields

the approximate value 2.5648× 10−20.
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4.2 Possible application to finance

As the global financial system becomes more complex, multidimensional models

have started to attract more interest. A growing financial system requires model-

ing of systems of companies or financial networks; see, for example, [13, 30, 1, 4]. In

modeling of systems of companies, constraint conditions can be added to the model

such as "no short-selling" or "dividend payments" [36, 43, 24]. A possible applica-

tion area of constrained processes and escape probabilities of the type studied in this

thesis is the modeling of non-performing loans (NPL) portfolio of several financial

intermediaries, such as commercial banks. In the following paragraphs we elaborate

on this possible application.

Non-performing loans are defined as the loans in which the borrower has failed to

make scheduled payments of principal or interest for a specified period of time; al-

though it depends on the country, this time in general corresponds to 90 days or

more. The total amount of NPL is crucial for a bank’s healthy operation. As in the

2008 financial crisis, which in part was a result of defaults in mortgage loans, high

amounts of non-performing loans could lead to systemic risks which are damaging to

a country’s economy [31, 25]. One of the ways banks use in handling NPL is sell-

ing a certain amount of them to asset management companies [7]. Let us consider a

banking system consisting of, for example, three different banks (e.g. three big state-

owned banks in Turkey). We can model the total amount of non-performing loans

portfolio of these banks as a process in R3
+. In this case, our model has the following

characteristics:

1. Each jump of the process correspond to a single period (e.g., a period of a

month), leading to a discrete-time process.

2. Each coordinate axis corresponds to the non-performing loans portfolio of each

bank.

3. Stability. Here,stability means that the banks make an effort (by selling from

their NPL portfolios regularly) to keep their NPL porfolios small over time, on

average.

69



Within this framework, a natural question is: what is the probability that the total

NPL portfolio in the system reaches a very high level in a given time horizon. Based

on this probability, policy makers can consider when and how much capital injection

should be made to these banks.

Evidently, the dynamics of the above model is different from the dynamics studied in

the present thesis. Nonetheless, the underlying process is constrained and the proba-

bility of interest is of the type pn studied in the present work. A natural direction for

future research would be a precise formulation of the above model and attempting to

extend the results of the present thesis to the formulated model.
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CHAPTER 5

REVIEW OF LITERATURE

There is a wide literature on the analysis of pn or similar quantities, for a compre-

hensive analysis of literature; see, for example [37, 38]. Lots of research [41], [44],

[29], [21], [12], [14], [40], [22], [20], [3], [16], [9], [8], [26], [11], [32], [34], [18],

[35], [5], [6], [37], [39], [42], [43] can be found in the literature related to the cal-

culation of this probability. The most common approaches to the problem have been

using simulation and large deviations analysis (LDA) [37]. Stability condition on

the constrained random walk X suggests the event {τn < τ0} rarely happens and its

probability decreases exponentially as the n increases. Large deviations analysis is

used in the study of rare events and their probabilities with exponentially decay rates.

Therefore this makes it a natural tool in studying of such probabilities. However,

for moderate sample sizes or finite systems, large deviations analysis has potential to

provide imperfect approximations, resulting in inaccurate predictions of rare events

probabilities. In order to obtain more accurate estimates than the ones provided with

large deviations analysis, simulation techniques with variance reduction, like impor-

tance sampling (IS), are generally implemented.

[22] introduces an alternative approach for the large deviation analysis of Jackson

networks. The technique used in the paper relies on altering the probability measure

using an exponential martingale and examining the associated fluid limits. This paper

also calculates an explicit formula for the large deviation rate function L(x, v). As an

exit time problem application, [22] calculates the following limit:

lim
n→∞

1

n
logE[τn] = − lim

n→∞

1

n
logP (τn < τ0) = min

1≤i≤N
log

µi

νi

where µi’s are the service rates and νi’s are the overall arrival rates.
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Another approach to the approximation of pn is using simulation in order to ob-

tain more accurate estimates. However, simulation techniques such as Basic Monte

Carlo Sampling necessitates larger sample paths. As pn is a rare event probability,

this makes Basic Monte Carlo Sampling inefficient for this type of approximations.

Therefore, one can use importance sampling technique in which the demanded sam-

ples are reweighed so that it would be easier to sample from the emphasized sets.

