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ABSTRACT

DEVELOPMENT OF PUMP CONTROLLED DOUBLE ROD
ELECTRO-HYDROSTATIC ACTUATOR

Özbaş, Cumhur

M.S., Department of Mechanical Engineering

Supervisor: Assist. Prof. Dr. Hakan Çalışkan

January 2025, 173 pages

This thesis addresses the modeling, state estimation, and robust control of Electro-

Hydrostatic Actuators (EHA) for high-precision applications. A detailed mathemati-

cal model of the EHA system, encompassing hydro-mechanical, electrical, and con-

trol subsystems, is developed. Parametric uncertainties due to environmental and op-

erational variations are systematically incorporated to ensure realistic plant behavior

across a wide range of conditions.

State estimation techniques, Kalman filters, are implemented for enhanced noise re-

jection and fault detection. Simulation and experimental results validate the robust-

ness and accuracy of the proposed estimation algorithms.

A Quantitative Feedback Theory (QFT)-based framework is employed for the robust

design of velocity and position controllers. Leveraging Particle Swarm Optimization

(PSO), the controllers are synthesized to meet stringent performance specifications.

The cascade control structure effectively handles the bandwidth separation between

inner and outer loops, ensuring high performance and robustness.

The integrated approach, combining detailed modeling, state estimation, and opti-

v



mized robust control design, achieves significant advancements in actuator reliabil-

ity, noise rejection, and compliance with aviation standards. This work establishes a

comprehensive foundation for the deployment of EHA systems in safety-critical flight

control applications.

Keywords: Electro-hydrostatic actuators, Nonlinear modeling, Robust control, Kalman

filter, Controller optimization
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ÖZ

POMPA KONTROLLÜ ÇİFT ETKİLİ ELEKTRO HİDROLİK EYLEYİCİ
GELİŞTİRİLMESİ

Özbaş, Cumhur

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Hakan Çalışkan

Ocak 2025 , 173 sayfa

Bu tez, yüksek hassasiyetli uygulamalar için Elektro-Hidrostatik Eyleyicilerin (EHA)

modellenmesi, durum kestirimi ve dayanıklı kontrol tasarımını ele almaktadır. Hidro-

mekanik, elektriksel ve kontrol alt sistemlerini kapsayan ayrıntılı bir matematiksel

model geliştirilmiştir. Çevresel ve operasyonel değişkenliklerden kaynaklanan para-

metrik belirsizlikler, geniş bir çalışma koşulları aralığında gerçekçi sistem davranışı

sağlamak için sistematik olarak modele entegre edilmiştir.

Durum kestirimi için Kalman filtreleri kullanılarak gürültü reddi ve hata tespiti sağ-

lanmıştır. Simülasyon ve deneysel sonuçlar, önerilen kestirim algoritmalarının daya-

nıklılığını ve doğruluğunu doğrulamaktadır.

Hız ve konum denetleyicilerinin dayanıklı tasarımı için Nicel Geri Besleme Teorisi

(QFT) tabanlı bir çerçeve kullanılmıştır. Parçacık Sürü Optimizasyonu (PSO) yöntemi

ile denetleyiciler, katı performans gereksinimlerini karşılayacak şekilde tasarlanmış-

tır. Kademeli kontrol yapısı, iç ve dış döngüler arasındaki bant genişliği ayrımını etkin

bir şekilde ele alarak yüksek performans ve dayanıklılık sağlamaktadır.
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Detaylı modelleme, durum kestirimi ve optimize edilmiş dayanıklı kontrol tasarımını

bir araya getiren bu bütüncül yaklaşım, eyleyicinin güvenilirliği, gürültü reddi ve ha-

vacılık standartlarına uyumunda önemli ilerlemeler sağlamaktadır. Bu çalışma, EHA

sistemlerinin güvenlik açısından kritik uçuş kontrol uygulamalarında kullanımı için

kapsamlı bir temel oluşturmaktadır.

Anahtar Kelimeler: Elektro-hidrostatik eyleyiciler, Doğrusal olmayan modelleme, Gür-

büz kontrol, Kalman filtresi, Kontrolcü optimizasyonu
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CHAPTER 1

INTRODUCTION

1.1 What is Electro-Hydrostatic Actuator?

The term "Electro-Hydrostatic Actuator" (EHA) integrates three fundamental con-

cepts: electro, hydrostatic, and actuator. An actuator is a device producing mechan-

ical force by means of pressurized fluid [1]. In the context of EHAs, a cylinder

transmits precise translational motion and force. The motion is driven by hydrostatic

force, which is generated by the pressure difference in the fluid within the cylinder

chambers. An electric motor-pump combination energizes this fluid, hence the term

"electro." The movement of the actuator can be controlled by varying the speed of

the motor pump unit, adjusting the displacement of the pump, or both. As shown

in Figure 1.1, a hydraulic schematic illustrates the configuration of an EHA with a

fixed-displacement pump.

Figure 1.1: Hydraulic circuit of EHA

In this setup, the electric motor (1) converts electrical energy into rotational mechan-
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ical energy, while the hydraulic pump (2) pressurizes the hydraulic fluid and supplies

the required fluid volume. In the actuator chambers (5), the pressure difference drives

mechanical motion. The accumulator (3) compensates for losses due to leakage, and

the relief valves (4.1 and 4.2) ensure the circuit is not over-pressurized. To com-

prehend importance of this hydraulic system, the context of aviation hydraulics is

required.

1.2 History of Flight Control Actuators

Hydraulic systems have long been integral to a wide array of industrial, mobile, and

aerospace applications, offering unmatched power transmission efficiency and control

precision. These systems leverage the incompressibility of fluids to transmit energy,

enabling the handling of substantial loads and forces with compact components. One

of the key advantages of hydraulics is their high power-to-weight ratio, allowing for

efficient operation in space-constrained environments [2] [3].

The first aircraft had no hydraulics. Beginning with the Wright Brothers’ design, air-

craft have utilized aerodynamic devices called flight control surfaces (FCS) to allow

pilots to control flight attitudes. FCS generally possess a rotational degree of freedom

facilitated by a hinge structure, enabling the surface angle to influence the direction of

aerodynamic forces and maneuver the aircraft. In modern systems, these surfaces are

linked to actuators; however, in early aircraft designs, they were controlled manually

by the pilot using cables and pulleys, as shown in Figure 1.2. By World War II, air-

craft became faster and heavier, necessitating an additional power source. This led to

the adoption of hydraulic power systems, which offered a high power-to-weight ratio

and met the demands of more advanced aircraft designs. Hydraulic actuation sys-

tems were integrated into landing gears, rudders, ailerons, flaps, elevators, and doors.

Firstly hydraulic boosters were integrated, where the pilot could still feel mechanical

maneuver. Soon complete power-operated control eliminated the pilot feel. Hence

role of the pilot was reduced to signaling, no longer transmitting power.

In the 1960s, as electronics became prevalent, mechanical linkages were replaced

by electrical control systems, reducing the space and weight occupied by traditional
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Figure 1.2: Cessna-172N aileron system [4]

mechanisms. This transition introduced the concept of Fly-By-Wire (FBW), where

electronics transmit control commands instead of mechanical links. The first civil

FBW aircraft was the Airbus A320 [5]. The use of electrical signals enabled the

digital computation of control inputs, allowing real-time adjustments based on the

aircraft’s system characteristics.

Early FBW systems typically integrate a central hydraulic system to provide the nec-

essary power for flight control actuators. These systems rely on a primary pump ener-

gized by an engine, with servo valves controlling the pressurized hydraulic fluid sup-

plied to the actuators [6]. A central hydraulic system comprises hydraulic pipes, reser-

voirs, and other accessories, which significantly contribute to the aircraft’s weight and

occupy valuable space. Additionally, valve-controlled systems require a constant sup-

ply of high-pressure fluid at the valve inlet to ensure rapid response to control com-

mands. This design, however, results in internal leakage within the valves, causing

energy losses and thermal management challenges. These challenges are often ad-

dressed with larger hydraulic reservoirs or dedicated thermal management systems,

as described in [7]. A typical central hydraulic system is illustrated in Figure 1.3 [8].

Hence the concept of replacing central hydraulic systems with More Electric Air-

craft (MEA), employing electrical actuators, has gained traction. As advancements

in motor technology improve the power-to-weight ratio of electric motors, Electro-

Mechanical Actuators (EMAs) have begun to emerge as viable alternatives for flight
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Figure 1.3: Central hydraulic system [8]

control systems. However, EMAs still fall short of hydraulics in terms of power den-

sity and face issues such as mechanical wear and jamming [9] [10]. Nevertheless,

the idea of integrating electric motors to energize actuators persists. Consequently,

the evolving concept of Power-By-Wire (PBW), which involves the use of electrical

power distribution and decentralized hydraulic systems, represents a growing trend.

In this paradigm, Electro-Hydrostatic Actuators (EHAs) play a key role, combining

the reliability of hydraulics with the flexibility of electrical systems to enhance aircraft

performance and reduce overall system complexity. The transition to such electrically

powered systems is rather smooth. Electrically powered systems initially served as

redundant backup systems to conventional hydraulic systems, as illustrated in Figure

1.4 [11].

Now it should be clearer, in the context of MEA trends in aviation why EHAs are

advantageous. They are not connected to a central system by pipes, saving space and

maintenance costs. Additionally, EHAs function as a single, self-contained subsys-

tem, making them easier to replace and maintain. The integration of the motor, pump,

and actuator into a compact system further enhances this modularity. Furthermore,

EHAs are more energy-efficient than conventional hydraulic systems, as the pump

only operates when required, rather than running constantly [12].

The first operational use of EHAs in military aviation occurred when they replaced

the left aileron on the F/A-18, evaluated in the Systems Research Aircraft flight en-
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Figure 1.4: Airbus A-380 Control and backup systems [11]

velope [13]. In civil aviation, the Airbus A-380 became the first commercial aircraft

to use EHAs, initially as a backup system for its flight control surfaces [14]. More

recently, the F-35 fighter jet has integrated EHAs for both primary and secondary con-

trol surfaces, reflecting the growing trend towards this technology in modern aircraft

[15] [16].

1.3 Motivation Behind This Study

EHAs are a key PBW technology that is increasingly replacing conventional hydraulic

systems in aviation. In modern aircraft, fault-tolerant actuator design plays a critical

role, as aircraft systems are designed with redundancy to ensure safety and reliability

during failures [17]. Consequently, robust control strategies for flight control actua-

tors are essential for maintaining stability and performance under fault conditions.

In addition to robustness, reconfigurable controller designs for actuators are vital in

optimizing flight control in the presence of faults. These controllers can dynamically

adjust to new fault modes, ensuring operational continuity and safety [18] [19]. Be-

yond fault tolerance, the integration of autonomy and artificial intelligence (AI) in

next-generation aircraft enables the use of adaptive control strategies, where the con-

troller structure evolves based on changing flight conditions or mission requirements

5



Figure 1.5: Aileron EHA and hydraulic actuator in Airbus A-380 [14]

[20].

Modernization efforts in aircraft systems often involve continuous life-cycle updates,

ensuring systems remain relevant and capable of integrating advanced technologies.

This trend, coupled with the growing emphasis on fault-tolerant control and adap-

tive strategies, suggests a paradigm shift in flight control actuator design. Specif-

ically, actuator specifications—such as bandwidth, stiffness, and performance re-

quirements—could become dynamic, adapting in real time to optimize system per-

formance in varying conditions.

To support this evolving landscape, automated robust controller design methodolo-

gies are necessary. Hence, this study represents a step toward realizing the future of

intelligent flight control systems.

1.4 Thesis Outline

This thesis is organized as follows: In Chapter 1, the working principle of the EHA,

along with the historical context of flight control actuators, is presented. In this con-

text, the motivation for the thesis is highlighted.
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In Chapter 2, a comprehensive literature review on EHA design and control strategies

addressing design limitations is provided. Additionally, background information on

the Quantitative Feedback Theory (QFT) control method is included.

In Chapter 3, the design process of the EHA, encompassing component selection and

simulation verification, is detailed.

In Chapter 4, the controller design for the EHA is presented. Specifically, a Kalman

filter is implemented, and various structural configurations are analyzed. A robust

QFT controller, automatically developed through an optimization method, is pro-

posed.

In Chapter 5, the performance results of the proposed EHA system and its controller

are summarized and discussed.
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CHAPTER 2

LITERATURE SURVEY AND BACKGROUND

2.1 EHA Design

As the trend of MEA emerged in the industry, the application of electric motors in

flight control actuator systems was studied. One of the pioneering works on EHA

focused on electric motors, suggesting the use of permanent magnet motors instead

of brushless DC motors [21]. Anderson demonstrates component selection based on

actuator specifications and points out that motor size is a significant factor for com-

pactness, hence suggesting variable displacement pumps that require smaller torque

power. He investigates parameters such as piston area, motor speed, and pump dis-

placement in terms of the stiffness of the actuator, recommending small displacement

and high-speed motors. A detailed examination of the actuator’s stiffness is presented

in his paper [22]. For the design specifications, Frischemeier [23] describes the func-

tional requirements of EHA, analyzing design components to reduce the weight of the

EHA. Habibi describes a methodology for EHA design [24]. The evaluation of EHA

under flight conditions and according to flight specifications serves as a benchmark

for the verification and design specifications of EHA [13].

Novel approaches to hydraulic circuit design were also applied to EHA. Kim devel-

oped a force-controlled system with an additional sliding mode controller regulating

a bypass valve to enhance force tracking. An external position disturbance was in-

troduced, and the EHA with the bypass valve was compared to the EHA without it,

showing significant improvements in force tracking [25]. A similar approach using

a hydraulic sub-circuit was adopted, where Rongie proposed a power regulator to

enhance the dynamic performance of the EHA. An additional accumulator was de-
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signed to refeed the circuit via a proportional valve based on different control modes.

Furthermore, a hydraulic lock valve was integrated to significantly improve stiffness

when the system is locked. Test results demonstrated that the dynamic performance

of the EHA was enhanced in terms of position tracking and frequency response. Ad-

ditionally, when an external load was applied, the system exhibited improved stiffness

[26]. The suggested hydraulic circuit is illustrated in Figure 2.1. Determining EHA

Figure 2.1: Power regulator sub-circuit and hydraulic lock integration on EHA [26]

components involves consideration of design specifications as well as the reduction

of weight, heat generation, and efficiency of the EHA. Consequently, the optimization

of EHA design is a common topic in the literature. One of the challenges is param-

eterizing components; hence, estimation methods have been developed to estimate

parameters such as a motor’s torque constant, resistance, or a pump’s displacement

based on the mass or other qualities of the components [27]. Multi-objective opti-

mizations involving simulations are frequently conducted in the literature to propose

optimal EHA designs [28] [29].

2.2 EHA Control

While performance specifications of EHA depend on sub-component properties, con-

trol methods also try to improve the tracking, stiffness, and dynamic performance of

EHA. Control methods on EHA try to propose robust solutions to the nonlinearity of

EHA, sensor-noise, and parametric uncertainties. One of the nonlinearities of EHA

is dead zone, caused by static friction and leakage on the system [30]. Inner-loop
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control strategies are proposed to overcome the effects of dead zone [31]. Hu fur-

ther developed an inner-loop control strategy with a sliding mode controller, for a

fault-tolerant system. The results are compared with Kalman Filter estimations for

fault as well as tracking performances [32]. Estimation methods are frequently used

for fault detection [33], as well as noise rejection along with robust control strategies

[34]. Machine learning techniques such as few-shot data augmentation are also used

in fault detection of EHA [35]. Hence, it is common to integrate state estimation

methods such as Kalman Filter either for improved controller response or fault detec-

tion algorithms. Various robust control algorithms are suggested for the EHA control

in order to improve dynamic performance characteristics.

Cho suggested a Simple Adaptive Control in order to improve the tracking response

of the system [36]. Lee suggested an adaptive anti-windup strategy to improve track-

ing response and disturbance load rejection [37]. Sliding mode controllers are also

widely researched [38], in [39] optimal controller for a sliding mode controller is

studied. In sliding mode controllers, obtaining full system information, disturbances,

and inherent chattering due to sliding mode technique is a problem. In order to obtain

full system information, observers and estimators are frequently utilized [40]. Yang

proposed a solution to disturbance by adapting reaching law, demonstrating better

performance results through simulation [41]. However, his study lacks experimental

verification.

Another robust control method in the literature is Quantitative Feedback Theory (QFT)

based control, involving modeling uncertainty of the plant. In the context of hydraulic

flight control actuators, Thompson suggested a well-structured approach to improve

the stiffness, and bandwidth of the actuator [42]. Work of Kang is the first publica-

tion of QFT methodology on EHA, emphasizing sensitivity constraint on sensor noise

[43]. Self-tuning QFT controller was also proposed on hydraulic load simulator [44].

In recent works, fault-tolerant QFT controller on leakage of EHA was suggested [45].
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2.3 QFT Control

Quantitative Feedback Theory (QFT) is a robust control design methodology that

emphasizes achieving desired system performance in the presence of uncertainties

and disturbances. QFT framework was first introduced by Isaac Horowitz, in 1962

[46]. QFT leverages frequency-domain techniques to explicitly account for plant

parameter variations and external disturbances. The central idea of QFT is to design

a controller that meets specified performance criteria, such as tracking, stability, and

disturbance rejection, over a range of uncertain plant models. By shaping the open-

loop transfer function to satisfy robust stability and performance requirements, QFT

provides a systematic framework for balancing robustness and performance. While

commercial tools are available for designing QFT controllers, this thesis develops

custom algorithms in MATLAB to achieve the same goals. A great source for the

application of QFT is Robust Control Engineeringg by Mario Garcia-Sanz [47].

One disadvantage of QFT method is loop shaping process, while boundaries for the

controller specifications are clear and precise; there is no exact method available to

design frequency-based controller. Open loop plant L(s) = P (s)G(s), is shaped in

Nichols chart often requiring manual intervention and expertise. Essentially, a lead-

lag compensator is designed however its complexity is dependent on designer. In this

thesis, an optimization method is suggested in order to synthesize controller respect-

ing boundaries generated by QFT. Utilizing Particle Swarm Optimization (PSO), an

automatic loop shaping process is suggested. Such approach is also common in lit-

erature [48, 49, 50]. Another advantage of optimization is that, while there are hard

constraints for flight control actuators, it is almost always desirable to minimize con-

troller effort. Hence, performance specifications are treated as strict requirements.

Once these specifications are satisfied, the optimization algorithm reduces control

effort, reflecting an engineering approach to the problem.

.
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CHAPTER 3

EHA DESIGN AND SIMULATION

In this section, the design steps of the EHA and considerations during this process will

be explained. Subsequently, the mathematical model of the EHA and relevant sim-

ulations based on the mathematical model will be analyzed alongside experimental

data. A similar design procedure proposed in [24] will be followed. As a pre-concept

phase, the availability of EHA components that are required in the market is inves-

tigated together with the literature survey. The conceptual design step of EHA is to

determine key component constants based on specifications and derive a basic model

of EHA in order to validate these specifications and iterate for component selection.

Later, after components are selected and integrated into the physical EHA design,

based on experimental data more detailed simulations will be followed.

3.1 Preliminary Design

During the preliminary design process, the system requirements and the sub-component

selection process are explained. In aviation applications, compact and specially inte-

grated parts are often produced to increase efficiency and reduce weight costs. Since

this study is conducted in a laboratory environment, commercial products for pump,

motor, and other auxiliary hydraulic elements should be selected.

3.1.1 System Specifications

The design specifications are based on the EHA evaluated for the F-18 program [13].

There is also an example study on specification determination of EHA [23]. The sys-
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tem specifications for the EHA are provided in Table 3.1. A dual redundant design

will be conducted. Additionally, a compact design criterion is selected for the dimen-

sions of the EHA; however, a detailed discussion of this criterion is beyond the scope

of this thesis.

Table 3.1: Design specifications of redundant EHA

Criterion Value

Maximum output force 59 kN

Maximum velocity 190 mm/s

Bandwidth 7 Hz

Stroke 120 mm

Linearity 0.2% command

3.1.2 Sub-Component Determination

First, the maximum system pressure is determined, as it directly influences the se-

lection of hydraulic components such as pumps and auxiliary components. Since

most commercial hydraulic components operate around 210 bar as rated pressure, the

maximum system pressure is determined to be 240 bar, incorporating general safety

margins. Beyond this value, relief valves should be activated to protect the system.

To meet the maximum output force requirement, the effective piston area Ap can be

calculated using the pressure formula for force on a stationary piston:

Ap =
Fload

∆p
=

59

240

kN
bar

= 2458mm2 (3.1)

The effective piston area is the difference between the piston and rod areas. The

actuator design should be symmetrical to ensure that the in-flow and out-flow are

equal, as suggested in [30]. While single-rod EHAs are commonly used in industries

such as presses due to their efficiency, symmetrical actuators are preferred in aviation

for better performance. For the actuator, the piston stroke should be designed as 120

mm.
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For the motor-pump couple, the pump should work bi-directionally. For a compact

design, higher speed motors are preferred since as motor torque increases motor di-

mensions increase for the same amount of power [51]. From the maximum velocity

requirement, the maximum flow-rate of the system can be determined:

Qmax = Ap · 190
mm3

s
≃ 28 L/min (3.2)

For the solution of equation 3.2, flow-rate dependence on pump displacement Dp

and speed ω is required. For a fixed displacement pump disregarding volumetric

efficiency:

Qmax = Dp · ωmax (3.3)

A faster pump speed is better since the torque required to hold 60 kN at maximum

pressure decreases. Disregarding mechanical efficiency simple relation can be shown:

τmax = ∆pmax ·Dp (3.4)

In aviation, EHAs commonly employ fixed-displacement axial-piston pumps due to

their efficiency and reliability, operating at speeds of up to 22,500 rpm [52]. High-

speed bi-directional pumps are desirable; however, such axial-piston pumps are not

available for commercial use. While there are EHA designs utilizing other types of

pumps, such as gear pumps [53], their application is typically specific to industrial

systems. Therefore, for laboratory conditions, an external gear pump is selected as

the pump type for the bi-directional pump due to its relative efficiency and reliability.

Similarly, the study in [30] also employs a gear pump for an EHA.

Since the pump’s speed is naturally limited by the manufacturer, the pump displace-

ment is selected for an 8,000 rpm range, according to Equation 3.2. The motor’s

maximum torque is determined using Equation 3.3, ensuring an 8,000 rpm rotational

speed. An accumulator is selected to compensate for expected leakage losses from

the pump and cylinder. A detailed analysis is conducted to address potential pump

cavitation. Additionally, buckling analysis of the hydraulic cylinder and the material

type for load forces determine the rod diameter, thus piston diameter based on the

required effective piston area [54].

Based on preliminary analysis of equations 3.1, 3.2, 3.3 and 3.4 sub-components are

selected according to Table 3.2.
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Figure 3.1: Velocity gradient of CFD analysis of external gear pump [54]

Table 3.2: Equipment specifications

Equipment Model Description

EHA pump VIVOIL X1R2725FJJE 4.3 cc/rev displacement

EHA motor BECKHOFF AM8053-1N10 15.6 A standstill current

Servo Drive BECKHOFF AX5118 18 A nominal current

PLC Beckhoff IPC C6015 Intel Atom® E3815, 1.46 GHz

Relief valve DANFOSS CP211-1-B-6B-K-A 255 bar cracking pressure

Pressure sensor HYDAC HDA4446-A-400-000 400 bar maximum range

Accumulator HYDAC SB330-6A1/112U-330A 6 L nominal volume

MPS OPKON 150-S152023-201 150 mm stroke

Actuator - 2572 mm2 effective piston area

3.2 Mathematical Model of EHA

EHA’s mathematical model can be derived using the following relations, which are in

parallel with the hydraulic models in the literature.

3.2.1 Electric motor model

A permanent magnet synchronous motor (PMSM) is used for the EHA. The dynamic

equations are expressed in d,q rotor reference frame, and the driver settings of the
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manufacturer utilize this reference frame. The voltage equations expressed in the d-q

frame are: [51]:

Vd = Rsid + λ̇d − ωeλq (3.5)

Vq = Rsiq + λ̇q − ωeλd (3.6)

where:

• Rs: Stator resistance, in ohms (Ω).

• ωe: Electrical angular speed of the rotor, in rad/s.

• Vd, Vq: Direct and quadrature axis voltages, in volts (V).

• id, iq: Direct and quadrature axis currents, in amperes (A).

• λd, λq: Direct and quadrature axis flux linkages, representing the magnetic flux

linked with the rotor winding along the respective axes, in weber-turns (Wb).

