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ABSTRACT 

 

 

THE ROLE OF PERCEIVED MATERIAL IN ASSOCIATIVE RECOGNITION OF 

FAMILIAR AND UNFAMILIAR OBJECTS 

 

 

ÖZDEMİR, Öykü Göze 

M.S., The Department of Psychology 

Supervisor: Assoc. Prof. Dr. Dicle N. DÖVENCİOĞLU 

Co-supervisor: Assoc. Prof. Dr. Aslı KILIÇ 

 

 

February 2025, 123 pages 

 
 

Previous research suggests that object features such as color or shape enhance 

memory processes, but none of them specifically focus on the material of objects, 

which is a crucial feature. This thesis seeks to understand how object features such as 

shape, material, surface texture, and reflectance influence the encoding and retrieval 

of objects in associative memory. Associative memory refers to how associations are 

formed across items either strategically, semantically, or perceptually. Specifically, I 

used a recognition task to understand the nature of associations formed when 

perceiving familiar and unfamiliar objects with congruent and incongruent materials. 

The stimuli in Experiment 1 contained three-dimensional (3D) model images of four 

familiar objects (jug, water glass, goblet, mug) rendered with four materials (wood, 

metal, glass, stone). The stimuli in Experiment 2 contained images of unfamiliar 3D 

models rendered with the same material categories as in Experiment 1. The stimuli in 

Experiment 3 contained images of one unfamiliar object rendered with seven texture 

categories (wood, metal, glass, stone, copper, plastic, and jelly) and two surface 

reflectance categories (matte, glossy). The findings revealed that recognition 
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sensitivity (d’) was higher for material, shape, and reflectance congruent conditions 

than incongruent ones. There was no significant difference between material 

congruency and shape congruency as a memory facilitator in Experiment 1.  On the 

other hand, for unfamiliar objects, the material feature was significantly better 

remembered than the shape and reflectance features. These findings shed light on the 

crucial role of the object material, complementing shape and reflectance, in 

associative recognition.  

 

Keywords: Material perception, associative recognition, object perception, object 

memory 
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ÖZ 

 

 

MALZEME ALGISININ BİLİNEN VE BİLİNMEYEN OBJELERDE 

ÇAĞRIŞIMSAL BELLEĞE ETKİSİ 

 

 

ÖZDEMİR, Öykü Göze 

Yüksek Lisans, Psikoloji Bölümü 

Tez Yöneticisi: Doç. Dr. Dicle N. DÖVENCİOĞLU 

Ortak Tez Yöneticisi: Doç. Dr. Aslı KILIÇ 

 

 

Şubat 2025, 123 sayfa 

 
 

Önceki araştırmalar, renk veya şekil gibi belirgin nesne özelliklerinin hafıza 

süreçlerini güçlendirebileceğini göstermiştir, ancak hiçbiri nesnelerin malzemesine 

özel olarak odaklanmamıştır. Bu çalışma, şekil, malzeme ve yüzey dokusu ve 

yansıması gibi nesne özelliklerinin çağrışımsal nesne belleğinin kodlanması ve 

hatırlanması üzerindeki etkisini anlamayı amaçlamaktadır. Özellikle, eşleşen ve 

eşleşmeyen malzemelerle işlenmiş tanıdık ve tanıdık olmayan nesnelerin belleğe 

kodlanmasında oluşan ilişkilerin doğasını anlamak için bir tanıma görevi kullandım. 

Deney 1'deki uyaranlar, dört tanıdık nesnenin (sürahi, su bardağı, kadeh, kupa) dört 

malzeme (ahşap, metal, cam ve taş) ile oluşturulmuş üç boyutlu (3B) model 

görüntülerini içeriyordu. Deney 2'deki uyaranlar, Deney 1'dekiyle aynı malzeme 

kategorileriyle oluşturulmuş tanıdık olmayan 3B model görüntülerini içeriyordu. 

Deney 3'teki uyaranlar, yedi malzeme kategorisiyle (ahşap, metal, cam, taş, bakır, 

plastik ve jöle) ve iki yüzey yansıma kategorisiyle (mat, parlak) oluşturulmuş tanıdık 

olmayan nesne görüntülerini içeriyordu. Bulgular, tanıma duyarlılığının (d’) 

malzeme, şekil ve yansıma uyumlu koşullarda uyumsuz koşullara kıyasla daha 
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yüksek olduğunu ortaya koydu. Tanıdık nesnelerde, malzeme ve şekil özelliklerinin 

tanıma duyarlılığı arasında anlamlı bir fark bulunmadı. Öte yandan, tanıdık olmayan 

nesnelerde, malzeme özelliği şekil ve yansıma özelliklerine kıyasla önemli ölçüde 

daha iyi hatırlandı. Tezdeki bulgular nesnelerin malzeme özelliklerinin, şekil ve 

yansıma özelliklerine kıyasla ilişkisel tanımada kritik rolünü ilk kez ortaya 

koymaktadır. 

 

Anahtar Kelimeler: Malzeme algısı, çağrışımsal bellek, obje algısı, obje hafızası 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1. Material Perception 

 

Our daily experiences involve interacting with numerous objects, made of various 

materials, some familiar and others not. We can identify and recognize these 

materials and infer their physical characteristics at a glance (Wiebel et al., 2013; 

Sharan et al., 2009). An object's material properties offer vital cues about its identity, 

usefulness, and affordance, hence determining our interaction with the object. For 

this reason, material perception studies explore how humans visually perceive and 

understand the properties of different object materials automatically and effortlessly 

(Adelson, 2001; Buckingham et al., 2009; Liu et al., 2010; Fleming, 2017). The 

range of materials we encounter daily is rich: Each of wood, stone, metal, and glass 

has distinct object properties such as roughness, heaviness, reflectance, translucency, 

and geometry, with practical affordances that influence how we interact with them. 

This interaction depends on our perception of the material properties often before we 

physically touch it. Hence, without touching the object, we have a general 

understanding and expectation about how the object would feel and even what the 

object would be used for in daily life (Nagai et al., 2015). 

 

1.1.1. Surface Features of Objects 

 

The way a material looks is influenced not just by how it reflects light but also by the 

combination of the three-dimensional (3D) shape, surrounding illumination, texture, 

and color of its surface (Motoyoshi et al., 2007; Ho et al., 2008; Marlow et al., 2011; 

Sharan et al., 2013; Sawayama & Nishida, 2018). These features provide valuable 

details about the object. 
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Surface reflectance is a property of the material that describes how light interacts 

with its surface. It is specifically about how the surface bounces or reflects light 

(Nishida & Shinya, 1998; Fleming et al., 2003; Motoyoshi et al., 2007; Doerschner et 

al., 2010). Reflectance is just one of several surface features that influence how a 

material appears, alongside texture, color, and 3D shape (Ho et al., 2008; Olkkonen 

& Brainard, 2010). Especially the shape of a surface is a crucial factor in determining 

how light reflects off it, and this plays a significant role in the material's final visual 

appearance (Lagunas et al., 2021; Serrano et al., 2021). Hence, our ability to 

recognize materials relies on surface features like shape, color, and texture.  

 

Shape has been the focus of object recognition for some time (Logothetis & 

Sheinberg, 1996). However, the shape of an object does not always provide enough 

information to determine its material identity, and material estimation does not 

merely depend on the perception of shape-based object identity. ImageNet-trained 

CNNs were found to recognize objects based on local textures rather than global 

object shapes (Liang, 2018), contrary to human participants, who relied primarily on 

shape information (Serrano et al., 2021). Moreover, material recognition cannot be 

explained by surface characteristics such as shape, reflectance, texture, and color 

alone. For instance, surfaces made of different materials can display similar 

reflectance characteristics, and surfaces with similar texture patterns can be made of 

different materials. Hence, it is possible to have two different materials look the 

same (Sharan et al., 2013; Vangorp et al., 2007). 

 

Local surface information, such as color or texture, does not always benefit material 

perception and recognition (Xiao & Brainard, 2008; Sharan et al., 2009; Giesel & 

Gegenfurtner, 2010). In the perception of static unfamiliar objects, shape was found 

to play a significant role only when the material of the objects was held constant, but 

when the material varied, observers no longer relied on shape cues to judge the 

object's stiffness (Schmidt, 2017). Here, instead of relying on ambiguous cues 

(unfamiliar objects), the visual system focuses on the more reliable information 

provided by the optical nature of the material. Various visual cues, such as color, fine 

details (high spatial frequencies), contrast, texture, and shape, appear to play a role in 

how we categorize materials. However, relying on any single one of these cues is not 
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enough to fully explain how we accurately identify and recognize different materials. 

In summary, the visual system exploits multiple low-level cues in combination with 

high-level object knowledge to recognize materials. 
 

1.1.2. Material Perception in the Visual System Hierarchy 
 

Our visual experience is built upon perceiving a variety of surfaces and objects. Each 

has its own 3D shape, material composition, and way of reflecting light, influenced 

by the illumination (Lagunas et al., 2021). To understand how we perceive materials, 

we need to look at the mid-level vision, part of the visual perception hierarchy that 

tries to understand how the visual system derives such information from images. 

