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Abstract 

We investigate alternative strategies against reference bias and postmortem dam-
age in low coverage paleogenomes. Compared to alignment to the linear reference 
genome, we show that masking known polymorphic sites and graph alignment 
effectively remove reference bias, but only starting from raw read files. We next study 
approaches to overcome postmortem damage: trimming, rescaling, and our newly 
developed algorithm, bamRefine (github.com/etkayapar/bamRefine and zenodo.org/
records/14234666), masking reads only at positions possibly affected by PMD. We pro-
pose graph alignment coupled with bamRefine as a simple strategy to minimize data 
loss and bias, and urge the community to publish FASTQ files.

Keywords:  Ancient DNA, Reference bias, Graph-reference genome, Post-mortem 
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Background
Ancient DNA (aDNA) has become today a major information source for studies of evo-
lution or the human past. However, paleogenomic data has its specific challenges, being 
characterized by short fragment lengths, post-mortem damage (PMD) in the form of 
transitions at the ends of DNA molecules, and a low abundance of endogenous DNA 
resulting in low-coverage genomes. Standard aDNA data processing pipelines of low-
coverage genomes typically involve (i) adapter trimming and merging of paired end 
reads, (ii) alignment of merged reads (fragments) to a linear reference genome, (iii) qual-
ity filtering of reads, (iv) modifications to the read data to avoid PMD confounding with 
true genetic variation, such as trimming or rescaling (or only using transversion poly-
morphisms), (v) genotyping or calculating genotype likelihoods at known polymorphic 
loci (as low coverage generally precludes de novo genotyping), (vi) pseudohaploidiza-
tion, i.e., randomly choosing one allele per variant site (a strategy to overcome biases 
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related to heterogeneous coverage among studied genomes). Hence, genotyping of 
ancient genomes with low coverage is susceptible to various biases and shortcomings 
that can eventually lead to inaccurate interpretations of genetic relationships, population 
history, or evolutionary processes. We will tackle two of such issues in this study: refer-
ence bias, and biased and/or low-efficiency genotyping in the face of PMD.

Mapping biases against DNA reads that diverge from a reference genome had been 
noted earlier [1], but the reference bias phenomenon in ancient genomes was first coined 
and explained by Günther and Nettelblad [2]. These authors described how read align-
ment to a linear reference genome with low-coverage and short read-based sequencing 
data can lead to a higher frequency of reference allele calls over alternative allele calls at 
heterozygous sites when a 1:1 ratio would be expected. Reference bias arises due to the 
read mapping quality score calculation: reads with mismatches receive lower scores than 
perfectly matched reads. Hence, non-reference allele-carrying reads tend to be either 
unmapped or assigned lower mapping quality scores than the reference allele-carrying 
reads, and thus removed when filtering reads by a minimal mapping quality score [2, 
3]. Consequently, reference allele-carrying reads are overrepresented in the aligned and 
filtered data.

Reference biases have been observed to impact population genetic and phylogenetic 
analyses of present-day taxa when evolutionarily distant linear reference genomes are 
used for alignment [4, 5]. Meanwhile, ancient DNA sequencing data is particularly 
prone to such bias, because when reads are short and/or have higher residual PMD, 
mismatches caused by alternative alleles can have a disproportionate impact on qual-
ity scores. The overrepresentation of reference allele-carrying reads may render ancient 
genome profiles more similar to the reference genome than they actually are. This effect 
can then lead to biased results in downstream inferences on phylogenetics, demographic 
history, or kinship.

Previous studies have suggested several methods to reduce reference bias in ancient 
DNA studies: (a) Statistically accounting for possible reference bias during variant call-
ing [6], which can be effective but only on relatively high-coverage genomes; (b) align-
ing reads to a modified version of the linear reference genome, e.g., by representing 
both alleles or a third allele at polymorphic sites [2, 7, 8]; (c) modifying ancient reads at 
SNP sites by converting them to ‘N’ [2]; (d) using a graph reference genome that repre-
sents variants in large genomic variation datasets such as the 1000 Genomes Project for 
humans [3].

A second challenge in paleogenome data pre-processing involves ensuring that PMD 
on molecules does not impact inferred genotypes. One correction strategy is experi-
mentally removing PMD after DNA extraction, most commonly using uracil-DNA gly-
cosylase (UDG) treatment [9]. The majority of researchers who use UDG employ the 
half-UDG protocol, which still leaves a slight excess of transitions at molecule ends [10]. 
PMD may also be accounted for using post-alignment in silico approaches. One solu-
tion involves limiting analyses to transversion polymorphism sites, where allele frequen-
cies will be largely unaffected by PMD [1] (only indirect effects are possible). However, 
using only transversions leads to the loss of approximately 60% of polymorphism data 
in humans and other mammals, as transition polymorphisms are about twice more 
numerous than transversions across the genome [11]. An alternative, and currently the 
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most prevalent method, is trimming, or masking the end of the reads in a BAM file. This 
involves changing bases at merged read (fragment) ends of a specific length to “N” and 
their quality to “!” (corresponding to zero in Phred + 33 encoding), e.g., using the tool 
trimBAM  [12].

When trimming, most researchers remove 2–5 bases at read termini of half-UDG-
treated libraries, or 8–10 bases of non-UDG-treated libraries [13–22]. This trimming 
process also leads to data loss, especially for the latter type of libraries. For instance, 
in a non-UDG-treated and paired-end library, 10  bp are masked from both ends 
(2 × 10 = 20 bp in total) per standard 60 bp aDNA read, which means c.30% data loss. 
Other methods, such as mapDamage  [23] and ATLAS [24], have attempted to reduce 
the effect of PMD by rescaling the base quality of possible PMD-driven misincorpora-
tions, but such approaches are potentially problematic as they could alter genotype fre-
quencies, which has not yet been systematically investigated. Yet an alternative approach 
could be masking only PMD-sensitive regions on merged read ends, thus retaining more 
genetic information and enabling more comprehensive analysis of low-coverage ancient 
genomes.

We note that imputation using reference panels is another strategy increasingly 
being adopted in paleogenomics and can allow effective diploid genotyping in ancient 
genomes, including the removal of reference genome bias and PMD [25, 26]. However, 
accurate imputation requires at least modest coverage (e.g., > 0.25 × for Eurasian human 
shotgun genomes) and is thus not available to many poorly covered samples.