The flux linkages in the d- and q-axes for a PMSM are given as:

λq = Lqiq (3.7)

λd = Ldid + λm (3.8)

where:

• λm: Flux linkage from the permanent magnet, in Webers (Wb).

• Ld, Lq: Inductance along the direct and quadrature axes, respectively, in henries

(H).
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The electrical angular speed of the rotor has a relation with mechanical speed ω :

ωe = np · ω (3.9)

where np is number of pole pairs.

Notice that 3.7 and 3.8 can be inserted into 3.6 and 3.5 respectively as time deriva-

tives, and 3.9 can be integrated:

Vd = Rsid + Ld
did
dt

− npω(Lqiq) (3.10)

Vq = Rsiq + Lq
diq
dt

− npω(Ldid + λm) (3.11)

The electromagnetic torque of the PMSM can be expressed in terms of the d-q cur-

rents as:

Tm =
3

2
np (λmiq + (Ld − Lq)idiq) (3.12)

As explained later in this chapter, the currents id and iq are controlled by the driver and

its implemented control method. Field-Oriented Control (FOC) is one such method,

implemented by the manufacturer Beckhoff. In this type of FOC, setting the id ref-

erence to zero allows for the decoupling and simplification of control. This can be

observed from the governing equations (3.10), (3.11), and (3.12). Assuming id is

zero results in a model similar to a DC motor, characterized by the torque constant kT

and the back-EMF constant kE . In fact, the manufacturer publishes these constants

in the technical data of the selected motor. Hence a simplified torque equation can be

shown:

Tm = kT i (3.13)

Similarly, constants such as resistance and inductance can be simplified since only

the dynamics of the q-axis is relevant:

V − iR− L
di

dt
− kEω = 0 (3.14)

Where V is the motor voltage, i is the torque-generating current, R is the armature

resistance, L is the motor inductance, and ω is the angular speed of the motor-pump

couple.
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3.2.2 External gear pump model

The hydraulic pump is the main component of EHA. Coupled with the motor shaft,

it transmits energy to excite the actuator. For the hydraulic pump, an external gear

pump is preferred since it is bi-directional and has relatively high efficiency. The dis-

placement is constant hence only drive speed varies for the controlling of the actuator

position. Figure 3.2 illustrates the operating principle of an external gear pump.

Figure 3.2: External gear pump [55]

For a fixed displacement pump, the flow equation of the pump, assuming laminar

leakage losses, is written as follows:

Qpump out = Dpω − Cp(pA − pB)− Cr(pA + pB − 2pr),

Qpump in = −Dpω + Cp(pA − pB)− Cr(pA + pB − 2pr).
(3.15)

Where Qpump out and Qpump in are outlet and inlet flow-rates of the external gear pump,

Dp is the pump displacement, Cp and Cr are the inlet and outlet leakage coefficients

of the pump, pr is the external pressure of the pump corresponding to the pressure in

the accumulator circuit, and pA and pB are the pressures in the A and B chambers of

the hydraulic actuator, respectively. The torque requirement of the pump is given by:

TL = Dp(pA − pB) (3.16)

The equation of motion for the pump-motor couple is given by:
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Jeqω̇ + beqω = Tm − TL (3.17)

Where Jeq is the inertia of the pump-motor couple, and beq is the damping coefficient

of the pump-motor couple. Notice that friction is only modeled as viscous friction

where coulomb friction of the motor-pump couple is neglected in this case.

3.2.3 Hydraulic accumulator model

Hydraulic accumulators are commonly operated as pulsation dampeners to manage

pressure changes, serve as emergency sources, and function as energy storage equip-

ment. In the EHA sub-circuit, the accumulator acts as a secondary energy provider

to compensate for leakage losses from the pump and cylinder, allowing smooth flow

continuity. Additionally, it operates as a hydraulic reservoir, where external leakage

from the pump is returned to the accumulator sub-circuit. A gas-charged bladder ac-

cumulator is selected during the preliminary design stage due to its lighter weight

compared to other types of accumulators.

The accumulator stores hydraulic energy resulting from pressure changes by adjusting

its gas volume. It features an elastic bladder that acts as a membrane between the

pressurized hydraulic fluid and the gas in the accumulator. The change in gas volume

within the accumulator is modeled as a polytropic process, neglecting thermal effects:

PgVg = P0V0 (3.18)

where:

• Pg is the instantaneous gas pressure inside the accumulator (Pa),

• P0 is the pre-charge gas pressure (Pa),

• Vg is the instantaneous gas volume inside the accumulator (m3),

• V0 is the pre-charge gas volume (m3).
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The gas volume Vg adjusts dynamically to changes in pressure Pg, maintaining the

energy storage capability of the accumulator. Hence,

• When the hydraulic pressure increases, the bladder compresses, reducing the

gas volume Vg and increasing the gas pressure Pg.

• When the hydraulic pressure decreases, the bladder expands, increasing Vg and

reducing Pg.

While a more detailed thermal model can be utilized to account for the complex ther-

modynamic behavior of the gas inside the accumulator, the current non-linear behav-

ior sufficiently achieves the primary objective of the accumulator: compensating for

leakage losses in the system. To simplify the analysis, a linearized model can be

adopted under the assumption that the accumulator pressure remains in equilibrium

during operation. In this linear model, the accumulator effectively acts as an external

reservoir with a constant pressure pr, simplifying the mathematical representation of

the accumulator’s interaction with the system.

3.2.4 Actuator model

The actuator converts hydraulic energy into mechanical energy. There are two sym-

metric dead volumes, A and B, representing the total volumes of the hydraulic cav-

ities and chambers of the cylinder. The hydraulic pump exerts energy into the fluid,

resulting in compressed pressure and flow rate. The pressure change depends on the

compressibility of the fluid. The hydraulic pump’s rotation generates fluid flow, but

leakages may decrease or increase the fluid flow into a cylinder chamber. The motion

of the piston also shifts hydraulic fluid, resulting in an equivalent flow. The compress-

ibility equation can be expressed as:

β
dP

dt
=
Qin −Qout

V
(3.19)

where:

• β: Bulk modulus of the hydraulic fluid, representing fluid compressibility (Pa),
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• P : Pressure in the hydraulic chamber (Pa),

• Qin: Inflow rate of hydraulic fluid into the chamber (m3/s),

• Qout: Outflow rate of hydraulic fluid from the chamber (m3/s),

• Vd: Volume of the hydraulic chamber (m3).

This equation captures the dynamic relationship between pressure, flow rates, and the

compressibility of the hydraulic fluid. Hence, for two symmetrical chambers A and

B, compressibility relation in equation 3.19 can be formed. The pressure dynamics of

chamber A is given by:

ṗA
Vd + Apx

β
= Qpump in − Cc(pA − pB)− Apẋ (3.20)

Here, the left-hand side is the compressed flow, where capacitance is determined by

the bulk modulus β. Vd is the volume of one of the chambers when the piston is in the

middle position. Notice that the volume of the fluid changes with the piston position.

Ap is the area of the piston, x is the position of the piston, and Cc is the leakage

coefficient between the chambers of the cylinder. For reverse directions, the pressure

dynamics of chamber B is given by:

ṗB
Vd − Apx

β
= Qpump out + Cc(pA − pB) + Apẋ (3.21)

Notice that equations for pressure changes in chambers A and B are equivalent. Using

equations 3.20 and 3.21, a load pressure state pD can be defined by neglecting the

swept volume by actuator position Apx. The following simplification is obtained:

ṗD = ṗA − ṗB =
2β

Vd

[
Dpω − Cr + 2Cc + 2Cp

2
pD − Apẋ

]
(3.22)

The equation of motion for the hydraulic actuator is given by:

Ap(pA − pB)− FL = mpẍ+ bẋ (3.23)
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Where FL is the external load, mp is the piston mass, and b is the viscous friction.

Notice that similar to the hydraulic pump equation, only a linear part of the friction,

viscous friction is modeled. The coulomb friction may be considered inside the ex-

ternal load term. In a detailed non-linear model, a friction model of the actuator will

be investigated. The reference of directions in the mathematical model of EHA is

summarized in Figure 3.3, qi, and qe refer to internal and external leakage flow rates.

Figure 3.3: Physical directions for the mathematical model of EHA

Hence from the above equations, defining Ceq = Cr+2Cc+2Cp

2
, a simple state space

model for EHA can be derived as follows:

di
dt

ω̇

ẋ

ẍ

ṗd
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i
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ẋ
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+



1
L

0

0

0

0


V (3.24)

Notice that in this state space model voltage is input, which is common in the litera-

ture as well. However, in practical application, a cascade loop structure for the motor

speed is required.

23



3.3 Preliminary EHA Simulation

During this design process, the preliminary EHA simulation is studied in order to vali-

date component selection and iterate if there is an unexpected issue. Hence for a more

detailed simulation, a nonlinear simulation using the Simscape library in Simulink is

generated compliant with the literature [56]. Nonlinear system characteristics such

as changing volume of cylinder chambers, friction, and accumulator effects are ob-

served. For cylinder friction, generic values are estimated later to be updated with

respect to experimental verification. Linear model simulation of EHA is illustrated in

Figure 3.4.

Figure 3.4: EHA linear model simulation in Simulink

For the nonlinear Simscape model, EHA subsystem with its components is shown in

Figure 3.5.

The motor and pump couple is modeled as demonstrated in Figure 3.6. In order to

model the internal and external leakage of the pump, hydraulic resistance blocks are

integrated on the simulation. For the electric motor, a DC motor equivalent for the

PMSM motor of the manufacturer is modeled as in the state-space model. As in the

state-space model, motor inertia is not calculated separately for the pump and motor.

Pump inertia is neglected since it is much lower than the inertia of the motor.

Hydraulic actuator is modeled as demonstrated in Figure 3.7. For the actuator, friction
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Figure 3.5: EHA nonlinear model simulation in Simscape

Figure 3.6: EHA electric motor-pump subsystem in Simscape

is modeled with translational friction block which uses Stribeck friction model [57].

An external load signal is integrated in order to observe performance of EHA under

static and dynamic load conditions.

Similarly, two directional relief valve sub-system is shown in Figure 3.8.

Open-loop response of both models is investigated. For the comparison of linear and

nonlinear EHA models, a chirp signal for voltage input is generated from 0.1 Hz to 30

Hz as demonstrated in Figure 3.9. State responses of piston displacement and current

are illustrated in Figure 3.10 and Figure 3.11 respectively.
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Figure 3.7: EHA actuator subsystem in Simscape

Figure 3.8: EHA relief valve subsystem in Simscape
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Figure 3.9: Chirp signal for voltage input
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Figure 3.10: Piston displacement response for the given chirp signal
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Figure 3.11: Electric current response for the given chirp signal

Inspecting figures, nonlinear and linear models act very similarly, especially for cur-

rent change. However, due to friction and cylinder dead-volume changes in the non-

linear model, there is a shift in piston displacements which should be expected.

Friction values were estimated according to experience and common literature val-

ues for the hydraulic actuators, also leakage coefficients and pump efficiencies were

determined with respect to common hydraulic values. The model is significant in or-

der to determine EHA equipment, however, simulation is not a complete simulation.

With the preliminary simulation, redundant designs of EHA will compared in terms

of their performance, and the hydraulic structure of redundancy will be determined.

3.4 Redundant EHA design

One of the specifications of the EHA is having a redundant structure such that, in

the event of a fault, it can switch to its secondary mode to continue operation. As

discussed in the introduction, redundancy is often required for flight control actuators.

Moog’s EHA product for aviation, for example, possesses a dual-redundant property

[58]. Therefore, before the mechanical design phase, preliminary simulation and

analysis are conducted to determine the appropriate redundant design.

Two different designs are considered: a single cylinder with double pump-motor cou-

plings in a single circuit, and two cylinders with their separate circuits. The simulation

behavior of the two designs is analyzed to contribute to the mechanical design process

of the EHA structure. While single-piston design is more conventional in the litera-

ture, there are also studies [37] and patents on two-piston [59] cylinder configuration.
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In the single-piston configuration, it is important to observe that there are two motor-

pump couplings incorporated into the system. The primary purpose of this dual-

coupling arrangement is to provide redundancy. In the event that one of the motor-

pump couplings fails or becomes non-functional, the other one is designed to au-

tomatically activate to ensure uninterrupted operation. This activation is achieved

through the control of signaling on-off valves, which are strategically positioned, as

clearly depicted in Figure 3.12. Furthermore, it is crucial to highlight that the hy-

draulic circuit includes check valves located on the outer circuit, as well as an on-off

valve situated between ports A and B of the cylinder. These components are indis-

pensable for the proper filling of hydraulic oil within the system.

Additionally, it is worth noting that there are on-off valves installed at both the inlet

and outlet of the pumps. These valves play a critical role in controlling the activation

or deactivation of the respective motor pump couplings. When these on-off valves are

configured appropriately, it can be observed that the overall hydraulic circuit closely

resembles the configuration depicted in Figure 1.1. This design ensures operational

flexibility and enhances the robustness of the system.

M M

Figure 3.12: Illustration of the single piston configuration for a redundant EHA setup.

In the double-piston configuration, the hydraulic system is characterized by the pres-

ence of two distinct motor-pump couplings. Each of these couplings is dedicated to

driving a specific piston, thereby ensuring efficient operation. This setup employs

tandem pistons, which are mechanically connected by a shared rod to facilitate syn-

chronized motion.

28



An interesting aspect of this design is that the motion of the rod, which is driven

by the active hydraulic circuit, does not induce any pressure difference in the passive

circuit. This is because the oil in the passive circuit can flow freely without restriction.

This operational principle significantly enhances the reliability and functionality of

the system. The hydraulic schematic that demonstrates this configuration in greater

detail is presented in Figure 3.13.

M

Figure 3.13: Double piston configuration for redundant EHA

3.4.1 Preliminary controller design for closed-loop simulation

In order to compare two models in the simulation, their closed-loop response in case

of failure-switching action is investigated. Hence a controller is required. For the

given state space model in 3.24, open-loop transfer function between input voltage

(V) and piston displacement (x) can be obtained using matrix relation Pvoltage(s) =

C(sI−A)−1B+D where

• A: system matrix defined in 3.24.
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• B: input matrix defined in 3.24.

• C: output matrix corresponding to piston displacement.

• D: null.

Hence resulting transfer function is shown in equation 3.25 and the open-loop fre-

quency response is illustrated in Figure 3.14.

Pvoltage(s) =
1.5475× 1010

s(s+ 1.46× 104)(s+ 29.32) (s2 + 109.5s+ 6.221× 107)
(3.25)
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Figure 3.14: Open-loop frequency response of Pvoltage(s)

A PID controller is designed in order to match design specifications using PID tuning

methods with parameters given in Table 3.3.

The resulting frequency response of the closed loop with the PID the controller is

illustrated in Figure 3.15. Since a controller is designed, simulation for two redundant

conditions shall be studied.
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Table 3.3: PID controller parameters for Pvoltage(s)

Parameter Value Description

KP 130 V
mm Proportional gain coefficient

KI 8.51 V
mm·s Integral gain coefficient

KD 0.84 V·s
mm Derivative gain coefficient
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Figure 3.15: Closed-loop frequency response of Pvoltage(s)

3.4.2 Simulation of redundant EHA models

The simulation of redundant systems is analyzed to evaluate their performance. For

the simulation, the physical system shown in Figure 3.5, along with the subsystem

blocks introduced in Figures 3.7, 3.6, and 3.8, is used. An on-off valve subsystem

block is introduced for the redundant models, as shown in Figure 3.16.

Additionally, for the simulation of switching a switching logic controller is integrated,

which is used in both single-piston and double-piston redundant systems in order to

switch between modes. The switch logic excites by the switch motor input, which

for the application is given as a step signal, switching once during simulation. The
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Figure 3.16: On-off valve block integrated in redundant nonlinear EHA models

switch logic then actives or de-actives motor-pump couples by sending voltage signal

and closing or opening corresponding on-off valves as shown in Figure 3.17.

Figure 3.17: Switch logic block integrated in redundant nonlinear EHA models

Apart from the blocks introduced in this section, no modification to the system in

Figure 3.5 is implemented. The configuration for the single piston is modeled ac-

cording to the hydraulic schematic in 3.12, where the respective Simulink model is

demonstrated in 3.18.
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Figure 3.18: Single piston nonlinear EHA model in Simulink

The configuration for the single piston is modeled according to the hydraulic schematic

in 3.13, where the respective Simulink model is demonstrated in 3.19. Notice that ac-

tuators are connected my mechanically in this setup. Switch logic controls which

motor-pump couple to activate and respective on-off valves in EHA circuits.

Figure 3.19: Double piston nonlinear EHA model in Simulink
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Both configurations have the same PID controllers, which were previously designed

based on the linear model with a saturation value of ±480V. A performance evalu-

ation simulation is conducted for both redundant systems to observe their robustness

during sudden changes, such as activating the redundant sub-system or applying ex-

ternal step loads. The simulation parameters are summarized in Table 3.4.

Table 3.4: Simulation parameters for redundant EHA configurations

Parameter Value

External load 10 kN

External load step time 1 s

Switching step time 3 s

Reference frequency 3 Hz

Reference amplitude 3 mm

Solver ode23t

The piston displacements of the resulting test are illustrated in Figure 3.20. Notice

that both configurations have the same displacement response which validates the

redundancy design equivalency to EHA circuit introduced. However, their difference

in response is observed during critical load step time and switch step time of 1 s and 3

s at the simulation, respectively. The difference in the piston displacements during the

load step is zoomed in Figure 3.21. Similarly difference of the piston displacements

during the switching action is zoomed in Figure 3.22

From the figures, it is clear that double piston configuration is less robust to step

changes, due to relatively high (1 mm) sudden step changes in displacement during

operation. While in single piston configuration, effects are damped smoother. On the

other hand, it can be argued that both configurations maintain operation successfully

in a short time interval of 50 ms.

The impacts of step signals and switching action can be observed from the motor

speeds of the configurations, which are illustrated in Figure 3.23 and Figure 3.24.
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Figure 3.20: Piston displacement during performance evaluation simulation of redun-

dant EHA configurations
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Figure 3.21: Piston displacements while load step affects
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Figure 3.23: Double piston configuration motor speeds during switch and load steps
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Figure 3.22: Piston displacements while switch activates
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Figure 3.24: Single piston configuration motor speeds during switch and load steps

From a redundancy perspective, the double-piston configuration has an advantage be-

cause the pistons themselves are redundant. However, while the performance of both

redundant systems is nearly identical under nominal conditions, the double-piston

configuration performs worse during sudden load changes or redundancy switches.

Additionally, in terms of compactness, the additional piston increases the cylinder’s

length, resulting in larger overall dimensions. Hence, considering the simulation re-

sults and dimensional concerns, an EHA design with a single-piston redundant con-

figuration is preferred.
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3.5 Mechanical design of EHA

Compactness is a key criterion for the mechanical structure of the EHA. In specific

flight control applications, manifolds are designed specifically designed together with

the sub-components such as sensors, pumps, etc. [60]. However, for this study, indus-

trial equipment is assembled together with a manifold where equipment is specified

in Table 3.2. Equipment is selected and updated through iterative designs according

to simulation results, such as accumulator volume and cracking pressure of check

valves. In order to prevent cavitation, based on fluid dynamics analysis on the ex-

ternal gear pump, EHA’s idle pressure is set to 10 bar. Rod and piston dimensions

are determined according to performance specifications as well as buckling analy-

sis. Therefore material and dimensions are determined, considering safety factors for

maximum load and stress on material. Another factor to consider is the total mass of

the assembly since mass is also critical for aerospace applications along with space

occupied. As illustrated in Appendix A, the final hydraulic circuit is designed consid-

ering the mechanical structure along with the sensor placements, which affects man-

ifold geometry and structure. Since there are 6 lines between two piston chambers

and two motor-pump couples sideways, a symmetrical octagon manifold architecture

is designed and illustrated in Figure 3.25.

Figure 3.25: Dimensions of octagon manifold [54]
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Dimensions of the octagon manifold are presented in Table 3.5. These dimensions are

critical to the simulation parameters of the piston mass and dead volume of the hy-

draulic chambers, together with the mentioned safety factors on load and buckling.

Table 3.5: Fundamental dimensions of octagon manifold

Basic Dimension Symbol Value Unit

Diameter of Rod dr 18 mm

Diameter of Piston dp 60 mm

Length of Rods (Two Sides) lr 230 mm

Length of Piston lp 40 mm

Minimum Thickness of Wall twall 26 mm

Diameter of Hydraulic Channels dc 8 mm

Diameter of Octagon Manifold do 190 mm

Length of Octagon Manifold lom 280 mm

Hence the mass of the rod, piston, and octagon manifold can be calculated according

to the equations 3.26, 3.27, 3.28 and 3.29 respectively.

do = dp + 2dc + 4twall (3.26)

mr = 2ρsr

(
πd2r
4
lr

)
(3.27)

mp = ρsp

(
πd2p
4
lp

)
(3.28)

mom = ρaom

(
d2o

1 +
√
2
lom −

πsd2p
4

− 2πsd2c

)
(3.29)

The resulting mechanical design is illustrated in Figure 3.26. There is a single man-

ifold structure connected to the supplied equipment. There are pump-motor couples

connected to sideways of the manifold and the accumulator on the bottom is con-

nected to the hydraulic circuit. The motor drivers and controller are not integrated

into the manifold structure.
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Figure 3.26: Mechanical model of EHA with selected equipment

Figure 3.27: Cross section of EHA manifold displaying hydraulic lines

In Figure 3.27, the cross-section of the EHA model is illustrated. The dead vol-

ume, Vd, of one cylinder chamber, including the hydraulic cavities, is approximately

4.0123 × 10−4,m3, where the piston chamber occupies approximately 80% of the

dead volume.
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3.6 System identification of EHA

Prior to the manufacturing process of EHA, selected component is procured and iden-

tification tests on them are conducted at Repkon Dynamics Laboratory as shown in

Figure 3.28. For the motor model, technical data of motor characteristics are vali-

dated by comparison of simulations and experiments. Driver control of the motor is

also modeled based on experimental data. For the external gear pump, the volumetric

efficiency of the pump depending on pressure and rotational speed is mapped. Af-

ter the assembly process, characterization of friction on the actuator in particular and

general EHA system is conducted.

Figure 3.28: Hydraulic test bench at Repkon Dynamics Laboratory

In Figure 3.29, the assembly of EHA is demonstrated which is displayed at the 24th

National Conference on Automatic Control.
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Figure 3.29: EHA demonstration at the 24th National Conference on Automatic Con-

trol [61]

3.6.1 Identification of PMSM and motor driver

After selecting the electric motor and conducting experiments in a laboratory envi-

ronment, it was realized that, while the state-space model in Equation 3.24 precisely

describes the hydro-mechanical dynamics of the actuator, it is incomplete in modeling

the connection between the electric motor and the driver. Therefore, an update to the

preliminary simulation is required, taking into account the experimental data and the

selected components. Although it is correct that voltage is the input that excites the

system, there is a cascade loop structure in the motor driver, as illustrated in Figure

3.30.
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Figure 3.30: Cascade loop structure of the motor control structure integrated into

EHA control
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The cascade loop structure illustrated is a simplification that will be used for the lin-

earized EHA models, neglecting flux-generating current. Selected driver and motor

control voltage with the current controller. Since torque is related to torque gener-

ating current by torque constant, this control method is also called torque mode, or

torque control. In section 3.2, the mathematical model of EHA was discussed includ-

ing PMSM motor model that was simplified to DC motor model. The equations 3.10

and 3.11, can be modeled in Simulink considering nonlinearity such as saturation of

current values and driver delays. Additionally, current and velocity controllers that

are integrated into the motor driver can be modeled in parallel with the experimen-

tal results. According to voltage dynamics and torque generated by the motor, the

following Simulink diagram is formed in Figure 3.31.

Figure 3.31: PMSM model in Simulink

The parameters of inductance, resistance, number of poles, rotor inertia, torque, and

back-emf constants are shared by the manufacturer on the technical data sheet of

AM8053N. However, damping and friction information is not available, has tests

are required to tune these parameters. Additionally, it is known that these constants

are approximations, and constants actually derived to represent a linear relation. In

practical applications, constants may change with respect to torque and factors such

as temperature. Controllers on the driver AX5118, are in a cascade loop structure as

described in Figure 3.30. The current controller structure in Simulink is illustrated in

Figure 3.32.
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Figure 3.32: Current controller of the driver in Simulink

Since the set point for the flux-generating current is zero, an approximation can be

made to neglect the flux-generating current in the linear model. To validate the con-

troller model and the PMSM motor model, an open-loop test is conducted in simula-

tion for motor velocity. During the experiment, an angular speed command of 1000

rpm is applied at increasing frequencies. Current command output from the velocity

controller loop as well as motor velocity and current are measured. In the simulation,

verification of the current controller and PMSM model is investigated by applying

the current command. In Figure 3.33, current command measurement and resulting

torque generating current compassion of test data and simulation is illustrated. The

current command is followed smoothly in the simulation. However, the test data ex-

hibits significant noise, which is likely due to torque disturbance compensation, as

the experiment is conducted in the velocity loop, and due to measurement noise.
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Figure 3.33: Torque generating currents

The effects of such disturbances and noise are also reflected in the open-loop velocity

responses. In Figure 3.34. While velocity amplitudes are quite coherent, simulation
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has a steady state error due to having no closed-loop feedback of motor velocity.