This complex process involves organizing visual data into a complete picture of 

surfaces and materials. It is a multi-sensory process with a hierarchical structure, 

meaning it builds upon simpler visual perceptions to achieve a deeper understanding 

(Anderson et al., 2009). Our ability to effortlessly recognize a wide range of 

materials despite their potentially limitless visual appearances is worth noting: How 

does the brain decipher the multitude of factors that contribute to the images we see, 

allowing us to perceive the world around us? This question is a compelling example 

of an essential but unresolved challenge in visual neuroscience (Adelson, 2000; 

Fleming et al., 2001; Schmid et al., 2023).  
 

There are three stages in the visual processing hierarchy involved in material 

perception. The first stage is low-level image feature extraction, in which basic local 

feature elements from an image, such as shapes, colors, textures, and illusory 

contours, are collected and then used to build a more comprehensive version of what 

is being seen. For instance, material categories, such as wood and stone, can be 

discriminated around 100 ms stimulus onset, likely due to differences in the low-

level image material surface features (Wiebel et al., 2014).In the second stage, mid-

level surface computations, the visual system starts interpreting the collected features 

to estimate material properties; thus, it involves understanding and differentiating the 

surface characteristics of materials, such as reflectance, texture, and color. In the 

final stage, high-level recognition, the visual system uses the information processed 

in the previous stages to categorize materials into various classes based on their 

estimated properties. This level of processing allows for the organization and 
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recognition of various materials quickly and accurately in different contexts; 

therefore, in this stage, more complex top-down processes are in place (Sharan et al., 

2009; Fleming, 2017; Alley et al., 2020).  

 

Neural processing in material perception was found to incorporate recognizing low-

level image attributes in the early visual areas like primary and secondary visual 

cortex (Baumgartner & Gegenfurtner, 2016) to categorizing surface materials in 

higher-level category areas, such as the parahippocampal gyrus, fusiform gyrus, and 

collateral sulcus (Komatsu & Goda, 2018). Moreover, neurophysiological evidence 

also shows that the primary processing and categorizing visual perception of 

materials occur via a hierarchical structure within the ventral visual pathway 

(Komatsu & Goda, 2018), which is crucial for object recognition. Activities related 

to texture and materials are not restricted to a single area but are dispersed along the 

collateral sulcus, extending into adjacent gyri in the medial-lateral direction (Cant et 

al., 2009; Cavina-Pratesi et al., 2010). In summary, from basic low-level image 

feature detection to sophisticated material recognition and categorization, our visual 

system undercovers complex visual information to understand and interact with 

different materials in our environment (Fleming, 2017; Schmid et al., 2023).  

 

1.1.3. Models of Material Perception 

 

There are different levels of how we visually perceive materials. According to the 

model developed by Schmidt et al. (2017), there are two main routes of material 

perception: the association route and the estimation route. The estimation route 

allows material recognition to be achieved through the direct estimation of material 

properties from image features. This process happens without the need for explicit 

material identification and relies on the analysis of visual cues alone, such as surface 

reflectance, to infer material properties (Van Assen & Fleming, 2016). For instance, 

gloss was found to be a material property that takes effect via the estimation route 

(Vangorp et al, 2017).  

 

Another way we identify materials is by using learned associations. The association 

route facilitates linking visual cues, like the texture of a surface, with the properties 
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of that material, like whether it is soft or hard, based on the material identity formed 

with learned object–material associations (Fleming et al., 2013; Schmidt et al., 

2017). Hence, over a lifetime, we develop strong connections between the visual 

appearance of an object and its typical material properties, and we depend on these 

associations when identifying materials (Sharan, 2009; Alley et al., 2020). Therefore, 

visual priors about materials can shape our expectations and modify how we perceive 

them. The shape-based identity of an object can trigger associations with specific 

material properties, meaning that recognizing an object's shape can lead to strong 

predictions about its material composition. This means that via the association route, 

we do not just passively receive visual material information but actively interpret it 

based on prior experience. 

 

1.2. Material and Object Category Recognition 

 

Material category membership is formed based on the similarities of both perceptual 

and semantic qualities binding the gap between sensory perception and semantic 

interpretation (Sharan et al., 2013). Fleming et al. (2013) demonstrated that 

individuals can make consistent and accurate judgments about the visual properties 

of materials when presented with photographic stimuli. They tested nine distinct 

perceptual qualities, and participants were able to reliably assess each one suggesting 

a strong relationship between the visual assessment of material qualities and the 

semantic representation of different material classes. However, materials can be 

incredibly diverse in their physical forms. For example, the material category of 

glass can include a broad range of appearances, from water glass to a magnificent 

chandelier. This introduces a challenge for our cognitive system. The numerous 

ranges of shapes a material can adopt make it difficult to establish clear boundaries 

for material categorization only based on perceptual or semantic similarity (Fleming 

et al., 2015; Caputa et al., 2010). Consequently, it is tempting to simplify the concept 

of material recognition to the field of object recognition. For instance, expecting a 

mug to be made of ceramic rather than wood is highly basic. Although there is a fair, 

statistically relevant correlation between object identity and material identity, shape-

based object identity does not account for material recognition. It is important to 

emphasize that their relationship is not directly symmetrical. Objects with the same 
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identity can be made of different materials, while objects from different identities 

can belong to the same material category (Bileschi et al., 2005; Sharan, 2009, Figure 

1.1). Recognizing materials involves unique processes that go beyond simply 

identifying objects. 

 

Sharan and colleagues (2009) demonstrated that our ability to visually identify and 

classify everyday materials from images is rapid and precise, even with a short 

presentation time of 40 ms. Moreover, they also reported that in addition to the fast 

and accurate material category estimation, people reliably evaluate different aspects 

of material surface features, such as whether it is soft or rough, matte or glossy, 

opaque or translucent. Thus, they concluded that material perception can be as fast as 

object recognition. Conversely, a study by Wiebel et al. (2013) revealed that material 

recognition is accurate but slower than object recognition, and discriminating 

materials is more complicated than objects. 
 

 
Figure 1. 1. Objects that belong to the same identity category and are made of 
different materials are shown on the left side. Objects that belong to different identity 
categories and are made of the same materials are shown on the right side. Here, the 
shape-based object identity of the fish does not provide any cue for the glass material 
identity. On the other hand, the shape-based object identity of the goblet provides 
relevant information on its material identity, which is glass. 

 
In addition to this, the findings of Nagai and colleagues (2015) revealed that 

evaluations of features like glossiness and transparency were linked to enhanced 

performance in discriminating materials for short reaction times, and non-visual 

feature ratings such as heaviness and warmness were associated with longer reaction 

times. The authors concluded that visual surface features are the primary source of 

material recognition compared to non-visual features in everyday life. For instance, 

we rarely estimate gloss and translucency only from haptic information without 

visual input (Okamoto et al., 2013; Xiao et al., 2014). According to the study 
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conducted by Sharan et al. (2013), relying solely on local image details such as 

texture, local shape, and color was found to be insufficient for accurately recognizing 

material categories. The authors report that participants performed better at 

recognizing the material category when they were given global image information 

(object-relevant details). 

 
 
1.3. Object Memory 

 

When interacting with objects, we combine different types of information, such as 

their semantic function, technical/mechanical, and sensorimotor elements, in a 

continuous feedback loop (Federico et al., 2023). Even though we see objects from 

various angles and situations, we can still identify them as the same object. This 

means many different "views" of an object are mapped and encoded to a single, 

unique identity as a unitary configuration called object files (Schacter et al., 1990; 

Mitroff & Alvarez, 2007; Osiurak et al., 2020). Object files store and update episodic 

visual representations (surface features such as shape, color, and texture) of objects 

over time and motion (Mitroff & Alvarez, 2007). Studying an object activates and 

strengthens the memory file of that object, which makes it more accessible and 

requires less effort to retrieve when reencountered. Information about global and 

local object features is very beneficial in the overall retrieval process, even though 

learning and remembering stimuli with multiple properties increases the cognitive 

load and makes retrieval more demanding (Olson & Jiang, 2002; Alvarez & 

Cavanagh, 2004; Eng et al., 2005). 

 

1.3.1. Object Memorability 

 

Studies exploring how people remember images have revealed that specific pictures 

consistently stick in people's minds while others fade from memory. Participants 

show remarkably similar patterns in which images they memorize or forget (Isola et 

al., 2011; Isola et al., 2011; Isola et al., 2013; Khosla et al., 2015; Bainbridge et al., 

2017). Research suggests that an image's ability to be remembered is fundamentally 

built into its characteristic features (Shoval et al., 2023). And if an image is 
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memorable, remembering that image will also be relatively more straightforward 

(Bainbridge et al., 2017). Object memorability refers to how effectively an object 

will be stored in a person's memory following a brief single exposure (Basavaraju et 

al., 2019). While earlier studies examined what makes images stick in memory, they 

did not explicitly investigate which individual objects within those images are most 

memorable. The initial investigation of object memorability was conducted by 

Dubey and colleagues (2015). Their research revealed that images that people tend to 

remember well usually include at least one inherently memorable object. And not all 

object features have the same memorability. According to their findings, visual 

attributes such as hue, saturation, shape, and pixel measurements fail to reliably 

predict object memorability (Dubey et al., 2015). On the other hand, they showed 

that object category plays an important role in determining visual object 

memorability. For example, while animals, people, and vehicles were found to be 

more memorable, furniture, buildings, and devices were generally less memorable. 