In this work, we study solutions to reduce the effect of reference bias and PMD on low-
coverage genomes. We first investigate the degree of reference bias using linear mapping, 
mapping to a masked genome, and using a graph genome on simulated as well as empiri-
cal paleogenomic data of various types. We then study genotyping efficiency under PMD 
using standard trimming, rescaling base qualities with mapDamage or ATLAS, or mask-
ing merged read (fragment) ends that overlap with genomic positions that are sensitive 
to PMD-related false positive variant calls using our new algorithm, bamRefine. Our 
results show that using alternative reference genomes (either graph aligned or masked) 
together with bamRefine is a practical solution that results in accurate genotypes and 
reduces data loss. We also note the potential of the ATLAS tool for high accuracy, which 
is currently hindered by its low speed and difficult implementation.

Results
Simulated genomes: mapping to masked or graph genomes mitigates reference bias

We first simulated ancient human-like sequencing data to gauge reference bias under 
various alignment strategies. We used the human chromosome 1 (version hs37d5) ref-
erence sequence and 77,841 heterozygous sites chosen from a bi-allelic SNP set from 
the Turkish Genome Project dataset [27] (see Additional file 2: Table S1A-B). We cre-
ated aDNA-like double-stranded genomes with the gargammel tool [28] such that reads 
would carry either allele at heterozygous sites with equal probability. We produced five 
such datasets with coverages from 0.05X to 10X with PMD damage with medium dam-
age (35% at 5’C). We additionally generated a double-stranded genome with high dam-
age (51% at 5’C), one with low damage (17% at 5’C), a half-UDG-treated library, and a 
single-stranded library with 10X coverage and with medium damage (35% at 5’C), where 
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damage extends into the center of the fragment (Additional file  1: Fig. S1, Additional 
file  2: Table  S1A). We then aligned this data to reference genomes using three differ-
ent strategies (see Methods for details): (i) the “LINEAR” strategy, which is the standard 
procedure of mapping to a linear reference genome using bwa aln with “-l 16,500 -n 0.01 
-o 2”; (ii) the “MASKED” strategy, where, before alignment with bwa aln, we masked 
the linear reference genome sequence at variable positions to be genotyped by convert-
ing those bases to “N”; and (iii) the “GRAPH” strategy, where we used a graph refer-
ence genome (SBG.Graph.B37.V6.rc6.vcf.gz) representing both reference and alternative 
alleles at known polymorphic sites and used GRAF aligner for mapping [29]. We then 
randomly called pseudohaploid genotypes (a single allele sampled per diploid genotype) 
at the 77,841 heterozygous sites and calculated the alternative allele proportion. Because 
pseudohaploidization involves random sampling, we repeated these last steps 100 times 
to obtain point estimates.

In the absence of reference bias, we expect ~ 50% of pseudohaploid genotypes at het-
erozygous positions to represent the alternative allele. However, using the “LINEAR” 
strategy, we observed consistently lower match rates to the alternative allele across all 
coverages, i.e., reference bias (48.2–50.4%; on average ~ 1% lower than expected; bino-
mial test p < 0.0001) (Fig. 1A, Additional file 3: Table S2A). This may appear small, but 
can lead to significant biases in demographic analyses, such as f4 tests (see below), and 
create false positive results especially when studying closely related populations. We also 
note that the bias was slightly alleviated using MAPQ > 25 as mapping quality filter for 
“LINEAR” mapped reads (Fig. 1D,Additional file 1: Fig. S2).

Using the “MASKED” or “GRAPH” strategies, the total number of reads mapped and 
those passing the MAPQ > 30 were comparable to those using “LINEAR” (Additional 
file 1: Fig. S3). But in contrast to the “LINEAR” approach, we observed either slight or no 
bias towards either allele: the average fraction of alternative alleles was 50–50.3% with 
the former and 49.8–50% with the latter (Fig. 1A, Additional file 1: Fig. S4, Additional 
file 3: Table S2A). While alternative allele-carrying reads with more mismatches and of 
short length tended to be filtered out using “LINEAR,” while trend was weaker using 
the “MASKED” strategy and absent using “GRAPH” (Additional file 1: Fig. S3). Over-
all, the deviations from 50% using “MASKED” or “GRAPH” were systematically lower 
than using the “LINEAR” strategy (Mann–Whitney U test p < 0.0001; Fig. 1A, Additional 
file 1: Fig. S5).

Published ancient genomes: reference bias mitigated using FASTQ files but not using 

filtered BAM files

We next studied reference bias in empirical paleogenomic data. For this, we started by 
collecting ten published genomes for which we could obtain raw data as FASTQ files 
[30–37] (Additional file 2: Table S1C). This was a random sample representing libraries 
derived from diverse geographic regions, of single- or double-stranded type, produced 
with or without UDG-treatment, shotgun-sequenced, whole-genome captured or 1240K 
SNP-enriched genomes had variable coverages, and originated from different laborato-
ries (Additional file 2: Table S1C).

We first defined heterozygous sites for each ancient genome as those with 25–75% of 
reads representing the alternative allele, covered at least by 10X depth and no greater 
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Fig. 1  Comparing reference bias under three different alignment strategies A using simulated aDNA-like 
genomes (see Additional file 4: Table S3A), B shotgun and 1240 K capture ancient genomes with available 
raw FASTQ files, and using published C shotgun and 1240 K capture ancient genomes with already processed 
BAM files. The plot shows the proportion of alternative alleles after randomly selecting one allele from 
heterozygote sites 100 times (panel A: 77,841 sites; panel B: 4658–422,046 sites; panel C: 2934–543,495) (see 
Additional file 4: Table S3B). The BAM files available without strict filtering (i.e., which included reads with 
MAPQ < 30) are shown in bold in panel C (Additional file 2: Table S1Cand Additional file 1: Fig. S7). We used 
reads with MAPQ > 30 for genotyping. For results using MAPQ > 25, see Additional file 1: Fig. S2. D Reference 
bias in simulated and published ancient genomes aligned with the “LINEAR” strategy and applying MAPQ > 30 
(left axis) and MAPQ > 25 (right axis). The difference is significant in a Wilcoxon signed rank test (p < 0.001). In 
these comparisons, we did not apply any PMD-correction
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than two times the genome mean coverage (Methods, Additional file 2: Table S1C). We 
mapped reads using the three strategies and randomly sampled reads 100 times at these 
presumed heterozygous sites. We found widespread reference bias among libraries using 
the “LINEAR” strategy, with the fraction of alternative alleles ranging between 46.4 
and 49.9% for shotgun genomes (binomial test p < 0.0001) and 49.2–49.7% for 1240K 
enriched genomes (binomial test p < 0.0001) (Fig. 1B, Additional file 3: Table S2B). Con-
sistent with the simulation results, the fraction of alternative alleles was ~ 50% when 
using either the “MASKED” (49.8–51.1% for shotgun genomes and 49.4–49.9% for 
1240  K enriched genomes) or “GRAPH” strategies (49.4–50.4% for shotgun genomes 
and 49.4–50% for 1240K enriched genomes) (Mann–Whitney U test p < 0.0001; Fig. 1B, 
Additional file  3: TableS2B). However, we also noted slight differences between these 
two approaches: two genomes (mfo001, GOR001) processed using the “GRAPH” strat-
egy still exhibited a bias against the alternative allele (~ 49.5%). The two other genomes 
(Bon002 and Saqqaq) processed using “MASKED” exhibited a weak but significant 
bias (~ 51%) towards the alternative allele (p < 0.0001), which was reduced when using 
MAPQ > 25 as mapping quality filter (Additional file  1: Fig. S2). Meanwhile, the three 
1240K capture libraries available as FASTQ files also showed reference bias with “LIN-
EAR” but little improvement using “MASKED” and “GRAPH.” Still, because these were 
relatively lower coverage than shotgun data and showed high variation, it was more 
difficult to assess the performance of the three strategies on the 1240K data. Overall, 
although we lack an explanation for some of these inter-library variability patterns, we 
conclude that “MASKED” or “GRAPH” approaches both reduce the impact of refer-
ence bias on called ancient genotypes (Fig. 1B,Additional file 1:Fig.S6A, Additional file 3: 
Table S2B).