Hence, after verification of the current controller, the velocity controller response

shall be investigated.
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Figure 3.34: Motor velocities of simulation with no reference velocity

In Figure 3.35, the velocity controller in Simulink is demonstrated. For the given

velocity command, a torque/current command is generated in the velocity loop to the

current controller which was previously validated. In Figure 3.36, for the same ex-

perimental data however applying velocity reference instead of the current command,

velocity response is shown. The frequencies are between 1 Hz to 15 Hz. The program

of the sine sweep test, as well FFT analysis of the results are shared in Appendix B.

Figure 3.35: Velocity controller of the driver in Simulink

The simulation and experimental data demonstrate a high correlation in their fre-

quency responses. An initial 8 ms delay in the driver was observed, attributed to the

delayed activation of three buffers between the driver and logic controller, as spec-

ified by the manufacturer’s technical support team. This delay was reduced in later

experiments by adjusting the controller’s sample time, and the revised delay effects

were integrated into the simulation.

The Root Mean Square Error (RMSE) between the simulation and experimental re-

sults is 27 rpm, with a maximum error of 117 rpm, primarily due to phase shifts ob-
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Figure 3.36: Motor velocities in velocity controller loop

served at higher frequencies. These findings validate the accuracy of the simulation

model while emphasizing the influence of controller timing on system performance.

Default PI parameters for the controllers were applied during the experiments, further

optimization of controller parameters will be investigated.

3.6.2 Identification of external gear pump model

For the modeling of the external gear pump VIVOIL X1R2725FJJE, an experiment

is conducted at different pressures and rotation speeds in order to map the relation

between flow rate. While there are many factors affecting the volumetric efficiency

of the pump, such as properties of the hydraulic oil, temperature, wear, motor speed,

and pressure, two main states that are measurable — motor speed and pressure — are

the primary factors influencing efficiency. In terms of simulating EHA, motor speed

and pressure are also fundamental variables, unlike temperature or oil cleanliness

which depend on many external factors. The hydraulic schematic of the experiment

is illustrated in Figure 3.37.

For the experiment, a pressure-compensated variable displacement pump operating
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Figure 3.37: Hydraulic pump test setup schematic

as a pressure source connected to the hydraulic schematic is demonstrated. The pres-

sure source is set at low pressures (2 bar), supplying flow rate as external gear pump

requires. The main operating principle can be summarized as:

• 1.13.1 coded connector supplies pressure from the pressure source through pro-

portional valve 3.3.

• 1.13.2 is the return connector to the hydraulic reservoir.

• 3.5 is pressure relief valve, that protects inlet pressure of the external gear

pump, against potential pressure fluctuations.

• 3.4 is directional valve supplies hydraulic oil at decided line of the hydraulic

pump.

• 3.8.2 is needle valve, manually adjusted in order to increase pressure at the

pump outlet, where 3.7.1 flow-sensor records outlet flow rate of the pump.

• 3.7.2 measures external leakage of the hydraulic pump at 3.1, which is rotated

at different speeds by electric motor 3.2. From the motor, rotational speed data

is also recorded.

• Accumulator at 3.9 prevents pressure fluctuations on the inlet line of the pump.
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• inlet, outlet and leakage pressures are recorded by pressure sensor 3.6.1, 3.6.2

and 3.6.3 respectively.

The equipment of the hydraulic circuit is demonstrated in Table 3.6.

Table 3.6: Pump test circuit equipment

No Description Brand Product Code

1.13.1 Poppet type quick release

coupling, 100 L/min

DNP PVV3.2013.112

1.13.2 Poppet type quick release

coupling, 100 L/min

DNP PVV3.2013.113

3.1 EHA pump Vivoil Oleodi-

namica Vivolo

X1R2725FJJE

3.2 Test motor BECKHOFF AM8063-18A0-

0000

3.3 2/2 pressure reducing valve,

solenoid controlled, 100

L/min

HYDAC PDR08P-01 M-C-

N-087-0

3.4 4/2 valve, solenoid con-

trolled, 100 L/min

HYDAC 4WE 6 D A01-24 D

G /N

3.5 Safety valve, 2–30 bar PARKER A04B2PZN

3.6.1 Pressure sensor, 0–20 bar HYDAC HDA4446-A-016-

000

3.6.2 Pressure sensor, 0–300 bar HYDAC HDA4446-A-400-

000

3.6.3 Pressure sensor, 0–20 bar HYDAC HDA4446-A-016-

000

3.7.1 Flow meter, 100 L/min, sin-

gle direction

VSE VS 1/1 GP012V-

42R11/5

3.7.2 Flow meter, 10 L/min, single

direction

VSE VS 0.1/6 GP012V-

42R11/5

3.8.1 Needle valve, <5 L/min HYDAC DV-06-01.X/0
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3.8.2 Needle valve, 10 L/min HYDAC DV-16-01.X/0

3.8.3 Needle valve, <10 L/min HYDAC DV-06-01.X/0

3.9 Accumulators HYDAC SB330-6A1/112U-

330A

In the experiment, the needle valve was adjusted at every 200 rpm increment from

200 rpm to 6000 rpm to increase the system pressure for each specific speed. As

the needle valve was progressively closed, a corresponding decrease in flow rate was

observed. This relationship between flow rate and pressure is exemplified in Figure

3.38.

It is important to note that no active heat management was applied during the experi-

ment. The initial temperature of the system was recorded at 19 °C, gradually rising to

23.2 °C by the end of the experiment. This temperature increase may have contributed

to minor variations in the observed results.
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Figure 3.38: Flow-rate measured from the pump at varying outlet pressures at 200

rpm

Notice that there are sudden flow-rate drops at pressures while the needle valve is

adjusted, a transient behavior is observed. Such flow-rate data is discarded from

efficiency calculation. The volumetric efficiency plot obtained is illustrated in Figure

3.39.
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Figure 3.39: Volumetric efficiency plot of external gear pump

Outlet pressure is equivalent to the pressure difference between the inlet and the outlet

since inlet pressure is connected to the hydraulic tank. From the volumetric efficiency

map, leakage coefficients of the pump can be linearized for pressures between 50 -

250 bar. Notice in equation 3.15, internal and external leakage coefficients Cp and

Cr are also related to inlet and accumulator pressures which may be neglected, hence

equation can be modeled as in equation 3.31:

Q = Dpω − (Cp + Cr)pD (3.30)

Assuming inlet and outlet leakages are equivalent, a map for the total leakage coeffi-

cient is derived from the volumetric efficiency relation:

Q = Dpω · ηv(ω, pD) ≃ Dpω − (Cp + Cr)pD (3.31)

From the obtained leakage coefficient map, average inlet and outlet leakage coeffi-

cients are calculated as 2× 10−12m3/(s · Pa), where these coefficients are useful for

the linear plant model. The non-linear volumetric efficiency plot is integrated as a

look-up table to Simscape simulation for the nonlinear simulation analysis.
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3.6.3 Identification of actuator model

For the identification of the actuator model, dead volume in the compact EHA is

calculated from the mechanical CAD model. Hence Vd in equation 3.20 is derived,

symmetrical for both chambers.

In equation 3.23, part of the external load FL and viscous friction b can be decom-

posed to form cylinder friction during motion. Hence the equation can be written

as:

Ap(pA − pB)− Ff − FL = mpẍ (3.32)

Notice that external load does not include friction in this mathematical model. In

terms of friction, equation 3.32 is a nonlinear dynamic model while the previous

equation 3.23 is a linear model of the friction only including viscous effects. There

are many models of friction in the context of hydraulic friction [62], Stribeck fric-

tion model is a common model that mostly other models compared on. The actuator

friction model is modeled as Stribeck friction due to its wide-range acceptance, and

compliance to simulation solvers. Additionally, Simscape translational friction ap-

plies Stribeck model. Stribeck friction model is represented in equation 3.33:

Ff =
√
2e · (Fs − Fc) · e

−
(

v
vs

√
2

)2

·
(

v

vs
√
2

)
+ Fc · tanh

(
v

vs/10

)
+ µv (3.33)

Where:

• Ff : Total friction force

• Fc: Coulomb friction force

• Fs: Static friction force

• v: Relative velocity

• vs: Stribeck velocity threshold

• µ: Viscous friction coefficient

Notice that Ff depends on v and other variables are constants. As illustrated in Figure

3.40, a closed-loop displacement test is conducted in order to identify the friction
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model. Sinusoidal reference was commanded at increasing frequencies, resulting

in higher actuator velocities. Pressure from chambers A and B of the cylinder are

recorded, under no external load.
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Figure 3.40: Sample test for the friction modeling

Hence dynamic equation in equation 3.32 is mostly constructed, however inertia of

the moving piston mass should be considered too. In the experiment, it is observed

that the pressure difference during the test is around 1000 N magnitude. The effect of

inertial force due to acceleration of piston mass is negligible, even at higher frequen-

cies. From the displacement reference amplitude and frequencies, given piston mass,

peak force resulting from the reference command is illustrated in Figure 3.41.

0 5 10 15

Frequency (Hz)

0

10

20

30

40

50

60

P
ea

k 
In

er
tia

l F
or

ce
 (

N
)

Figure 3.41: Peak inertial force with respect to reference command frequency

Hence, it can be concluded that the effect of friction force is significantly higher, par-

ticularly at lower frequencies. From the experimental data, by neglecting the inertial

force, force derived from the pressure differences is plotted with respect to piston
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speed, as shown in Figure 3.42. Based on this data, the Stribeck friction model is

fitted, using velocity as the input.
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Figure 3.42: Stribeck fit to experimental friction force data

The friction model is fitted symmetrical in both directions and around the operating

point of the piston. The resulting Stribeck constants are resented in Table 3.7.

Table 3.7: Stribeck coefficients of the friction model

Coefficient Value Description

Fc 450 Coulomb friction force (N)

Fs 800 Static friction force (N)

vs 0.03 Stribeck velocity threshold (m/s)

µ 1120 Viscous friction coefficient (Ns/m)

Additionally, a load test is conducted on EHA system in order to observe the holding

capacity of load, thermal response, and leakage characteristics. Heat is generated

on EHA system due to leakage and inefficiencies of the pump-motor couple. As the

temperature of the hydraulic oil increases, the viscosity of the oil drops significantly

hence leakage of the system increases. The load test setup is demonstrated in Figure
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3.43.

Figure 3.43: Test setup for the load tests

An external load of 23 kN is applied on EHA while the position controller is active.

Thermo-couples are placed on the inlet and outlet of the active pump and temperature

measurements from the motor’s own sensors are recorded during the experiment. The

effect of temperature increase on leakage is followed by the rotational speed of the

motor, compensating for the leakage in the system. Hence, since the displacement

of the pump is known and the piston is stationary, it is possible to derive the leakage

coefficient at the given pressure difference on EHA. In Figure 3.44, the temperature

is highest at the outlet of the gear pump. There is a clear correlation as the tempera-

ture increases, motor speed also increases in order to compensate for leakages. From

a direct ratio of pressure and flow rate supplied by motor speed, the dynamic leak-

age coefficient is plotted with respect to time. It is clear high temperatures on EHA

increase the leakage coefficient of the system. However, the exact relation between

temperature and leakage is out of the scope of this thesis. The leakage coefficient

average from the low-temperature range is calculated for system identification since

most performance tests result in short time intervals without significant temperature

increases.
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Figure 3.44: Load test conducted to observe leakage coefficient of EHA

3.6.4 Validation of EHA model

As a result of identification tests, detailed parameterization of the EHA sub-components

has been achieved. This enables the creation of accurate non-linear simulations to

evaluate controller performance under specific conditions and assess overall system

behavior. Furthermore, the availability of a detailed system model allows for con-

fident linearization, as it can be rigorously compared against the non-linear model.

Voltage in equation 3.14 is generated via the current controller of the driver, which

has a fixed PI structure. Hence PI controller equation is given as:

V = Ki
pie +Ki

I

∫
ie dt where ie = iref − i (3.34)
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Here, Ki
p and Ki

I are the proportional and integral constants of the PI controller, ie

is the current loop error, and iref is the reference current. Hence voltage input based

state space model in equation 3.24 can be updated with the instruction of
∫
ie dt

as state:



di
dt

ω̇

ẋ

ẍ

ṗd

ie


=



−R+Ki
p

L
−kE

L
0 0 0

Ki
I

L

kT
Jeq

− beq
Jeq

0 0 −Dp

Jeq
0

0 0 0 1 0 0

0 0 0 − b
mp

Ap

mp
0

0 2βDp

Vd
0 −2βAp

Vd
−βCeq

Vd
0

−1 0 0 0 0 0


︸ ︷︷ ︸

Ai



i

ω

x

ẋ

pd∫
ie


+



Ki
p

L

0

0

0

0

1


︸ ︷︷ ︸

Bi

iref (3.35)

The state space model in equation 3.35 is the torque-controlled EHA plant, similar to

the transfer function generation in equation 3.24, a transfer function between iref and

x can be generated.

Pi(s) =
x(s)

iref(s)
= Ci

(
sI−Ai

)−1
Bi (3.36)

Ci =
[
0 0 1 0 0 0

]
(3.37)

For the integration of velocity controller to the state space, the same principle can be

followed in the PI loop. The current error ie is given as:

ie = −i+ 1

kT

(
Kω

p (ωref − ω) +Kω
I

∫
ωe

)
(3.38)

Notice 1
kT

term directly merges from the driver settings. The current derivative di
dt

can

be expressed as:
di

dt
=
Ki

pie +Ki
I

∫
ie − iR− kEω

L
(3.39)

Substituting ie into the current derivative:

di

dt
= −i

(Ki
p +R)

L
−ω

kE +Kω
pK

i
p

1
kT

L
+

∫
ie
Ki

I

L
+

∫
ωe

Kω
I K

i
p

kTL
+ωref

Kω
pK

i
p

kTL
(3.40)
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Hence giving equation 3.40, introducing
∫
ωref as a state, a state space model includ-

ing current and velocity controllers of the driver can be generated:

di
dt

ω̇

ẋ

ẍ

ṗd

ie

ωe


=



−R+Ki
p

L
−

kE+Kω
p Ki

p
1

kT

L
0 0 0

Ki
I

L

Kω
I Ki

p

kTL

kT
Jeq

− beq
Jeq

0 0 −Dp

Jeq
0 0

0 0 0 1 0 0 0

0 0 0 − b
mp

Ap

mp
0 0

0 2βDp

Vd
0 −2βAp

Vd
−βCeq

Vd
0 0

−1 −Kω
p

L
0 0 0 0

Kω
I

L

0 −1 0 0 0 0 0


︸ ︷︷ ︸

Aω



i

ω

x

ẋ

pd∫
ie∫
ωe


+



Kω
p Ki

p

kTL
0

0 0

0 0

0 − 1
mp

0 0
Kω

p

kT
0

1 0


︸ ︷︷ ︸

Bω

ωref

FL



(3.41)

Notice that state space in 3.41 has also an external load as an input which will be

analyzed for controller design in the next section. Similar to the plant derivation

of the torque controller EHA plant, transfer functions between external force and

position Pd(s) = x(s)
FL(s)

and transfer function between reference motor speed and

position Pω(s) =
x(s)

ωref (s)
can be obtained:

[
Pω(s) Pd(s)

]
= Cω (sI−Aω)−1Bω (3.42)

Cω =
[
0 0 1 0 0 0 0

]
(3.43)

Hence a detailed linear plant of EHA is obtained for different control modes (torque

and motor speed). The linear model can be compared with the nonlinear model that is

constructed according to the identified sub-components. In nonlinear model, current

and voltage controllers are integrated as well as pump and actuator characteristics

updated on the preliminary EHA model introduced in Figure 3.5.

For the closed loop experiment, a PID controller is designed with tuning methods.

The simulation parameters are demonstrated in Table 3.8. Resulting closed loop re-

sponse of non-nonlinear and linear simulations compared with the experimental result

is illustrated in Figure 3.45. The linear model has no delays nor friction in the model

hence it has a smoother start while nonlinear model matches experimental result bet-

ter due to friction and driver delays in the nonlinear model.

It is important to note that the model is far from ideal. For instance, it is well-known

and observed that above 50°C, hydraulic oil viscosity decreases rapidly, and oil addi-
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Figure 3.45: Comparison of simulation results with experimental data

tives begin to degrade. Even more critically, due to the compact design of the EHA,

there are no hydraulic filters, which poses a risk to long-term performance. Hydraulic

oil cleanliness may influence oil viscosity and cylinder friction, particularly over ex-

tended operational periods. Reduced viscosity can also lead to increased wear in the

external gear pump, as the oil’s lubrication properties degrade. While measures have

been taken to prevent cavitation in the gear pump, such phenomena may still occur,

leading to a reduction in the pump’s volumetric efficiency over prolonged use.

Additionally, it should be noted that the torque and back-EMF constants used in the

model are approximations. These constants are known to vary with factors such as

current, temperature, and other external conditions, which introduces further uncer-

tainty into the model’s accuracy. Hence robust control designs which accounts uncer-

tain plant behavior should be considered.
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Table 3.8: Nominal values for simulation

Parameter Nominal value

Leakage coefficient (Ceq) 3.8× 10−12
[

m3/s
Pa

]
Pump displacement (Dp) 6.684× 10−7

[
m3

rad

]
Bulk modulus (β) 1.379× 109 [Pa] (MIL-PRF-5606)

Torque constant (kT ) 0.73
[

Nm
A

]
Motor resistance (R) 0.45 [Ω]

Motor inductance (L) 2.1× 10−3 [H]

Pump-motor inertia (Jeq) 5.93× 10−4 [kg.m2]

Actuator area (Ap) 2572× 10−6 [m2]

Chamber volume (Vd) 4.01× 10−4 [m3]

Piston mass (mp) 2 [kg]

Viscous damping of actuator (b) 1120
[

N
(m/s)

]
Viscous damping of motor-pump couple (b) 100

[
N

(rad/s)

]
Velocity loop integral gain (Kω

I ) 56
[

Nm
(rad/s)

]
Velocity loop P gain (Kω

P ) 0.45
[

Nm
rad/s

]
Current loop P gain (Ki

P ) 11.3
[

V
A

]
Current loop integral gain (Ki

I) 14125
[

V
A.s

]
Position control loop P gain (Kpos

P ) 900
[ rpm

mm

]
Position control loop I gain (Kpos

I ) 105.88
[ rpm

mm.s

]
Position control loop D gain (Kpos

D ) 0.9
[ rpm.s

mm

]
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CHAPTER 4

CONTROLLER DESIGN

In this chapter, techniques for state estimation aimed at mitigating noise will be ex-

plored. The EHA plant will be evaluated, and parametric uncertainties will be defined.

These will then inform the design of a robust controller.

4.1 Kalman Filter Implementation

In EHAs and flight control systems, state estimation is crucial for improving measure-

ments and diagnosing faults. Some states cannot be directly measured, while others

may be prohibitively expensive to sense. State estimation methods address these chal-

lenges by offering a cost-effective alternative. Among the foundational contributions

to the state estimation of EHAs is Chinniah’s work, which implemented the Kalman

filter for friction modeling and fault diagnosis [33]. This section presents the theoret-

ical basis of the Kalman filter, an example from existing literature, and its application

to a faulty position sensor.

4.1.1 Background

The Kalman filter, developed by Rudolf E. Kalman in 1960, is a statistically optimal

algorithm used to estimate the states of a dynamic system using measurements and

a mathematical model of the system. Its foundation lies in linear systems theory

and statistical principles, making it indispensable in areas such as control systems,

robotics, and signal processing.A great source for Kalman filtering is the works of

Alex Becker, explaining Kalman filter in his website and book[63].
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4.1.1.1 State Prediction Equation

The next state of the system is predicted using the system dynamics:

x̂n+1|n = Fx̂n|n +Gun +wn, (4.1)

where:

• x̂n+1|n: Predicted state vector at time n+ 1.

• x̂n|n: Estimated state vector at time n.

• un: Control input vector.

• wn: Process noise (assumed zero-mean Gaussian).

• F: State transition matrix.

• G: Input control matrix.

The state prediction equation is a state-space equation derived from the system dy-

namics. It models how the system evolves over time based on the previous state,

control inputs, and inherent uncertainties.

It is important to note that the process noise wn is not directly measurable. It repre-

sents the deviation between the ideal state-space model and the actual system dynam-

ics, which are influenced by unmodeled dynamics or disturbances. This deviation is

quantified by the process noise covariance matrix Q, which may vary with time.

In practice, Q reflects how uncertain the system dynamics are, helping to account for

non-idealities in the state-space model.

4.1.1.2 Covariance Prediction Equation

The uncertainty in the predicted state is propagated as:

Pn+1|n = FPn|nF
T +Q, (4.2)

where:
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• Pn+1|n: Predicted covariance matrix.

• Pn|n: State estimate covariance matrix at time n.

• Q: Process noise covariance matrix.

4.1.1.3 Measurement Update Equation

The measurement model updates the state estimate using:

zn = Hxn + vn, (4.3)

where:

• zn: Measurement vector.

• xn: True system state (hidden state).

• H: Measurement matrix.

• vn: Measurement noise (zero-mean Gaussian).

Here measurement update equation may be regarded as the equivalent output equation

for the state space representation of the system. States may not be measurable them-

selves, hence there is H defined, a linear transformation between states and measure-

ment. Similar to the state prediction, measurement noise vn is not measured however

its covariance Rn informs Kalman gain on how much to rely on sensor measurements.

4.1.1.4 Kalman Gain Calculation

The Kalman gain determines the weight given to the new measurement:

Kn = Pn|n−1H
T
(
HPn|n−1H

T +Rn

)−1
, (4.4)

where Rn is the measurement noise covariance matrix.
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4.1.1.5 State Update Equation

Using the Kalman gain, the state estimate is updated as:

x̂n|n = x̂n|n−1 +Kn

(
zn −Hx̂n|n−1

)
, (4.5)

4.1.1.6 Covariance Update Equation

Finally, the estimate covariance is updated:

Pn|n = (I−KnH)Pn|n−1 (I−KnH)T +KnRnK
T
n . (4.6)

Notice that equation 4.6 has a simplified from by inserting Kalman gain equation 4.4:

Pn|n = (I−KnH)Pn|n−1 (4.7)

While equation 4.7 is a more elegant representation and may perform well, it is a

numerically unstable equation.

4.1.1.7 Kalman Filter Workflow

5 main Kalman Filter equations-measurement equation as an auxiliary- 4.1, 4.2, 4.4,

4.5 and 4.6, operates in predict and correct cycle. During initialization, the system

state is predicted for the next step (4.1), also the uncertainty of the prediction is ex-

trapolated (4.2). Based on the measurement signal, uncertainty (4.6) and states (4.5)

are updated according to the Kalman gain (4.4), balancing measurement noise and

prediction uncertainty.
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Figure 4.1: Description of Kalman filtering steps [63]

The entire Kalman filter process can be visualized as in Figure 4.1, comprising the

following steps:

1. Initialization (Step 0): Set the initial state x̂0|0 and initial covariance P0|0.

2. Measurement (Step 1): Provide measured state zn and measurement variance

Rn.

3. State Update (Step 2): Update states and prediction uncertainty by calculating

Kalman gain.

4. Prediction (Step 3): Extrapolate system state estimation and its variance to

update state and estimation uncertainty on the next step.

4.1.2 Implementation from literature

A friction-estimation algorithm proposed by Chinniah will be investigated in this sec-

tion [64]. This algorithm is also explained in greater detail in his doctoral thesis [65].
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He proposes an experimental friction model described as follows:

Ff = α1 sign(ẋ)ẋ2 + α2ẋ+ α3 sign(ẋ) (4.8)

where:

• α1, α2, and α3 are model parameters of friction,

• ẋ represents the piston velocity,

• sign(ẋ) is the sign function indicating the direction of motion.

The friction coefficient parameters are demonstrated in Table 4.1.

Parameter Value Unit

α1 2.1× 104 Ns2/m2

α2 −1450 Ns/m

α3 46 N

Table 4.1: Friction model parameters

The obtained friction model is relevant for the Newton’s second law of motion for the

force balance equation that is previously mentioned in EHA’s mathematical model in

equation 3.23.

