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A B S T R A C T

The integration of renewable energy sources (RESs) into power grids underscores the necessity for efficient
energy storage solutions to ensure power balance and increase grid reliability. Although battery energy storage
systems (BESSs) are pivotal for storing excess energy from RESs and mitigating peak demand periods, their
chemical nature poses limitations, particularly in microgrid (MG) applications, due to degradation concerns
that can lead to reduced performance over time. This necessitates careful consideration of degradation effects
in optimizing system design and operation. This paper addresses this issue through developing a novel
methodology aimed at optimizing the operation of renewable-based MGs while accounting for the degradation
mechanisms of the battery storage systems. A machine learning model based on the XGBoost strategy is
developed to predict the remaining useful life (RUL) of Lithium-ion (Li-ion) batteries, leveraging initial battery
characteristics. This data-driven model is then incorporated into the day-ahead scheduling problem of an
agricultural MG as a use-case to assess the impact of battery degradation modeling on the MG operation in
both grid-connected and island operation modes. The proposed methodology utilizes the Coati Optimization
Approach (COA) to determine optimal battery charging and discharging policy related to battery cycle
limitations. The Monte Carlo Simulation (MCS) approach is employed to generate different scenarios reflecting
varying power generation from RESs, electricity price volatility, and load demand variations. Case studies
conducted on a real-world agricultural MG in Ankara, Turkey, demonstrate the effectiveness of the proposed
methodology in reducing the total MG costs including both operational and degradation costs. Sensitivity
analyses underscore the robustness of the methodology across various RES penetration levels and market
conditions. Results reveal a reduction of 55.30% and 41.23% in the degradation cost of the agricultural MG
in grid-connected and island modes, respectively, through the integration of the proposed data-driven-based
battery degradation modeling.
1. Introduction

In the evolving landscape of RESs, the development of MGs emerges
as a pivotal factor in shaping the future smart power systems [1].
As RESs continue to gain prominence, their contribution to power
generation experiences remarkable growth, reshaping the dynamics of
energy systems. Nevertheless, the inherent stochastic and intermittent
nature of RESs poses significant challenges to system stability and
availability [2]. To address these uncertainties, BESSs emerge as a
compelling solution, providing the necessary flexibility to manage the
variability of RESs’ power generation. BESSs can efficiently store excess
energy from RESs and inject it into the grid during high-peak demand
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periods, enhancing grid stability and reliability [3]. Consequently,
accurate modeling of BESS becomes paramount in power systems anal-
yses, particularly in sectors such as agriculture where reliable energy
supply is crucial for operations.

Agricultural MGs are distinct from conventional MGs due to their
unique load profiles, energy usage patterns, and operational require-
ments. These systems are tailored to meet the fluctuating and seasonal
energy demands of agricultural activities, such as irrigation, crop pro-
cessing, and storage, with peak loads occurring during critical farming
periods. Situated in remote or disaster-prone areas, agricultural MGs
require a robust and autonomous operation, often including islanding
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Nomenclature
Indices
𝑡 Time index
𝑖 Index of controllable generator units
cg Controllable generator units
ess Energy storage system index
Parameters
𝛥𝑇 Dispatch time interval [h]
𝛹 Backup power percentage [%]
𝐸 𝐶max

𝑒𝑠𝑠 ∕𝐸 𝐶min
𝑒𝑠𝑠 Maximum/Minimum energy capacity of BESS [kWh]

𝐸 𝐶 𝑡0
ess∕𝐸 𝐶 𝑡24

ess Initial/End energy capacity of BESS [kWh]
𝑃max
𝑒𝑠𝑠,𝑐 ℎ∕𝑃min

𝑒𝑠𝑠,𝑐 ℎ Maximum/Minimum charging power of BESS [kW]
𝑃max
𝑒𝑠𝑠,𝑑 𝑖𝑠∕𝑃min

𝑒𝑠𝑠,𝑑 𝑖𝑠 Maximum/Minimum discharging power of BESS [kW]
𝑃max
𝑒𝑠𝑠 Maximum power of BESS [kW]

𝜉𝑐 ℎ𝑒𝑠𝑠∕𝜉𝑑 𝑖𝑠𝑒𝑠𝑠 Charging/Discharging efficiency of BESS [%]
𝐸 𝑃∕𝐸 𝑆 Electricity purchase/sell price [Lira/kW]
𝑂 𝑃min

𝑐 𝑔 ∕𝑂 𝑃max
𝑐 𝑔 Maximum/Minimum capacity of controllable generator [kW]

𝑇 ℎmax
grid Maximum thermal constraint on the tie-line connecting the main grid and the microgrid [kW]

𝑅𝐿up
𝑐 𝑔 ∕𝑅𝐿down

𝑐 𝑔 Ramp-up/Ramp-down limitation of controllable generator [kW/h]
𝐶𝑐 𝑔 Unit cost of controllable generator power [Lira/kW]
𝐶𝑛𝑙
𝑐 𝑔 Cost of controllable generator at no load [Lira]

𝐶𝑠𝑢
𝑐 𝑔 Cost of controllable generator at start-up [Lira]

𝜅𝑏𝑛,𝑏𝑎𝑡𝑡 Price of brand-new battery [Lira]
𝜅𝑠𝑙 𝑣𝑔 ,𝑏𝑎𝑡𝑡 Price of salvaged battery [Lira]
𝑁 Number of generators
𝐾1 Battery charge coefficient
𝐾2 Battery discharge coefficient
Deg-cost Battery degradation cost for each cycle [Lira]
Deg-rate Battery degradation rate for each cycle [%/cycle]
Variables
𝑂 𝑃𝑐 𝑔 Controllable generator output power [kW]
𝑃purch ∕𝑃sold Power purchased/sold from/to the main grid [kW]
𝑃 𝑐 ℎ
𝑒𝑠𝑠∕𝑃

dis
𝑒𝑠𝑠 Charging/Discharging power of BESS [kW]

𝑃demand Load demand in the microgrid [kW]
𝛽𝑏𝑝∕𝛽𝑠𝑝 Purchasing/selling status of power from the main grid; binary variable
𝛼𝑐 ℎ𝑒𝑠𝑠∕𝛼dis