The majority of paleogenomes over the last decade have been published as processed 
BAM files rather than raw FASTQ files, where the former could be subject to irreversible 
reference bias introduced by mapping parameters as well as mapping quality filtering. 
To investigate this, we collected 11 additional paleogenomes available as BAM files [38–
45] (Additional file 2: Table S1C). These included six shotgun-generated and five 1240K 
SNP-enriched genomes. Among the shotgun-generated genomes, the Ust-Ishim, LBK, 
and Loschbour BAM files were published without strict filtering (i.e., included reads 
with MAPQ < 30), while the rest had been quality filtered (all reads with MAPQ > 30). 
None of the 1240K SNP-enriched genomes had been subjected to strict filtering (Addi-
tional file 1: Fig. S7, Additional file 2: Table S1C).

We again remapped the reads and called pseudo-haploid genotypes using the three 
strategies. This revealed persistent reference bias for three shotgun-generated BAM files 
subjected to strict filtering, irrespective of the alignment strategy used (Fig. 1C, Addi-
tional file 1: Fig. S6B). In contrast, both the “MASKED” and “GRAPH” strategies signifi-
cantly reduced reference bias in Ust-Ishim, LBK, and Loschbour, which were unfiltered 
(Fig. 1C, Additional file 1: Fig. S7, Additional file 2: Table S1C). This confirms the expec-
tation that quality filtering of BAM files introduces irreversible reference bias.

Meanwhile, all five 1240K SNP-enriched BAM data showed the same level of reference 
bias irrespective of the alignment strategy used (the alternative allele on average ~ 0.7% 
lower than expected) (Fig.  1C, Additional file  1: Fig. S6, Additional file  3: Table  S2B). 
Such bias appears independent of the mapping/filtering process and is likely attributable 
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to 1240K SNP capture favoring one allele over another at targeted SNPs, as reported 
recently [46, 47].

Trimming, rescaling, and refining as alternative PMD‑correction approaches

We further investigated the performance of several approaches for PMD-correction on 
called genotypes: (A) trimming, i.e., the standard 2 or 10 bp masking of aligned reads 
using trimBam, (B) rescaling, which involves rescaling base qualities using mapDam-
age2  [23] or ATLAS  [24], and (C) refining, i.e., masking bases at the merged read (frag-
ment) ends that overlap with variants sensitive to PMD-related genotyping errors using 
the new software we present here, bamRefine.

Our bamRefine algorithm was designed as a simple and fast alternative to rescaling 
and a more accurate alternative to trimming. It masks a user-defined number of bases 
from the 5′ end (similar to trimming) only if they overlap with variants that include a 
“C” allele, to prevent C- > T false-positives. In double-stranded libraries, it can also mask 
a user-defined number of bases from the 3’ end only if they overlap with variants that 
include a “G” allele, to prevent G- > A false-positives. This approach also avoids biased 
genotyping due to PMD-induced C/G loss at transversion sites (e.g., C’s being under-
represented at a C/A variant site due to PMD-induced C- > T transitions). bamRefine 
further avoids comprehensive data loss compared with using trimBam, as the latter 
involves masking extended regions at merged read ends for non-UDG-treated libraries 
(Methods).

We used the same simulation scheme using chromosome 1 polymorphisms as above, 
with the difference that here, along with the 77,841 heterozygous positions described 
earlier, we also genotyped 182,515 homozygous reference and 53,391 homozygous alter-
native positions, totalling 313,747 SNPs (Additional file  2: Table  S1B). We generated 
aDNA-like read data at 10X coverage using gargammel [28], aligned these using either 
of the three mapping strategies (“LINEAR,” “MASKED,” and “GRAPH”) and applied 
either of the four PMD-correction approaches: trimming using trimBam, rescaling with 
mapDamage2 or ATLAS, and using bamRefine. We then called diploid genotypes at the 
313,747 SNPs using GATK HaplotypeCaller  [48] for trimBam, mapDamage2 and bam-
Refine, and using the maximum likelihood method for genotype calling implemented in 
ATLAS  [24] (see Methods). We then examined the missingness and error rates on these 
calls, comparing the four PMD-correction approaches with no PMD correction. This 
baseline is more appropriate than using transversions only, as most error derives from 
transitions.

Trimming causes data loss, mapDamage2 creates reference bias, and ATLAS has impractical 

run times

Irrespective of the mapping approach, trimming with trimBam exhibited the high-
est missingness (0.48–0.95%), followed by bamRefine (0.38–0.86%) and mapDam-
age2 (0.26–0.64%), with the lowest rates attained by ATLAS (0.23–0.58%) (Fig.  2A, 
Additional file 1: Fig. S8). Trimming also showed the highest overall error rate among 
the four methods (2.42–2.48%) (Fig.  2A, Additional file  4: Table  S3A). The bulk of 
these errors were caused by misassigning heterozygous sites as homozygous refer-
ence or homozygous alternative, due to sampling error (i.e., insufficient data to call 
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heterozygous sites) (Fig. 2B, Additional file 1: Fig. S9). bamRefine and mapDamage2 
had slightly lower error rates (2.07–2.15% and 2.14–2.31% respectively), while ATLAS 
had the lowest errors (0.73–0.87%). These error rates were higher (~ 7%, 6%, 5%, and 
4% respectively) when repeating the analysis with 5X coverage data (Additional file 1: 
Fig. S10); this is expected as lower coverage elevates sampling error.