Ap(pA − pB)− Ff = mpẍ (4.9)

Hence, a nonlinear state space model can be generated based on equations 4.8 and

4.9:

Ẋ1 = X2 + w1 (4.10)

Ẋ2 =
Ap∆P

mp

− X3X
2
2

mp

sign(X2)−
X4X2

mp

− X5

mp

sign(X2) + w2 (4.11)

Ẋ3 = w3 (4.12)

Ẋ4 = w4 (4.13)

Ẋ5 = w5 (4.14)
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Equation 4.11 assumes that the friction behavior is unknown and models the noise of

the system as friction based on the relationship between pressure and piston acceler-

ation. X3, X4, X5 correspond to the friction coefficients in equation 4.8. Here, X2

represents the piston velocity, and X1 denotes the piston position. For the observabil-

ity problem, an iterative Kalman filter structure is proposed by Chinniah, calculating

α3 with a particular Kalman filter, then calculating α1 and α1 in a second Kalman

filter. Hence, α3 can be extracted from equation 4.8:

Fα3
f = α3 sign(ẋ) (4.15)

For the discrete model, continuous equations are converted by sample time Ts. The

system transition matrix in relation to equation 4.9 and 4.15 can be represented dis-

cretely as:

Fk = ϕk =


1 Ts 0

0 1− X3kTs

mp
0

0 0 1

 , Ts = 1× 10−4 s (4.16)

The first state represents the piston position, the second state represents the piston

velocity, and the third state corresponds to friction generated by α3 which is modeled

as a process noise. Ts is the simulation step size, and the corresponding discrete-time

derivatives are used for this value. Equation 4.1 can be represented as follows:

x̂k+1 = ϕkx̂k +Gun (4.17)

G =
[
0 1 0

]T
(4.18)

un =
∆PTsAp

mp

(4.19)

Notice in equation 4.19 pressure difference is directly integrated to the input vector,

without any measurement noise, which will be discussed later in the section. For

the measurement matrix H defined in equation 4.3, piston position and velocity are

measured. Hence matrix initializations for the 3-state Kalman filter are defined as:
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Rk =

10−9 0

0 10−3

 (4.20)

P0 =


109 0 0

0 109 0

0 0 109

 (4.21)

Qk =


10−9 0 0

0 10−12 0

0 0 10−4

 (4.22)

Thus first part of the 3-state Kalman filter is defined completely. The second Kalman

filter follows 4 state system matrices approach to estimate α1 and α2 coefficients,

keeping the same H to measure piston position and velocity. The Simulink imple-

mentation of the two-filter iterative structure is illustrated in Figure 4.2. White noise

Measurement	(x,v)

Pressure	difference	(dP)

EHA

+

+

Add	noise

Z_measure

a3

dP

X_est

P_est

begin

K_out

X_out

P_out

Kalman	a1,a2

memory1

memory2

step

1
a12

a2

dP

Z_measure

X_est

P_est

begin

rbegin

K_out

X_out

P_out

a3	estimator
	White	Noise

Figure 4.2: Kalman filter structure proposed by Chinniah constructed in Simulink

is added to the position and velocity measurements in the system. For the position

measurement, the noise variance is 1 × 10−10 m2, and for the velocity measurement,

the noise variance is 0.01 (m/s)2. The Matlab function codes for the friction model,

3-state Kalman filter and 4-state Kalman filter are shared in the Appendix C. For the

4-state Kalman Filter, α3 value estimated on the previous filter is inserted as an input.
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The state transition matrix in the 4-state Kalman filter is derived from equations 4.10-

4.14 however α3 and ∆P terms are defined as inputs to the system equations:

Φk =


1 Ts 0 0

0 1 −sign(x̂2k)
Tsx̂2

2k

mp
−Tsx̂2k

mp

0 0 1 0

0 0 0 1

 (4.23)

Accordingly, the system dynamics can be modeled as follows:

xk+1 = Φkxk +Gun (4.24)

where:

G =


0

1

0

0

 (4.25)

un =
Ts
mp

(Ap∆P + α̂3sign(x̂2k)) (4.26)

Hence, complete modeling of the system is achieved by state prediction equations.

Matrix initializations for 4-state Kalman filter are designed as:

Rk =

10−12 0

0 10−3

 (4.27)

P0 =


109 0 0 0

0 109 0 0

0 0 109 0

0 0 0 109

 (4.28)
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Qk =


10−12 0 0 0

0 10−7 0 0

0 0 10−7 0

0 0 0 10−4

 (4.29)

A closed-loop simulation is conducted on EHA with 4 Hz sin input with an amplitude

of 3 mm. The resulting friction estimations of Kalman filter are illustrated in Figure

4.3. The resulting algorithm estimates friction coefficients successfully, where such

algorithm may be used for fault-detection methods.
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Figure 4.3: Convergence of friction parameter estimations during simulation

To investigate the robustness of the algorithm, two questions arise, pressure values

directly being fed as an input and whether the algorithm is robust to friction model

changes. For this purpose a white noise with a variance of 0.1 bar2 is added to the

pressure in simulation to model measurement noise. This corresponds to a standard

deviation of
√
0.1 ≈ 0.316 bar. The added noise simulates real-world inaccuracies

in pressure measurements and helps evaluate the system’s robustness. The success

of the filtering approach can be observed in Figure 4.4, where piston velocity is es-
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timated given the noise added signal. Similarly, friction coefficients are estimated

successfully.
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Figure 4.4: Piston velocity estimation with pressure noise addition

Notice that the Kalman filter has a settling time for the estimation of the friction

values. One question arises: since the friction model is an approximation, does the

filter detect dynamic changes in the coefficients? This is crucial, as the friction of the

piston may vary due to factors such as heat, cleanliness, and wear.
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Figure 4.5: Friction parameter estimations under dynamic changes

To investigate this, a chirp signal distortion for the friction parameters is generated,
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varying the coefficients by ±20% of their original value. The resulting estimations of

friction parameters are demonstrated in Figure 4.5. While the friction coefficient α3 is

estimated close to the simulated value especially at low frequencies, the coefficients

α1 and α2 fail to track the dynamic changes of the values. However, they settle close

to the average value of the friction coefficient.

4.1.3 Position estimation

The position sensor used for displacement measurement has a high noise amplitude

with a low frequency behavior, which can be considered under faulty mode, as illus-

trated in Figure 4.6.
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Figure 4.6: MSP measurement on standalone configuration

To estimate piston displacement effectively, different approaches are followed and

discussed in this section.

The Position-Velocity-Acceleration (PVA) Kalman Filter is a state estimation method

that models an object’s motion using its position measurement, modeling process

noise as jerk. The algorithm estimates the state X , which includes position, velocity,

and acceleration, based on noisy measurements Z. According to [66, page 167], the

Kalman filter implementation on PVA for the discrete time step can be shown as:

Fk =


1 Ts

T 2
s

2

0 1 Ts

0 0 1

 , (4.30)
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where Ts is the sampling time.

The measurement model is:

H =
[
1 0 0

]
. (4.31)

The process noise covariance Q is defined as:

Qk =


W
20
T 5
s

W
8
T 4
s

W
6
T 3
s

W
8
T 4
s

W
3
T 3
s

W
2
T 2
s

W
6
T 3
s

W
2
T 2
s WTs

 , (4.32)

where W is the jerk noise intensity.

The measurement noise covariance Rk is defined according to the experimental mea-

surement noise of the position sensor:

Rk = 2.5× 10−8 (4.33)

The initial state covariance P0 is:

P0 =



100 0 0

0 10 0

0 0 100


(4.34)

The resulting Kalman filter is integrated into Simulink, as demonstrated in previous

examples shown in Figure 4.2, with a clock timer added to run the block at a different

sample time from the simulation. The code structure of matlab and TWINCAT are

provided in Appendix C. A closed-loop simulation with a noisy position signal, a step

position reference, and external force disturbance is executed to observe the effective-

ness of the PVA Kalman filter. The resulting displacement estimation is illustrated in

Figure 4.7.

However, on experimental test setup one disadvantage of the PVA filter it either can

not dismiss low frequency noise or has a phase lag on its frequency response. Imple-

mentation of the filter on EHA’s measurement sensor is illustrated in Figure 4.8.

Hence a model-based approach in order to eliminate low frequency noise is followed.

A key approach here is that motor encoder is very reliable in terms of measurement,
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Figure 4.7: Displacement estimation of PVA Kalman filter
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Figure 4.8: Displacement estimation of PVA filter during experiment

hence it can be modeled as an input into the system as in Chinniah’s friction esti-

mation with pressure difference as an input to the system example in section 4.1.2.

Hence a state prediction equation is suggested in the form:


ẋ

ẍ

ṗD

 =


0 1 0

0 − b
mp

−Ap

mp

0 −2Apβ

Vd
−Ceqβ

Vd



x

ẋ

pD

+


0 0

0 1
mp

2Dpβ

Vd
0


 ω

FL

 (4.35)

State-space form can be discretized with zero-order hold with a given sample time.

ω is measured accurately from the motor driver. For the disturbance input FL, in the
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no-load case, the friction value can be estimated by neglecting acceleration:

FL = −sign(ẋ)min(pDAp, Fs) (4.36)

Fs is utilized as Coulomb friction of magnitude 800 N. For the loaded case, force

measurement from a load sensor and a force estimator may be integrated with friction

force to estimate external force. The measurement uncertainty matrix and system

noise matrix are tuned with trial and error.

The controller has similar code structure with PVA with its implementation on matlab

function block and TWINCAT program. For the TWINCAT program matrix blocks, a

conversion code is written in matlab in order to obtain numerically accurate values in

PLC program. The simulation results of the model based Kalman filter is illustrated

in Figure 4.9.
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Figure 4.9: Simulation results on model-based Kalman Filter

The update matrices are selected as follows:

R =


2.5× 10−10 0 0

0 160.0 0

0 0 100000.0

 (4.37)

P0 =


1.0× 10−9 0 0

0 1.0× 10−9 0

0 0 1.0× 10−10

 (4.38)
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Q =


1.0× 10−12 0 0

0 1.0× 10−7 0

0 0 1.0× 10−11

 (4.39)

H =


1.0 0 0

0 1.0 0

0 0 1.0

 (4.40)

F =


1.0 0.0000197 −1.533× 10−10

0 −0.987 −1.311× 10−8

0 231200.0 −0.9869

 (4.41)

G =


5.928× 10−8 −2.54× 10−7

5.628× 10−6 −0.0005163

772.4 70.13

 (4.42)

Ts = 1× 10−3s (4.43)

The process covariance values due to noises are determined via tuning while mea-

surement covariance values are determined with respect to amplitudes of sensor mea-

surement noise. On Figure 4.10, model-based Kalman Filter implementation on MSP

measurement is illustrated. The filter successfully eliminates sensor noise, however

now a phase lead effect is observed along with gain difference.

The frequency response of the developed Kalman Filter, generated via FFT of esti-

mation with respect to measurement signal, is shown in Figure 4.11. A gain drop is

observed around the bandwidth of the EHA, along with a phase lead in the frequency

response. The filter estimates position more rapidly due to its linearity, as it does not

account for driver delay or static friction effects. While an artificial delay could be

added to eliminate the phase lead, it has been observed that the phase lead does not

degrade the performance of the EHA.
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Figure 4.10: Model-based Kalman Filter on position measurement
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Figure 4.11: Frequency response of model-based Kalman Filter position estimation

with respect to position measurement

As a consequence, a framework for fault detection in EHAs and a Kalman Filter for

position estimation is developed to reject measurement noise.
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4.2 Analysis of EHA plant

EHA was identified in the previous section with respect to experimental data. Various

state-space models of EHA were derived, which will be discussed in this section.

These are:

1. Hydro-mechanical state-space model in equation 4.35, which involves dy-

namics between the electric motor’s rotational speed and the hydraulic actuator.

2. Voltage input state-space model in equation 3.24, which additionally inte-

grates the electrical behavior of the motor, where voltage affects motor current

and speed.

3. Torque mode state-space model in equation 3.35, which additionally inte-

grates the motor driver’s PI controller of torque mode.

4. Velocity mode state-space model in equation 3.41, which additionally inte-

grates the motor driver’s PI controller of velocity mode.

4.2.1 Plant poles

The hydro-mechanical system defined in equation 4.35, the transfer function between

motor speed and piston position X(s)
ω(s)

can be generated:

X(s)

ω(s)
=

6663.1

s (s2 + 263.7s+ 2.564× 107)
(4.44)

The poles of transfer function in equation 4.44 are illustrated in Table 4.2.

Table 4.2: Poles of the transfer function X(s)
ω(s)

Pole Natural Frequency (ωn) [rad/s] Damping Ratio (ζ)

−131.85 + j5061.88 5063.6 0.026

−131.85− j5061.88 5063.6 0.026

0 Integrator N/A
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The integrator term arises due to transformation of velocity to position. The high

frequency poles arises due to dynamics of hydro-mechanical system, where the com-

pressibility of the hydraulic fluid generated a high frequency dynamics, a common

theme in hydraulic systems. If the integrator is neglected, the gain between pump

speed and piston speed is calculated as 2.59 · 10−4. This gain corresponds to trans-

former ratio between pump speed and actuator speed in physical ratio of Dp

Ap
, in equiv-

alent value of 0.26 mm
rad

. This ratio is also intuitive in the sense at low frequencies,

neglecting leakage and compressibility of the fluid, flow delivered by the pump dis-

placement translates the piston. It is possible to observe effect of high frequency

oscillation and piston speed to actuator speed transformation in Figure 4.12 given

impulse response of transfer function X(s)
ω(s)

.
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Figure 4.12: Impulse response of X(s)
ω(s)

In equation 3.24, a state space model including dynamics of the electrical motor is

introduced. Eigenvalues of system matrix A, corresponding to poles of the transfer

function of the system are illustrated in Figure 4.13, along with the eigenvalues of the

hydro-mechanical EHA model of previous analysis.

Notice that poles of fluid compressibility dynamics are same together with integrator,

now a lower frequency dynamics is observed with the integration of simple electric

motor dynamics. Resulting poles are shown in Table 4.3. In the previous sections it is
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Figure 4.13: Poles of system models of EHA

demonstrated that linear simulation results comply with nonlinear and experimental

results, however there is a delay occurring due to friction and driver time delay. In

torque and velocity mode plant models, process noises such as motor friction and

measurement noises of current and motor encoder are compensated by the controllers.

Table 4.3: Poles of the voltage-input modeled EHA system

Pole Natural Frequency (ωn) [rad/s] Damping Ratio (ζ)

−107.15 + j654.68 662.3 0.162

−107.15− j654.68 662.3 0.162

−131.8 + j5062 5064 0.026

−131.8− j5062 5064 0.026

0 Integrator N/A

4.2.2 EHA stiffness

The stiffness of the actuator without the controller also can be investigated. External

load can be integrated into equation 3.24 such that:



di
dt

ω̇

ẋ

ẍ

ṗd


=



−R
L

−kE
L

0 0 0

kT
Jeq

− beq
Jeq

0 0 −Dp

Jeq

0 0 0 1 0

0 0 0 − b
mp

Ap

mp

0 2βDp

Vd
0 −2βAp

Vd
−βCeq

Vd





i

ω

x

ẋ

pd


+



1
L

0

0

0

0


V +



0

0

0

1
mp

0


FL (4.45)
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From equation 4.2.2, transfer function between position and external force X(s)
FL(s)

can

be generated:

X(s)

FL(s)
=

0.5 (s+ 16.38) (s2 + 211.6s+ 4.332× 105)

s (s2 + 214.3s+ 4.278× 105) (s2 + 263.6s+ 2.565× 107)
(4.46)

Equation 4.46 corresponds to compliance of the EHA without position controller.

Stiffness of the actuator can be derived along with frequency of force, if inverse of

compliance transfer function is considered. An analogy here is stiffness coefficient

between force and position, however the coefficient varies with respect to frequency.

A high stiffness is desired for the flight control actuator. In Figure 4.14, the frequency

response of dynamic stiffness of EHA plant is plotted. Notice at high frequencies, due

to inertia of force, stiffness increases. In fact, due to s2 derivative term of ( X(s)
FL(s)

)−1, at

high frequencies it increases at a rate of 40dB/decade. At frequency around 800 Hz,

a resonance with the compressibility of the fluid occurs which corresponds to high

frequency poles in Figure 4.13, hence stiffness decreases.
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Figure 4.14: Frequency response of ( X(s)
FL(s)

)−1

With the PID controller designed for the position loop on Table 3.4, linear model

simulation and nonlinear simulations are conducted to observe the effects of non-

linear terms. An external load of 5 kN is applied at EHA, in Simscape ’Frequency
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Response’ application is operated between an external load signal and actuator posi-

tion for different non-linear configurations. Simulation configuration is demonstrated

in Table 4.4.
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Figure 4.15: Closed loop simulation’s frequency response of dynamic stiffness

In Figure 4.15, it is observed that for both linear and nonlinear models, the actual

operating region of EHA, around 1 Hz, has low stiffness. The controller integrator

reacts to force disturbances at low frequencies, hence increasing the stiffness of the

actuator. Also as illustrated in Figure 4.14, due to hydro-mechanical structure of

the actuator, it has already a stiffness increasing starting from 10 Hz. Hence, the

controller should specially compensate low stiffness around 1 Hz. From a design

perspective, notice that integration of the accumulator improves stiffness overall.
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Table 4.4: Simulation configuration of frequency response test in Simulink

Parameter Value

Frequency response parameters

Amplitude 5000 N

Number of Periods 12

Setting Periods 4

Ramp Periods 0

Number of Samples at Each Period 40

Frequency Range 10−2 Hz to 103 Hz

Solver Configuration

Solver Type Variable-step

Solver ode23s (stiff/Modified Rosenbrock)

Maximum Step Size Auto

Minimum Step Size Auto

Initial Step Size Auto

Relative Tolerance 1× 10−3

Absolute Tolerance Auto

Zero-Crossing Control Use Local Settings

Time Tolerance 10× 128 eps

Number of Consecutive Zero Crossings 1000

4.2.3 Inner loop controllers

In order to observe noise rejection properties, a state space model including a distur-

bance can be formed from the equation 3.24 and torque controller Gi(s).

P i
V
(s) =

476.2s3 + 1.256× 105s2 + 1.221× 1010s+ 7.159× 108

s4 + 477.9s3 + 2.613× 107s2 + 5.61× 109s+ 1.097× 1013
(4.47)

Gi(s) =
1

11.3 + 1.4×104

s

(4.48)

The sensitivity function of external disturbances such as measurement noise for the
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current is formed as:

Si(s) =
1

1 +Gi(s)P i
V
(s)

=
s (s2 + 214.3s+ 4.278× 105)

(s+ 3618) (s+ 1977) (s+ 0.05511)
(4.49)

From the resulting bode diagram illustrated in Figure 4.16. It is observed that the

current controller rejects noise until 1 kHz.
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Figure 4.16: Sensitivity plot of current disturbance rejection

Equation 4.16 also informs about the bandwidth of the control loop, since the sum

of complementary sensitivity and sensitivity functions is unity. From torque mode

state space model in equation 3.35, the frequency response of the controller can be

investigated. Hence transfer function between motor current and reference current
i(s)

iref (s)
is derived from the state equation:

i(s)

iref(s)
=

5381(s+ 1250)(s+ 7.188)

(s+ 3818)(s+ 1777)(s+ 7.125)
(4.50)

The frequency response of the resulting transfer function in equation 4.50 is plotted

in Figure 4.17, where the bandwidth of the current controller is calculated around 1

kHz. Additionally, the torque controller state space model is validated since the sum

of sensitivity in equation 4.49 and complementary sensitivity in equation 4.50 equals

to 1. The disturbance rejection on the current controller demonstrates an advantage

of the cascade control structure: each inner loop rejects relevant noise in its loop by

operating at the higher bandwidth. This is also relevant for the EHA system, as a

requirement position control bandwidth is on the magnitude of 10 Hz, while velocity
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control loop bandwidth is around 100 Hz and the current controller bandwidth is

calculated as 1000 Hz.
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Figure 4.17: Bandwidth of the current controller

Hence inspecting the current control loop frequency response, it is concluded default

controller setting of the driver has satisfying characteristics. Tuning PI structure of

the torque controller can not change plant characteristics significantly, as illustrated in

Figure 4.18. From equation 3.41, Pω(s) is obtained which plant from motor velocity

reference command and actuator position. Increasing the integral and proportional

coefficients of the torque controller by double does not affect the plant Pω(s) until

high frequencies, since the velocity controller performs dominant characteristics at

lower frequencies.
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Figure 4.18: Open loop responses of velocity controlled plants

4.3 QFT controller design

Quantitative Feedback Theory (QFT) is a robust control engineering design method-

ology that allows for the systematic design of controllers considering plant uncer-

tainties. In the QFT framework, relevant design specifications are integrated into

uncertain plant models, where boundary conditions for the controller requirements

are derived. This feedback-based approach compensates for the effects of plant un-

certainty while ensuring that controller requirements are satisfied.

One of the key advantages of QFT is its ability to systematically and quantitatively

determine the scope of robustness against uncertainties and faults in the plant. This

makes the robustness numerically clear to the controller designer, unlike some other

nonlinear robust control methods. Since the controller is designed in the frequency

domain, typically using lead and lag compensators, the resulting controller is deter-

ministic and predictable. This contrasts with other nonlinear control methods, such

as sliding mode controllers and backstepping controllers, where it is challenging to

evaluate robustness comprehensively or predict unexpected behaviors under certain

fault conditions. While sliding mode and backstepping controllers demonstrate good

tracking performance in the presence of nonlinearities like friction, their behavior
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under unexpected conditions, such as faults, is less predictable.

Another advantage of QFT is its similarity to PID controllers in the context of being

frequency-based controllers for the flight control actuators. Flight control actuators

are often treated as subsystems of a flight vehicle and are typically modeled as transfer

functions or intervals of transfer functions. From a system-level perspective, actuator

performance specifications are essential, and the frequency-domain approach of QFT

provides a deterministic and evaluable framework for meeting these specifications.

This makes QFT particularly well-suited for flight technologies, as noted in [67],

and for the controller design of Electro-Hydrostatic Actuators (EHA), as discussed in

[43]. In that regard, it is also possible design PID controllers with QFT methodol-

ogy, suggesting a systematic approach to design controllers based on the parametric

uncertainties of the plants.

For the design of EHA controllers, the cascade loop structure suggested on Figure

3.30 will be used to design velocity and position controllers respectively. For the

system integration, model-based Kalman Filter for the position estimation will be

used. In Figure 4.19,the schematic of control system is illustrated. Initially, a velocity

controller Gv(s) will be designed that is compatible with the PI controller structure

of the driver system. Then position controller G(s) will be designed to meet system

specifications.

Prefilter in the schematic is also a design step of QFT methodology, equivalent to

feed-forward compensation of the system. In Figure 4.20, steps through QFT design

is shared.

The step 2 of selecting nominal plant is already achieved from the identification of

EHA, as relevant parameters are shared in Table 3.4. From Figure 3.44, change of

total leakage coefficient with recept to temperature is also recorded. As for other

parameters, such as bulk modulus, motor constants may also vary with respect to

environmental factors. These values are also considered uncertain parameters in the

applications of the literature, in the context of hydraulic systems and electric mo-

tors. The effective piston area, dead volume, motor inertia and piston mass are more

deterministic and certain parameters that are unlikely to significantly change with re-

spect to environmental changes. Further steps includes determining of performance
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Figure 4.19: Cascade controller structure for EHA

specifications, and converting such speciations in polar form. The specifications in

polar form allows to calculate maximum and minimum boundary requirements with

respect to performance specifications, as well as allowing loop shaping. During loop

shaping, controller is generated with a systematic trial-and-error, or in this work, via

optimization. After the feedback controller design, pre-filter is designed to meet ref-

erence tracking requirement, afterwards controller can be validated trough frequency

analysis, linear time domain analysis and nonlinear simulation process. Finally, an ex-

perimental procedure is followed to validate the performance of the controller. Since

identification and model of EHA is derived, controller design process is accurate dur-

ing design process, with less requirement of tuning during the experimental validation

process.