𝑒𝑠𝑠 Charging/Discharging status of BESS; binary variable
𝛼𝑐 𝑔 Off(0)/on(1) status of a controllable generator; binary variable
𝛼𝑠𝑢𝑐 𝑔 Off(0)/on(1) status of a controllable generator at start-up; binary variable
Abbreviations
EM Energy management
MG Microgrid
RES Renewable energy source
WT Wind turbine
PV Photovoltaic
CG Controllable generator
WP Water pump
ET Electric tractor
BESS Battery energy storage system
Li-ion Lithium-ion
RUL Remaining useful life
SOC State of charge
SOH State-of-health
EOL End of Life
DOD Depth of discharge
C-rate Current rate
COA Coati optimization approach
ML Machine learning
SVR Support Vector Regressio
2 
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CNN Convolutional Neural Network
LSTM Long Short-Term Memory
TCN Temporal Convolutional Network
XGBoost eXtreme Gradient Boosting
LightGBM Light Gradient-Boosting Machin
RMSE Root Mean Squared Error
MAPE Mean Absolute Percentage Error
PSO Particle swarm optimization
MCS Monte Carlo Simulation
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capabilities, to compensate for unreliable grid connections [4]. To en-
ance reliability and stability, BESSs are integrated to store the excess
nergy of RES and supply MGs during periods of high demand or grid
utages. However, the variable nature of agricultural energy consump-
ion and the added complexity of BESS degradation pose significant
hallenges. Accurate modeling of battery degradation is essential to
ptimizing both energy storage and overall system performance, en-
uring long-term resilience and cost-effectiveness in agricultural MG
perations. This research focuses on addressing these challenges by
ptimizing the integration of ESSs and RESs for agricultural MGs.

1.1. Literature review

Despite significant advancements in BESS technology, accurately
predicting the RUL of Li-ion batteries remains challenging. Li-ion bat-
teries undergo degradation over time due to various factors includ-
ing their SOC, DOD, ambient temperature fluctuations, C-rate, and
charging policies [5]. Limiting discharge cycles can mitigate the as-
ociated battery degradation and promote more sustainable and cost-

effective energy storage utilization [6], reduce the safety issues, and
ncrease thermal stability [7]. Predicting the RUL of Li-ion batter-
es falls into two categories: physics-based and data-driven modeling.

Physics-based methods include empirical and semi-empirical battery
degradation models that typically include linear degradation models
or models based on DOD and SOC of the battery [8]. Authors in [9]
mploy information about the battery’s DOD to compute the RUL in
erms of cycles and predict the battery degradation mechanism. With
 focus on DOD and SOC, Refs. [10,11] provide a model to capture

the degradation pattern for Li-ion batteries throughout the battery’s
ifespan, which may not accurately reflect real-world conditions due
o unstable environmental conditions, specifically temperature and not
onsidering the other influential factors such as the battery charg-
ng/discharging C-rate. With the same argument, the linear modeling
pproaches for battery degradation analysis presented in [12,13] do not
rovide adequate accuracy for predicting the RUL of Li-ion batteries for
any applications.

Recent developments in employing data-driven models based on
OC [14], SOH [15], and EOL of batteries [16], have demonstrated con-

siderable potential in predicting the RUL of Li-ion batteries [17]. No-
tably, models such as Random Forest [18], LSTM [19], LightGBM [20],
SVR [21], CNN-LSTM [22], and TCN [23] stand out for this purpose.
Due to the diverse range of ML-based approaches, the authors per-
formed a comparative analysis to assess the predictive capabilities of
various ML models for Li-ion battery RUL prediction in their previ-
ous study [24]. This study highlights the performance trade-offs and
uitability of different ML models for this specific task. Among these
odels, the XGBoost model emerges as the top performer, achieving

uperior results in terms of RMSE and MAPE of the RUL prediction.
Enhancing the prediction accuracy of RUL of Li-ion batteries, particu-
larly concerning their remaining cycle life, holds promise for optimizing
BESS utilization within power systems.

Optimal scheduling of BESSs is among the key tasks in the EM
system of MGs. In [25], BESSs are integrated within a distribution
etwork for peak load shaving, power demand smoothing, and voltage
3 
regulation. Authors in [26] explore the optimal modeling of the BESS
ithin a distribution network. The study results reveal enhanced volt-
ge profiles, minimized reactive power flow, decreased network losses,
nd a cost-effective charging/discharging strategy of BESSs. In [27],

authors investigate the impact of integrating BESSs into the MG for
assessing the operational cost of the system using a multi-objective
optimization method. Although the potential impacts of integrating
BESSs into power systems have been explored in many studies, the
degradation of BESSs and the associated costs are commonly over-
looked [28,29]. Consequently, integrating the degradation model of
BESSs can provide a more comprehensive understanding of the overall
operational costs of the network and their applicability within power
systems.

In [30], a linear model is presented that incorporates calendar aging
and cycle aging of the battery, accounting for its degradation costs.
Subsequently, this degradation cost is incorporated into a predictive
EM problem. Despite the linearity of the proposed algorithm and the
actors considered, the results demonstrate the efficacy of considering

the degradation of BESS when optimizing the charging/discharging
strategy of the battery. In [31], the authors explore optimal EM for
community-based MGs. The study considers the degradation cost of bat-
teries by including a penalty factor to constrain charging/discharging
ycles, and the PSO algorithm is used to solve the optimization prob-
em. In [32], a BESS scheduling approach is introduced while consider-
ng the degradation cost of the battery. The proposed method employs a
wo-stage formulation and considers a one-cycle life characteristic and
attery discharge SOC-based degradation. Notably, this formulation
an be utilized specifically for deterministic optimization problems.
n [33], authors investigate the battery scheduling problem using a
emi-empirical-based linear model to account for battery degradation
osts. This linearized model, leveraging the RUL of the battery, is
ntegrated into a model predictive control algorithm for effective EM of

the battery. Other commercial models of BESS degradation costs [34]
often fall short in accurately predicting the SOC and DOD of the battery.

his can lead to an inadequate representation of degradation costs in
he battery scheduling problem, highlighting the need for improved
attery degradation models.

1.2. Novelty and contribution

In this paper, we introduce a novel approach to address the power
management problem of an agricultural MG taking into account the
capacity degradation of the BESS. Our study is based on a real-world
agricultural MG in Ankara, Turkey, providing practical insights into MG
operations. Leveraging insights from existing literature, we develop an
XGBoost model to predict the RUL of the battery, enabling accurate
estimation of battery degradation rates across cycles. Furthermore,
to evaluate the robustness of the proposed methodology, we employ

CS to generate multiple scenarios. These scenarios encompass varying
evels of RES penetration, as well as fluctuations in the electricity price
nd MG’s load demand. In addition, we employ COA to determine
he optimal charging and discharging policies related to the cycle
imitations of the BESS. The main contributions made by this paper are
s follows:
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Fig. 1. Structure of the agricultural MG under consideration.
• Proposing a day-ahead energy management system for an agricul-
tural MG considering battery degradation.

• Developing an XGBoost ML model to predict the RUL of the BESS
of the MG.

• Developing an optimization problem to optimize the charging and
discharging rates of the BESS using the COA.