They also showed that object memorability decreases as the number of objects and 

the other object categories increase (Dubey, 2015). 

 

Other research discovered that the features related to an object's semantic meaning 

are the strongest predictors of object memorability compared to visual features like 

color and shape (Khosla et al., 2015; Konkle et al., 2010; Hovhannisyan et al., 2021; 

Kramer et al., 2022; Kramer et al., 2023; Schiffer, 2023). The research findings also 

suggest that object memorability appears to be more dependent on conceptual 

distinctiveness than perceptual distinctiveness (Konkle et al., 2010; Kramer et al., 

2023). Moreover, the most typical examples within an object category were found to 

be slightly more memorable than others (Lee et al., 2023; Kramer et al., 202). 

 

One study indicated that object memorability can be purely based on visual 

characteristics, even without any semantic content (Lin et al., 2021). This was 

demonstrated by keeping low-level visual elements while removing semantic 

features. Furthermore, the placement of objects within an image significantly affects 

object memorability (Basavaraju et al., 2019). Items positioned in the middle of 

images are more memorable than those placed in corner areas (Basavaraju et al., 

2019). Also, it was found that larger objects are more memorable than smaller ones, 



 
9 

with a clear positive correlation between size and memorability (Basavaraju et al., 

2019). Therefore, a single object's memorability can vary depending on its location 

and size within the image (Basavaraju et al., 2019). When real-world objects, colored 

photographs, or black-and-white line drawings were used as stimuli in an object 

recognition task, the real objects were found to be more memorable than pictorial 

stimuli (Snow et al., 2014). In summary, object memorability depends on semantic 

features more than perceptual ones. However, if we cannot access meaningful or 

semantic characteristics, then we start to depend on perceptual features for object 

memorability. 

 

1.3.2. The Role of Shape and Color in Object Memory 

 

When the memory system has access to both semantic and visual shape information 

of objects, it prioritizes and relies on the semantic aspects, however, when semantic 

interpretation is not possible, memory defaults to storing objects based on their 

physical form (Van Weelden et al., 2015). According to shape perception research, 

the visual system depends on the fundamental 3D components as the main elements 

for identifying objects (Hayward, 1998; Lloyd-Jones & Luckhurst, 2002; Lloyd-

Jones et al., 2012). The outer edge of an object plays a crucial role in object 

recognition, even when we view it from different angles. This outline shape allows 

for maintaining consistent object identification despite changes in perspective. Thus, 

among visual properties, shape is believed to be the prevalent feature in object 

recognition (Biederman, 1987; Hummel & Biederman, 1992; Hayward et al., 1999). 

According to a study conducted by Lloyd-Jones et al. (2012), the visual processing 

system uses object shape as the fundamental gateway for other object features such 

as color and texture.  

 

Examples from the literature also report that basic color properties such as hue and 

saturation have minimal impact on object memorability (Dubey et al., 2015). Also, it 

was found that people tend to remember colors more reliably and accurately when 

they represent clear, typical examples of specific color categories. For instance, a 

pure, distinct red is more likely to be remembered correctly than an ambiguous shade 

between red and orange (Bae et al., 2015). Considering the role of color in object 
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recognition, a meta-study conducted by Bramão et al. (2011) found that the effect of 

color on object recognition was moderate (Cohen’s d = 0.28). According to a study 

conducted by Cave et al. (1996), when the same-colored and different-colored 

pictures were used in the study and test phases, no performance difference was 

observed between the same-color and different-color conditions. Hence, they 

concluded that object recognition was not influenced by the changes in color.  

 

When participants were shown object pictures whose colors were typical, moderately 

atypical, or bizarre, color bizarreness was found not to affect the object recognition 

memory (Morita & Kambara, 2021). On the other hand, some studies showed that 

objects whose color is strongly associated with their shape-based object identity play 

an important role in object recognition, which is called color typicality or color 

diagnosticity (Redmann et al., 2019; Reppa et al., 2020; Nagai & Yokosawa, 2003). 

Tanaka and Presnell (1999) demonstrated that color has a significant role in 

recognizing high-color diagnostic objects and has no effect on recognizing objects 

with non-color diagnosticity. Ovalle-Fresa et al. (2021) found that visual associative 

recognition memory was better for concrete object–color associations than abstract 

fractal–color associations. Yet another study found that recognition of shape and 

color function independently, relying on distinct sensory and memory processes, 

contradicting the abovementioned evidence for color typicality (Stefurak & Boynton, 

1986). One study suggests that color helps us recognize pictures not because we 

remember the colors themselves but because color highlights distinctive surface 

features and contours (Suzuki & Takahashi, 1997; Lewis et al., 2013). In short, when 

we store information about objects, we process color and shape characteristics and 

these two visual properties are integrated into how we remember objects we 

encounter.  

 

1.3.3. The Role of Familiarity in Object Memory 

 

Our everyday experience suggests that we effortlessly recognize familiar objects 

even when the visual information we receive about them changes significantly. 

Familiar objects often have distinct features that make them stand out from 

unfamiliar ones, such as consistent shape-color associations (Tanaka & Presnell, 
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1999; Reppa et al., 2020), established object-material associations (Sharan et al., 

2009; Schmidt et al., 2017) and learned semantic associations (Martin & Chao, 2001; 

Martin, 2007). Having familiarity and prior knowledge about an object creates a 

mental representation that can be used to enhance perception and memory processing 

of that object (Boucart & Bonnet, 1991; Kahneman, 2011). The ease of recognizing 

familiar objects might be partially attributed to our ability to access semantic 

information, such as the object's name and its associated meaning or shape 

nameability (Craddock & Lawson, 2008; Walker & Cuthbert, 1998). For instance, it 

was found that when objects are not familiar enough, we attempt to identify the 

familiar elements of the unfamiliar object as much as possible (Schmidt et al., 2020). 

If the object is familiar or has mostly familiar elements like global shape 

information, we base our judgments on semantic information (Schmidt et al., 2020). 

New-association priming refers to the phenomenon where exposure of two unrelated 

items together can lead to the creation of links between the items that were 

previously unrelated (Musen et al., 1999). It was found that object familiarity 

increases new association priming, as it allows individuals to access the already 

existing memory representations for both elements and focus on merging the new 

association (Musen et al., 1999). However, if the stimuli are unfamiliar new-

association priming does not occur (Musen et al., 1999). Hence, it is easier to 

associate if representations already exist; otherwise, memory representations must be 

created first. 

 

The strong connection between object meaningfulness and object memorability 

suggests that people rely on an object's semantic content to indicate how likely they 

will remember it later. Objects with greater meaningful content were less perceived 

by their visual features and more by their semantic features (Shoval et al., 2023). 

Memory improves when we can attach verbal descriptions to what we see. 

Specifically, when people are provided with labels for unfamiliar or ambiguous 

objects, they tend to remember them more effectively than those without labels 

(Kouststaal et al., 2003). This could be due to the familiarity that object 

meaningfulness holds, and the more familiar an object is, the more increased 

memory performance is observed (Blalock, 2015; Xie, 2017). Overall, these findings 

indicate that familiarity, typicality, and co-occurrence were found to have enhancing 
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effects on object memory (Green & Hummel, 2005, 2006; Ngo et al., 2018; Schiffer, 

2023; Kramer et al., 2023).  

 

1.3.4. The Role of Visual Saliency in Object Memory 

 

When images are simple - containing minimal objects or objects with few notable 

features - visual saliency effectively predicts how memorable those objects will be. 

However, this predictive power diminishes significantly in more complex images 

where multiple objects with different object features are observed. Hence, visual 

saliency was found to reliably predict object memorability only when the image has 

minimal complexity (Dubey et al., 2015; Bainbridge, 2019). Therefore, an image's 

ability to be remembered depends not solely on its visual attention-grabbing features. 

Highly memorable images do not necessarily stand out immediately or catch our eye 

- their memorability derives from factors beyond just attention-capturing visual 

elements (Bainbridge, 2020). On the other hand, images depicting noticeable or 

distinctive salient movements were found to be better remembered (Basavaraju et al., 

2018). In conclusion, contrary to common thinking, visual saliency is not a universal 

indicator of memorability (Isola et al., 2011). Similarly, images that are considered 

particularly unique or aesthetically appealing do not demonstrate a strong connection 

with being more memorable (Dubey et al., 2015; Isola et al., 2013). Nevertheless, to 

my knowledge, no study has investigated the role of material in object memorability. 