4.3.1 Parametric uncertainties

For the plant model in equations 3.35 and 3.41, parametric uncertainties are intro-

duced as given in Table 4.5. Bulk modulus and leakage coefficients are chosen to

consider environmental changes such as temperature and hydraulic oil quality. Un-

certainty in pump displacement is specified to reflect variations in pump efficiency,
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18 Robust Control Engineering

object-oriented CAD tool developed by the author to design QFT control solutions. It has 
been applied to many real-world projects, including the European Space Agency ESA-ESTEC, 
NASA-JPL, wind energy companies, large radio telescopes, power systems, water treatment 
plants, etc. Appendix 2 presents a detailed user’s guide for the QFTCT. A demo version of 
the toolbox can be found at http://cesc.case.edu. The student and standard versions of the 
QFTCT is at http://codypower.com. For additional information, see http://crcpress.com

QFT is also a multi-criteria and transparent control engineering methodology. It quan-
tiies the balance among the controller structure, cost of feedback, performance speciica-
tions, and model plant uncertainty at each frequency of interest. The basic steps of the 
QFT methodology are summarized in Figure 2.1 and presented in Sections 2.2 through 
2.10 along with an illustrative example of a DC motor (Example 2.1). Afterward, an addi-
tional case of an airplane light control system (Example 2.2) shows more details of the 
methodology. Then, Sections 2.11 through 2.13 complete the chapter applying QFT to 
model-matching control systems, feedforward control strategies, and PID design and 
tuning. Finally, Section 2.14 discusses some practical QFT control design tips. For a bet-
ter understanding, we recommend the study of each section and the proposed examples 

W1.
Step 1. Define plant models and uncertainty

Step 2. Select nominal plant P
0
(s)

Step 3. Calculate QFT templates at given ω
i

Step 4. Define stability specifications

Step 5. Define performance specifications

Step 6. Calculate stability QFT bounds

Step 7. Calculate performance QFT bounds

Step 8. Intersection of bounds and compatibility

Step 9. Synthetize feedback controller G(s)

Step 10. Synthetize prefilter F(s)

Step 11. Analysis in the frequency domain

Step 12. Analysis in the time domain (linear)

Step 13. Analysis in the time domain (nonlinear)

W2.

W3.

W4.

W7.

W6.

W5.

FIGURE 2.1
QFT-controller design methodology (Windows QFTCT: W1–W7).Figure 4.20: Steps of QFT design [47]

including dead zone and backlash effects, as well as physical displacement variation

due to wear and potential fault. Motor constants are selected on an interval since they

are linear approximations for equations which have actually nonlinear behavior. The

uncertainty intervals for the hydraulic actuator system are similar to the values in the

literature [42].

Logarithmic intervals are used for assigning values between minimum and maximum

values of uncertain parameters. A total of 270 plant transfer function combinations
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Table 4.5: Nominal values and parameter ranges

Parameter Nominal value Minimum value Maximum value

Ceq 3.8× 10−12 m3/Pa 10−1Ceq 101Ceq

Dp 6.684× 10−7 m3/rad 0.8Dp Dp

β 1.379× 107 Pa 0.7β 1.4β

kT 0.73Nm/A 0.8kT 1.2kT

kE 0.53Nm/(rad/s) 0.8kE 1.2kE

can be obtained. Frequency response of uncertain plant models derived for the torque

mode plant is illustrated in Figure 4.21, where plant family of Pi(s) is plotted. The

matlab code for the plant generation is demonstrated in Appendix D.
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Figure 4.21: Open loop response of uncertain torque controlled EHA plant

For the step 3, discrete QFT templates at specific frequencies will be calculated for

the uncertain plant families. Discrete frequency arrays are selected for critical fre-

quencies for the specifications, as well as high and low frequencies for the evaluation

of stability and overall performance of the controller. Hence, performance specifi-

cations of the velocity loop and position loop can be determined in order to achieve

desired actuator performance.
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4.3.2 Performance specifications

For the position controllerG(s), specifications for stability, disturbance rejection, and

reference tracking are defined. For the velocity controller Gv(s), specifications for

stability and disturbance rejection are defined. A frequency array of {0.01, 0.1, 20, 200, 300, 500}
rad/s is selected for the velocity controller in all specifications. The frequency band-

width of flight control actuators is generally up to 15 Hz [13]. Hence, for the position

controller, the frequency interval for tracking, stiffness, and sensitivity is designed

based on the intervals defined in the literature [42].

First of all, close-loop robust stability should be satisfied with an instability region

defined by the M -locus in the Nichols chart. Hence, the stability specification for the

controllers can be shown as:

|T1(s)| =
∣∣∣∣ Pω(s)G(s)

Pω(s)G(s) + 1

∣∣∣∣ ≤ Ws = 1.305, (4.51)

|T v
1 (s)| =

∣∣∣∣ Pi(s)Gv(s)

Pi(s)Gv(s) + 1

∣∣∣∣ ≤ W v
s = 1.16. (4.52)

Frequencies of {0.001, 0.01, 0.1, 1, 10, 20, 50, 100, 500} rad/s are selected for stability

criteria for the position controller. T1(s) is transfer function used to assess stability for

position controller loop, while T v
1 (s) is defined for the velocity controller. Here, Ws

and W v
s are the constant magnitudes in the Nichols chart of the closed-loop transfer

functions, enclosing the corresponding gain and phase margins. Traditionally, Gain

Margin (GM) and Phase Margin (PM) are commonly used to measure the stability

of a closed loop system. A different but similar method measuring stability is M-

locus circles, representing locus of the constant magnitude of the closed loop transfer

function. Since the circle encapsulates instability point (0 dB, -180 phase), the circle

is related with stability margins. In Figure 4.22, resulting stability circles for the

requested closed loop gains are illustrated. Notice that gain and phase margins are

shown with dashed lines.

For the stability constant defined, the phase margin and gain margin are defined as

follows:
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Figure 4.22: Stability margins defined for position and velocity controllers

PM = 180◦ − 2

(
180

π

)
arccos

(
0.5

Ws

)
, in degrees (4.53)

GM = 20 log10

(
1 +

1

Ws

)
, in dB (4.54)

The plotting and calculating of QFT bounds are very similar to each other. The matlab

code for the plotting of stability circles is shared on Appendix D. Psedo-code of the

matlab function is demonsrated in Table 4.6. A trick here is to solve inequalities of

4.51 and 4.52 in polar forms of the transfer function. The plant transfer function

P (jωi) can be written as:

P (jωi) = pejθ = p∠θ (4.55)

where:

• p is the magnitude of the plant transfer function at the frequency ωi.
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• θ is the phase angle of the plant at the frequency ωi.

Similarly, g and ϕ are defined for the magnitude and angle of the controller. Hence,

the general form of the equations in 4.51 and 4.52 are derived in equation 4.56.

p2
(
1− 1

W 2
s

)
g2 + 2p cos(ϕ+ θ)g + 1 ≥ 0 (4.56)

Table 4.6: Algorithm to plot Nichols circles

Algorithm 1 Plot Nichols Circles
Require: Desired closed-loop gain Ws

1: Express plant and controller in polar form:

P (jω) = p∠θ, G(jω) = g∠ϕ

2: Define a phase array ϕ ∈ [−360◦, 0◦] for iteration.

3: for each ϕ in the phase array do

4: Solve the quadratic equation for two roots g1 and g2:

p2
(
1− 1

W 2
s

)
g2 + 2p cos(ϕ+ θ)g + 1 = 0

5: Store results for g1 and g2 in arrays.

6: end for

7: Plot the Nichols circle using:

Magnitude = 20 · log10(g1), 20 · log10(g2)

8: Calculate Gain Margin (GM):

GM = 20 · log10
(
1 +

1

Ws

)
, in dB

9: Calculate Phase Margin (PM):

PM = 180◦ − 2

(
180

π

)
arccos

(
0.5

Ws

)
, in degrees
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The second objective is to attenuate close-loop disturbances. For rejecting distur-

bances at plant output, the following sensitivity constraints are used:

|T2(s)| =
∣∣∣∣ 1

Pω(s)G(s) + 1

∣∣∣∣ ≤ S(s), S(s) =
s
30

s
30

+ 1
(4.57)

|T v
2 (s)| =

∣∣∣∣ 1

Pi(s)Gv(s) + 1

∣∣∣∣ ≤ Sv(s), Sv(s) =
s

600
s

600

(4.58)

For the velocity controller, a sensitivity constraint is selected such that cascade loop

rejects disturbances up to 100 Hz, whereas for the position controller, sensitivity con-

straint is selected to respect reference tracking constraints. Frequencies of {0.1, 1, 10, 20, 50, 100}
rad/s are selected for sensitivity criteria for the position controller. In Figure 4.23,

frequency response of the requirement in equations are plotted. Notice that a similar

Nichols Chart as in Figure 1 can also be plotted, which also be generated during QFT

bounds step. In this step, as in stability margin example, polar forms of the equations

4.57 and 4.58 will be derived. A more comprehensive explanation of the topic is

explained in [47].
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Figure 4.23: Sensitivity or disturbances at plant output specification frequency plot

Additionally, a a requirement for the the actuator’s dynamic stiffness may be inte-

grated such that stiffness should be above 49 kN/mm for ω ≤ 7 Hz. The stiffness

magnitude is selected based on [42] and frequency intervals are selected parallel with
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the operating frequency range as well as frequency ranges in literature [68]. Closed-

loop compliance restriction can be given as:

|T3(s)| =
∣∣∣∣ Pd(s)

Pω(s)G(s) + 1

∣∣∣∣ ≤M(s) (4.59)

Notice P d is the transfer function between external force and actuator displacement,

which was derived from equation 3.41. M(s)−1 is defined as the lower bound on

actuator stiffness. For the performance specification, M(s) is chosen in a similar

structure as in [42] by trial and error as:

M(s) = 2× 10−6 (s+ 600)2

(s+ 6000)2
. (4.60)

Frequencies of {1, 10, 30, 50} rad/s are selected for dynamic stiffness criteria in posi-

tion controller. The frequency response of the constraint is illustrated in Figure 4.24.
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Figure 4.24: Frequency response of the stiffness lower bound M(s)−1

Reference tracking specification is determined as:

Tlow(s) ≤ |T4(s)| =
∣∣∣∣F (s) Pω(s)G(s)

Pω(s)G(s) + 1

∣∣∣∣ ≤ Tup(s) (4.61)

Where upper and lower bounds are defined as:
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Tup(s) =

s
aup

+ 1

s
ω2
n
+ 2ζ

ωn
s+ 1

, aup = 30 rad/s, ζ = 0.8, ωn =
1.25aup

ζ
(4.62)

Tlow(s) =
1(

1 + s
85

)2 (4.63)

Frequencies of 0.01, 0.1, 1, 10, 30, 50 rad/s are selected for reference tracking crite-

rion in position loop. The lower and upper bounds in equations 4.63 and 4.62 de-

termine performance requirement of frequency response under an interval. Visual

representation of such interval is highlighted in Figure 4.25.

Figure 4.25: Frequency intervals defined for the position controller

Inequalities 4.51,4.52,4.57,4.58, 4.59, 4.62, and 4.63 are constraints on the open-

loop transfer function L(s) = G(s)P (s), where nominal transfer functions for the

plants are utilized. These constraints refer to dynamic stiffness, tracking performance,

output disturbance rejection, and robust stability margin. The array of frequencies for

each constraint is merged, and bounds for QFT design are computed with respect

to critical frequencies selected. Constraint bounds are merged according to selected

frequencies and limiting bounds. Constraints can be solved for Gv(s) and G(s), such

that for each uncertain plant, the worst-case bound should be satisfied. Hence, next

94



step, QFT bound generation can be followed before controller design process. Since

Pω depends on velocity controller values, velocity controller will be designed initially.

4.3.3 Velocity controller synthesis

For the design of velocity controller, there are two constraints, 4.52 and 4.58, de-

fined on the uncertain plants. For the stability margin, polar conversion was already

explained. Sensitivity polar form for the equation 4.58 is:

p2g2 + 2p cos(ϕ+ θ)g +

(
1− 1

δ22

)
≥ 0 (4.64)

δ2 is the magnitude of the specification T v
2 (s) at a particular frequency. Same is valid

for the position controller polar form. From polar forms of stability and sensitivity,

quadratic insulates will be solved into Nichols chart for the each frequency of interest,

taking into account model uncertainty. Then, controller synthesis will take place in

order to loop shape. Determining controller structure that is industrially applicable to

driver settings, a Particle Swarm Optimization (PSO) algorithm will be conducted to

automatic loop shape.

4.3.3.1 QFT bounds of velocity control

QFT bounds are determined according to performance specifications. Once the bounds

are visualized on the Nichols chart, the controller design process focuses solely on the

nominal plant P0(s). This is a significant advantage of the QFT methodology. Rather

than addressing an infinite number of possible plants, the design step is simplified to

consider only the nominal plant P0(s), as the effects of model uncertainty are already

accounted for within the QFT bounds. Matlab code for QFT bound creation in ve-

locity controller is shared in Appendix D. The underlying algorithm for the bounds is

demonstrated in 4.7.

Hence, there are two QFT bounds generation processes for stability and sensitivity.

The respective bounds for stability and sensitivity are illustrated in Figure 4.26 and

Figure 4.27.

Figure 4.26 represents the stability bounds, which ensure that the open-loop transfer
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Table 4.7: Algorithm to compute the QFT bounds

Algorithm 2 Compute QFT Bounds

1: Discretize the frequency domain ω into a finite set Ωk = {ωi, i = 1, . . . , n}k.

2: Define the uncertain plant models {P (jω)} and map their boundaries for each

ωi ∈ Ωk on the Nichols chart.

3: Represent the n templates {P (jωi)}, where P (jωi) = {Pr(jωi) = p∠θ, r =

0, . . . ,m− 1}.

4: Choose the nominal plant P0(jω) = p0∠θ0.

5: Define the compensator G(jω) = g∠ϕ and discretize ϕ ∈ Φ = [−360◦ : 5◦ : 0◦].

6: for each frequency ωi ∈ Ωk do

7: for each compensator phase ϕ ∈ Φ do

8: for each plant Pr(jωi), r = 0, . . . ,m− 1 do

9: Compute the maximum gmax = gmax(Pr) and the minimum gmin =

gmin(Pr) that solve the quadratic inequality for roots g1 and g2.

10: end for

11: Choose the most restrictive gmax(P ) and gmin(P ) among all plants.

12: end for

13: end for

14: Compute gmax∠ϕ1 and gmin∠ϕ2 over ϕ ∈ Φ for each frequency ω.

15: Represent the open-loop transmission as L0(jω) = l0∠ψ0, with l0max =

p0gmax∠ϕ and l0min = p0gmin∠ϕ .

16: Note that ψ0 = ϕ + θ0 and ϕ = [−360◦ : 5◦ : 0◦]. Hence bounds are represented

as {Bk(jω),∀ωi ∈ Ωk}.

function’s gain and phase remain within specified regions to maintain system stability.

Dashed lines in the Nichols chart indicate areas that the gain and phase values must

avoid. These bounds are critical for ensuring that the controller prevents instability,

particularly for systems with higher-order dynamics or significant uncertainties.

Figure 4.27 illustrates the sensitivity bounds, which restrict the open-loop gain and
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Figure 4.26: Stability bounds for the velocity controller

phase to ensure acceptable disturbance rejection and tracking performance. The solid

lines in the Nichols chart represent these sensitivity bounds, emphasizing the regions

where the controller must operate to achieve the desired performance criteria. Sensi-

tivity bounds ensure that the system can reject disturbances and maintain robustness

against model uncertainties.
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Figure 4.27: Sensitivity bounds for the velocity controller

The resulting QFT bounds that combine both stability and sensitivity constraints are
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presented in Figure 4.28. These bounds highlight the areas where the open-loop trans-

fer function’s gain and phase values must lie to satisfy both stability and sensitivity

requirements simultaneously. The bounds are created by merging the most restrictive

regions from Figures 4.26 and 4.27, ensuring that the controller satisfies all necessary

design criteria.
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Figure 4.28: QFT bounds for the velocity controller

It is important to note that discrete frequencies are selected during the performance

specification step to ensure computational efficiency and clarity in design. The bounds

for specific restrictions are merged based on the higher gain values. For the stability

case, the dashed lines represent areas where the open-loop transfer function gain and

phase values should lie outside the circle. This ensures that the system operates above

the solid lines and below the dashed lines to satisfy both stability and robustness cri-

teria effectively.
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4.3.3.2 PSO on controller design

PSO is a highly efficient method due to its fast convergence, hence becoming a pop-

ular optimization tool [69]. PSO aims to discover a global minimum with respect to

a cost function for an optimization problem. A particle represents a point with pa-

rameters of interest which are dimensions, with a cost value along given coordinates.

Hence in a multidimensional space, a swarm of particles search for the lowest cost

with the given information of local and global best positions so far.

Firstly, the motor speed controller Gv(s) is designed automatically, then with the new

forming plant, the actuator position controller G(s) is designed. Controller Gv(s)

is chosen as a PI controller with a low-pass filter which is applicable to industrial

drivers:

Gv(s) =
1

kT

(
K1 +

K2

s

)
1

s
K3

+ 1
(4.65)

A 3-dimensional PSO is conducted to determine poles and zeros of the proposed

controller structure. Setup related to PSO is given in Table 4.8, that is relevant for

velocity and position controller optimization.

Table 4.8: Optimization algorithm constants

Parameter Gv(s) G(s)

Number of particles 49 49

Number of iterations 50 100

Inertia weight (W) 0.9 0.9

C1 and C2 2 2

The position update equation can be illustrated as:

Xi,k+1 = Xi,k + Vi,k (4.66)

Where X , V are the position and velocity of the ith particle in the kth iteration. The

velocity update equation can be shown as:
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Vi,k+1 = WVi,k + C1r1
(
Xbest

g,k −Xi,k

)
+ C2r2

(
Xbest

l,k −Xi,k

)
(4.67)

where r1 and r2 are random values between 0 and 1, Xbest
g,k is the best global position

for the particle, and Xbest
l,k is the best position in the swarm for the current iteration.

In Figure 4.29, a diagram for the algorithm implementation is given. The underlying

cost function for velocity controller and PSO algorithm is shared in Appendix D.

Figure 4.29: Algorithm schematic for PSO algorithm
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A cost function is generated to determine the best particle with the corresponding

controller coefficients in the form 4.65. Respecting performance specifications and

uncertain plant conditions, boundaries for maximum and minimum gains for the

Lv(s) = Gv(s)Pv0(s) are generated. For the frequencies selected previously, if the

gain and phase of Lv at the particular frequency do not satisfy the boundary condition,

the cost is updated. Hence, a max function is used for the cost:

Jv =
h∑

i=1

max (0, gmax(jωi)− |Lv(jωi)|) (4.68)

Where gmax(jωi) refers to the gain boundaries at a particular phase of the Lv(jωi),

and h is 6. To prevent high gains in high frequencies, when the gain and phase of Lv

at the particular frequency satisfy the boundary condition, the cost at the particular

frequency is updated according to an additional cost function:

Jhigh
v =

h∑
i=4

max (0, |Lv(jωi)| − gmax(jωi)− Tg) , Tg = 2 (4.69)

Where Tg is the gain tolerance constant to allow exceeding boundaries. Stability

criteria are implemented with a high-cost weight if stability margins are violated,

such that Jv is irrelevant if Js in Equation (4.70) is not 0:

Js = max

(
max

(∣∣∣∣ Lv(jω)

Lv(jω) + 1

∣∣∣∣ , ω ∈ R+

)
−Ws, 0

)
(4.70)

Notice that for the optimization convergence criteria, it is not required; however, con-

vergence can be observed by inspecting the position change of particles. In Figure

4.30, minimum cost explored through iterations is plotted.

In Figure 4.31, moving averages for the controller coefficients are demonstrated.

In the figures, one iteration contains an array of n particles, hence moving averages

are taken to observe convergence. The obtained controller is:

Gv(s) =
1

kT

(
0.45 +

56

s

)
1

s
2555

+ 1
(4.71)
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Figure 4.30: Minimum global cost value derived through iterations
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Figure 4.31: Controller coefficients through iterations

In Figure 4.32, the implemented controller with satisfied performance specifications

is given. Notice that for each frequency of interest shown by circles on the transfer

function Lv(s), they are above the sensitivity bounds defined for the uncertain plants.

The impact of the cost function in Equation (4.69) is displayed where high-frequency

gains satisfy constraints, however, without exceeding them within a margin. For sta-
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bility, notice that the open-loop plant does not interfere with the stability margin circle

defined by Ws, which corresponds to a 63° phase margin approximately.
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Figure 4.32: Resulting open loop response with designed controller on design con-

straints

A 3D representation of the convergence of controller coefficients, as illustrated in

Figure 4.31, is demonstrated in Figure 4.33. The particle positions are plotted in the

parameter space (K1, K2, K3) for each iteration. The color gradient, transitioning

from blue (iteration 1) to red (iteration 50), visually represents the progression of the

optimization process. Early iterations show a wide spread of particles, indicative of

exploration, whereas later iterations demonstrate a focused clustering of particles as

they converge toward optimal solutions. This plot provides insight into the behavior

of the particle swarm and the dynamic adjustment of controller coefficients over the

optimization process.

In Figure 4.34, the resulting cost values corresponding to the particle locations in pa-

rameter space (K1, K2, K3) are represented using a logarithmic color scale. This vi-

sualization highlights regions of the parameter space associated with higher or lower

cost values.

A summary of this section is generation of performance specifications boundaries

regarding parametric uncertainties and then merging them. PSO framework is utilized
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Figure 4.34: Resulting cost values for the particle locations in space

to synthesize velocity controller, where benefits of this optimization process will be

more clear during the design of a more complex position controller.
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Since, controller coefficients are defined in 4.71 ,from state space model in equation

3.41, transfer function between reference motor speed and actual motor speed can be

as in equation 4.72.

ω(s)

ωref (s)
=

3.9019× 106(s+ 1250)(s+ 125)

(s+ 530.6)(s+ 158.3)(s2 + 4913s+ 7.257× 106)
(4.72)

Resulting frequency response of the transfer function is displayed on Figure 4.35.

Notice that bandwidth result is desired, an expected from the analogy that there is an

order of magnitude between bandwidths of torque, velocity and position controllers.
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Figure 4.35: Frequency response of the velocity controller

4.3.4 Position controller design

Since velocity loop controller coefficients are determined in equation 4.71, neglecting

low-pass term of the velocity controller P(s) can be defined:

105



Pω(s) =
2.5998× 1010(s+ 1250)(s+ 125)

s(s+ 530.6)(s+ 158.3)(s2 + 4913s+ 7.257× 106)(s2 + 38.77s+ 2.564× 107)
(4.73)

Refer to Table 4.5 for the parametric uncertainties of the plants, hence plant families

of uncertain Pω(s) functions are plotted in Figure 4.36.
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Figure 4.36: Frequency response of open loop uncertain plants Pω(s)

4.3.4.1 QFT bounds of position control

In previous section, in equations 4.51, 4.57, 4.59 4.61; stability, sensitivity, stiffness

and tracking requirements of the actuator were defined. For the velocity controller, the

polar code transformation along with QFT bounds generation for the uncertain plants

were demonstrated. In a similar process, QFT bounds for the specific requirements

are illustrated in Figures 4.37, 4.38, 4.39, 4.40 respectively.
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Figure 4.37: Stability restriction for Pω(s)
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Figure 4.39: Stiffness restriction for Pω(s)
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4.3.4.2 Position controller synthesis

One advantage of QFT is defining specifications and designing controller according to

robust system characteristics. In performance specifications, a controller effort reduc-

tion specifications into QFT boundaries could also be integrated. However problem of

such boundary is that it may conflict with other boundaries, such at other boundaries

requiring higher gain at a particular phase and controller effort reduction requiring

lower gain. Hence, to solve this conflict, designer should cautiously determine speci-

fications and respective boundaries formed by uncertain plant. This approach requires

a lot of effort, even then as an end result control effort reduction would be designed

according with respect to significance of other specifications. A simpler an a more

elegant solution of this using optimization tools, as in previous velocity controller

synthesis example a PSO was used. In the position controller design, performance

specifications are considered as hard constraints, however it is not desired to satisfy

these constraints by large margins due to high controller effort. Hence a cost function

is designed to consider performance specifications as hard constraints with high cost

values, together with a cost function on controller effort reduction as a soft constraint

with low cost value.

The position loop can be designed with defined specifications in QFT bounds. The

controller G(s) is chosen in the form:

G(s) =
K

s

3∏
i=1

(
1 + s

K2i−1

)
(
1 + s

K2i+1

) (4.74)

The value of K is chosen initially with the objective to reduce control effort at high

frequencies. A default integrator is present in order to decrease steady-state errors. In

the literature, it is common to add a cost function for high-frequency gain, which is

related to the gain of the controller [48, 70]. This problem is solved by preselecting

the controller gain, where a cost for control effort is added at high frequencies. A six-

dimensional PSO is conducted to determine poles and zeros of the proposed controller

structure, where the setup was previously formed in Table 4.8. The cost function is

designed as:
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J = m1

k∑
i=1

max(0, gmax(ωi)−|L(ωi)|)−m2

l∑
j=k

max(0, gmin(ωj)−|L(ωj)|) (4.75)

Where gmax(ωi) refers to gain boundaries at a particular phase of L(ωi). To reduce

control effort, at higher frequencies, the cost is reduced for the lower gains. Weight

m1 is significantly greater than m2, hence control effort is rather a soft constraint for

the frequency limits {0.001, 0.01, 0.1, 1, 10, 30, 50, 100, 500}; k = 7 and l = 9.