• Using the MCS approach to generate multiple scenarios for the
RES penetration level, electricity price, and power demand of the
MG to perform a sensitivity analysis of the energy management
strategy.

1.3. Paper organization

The rest of the paper is organized as follows: Section 2 introduces
the energy management problem of the agricultural MG integrated with
BESSs. Section 3 elaborates on the proposed methodology to model
battery degradation using the XGBoost model and COA for the optimal
scheduling of the agricultural MG. Subsequently, Section 4 presents the
case studies and simulation results. Finally, Section 5 concludes the
paper.

2. Problem statement

This section introduces the operation management problem of an
agricultural MG, which is illustrated in Fig. 1. The system comprises
two CGs with a rated power of 10 kVA each, and RESs including
WTs and PVs with output powers of 10 kW and 12 kW, respectively.
Additionally, it incorporates a BESS with a power capacity of 5 kW and
an energy capacity of 10 kWh. It also includes vital components for
agricultural operations, such as ETs, WPs, and residential loads. ETs
operate daily from 4:00 PM to midnight and recharge from midnight
to 4:00 PM. They require 20 kWh of energy to be fully charged and
ready for operation. WPs are set to function between 00:00 to 16:00,
for 5 h in total consuming 3 kWh energy per hour to fill the water
reservoir. This reservoir serves the essential purpose of daily irrigation
for the agricultural lands, ensuring consistent water supply to support
crop growth and maintenance. These schedules are set according to the
agricultural farm’s needs, ensuring maximum utilization of renewable
energy from PVs and WTs. The timing of daily farm operations should
be aligned with periods of high solar and wind energy availability to
maximize the use of renewable power and minimize reliance on stored
energy in BESSs. This strategic operation and battery utilization reduce
the operational costs of the agricultural MG, while also enhancing
the overall efficiency and sustainability of agricultural practices. In
4 
Section 2.1, the conventional energy scheduling problem of the agri-
cultural MG without considering the battery degradation mechanism
and its associated cost is introduced. Subsequently, in Section 2.2, the
importance of battery degradation cost modeling is presented.

2.1. Energy management problem of the agricultural MG

The energy management problem of the agricultural MG refers to
the optimal scheduling of the flexible power demand, battery charg-
ing/discharging, and the power exchange with the main grid, while
satisfying the technical and operational requirements. The subsequent
Eqs. (6) to (18), detail the technical constraints governing the compo-
nents within the agriculture MG. These equations define the operational
boundaries and requirements for each component. The objective func-
tion, aimed at minimizing operational costs, is formulated in Eq. (1).
Eq. (2) represents the power balance of the MG. The generated power
includes the power from CGs, WT, and PV units, discharge power of
BESSs, and purchased power from the main grid. The consumed power
encompasses the total electrical load demand of the agricultural MG
(𝑃𝑑 𝑒𝑚𝑎𝑛𝑑) including the residential load and the power demand from
the ET and the WP, the charging power of BESS, and the power sold to
the main grid.

The output power of CGs is regulated by constraints described in
Eqs. (3) to (5). Eq. (3) ensures the output power of CGs stays within
specified maximum and minimum limits. Eq. (4) controls the rate at
which CGs can increase their output power (ramp up), while Eq. (5)
governs the rate at which they can decrease their output power (ramp
down). Eq. (6) facilitates either purchasing or selling power to or from
the main grid, preventing simultaneous power exchange. Furthermore,
Eq. (7) introduces the thermal limitations of tie-lines between the main
grid and the MGs, ensuring the satisfaction of thermal constraints.
Eqs. (8) and (9) are presented to limit the status of BESS, even in
charging or discharging mode, and its operational limitation to keep
charging and discharging power within their maximum and minimum
levels. Eqs. (10) and (11) are used to calculate the SOC and stored
energy of the BESS unit. Eq. (12) mandates the final SOC of the BESS
to be equal to the initial SOC value.

𝐽 =
𝑡=24
∑

𝑡

𝑁
∑

𝑖

(

𝑂 𝑃𝑐 𝑔(𝑡, 𝑖)𝐶𝑐 𝑔(𝑖) + 𝛼𝑐 𝑔(𝑖)𝐶𝑛𝑙
𝑐 𝑔(𝑖) + 𝛼𝑠𝑢𝑐 𝑔(𝑖)𝐶𝑠𝑢

𝑐 𝑔 (𝑖)
)

+
(

𝑃𝑝𝑢𝑟𝑐 ℎ(𝑡)𝐸 𝑃 (𝑡) − 𝑃𝑠𝑜𝑙 𝑑 (𝑡)𝐸 𝑆(𝑡))
(1)

𝑁
∑

𝑖

(

𝑂 𝑃𝑐 𝑔(𝑡, 𝑖) + 𝑃𝑊 𝑇 (𝑡) + 𝑃𝑃 𝑉 (𝑡) + 𝑃 dis
ess (𝑡)

)

+ 𝑃purch (𝑡) − 𝑃sold (𝑡)

= 𝑃demand (𝑡) + 𝑃agri(𝑡) + 𝑃 𝑐 ℎ
ess (𝑡) ,∀𝑡

(2)

min max
𝑂 𝑃𝑐 𝑔 (𝑖) ≤ 𝑂 𝑃𝑐 𝑔(𝑡, 𝑖) ≤ 𝑂 𝑃𝑐 𝑔 (𝑖) ,∀𝑖, 𝑡 (3)
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𝑂 𝑃𝑐 𝑔(𝑡, 𝑖) − 𝑂 𝑃𝑐 𝑔(𝑡 − 1, 𝑖) ≤ 𝛥𝑇 .𝑅𝐿up
𝑐 𝑔 (𝑖), ∀𝑖, 𝑡 (4)

𝑂 𝑃𝑐 𝑔(𝑡 − 1, 𝑖) − 𝑂 𝑃𝑐 𝑔(𝑡, 𝑖) ≤ 𝛥𝑇 .𝑅𝐿down
𝑐 𝑔 (𝑖), ∀𝑖, 𝑡 (5)

𝛽bp (𝑡) + 𝛽sp (𝑡) ≤ 1, ∀𝑡 (6)
{

0 ≤ 𝑃purch(𝑡) ≤ 𝛽bp(𝑡)Thmax
grid

0 ≤ 𝑃sold(𝑡) ≤ 𝛽sp(𝑡)Thmax
grid

, ∀𝑡 (7)