 

1.4. Perception and Memory 

 

Is it too daring to say memory is perception? In other words, we have memory-

driven expectations, how objects are perceived depends on their representation over 

experience; hence, perception is memory (Buckingham, 2009). According to visual 

sensory memory, later called iconic memory (Neisser, 1978), object recognition is an 

active process where the current visual input of an object is constantly being 

compared with existing perceptual representations of similar objects. Thus, many 

detailed memory representations are the very representations that underlie visual 

object perception. Moreover, grounded cognition (Barsalou, 2005) argues that this 

comparison is modal, not amodal, as it is assumed by classic approaches. According 
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to the embodied theory of memory, perception and memory are deeply 

interconnected operations, both being constructive processes influenced by the 

observer's experiences, interpretations, and categorizations. They are closely linked 

because perceiving an object is not merely about gathering perceptual data, but it 

also involves comparing sensory features of objects and materials with stored 

representations of these sensory inputs. In other words, what we perceive or 

remember is shaped by previous experiences and the meanings we attribute to them 

rather than being direct reflections of reality. Thus, it boils down to what is 

remembered depends on how it was recorded into memory, suggesting that our 

memory results from our perception that can influence and be influenced by 

perceptual experiences (Barsalou, 1999). Both memory and perception involve 

categorization to manage the vast amount of information, a necessary process based 

on the observer's knowledge and experience. These categorizations may create 

prototypes, omitting some of the specific details that, in return, could lead to 

perceptual and memory illusions, also highlighting the connection between the two 

(Quirago, 2016). As perceptual inferences can lead to visual illusions, memory can 

also be distorted, leading to false memories, such as falsely recognizing a word 

associated with a list (Roediger & McDermott, 1995). 

 

Memory is spread throughout the same neural networks engaged in sensory-motor 

activities (Slotnick, 2004). The view that perception and memory share mutual 

neural pathways is supported by neuroimaging research that shows activation of 

sensory-motor areas during memory tasks (Martin & Chao, 2001; Weinberger, 2004; 

Versace et al., 2009).  

 

There are many studies investigating how memory traces can actively influence 

perceptual processing. For example, a shape associated with a sound in a learning 

phase was found to influence the perception of that related auditory property in the 

test phase, even when only the shape was present, and the sound was not present 

(Brunel et al., 2010). In another study, when a sensory property (like sweetness) was 

associated with a visual pattern, it was found that the pattern previously associated 

with the property of sweetness had a facilitatory effect on the categorization of the 

pictures of sweet products (Rey et al., 2013). In their experiment involving a visual 
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search task where the typical size and perceptual size of objects were manipulated, 

Riu et al. (2011) found that participants had faster reaction times when there was 

congruency between the typical size of objects (stored information) and their 

perceived size in the task. Contrariwise, when there was incongruency between these 

two aspects of size, reaction times in the visual search task increased.  

 

One study examined working memory's role in maintaining material constancy 

(Tsuda et al., 2020), referring to the ability to consistently perceive materials under 

varying lighting conditions. The study revealed that when perceptual and memory 

congruent performances were directly compared, working memory representation 

was less accurate than perception, highlighting the need to consider memory 

processes in understanding, perceiving, and remembering material properties (Tsuda 

et al., 2020). Memory plays a vital role in constancy: To make a successful match, 

one needs to compare presently perceived input with an encoded representation seen 

previously. Constancy was also found in working memory for glossiness perception, 

which is robust to illumination changes (Tsuda & Saiki, 2018). Nevertheless, it 

should be noted that not many studies examine how perceptual mechanisms interplay 

in a memory-related task. 

 

1.5. Associative Recognition Memory 

 

The concept of association is fundamental to learning and memory. Associations 

formed between sensory stimuli, such as surface texture or material of objects, 

provide information about environmental regularities and are crucial for predicting 

and interpreting future sensory inputs and defining the semantic properties that are 

stored in the memory (Albright, 2012). Associative memory can be influenced by 

how items are semantically organized or clustered, leading people to remember items 

that are related in meaning, such as those in the same taxonomic group, thereby 

creating a network of semantic associations. Two main experimental techniques are 

commonly used to investigate associative memory. The first technique, the cued-

recall task, involves participants studying pairs of items and then being prompted 

with one item, from which they must recall the corresponding pair (Tulving, & 

Thomson, 1973). The second technique, the associative recognition task, requires 
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participants to study item pairs and then identify whether presented pairs are the 

same as those studied by answering "yes" for recognized pairs and "no" for 

unrecognized ones (Clark et al., 1993; Rotello & Heit, 2000; Cohn & Moscovitch, 

2007; Kahana, 2012).  

 

In associative recognition task, three different types of pairs are used during the 

retrieval stage to test memory. Each type serves a specific purpose and requires 

different responses from participants. Intact pairs are exactly the same as what 

participants saw during the study phase; both the items and their pairing remain 

unchanged. When participants see these pairs, they should respond "yes" because 

these are the original pairs they have learned. Unstudied pairs are completely new 

pairs that participants have never seen either of the items before. These pairs appear 

for the first time during the retrieval stage and serve as new information. Participants 

should respond "no" to these pairs since they were not in the original study list. 

Rearranged pairs contain individual items from the study list, but these items have 

been mixed up to create incorrect combinations in the retrieval stage to serve as 

lures. Participants should respond "no" to these pairs since they did not appear in the 

study list as a pair (Rotello & Heit, 2000; Cohn & Moscovitch, 2007). 

 

According to dual-process theory, recognition memory is the ability to distinguish 

between old (previously encountered) and new information. It is thought to be based 

on two fundamentally different processes: 1) A subjective sense of familiarity 

without remembering specifics is often used to make swift memory judgments, and 

2) the recollection which is an effortful process of retrieving precise details 

(Yonelinas, 2002; Nagai & Yokosawa, 2003). 

 

Intact pairs are used because they activate both familiarity and recollection processes 

simultaneously. When participants see an intact pair, they can recognize it through 

both the familiarity of individual items and their recollection of the specific 

association between them. These pairs activate both the item and associative 

information. Rearranged pairs serve a crucial methodological purpose; they force 

participants to rely on associative memory rather than just item memory. To 

correctly reject these pairs, participants must use one item to retrieve its original 
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partner (Humphreys,1978). Therefore, the rearranged pairs depend on not just the 

individual item memory but also the associations formed between two individual 

items (Cohn & Moscovitch, 2007). The unstudied pairs serve as a baseline control 

condition; they contain completely new items. This allows pure novelty detection 

and false alarm rates. 

 

1.6. Why Study the Role of Material Perception on Associative Recognition of 

Familiar and Unfamiliar Objects  

 

The influence of material perception on visual object memory has been largely 

neglected in research despite the ecological significance of recognizing materials and 

their properties (Adelson, 2001; Wiebel, 2014; Fleming, 2014; Fleming et al., 2015; 

Nagai et al., 2015). To my knowledge, no previous study directly investigated the 

role of object material and compared this to the role of object shape in memorability. 

There is a gap in the literature about which material features are more memorable 

and whether material memorability is superior for familiar vs. unfamiliar objects. 

Hence, I focus on the impact of perceptual features such as material, shape, and 

reflectance on object memorability. I used a set of objects that change in perceptual 

congruency with familiar and unfamiliar objects. By perceptual congruency, I mean 

choosing two objects that have the same perceptual components as pairs. For 

instance, when two objects in a pair have the same shape or material, they are 

perceptually congruent. When they have different shapes or materials, they are 

perceptually incongruent. Therefore, this thesis focuses on how material information 

is stored and retrieved from associative object memory compared to other surface 

characteristics such as shape and reflectance. Moreover, this thesis is interested in 

how shape-based familiarity and unfamiliarity play a role in associative object 

memory. 

 

This type of research can provide valuable insights into the interplay between shape 

perception and material perception in associative object recognition, shedding light 

on how these aspects of visual processing influence each other. Hence, building 

paired samples that vary in material, shape, and reflectance in a controlled and 

systematic way will be useful for studying the relationship between these variables. 
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Also, investigating how people interact with novel, functionless objects with no 

familiarity, such as spherical objects called Glavens (Phillips, 2004; Phillips et al., 

2009) -similar to Gibson's feelies (Gibson, 1962)- can provide valuable insights into 

the cognitive mechanisms that underlie our ability to perceive and recognize 

materials as well as objects. Understanding how incoming familiar and unfamiliar 

sensory evidence is combined with high-level expectations is essential to 

understanding how the human visual system executes material perception and forms 

shape–material associations (Alley et al., 2020). 

 

1.7. Aims and Hypotheses 

 

In this thesis, I investigate the role of perceived material on the associative 

recognition memory of familiar and unfamiliar objects compared to other object 

features, such as shape and surface reflectance. To do this, a set of familiar objects 

with different object identities made of everyday materials were chosen as stimuli in 

the first experiment. A set of unfamiliar objects with different shapes made of the 

same everyday materials were chosen as stimuli in the second and third 

experiments.   The aim of Experiment 1 was to investigate how participants form 

associations between two familiar objects based on their shared object features like 

material and shape-based object identity. The main research question was whether 

participants rely on the material or the shape information when forming associations 

between two familiar objects. The hypotheses of Experiment 1 are as follows: (1) 

The shape-congruent and material-congruent familiar object pairs will be recognized 

better than the shape-incongruent and material-incongruent familiar object pairs, 

showing a congruency effect. (2) The shape information of familiar objects will 

predominate the material information when forming associations in memory.      

 

The aim of Experiment 2 was to investigate whether the congruency effect transfers 

to unfamiliar objects. I investigated how participants form associations between two 

unfamiliar objects based on their shared object features, such as material and shape. 

The main research question was whether participants rely on the material or the 

shape information when forming associations between two unfamiliar objects. The 

hypotheses of Experiment 2 are as follows: (1) The shape-congruent and material-
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congruent unfamiliar object pairs will be recognized better than the shape-

incongruent and material-incongruent unfamiliar object pairs, showing a congruency 

effect. (2) The material information of unfamiliar objects will predominate the shape 

information when forming associations in memory.   