Despite the lower overall error rate and missingness using mapDamage2, closer 
inspection revealed that this approach suffers from significant reference bias. The 
majority of errors observed with mapDamage2 were caused by favoring the reference 
allele in genotype calls during PMD-correction (Mann–Whitney U test p < 0.0001; 
Additional file  1:Fig.S11), leading to an overestimation of homozygous reference 
alleles and underestimation of homozygous alternative alleles (Fig.  2). In contrast, 
trimBam and bamRefine label genotypes incorrectly as homozygous reference or 
homozygous alternative at similar rates, and ATLAS introduces only subtle biases 
(Additional file 1: Figs.S12-20). The marked underestimation of alternative allele pro-
portions in mapDamage2 output (~ 47%) could also be observed when calling pseu-
dohaploid genotypes at the 77,841 heterozygous sites (Fig.  3). mapDamage2 bias 
persisted whichever alignment strategy was employed and it mostly involved transi-
tion sites (Additional file 1: Figs.S21-22).

Our results indicate ATLAS as having the highest performance with respect to min-
imal missing or wrong genotypes. Unfortunately, implementing the current ATLAS 
version is constrained by a number of practical issues: (a) Each sequencing library 
has to be individually calibrated. If a sample’s libraries are not individually tagged 
with reading groups (RGs) but published jointly, as is usually the case [49], properly 
running ATLAS may not be possible. (b) ATLAS has an order of magnitude higher 
running times than the other tools tested. For example, it required 287  min, com-
pared to only 21 min using bamRefine on the simulated 10X genome. (c) ATLAS also 

Fig. 2  Genotyping error under different PMD-correction approaches and mapping strategies. In both 
panels, the left side shows different PMD-correction approaches and the right side shows different mapping 
strategies. A Proportion of genotyping errors and missingness and B the frequency of the type of genotyping 
errors for each PMD-correction method for double-stranded 10X coverage simulated genomes with medium 
damage (35% at 5’C), calculated by comparing diploid calls with true genotypes. See also Additional file 1: 
Figs.S8-9 for simulations of libraries with different levels/patterns of PMD (half-UDG, high-level PMD, low-level 
PMD) as well as a simulated single-stranded library. See Additional file 1: Figs.S12-20 for distributions of 
different types of genotyping error
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has much heavier memory requirements compared to its alternatives. For instance, 
the published library GOR001 used more than 900 GB memory for recalibration and 
terminated with error, whereas memory requirements are minimal for tools such 
as trimBam or bamRefine. Under these circumstances, creating large datasets with 
ATLAS by combining published data from various different sources may be pro-
hibitively difficult, despite the tool’s high accuracy. For this same reason, we did not 
attempt to apply ATLAS on empirical data.

“GRAPH” or “MASKING” alignment followed by bamRefine is a practical solution 

against reference bias and PMD

We next investigated genotype accuracies among the five PMD-correction methods 
using the 10X simulated dataset. For this, we calculated the concordance rate (CR), 
the proportion of false negatives, the proportion of false positives, the non-reference 
true positive rate (NTPR), as well as recall (or sensitivity) and the F-score (Fig.  4), 
with the alternative allele as our pivot [50] (Additional file 1: Fig. S24).

This revealed a number of patterns. (a) Rescaling with ATLAS gives the best results for 
all eight statistics, including a much higher concordance as well as F-score (0.99) than all 
other three methods (< 0.975). Interestingly, ATLAS appeared to perform best using the 
“LINEAR” alignment and worst using “GRAPH.” (b) trimBam, which involves aggressive 
masking 10 bp at read ends, leads to significant data loss (Additional file 1: Fig. S25) and 
the lowest F-scores (Fig. 4). (c) Overall, bamRefine and mapDamage2 had similar overall 
performances; bamRefine had better recall but worse precision (Fig. 4).

The strong reference bias in mapDamage2 (Fig. 3, Additional file 1: Figs. S11 and S13) 
renders it the least useful among the tested methods in our view. trimBam causes high 
data loss, while ATLAS has superb accuracy but is constrained by difficult and slow 
implementation. Overall, bamRefine combined with “GRAPH” alignment emerges as a 
highly practical approach, clean of bias and with decent F-scores (Figs. 3 and 4).

Fig. 3  Comparing reference bias in simulated ancient genomes with medium damage (35% at 5’C) aligned 
with different reference genomes and PMD-effects reduced with different approaches. The plot shows the 
proportion of alternative alleles after randomly selecting one allele from heterozygote sites 100 times (see 
also Additional file 1: Figs. S21-22). We used reads with MAPQ > 30 for genotyping. To compare results with 
MAPQ > 25, see Additional file 1: Fig. S23
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Finally, we applied the trimBam and bamRefine to the 21 published ancient genomes 
described earlier (Additional file 2: Table S1C, Additional file 1: Figs. 27–28). We did not 
use ATLAS for its difficulty in practical implementation and also did not use mapDam-
age2 because of the strong bias it created. Consistent with the simulation results, when 
using shotgun FASTQ files (Fig.  5, Additional file  1: Fig. S29) and/or unfiltered BAM 
files (Additional file 1: Figs. S30-31) and mapping using the “GRAPH” or “MASKING” 
strategies, neither trimBam nor bamRefine led to reference bias (49.6–50.9% proportion 
of alternative allele) (Fig. 5, Additional file 1: Fig. S32, Additional file 3: Table S2B). The 
two tools had comparable error rates (Additional file 1: Figs. S32-33), while trimBam led 
up to 2% more data loss (as measured by the number of genotyped SNPs) than bamRe-
fine (Additional file 4: Table S3B).

The impact of reference bias on measures of allele sharing

The overrepresentation of reference alleles in simulated and empirical aDNA libraries 
appeared modest, usually about 1%. However, such genome-wide bias could readily lead 
to statistically significant asymmetries in analyses such as f4-statistics. To test this, we 
studied f4-statistics of the form f4(Chimpanzee, Human Reference Genome; Ind1_Map-
pingStrategy1, Ind1_MappingStrategy2). We found that the Human Reference Genome 
significantly shared more alleles with data processed using the “LINEAR” strategy 
(|Z|> 3) than using the “MASKED” and “GRAPH” strategies. This suggests that both 
“MASKED” and “GRAPH” strategies largely mitigate the reference bias that arises with 
the “LINEAR” strategy (Fig. 6A).