𝛼dis
ess (𝑡) + 𝛼𝑐 ℎ𝑒𝑠𝑠(𝑡) ≤ 1, ∀𝑡 (8)
{

𝛼𝑐 ℎ𝑒𝑠𝑠(𝑡)𝑃min
𝑒𝑠𝑠,𝑐 ℎ ≤ 𝑃 𝑐 ℎ

𝑒𝑠𝑠(𝑡) ≤ 𝛼𝑐 ℎ𝑒𝑠𝑠(𝑡)𝑃max
𝑒𝑠𝑠,𝑐 ℎ

𝛼𝑑 𝑖𝑠𝑒𝑠𝑠 (𝑡)𝑃
min
𝑒𝑠𝑠,𝑑 𝑖𝑠 ≤ 𝑃 𝑑 𝑖𝑠

𝑒𝑠𝑠 (𝑡) ≤ 𝛼𝑑 𝑖𝑠𝑒𝑠𝑠 (𝑡)𝑃
max
𝑒𝑠𝑠,𝑑 𝑖𝑠

, ∀𝑡 (9)

𝑆 𝑂 𝐶ess (𝑡) = 𝐸 𝐶𝑒𝑠𝑠(𝑡)
𝐸 𝐶max

ess
, ∀𝑡 (10)

𝐸 𝐶𝑒𝑠𝑠(𝑡) − 𝐸 𝐶𝑒𝑠𝑠(𝑡 − 1) + 𝛥𝑇

(

𝑃 𝑑 𝑖𝑠
𝑒𝑠𝑠 (𝑡 − 1)
𝜉dis
𝑒𝑠𝑠

− 𝜉𝑐 ℎ𝑒𝑠𝑠𝑃 𝑐 ℎ
𝑒𝑠𝑠(𝑡)

)

= 0,∀𝑡 (11)

𝐸 𝐶 𝑡24
ess = 𝐸 𝐶 𝑡0

ess (12)

2.2. Integrating battery degradation model into energy management prob-
lem

The necessity of integrating the battery degradation model into the
nergy management strategy cannot be overstated. Battery degrada-
ion significantly affects both the economic and technical performance
f BESSs. Over time, repeated charging and discharging cycles lead
o a decrease in battery capacity and efficiency. By incorporating a
egradation model, operators can optimize the use of batteries, extend
heir operational lifetime, and reduce their total life cycle costs. This
pproach ensures optimal operation of BESSs, which delays BESSs
egradation and maximizes return on investment [3].

Moreover, optimal battery utilization informed by degradation mod-
eling is crucial for maintaining the reliability of MGs. A detailed
understanding of how battery performance deteriorates over time en-
bles more accurate forecasting of battery life and better scheduling of
harging and discharging cycles. This strategic management approach
aintains a balance between immediate energy demands and long-

erm battery health while enhancing the stability and sustainability of
G operations. The integration of this model not only supports the

conomic aspects by optimizing operational costs but also contributes
ignificantly to the environmental goals of reducing waste [3]. In the

following section, the proposed method for incorporating the battery
degradation model into the energy management problem is presented.

3. Proposed methodology

In this section, the proposed methodology for the optimal day
head operation scheduling of the agricultural MG is introduced, while
he battery degradation mechanism and its associated costs are taken
nto account. In this line, first, a data-driven strategy is introduced
o model battery degradation using predictive analytics techniques to
ccurately capture the C-rate, SOC, and DOD patterns of the battery
ver its operational lifespan. Subsequently, the operation management

problem of the agricultural MG introduced in the previous section is
reformulated to incorporate the degradation cost of the battery. Several
scenarios are generated using the Monte Carlo approach to account
for the fluctuation of the output power of RESs and variations in
electricity prices and residential loads. By developing scenarios, the
inherent uncertainties and variability in renewable energy availability,
power consumption, and market conditions are captured, enhancing
our optimization framework’s robustness Finally, the COA is used to
solve the energy management problem. COA offers a powerful opti-
mization tool that handles complex, multi-dimensional objectives and
constraints inherent in the MG scheduling problem.
5 
3.1. Battery degradation modeling

In this subsection, the concept of the proposed methodology for
battery degradation modeling is introduced. As highlighted in the liter-
ature review, data-driven models offer a robust approach for capturing
the patterns associated with C-rate, SOC, and DOD characteristics ex-
hibited by batteries over their operational lifespan. These patterns are
important indicators of the underlying degradation mechanisms affect-
ng battery performance. Utilizing a dataset specific to Li-ion batteries,
hich will be elaborated upon in Section 3.1.1, an XGBoost model is

developed by employing SOC, DOD, C-rate, and temperature of the Li-
ion battery of the agricultural MG to predict its RUL. By predicting the

UL accurately, our model estimates the battery degradation incurred
during each operational cycle. From the results of the RUL prediction,
the degradation in each cycle is calculated, which is then translated
into the degradation cost of the battery associated with that specific
cycle. This approach allows us to incorporate the dynamic nature of
battery degradation into our optimization framework, facilitating a
more comprehensive analysis of the long-term performance and costs
of the MG. The proposed model to determine the battery degradation
cost is presented in the following.

3.1.1. Data preprocessing
The dataset used for training and validating the XGBoost model

as obtained from [35] and through comprehensive battery simulation
analyses conducted using MATLAB Simulink software. This dataset
ncludes 945 distinct battery aging tests, covering various influential
arameters such as SOC, DOD, temperature, and C-rate. Within the
imulation model, ambient temperature, battery aging mechanism, and

dynamic change of the battery’s internal resistance are simulated. Fig. 2
presents the distribution of battery cycle life and battery aging test
counts considering various SOC and DOD values. The dataset is divided
into two distinct categories: training and testing. In this partitioning,
80% of the data is allocated for training purposes, while the remaining
20% is reserved for testing the model’s performance. This division en-
sures that the model is trained on a sufficient dataset while maintaining
a separate set for evaluating its generalization capabilities. By feeding
the extracted features to the XGBoost model, the XGBoost model can
learn the complex relationships between battery aging parameters and
capacity degradation. This enables the XGBoost model to accurately
predict battery RUL, which can be used to estimate the degradation
cost of the battery in each cycle.

3.1.2. XGboost model for predicting battery degradation
The XGBoost model is a powerful machine learning algorithm

widely utilized for various predictive modeling tasks, including regres-
sion and classification [36]. It belongs to the ensemble learning family,
specifically the gradient boosting framework, known for its ability to
produce highly accurate predictions by combining the strengths of
multiple weak learners. Its strong performance in real-world scenarios
has been validated through extensive research, including the case
studies presented in [24], which demonstrate its accuracy and relia-
ility in practical engineering applications. In this paper, the XGBoost
odel is selected due to its proven effectiveness in predicting battery
egradation. However, due to space limitations and the primary focus
f this work being the integration of an efficient battery degradation
rediction model with the EM system of MGs, the detailed formulation
nd implementation of the XGBoost model are not included here.