 

Finally, the aim of Experiment 3 was to investigate how people form associations 

between two unfamiliar objects (when shape is kept constant) based on their shared 

surface properties like texture and reflectance. The main research question was 

whether people rely on the texture or the reflectance information when forming 

associations between two unfamiliar objects. It is expected that (1) a surface 

congruency effect of unfamiliar objects with identical geometries will also be 

observed here. The reflectance-congruent and texture-congruent unfamiliar object 

pairs will be recognized better than the reflectance-incongruent and texture-

incongruent unfamiliar object pairs. Also, (2) the texture information of unfamiliar 

objects will predominate the reflectance information when forming associations due 

to distinctive surface patterns and visual cues that textures can offer, which can make 

them easier to discriminate.  
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CHAPTER 2 

 
 

EXPERIMENT 1 

 
 

2.1. Experiment 1: Shape vs. Material of Familiar Objects 
 

2.1.1. Method 
 

In the first experiment, participants completed an associative recognition task where 

they studied paired images of familiar objects with varying congruency of object 

features (material, shape). Congruent and incongruent material and shape properties 

were tested to investigate whether congruency would enhance recognition 

performance.  
 

2.1.2. Participants 
 

The study was approved by the Human Studies Ethical Committee of Middle East 

Technical University. A post G-Power calculation was conducted to determine the 

sample size. For the experiment to have 0.95 power, 0.25 effect size, and 0.05 alpha 

level for two-way Repeated Measures ANOVA within factors, the estimated sample 

size was 54 (Faul et al., 2009). Seventy-four participants (54 females, 18 males, 2 

non-binary) aged between 19-30 (M= 21.9, SD= 2.16) from Middle East Technical 

University took part in the experiment in exchange for course credit or voluntarily. 

Participants were native Turkish speakers with normal or corrected vision. All 

participants gave written informed consent after a brief outline of the study's nature, 

methods, and ensuring the privacy of the participants' responses before participating.  
 

2.1.3. Experimental Setup 
 

The experiment was written and carried out using Python (Psychopy v2023.2.3) 

software and presented on an HP 24f (2XN60AA) monitor at a resolution of 1,920 × 
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1,080 pixels. The experiment was conducted in a sound-proof laboratory setting to 

avoid any disturbance that could distract participants from the task. The distance 

from the computer (50 cm) and the illumination of the room was kept constant for all 

participants.  

 

2.1.4. Materials 

 

The experimental stimuli in this study consisted of 32 images of familiar objects 

under four shape categories (jug, goblet, water glass, mug) and four material 

categories (wood, metal, glass, stone). In other words, in every shape category, there 

were 4 images of an object rendered with four different materials (and vice versa) 

that were generated using the program Blender 4.1.1, an open-source 3D computer 

graphics application (Blender, 2024; Figures 2.1, 2.2).  

 

 
Figure 2. 1. The study list stimuli of Experiment 1, four familiar objects rendered 
with four materials: wood jug, glass jug, stone jug and metal jug (A); wood water 
glass (WG), glass WG, stone WG, and metal WG (B); wood goblet, glass goblet, 
stone goblet, and metal goblet (C); wood mug, glass mug, stone mug, and metal mug 
(D). 
 

The four objects and materials were selected from the assets of BlenderKit, an open 

extension of Blender that provides assets for models, materials, scenes, etc. The 

rotation of the jug was (0°, 0°, 54.8°), the rotation of the goblet was (2°, 2°, 2°), the 
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rotation of the mug was (0°, 0°, -120°), and the rotation of the water glass was (1°, 

1.3°, 0.5°) on the XYZ plane. The location of the jug, goblet, and water glass was 

(0.5m, -0.4m, -0.8m), and the location of the mug was (0.2m, -0.2m, -0.5m) on the 

XYZ plane. The luminance properties used when rendering the four materials were 

selected and modeled by the eye to portray the reflectance, transparency, 

translucency, and texture characteristics of each material optimally. For the glass 

renderings, the rectangle area light engine had a 200000 W- 500000 W power 

interval; for the wood and stone renderings, the point light engine had a 200-700 

power interval; for the metal renderings, the sunlight engine had a 50-200 power 

interval (no shadow option was used). The camera viewed the objects from the front 

and slightly from above with the perspective projection and a 50 mm focal length. 

The objects with glass, wood, and stone materials were rendered with the EEVEE 

render engine with a sampling level of 16 and 64 samples per pixel. The objects with 

metal material were rendered with the Workbench render engine with eight samples 

and specular reflections. 

 
Figure 2. 2. The new unstudied experimental stimuli that did not appear on the study 
list and was only shown in the test list. Four familiar objects rendered with four 
materials: wood jug, glass jug, stone jug and metal jug (A); wood WG, glass WG, 
stone WG, and metal WG (B); wood goblet, glass goblet, stone goblet, and metal 
goblet (C); wood mug, glass mug, stone mug, and metal mug (D). 
 

These images of objects were listed as pairs in an associative recognition task to 

further assess the associative object memory of participants. There was a total of four 
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conditions: in the material-congruent item condition (MC, Figure 2.3A), paired items 

were the images of either the same or different object shapes made of the same 

material. In the shape-congruent item condition (SC, Figure 2.3B), paired items were 

the objects with identical shapes made of either the same or different materials. In 

material-incongruent condition (MI, Figure 2.3C), paired items were images of either 

the same or different shapes made of different materials. Lastly, in the shape-

incongruent condition (SI, Figure 2.3D), paired items were images of objects made 

of either the same or different material categories with different shapes. 
 

 
Figure 2. 3. This figure illustrates examples from the four conditions in the 
associative recognition task of Experiment 1. 
 

In the original design, each main condition (material-congruent, material-

incongruent, shape-congruent, and shape-incongruent) contained repeating object 

pairs that appeared across conditions. In material-congruent (MC) conditions, half 

the pairs were material-congruent but shape-incongruent, and half were both material 

and shape-congruent. In shape-congruent (SC) conditions, half the pairs were shape-

congruent but material-incongruent, and half were both material and shape-congruent. 

In material-incongruent (MI) conditions, half the pairs were material-incongruent but 

shape-congruent, and half were both material and shape-incongruent. Similarly, in 

shape-incongruent (SI) conditions, half the pairs were shape-incongruent, but 

material-congruent and half were both material and shape-incongruent. 
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While these repeating pairs were equally distributed across conditions and did not 

confound the experimental design, they could potentially influence the results by 

increasing memory sensitivity overall. An alternative approach would have been to 

use four distinct conditions without overlap: material-congruent shape-incongruent 

condition, shape-congruent material-incongruent condition, material and shape 

congruent condition, and material and shape incongruent condition. However, the 

current design was chosen for all three experiments to independently examine how 

associative memory changes between congruent and incongruent conditions for 

individual object and surface features (material vs. shape, texture vs. reflectance) 

rather than studying their combined effects. 

 

2.1.5. Procedure  
 

Before the experiment started, the experimenter instructed the participants about the 

experiment, explaining every stage of the study in detail using instruction slides with 

visuals. After the instructions, the experimenter left the room, and the experiment 

started. Instructions were also provided on screen for the participants to read between 

each stage during the experiment.  

 

The experiment consisted of three stages: the study stage, the distraction stage, and 

the retrieval stage. In the study stage, participants were shown a study list containing 

16 pairs for every four conditions (MC, SC, MI, SI). A total of 64 pairs were 

randomly presented for 4 seconds and a four-second inter-stimulus interval prior to 

the presentation of the next pair. Participants were instructed to study these pairs in 

the study list for a later memory test. The study stage was followed by the distraction 

stage, which included a distractor task in which participants completed addition and 

subtraction calculations in a random order for two minutes. Immediately after the 

distractor stage, the retrieval stage took place with an associative recognition task. 

Participants were shown a test list containing 15 pairs for each of the four conditions 

(MC, SC, MI, SI) in a random order. A total of 60 pairs were shown, containing 32 

intact pairs that were in the study list and 16 new, unstudied pairs that were not in the 

study list (Figure 2.2). Material and shape combinations of the objects in the 

unstudied pairs were shown for the first time in the retreival stage. Also, there were 



 
24 

12 rearranged pairs consisting of objects that were in the study list but belonged to 

different pairs and were rearranged in the retrieval stage. Participants were required 

to press the key "e" on the keyboard if they had recognized the pair from the study 

list or "h" if they had not recognized the pair from the study list with no time limit. 

This study used a within-subject design with an associative recognition task, and all 

responses were collected using a keyboard (Figure 2.4). 
 

 
Figure 2. 4. The experimental procedure of the study stage and the retrieval stage of 
Experiment 1. 

 

2.1.6. Results 

 

A Python code was written to organize the data (Visual Studio Code version 1.91, 

2024) using the SciPy package. Each participant's hit rate for intact pairs in every 

four conditions (MC, SC, MI, SI) and false alarm rate for rearranged and new pairs 

in every four conditions (MC, SC, MI, SI) were calculated. Hence, the sensitivity d′ 

scores of every four conditions (MC, SC, MI, SI) for each participant were computed 

by subtracting z-scores of the false alarm rates from the hit rates (MacMillan & 

Creeman, 1991). Inferential statistics were run in JASP (JASP Team, 2024) and 

figures were plotted in R (R Core Team, 2021). 