We further found that in 71% of comparisons, the Human Reference Genome shares 
more alleles with data processed using the “MASKED” strategy than the “GRAPH” 

Fig. 4  PMD-correction performances of mapDamage2, ATLAS, snpAD, trimBam, and bamRefine on 10X 
simulated ancient genomes with medium damage (35% at 5’C), calculated by comparing diploid calls with 
true genotypes (Additional file 1: Fig. S24). “NTPR” stands for non-reference true positive rate, “FN” for false 
negatives, “FP” for false positives. We used reads with MAPQ > 30 for genotyping. To compare results with 
MAPQ > 25, see Additional file 1: Fig. S26
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strategy. This indicates that “GRAPH” is more effective in reducing reference bias, con-
sistent with our earlier results (Fig. 6B).

Finally, we also compared if either trimBam or bamRefine showed additional bias in 
form f4(Chimpanzee, Human Reference Genome; Ind1_MappingStrategy1_TRIMMING, 
Ind1_MappingStrategy1_REFINING) for three mapping strategies. All results were non-
significant (|Z|< 3) (Fig. 6C).

Discussion and conclusion
Our results confirm a strong reference bias in ancient genomes that emerges when 
using linear reference genome alignment (“LINEAR”), which impacts downstream 
analyses such as f4 tests. We also find that alignment to either a masked linear ref-
erence genome (“MASKED”) or to a graph genome (“GRAPH”) effectively reduces 
reference bias. This observation is consistent with previous findings [2, 3, 7, 8] and 
supports the feasibility of implementing these strategies for more accurate aDNA 
analysis. Compared to “MASKED,” the “GRAPH” approach has higher F-scores 
when using trimBam or bamRefine and is also less affected by reference bias. These 

Fig. 5  Comparing reference bias in published ancient genomes that FASTQ file available aligned with 
different reference genomes and PMD-effects reduced with different approaches. The plot shows the 
proportion of alternative alleles after randomly selecting one allele from heterozygote sites 100 times. We 
used reads with MAPQ > 30 for genotyping. To compare results with MAPQ > 25, see Additional file 1: Fig. S29. 
(see also Additional file 1: Figs. S30-31)
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differences might be partly attributable to bwa converting “N” nucleotides (such as 
those created by masking) to one of four random bases before alignment. Such ran-
dom conversion will remove reference bias on average and would not impact popu-
lation genetic studies; however, it can lead to data loss, and also negatively impact 
studies of natural selection where accurate prediction of allele frequencies is critical. 
An alternative masking solution is to create two reference.fasta files that carry both 
alleles for alignment [e.g., [7]]. We further note that statistical correction of reference 
bias is also possible, as implemented in the software snpAD  [6], but this requires 
high-coverage (> 10x) genomic data. Overall, the “MASKED” strategy appears as the 
simplest remedy for reference bias applicable with the standard bwa aln tool, while 
“GRAPH” can be described as a highly effective alternative. We also note that when 
“MASKED” or “GRAPH” strategies are not available (e.g., when a reference diversity 
panel is not present) using MAPQ > 25 (instead of the widely used MAPQ > 30) as 
quality filter can also reduce bias with the “LINEAR” strategy.

Fig. 6  Results from the model A f4(Chimpanzee, Human Reference Genome; Ind1_LINEAR, Ind1_MASKED/Ind1_
GRAPH), B f4(Chimpanzee, Human Reference Genome; Ind1_MASKED, Ind1_GRAPH) for both PMD correction 
strategies, and C f4(Chimpanzee, Human Reference Genome; Ind1_Mapping_Strategy1_TRIMMING, Ind1_
Mapping_Strategy1_REFINING) for all mapping strategies by using ancient genomes that FASTQ files available. 
The chimpanzee is the outgroup, and we are testing whether the Human Reference Genome is equally 
distant to the genetic data from the same individual but processed using alternative strategies (e.g., Ind1_
LINEAR versus Ind1_MASKED). f4 distributions shifted to the left or right suggest the reference genome shares 
more alleles with the genetic data processed using the methods indicated in the left or right, respectively. 
The color gradient from blue to red represents the fraction of comparisons that are nominally significant 
(|Z|> 3). See also Additional file 1: Fig. S34 for results when the genomes with just BAM files available are used
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Despite their effectiveness on FASTQ data, neither “MASKED” nor “GRAPH” strat-
egies can alleviate reference bias on paleogenome data published after mapping qual-
ity filtering. This outcome emphasizes the need for sharing all the raw data, such as the 
BAM files with all reads (including those with very low mapping quality), or even bet-
ter, the raw FASTQ files (without merging paired end reads). Meanwhile, modified (e.g., 
trimmed or refined) BAM files should not be published to avoid technical effects that 
may be easily missed or may be difficult to trace back. Sharing raw data allows its long-
term healthy reusability, avoiding possible batch effects created by data processing.

The reference bias in SNP-capture data appears inherent to the previously widely used 
Agilent 1240K platform [46] and, similar to filtered BAM data, cannot be corrected. 
Rohland and colleagues have recently suggested that another capture approach, the 
TWIST platform, is free of reference bias. Still, our results point to the risks introduced 
by experimental manipulation of ancient molecules. Imputation methods may partly 
help overcome such inherent biases [51], but imputation using modern-day haplotypes 
from specific populations may itself create new issues as, for instance, variants not pre-
sent in present-day populations cannot be imputed; low-coverage genomes are also not 
imputable.

Overall, we believe the safest way forward for the community involves shotgun 
sequencing and full data sharing, as recently pointed out in a systematic study [49]. This 
can also allow new uses of paleogenomic data, such as copy number variation [52] or 
metagenomic analyses [53]. At the same time, population genetic analyses should be 
conducted in a bias-aware fashion to avoid false positives; e.g., by calculating f-statistics 
only using genomes with similar susceptibility to reference bias.

This study also introduced a new algorithm, bamRefine, for effective PMD-correction 
especially on non-UDG-treated libraries. Refining with bamRefine selectively masks only 
PMD-sensitive sites at merged read ends and makes a larger amount of genetic informa-
tion available for genotyping than standard trimming, and it also is free from reference 
bias introduced by mapDamage2. In simulated and empirical datasets, the combination 
of “GRAPH” mapping and bamRefine yielded good results. ATLAS had the highest accu-
racy on simulated data, but its use was prohibitively slow and complicated. Streamlining 
the “ATLAS” algorithm [24] could be a worthwhile avenue for future work, as it involves 
the lowest data loss and highest accuracy. We also note that using UDG-treatment of 
aDNA is an alternative experimental solution used by a large number of laboratories.

Overall, these approaches offer promising solutions to overcome the challenges 
associated with aDNA analysis, extracting more information from the available data 
and enhancing our ability to accurately reconstruct the population history of past 
populations.