Large deviation analysis complemented with IS approach proposes optimal approx-

imations in dealing with rare event probabilities. In importance sampling it is of

crucial importance to choose a good proposal distribution used in reweighing of rare

events (for the construction of new simulation measure). LDA provides an insight to

select an efficient proposal distribution which would minimize the variance of the IS

estimator. In his work [41] defines an asymptotically optimal change of measure of

IS estimator for the problem of approximating the error probabilities of the sequen-

tial probability ratio test. [2] analyses that asymptotically efficient optimal change

of measure for the simulation of single queue with arbitrary arrival and departure

rates comes from the exponential distortion of aforementioned rates by a parameter

θ0. For a single queue with arrival rate λ and departure rate µ, this parameter has the

following condition: ( λ

λ+ θ0

)( µ

µ− θ0

)
= 1

Using the above defined parameter to twist the arrival and departure rates works as

switching λ and µ.

[29] uses large deviations analysis to approximate the rare events’ probability in an

open Jackson network. For a two dimensional constrained random walk with two

tandem queues, [29] evaluates the efficiency of IS estimator based on LDA. For im-

portance sampling, this work uses a static change of measure (basically switching the

arrival rate (λ) with the smallest departure rate (µ′
is)) suggested by large deviations.

It has been shown that it may not be the optimal IS change of measure for constrained

multidimensional random walks. The defined change of measure is adapted according

to the boundaries; allowing it to be state dependant.

[20] further studied the estimator proposed by [29]. Asymptotic performance of this

estimator is analyzed in [20] and it was shown that static change of measure performs

poorly across the exit boundary and hence asymptotically inefficient especially for
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when the the arrival rate is small and service rates are closely equal. Necessary and

sufficient conditions for asymptotic efficiency are further explained.

As can be understood from the papers [20], [29], for two or more dimensional con-

strained random walks (e.g. two dimensional tandem Jackson network) the impor-

tance sampling change of measure proposed by the large deviations analysis fails to

be asymptotically optimal especially for the boundaries. The papers [32], [33], [16],

proposes a theoretical framework in order to build asymptotically efficient optimal IS

algorithms for the simulations of rare events probabilities with starting point x = 0

in two tandem queuing networks. The idea here is to use sub-solutions to the Isaacs

equation (specifically Hamilton Jacobi Bellmann equaiton) stemming from the limit

analysis of the IS estimator and obtain the boundary conditions that will eventually

lead to optimal IS schemes. The IS estimator defined in [16] is the following:

p̂n = 1An

Tn−1∏
k=0

Θ(Y (k + 1))

Θ̄n(Y (k + 1)) | Xnk)

where Y is a iid random variable with distribution Θ and Θ̄n(. | .) is a characterization

of state-dependent change of measure. The sub-solutions to the following Isaacs

equation are used to build up asymptotically optimal importance sampling estimators.

0 = sup
Θ̄∈P+(V)

inf
θ∈P+(V)

[
⟨DW (x) , F(θ)⟩+

2∑
i=0

θ[vi] log
Θ̄(vi)

Θ(vi)
+R(θ||Θ)

]

By implementing the subsolutions to the Isaacs equation approach, the papers [15],

[18] and [35] further studies the problem for more dimensional cases, different hitting

boundaries and broader dynamics. Comments on further studies [17], [10], [19], [27],

[28], [23] can be reached from [38].

[37], [38] introduces an affine transformation approach to calculate the probability pn

for two or more tandem queues. Affine transformation approach introduced in these

papers is also implemented in the current thesis. Approximation formulas for pn

are constructed and it has been shown that this approximation has an exponentially

decaying relative error for two tandem queues. The idea in affine transformation

approach, as explained for our case three dimensional parallel walk, is to observe

X as Y where these two random walks are the same except for the first coordinates
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are reversed. The approach is to move the origin of the coordinate system in X to

the exit boundary and removing some of the boundaries results in the computation

of P (y < ∞). This probability can later than be computed with the construction of

harmonic functions of Y . An explicit formula is provided for a two tandem case as

follows:

ρ
y(1)−y(2)
2 + ρ

y(1)−y(2)
1 ρ

y(2)
1

µ2 − λ

µ2 − µ1

+ ρ
y(1)−y(2)
2 ρ

y(2)
1

µ2 − λ

µ1 − µ2

(5.1)

where λ, µi are arrival and departure rates respectively and ρi = λ/µi.