 

The response bias is the different range of memory evidence that participants require 

to call an item "old" free of any experimental manipulation. The measure of response 

bias is the criterion value (c), which is the decision threshold to distinguish old from 
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new items and is calculated by -1/2 (z(H) + z(F)). A neutral bias has a 0 value of c; 

hence, the overall error rate is minimized. A conservative bias has a positive c value, 

and a liberal bias has a negative c value (Macmillan & Creelman, 1990). A one-

sample t-test was conducted to examine the response bias of participants on 

associative recognition of familiar objects. The normality assumption was not 

violated; the Shapiro-Wilk test indicated that differences between participants were 

normally distributed, W(74)= 0.97, p= 0.13. The findings revealed a significant main 

effect of response bias (M=-0.32, SD=0.34) between participants, t(73)= -8, p< 

0.001, d= -0.93, which means that participants had a liberal bias in Experiment 1. 

 

A two-way 2 (congruency) x 2 (object feature) repeated measures ANOVA was 

conducted to examine the effect of congruency (congruent, incongruent) and object 

feature (material, shape) on the d-prime scores. The findings revealed a significant 

main congruency effect on associative object recognition memory, meaning that 

material and shape congruent pairs were better recognized than material and shape 

incongruent pairs, F(1, 73) = 14.3, p < 0.001, η²p = 0.16, mean difference = 0.2, 

standard error = 0.05, 95%CI [0.09, 0.29],  p < .001. I did not observe a difference 

between the object features (material vs. shape, Table 2.1). 

 

Table 2. 1. Repeated Measures ANOVA for Experiment 1 

  Sum of 
Squares df Mean 

Square F p η²p 

Object feature  0.00553  1  0.00553  0.459  0.500  0.006  
Residual  0.87802  73  0.01203           

Congruency  2.68953  1  2.68953  14.307  < .001  0.164  
Residual  13.72349  73  0.18799           

Surface feature ✻ 
Congruency 

 0.55639  1  0.55639  1.921  0.170  0.026  

Residual  21.14301  73  0.28963           

 
There was no significant main effect of the object feature on the associative 

recognition of familiar objects, F(1, 73) = 0.45, p = 0.05, η²p  = 0.006, mean 

difference = -0.008, standard error = 0.01, 95% CI [-0.03, 0.17], p = .05. Hence, 
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there was no significant difference between sensitivity d' scores of material 

congruent and shape congruent conditions as well as the material incongruent and 

shape incongruent conditions. This might indicate that both the material and the 

shape features of familiar objects affect the associative object recognition equally. 

There was no significant interaction effect between congruency and object feature on 

associative recognition of familiar objects, F(1, 73) = 1.92, p = 0.17, η²p  = 0.02. This 

means that the effect of congruency on associative object recognition was similar for 

the material and the shape of the object (Figure 2.6). 

 

Table 2. 2. Mean of Hit Rates, False Alarm Rates and Sensitivity d’ Scores of 
Conditions in Experiment 1 

 MC MI SC SI 

HR 0.80 0.65 0.80 0.63 

FAR-unstudied 0.53 0.25 0.48 0.29 

FAR-rearranged 0.70 0.63 0.72 0.62 

FAR-total 0.59 0.44 0.56 0.46 

Sensitivity d’ 0.70 0.59 0.79 0.50 

 

Post hoc tests using Bonferroni correction revealed that the recognition sensitivity d' 

score of the shape congruent (M=0.78, SD=0.57) condition was higher than the shape 

incongruent (M=0.50, SD=0.47) condition, mean difference = 0.3, standard error = 

0.07, 95% CI [0.08, 0.47], p < .001. This means that shape congruent pairs were 

better recognized than incongruent pairs in the associative recognition of familiar 

objects (Figure 2.5). 

 

A two-way 2 (congruency) x 2 (object feature) repeated measures ANOVA was 

conducted to examine the effect of congruency (congruent, incongruent) and object 

feature (material, shape) on the hit rates of familiar objects. The findings revealed a 

significant main congruency effect on the hit rates of familiar objects, F(1, 73) = 
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83.1, p < 0.001, η²p = 0.53 (Table D.1). There was no significant main effect of the 

object feature on the hit rates of familiar objects, F(1, 73) = 1.499×10-13, p = 1, η²p 

= 2.054×10-15 (Table D.1). Meaning that both the material and the shape features of 

familiar objects affect the hit rates equally. There was no significant interaction 

effect between congruency and object feature on the hit rates of familiar objects, F(1, 

73) = 0.98, p = 0.32, η²p  = 0.01. This means that the effect of congruency on hit 

rates was similar for the material and the shape of the object (Figure 2.7). Post hoc 

analysis with a Bonferroni adjustment revealed the hit rate of congruent conditions 

(M=0.80, SE=0.01) were higher than the incongruent conditions (M=0.64, SE=0.02), 

mean difference = 0.16, standard error = 0.01, p < .001 (Table D.2).  

 

 
Figure 2. 5. The recognition sensitivity of four conditions (MC, SC, MI, SI) with 
familiar objects. The X-axis represents object features, the Y-axis represents the 
sensitivity d’ scores. The yellow bars display congruent and the gray bars display 
incongruent conditions, and the error bars represent standard errors of the mean. 

 

A two-way 2 (congruency) x 2 (object feature) repeated measures ANOVA was 

conducted to examine the effect of congruency (congruent, incongruent) and object 

feature (material, shape) on the false alarm rates of familiar objects. The findings 

revealed a significant main congruency effect on the false alarm rates of familiar 

objects, F(1, 73) = 84.9, p < 0.001, η²p = 0.54 (Table D.3). There was no significant 

main effect of the object feature on the false alarm rates of familiar objects, F(1, 73) 
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= 1.25, p = 0.27, η²p = 0.017. Meaning that both the material and the shape features 

of familiar objects affect the false alarm rates equally. There was no significant 

interaction effect between congruency and object feature on the false alarm rates of 

familiar objects, F(1, 73) = 1.25, p = 0.27, η²p  = 0.017. This means that the effect of 

congruency on false alarm rates was similar for the material and the shape of the 

object (Figure 2.7). Post hoc analysis with a Bonferroni adjustment revealed the false 

alarm rate of congruent conditions (M=0.57, SE=0.02) were higher than the 

incongruent conditions (M=0.45, SE=0.02), mean difference = 0.13, standard error = 

0.01, p < .001 (Table D.4). 

 

 

Figure 2. 6. The recognition sensitivity of four conditions (MC, SC, MI, SI) with 
familiar objects. The X-axis represents congruency, the Y-axis represents the 
sensitivity d’ scores. The yellow line displays material and the gray line displays 
shape conditions, and the error bars represent standard errors of the mean. 

 

Furthermore, a two-way 2 (congruency) x 2 (object feature) repeated measures 

ANOVA was conducted to examine the effect of congruency (congruent, 

incongruent) and object feature (material, shape) on the false alarm rates of 

rearranged pairs. The findings revealed a significant main congruency effect on the 

false alarm rates of rearranged pairs, F(1, 73) = 25.5, p < 0.001, η²p = 0.26 (Table 

D.5). Post hoc analysis with a Bonferroni adjustment revealed the false alarm rate of 
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rearranged pairs in congruent conditions (M=0.71, SE=0.02) were higher than in the 

incongruent conditions (M=0.62, SE=0.02), mean difference = 0.09, standard error = 

0.02, p < .001 (Table D.6). 

 

 
Figure 2. 7. The hit rates (HR) and false alarm rates (FAR) of four conditions (MC, 
SC, MI, SI) of familiar objects. The X-axis represents object features, the Y-axis 
represents the HRs and FARs. The yellow bars display congruent and the gray bars 
display incongruent conditions, and the error bars represent standard errors of the 
mean. 
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CHAPTER 3 

 

 

PRELIMINARY STUDY AND EXPERIMENT 2 

 

 

3.1. Preliminary Study 

 

3.1.1. Method 

 

Data from Experiment 1 suggest that for familiar objects, shape is an important 

feature in object recognition, as sensitivity scores for shape-congruent pairs were 

found to be remembered better than shape-incongruent pairs. This was not the case 

for the material feature in Experiment 1. So in Experiment 2, I used unfamiliar 

shapes to diminish the strong effects of familiar object shapes and tested the role of 

material information in unfamiliar object recognition.  
 

Before conducting Experiment 2, an online preliminary study was carried out using 

Google Forms to see whether an unfamiliar object rendered with four different 

material categories (wood, metal, stone, glass) was, in fact, perceived as the intended 

materials by the participants.  

 

3.1.2. Participants 

 

The study was approved by the Human Studies Ethical Committee of Middle East 

Technical University. Thirty-one participants (18 females, 13 males) aged between 

18-40 (M= 23.3, SD= 4.37) from Middle East Technical University took part in this 

experiment in exchange for course credit or voluntarily. Participants were native 

Turkish speakers with normal or corrected vision. All participants gave written 

informed consent after a brief outline of the study's nature, methods, and ensuring the 

privacy of the participants' responses before participating. 
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3.1.3. Materials 

 
The experimental stimuli in this study consisted of 19 images of unfamiliar objects 

based on the glaven models provided by Philips (2004) under four material 

categories (wood, metal, glass, stone). The stimuli were generated using Blender 

4.1.1, an open-source 3D computer graphics application (Blender, 2024).  