The mathematical formulation of the XGBoost model involves con-
structing an ensemble of decision trees iteratively, with each subse-
quent tree attempting to correct the errors of the previous ones [24].
The final prediction is obtained by aggregating the predictions of all
individual trees. Let denote the dataset as 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1, where
𝑥𝑖 represents the features of the 𝑖th instance and 𝑦𝑖 represents the
corresponding label. The XGBoost model aims to learn a predictive

function 𝐹 (𝑥) that minimizes a predefined loss function 𝐿(𝑦𝑖, 𝐹 (𝑥𝑖)) over



V. Safavi et al. Journal of Energy Storage 108 (2025) 115059 
Fig. 2. Distribution of battery cycle life (a), and battery aging test counts across different SOC and DOD conditions (b).
Fig. 3. Battery SOC for a sample data for 24 h (a), splitting the first peak to the next valley as a DOD-1 (b), and second peak to the second valley as a DOD-2 (c).
the training data. The objective function of the XGBoost model can be
represented as Eq. (13).

Obj(𝛩) =
𝑁
∑

𝑖=1
𝐿(𝑦𝑖, �̂�𝑖) +

𝐾
∑

𝑘=1
𝛺(𝑓𝑘) (13)

Here, 𝛩 denotes the set of model parameters, 𝐿(𝑦𝑖, �̂�𝑖) represents the
loss function, 𝑓𝑘 represents the 𝑘th tree in the ensemble, and 𝛺(𝑓𝑘)
represents a regularization term penalizing the complexity of the trees.
At each iteration, the XGBoost model adds a new decision tree 𝑓𝑘 to the
ensemble by fitting it to the negative gradient of the loss function with
respect to the predictions of the previous ensemble as Eq. (14) presents.

𝑓𝑘 = ar g min
𝑓

𝑁
∑

𝑖=1
𝐿(𝑦𝑖, �̂�(𝑡−1)𝑖 + 𝑓 (𝑥𝑖)) +𝛺(𝑓 ) (14)

The final prediction (Eq. (15)) of the XGBoost model for a new
instance 𝑥 is obtained by summing the predictions of all individual
trees:

𝐹 (𝑥) =
𝐾
∑

𝑘=1
𝑓𝑘(𝑥) (15)

Two key performance metrics namely MAPE and RMSE are used to
evaluate the performance of the developed XGBoost model to predict
the battery RUL [37]. Mathematical expressions representing RMSE and
MAPE are provided in (16) and (17):

𝑅𝑀 𝑆 𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (16)

𝑀 𝐴𝑃 𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

|

𝑦𝑖 − 𝑦𝑖
𝑦𝑖

|

|

|

|

(17)

where 𝑦𝑖 and 𝑦𝑖 indicate the actual and predicted values, respectively.

3.2. Battery degradation cost estimation

This subsection presents a core contribution of this paper, specifi-
cally the derivation of battery degradation costs using the developed
XGBoost model. These costs will be incorporated into the resultant
operational costs of the agricultural MG, thereby providing a com-
prehensive assessment of the overall cost while considering battery
degradation. The methodology begins with the specification of the
6 
input vector for the XGBoost model, as detailed in Eq. (18). For the
DOD calculation, each valley within the SOC curve is first identified and
isolated, and then a DOD value for each identified valley is calculated.
This procedure is visually detailed in Fig. 3. Subsequently, the RUL is
calculated using the XGBoost model, as represented in Eq. (19). The
workflow used to predict the RUL of the BESS with the XGBoost model
is presented in Fig. 4. The degradation rate for each hour is calculated
using the predicted RUL value, as defined in Eq. (20). Since the degra-
dation rate is determined hourly, each cycle in this formula corresponds
to one hour. The SOHinitial is defined as 1, representing 100% health,
while SOHfinal is set to 0.8, indicating 80% health. Both SOH values
are dimensionless and signify the percentage of the battery’s capacity.
Additionally, the unit for RUL is cycles. Finally, the total degradation
cost for 24 h is calculated, taking into account the price of a brand-new
(𝜅𝑏𝑛,𝑏𝑎𝑡𝑡) and a salvaged battery (𝜅𝑠𝑙 𝑣𝑔 ,𝑏𝑎𝑡𝑡) as can be seen in Eq. (21).

𝑥t =

⎡

⎢

⎢

⎢

⎢

⎣

SOC𝑡
DOD𝑡
C-rate𝑡

Temperature𝑡

⎤

⎥

⎥

⎥

⎥

⎦

, ∀𝑡 (18)

𝑅𝑈 𝐿𝑡 = 𝑓XGBoost (𝑥𝑡
)

, ∀𝑡 (19)

Deg-rate𝑡 =
(

SOHinitial − SOHfinal
)

𝑅𝑈 𝐿𝑡
, ∀𝑡 (20)

Deg-cost =
24
∑

𝑡=1
Deg-rate𝑡

(

𝜅𝑏𝑛,𝑏𝑎𝑡𝑡 − 𝜅𝑠𝑙 𝑣𝑔 ,𝑏𝑎𝑡𝑡
)

(21)

3.3. Scenario generation for uncertainty management

The MCS method is employed to capture uncertainties inherent in
renewable energy generation, specifically PVs and WTs, as well as
the volatility of electricity prices and load demand. Five stages are
employed to implement the MCS approach for scenario generation of
the components of the agricultural MG as follows [38]:

• Assigning a probability density function (PDF) to each uncertain
variable.

• Generating 𝑁 possible values for each input data by sampling
from its respective PDF based on mean and standard deviation.
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Fig. 4. Workflow of the proposed strategy to predict RUL of the battery using XGBoost model.
Fig. 5. Generated scenarios for wind output power (a), PV output power (b), load consumption (c), and electricity price (d).
• Combining the random samples to form 𝑁 input vectors.
• Executing the simulation of the model 𝑁 times, once for each

input vector. This process yields a vector of results and establishes
an input–output mapping of the model.

• The probability density function of the simulation outcome is
defined by the collection of output data.