Additionally, a cost function to ensure stability margins as in the velocity controller is

used in equation 4.70. In Figure 4.41, controller coefficients during optimization pro-

cess is illustrated. The dots refer to each particle coordinate during an iteration, while

darker lines correspond to mean of these particles for specific coefficient. Notice

that as iteration continue, deviation of particles from mean decrease. The solution

is achieved around the 50th iteration, and iteration is continued to observe conver-

gence, where the optimal controller parameter results with lowest cost are selected.

In Appendix D, relevant cost function for the position controller design is shared.
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Figure 4.41: Position controller coefficients through PSO process
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As a result, the following position controller is obtained with a pre-selected gain:

G(s) = 2.668× 109
(s+ 447)(s+ 153)(s+ 0.61)

s(s+ 2155)(s+ 613)(s+ 522)
(4.76)

Scaling factor for the position controller G(s) is 165200. Notice that a transformer

ratio was introduced between pump speed and actuator speed due to flowrate relation

of pump displacement and effective piston area. Considering the transformer ratio

between systems, the gain of the controller is 44.2 s−1. Resulting EHA’s open-loop

response satisfies constraints specified as in Figure 4.42. QFT bounds are merged

forms of Figures 4.37,4.38,4.39,4.40.
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Figure 4.42: Open loop response of EHA with QFT bounds

Notice that at high frequencies, 100 rad/s and 500 rad/s are taken as low-effort high

frequencies in the cost function. Hence, they impose low gain behavior, and the con-

troller effort is taken as a soft constraint along with specified constraints. The Kalman

filter introduced also decreases control effort due to reduced noise at higher frequen-

cies. The next step in QFT design is synthesis is prefilter design. No optimization

method is utilized prefilter-design, since it has a straightforward systematic tuning
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method. The prefilter is designed with systematic trial and error to meet reference

tracking requirements:

F (s) =

(
s
38

+ 1
)(

s
77

+ 1
) (

s
65

+ 1
) (4.77)

Resultant closed-loop response can be observed in Figure 4.43. A bandwidth fre-

quency larger then 9 Hz is achieved by the pre-filter design, where uncertain plants

are within desired bounds.
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Figure 4.43: Frequency response of uncertain plants with designed pre-filter

In nonlinear simulations, due to friction and delay, the profile is not exactly same.

However, since aim of the prefilter and tracking requirement is to essentially provide

a high bandwidth, that goal is achivied in simulation analysis. In Figure 4.44, stiffness

frequency response of uncertain EHA plants under position controller is illustrated.

EHa stiffness holds the lower boundary condition for the desired frequency range.

Evaluation of sensitivity will be observed in experimental tests, especially consider-

ing faulty position sensor with high amplitude noise. Hence controller output, motor

speed reference shall be investigated.
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Figure 4.44: Lower bound of stiffness and closed loop uncertain EHA responses

4.4 Evaluation of the proposed EHA design and controller

In this section, the evaluation of the controller design is conducted. For this purpose,

the performance of the Kalman filter, designed to estimate piston displacement, and

the QFT-designed controller will be discussed.

In Figure 4.45, the position estimation of the Kalman filter for small step references

is illustrated. This test is conducted to observe the system’s sensitivity to reference

commands and to determine if the Kalman filter exhibits any steady-state error in the

actual piston measurement. The results indicate that the piston position is precisely

controlled for commands larger than 10µm. As observed in the figure, Kalman filter
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Figure 4.45: Evaluation of position Kalman filter on small step commands
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does not completely suppress measurement noise along with low frequency behavior

of noise, however reducing it significantly. In 4.46,the output of the controller along

with the reference command with filter estimation is illustrated. Notice that there

is a steady oscillation in controller output while the system command is stationary.

This undesired behavior occurs due to noise of the position sensor, dead-zone of the

hydraulic pump and high gain of the controller. Hence there is a peak 50µm displace-

ment on the actuator while it is stationary, and unnecessary energy consumption due

to motor oscillation.
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Figure 4.46: Controller output with respect to reference signal

From Table 3.1, the design specifications of EHA are tested. The load test result is

illustrated in Figure 4.47, where motor torque steadily holds EHA at a constant posi-

tion. In Figure 4.48, the maximum speed of the piston is observed and its relation with

the motor speed. In Figure 4.49, the linearity of EHA is investigated, the maximum

difference between the fit line and measurement value being 0.112%. A low-pass fil-

ter with a cut-off frequency of 10 Hz is applied at the measurement signal, in order

to eliminate measurement noise. Test speed is selected in order to eliminate measure-

ment noise more effectively. In Figure 4.50, the switching of a redundant motor is

illustrated during a sinusoidal position reference. The system continues its operation

successfully without major changes on the piston position profile, hence validating

the redundant property of the system.

System type requirements are satisfied successfully. A frequency test is conducted for
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Figure 4.47: Steady position of EHA on load
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Figure 4.48: Maximum piston speed of EHA
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Figure 4.49: Linearity test of EHA
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Figure 4.50: EHA redundant motor switch during operation

the actuator position on discrete frequency intervals. FFT method is applied on steady

state signals to observe the frequency response of the actuator on specific frequencies.

In Figure 4.51, the frequency response of test results is illustrated and compared with

nonlinear simulation results for the same test signal. The resulting EHA performs on

a high bandwidth, up to 11 Hz, satisfying design constraints. There is a high gain on

lower frequencies due to the frequency behavior of Kalman filter that is explained in

the previous section. While it is not on QFT design intervals, gain at low frequencies

up to 1 dB is allowed on reference specification document [13]. The strict requirement

is the bandwidth of the actuator.

In frequency response graphs, notice the high slope phase drop and hence gain in-

crease. This behavior occurs due to the saturation of motor speed. The nonlinear

simulation precisely matches the test results. In order to evaluate the performance

of stiffness criteria, a nonlinear simulation is conducted with external force with an

amplitude of 5 kN. In Figure 4.52, the frequency response of EHA stiffness under the

proposed controller structure is demonstrated.

In conclusion, a Kalman filter for the position measurement is designed to estimate

piston displacement even if sensor noise has faulty characteristics. A robust QFT de-

sign is applied for both velocity and position controllers. An optimization algorithm

is operated in order to synthesize position and velocity controllers, where trial and er-
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Figure 4.51: Frequency response of EHA with proposed controller structure
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Figure 4.52: Nonlinear simulation result on EHA stiffness

ror process is eliminated and a low effort position controller is designed satisfying the

performance specifications. The performance results of the developed EHA system

exhibit success of the proposed controller structure.
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CHAPTER 5

SUMMARY AND DISCUSSION

This thesis proposes a robust methodology for designing controllers for flight con-

trol actuators. The resulting controller design process is automated, eliminating the

need for traditional trial-and-error methods typically employed in loop shaping during

QFT. This approach significantly reduces the time required by designers and intro-

duces a novel perspective on controller design that has not been explored in the litera-

ture on EHAs. Integrating control effort reduction as a secondary objective aligns well

with the QFT boundaries, as these boundaries are strictly defined for the parametric

uncertainties, thereby enabling the formulation of an optimization problem. Addi-

tionally, a fault-tolerant position estimator is developed from the hydraulic model of

an EHA and proposes a novel robust solution.

Linear and nonlinear simulations are developed throughout the design process of

EHA, both for component selection and deciding on the redundant properties of EHA.

After EHA manifold is manufactured and sub-components are assembled, simula-

tions are reconstructed especially on nonlinear properties of the subsystems. Such

approach allowed designing the controllers in the simulation environment, as well as

evoking a framework for the quantification of parametric uncertainties of the system.

Kalman Filters, which aim to reduce noise of the position sensor, also designed and

tested through simulation environment before integrating into the EHA system. From

the literature, a Kalman Filter suitable for fault-detection algorithms is also developed

through simulation environment.

There are numerous directions for future work. For instance, experimental evaluation

of EHA uncertainty could be conducted under varying environmental conditions. Re-

search on friction compensation for the controller could also be pursued to achieve a
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more precise control structure. The position controller design lacks saturation com-

pensation, such as anti-windup strategies, which are critical for such systems. In-

tegrating a saturation strategy into the proposed controller would be a valuable en-

hancement.

The optimization method employed in this study is relatively simple, with limited

consideration of detailed coefficient determination. While the optimization success-

fully satisfies QFT bounds, a more comprehensive approach could suggest new tools

and metrics for the design process. Additionally, the pre-determined controller struc-

tures used in this study are not necessarily optimal. Future research could focus

on developing an inclusive optimization strategy for controller design, incorporating

multi-objective functions to address various design goals.

Moreover, studying the performance of optimization methods for different types of

specifications could help create a framework capable of synthesizing controllers for

diverse conditions. In a continuously evolving technological environment, automated

design methodologies are inherently valuable. To completely automate the design

process, system modeling, along with an understanding of how parametric changes

due to environmental conditions affect system properties, is essential for developing

robust solutions.
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APPENDICES

A Hydraulic schematic of EHA for mechanical design
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A. Hydraulic Schematic of Double-Redundant Dual EHA 

 

Figure A.1: Frequency response of EHA with proposed controller structure
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B Frequency response algorithms

B.1 Sine sweep test function in TWINCAT

1 FUNCTION_BLOCK Fr_Test

2 VAR_INPUT

3 max_freq : LREAL;

4 period_count : LREAL;

5 starting_freq : LREAL;

6 freq_increment : LREAL;

7 freq_interval : LREAL;

8 END_VAR

9 VAR_OUTPUT

10 bBode_out : BOOL;

11 sin_out : LREAL;

12 END_VAR

13 VAR

14 bSinTime : BOOL := TRUE;

15 relTime : LREAL := 0.0;

16 firstTime : ULINT := 0;

17 bDelay : BOOL := FALSE;

18 bodeStartTime : LREAL := 0.0;

19 bode_relax_time : LREAL := 0.0;

20 bodeCounter : LREAL := 0.0;

21 END_VAR

22

23 METHOD bode : BOOL

24 VAR_INPUT

25 bBode : BOOL;

26 w : LREAL;

27 amp : LREAL;

28 END_VAR

29 VAR

30 relax_constant : LREAL := 5.0;

31 END_VAR

32

33 // Initialize Outputs
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34 bBode_out := bBode;

35 sin_out := 0.0;

36

37 // Bode Logic

38 IF bBode THEN

39 bode_relax_time := ULINT_TO_LREAL(F_GetSystemTime()) /

↪→ 10000000 - bodeStartTime;

40 w := bodeCounter;

41

42 IF bode_relax_time > freq_interval THEN

43 sin_wave(bPistonSin := TRUE, w := w, amp := amp, sin_out

↪→ => sin_out);

44 END_IF

45

46 IF relTime > period_count / w THEN

47 sin_wave(bPistonSin := FALSE, w := w, amp := amp, sin_out

↪→ => sin_out);

48 relTime := 0;

49 IF (bodeCounter + freq_increment) > max_freq THEN

50 bodeCounter := starting_freq;

51 ELSE

52 bodeCounter := bodeCounter + freq_increment;

53 END_IF

54 bodeStartTime := ULINT_TO_LREAL(F_GetSystemTime()) /

↪→ 10000000;

55 END_IF

56 END_IF

57

58 IF bodeCounter > max_freq THEN

59 bodeCounter := starting_freq;

60 bBode_out := FALSE;

61 END_IF

62 END_METHOD

63

64 METHOD sin_wave : BOOL

65 VAR_INPUT

66 bPistonSin : BOOL;
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67 w : LREAL;

68 amp : LREAL;

69 END_VAR

70 VAR_OUTPUT

71 sin_out : LREAL;

72 END_VAR

73

74 IF bPistonSin THEN

75 IF bSinTime THEN

76 firstTime := F_GetSystemTime();

77 END_IF

78 relTime := ULINT_TO_LREAL(F_GetSystemTime() - firstTime) /

↪→ 10000000;

79 sin_out := SIN(2 ∗ 3.14159265359 ∗ w ∗ relTime) ∗ amp;

80 bDelay := TRUE;

81 bSinTime := FALSE;

82 END_IF

83

84 IF NOT bPistonSin AND bDelay THEN

85 sin_out := 0;

86 relTime := 0;

87 bDelay := FALSE;

88 bSinTime := TRUE;

89 END_IF

90 END_METHOD

B.2 Python code for frequency response analysis

1 -∗- coding: utf-8 -∗-

2 """

3 Created on Fri Feb 16 16:30:22 2024

4

5 @author: gcozb

6 """

7

8 import matplotlib.pyplot as plt

132



9 import numpy as np

10 import warnings

11

12

13 def fftPlot(sig, dt=None, plot=True):

14 Here it's assumes analytic signal (real signal...) - so only

↪→ half of the axis is required

15

16 if dt is None:

17 dt = 1

18 t = np.arange(0, sig.shape[-1])

19 xLabel = 'samples'

20 else:

21 t = np.arange(0, sig.shape[-1]) ∗ dt

22 xLabel = 'freq [Hz]'

23

24 if sig.shape[0] % 2 != 0:

25 warnings.warn("signal preferred to be even in size,

↪→ autoFixing it...")

26 t = t[0:-1]

27 sig = sig[0:-1]

28

29 sigFFT = np.fft.fft(sig) / t.shape[0] Divided by size t for

↪→ coherent magnitude

30

31 freq = np.fft.fftfreq(t.shape[0], d=dt)

32

33 Plot analytic signal - right half of frequence axis needed

↪→ only...

34 firstNegInd = np.argmax(freq < 0)

35 freqAxisPos = freq[0:firstNegInd]

36 sigFFTPos = 2 ∗ sigFFT[0:firstNegInd] ∗2 because of

↪→ magnitude of analytic signal

37

38 if plot:

39 plt.figure()

40 plt.plot(freqAxisPos, np.angle(sigFFTPos))
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41 plt.xlabel(xLabel)

42 plt.ylabel('mag')

43 plt.title('Analytic FFT plot')

44 plt.show()

45

46 return sigFFTPos, freqAxisPos

47

48

49 if __name__ == "__main__":

50 dt = 1 / 1000

51

52 Build a signal within Nyquist - the result will be the

↪→ positive FFT with actual magnitude

53 f0 = 200 [Hz]

54 t = np.arange(0, 1 + dt, dt)

55 sig = (

56 1 ∗ np.sin(2 ∗ np.pi ∗ f0 ∗ t)

57 + 10 ∗ np.sin(2 ∗ np.pi ∗ f0 / 2 ∗ t)

58 + 3 ∗ np.sin(2 ∗ np.pi ∗ f0 / 4 ∗ t)

59 + 10 ∗ np.sin(2 ∗ np.pi ∗ (f0 ∗ 2 + 0.5) ∗ t) <--- not

↪→ sampled on grid so the peak will not be actual height

60 )

61 Result in frequencies

62 fftPlot(sig, dt=dt)

63 Result in samples (if the frequencies axis is unknown)

64 fftPlot(sig)

65

66 def dB_phaseGen (sig1, sig2, freqAxis,debug):

67 maxval = np.max(np.abs(sig1))

68 maxval2 = np.max(np.abs(sig2))

69 ind = np.where(np.abs(sig1)==maxval)

70 freq = freqAxis[ind]

71 dB= 20∗np.log10(np.abs(maxval2)/np.abs(maxval))

72 phase1 =

↪→ np.arctan2(np.imag(sig1[ind]),np.real(sig1[ind]))∗180/np.pi

73 phase2 =

↪→ np.arctan2(np.imag(sig2[ind]),np.real(sig2[ind]))∗180/np.pi
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74 phase = -(phase1-phase2)

75 if debug:

76 print("result : " + str(np.abs(maxval2)))

77 print("ref : " + str(np.abs(maxval)))

78 return dB,phase[0]

79

80

81 def dB_phaseResult(res,ref, cur_freq, sample_time, freq_repeat,

↪→ plot=True, debug=False):

82

83 period_sample = int(2/cur_freq/sample_time)

84 large_sample = int(1/cur_freq∗freq_repeat/sample_time)

85 sigFFTRef, freqAxisPos1 =

↪→ fftPlot(ref[period_sample:large_sample], dt=sample_time,

↪→ plot=False)

86 sigFFTRes, freqAxisPos2 =

↪→ fftPlot(res[period_sample:large_sample], dt=sample_time,

↪→ plot=False)

87 if plot:

88 plt.figure(1)

89 plt.plot(freqAxisPos1,np.abs(sigFFTRes))

90 plt.figure(2)

91 plt.plot(freqAxisPos1,np.abs(sigFFTRef))

92

93 dB,phase =dB_phaseGen(sigFFTRef, sigFFTRes, freqAxisPos1,debug)

94 return dB,phase
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C TWINCAT programs and Matlab function codes of Kalman Filtering func-

tions

C.1 Chinniah Friction Model

1 function Ff = chinniah_friction_model(xdot)

2 % codegen

3

4 m = 20; % kg

5 linear_factor = 1;

6 a1 = 2.1 ∗ 10^4 ∗ linear_factor; % Ns/m^2

7 a2 = -1.45 ∗ 10^3 ∗ linear_factor; % Ns/m

8 a3 = 46; % N

9 quadratic_F = a1 ∗ sign(xdot) ∗ xdot^2 + a2 ∗ xdot + sign(xdot) ∗

↪→ a3;

10 Ff = quadratic_F / m;

11

12 end

C.2 Kalman Equations with 3 States

1 function [rbegin, K_out, X_out, P_out] =

↪→ Kalman_equations_3states(dP, Z_measure, X_est, P_est, begin)

2 coder.extrinsic('exist')

3

4 tc_relation = 1;

5 X_out = [0 0 0]';

6 P_out = diag([1e9, 1e9, 1e9]);

7

8 Zk = Z_measure;

9 rbegin = begin;

10 % codegen

11 M = 20; % kg

12 A = 5.05 ∗ 1e-4; % m^2 area

13 Ts = 1e-4; % s, sampling time

14
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15 X0 = [0 0 0]';

16 Rk = diag([1e-9, 1e-3]) ∗ tc_relation;

17 P0 = diag([1e9, 1e9, 1e9]) ∗ tc_relation;

18 Qk = diag([1e-9, 1e-12, 1e-4]) ∗ tc_relation;

19 Hk = [1 0 0; 0 1 0];

20 Gk = [0 1 0]';

21 K_out = P0 ∗ Hk' ∗ inv(Hk ∗ P0 ∗ Hk' + Rk);

22

23 if rbegin == 1 % If we already have estimations for X and P

24 x2 = X_est(2);

25 x3 = X_est(3);

26 phi22 = 1 - 0.6 ∗ x3 ∗ Ts / M;

27 phi23 = -0.4 ∗ x2 ∗ Ts / M;

28

29 state_trans = [1 Ts 0; 0 1 -Ts ∗ sign(x2) / M; 0 0 1];

30 K_k = P_est ∗ Hk' / (Hk ∗ P_est ∗ Hk' + Rk);

31 X_k = X_est + K_k ∗ (Zk - Hk ∗ X_est);

32 P_k = (eye(3) - K_k ∗ Hk) ∗ P_est;

33 X_k1 = state_trans ∗ X_k + Gk ∗ dP ∗ A ∗ Ts / M;

34 P_k1 = state_trans ∗ P_k ∗ state_trans' + Qk;

35 else

36 % Using initial estimate for the first iteration

37 x2 = X0(2);

38 x3 = X0(3);

39 phi22 = 1 - 0.5 ∗ x3 ∗ Ts / M;

40 phi23 = -0.5 ∗ x2 ∗ Ts / M;

41 state_trans = [1 Ts 0; 0 1 -Ts ∗ sign(x2) / M; 0 0 1];

42

43 K_k = P0 ∗ Hk' ∗ inv(Hk ∗ P0 ∗ Hk' + Rk);

44 X_k = X0 + K_k ∗ (Zk - Hk ∗ X0);

45 P_k = (eye(3) - K_k ∗ Hk) ∗ P0;

46 X_k1 = state_trans ∗ X_k + Gk ∗ dP ∗ A ∗ Ts / M;

47 P_k1 = state_trans ∗ P_k ∗ state_trans' + Qk;

48 end

49

50 X_out = X_k1;

51 P_out = P_k1;
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52 K_out = K_k;

53 end

C.3 Kalman Equations with 4 States

1 function [K_out, X_out, P_out] =

↪→ Kalman_denklemleri_4durum(Z_measure, a3, dP, X_est, P_est,

↪→ begin)

2 coder.extrinsic('exist')

3

4 X_out = [0 0 0 0]';

5 P_out = diag([1e9, 1e9, 1e10, 1e9]);

6 beginout = begin;

7

8 Zk = Z_measure;

9

10 Ts_constant = 1;

11

12 % codegen

13 M = 20; % kg

14 A = 5.05 ∗ 1e-4; % m^2 area

15 Ts = 1e-4; % s, sampling time

16 X0 = [0 0 0 0]';

17 Rk = diag([1e-12, 1e-3]) ∗ Ts_constant;

18 P0 = diag([1e9, 1e9, 1e9, 1e9]) ∗ Ts_constant;

19 Qk = diag([1e-12, 1e-7, 1e-7, 1e-4]) ∗ Ts_constant;

20

21 Hk = [1 0 0 0; 0 1 0 0];

22 Gk = [0 1 0 0]';

23 K_out = P0 ∗ Hk' ∗ inv(Hk ∗ P0 ∗ Hk' + Rk);

24

25 if begin == 1

26 x2 = X_est(2);

27 x3 = X_est(3);

28 x4 = X_est(4);

29
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30 state_share = 0.0;

31 phi22 = 1 - state_share ∗ sign(x2) ∗ x2 ∗ x3 ∗ Ts / M -

↪→ state_share ∗ x4 ∗ Ts / M;

32 phi23 = -(1 - state_share) ∗ sign(x2) ∗ x2^2 ∗ Ts / M;

33 phi24 = -(1 - state_share) ∗ x2 ∗ Ts / M;

34

35 a3_f = -sign(x2) ∗ a3 ∗ Ts / M;

36 state_trans = [1 Ts 0 0; 0 phi22 phi23 phi24; 0 0 1 0; 0 0 0

↪→ 1];

37

38 K_k = P_est ∗ Hk' / (Hk ∗ P_est ∗ Hk' + Rk);

39 X_k = X_est + K_k ∗ (Zk - Hk ∗ X_est);

40 P_k = (eye(4) - K_k ∗ Hk) ∗ P_est;

41

42 X_k1 = state_trans ∗ X_k + Gk ∗ (dP ∗ A ∗ Ts / M + a3_f);

43 P_k1 = state_trans ∗ P_k ∗ state_trans' + Qk;

44 else

45 x2 = X0(2);

46 x3 = X0(3);

47 x4 = X0(4);

48 phi22 = 1;

49 phi23 = -sign(x2) ∗ x2^2 ∗ Ts / M;

50 phi24 = -x2 ∗ Ts / M;

51 a3_f = -sign(x2) ∗ a3 ∗ Ts / M;

52 state_trans = [1 Ts 0 0; 0 phi22 phi23 phi24; 0 0 1 0; 0 0 0

↪→ 1];

53

54 K_k = P0 ∗ Hk' ∗ inv(Hk ∗ P0 ∗ Hk' + Rk);

55 X_k = X0 + K_k ∗ (Zk - Hk ∗ X0);

56 P_k = (eye(4) - K_k ∗ Hk) ∗ P0;

57

58 X_k1 = state_trans ∗ X_k + Gk ∗ (dP ∗ A ∗ Ts / M + a3_f);

59 P_k1 = state_trans ∗ P_k ∗ state_trans' + Qk;

60 end

61

62 X_out = X_k1;

63 P_out = P_k1;
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64

65 end

C.4 PVA Kalman filter matlab function in Simulink

1

2 function [K_out,X_out,P_out,beginout]= Kalman_PVA(Z_measure,

↪→ X_est,P_est, begin,time,K_prev)

3 coder.extrinsic('exist')

4 coder.extrinsic('ss')

5 coder.extrinsic('c2d')

6 coder.extrinsic('diag')

7 coder.extrinsic('inv')

8 Ts=1e-3;

9 X_out=[0 0 0 ]';

10 P_out=zeros(3,3);

11 Rk=[0];

12 P0=zeros(3,3);

13 Qk=zeros(3,3);

14 K_out=zeros(3,1);

15 P_out= diag([1e5,1e8,1e11]);

16 beginout=begin;

17 if mod(time,Ts)==0

18 state_trans = [ 1 Ts Ts^2/2;

19 0 1 Ts;

20 0 0 1];

21 Zk=Z_measure;

22 Ts_constant=1;

23 X0=[0 0 0]';

24 W=1e2 %white noise jerk

25 Rk=[(2.5e-8)]∗Ts_constant;

26 P0=diag([1e2,1e1,1e2])∗Ts_constant;

27 Qk=[W/20∗Ts^5 W/8∗Ts^4 W/6∗Ts^3; W/8∗Ts^4 W/3∗Ts^3 W/2∗Ts^2;

↪→ W/6∗Ts^3 W/2∗Ts^2 W∗Ts];

28 Hk=[1 0 0];

29 K_out=P0∗Hk'/(Hk∗P0∗Hk'+Rk);
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30 if begin==1 % if we have already estimations for X and P

31

32 %5 kalman equations

33 K_k=P_est∗Hk'/(Hk∗P_est∗Hk'+Rk);

34 X_k=X_est+K_k∗(Zk-Hk∗X_est);

35 %X_k=X_est;

36 P_k=(eye(3)-K_k∗Hk)∗P_est;

37 X_k1=state_trans∗X_k;

38 P_k1=state_trans∗P_k∗state_trans'+Qk;

39 K_out=K_k;

40

41 else % If we are using initial estimate, just for once.