Methods
Simulating ancient genomes

We used chromosome 1 of the human reference genome (version hs37d5) as a template 
to generate the simulated ancient genome data. We chose bi-allelic SNPs on chromo-
some 1 of the individual 06A010111 of the Turkish Genome Project dataset [27], which 
consisted of 182,515 homozygous reference, 53,391 homozygous alternative, and 77,841 
heterozygous positions (313,747 positions in total) (see Additional file  2: Table  S1B). 
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We then inserted these into the chromosome 1 template with “vcftools/vcf-consensus 
(v.0.1.6)” [54].

We generated ancient DNA data using “gargammel” [28], using the template chromo-
some 1 data with polymorphism inserted. Five “gargammel” simulations were performed 
for five target coverages: 0.05X, 0.1X, 1X, 5X, and 10X. We used a normal distribution 
with a mean of 65 bp for the read size distribution.

We also generated additional simulation as 10X coverage for different levels of 
PMDs. The parameter “-damage 0.024,0.36,0.0097,0.55” was used to introduce PMD 
to simulated ancient genomes (see Additional file  1: Fig. S1). This parameter was 
adjusted as “-damage 0.024,0.36,0.01455,0.825” for introducing high-level damage, 
“-damage 0.024,0.36,0.00485,0.275” for introducing low-level damage, and “-damage 
0.024,0.8,0.0,0.55” for simulating half-UDG protocol. Single-stranded library simula-
tions were produced by “single” parameter of “gargammel.” Deamination rate of sin-
gle-stranded simulations was determined using empirical rates measured from single 
stranded library of the sample G31 from Koptekin et al. [30]. We generated data without 
bacterial or modern contamination using the “-comp 0,0,1” parameter.

Published ancient genomes

We selected 21 published ancient genomes, either shotgun-sequenced, whole-genome 
captured, or 1240K SNP-captured, all from human skeletal material originating from dif-
ferent geographic regions [30–45]. The coverage of samples ranges from low to medium 
coverage to high coverage. The dataset includes both damage-repaired and non-damage-
repaired samples (see Additional file 2: Table S1C).

The raw FASTQ files were available for 10 out of 21 samples. Others were downloaded 
as BAM files and converted to FASTQ files using “Picard SamToFastq (version 2.23.8)” 
(http://​broad​insti​tute.​github.​io/​picard/). A number of FASTQ files were not publicly 
available (Additional file 2: Table S1C) and were provided by the research teams upon 
request.

Alignment strategies

We removed the residual adapter sequences in raw FASTQ files for each sample using 
the software “Adapter Removal (version 2.3.1)” [55] using “–qualitybase 33 –gzip –
trimns” parameters. The reads in paired-end libraries were merged after removing 
residual adapter sequences, requiring at least 11 bp overlap between the pairs using the 
additional parameter “–collapse –minalignmentlength 11.”

We aligned FASTQ files to three different reference genomes:
	(i)	   Linear Reference Genome (version hs37d5): We used the program “BWA aln/

samse (version 0.7.15)” [56] with parameters “-n 0.01, -o 2” and disabled the seed 
with “-l 16,500.”

	(ii)	 Masked Linear Reference Genome (masked version of hs37d5): We masked the 
positions we wanted to genotype on the linear reference genome using “bedtools 
maskfasta (v. 2.29.1)” [57] by converting the nucleotides to “N.” After masking, we 
aligned samples using “BWA aln/samse (version 0.7.15)” [56] with the same param-
eters above.

http://broadinstitute.github.io/picard/
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	(iii)	 Graph Reference Genome: We used a published graph genome version from 
Seven Bridges Inc. (SBG.Graph.B37.V6.rc6.vcf.gz), which included variants from 
1000 Genomes (1000G) Phase 3 (with alternate allele frequency greater than 0.01) 
[58], the Simons Genome Diversity Panel (alternate allele occurrence of 10 or 
greater) [59], and other INDEL variant datasets. The pangenome construction is 
described in the supplement of Rakocevic and colleagues [29] under the section 
“Global Graph Reference” in detail. We used the “GRAF tool (version 0.12.5)” [29] 
to align the reads to this graph genome annotation together with the baseline refer-
ence genome GRCh37, using default parameters. For example for the Loschbour 
genome, we used the following command: “sbg-aligner-latest -f SBG.Graph.B37.
V7.dev2.fa -v SBG.Graph.B37.V7.dev2.vcf.gz -q Loschbour.single.fastq.gz -o Losch-
bour.single.bam –read_group_unit Loschbour –read_group_library Loschbour –
read_group_id Loschbour –read_group_sample Loschbour -t 32.” See Rakocevic 
et  al. [29] and https://​www.​seven​bridg​es.​com/​graph-​genome-​acade​mic-​relea​se/ 
for more details on the algorithm.

After alignment, we removed PCR duplicates using “FilterUniqueSAMCons.py” [60] 
and removed reads < 35 bp, with > 10% mismatches to the reference genome, and with < 
25 or < 30 mapping quality (MAPQ) from all BAM files. Note that the GRAF tool [29] 
outputs BAM files directly (not GAM files) and calculates mapping quality scores in 
similar fashion as BWA.

We also compared GRAF with another widely used graph alignment tool, vg-giraffe 
[61], for 10X coverage simulations. We used the chromosome 1 of the same graph 
genome (SBG.Graph.B37) with “vg autoindex” to construct the graph and the indexes to 
be used in the mapping of reads with vg-giraffe “-z, -m, -d” parameters together with “-o 
BAM” to get BAM file as an output (Additional file 1: Fig. S35).

We note that, we did not work on GAM (Graph Alignment / Map) file format since 
both graph aligners used here (GRAF and vg-giraffe) have an option to generate BAM 
file directly as an output. We prefer to get a BAM file as an output since the PMD-cor-
rection approaches we used here only work with BAM files at the moment.

We added read group information to all final BAM files by using “picard AddOrRe-
placeReadGroups (version 2.23.8)” (http://​broad​insti​tute.​github.​io/​picard/).

bamRefine

Here, we present a new variant-aware PMD-correction algorithm called bamRefine.
bamRefine masks reads only at positions that could be affected by PMD (e.g., a nucleo-

tide overlapping with a C/G polymorphism at the 5′ end of a read), while it retains any 
transversions that would not be affected by PMD (e.g., a nucleotide overlapping with a 
T/G polymorphism at the 5′ end). It thus uses more information compared to standard 
trimming.