3.4. Coati optimization approach

The COA is a nature-inspired meta-heuristic algorithm that mim-
ics the foraging strategies of coatis, intelligent mammals known for
their collaborative food searching [39]. As coatis use their snouts to
unearth food hidden underground, COA explores the solution space of
an optimization problem to uncover optimal or near-optimal solutions.
This population-based algorithm employs a collection of candidate
solutions, each representing a potential answer to the problem. These
candidates are continuously refined through a series of procedures:
exploration, exploitation, and selection. Exploration introduces new
solutions into the population, often utilizing random search techniques
7 
like uniform or Gaussian sampling. This step allows the algorithm
to broadly investigate the solution space. Exploitation focuses on im-
proving existing solutions through local search methods such as hill
climbing or simulated annealing, ensuring the algorithm thoroughly
explores promising regions. Selection carefully chooses the fittest so-
lutions from the population to guide the search towards the most
promising areas. This iterative process of exploration, exploitation,
and selection continues until a predefined stopping criterion is met,
which could be a maximum number of iterations, a time limit, or the
achievement of a desired level of convergence. Mathematically, the
COA’s solution update mechanism can be expressed as:

𝑌𝑡+1 = 𝑌𝑡 + 𝛾(𝑌𝑡 − 𝑌𝑜𝑝𝑡) + 𝛿(𝑌𝑡 − 𝑌𝑟𝑎𝑛𝑑 ) (22)

where 𝑌𝑡 represents the current population of solutions, 𝑌𝑡+1 is the up-
dated population, 𝑌𝑜𝑝𝑡 denotes the best solution discovered so far, 𝑌𝑟𝑎𝑛𝑑
is a randomly selected solution, and the parameters 𝛾 and 𝛿 control the
balance between exploration and exploitation. The COA’s strengths lie
in its robustness, low computational complexity, efficient information
sharing among solutions, and rapid convergence [40]. These charac-
teristics make it well-suited for optimizing the hyperparameters of the
proposed model, as detailed in the following section.
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Fig. 6. Flowchart of the proposed methodology for MG operation scheduling.
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3.5. Applying COA to the ESS scheduling

ESSs help reduce MG operational costs by storing excess energy
during low demand or when RESs produce more electricity. A lower
charging/discharging rate may increase reliance on grid power during
eak demand, raising operational costs. Conversely, reducing these
ates decreases the usage of ESSs, and consequently the degradation
ost of the ESSs. However, increasing the charging and discharging
ates, while reducing the total operational cost of the MG, raises the

degradation cost of the ESSs. Therefore, finding the optimal values
of charging and discharging rates is crucial to minimizing both the
total cost of MG operation and ESS degradation. In this paper, COA
is employed to optimize these rates by determining the optimal values
of K1, and K2 expressed in Eqs. (23) to (26). These values are selected
by the COA to effectively regulate the charging and discharging rates
of the ESS, achieving a balance between operational efficiency and
ongevity of the ESS.
∑

𝑡,𝑖
𝑃 ch

ess(𝑡, 𝑖) ≤ 𝐾1𝑃
ch_max
ess (23)

∑

𝑡,𝑖
𝑃 dis

ess (𝑡, 𝑖) ≤ 𝐾2𝑃
dis_max
ess (24)

0.2 ≤ 𝐾1 ≤ 1 (25)

0.2 ≤ 𝐾2 ≤ 1 (26)

The detailed procedure of the proposed methodology is depicted
n the flowchart illustrated in Fig. 6. Initially, the input data enters

the MCS block, generating diverse scenarios essential for the subse-
quent agricultural MG scheduling. Then, operational costs are com-
puted alongside the SOC values of the BESS. Subsequently, the C-rate
and DOD are calculated from the SOC. The resulting SOC, DOD, C-rate
values, and temperature data are then fed into the XGBoost module,
facilitating the calculation of battery RUL and degradation rate that is
used to obtain the battery degradation cost. Afterward, the total costs,
comprising the operational cost of the MG and the battery degradation

cost, are aggregated. If the stop criteria are not satisfied, the COA will

8 
adjust 𝐾1 and 𝐾2 and the power scheduling of the MG coefficients to
achieve an optimal total cost, ensuring a feasible operating schedule
and optimal performance.

4. Case study and numerical results

In this section, different case studies are investigated to assess
the performance of the proposed methodology. The agricultural MG
structure is according to Fig. 1. As described in Section 3.3, scenarios
are generated using MCS to account for the uncertainties in RES and the
fluctuations in electricity prices and load demand. The data utilized for
the agricultural MG is sourced from real-world datasets [41] specific to
Ankara, Turkey, ensuring the relevance and applicability of the model
to practical scenarios. The proposed methodology is modeled in the
ython environment (V3.9) on a personal computer. The first case study
xamines the presence of power exchange between the agricultural MG
nd the upstream grid, by considering two scenarios: one incorporating
attery degradation cost and the other without. In the second case,
o power exchange is considered between the agricultural MG and
he main grid, representing the islanded mode of operation, while
onsidering battery degradation cost to evaluate the charging and
ischarging patterns of the BESS and its associated costs. Finally, the
hird case investigates the volatility of RES available power, electricity
rice, and load demand using scenarios generated by MCS to conduct a
omprehensive sensitivity analysis. These case studies are summarized
s follows:

• Case 1: Grid-connected mode with and without considering bat-
tery degradation.

• Case 2: Island mode with and without considering battery degra-
dation.

• Case 3: Sensitivity Analysis

4.1. Numerical results of case 1

In this case, the agricultural MG can exchange power with the main
grid. Consequently, the MG engages in both selling and buying power
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Fig. 7. SOC (a), C-rate (b), DOD (c), and degradation rate obtained from XGBoost model (d).
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transactions. It procures additional power from the grid to meet its load
requirements (buying) and sells excess generated power back to the
grid when its generation exceeds local demand. Fig. 7-(a) illustrates
the SOC resulting from solving the agricultural MG scheduling problem.
ubsequently, the C-rate 7-(b) and DOD 7-(c) are derived from the SOC,
nabling the XGBoost model to calculate the hourly degradation rate

7-(d) for each discharge value of ESS. Table 1 and Fig. 8 represent the
power generation and consumption patterns, as well as the resulting
total cost, including degradation cost, alongside the operation cost for
the agricultural MG. From the table, it is observed that three distinct
sets of values derived by the COA for parameters K1 and K2: the upper
bound (K1 = K2 = 1, case1.1), the lower bound (K1 = K2 = 0.2,
case1.3), and the optimal values (K1 = 0.205, K2 = 0.5 as case1.2). The
pper bound values suggest that the agriculture MG operator adopts
he conventional MG operation management strategy without taking
nto account battery degradation. This is evidenced by the discharge of
tored energy by the BESS to meet demand at hour 21:00, as illustrated
n the figure. Conversely, with lower bound K values, the agricultural
G operator adopts a conservative approach, resulting in the discharge

f stored energy over 6 h, from hour 18:00 to hour 23:00, which
corresponds to higher degradation rates during each cycle.

According to Table 1, in Case 1.1, the operation cost is the low-
st among the three cases, amounting to 69.54 Lira. However, the
egradation cost is the highest, totaling 52.61 Lira. The combination
f these costs results in a total daily cost of 122.15 Lira. Although this
ase minimizes operation costs, but it suffers from a high degradation
ost. Case 1.2 demonstrates a balanced approach by utilizing a mix
f grid electricity and battery power. While the total operation cost
69.73 Lira) is slightly higher than Case 1.1, the significant reduction
n the total degradation cost (29.01 Lira) results in the lowest overall
ost (98.74 Lira) among all three grid-connected scenarios. This high-
ights the importance of strategically balancing operational costs with
attery degradation for long-term cost optimization. In this scenario,
he increase in operation costs is smaller than the reduction in battery
egradation costs, making this the most cost-effective configuration in
he grid-connected MG scenario.