42 %Zk, Hk?

43 %5 kalman equations

44 K_k=P0∗Hk'/(Hk∗P0∗Hk'+Rk);

45 X_k=X0+K_k∗(Zk-Hk∗X0);

46 P_k=(eye(3)-K_k∗Hk)∗P0;

47 X_k1=state_trans∗X_k;

48 P_k1=state_trans∗P_k∗state_trans'+Qk;

49 end

50 X_out=X_k1;

51 P_out=P_k1;

52 else

53 X_out=X_est;

54 P_out=P_est;

55 K_out=K_prev;

56

57 end

C.5 PVA Kalman filter code in TWINCAT

1 FUNCTION_BLOCK PUBLIC KalmanFilter_PVA

2 VAR_INPUT

3 rk_variance1 : LREAL;

4 W: LREAL;

5 A_cells : ARRAY[0..8] OF LREAL;
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6 B_cells : ARRAY[0..5] OF LREAL;

7

8 END_VAR

9

10 VAR_OUTPUT

11

12 END_VAR

13 VAR

14 //Rk_Data : ARRAY[1..3,1..3] OF LREAL := [2.5E-10, 0, 0,0,

↪→ 160, 0,0, 0, 1E5]; //This array will act as the memory

↪→ for the intial column vector, prepopulated

15 //Qk_Data : ARRAY[1..3,1..3] OF LREAL := [1E-12, 0, 0,0,

↪→ 1E-7, 0,0, 0, 1E-11];

16 //Pk_Data : ARRAY[1..3,1..3] OF LREAL :=[1E5, 1E-9,

↪→ 1E-9,1E-9, 1E7, 1E-9,1E-9, 1E-9, 1E9];

17 Ts: LREAL :=1E-3;

18

19 Pk: Array2DStaticMatrix; //This instance is the matrix that

↪→ the code will interact with

20 Pk_Data : ARRAY[1..3,1..3] OF LREAL :=[0, 0, 0,0, 0,

↪→ 0,0, 0, 0]; //This array will act as the memory for the

↪→ matrix

21 Rk: Array2DStaticMatrix; //This instance is the initial column

↪→ vector

22

23 //rK first element increase increases affect of Kalman,

↪→ reduces affect of measurement 5.5E-9,

24 Rk_Data : ARRAY[1..1,1..1] OF LREAL := [5.5E-7];

25 Qk : Array2DStaticMatrix; //This instance is the resulting

↪→ column vector //1e-11

26 Qk_Data : ARRAY[1..3,1..3] OF LREAL := [1E-11, 0, 0,0,

↪→ 1E-9, 0,0, 0, 1E-7]; //This array will act as the

↪→ memory for the resulting column vector

27

28

29 Kk: Array2DStaticMatrix; //This instance is the matrix that

↪→ the code will interact with
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30 Kk_Data : ARRAY[1..1,1..3] OF LREAL :=[0, 0, 0];

31

32 D : Array2DStaticMatrix;

33 D_Data : ARRAY[1..2,1..2] OF LREAL := [0,0,0,0];

34 H: Array2DStaticMatrix; //This instance is the matrix that the

↪→ code will interact with

35 H_Data : ARRAY[1..3,1..1] OF LREAL := [1, 0, 0];

36

37 Xk : Array2DStaticMatrix;

38 Xk_Data : ARRAY[1..3,1..1] OF LREAL :=[0,0,0];

39 //state matrix

40 A : Array2DStaticMatrix; //This instance is the matrix that

↪→ the code will interact with

41

42

43

44

45 A_T : Array2DStaticMatrix;

46 A_T_Data : ARRAY[1..3,1..3] OF LREAL;

47

48 B : Array2DStaticMatrix; //This instance is the initial column

↪→ vector

49

50 //From matlab

51 A_Data : ARRAY[1..3,1..3] OF LREAL :=[1,1E-3,EXPT(1E-3,2)

↪→ ,0,1,1E-3,0,0,1];

52 B_Data : ARRAY[1..3,1..2] OF LREAL :=[0,0,0,0,0,0];

53 END_VAR

54

55 // initialize

56 Pk(Data:=Pk_Data);

57 Rk(Data:=Rk_Data);

58 Qk(Data:=Qk_Data);

59 Kk(Data:=Kk_Data);

60 Xk(Data:=Xk_Data);

61 Rk.SetRC(0,0,rk_variance1);

62
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63 H(Data:=H_Data);

64

65 //state matrix

66 A(Data:=A_Data);

67 B(Data:=B_Data);

68

69 //set state matrices

70

71 Qk.SetRC(0,0,W/20∗EXPT(Ts,5));

72 Qk.SetRC(0,1,W/8∗EXPT(Ts,4));

73 Qk.SetRC(0,2,W/6∗EXPT(Ts,3));

74 Qk.SetRC(1,0,W/8∗EXPT(Ts,4));

75 Qk.SetRC(1,1,W/3∗EXPT(Ts,3));

76 Qk.SetRC(1,2,W/2∗EXPT(Ts,2));

77 Qk.SetRC(2,0,W/6∗EXPT(Ts,3));

78 Qk.SetRC(2,1,W/2∗EXPT(Ts,2));

79 Qk.SetRC(2,2,W/1∗EXPT(Ts,1));

80

81 //∗)

82 A_T(Data:=A_T_Data);

83 Matrix_Transpose(A,A_T);

84 METHOD PUBLIC fb_statespace : LREAL

85

86 VAR_INPUT

87 Xin : ARRAY[0..2] OF LREAL; // states

88 w : LREAL; // speed

89 fL : LREAL; // friction force

90 END_VAR

91 VAR

92

93 //A : Array2DStaticMatrix; //This instance is the matrix that

↪→ the code will interact with

94 //A_Data : ARRAY[1..3,1..3] OF LREAL :=[1, -0.0001937, -

↪→ 1.221E-10,0, -0.5778, 2.502E-07,0, -2.522E+06, -

↪→ 0.581]; //This array will act as the memory for the matrix

95 //B : Array2DStaticMatrix; //This instance is the initial

↪→ column vector
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96 //B_Data : ARRAY[1..3,1..2] OF LREAL := [4.78E-08, -

↪→ 3.096E-07, -9.687E-05, -0.0004113,615.3 , -647.3];

↪→ //This array will act as the memory for the intial column

↪→ vector, prepopulated

97 C : Array2DStaticMatrix; //This instance is the resulting

↪→ column vector

98 C_Data : ARRAY[1..2,1..3] OF LREAL := [1, 0,0, 0,1,0]; //This

↪→ array will act as the memory for the resulting column vector

99 D : Array2DStaticMatrix;

100 D_Data : ARRAY[1..2,1..2] OF LREAL := [0,0,0,0];

101 X_new : Array2DStaticMatrix;

102 X_new_Data : ARRAY[1..3,1..1] OF LREAL :=[0,0,0];

103

104 X : Array2DStaticMatrix;

105 X_Data : ARRAY [1..3,1..1] OF LREAL := [Xin[0],Xin[1],Xin[2]];

106

107 Ax : Array2DStaticMatrix;

108 Ax_Data : ARRAY[1..3,1..1] OF LREAL;

109

110 Bu : Array2DStaticMatrix;

111 Bu_Data : ARRAY[1..3,1..1] OF LREAL;

112

113 U : Array2DStaticMatrix;

114 U_Data : ARRAY[1..2,1..1] OF LREAL :=[0,0];

115

116 // inits

117

118 read_u1: LREAL;

119 read_u2: LREAL;

120 read_bu1: LREAL;

121 read_bu2: LREAL;

122 read_bu3: LREAL;

123 read_x1: LREAL;

124 successif: BOOL;

125 END_VAR

126

127 VAR_OUTPUT
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128 X_k1: ARRAY[0..2] OF LREAL;

129 END_VAR

130

131

132

133

134 U(Data :=U_Data);

135 U.SetRC(1,0,w);

136 U.SetRC(0,0,fL);

137 X_new(Data:=X_new_Data);

138 read_u1 := u.GetRC(0,0);

139 read_u2 := u.GetRC(1,0);

140 //A(Data:=A_Data);

141

142 Ax(Data:=Ax_Data);

143 Bu(Data:=Bu_Data);

144 X(Data:=X_Data);

145

146 Matrix_Product(A,X,Ax);

147 successif :=Matrix_Product(B,U,Bu);

148

149 read_bu1 := Bu.GetRC(0,0);

150 read_bu2 := Bu.GetRC(1,0);

151 read_bu3 := Bu.GetRC(2,0);

152 Matrix_ElementSum(Ax,Bu,X_new);

153 //X_new := Ax;

154 read_x1 := X_new.GetRC(0,0);

155

156 X_k1[0]:=X_new.GetRC(0,0); //return

157 X_k1[1]:=X_new.GetRC(1,0); //return

158 X_k1[2]:=X_new.GetRC(2,0); //return

159 METHOD numeric_div : LREAL

160 VAR_INPUT

161 num : LREAL;

162 denum :LREAL;

163 END_VAR

164
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165 VAR_OUTPUT

166 result :LREAL;

167 END_VAR

168 IF denum=0 THEN

169 result:=0;

170 ELSE

171 result:=num/denum;

172 END_IF

173

174 //result:=num/denum;

175 METHOD PUBLIC update5eqs

176

177 VAR_INPUT

178 Yin : LREAL; // measurements, X

179

180 END_VAR

181

182

183

184 VAR

185 //matrix elements

186

187 p11 :LREAL; p12:LREAL; p13:LREAL; p21:LREAL; p22:LREAL; p23:LREAL;

↪→ p31:LREAL; p32:LREAL; p33:LREAL;

188 r11 :LREAL;

189 q11 :LREAL; q12 :LREAL; q13 :LREAL; q21:LREAL;

↪→ q22:LREAL;q23:LREAL; q31:LREAL; q32:LREAL;q33:LREAL;

190

191 k11: LREAL; k21:LREAL; k31:LREAL;

192 xi1 : LREAL; xi2: LREAL; xi3: LREAL;

193 z1: LREAL; z2:LREAL; z3:LREAL;

194

195

196 Xk_eq4: ARRAY[0..2] OF LREAL;

197 Xout: ARRAY[0..2] OF LREAL;

198 pout11 :LREAL; pout12:LREAL; pout13:LREAL; pout21:LREAL;

↪→ pout22:LREAL; pout23:LREAL; pout31:LREAL; pout32:LREAL;
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↪→ pout33:LREAL;

199

200 Pk_inter: Array2DStaticMatrix; //This instance is the matrix that

↪→ the code will interact with

201 Pk_inter_Data : ARRAY[1..3,1..3] OF LREAL :=[1E2, 0, 0,0, 1E2,

↪→ 0,0, 0, 1E2]; //This ar

202

203 Pk_AT: Array2DStaticMatrix; //This instance is the matrix that the

↪→ code will interact with

204 Pk_AT_Data : ARRAY[1..3,1..3] OF LREAL ; //This ar

205 A_Pk_AT: Array2DStaticMatrix; //This instance is the matrix that

↪→ the code will interact with

206 A_Pk_AT_Data : ARRAY[1..3,1..3] OF LREAL ; //This ar

207 END_VAR

208

209 VAR_OUTPUT

210 X_display: ARRAY[0..2] OF LREAL;

211 K_out:LREAL;

212 END_VAR

213 //init elements

214 p11 := Pk.GetRC(0,0);

215 p12 := Pk.GetRC(0,1);

216 p13 := Pk.GetRC(0,2);

217 p21 := Pk.GetRC(1,0);

218 p22 := Pk.GetRC(1,1);

219 p23 := Pk.GetRC(1,2);

220 p31 := Pk.GetRC(2,0);

221 p32 := Pk.GetRC(2,1);

222 p33 := Pk.GetRC(2,2);

223

224

225 r11 := Rk.GetRC(0,0);

226

227 q11 := Qk.GetRC(0,0);

228 q22 := Qk.GetRC(1,1);

229 q33 := Qk.GetRC(2,2);

230
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231 xi1 :=Xk.GetRC(0,0);

232 xi2 :=Xk.GetRC(1,0);

233 xi3 :=Xk.GetRC(2,0);

234

235 //measurements

236 z1:= Yin;

237

238

239 //init P_k matrix

240 Pk_inter(Data:=Pk_inter_Data);

241 Pk_AT(Data:=PK_AT_Data);

242 A_Pk_AT(Data:=A_Pk_AT_Data);

243 //update equations

244 //Kk

245 numeric_div(p11,p11 + r11,result=>k11);

246 numeric_div(p21,p11 + r11,result=>k21);

247 numeric_div(p31,p11 + r11,result=>k31);

248 //X_k

249 Xk_eq4[0]:=xi1 - k11∗(xi1 - (z1));

250 Xk_eq4[1]:=xi2 - k21∗(xi1 - (z1));

251 Xk_eq4[2]:=xi3 - k31∗(xi1 - (z1));

252

253 //P_k

254 p11:=-p11∗(k11 - 1);

255 p12 := -p12∗(k11 - 1);

256 p13 := -p13∗(k11 - 1);

257 p21 := p21 - k21∗p11;

258 p22 := p22 - k21∗p12;

259 p23 := p23 - k21∗p13;

260 p31 := p31 - k31∗p11;

261 p32 := p32 - k31∗p12;

262 p33 := p33 - k31∗p13;

263 //state space est

264 fb_statespace(Xin:=Xk_eq4,w:=0,fL:=0, X_k1=> Xout);

265 X_display := XOut;

266 //P_k1

267 Pk_inter.SetRC(0,0,p11);
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268 Pk_inter.SetRC(0,1,p12);

269 Pk_inter.SetRC(0,2,p13);

270 Pk_inter.SetRC(1,0,p21);

271 Pk_inter.SetRC(1,1,p22);

272 Pk_inter.SetRC(1,2,p23);

273 Pk_inter.SetRC(2,0,p31);

274 Pk_inter.SetRC(2,1,p32);

275 Pk_inter.SetRC(2,2,p33);

276

277 Matrix_Product(Pk_inter,A_T,Pk_AT);

278 Matrix_Product(A,Pk_AT,A_Pk_AT);

279 Matrix_ElementSum(A_Pk_AT,Qk,Pk);

280

281 Xk.SetRC(0,0,Xout[0]);

282 Xk.SetRC(1,0,Xout[1]);

283 Xk.SetRC(2,0,Xout[2]);

284 K_out:=k11;

285 (∗

286 Pk.SetRC(0,0,pout11);

287 Pk.SetRC(0,1,pout12);

288 Pk.SetRC(0,2,pout13);

289 Pk.SetRC(1,0,pout21);

290 Pk.SetRC(1,1,pout22);

291 Pk.SetRC(1,2,pout23);

292 Pk.SetRC(2,0,pout31);

293 Pk.SetRC(2,1,pout32);

294 Pk.SetRC(2,2,pout33);

295 ∗)
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D Matlab code used for QFT design

D.1 Uncertain torque plant

1

2 beta = 1.355e9; %[Pa] Bulk modulu

3 ro = 860; %[kg/m^3] Hidroligin k tlesel

↪→ yogunlugu

4 mu = .0155; %[kg/(m∗s)] hidrolik

↪→ vizkozite

5 k_T = .73; %[Nm/A] Motorun tork katsayi

6 K_T=k_T;

7 k_E = 0.53; %[Nm/(rad/s)] Motorun zit EMK kuvveti

8

9 T_0 = 11.4; %[Nm] Stall torque

10 T_l = 2.7; %[Nm] Y k l hiz testindeki tork

11 w_l = 733; %[rad/s] Y k l hiz testindeki donme hizi

12 R =0.45; % V∗k_T/T_0; %[ohm] Armatur direnci

13 L = 2.1e-3; %[H] Enduktans

14 J_m = 5.93∗1e-4; %[kg∗m^2] Rotor ataleti

15 J_eq = J_m; %[kg∗m^2] Motor-pompa komplesinin toplam

↪→ ataleti (Pompanin ataleti cok daha dusuk oldugu icin

↪→ yoksayilmistir)

16 b_m = 0.426∗1e-2; %[Nm/(rad/s)] Rotorun sonumleme

↪→ katsayisi

17 D_p = 6.6845e-07; %[m^3/rad] Deplasman

18 c_eq = b_m + 1∗D_p∗mu; %[Nm/(rad/s)] Motor-pompa komplesinin

↪→ sonumleme katsayisi

19 A_p = 2572e-6; %[m^2] Etkin piston alani

20 V_d = A_p∗120e-3∗1.3; %[m^3] Olu hacim (akis yollarini da

↪→ kapsamasi icin 1.3 ile carpildi)

21 m_p = 2; %[kg] Piston kutlesi

22 c_c = 850; %[N/(m/s)] Silindirdeki viskoz s r t n m e

23 C_p = 1/9.6e11; %[(m^3/s)/Pa] Pompanin ic kacak katsayisi

24 C_r = C_p; %[(m^3/s)/Pa] Pompanin dis kacak katsayisi

25 C_c = 1/5e12; %[Pa/(m3/s)] Silindir ic kacak katsayisi

26 C_1 = C_p + C_c + C_r;
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27 C_2 = C_p + C_c;

28 C_3 = C_1 + C_2;

29 C_eq = C_3;

30 C_d = .625; %[] Discharge coef.

31 stroke=0.12;

32 %%tork controller PI

33 TORK_KP = 11.3;

34 TORK_KI = 11.3/(.8∗1e-3);

35 % state space with tork controller states are i, w, x ,xdot, pD,

36 % integral(iref-iactual)

37 A = [-R/L-TORK_KP/L, -k_E/L, 0,0, 0, TORK_KI/L ;...

38 k_T/J_eq, -c_eq/J_eq, 0, 0, -D_p/J_eq, 0;...

39 0, 0, 0,1, 0, 0;...

40 0, 0, 0, -c_c/m_p, A_p/m_p,0 ;...

41 0, (2∗beta∗D_p)/V_d, 0, -(2∗A_p∗beta)/V_d, -(beta∗C_eq)/V_d ,

↪→ 0;...

42 -1, 0, 0, 0, 0, 0];

43 Atorque = [-R/L-TORK_KP/L, -k_E/L, 0,0, 0, TORK_KI/L ;...

44 k_T/J_eq, -c_eq/J_eq, 0, 0, -D_p/J_eq, 0;...

45 0, 0, 0,1, 0, 0;...

46 0, 0, 0, -c_c/m_p, A_p/m_p,0 ;...

47 0, (2∗beta∗D_p)/V_d, 0, -(2∗A_p∗beta)/V_d, -(beta∗C_eq)/V_d ,

↪→ 0;...

48 -1, 0, 0, 0, 0, 0];

49 gainer=2;

50 A2 = [-R/L-TORK_KP/L∗gainer, -k_E/L, 0,0, 0, TORK_KI/L-gainer ;...

51 k_T/J_eq, -c_eq/J_eq, 0, 0, -D_p/J_eq, 0;...

52 0, 0, 0,1, 0, 0;...

53 0, 0, 0, -c_c/m_p, A_p/m_p,0 ;...

54 0, (2∗beta∗D_p)/V_d, 0, -(2∗A_p∗beta)/V_d, -(beta∗C_eq)/V_d ,

↪→ 0;...

55 -1, 0, 0, 0, 0, 0];

56 % input is iref

57 B2= [TORK_KP/L, 0, 0 ,0 ,0, 1]';

58 B3= [0, 0, 0 ,-1/m_p ,0, 0]';

59 B_noise = [0, 0, 0 ,0 ,0, 1]';

60 % output is position
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61 C = [0 0 1 0 0 0;...

62 ];

63 C3= [0 0 0 1 0 0;...

64 ];

65 A_torque=A;

66 D = zeros(1,1);

67 %P

68

69

70 %%

71 [b,a]= ss2tf(A2,B2∗gainer,C,D);

72 %Plant=ss(A,B,C,D);

73 Phigh_gainT = tf(b,a);

74 gainer=1;

75 [b,a]= ss2tf(A2,B2∗gainer,C,D);

76 PnomT = tf(b,a);

77 Parray={};

78 [b,a]= ss2tf(A,B2,C,D);

79 [bF,aF]= ss2tf(A,B3,C3,D);

80 F_tf = tf(bF,aF);

81 [bP,aP]= ss2tf(A,B2,C3,D);

82 P_tf = tf(bP,aP);

83 P_F_tf{1} = P_tf;

84 P_F_tf{2} = F_tf;

85 Parray{1}=tf(b,a);

86 Pnom = Parray{1};

87

88 % -- Parameters: minimum "m", maximum "M", and grid

89 C_eqm = 1/5e11; C_eqM = 1/5e13; i1m = 5;

90 D_p_m= 6.6845e-07∗0.8; D_p_M = 6.6845e-07∗1.03; i2m = 2;

91 betam = 9.555e8; betaM = 2.155e9; i3m = 3;

92 c_cm = 50; c_cM= 900; i4m = 3;

93 k_Tm = .5920; k_TM = 0.8640; i5m = 3;

94

95 % -- Gridding

96 C_eqv = logspace(log10(C_eqm),log10(C_eqM),i1m)∗20;

97 D_pv = logspace(log10(D_p_m),log10(D_p_M),i2m);
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98 betav = logspace(log10(betam),log10(betaM),i3m);

99 c_cv = logspace(log10(c_cm),log10(c_cM),i4m);

100 k_Tv = logspace(log10(k_Tm),log10(k_TM),i5m);

101 % -- Plants

102 c = 1;

103 for i1=1:i1m

104 C_eq = C_eqv(i1);

105 for i2=1:i2m

106 D_p = D_pv(i2);

107 for i3=1:i3m

108 beta = betav(i3);

109 for i4=1:i4m

110 c_c = c_cv(i4);

111 for i5=1:i5m

112 k_T = k_Tv(i5);

113 c = c + 1;

114

115

116 c_eq = b_m + 1∗D_p∗mu; %[Nm/(rad/s)] Motor-pompa komplesinin

↪→ sonumleme katsayisi

117

118

119 A = [-R/L-TORK_KP/L, -k_E/L, 0,0, 0, TORK_KI/L ;...

120 k_T/J_eq, -c_eq/J_eq, 0, 0, -D_p/J_eq, 0;...

121 0, 0, 0,1, 0, 0;...

122 0, 0, 0, -c_c/m_p, A_p/m_p,0 ;...

123 0, (2∗beta∗D_p)/V_d, 0, -(2∗A_p∗beta)/V_d, -(beta∗C_eq)/V_d ,

↪→ 0;...