 

The four material categories were selected from the assets of BlenderKit, an open 

extension of Blender that provides assets for models, materials, and scenes. The 

glaven model (Glaven2) was chosen from the Glaven Set provided by Philips on 

GitHub (2004). There were four versions of the material category of glass and stone, 

five versions of the material metal, and six versions of the material wood (Figure 

3.1).  

 
Figure 3. 1. The stimuli of the preliminary study, glaven2 rendered with different 
versions of four material categories with the percentage of participants correctly 
identifying the material category of each object. 

 

The location of glaven2 was (0, 0, 0). The luminance properties used when rendering 

the four materials were selected and modeled by the eye to portray the reflectance, 

transparency, translucency, and texture characteristics of each material most 

optimally. For the glass renderings, the rectangle area light engine had a 200000- 

500000 W power interval; for the wood and stone renderings, the point light engine 
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had a 200-700 W power interval; for the metal renderings, the sun light engine had a 

50-200 W power interval without shadow option were used. The camera viewed the 

objects from the front and slightly from above with the perspective camera type and 

a 50 mm focal length. The objects with glass, wood, and stone materials were 

rendered with the EEVEE render engine with a sampling level of 16 and 64 samples 

per pixel. Workbench render engine with eight samples and specular reflections. 

 

3.1.4. Procedure  

 

This study was conducted online using Google Forms. On the top of the screen, the 

instructions for the task were given to the participants: "Please write down the 

material of the objects you will see" (Tr., “Lütfen ekranda göreceğiniz objelerin 

hangi malzemeden yapıldığını düşünüyorsanız yazınız”). Nineteen images of 

glaven2 with different versions of four material categories (wood, metal, stone, 

glass) were displayed for the participants to write down which materials they thought 

the objects were made of. 

 

3.1.5. Results   

 

Results revealed that for the wood material category, wood1 was correctly identified 

by 22.6%, wood2 was correctly identified by 32.2%, wood3 was correctly identified 

by 61.3%, wood4 was correctly identified by 61.3%, wood5 was correctly identified 

by 61.3%, and wood6 was correctly identified by 77.4% of participants (Figure 3.1, 

top row). Hence, wood6 and wood4 were chosen as the wood material category for 

the object renderings in Experiment 2. For the stone material category, stone1 was 

correctly identified by 67.7%, stone2 was correctly identified by 67.7%, stone3 was 

correctly identified by 70.9%, and stone4 was correctly identified by 70.9% of 

participants (Figure 3.1, second row). Hence, stone3 and stone4 were chosen as the 

stone material category for the object renderings in Experiment 2. For the metal 

material category, metal1 was correctly identified by 41.9%, metal2 was correctly 

identified by 32.2%, metal3 was correctly identified by 45.1%, metal4 was correctly 

identified by 77.4%, and metal5 was correctly identified by 48.3% of participants 

(Figure 3.1, third row). Thus, metal4 and metal5 were chosen as the metal material 
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category for the object renderings in Experiment 2. Finally, for the glass material 

category, glass1 was correctly identified by 19.3%, glass2 was correctly identified by 

25.8%, glass3 was correctly identified by 29%, and glass4 was correctly identified 

by 6.4% of participants (Figure 3.1, bottom row). Due to the insufficient percentage 

of correct identifications of the glass material, none of the versions in this study were 

chosen as the glass material category in the second experiment. Instead, I used an 

improved method to render shapes in glass for Experiment 2. 

 

3.2. Experiment 2: Shape vs. Material of Unfamiliar Objects 

 
The findings of Experiment 1 suggested that the material feature could be as crucial 

as the shape feature in familiar object memory. Prior knowledge of the familiar 

objects could have improved the shape recognition in Experiment 1. Therefore, I 

used unfamiliar objects without prior knowledge in Experiment 2. This way, only the 

perceptual impact of material and shape features on object memory could be 

observed without the semantic intrusions.  

 

3.2.1. Method 

 

A new group of participants completed a similar experiment to Experiment 1, this 

time with unfamiliar shapes. In an associative recognition task, they studied paired 

images of unfamiliar objects under different object features (material, shape) in 

congruent and incongruent conditions to investigate which factors would yield higher 

recognition performance. 

 

3.2.2. Participants 

 

The study was approved by the Human Studies Ethical Committee of Middle East 

Technical University. A priori G Power calculation was conducted to determine the 

sample size. For the experiment to have 0.95 power, 0.25 effect size, and .05 alpha 

level for Repeated Measures ANOVA within factors, the estimated sample size was 

54 (Faul et al., 2009). Fifty-seven participants (51 females, 4 males, 2 non-binary) 

aged between 18-30 (M= 21.1, SD= 1.93) from Middle East Technical University 
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took part in this experiment in exchange for course credit or voluntarily. Participants 

were native Turkish speakers with normal or corrected vision. All participants gave 

written informed consent after a brief outline of the study's nature, methods, and 

ensuring the privacy of the participants' responses before participating. 

 

3.2.3. Experimental Setup 

 

The experimental setup was the same as Experiment 1.  

 

3.2.4. Materials  

 
The experimental stimuli in this study consisted of 32 images of unfamiliar objects. I 

used four object curvature categories (glaven1, glaven4, glaven7, glaven8) based on 

the glaven models provided by Philips (2004) and four material categories (wood, 

metal, glass, stone). In every object shape and material category, there were 4 images 

of each object rendered with four different materials which were generated using 

Blender 4.1.1, an open-source 3D computer graphics application (Blender, 2024, 

Figure 3.2, 3.3).  
 

 
Figure 3. 2. The study list stimuli of Experiment 2, four unfamiliar objects rendered 
with four materials: wood glaven1, glass glaven1, stone glaven1and metal glaven1 
(A); wood glaven4, glass glaven4, stone glaven4, and metal glaven4 (B); wood 
glaven7, glass glaven7, stone glaven7, and metal glaven7 (C); wood glaven8, glass 
glaven8, stone glaven8, and metal glaven8 (D). 
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The four materials were selected from the assets of BlenderKit, an open extension of 

Blender that provides assets for models, materials, scenes, etc. Also, for the glass 

material, a forest lane is used as an environmental map from the high dynamic range 

images (HDRs) of Blenderkit. The glavens were chosen from the Glaven Set 

provided by Philips on GitHub (2004), which were BigGlaven1, BigGlaven4, 

BigGlaven7, and BigGlaven8. The rotation of glaven1 was (54.8°, -9.7°, 22.6°); the 

rotation of the galven2, glaven7, and glaven8 were (37.2°, 3.1°, 106.9°) on the XYZ 

plane. 

 
Figure 3. 3. The new unstudied experimental stimuli of Experiment 2 that did not 
appear on the study list and were only shown in the test list. Four unfamiliar objects 
rendered with four materials: wood glaven1, glass glaven1, stone glaven1, and metal 
glaven1 (A); wood glaven4, glass glaven4, stone glaven4, and metal glaven4 (B); 
wood glaven7, glass glaven7, stone glaven7, and metal glaven7 (C); wood glaven8, 
glass glaven8, stone glaven8, and metal glaven8 (D). 

 

The luminance properties used when rendering the four materials were selected and 

modeled by the eye to portray the reflectance, transparency, translucency, and texture 

characteristics of each material optimally. For the glass renderings, the rectangle area 

light engine had a 200000- 500000 W power interval; for the wood and stone 

renderings, the point light engine had a 200-700 W power interval; for the metal 

renderings, the sunlight engine had a 50-200 W power interval (no shadow option 

was used). The camera viewed the objects from the front and slightly from above 
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with the perspective camera type and a 50 mm focal length. The objects with glass, 

wood, and stone materials were rendered with the EEVEE render engine with a 

sampling level of 16 and 64 samples per pixel. The objects with metal material were 

rendered with the Workbench render engine with eight samples and specular 

reflections. 

 

The images of unfamiliar objects were listed as pairs in an associative recognition 

task. There were four item conditions: in the material-congruent item condition (MC, 

Figure 3.4A), paired items were the images of either the same or different glavens 

made of the same material. In the shape-congruent item condition (SC, Figure 3.4B), 

paired items were images of the same glavens rendered with either identical or 

different materials. In material-incongruent item condition (MI, Figure 3.4C), paired 

items were images of either the same or different glavens made of different 

materials. Lastly, in shape-incongruent item condition (SI, Figure 3.4D), paired items 

were the images of glavens made of either the same or different material with 

different glaven categories. 

 

 
Figure 3. 4. This figure illustrates examples from the four conditions of Experiment 
2 in the associative recognition task. 



 
37 

3.2.5. Procedure 

 

Experiment 2 followed an identical procedure to the first experiment (Figure 3.5). 

 

 
Figure 3. 5. The experimental procedure of the study stage and the retrieval stage of 
Experiment 2. 