Case 1.3 prioritizes the battery utilization over the grid electricity.
This leads to the highest total operation cost (71.32 Lira) among the
grid-connected cases due to the reliance on more grid electricity power.
While it yields the lowest degradation cost (29.01 Lira), the high oper-
ation cost results in a higher overall cost (136.23 Lira) than Case 1.2.
This emphasizes that excessive reliance on batteries, even with lower
degradation, can be economically unfavorable. While operation costs
are reduced in this case, the significant increase in degradation costs
far outweighs the savings. This highlights the importance of balancing
both operation and degradation costs to avoid scenarios where reduced
operational expenses lead to higher long-term maintenance costs.
9 
Table 1
Comparison of daily cost values for the grid-connected agricultural MG under different
scenarios.

Case K1 K2 Total operation Total degradation Total
number cost (Lira) cost (Lira) cost (Lira)

Case 1.1 1 1 69.54 52.61 122.15
Case 1.2 0.205 0.5 69.73 29.01 98.74
Case 1.3 0.2 0.2 71.32 64.91 136.23

Table 2
Comparison of daily cost values for the islanded agricultural MG under different
scenarios, by considering BESSs degradation costs.

Case K1 K2 Total operation Total degradation Total
number cost (Lira) cost (Lira) cost (Lira)

Case 2.1 1 1 87.44 36.81 124.25
Case 2.2 0.27 0.73 90.19 17.46 107.65
Case 2.3 0.2 0.2 90.81 29.71 120.52

The corresponding degradation costs for Case 1.1 and Case 1.3 are
52.6 and 64.9 Lira, respectively. Moreover, the total costs associated
with these approaches are 122.05 Lira and 136.25 Lira, respectively.
In contrast, for the optimal values found by COA marked as Case 1.2
(K1 = 0.205 and K2 = 0.5), the stored energy of the BESS is discharged
over 3 h, contributing to a 55.30% reduction in degradation costs and a
27.51% reduction in the total cost compared to Case 1.3. Furthermore,
in Case 1.2, the BESS was charged in various steps with lower amounts
of energy during the power generation of PV and WT according to their
availability. Hence, incorporating the proposed battery degradation
modeling into the agricultural MG scheduling has led to a reduction
n the total cost.

4.2. Numerical results of case 2

In this case, the agricultural MG operates in the islanded mode,
meaning there is no power exchange with the main grid. Residential
oads, ETs, and WPs are primarily powered by RES and CGs. Similar to
he previous case, the COA has been utilized to optimize the generation,
onsumption, and charging/discharging patterns of BESS units while
onsidering the battery degradation costs. According to Table 2, Case

2.1 prioritizes a specific energy source- a CG in this islanded context-
resulting in a moderate operation cost (87.44 Lira) and the highest
degradation cost (36.81 Lira). This highlights that relying heavily
on a single source, even in an islanded system, can lead to higher
egradation costs. The operation cost is higher compared to the grid-

connected case, reaching 87.44 Lira. The degradation cost is 36.81 Lira,
leading to a total daily cost of 124.25 Lira. The islanded MG experiences
higher operation costs compared to the grid-connected scenario, and
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Fig. 8. Power generation and consumption for different cases (Case 1.1 (a and b), Case 1.2 (c and d), and Case 1.3 (e and f)).
s

the degradation cost is moderate. In addition, Case 2.2 represents a
alanced energy strategy within the islanded system, utilizing a mix of

battery power and other generation sources. It achieves the lowest total
cost (107.65 Lira) by effectively balancing a slightly higher operation
cost (90.19 Lira) with a significantly reduced degradation cost (17.46
Lira). Similar to Case 1.2, COA has found optimal values for K1 and

2, which achieves the most cost-effective balance by prioritizing the
reduction of degradation costs. The slight increase in operation cost is
outweighed by the substantial decrease in degradation costs, making
his the optimal configuration for the islanded MG.

Ultimately, Case 2.3 prioritizes battery utilization, leading to the
highest operational cost (90.81 Lira) due to the reliance on the po-
tentially more expensive battery operation in the absence of a grid
connection. However, it also achieves the lowest degradation cost
(29.71 Lira) due to minimal cycling. While beneficial for battery health,
he high operation cost results in a higher total cost (120.52 Lira) than
ase 2.2. Although this case reduces the degradation cost compared to
he baseline case (Case 2.1), it is not as effective as Case 2.2. The total
aily cost is still higher than the optimal solution, illustrating that a
ore balanced approach, as seen in Case 2.2, is necessary to minimize

oth operation and degradation costs effectively.
As depicted in Fig. 9, the optimal values of 𝑘1 and 𝑘2 found by COA,

Case 2.2, result in a significant reduction of 41.2% in degradation cost
and 10.6% reduction in the total cost compared to case with lower
bounds of 𝑘1 and 𝑘2. In this optimal scenario, the power generated
by the CGs is minimized because the discharge pattern of the BESS
effectively meets the agricultural MG’s load demand in the islanded
mode. Specifically, at hour 23:00, a significant portion of the demand
is met by the discharge power of the BESS, rather than relying on the
CG. In Case 2.1 and Case 2.3, the total costs of the agricultural MG are
124.25 Lira and 120.52 Lira, respectively. Similarly, when considering
the lower bounds of K, Case 2.3, a more conservative approach from the
 t

10 
Table 3
Comparing cost values for islanded model in the different cases with degradation and
Sell power.

Scenario K1 K2 Total operation Total degradation Total
number cost (Lira) cost (Lira) cost (Lira)

Baseline 0.205 0.5 69.73 29.01 98.74
SC-1 0.42 0.56 64.12 38.12 102.24
SC-2 0.29 0.41 66.14 44.99 111.13
SC-3 0.2 0.55 71.67 27.94 99.63
SC-4 0.24 0.35 58.22 46.65 104.87
SC-5 0.73 0.55 64.55 77.52 142.07
SC-6 0.48 0.45 61.53 45.77 107.30
SC-7 0.2 0.55 75.68 39.17 114.15
SC-8 0.3 0.66 70.76 31.60 102.36
SC-9 0.2 0.55 61.52 19.77 81.32
SC-10 0.35 0.48 71.49 49.58 117.07

agricultural MG operator is observed. This is evident in the increased
utilization of the CG compared to the BESS. As anticipated, the overall
costs including both operational and degradation costs increase during
the islanded mode of operation. This is attributed to the increased
utilization of CGs and BESS energy to fulfill the energy demands of the
agricultural MG.