124 -1, 0, 0, 0, 0, 0];

125 % input is iref

126 B2= [TORK_KP/L, 0, 0 ,0 ,0, 1]';

127 % output is position

128 C = [0 0 1 0 0 0];

129 D = zeros(1,1);

130 %P

131 %Plant=ss(A,B,C,D);

132 [b,a]= ss2tf(A,B2,C,D);
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133 Parray{c}=tf(b,a);

134 end

135 end

136 end

137 end

138 end

139 uncertainbode_v2(Parray,1,1,240);

140

141 function [] = uncertainbode_v2(Plants, F, G, it)

142 hold on;

143

144 % Bode plot options

145 opts = bodeoptions('cstprefs');

146 opts.PhaseVisible = 'on';

147 opts.FreqUnits = 'Hz';

148 opts.Title.String = '';

149 opts.XLabel.String = 'Input Frequency';

150 opts.YLabel.String = {'Magnitude Ratio', 'Phase Difference'};

151 opts.Title.FontSize = 12;

152

153 % Pre-define the frequency range

154 freqRange = {1∗2∗pi, 1000∗2∗pi};

155

156 Plength = length(Plants);

157 count = min(it, Plength);

158

159 % Generate Bode plots for each selected plant

160 for i = 1:count

161 random = randi(Plength); % Randomly select a plant

162 pla = Plants{random};

163

164 if G == 1

165 sys = pla; % Open-loop system

166 else

167 sys = (pla ∗ G ∗ F) / (pla ∗ G + 1); % Closed-loop

↪→ system

168 end
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169

170 % Plot the bode diagram

171 [mag, phase, w] = bode(sys, logspace(log10(freqRange{1}),

↪→ log10(freqRange{2}), 1000));

172 mag = squeeze(mag);

173 phase = squeeze(phase);

174

175 % Plot Magnitude

176 subplot(2, 1, 1);

177 semilogx(w / (2 ∗ pi), 20 ∗ log10(mag), 'k', 'LineWidth',

↪→ 1); % Black lines

178 grid on;

179 hold on;

180 ylabel('Magnitude (dB)');

181 xlabel('Frequency (Hz)');

182

183 % Plot Phase

184 subplot(2, 1, 2);

185 semilogx(w / (2 ∗ pi), phase, 'k', 'LineWidth', 1); %

↪→ Black lines

186 grid on;

187 hold on;

188 ylabel('Phase (degrees)');

189 xlabel('Frequency (Hz)');

190 end

191

192 hold off;

193 end

194

195

196

197 end

D.2 Plotting of stability margins

1
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2 % Open a new figure

3 figure;

4 dummy_tf = tf([1 0],[1 0]);

5 nichols(dummy_tf,1); % Display Nichols chart grid

6

7 % Call the function for different Ws values and retrieve GM, PM

8

9 [GM2, PM2] = plot_nichols_circle(1.305, 'b'); % Red for Ws = 1.305

10 [GM3, PM3] = plot_nichols_circle(1.16, 'k'); % Black for Ws = 1.16

11

12 % Create dummy lines for the legend

13 hold on;

14

15 h2 = plot(nan, nan, 'b', 'LineWidth', 1.5); % Red line

16 h3 = plot(nan, nan, 'k', 'LineWidth', 1.5); % Black line

17 hold off;

18

19 % Add the legend with colored lines

20 legend([h2, h3], ...

21 {

22 sprintf('Ws = 1.305, GM = %.2f dB, PM = %.2 f ', GM2,

↪→ PM2), ...

23 sprintf('Ws^v = 1.160, GM = %.2f dB, PM = %.2 f ', GM3,

↪→ PM3)}, ...

24 'Location', 'best');

25

26

27 grid on;

28

29 % Function Definition

30 function [GM, PM] = plot_nichols_circle(Ws, lineColor)

31 % Function to plot a symmetric circle on Nichols chart for a

↪→ given Ws and line color

32 % Returns GM and PM values for use in external legends

33 % Inputs:

34 % Ws - Desired closed-loop gain

35 % lineColor - Line color for the plot (e.g., 'b', 'r', 'g')
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36

37 % Parameters

38 p = 1; % Parameter p

39 pphase = 0; % Offset phase

40

41 % Wide phase range for searching delta_phi

42 phi_range = linspace(-360, 0, 2000); % Fine phase range for

↪→ accurate solution

43

44 % Preallocate storage for solutions

45 g_array = nan(length(phi_range), 2);

46

47 % Loop to calculate gains for each phase

48 for a = 1:length(phi_range)

49 phi_current = phi_range(a) + pphase; % Current phase

50 a1 = p^2 ∗ (1 - 1 / Ws^2); % Coefficient a1

51 b1 = 2 ∗ p ∗ cosd(phi_current); % Coefficient b1

52 c1 = 1; % Coefficient c1

53

54 % Solve the quadratic equation if the discriminant is

↪→ non-negative

55 discriminant = b1^2 - 4 ∗ a1 ∗ c1;

56 discriminant = max(discriminant, 0); % Clamp negative

↪→ discriminant to 0

57 if discriminant >= 0

58 g1 = (-b1 - sqrt(discriminant)) / (2 ∗ a1); % First

↪→ root

59 g2 = (-b1 + sqrt(discriminant)) / (2 ∗ a1); % Second

↪→ root

60

61 % Store the results

62 g_array(a, 1) = double(g1); % Store first root

63 g_array(a, 2) = double(g2); % Store second root

64 end

65 end

66

67 % Filtered solutions
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68 g1 = g_array(:, 1);

69 g2 = g_array(:, 2);

70

71 % Find the phase where the gains are within 0.1 dB and closest

↪→ to -180

72 gain_diff = abs(20∗log10(g1) - 20∗log10(g2)); % Difference in

↪→ dB

73 valid_indices = find(gain_diff < 0.1); % Indices where gain

↪→ difference < 0.1 dB

74 [∼, idx_closest] = min(abs(phi_range(valid_indices) -

↪→ (-180))); % Closest to -180

75 idx_closest = valid_indices(idx_closest); % Map to original

↪→ indices

76 delta_phi = abs(phi_range(idx_closest) + 180); % Calculate

↪→ delta_phi as distance from -180

77

78 % Define the phase bounds using delta_phi

79 phi_center = -180; % Center phase

80 phase_lower = phi_center - delta_phi; % Lower bound

81 phase_upper = phi_center + delta_phi; % Upper bound

82 filtered_phase_range = linspace(phase_lower, phase_upper,

↪→ 1000); % Symmetric phase range

83

84 % Preallocate storage for filtered solutions

85 filtered_g_array = nan(length(filtered_phase_range), 2);

86

87 % Loop over the filtered phase range

88 for a = 1:length(filtered_phase_range)

89 phi_current = filtered_phase_range(a) + pphase; % Current

↪→ phase

90 a1 = p^2 ∗ (1 - 1 / Ws^2); % Coefficient a1

91 b1 = 2 ∗ p ∗ cosd(phi_current); % Coefficient b1

92 c1 = 1; % Coefficient c1

93

94 % Solve the quadratic equation if the discriminant is

↪→ non-negative

95 discriminant = b1^2 - 4 ∗ a1 ∗ c1;

159



96 discriminant = max(discriminant, 0); % Clamp negative

↪→ discriminant to 0

97 if discriminant >= 0

98 g1 = (-b1 - sqrt(discriminant)) / (2 ∗ a1); % First

↪→ root

99 g2 = (-b1 + sqrt(discriminant)) / (2 ∗ a1); % Second

↪→ root

100

101 % Store the results

102 filtered_g_array(a, 1) = double(g1); % Store first root

103 filtered_g_array(a, 2) = double(g2); % Store second

↪→ root

104 end

105 end

106

107 % Filtered solutions

108 g1_filtered = filtered_g_array(:, 1);

109 g2_filtered = filtered_g_array(:, 2);

110

111 % Calculate Gain Margin (GM)

112 [∼, idx_closest_to_minus180] = min(abs(filtered_phase_range -

↪→ (-180))); % Closest to -180 degrees

113 GM = 20 ∗ log10(1 / g1_filtered(idx_closest_to_minus180)); %

↪→ Gain Margin in dB

114

115 % Calculate Phase Margin (PM)

116 valid_indices = find(filtered_phase_range > -180); % Indices

↪→ where phase > -180

117 [∼, idx_closest_to_0db] =

↪→ min(abs(20∗log10(g1_filtered(valid_indices)) - 0)); %

↪→ Closest to 0 dB

118 idx_closest_to_0db = valid_indices(idx_closest_to_0db); % Map

↪→ back to original indices

119 PM = abs(filtered_phase_range(idx_closest_to_0db) - (-180)); %

↪→ Phase Margin in degrees

120

121 % Overlay the filtered symmetric circle
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122 hold on;

123 plot(filtered_phase_range, 20∗log10(g1_filtered), 'Color',

↪→ lineColor, 'LineWidth', 1.5);

124 plot(filtered_phase_range, 20∗log10(g2_filtered), 'Color',

↪→ lineColor, 'LineWidth', 1.5);

125

126 % Add thin guide lines for GM and PM

127 plot([-180, -180],

↪→ [20∗log10(g1_filtered(idx_closest_to_minus180)), 0], ...

128 '--', 'Color', lineColor, 'LineWidth', 0.5); % GM guide

↪→ line

129 plot([filtered_phase_range(idx_closest_to_0db), -180], ...

130 [20∗log10(g1_filtered(idx_closest_to_0db)), 0], ...

131 '--', 'Color', lineColor, 'LineWidth', 0.5); % PM guide

↪→ line

132

133 hold off;

134 end

D.3 Matlab function, generation of QFT bounds on velocity controller

1

2 function [g_array,g_array2] = create_g4_v02vel(w_m,P,Ws,ad_rad)

3 phi_a=-360: 5: 0;

4 w_a = merge_frequency_points(w_m);

5 lengthP=length(P);

6 N=length(phi_a)∗length(w_a)∗lengthP;

7

8

9 g_array=(zeros(N,2));

10 g_array2=(zeros(N,2));

11

12 for i=1:length(w_a)

13 [p1,p1angle]= mag_phase(P{1},w_a(i)∗j);

14 [p2,p2angle]= mag_phase(P{lengthP-1},w_a(i)∗j);

15 w_freq=w_a(i);
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16 for a=1:length(phi_a)

17 disp([i,a]);

18 phi=phi_a(a);

19 for jcount=1:lengthP

20 %disp([i,a,jcount]);

21

22 [p,pphase] = mag_phase(P{jcount},w_a(i)∗j);

23 %%% 1

24 %type1

25

26 a1=p^2∗(1-1/(Ws^2));

27 b1=2∗p∗cos((phi_a(a)+pphase)/180∗pi);

28 c1=1;

29 if ismember(w_freq, w_m{1}) &&

↪→ abs(mod(phi_a(a)+pphase,-360)+180)<52

30 g_array((i-1)∗(73)∗lengthP+(a-1)∗lengthP

↪→ +jcount,1)=double( ( (-b1)-sqrt(b1^2-4∗a1∗c1) ) /(2∗a1)

↪→ );

31 g_array((i-1)∗(73)∗lengthP+(a-1)∗lengthP

↪→ +jcount,2)=double( ( (-b1)+sqrt(b1^2-4∗a1∗c1) ) /(2∗a1)

↪→ );

32 else

33 g_array((i-1)∗(73)∗lengthP+(a-1)∗lengthP

↪→ +jcount,1)=NaN;

34 g_array((i-1)∗(73)∗lengthP+(a-1)∗lengthP

↪→ +jcount,2)=NaN;

35 end

36 %%% 2

37 %type3

38

39 T3=tf([1/ad_rad 0],[1/ad_rad,1]);

40 [t3,t3phase]=mag_phase(T3,w_freq∗j);

41 %

↪→ eqn2=p^2∗g^2+2∗p∗cos((phi+pphase)/180∗pi)∗g+(1-1/t3^2)==0;

42 a1=p^2;

43 b1=2∗p∗cos((phi+pphase)/180∗pi);

44 c1=(1-1/t3^2);
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45

46 if ismember(w_freq, w_m{2})

47 g_array2((i-1)∗(73)∗lengthP+(a-1)∗lengthP

↪→ +jcount,1)=double( ( (-b1)-sqrt(b1^2-4∗a1∗c1) ) /(2∗a1)

↪→ );

48 g_array2((i-1)∗(73)∗lengthP+(a-1)∗lengthP

↪→ +jcount,2)=NaN; %no below line

49 else

50 g_array2((i-1)∗(73)∗lengthP+(a-1)∗lengthP

↪→ +jcount,1)=NaN;

51 g_array2((i-1)∗(73)∗lengthP+(a-1)∗lengthP

↪→ +jcount,2)=NaN;

52 end

53 %disp(double( ( (-b1)-sqrt(b1^2-4∗a1∗c1) ) /(2∗a1)

↪→ )∗p);

54

55

56 %}

57

58

59 end

60 end

61 end

62

63 end

64 function [w_general] = merge_frequency_points(w_cell)

65 dim = length(w_cell);

66 w_general = w_cell {1};

67 for i=2:dim

68 w_general = cat(2,w_general,w_cell{i});

69 end

70 w_general = unique(w_general);

71 end

D.4 Matlab function to merge intersection of QFT bounds
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1 function [wL,wL2,wL3] = g_restrictor4(w_a,Parray,Pnom,Gcell)

2

3 phi_a=[-360: 5: 0];

4 N=length(phi_a)∗length(w_a)∗900;

5 wL={};

6 wL2={};

7 wL3={};

8 lengthP=length(Parray);

9

10 for i=1:length(w_a)

11 w_freq=w_a(i);

12 disp(i);

13 disp(w_freq);

14

15 G_phi_min=zeros(1,length(phi_a));

16 G_phi_max=zeros(1,length(phi_a));

17 Gphases=zeros(1,length(phi_a));

18 %[p,pphase] = mag_phase(pmotor,w_freq∗j); %replaced p11 with

↪→ pmotor% REVERT WHEN USING EHA

19 % actually not need p,pphase

20 maxphi=0;

21 minphi=0;

22

23 for jc=1:length(phi_a)

24 [p,pphase] = mag_phase(Pnom,w_freq∗j);

25 maxb=0;

26 minb=1000000000000;

27 for k=1:lengthP

28 gmin=0;

29 gmax=0;

30 glist1={};

31 glist2={};

32 for ig=1:length(Gcell)

33 g_array = Gcell{ig};

34 glist1{ig} =

↪→ abs((g_array((i-1)∗lengthP∗73+(jc-1)∗lengthP+k,1)));
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35 glist1{ig+length(Gcell)} =

↪→ abs((g_array((i-1)∗lengthP∗73+(jc-1)∗lengthP+k,2)));

36

37 end

38 %disp(size(glist1))

39 gmax=max(cell2mat(glist1));

40 gmin=min(cell2mat(glist1));

41

42 if gmax>=maxb

43 maxb=gmax;

44 end

45 if gmin<=minb

46 minb=gmin;

47 end

48 bound_min=minb;

49 bound_max=maxb;

50

51 end

52

53 G_phi_min(jc)=vpa(bound_min∗p);

54 G_phi_max(jc)=vpa(bound_max∗p);

55 Gphases(jc)=mod((phi_a(jc)+pphase),-360);

56 end

57 wL=[wL,G_phi_min];

58 wL2=[wL2,G_phi_max];

59 wL3=[wL3,Gphases];

60 end

61 end

D.5 Matlab code for particle swarm optimization of velocity controller

1

2 clear;

3 rng(3);

4 %% EHA transfer function and plant

5 EHA_cascade_plant_velTf;
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6 w_m={ [0.01, 0.1 ,20, 200, 300,500],[]

7 };

8 w_a =merge_frequency_points(w_m);

9 Ws = 1.16;

10 ad_rad = 600; % rad/s sensitivity

11

12 %%

13 [g_array1,g_array2]=create_g4_v02vel(w_m,Parray,Ws,ad_rad);

14 Gcell{1} = g_array1;

15 Gcell{2} = g_array2;

16 %%

17 Gcell = importdata("velSPO Gcell_sens.mat");

18

19 %% restrict controller gs

20

21 [gmin,gmax,EHAphase] = g_restrictor4(w_a,Parray,Pnom,Gcell);

22 g_array1=Gcell{1};

23 g_array2=Gcell{2};

24 %% g1

25 plot_plainNichols(g_array1,w_a,Pnom,length(Parray))

26 %% restrict controller gs

27 Gcont = 1; %default controller

28 plot_NicholsVel(gmin,gmax,EHAphase,w_a,Pnom,Gcont)

29

30

31 %% Initialization

32 parameter_count = 3;

33 % Parameters

34 K_array={};

35 Farray={};

36 iterations =50;

37 W = 0.9;

38 C1 = 2;

39 C2 = 2;

40 n = 49;

41 % ---- initial swarm position -----

42
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43

44 mu = 1;

45 sigma = 35;

46

47 for nelor=1:n

48 for parts=1:parameter_count

49 particle(nelor, 1, parts) = abs(random('Normal',mu,sigma));

50 end

51 end

52 particle(:, 4, 1) = 100000; % best value so far

53 particle(:, 2, :) = 6.9e1; % initial velocity

54

55

56 %% Iterations

57

58 for iter = 1 : iterations

59

60 for i = 1 : n

61 for pcounter =1: parameter_count

62 particle(i, 1, pcounter) = max(1e-2,particle(i, 1, pcounter) +

↪→ particle(i, 2, pcounter)/1.3); %update y position

63 end

64

65

66 for counter=1:parameter_count

67 if particle(i,1,counter)>1e4

68 particle(i,1,counter)=1e4;

69 end

70 end

71

72 K1 = particle(i, 1, 1);

73 K2 = particle(i, 1, 2);

74 K3 = particle(i, 1, 3);

75

76 K_array=[K_array,[K1 ; K2; K3]];

77

78 % e=Z.SettlingMax;
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79 % alpha=0.5;

80

81 G1 = pid(K1,K2)∗tf([1],[1/K3 1])/k_T;

82 GQFT = G1;

83

84

85

86 F = QFTcostvel(Ws,GQFT,Pnom,EHAphase,w_a,gmin,gmax) ; %

↪→ fitness evaluation

87

88 if F < particle(i, 4, 1) % if new cost is better

89 for counter=1:parameter_count

90 particle(i, 3, counter) = particle(i, 1, counter); % update

↪→ best x,

91 end

92 particle(i, 4, 1) = F; % and best value

93 end

94 end

95 Farray =[Farray,particle(i, 4, 1)]; %cost of best positions array

96 [temp, gbest] = min(particle(:, 4, 1)); % global best

↪→ position

97 %--- updating velocity vectors

98 for i = 1 : n

99 for counter=1:parameter_count

100 particle(i, 2, counter) = rand∗W∗particle(i, 2, counter) +

↪→ C1∗rand∗(particle(i, 3, counter) - particle(i, 1, counter))

↪→ + C2∗rand∗(particle(gbest, 3, counter) - particle(i, 1,

↪→ counter)); %x velocity component

101

102 end

103 if particle(i,2,1)>1e4

104 particle(i,2,1)=1e4;

105 end

106 if particle(i,2,2)>1e4

107 particle(i,2,2)=1e4;

108 end

109 end
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110 %% Plotting the swarm

111 clf

112 plot(particle(:, 1, 1), particle(:, 1, 2), 'x')

113 axis([-1e3 1e3 -1e3 1e3]);

114 pause(0)

115 end

116

117

118 %% analyze

119 lelor=pid(0.43,53)∗tf([1],[1/3000 1])/k_T; %vel controller in the

↪→ driver

120 bode(1/(1+Pnom∗GQFT))

121 hold on

122 bode(1/(1+Pnom∗lelor))

123 T3=tf([1/ad_rad 0],[1/ad_rad,1]);

124 bode(T3)

125 bode(Pnom∗GQFT/(1+Pnom∗GQFT))

126 %%

127

128 plot_NicholsVel(gmin,gmax,EHAphase,w_a,Pnom,GQFT)

129 F = QFTcostvel(Ws,GQFT,Pnom,EHAphase,w_a,gmin,gmax)

130 %%

131 %%

132 K_arrayPI=cell2mat(K_array);

133 its_array = 0: iterations/length(K_array):iterations;

134 for i=1:3

135 semilogy(its_array(2:end), movmean(K_arrayPI(i,:),2)

↪→ ,"DisplayName", sprintf("K_%d",i), "LineWidth",2)

136 hold on

137 end

138 xlabel("iterations");

139 xlim([0,iterations])

140 ylabel("value");

141 grid on

142 grid minor

143 %%

144 F_arrayPI=cell2mat(Farray);
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145

146

147 plot(F_arrayPI,'k',"DisplayName","cost","LineWidth",2)

148

149 xlabel("iterations");

150 xlim([0,iterations])

151 %ylim([-10,1000])

152 ylabel("value");

153 grid on

154 grid minor

155

156 %%

157 Gsens = importdata("D : EHA - Control &

↪→ Simulation QFT PSO velSPO Gcell_sens.mat");

158 Gstab = importdata("D : EHA - Control &

↪→ Simulation QFT PSO velSPO Gcell_stab.mat");

159 Farray = importdata("D : EHA - Control &

↪→ Simulation QFT PSO velSPO Farray.mat");

160 K_array = importdata("D : EHA - Control &

↪→ Simulation QFT PSO velSPO Karray.mat");

161 GQFT = importdata("D : EHA - Control &

↪→ Simulation QFT PSO velSPO PIControllerGOOD.mat");

162 %%

163 [gmin1,gmax1,EHAphase1] = g_restrictor4(w_a,Parray,Pnom,Gsens);

164 [gmin2,gmax2,EHAphase2] = g_restrictor4(w_a,Parray,Pnom,Gstab);

165 %%

166 subplot(1,2,1)

167 plot_NicholsVel_plain(gmin1,gmax1,EHAphase1,w_a,Pnom,GQFT)

168 grid minor

169 %%

170 subplot(1,2,2)

171 plot_NicholsVel2(gmin2,gmax2,EHAphase2,w_a,Pnom,GQFT)

172 grid minor

D.6 Cost function of the velocity controller
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1 function[cost] =

↪→ QFTcostvel(Ws,Gtf,Pnom,EHAphase,wspan,gmincell,gmaxcell)

2 cost=0;

3

4

5 for i=1:length(wspan)

6 gmax = gmaxcell{i};

7 gmin = gmincell{i};

8 [p,pphase] = mag_phase(Pnom∗Gtf,wspan(i)∗j);

9 if pphase>0

10 pphase=-360+pphase;

11 end

12 c=EHAphase{i};

13

14 eha_phaseindex = min(find(min(abs(c-pphase)) ==

↪→ abs(c-pphase)));

15 %disp(pphase)

16 if(pphase+180<0)

17 cost = cost + abs(pphase+180);

18 end

19

20 if ∼isnan(gmax(eha_phaseindex))

21 Gdiff=abs(20∗log10(gmax(eha_phaseindex))-20∗log10(p));

22 if(gmax(eha_phaseindex)>p)

23 cost=cost+Gdiff;

24 else

25 if wspan(i)>=100

26

27 cost = cost+max(0,Gdiff-2); %control effort reduction

28 end

29

30 if wspan(i) <=1

31 cost = cost - Gdiff∗0.01;

32 end

33 end

34 %disp(cost)

35 end
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36

37

38 end

39 [mag,phase,wout] = bode(Pnom∗Gtf/(1+Pnom∗Gtf));

40 Wsmax=20∗log10(max(mag));

41 if Wsmax>Ws

42 cost= cost+abs(Wsmax-Ws)∗10;

43 %disp(Wsmax)

44 end

45 %disp(cost)

46

47

48 % if(length(cost)>1)

49 % cost=cost(1);

50 % end

51 end

D.7 Cost function of the position controller

1 function[cost] = QFTcost(Gtf,Pnom,EHAphase,wspan,gmincell,gmaxcell)

2 cost=0;

3 gmargin = 10;

4 pmargin = 107;

5 for i=1:length(wspan)

6 gmax = gmaxcell{i};

7 gmin = gmincell{i};

8 [p,pphase] = mag_phase(Pnom∗Gtf,wspan(i)∗j);

9 if pphase>0

10 pphase=-360+pphase;

11 end

12 c=EHAphase{i};

13

14 eha_phaseindex = min(find(min(abs(c-pphase)) ==

↪→ abs(c-pphase)));

15 if 20∗log10(p)>0 && wspan(i)<80

16 if(gmax(eha_phaseindex)>p)
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17 cost=cost+abs(20∗log10(gmax(eha_phaseindex))-20∗log10(p));

18 end

19 else

20 if(gmin(eha_phaseindex)<p) && wspan(i)>=100

21

↪→ cost=cost+abs(20∗log10(gmin(eha_phaseindex))-20∗log10(p));

22 else

23

↪→ cost=cost-0.02∗abs(20∗log10(gmin(eha_phaseindex))-20∗log10(p));

↪→ %control effort reduction

24 end

25 end

26

27 end

28

29 %margin test

30 [gainM,gainPhase] = margin(Pnom∗Gtf);

31 if(max(step(Gtf∗Pnom/(Gtf∗Pnom+1)))>1.05)

32 cost = cost+max(step(Gtf∗Pnom/(Gtf∗Pnom+1)))-1.05;

33 end

34 if(gainM<gmargin)

35 cost=cost+gmargin-gainM;

36 end

37 if(gainPhase<pmargin)

38 cost=cost+pmargin-gainPhase;

39 end

40

41 % if(length(cost)>1)

42 % cost=cost(1);

43 % end

44 end
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