The studies [5], [6], [42], [43] dealing with the problem of calculating pn for different

dynamics on X also implements the affine transformation approach defined in [37],

[38]. [5], [6] treats the problem for two queues working in tandem and the defined

random walk X has a Markov modulated scheme. By construction of the harmonic

and superharmonic functions of the process Y , derived random walk coming from the

transformation, approximation formulas for the desired probability are obtained and

it has been shown that this approximation has a bounded relative error.

[42], [43] implements the similar ideas provided by [37], [38] for a two dimensional

constrained simple random walk. In the current thesis, we try to extend the results

given in [42], [43] to the three dimensional case. The dynamics of affine transfor-

mation given in these studies are shown in Figure 5.1. Similarly, harmonic functions

of Y are built and their specific linear combination is used to approximate the de-

sired probability. An exact formula is also constructed here under specific conditions

(r2 = ρ1ρ2). The error analysis provided in these works contains the implementation

of explicit subharmonic functions of X and subsolutions to a limit Hamilton Jacobi

Bellmann equation.

Figure 5.1: Affine transformation for two dimensional parallel walk
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[39] is a recent paper on the subject with which this thesis has a great connection. In

this paper, formulas approximating the probability Px(τn < τ0) for a d dimensional

constrained random walk X , with d tandem queues (see Figure 5.2), are developed.

The affine transformation of X reduces the problem to the calculation of the proba-

bility Py(τ < ∞). This probability is shown to be explicitly written in terms of λ

and µi’s and can be derived with the solutions to the harmonic systems associated

with the constructed Y harmonic functions. This novel explicit formula is given in

Equation 5.2. A harmonic system is defined to be a {2, 3, 4, ..., d} regular graph with

a set of equations/restraints. Points on a characteristic surface of Y are represented

as nodes on the graph and edges between the points denotes the conjugacy relation.

This approach also used in this thesis. 2.1 in Chapter 2 is the graph of a harmonic

system for the three dimensional constrained simple random walk in our case.

Figure 5.2: d tandem queues

Py(τ < ∞) =
d∑

d=1

[ d∏
l=d+1

µl − λ

µl − µd

]
h∗
d(y) (5.2)

where h∗
d’s are ∂B-determined Y -harmonic functions. This equation is in fact a gen-

eralization of Equation 5.1.

For the approximation analysis in [39], supermartingales are constructed and used

to bound the probabilities given in relative error. The rationale in the error analy-

sis is in brief as follows: it is shown that the incident {τn < τ0} mostly coincide

with {τ < ∞}. For the convergence analysis, the upper bounds on the probabilities

of events are computed through the construction of Y -superharmonic functions and

the related supermartingales. The paper uses superharmonic functions for the con-

vergence analysis as they have a much simpler forms compared to the Y -harmonic

functions employed in Py(τ < ∞). The ideas provided in this paper are utilized in

the current thesis as mentioned in Chapter 2 and Chapter 3.
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CHAPTER 6

CONCLUSION

Constrained random walks arise in queuing theory and other fields as models of sys-

tems of objects, information or customers. Systems comprised of multiple compo-

nents lead to multidimensional constrained random walks, e.g., the banking system

considered in Chapter 4. In this thesis, we model three queues working in parallel.

We have a three dimensional simple random walk X constrained to remain on the

positive orthant. Setting the hitting time τn as the first time when the sum of the com-

ponents of X equals n, we approximate the probability Px(τn < τ0).

For the approximation of Px(τn < τ0), we use an affine transformation of X and

observe the system from the exit point (n, 0, 0). The resulting process Y is indeed

the same process as X except for the first coordinates. With the transformation, the

problem turns out to be the approximation of the probability Py(τ < ∞). We provide

a convergence analysis showing that Py(τ < ∞) approximates our desired proba-

bility Px(τn < τ0) with an exponentially diminishing relative error for X is away

from the constraining boundary x(1) = 0. The convergence analysis is based on the

construction of superharmonic and subharmonic functions of X . In order to approxi-

mate the probability Py(τ < ∞), we construct Y harmonic functions by using a four

node harmonic system, points on which correspond to the roots on the characteristic

surface associated with Y . These roots are used in the construction of Y harmonic