As an example, if a researcher will be using the 1240K SNP set, they will use the 
1240K SNP set genomic positions as input for masking the BAM files with bamRefine. 
Since the PMD effect on the read sequence depends on the library type and sequence 
end, the masking of these sites will be performed depending on information whether 
the library is double- or single-stranded. For double-stranded libraries, PMD-induced 

https://www.sevenbridges.com/graph-genome-academic-release/
http://broadinstitute.github.io/picard/
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C- > T changes are expected to occur at 5′ ends whereas G- > A changes are expected at 
3′ ends. For single-stranded library protocols, C- > T changes are expected at both ends 
albeit at different amounts. Accordingly, bamRefine masks select positions close to the 
read ends that (a) overlap with an input polymorphism list, (b) that are of certain type 
that would be affected by PMD-induced changes (e.g., C polymorphisms at 5′ ends), (c) 
that are close enough to read ends to be affected (within a user-defined lookup range).

bamRefine has a simple algorithm with the following steps: First, the variant list to be 
used in downstream analyses is parsed and classified into 5′ and 3′ “suspect” lists. The 
“suspect” lists are created according to the expected PMD artifact profile depending on 
the library preparation protocol. For example, for a double-stranded library, positions 
overlapping with variants involving a “C” allele would be masked if close to the 5′ tail, 
and those with a “G” allele if close to the 3′ tail. Meanwhile, positions overlapping with 
“T”/ “G” polymorphisms would not be masked if close to the 5′ tail.

Next, the BAM file is processed read by read, masking bases for a number of bases 
from each end that overlap with the respective end’s suspect list. The lookup range 
within which the masking occurs from each end is to be provided by the user based on 
the PMD signature in the library. The program allows the 5′ and 3′ end lookup ranges 
to be asymmetrical to properly process reads from single-stranded library protocols. The 

Fig. 7  Graphical representation of the bamRefine workflow. The graph describes a run using a BAM file with 
6 reads from a double-stranded library, a variant list with 5 variants, and using the bamRefine parameter 
“–pmd-length-threshold 7” (i.e., a lookup range of 7 bp at each read tail). A A cartoon genome browser view 
of all the reads mapped to the genomic region, and the input variant list shown as a table. For didactic 
purposes, it is assumed on the figure that the real biological variation and those which are PMD artifacts 
are distinguishable and labelled differently. B The classification of the provided variant list into 5′ and 3′ 
suspects. Note that the variant at the position 23 ends up in both tables since it has both “C” and “G” alleles. 
C Masking of the three read pairs according to the specified options and input variant list. Masking happens 
regardless of the alleles the reads carry and only depends on whether a base within the lookup range 
overlaps with the variant table of the respective read tail. See the masking process for the first read as an 
example: it has two bases masked at the 5′ tail because those positions were included in the 5′ table, even 
though the read did not differ from the reference for those positions. Additionally, the 3rd position in the 
same read overlapping the T/G polymorphism is not masked and the genotype information is retained. This 
site overlapping the T/G polymorphism would have been lost from the read when using standard trimming, 
hence the advantage of bamRefine 
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masking is confined to the positions that overlap with the 5′/3′ variant tables within the 
user-specified lookup range from 5′/3′ ends of reads and is implemented regardless of 
the allele an individual read carries (Fig. 7).

Masking with bamRefine results in less data loss when compared to trimming the 
entire lookup range (e.g., T/G polymorphisms are not lost at 5′ tails of the reads for a 
double-stranded library). The choice of masking any position that could be affected (e.g., 
C/G transversions) also minimizes the PMD effect.

The job of flagging and masking positions of interest for each chromosome or contig 
in a BAM file is parallelized by multiprocessing, allowing the program to rapidly refine 
millions of reads. bamRefine adds a @PG header to modified BAM files to facilitate 
traceability.

More detailed information regarding usage and installation instructions can be 
found at https://​github.​com/​etkay​apar/​bamRe​fine. bamRefine is also integrated to the 
Mapache ancient DNA pre-processing pipeline [62] (https://​github.​com/​sneue​nsc/​
mapac​he).

PMD‑correction strategies

We processed the data using three alternative strategies for avoiding the impact of PMD 
on genotypes.

	(i)	 trimBAM: We applied trimming (clipping) to the sequencing data using the “trim-
Bam” algorithm implemented in “bamUtil (version 1.0.14)” [12]. We trimmed (a) 
10 bases from the ends of each read in non-damage repaired (non-UDG-treated) 
samples as well as in simulated ancient genomes, and (b) 2 bases from the ends of 
each read in damage repaired (UDG-treated) samples.

	(ii)	 mapDamage: We applied rescaling to the sequencing data using the “mapDam-
age2” software [23]. We rescaled 10 bases from the ends of each read in simulated 
data using “–rescale –seq-length 10” parameters in non-damage repaired (non-
UDG-treated) samples and (b) 4 bases (the lowest limit of mapDamage requires) 
from the ends of each read in damage repaired (UDG-treated) samples. We were 
unable to execute mapDamage analysis on UDG-treated published ancient sam-
ples, so we opted not to incorporate a mapDamage comparison in our analysis of 
published ancient data.

	(iii)	 ATLAS: We applied the workflow that handles the estimation of recalibration and 
post-mortem damage (PMD) parameters by using “ATLAS (version 0.9)” [24]. First, 
we used default parameters “task = PMD length = 50” to estimate the extent of 
PMD in terms of position-specific. Then, for base quality score recalibration, we 
used task = recal pmdFile = *PMD_input_Empiric.txt minDepth = 2.

	(iv)	 bamRefine: We applied refining to the sequencing data using “bamRefine.” Similar 
to trimming, we refined (a) 10 bases (using “–pmd-length-threshold 10”) from the 
ends of each read in non-damage repaired (non-UDG-treated) samples as well as 
the simulated ancient genomes, and (b) 2 bases (using “–pmd-length-threshold 2”) 
from the ends of each read in damage repaired (UDG-treated) samples. Regardless 
of the samples being treated with UDG or not, we used our SNP dataset generated 
from the Turkish Genome Project for refining the simulated ancient reads (using 

https://github.com/etkayapar/bamRefine
https://github.com/sneuensc/mapache
https://github.com/sneuensc/mapache
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“–snps < TGP-SNPS-FILE > parameter”) and the 1000G sub-Saharan African data-
set for the empirical ancient reads (using “–snps < AFR-SNPS-FILE > ” parameter).

We again caution that BAM files subject to any type of modification (filtering, as 
well as trimming, refining, or rescaling) should preferably not be published to facilitate 
reproducibility.

Dataset

In previous work, we had created a 1000 Genomes sub-Saharan African SNP diver-
sity panel as a high-quality and relatively unbiased SNP dataset to use in demographic 
inference in Eurasian genomes [63]. The dataset includes 4,771,930 (4.7  M) bi-allelic 
autosomal SNPs ascertained in five sub-Saharan African populations in phase 3 of the 
1000 Genomes project [58]. We used this dataset for genotyping the published ancient 
genomes included in the analysis.