4.3. Sensitivity analysis

In this subsection, scenarios generated by the MCS approach will
be deployed to evaluate the robustness of the proposed methodology
across different levels of RES penetration, as well as fluctuations in
electricity prices and load demand. It is assumed that there is a power
exchange between the agricultural MG and the grid. In Fig. 5, the
cenarios generated through the MCS approach are observed which are
hen integrated into the optimization framework. For each scenario, the
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Fig. 9. Power generation and consumption for different cases (Case 2.1 (a and b), Case 2.2 (c and d), and Case 2.3 (e and f)).
Fig. 10. Power generation and consumption for SC-9 (a and b), and SC-5 (c and d).
B

resulting operation cost, degradation cost, and total cost of the agri-
cultural MG are recorded. Notably, the COA seeks to identify optimal
values for 𝑘1 and 𝑘2 in each scenario. Table 3 presents the outcomes
for each scenario, with SC-5 and SC-9 emerging as the worst and best
cases, respectively. SC-9 is characterized by high renewable power
availability, stable electricity prices, and load fluctuations, resulting
in the lowest total cost of 81.32 Lira. Conversely, SC-5 exhibits lower
11 
RES outputs and increased fluctuations, resulting in a lower outcome.
Fig. 10 further depicts the power generation and consumption patterns
in SC-9 and SC-5, highlighting the discharge of stored energy of the

ESS during peak daytime hours. This sensitivity analysis underscores
the robustness of our proposed methodology, offering valuable insights
for operators in navigating between different operating conditions and
EM strategies.
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4.4. Discussion and future work

The presented results demonstrate the effectiveness of integrat-
ng battery degradation modeling into the scheduling optimization
f agricultural MGs. The COA successfully identified optimal opera-

tional strategies,for both grid-connected and islanded scenarios, leading
to significant cost reductions. In the grid-connected mode, the opti-
mization considered energy arbitrage with the main grid and battery
degradation. Case 1.1, reflecting a conventional approach with no
egradation awareness (K1 = K2 = 1), resulted in the lowest opera-

tional cost but the highest degradation cost due to battery utilization.
Conversely, the conservative approach in Case 1.3 (K1 = K2 = 0.2)
minimized degradation but at the expense of high operational costs due
o increased reliance on the grid. The COA-determined optimal strategy
Case 1.2, K1 = 0.205, K2 = 0.5) effectively balanced these trade-
ffs. By strategically scheduling battery charging and discharging, it
chieved a 55.30% reduction in degradation cost and a 27.51% reduc-
ion in total cost compared to the conservative approach, highlighting
he economic benefits of incorporating degradation awareness. Operat-
ng in islanded mode, the MG relied on local generation, primarily from
ES and CGs. Similar to the grid-connected scenario, the COA identified
n optimal strategy (Case 2.2) that minimized overall cost by balancing
he utilization of CGs and the battery. This optimal strategy resulted
n a 41.2% reduction in degradation cost and a 10.6% reduction in
otal cost compared to the conservative Case 2.3, demonstrating the
lgorithm’s effectiveness even under constrained generation resources.
y strategically discharging the battery, particularly during peak de-
and periods, the reliance on CGs was minimized, reducing both fuel

xpenses.
Across both grid-connected and islanded modes, the results em-

phasize that while operational costs are important, degradation costs
play a crucial role in determining the long-term economic performance
of MGs. The optimized scheduling strategies identified through COA
demonstrate that by carefully managing BESS discharge patterns, sig-
nificant reductions in total cost can be achieved, even in scenarios with
high operational demands or limited generation resources. This study
underscores the critical importance of integrating battery degradation
awareness into the optimization of agricultural MG operations. Ignor-
ing degradation, as often seen in conventional approaches, leads to
higher long-term costs due to battery utilization. Conversely, overly
conservative strategies, while minimizing degradation, may result in
excessive reliance on expensive generation sources like CGs or grid
electricity. Our findings demonstrate the COA’s effectiveness in encoun-
tering this trade-off. By strategically scheduling battery usage based
on both operational and degradation costs, the COA achieved signif-
icant cost reductions in both grid-connected and islanded scenarios.
This highlights the potential of incorporating intelligent optimization
techniques and degradation-aware models for enhancing the economic
viability and sustainability of future MGs.

Future research could explore the impact of different battery tech-
ologies, charging and discharging policies, and degradation models on
ptimization outcomes, potentially leading to more refined and cost-
ffective solutions. Investigating alternative battery types, alongside
dvanced degradation models, may enhance battery life predictions.

Additionally, incorporating factors like electrode materials, which sig-
nificantly affect degradation rates, could be applied to improve model
accuracy and the optimization of EM systems, increasing the model’s
robustness in diverse MG applications.

5. Conclusion

This paper introduced an innovative approach to day-ahead opera-
tion scheduling of an agricultural MG, incorporating a data-driven bat-
tery degradation model. Utilizing real-world data from Ankara, Turkey,
the MCS was employed to explore various scenarios, including renew-

able power from PV and WT units, price volatility, and load demand
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fluctuations, assessing the methodology’s robustness in diverse opera-
ional conditions. An XGBoost model was developed to predict the RUL

of Li-ion batteries and calculate the degradation rates in each discharge
cycle. By integrating the predictive model into the scheduling frame-
work, insights were obtained on optimizing battery usage patterns to
minimize MG operating costs, while prolonging the operational lifespan
and mitigating the degradation effects of the Li-ion batteries. Three case
studies were conducted including the grid-connected and the islanded
MG operation together with a sensitivity analysis to account for the
uncertainty. In the grid-connected mode, our methodology yielded a
remarkable 55.30% reduction in the battery’s degradation cost and a
27.51% decrease in total expenses compared to the alternative methods
with 0.2 C charging/discharging rates. These results underscore the
effectiveness of the proposed approach in enhancing both economic
and operational performance. Similarly, in the island mode, significant
reductions of 41.23% in degradation cost and 10.67% in total cost were
observed with respect to the case using 0.2 C charging/discharging rate,
underlining the applicability of our methodology across different op-
erational modes. Furthermore, sensitivity analysis, conducted through
MCS, provided valuable insights for agricultural MG operators. This
analysis emphasized the robustness and adaptability of the proposed
methodology, highlighting its ability to navigate uncertainties inher-
ent in energy market dynamics and MG operations. In conclusion,
our findings not only demonstrate the substantial economic benefits
of incorporating battery degradation modeling into MG scheduling
but also underscore the importance of proactive management strate-
gies for sustainable and efficient energy utilization. Accordingly, our
proposed methodology offers a pathway towards achieving reliable,
cost-effective, and environmentally sustainable energy management
practices.
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