functions using all four nodes on the graph of the harmonic system. As in [38, 43, 6],

we also use harmonic systems with pair of nodes to construct additional Y -harmonic

functions. Furthermore, as in these previous works, another harmonic function comes

from the intersection of characteristic surfaces. Finally we provide a numerical ex-

ample in order to show the that the function constructed for Py(τ < ∞) approximates
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the probability Px(τn < τ0) quite well. An explicit formula for the two dimensional

parallel walk case exists with an additional condition of r2 = ρ1ρ2 [43]. We have not

derived a similar formula in the case of three dimensions, such a derivation can be

considered in future research. Instead of an exact computation, we approximate this

probability by taking an appropriate linear combination of the Y harmonic functions

constructed from solutions of harmonic systems mentioned above. Further construc-

tion of Y harmonic functions could help in order to obtain better approximations of

the probability. Moreover, for a suitable combination of such functions one could

probably diminish the error for the approximation of this probability. How many

functions do we need or how can we optimally combine them remains as questions

for future work.

The work [39] provides an exact formulation in terms of the ratios of arrival rate

and departure rates for the probability Py(τ < ∞) for a d dimensional tandem walk.

A similar generalization to d dimensions of the results in this thesis also remain for

future work.

6.1 Comparison with the previous studies

This thesis can be regarded as an extension of [42, 43]. [42, 43] treat the two di-

mensional simple walk case for the same problem of computing the probability pn =

P (τn < τ0). Both works and [5, 39] use the same approach in the calculation of pn;

using an affine transformation of the constrained random walk X and obtaining a sim-

ilar process Y , and approximating pn with the probability Py(τ < ∞). Furthermore,

Py(τ < ∞) is computed by constructing harmonic functions / harmonic systems and

their solutions as well as conjugate points of the characteristic surfaces. Adding an ex-

tra dimension to the problem makes the calculations further complicated and requires

further adaptations. In this part, we compare our work with the two dimensional case

in detail. For the comparison of two dimensional cases for tandem walk, parallel walk

and Markov modulated dynamics we can refer the reader to [42, 5].

The number of constraining boundaries increases as we add one more dimension

to the problem. This leads to extra characteristic surfaces used for the construction

of harmonic functions. In the two dimensional case, harmonic functions are of type
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[(β, α), y] = βy(1)−y(2)αy(2) whereas in our case they are of the form [(β, α2, α3), y] =

βy(1)−(y(2)+y(3))α
y(2)
2 α

y(3)
3 . From the solutions of characteristic polynomials, we ob-

tain our four node harmonic system, the idea of which is based on [39] and new

compared to [42]. The hr function used for the approximation of Py(τ < ∞) is

constructed from the points coming from the solutions of characteristic polynomials

and the conjugate points on the characteristic surfaces. For the construction of hr, we

implement the arguments provided in [37, 39] which treats the 2 or more dimensional

tandem walks. By using harmonic system, we obtain harmonic functions from all of

four nodes and pair of nodes.

It is possible to write an explicit formula for Py(τ < ∞) with an additional condi-

tion for the two dimensional case. Obviously, no explicit formula exists for the three

dimension. Py(τ < ∞) can only be approximated with hr with a bounded relative

error.

The most crucial differences from the two dimensional case stems from the error

analysis and the upper bounds on the probabilities given in Chapter 3. Upper bound

on these probabilities are obtained through the large deviations analysis and subsolu-

tions of the limit HJB equation. In our case, upper bounds are obtained based on the

construction of superharmonic functions and their corresponding supermartingales.

One critical difference here is that the superharmonic harmonic functions constructed

for Px(σ1 < τn < τ0) depend on the order of r1,2,3 and r1,3 since 3.6 doesn’t resolve

how r1,2,3 and r1,3 compare with each other. Different functions for each stage are

constructed in Subsections 3.1.2, 3.1.1. Such a distinction is not necessary for two

dimensions since there is a single assumption of ρ2 ≤ r ≤ ρ1.

In the construction of superharmonic functions, the use of time truncation allows us

to obtain meaningful bounds. To truncate time for the X process, we use a general

result from [42, 43]. For the truncation of time for the Y process we generalize the ar-

gument given in [42, 43] to three dimensions: this consists of finding an upper bound

on the moment generating function.
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