Genotyping

We genotyped only targeted SNP positions; for simulated ancient genomes, these were 
the 313,747 positions defined from one individual of the TGP dataset [27], and for pub-
lished ancient genomes these were the 4.7 M positions from 1000 Genomes sub-Saharan 
African dataset [63]. We called both diploid and pseudohaploid genotypes.

no PMD‑correction and PMD‑correction by using mapDamage, trimBam, and bamRefine

Diploid genotypes were obtained using “GATK HaplotypeCaller (version 4.0.11.0)” [48] 
by using the “–min-base-quality-score 30, –minimum-mapping-quality 30, –genotyping-
mode GENOTYPE_GIVEN_ALLELES, –output-mode EMIT_ALL_SITES” parameters as 
well as the “–alleles” parameter to genotype the list of targeted SNP positions.

Pseudo-haploid genotypes were obtained by using “pileupCaller (version 1.4.0)” 
(https://​github.​com/​stsch​iff/​seque​nceTo​ols) by selecting one allele for each of the tar-
geted SNP positions from the “samtools mpileup” [64] output file, which was generated 
by using the “-R -B -q30 -Q30” and the “-l” parameters to genotype the list of targeted 
SNP positions.

PMD‑correction by using ATLAS

Diploid genotypes were obtained using “ATLAS (version 0.9)”  [24] after modelling PMD 
with “task = PMD length = 50” parameters (see above). Then we used empiric PMD 
estimation outputs for genotyping on maximum likelihood mode by using “task = call 
method = MLE pmdFile = *PMD_input_Empiric.txt recal = *recalibrationEM.txt 
alleles = {a list of targeted SNP positions}” parameters.

Pseudo-haploid genotypes were obtained by using “ATLAS (version 0.9)” [24] with the 
parameters “task = call method = randomBase infoFields = DP pmdFile = *PMD_input_
Empiric.txt recal = *recalibrationEM.txt alleles = {a list of targeted SNP positions}.” Here, 
this process was repeated 100 times for each sample.

https://github.com/stschiff/sequenceTools
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Genotype concordance comparison

We assessed variant quality using 313,747 SNP positions, which included 182,515 
homozygous reference (RR), 53,391 homozygous alternative (AA), and 77,841 heterozy-
gous (RA) positions. These were used for evaluation. The SNPs inserted into simulated 
genomes used as the “True Genotypes” to empirically evaluate the accuracy of diploid 
SNP genotyping in 10X and 5X simulated genomes. For each simulated genome, we gen-
erated a 3 × 3 contingency table to capture all possible combinations of the three “Called 
Genotypes.” We then estimated seven indices to evaluate genotype concordance: Con-
cordance Rate (CR), False Negative Proportion (FN Proportion), False Positive Propor-
tion (FP Proportion), Non-reference True Positive Rate (NTPR), recall (or sensitivity), 
specificity, and precision were calculated using the alternative allele as a reference, as 
illustrated in Additional file 1: Fig. S24 [50]. Additionally, we also calculated the F-score, 
which is the harmonic mean of precision and recall values, by the following formula: 
2 × [(Precision x Recall) / (Precision + Recall)].

f4 statistics

We calculated f4-statistics by using “qpDstat (version: 980)” algorithm implemented in 
“AdmixTools (version 7.0.2)” [65]. We used tests of the form f4(Human Reference Genome, 
Outgroup; Ind1_MappingStrategy1, Ind1_MappingStrategy2) or f4(Human Reference 
Genome, Outgroup; Ind1_MappingStrategy1_PMDCorrectionStrategy1, Ind1_Mapping-
Strategy1_PMDCorrectionStrategy2) using the Chimpanzee Reference Genome (version 
panTro6) as an outgroup and with the “f4mode: YES” option. We used > 10,000 overlap-
ping SNPs as cut-off for reporting f4-test calculations.

Other statistical tests and visualization

We used the non-parametric Mann–Whitney U (MWU) test for testing for system-
atic differences between two groups in their average estimates (e.g., bias levels between 
“LINEAR” and “GRAPH” strategies). The data used here was not paired. It also included 
possible differences in variance among groups, for which reason we decided to choose a 
non-parametric two sample test.

We produced all graphs in R [66] after reading and manipulating data using “gsheet” 
[67] and “tidyverse” [68] packages. All figures were produced by using “ggplot2” [69] 
and its extension packages “ggpubr” [70], “ggh4x” [71], and “ggpattern” [72]. The multi-
ple panel figures are combined by using the “patchwork” package [73]. In some figures, 
colors were assigned by using “MetBrewer” package [74].

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​024-​03462-w.

Additional file 1: This file contains Figures S1-35 to support the methodology and the main results.

Additional file 2: Table S1A: Sequencing statistics for simulated genomes. Table S1B: Number and characteristics 
of variants used to generate aDNA-like simulated genomes. The variants were chosen from a bi-allelic SNP set 
discovered in the individual 06A010111 of the Turkish Genome Project dataset (see Methods). Table S1C: Information 
on the published ancient genomes used in this study. “Sample ID”: the genome ID used in the relevant publication. 
“Data type”: whether the genome was shotgun-sequenced, or sequenced after whole-genome capture or 1240 K 
SNP capture. “Genome Coverage”: genome-wide coverage for the samples generated by shotgun or whole-genome 
capture. "1240 K Coverage": coverage of targeted 1240 K SNPs for the samples generated by 1240 K capture. “Loca-
tion”: the country where the ancient genome material was retrieved. “Input file type”: the published type of data 
available for analysis, i.e. FASTQ, BAM, or BAM (unfiltered). “PMD corr. bp”: how many bases at the end of the reads to 

https://doi.org/10.1186/s13059-024-03462-w
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PMD correction (rescaling, trimming). “Number of heterozygote SNPs”: how many heterozygote SNPs are defined for 
each sample to use to calculate reference bias for Figs. 2B-D. These heterozygous positions were defined as positions 
where alternative allele frequencies were 25–75% and had a minimum of 10 reads.

Additional file 3: Table S2: The proportion of alternative alleles at heterozygous sites in aDNA-like simulated 
(Table S2A) and published ancient genomes (Table S2B). The proportions were calculated by randomly selecting one 
allele from 77,841 heterozygote sites in aDNA-like simulated genomes 100 times using pileupCaller. The “Alternative 
allele proportion” columns show the mean, minimum (min) and maximum (max) of the distribution of these propor-
tions. “Coverage” indicates the depth-of-coverage. The “Alignment strategy” and “PMD correction strategy” columns 
indicate the methods used for alignment and PMD correction, respectively.

Additional file 4: Tables S3: Number of SNPs genotyped aDNA-like simulated (Table S3A) and published ancient 
genomes (Table S3B).

Additional file 5: Review history.
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