 

3.2.6. Results 

 

A Phyton code was written to organize the data (Visual Studio Code version 1.91, 

2024) using the SciPy package. Each participant's hit rate for intact pairs in every 

four conditions (MC, SC, MI, SI) and false alarm rate for rearranged and new pairs 

in every four conditions (MC, SC, MI, SI) were calculated. Hence, the sensitivity d′ 

scores of every four conditions (MC, SC, MI, SI) for each participant were computed 

by subtracting z-scores of the false alarm rate from the hit rate (MacMillan & 

Creeman, 1991). Inferential statistics were run in JASP (JASP Team, 2024) and 

figures were drawn in R (R Core Team, 2021). 

 

A one-sample t-test was conducted to examine the response bias of participants on 

associative recognition of unfamiliar objects. The normality assumption was not 

violated; the Shapiro-Wilk test indicated that differences between participants were 

normally distributed, W(57)= 0.98, p= 0.32. The findings revealed a significant main 

effect of response bias (M=-0.36, SD=0.35) between participants, t(56)= -7.8, p< 

0.001, d= -1.03, which means that participants had a liberal bias in Experiment 2. 
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A two-way 2 (congruency) x 2 (object feature) repeated measures ANOVA was 

conducted to examine the effect of congruency (congruent, incongruent) and object 

feature (material, shape) on the d-prime scores. The findings revealed a significant 

main congruency effect on associative recognition memory of unfamiliar objects, 

F(1, 56) = 70.7, p < 0.001, η²p = 0.55 (Table 3.1). There was a significant main 

effect of the object feature on associative recognition of unfamiliar objects, F(1, 56) 

= 6.36, p = 0.01, η²p = 0.1, mean difference = -0.024, standard error = 0.009, 95% CI 

[0.005, 0.4], p = 0.015. Post hoc analysis with a Bonferroni adjustment revealed the 

sensitivity d' score of the material feature (M=1.25, SE=0.06) was ever so slightly but 

significantly higher than the shape feature (M=1.23, SE=0.06), which might mean 

that the material feature of unfamiliar objects affects the associative recognition 

memory more significantly than the shape. There was no significant interaction 

effect between congruency and object feature on recognition sensitivity scores of 

unfamiliar objects, F(1, 56) = 1.92, p = 0.2, η²p  = 0.2. This means that the effect of 

congruency was similar for the material and the shape of the object (Figure 3.7). 

Table 3. 1. Repeated Measures ANOVA for Experiment 2 

  Sum of 
Squares df Mean 

Square F p η²p 

Object feature  0.0319  1  0.03190  6.36  0.015  0.102  
Residual  0.2807  56  0.00501           

Congruency  18.0022  1  18.00218  70.77  < .001  0.558  
Residual  14.2445  56  0.25437           

Surface feature ✻ 
Congruency 

 0.3470  1  0.34700  1.62  0.209  0.028  

Residual  12.0203  56  0.21465           
 

 

Table 3. 2. Mean of Hit Rates, False Alarm Rates and Sensitivity d’ Scores of 
Conditions in Experiment 2 

 MC MI SC SI 

HR 0.85 0.75 0.88 0.73 
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Table 3.2. (continued) 

FAR-unstudied 0.12 0.15 0.21 0.06 

FAR-rearranged 0.78 0.76 0.80 0.75 

FAR-total 0.34 0.45 0.40 0.40 

Sensitivity d’ 1.57 0.93 1.47 0.99 

 

  
Figure 3. 6. The recognition sensitivity of four conditions (MC, SC, MI, SI) with 
unfamiliar objects. The X-axis represents object features, the Y-axis represents the 
sensitivity d’ scores. The yellow bars display congruent and the gray bars display 
incongruent conditions, and the error bars represent standard errors of the mean. 

 

Post hoc analysis with a Bonferroni adjustment revealed the recognition sensitivity d' 

score of material congruent condition (M=1.57, SD=0.58) was higher than the 

material incongruent condition (M=0.93, SD=0.53), mean difference = 0.64, standard 

error = 0.08, 95% CI [0.39, 0.88], p < .001. And the recognition sensitivity d' score 

of the shape congruent (M=1.47, SD=0.57) condition was higher than the shape 

incongruent (M=0.98, SD=0.57) condition, mean difference = 0.48, standard error = 

0.09, 95% CI [0.23, 0.73], p < .001. This means that both the material and shape 
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congruent pairs were better recognized than incongruent pairs in the associative 

recognition of unfamiliar objects, mean difference = 0.2, standard error = 0.009, 95% 

CI [0.005, 0.042], p < .001 (Figure 3.6). 

 

To further examine the effect of material of unfamiliar objects on associative 

recognition memory in more detail, a one-way repeated measures ANOVA with four 

levels for material (wood, stone, glass, metal) was performed as a post hoc test. The 

sphericity assumption was not violated, χ2(5) = 4.3, p = 0.5. The findings revealed a 

significant material effect on associative recognition of unfamiliar objects, F(3, 56) = 

12.7, p < 0.001, η²p  = 0.18. A post hoc analysis with a Bonferroni adjustment 

revealed that the material congruent pairs rendered as glass material (M=1.49, 

SD=0.54) were better recognized than the metal (M=1.14, SD=0.61, mean difference 

= 0.35, standard error = 0.01, 95% CI [0.09, 0.61], p < 0.004), the stone (M=0.94, 

SD=0.58, mean difference = 0.54, standard error = 0.01, 95% CI [0.28, 0.81], p < 

0.001), and the wood (M=1.02, SD=0.63, mean difference = 0.47, standard error = 

0.09, 95% CI [0.23, 0.72], p < 0.001) materials (Figure 3.8). Differences between the 

remaining materials remained below the significance threshold. 

 

 

Figure 3. 7. The recognition sensitivity of four conditions (MC, SC, MI, SI) of 
unfamiliar objects. The X-axis represents congruency, the Y-axis represents the 
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sensitivity d’ scores. The yellow line displays material and the gray line displays 
shape conditions, and the error bars represent standard errors of the mean. 

 
Experiments 1 and 2 were identical, except that instead of using familiar objects in 

Experiment 1, unfamiliar objects were used in Experiment 2. And by this 

experimental manipulation, d' sensitivity score of the material congruent condition 

improved from 0.70 to 1.57 in Experiment 2. The d' sensitivity score of the shape 

congruent condition enhanced from 0.79 to 1.47. The d' sensitivity score of the 

material incongruent condition increased from 0.59 to 0.93. The d' sensitivity score 

of the shape incongruent condition increased from 0.50 to 0.99 in Experiment 2 

(Table 3.3). Hence, while there was no significant difference between the material 

and shape features on associative object recognition in Experiment 1, the material 

feature of objects was better recognized than the shape in Experiment 2. Indicating a 

material superiority effect on the associative recognition of unfamiliar objects 

(Figure 3.9). 

 

 
Figure 3. 8. The recognition sensitivity of material congruent pairs with glass, metal, 
stone, and wood materials. The X-axis represents the four materials, the Y-axis 
represents the sensitivity d’ scores, and the error bars represent standard errors of the 
mean. 
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Table 3. 3. Mean Sensitivity d’ Scores of Conditions in Experiment 1 and 2 

 MC MI SC SI 

Sensitivity d’ 

Experiment 1 

0.70 0.59 0.79 0.50 

Sensitivity d’ 

Experiment 2 

1.57 0.93 1.47 0.99 

 

 
Figure 3. 9. Sensitivity scores of four conditions (MC, SC, MI, SI) of Experiment 1 
and 2. The X-axis represents object features, the Y-axis represents the sensitivity d’ 
scores. The yellow bars display congruent and the gray bars display incongruent 
conditions, and the error bars represent standard errors of the mean. 
 

A two-way 2 (congruency) x 2 (object feature) repeated measures ANOVA was 

conducted to examine the effect of congruency (congruent, incongruent) and object 
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feature (material, shape) on the hit rates of unfamiliar objects. The findings revealed 

a significant main congruency effect on the hit rates of unfamiliar objects, F(1, 56) = 

32, p < 0.001, η²p = 0.36 (Table E.1). There was no significant main effect of the 

object feature on the hit rates of unfamiliar objects, F(1, 56) = -2.835×10-14, p = 1, 

η²p = -5.063×10-16. Meaning that both the material and the shape features of 

unfamiliar objects affect the hit rates equally. There was no significant interaction 

effect between congruency and object feature on the hit rates of unfamiliar objects, 

F(1, 56) = 1.45, p = 0.23, η²p  = 0.02. This means that the effect of congruency on hit 

rates was similar for the material and the shape of the object (Figure 3.10). Post hoc 

analysis with a Bonferroni adjustment revealed the hit rate of congruent conditions 

(M=0.86, SE=0.01) were higher than the incongruent conditions (M=0.74, SE=0.03), 

mean difference = 0.11, standard error = 0.02, p < .001 (Table E.2). 

 

A two-way 2 (congruency) x 2 (object feature) repeated measures ANOVA was 

conducted to examine the effect of congruency (congruent, incongruent) and object 

feature (material, shape) on the false alarm rates of unfamiliar objects. The findings 

revealed a significant main congruency effect on the false alarm rates of unfamiliar 

objects, F(1, 56) = 13.65, p < 0.001, η²p = 0.2 (Table E.3). Post hoc analysis with a 

Bonferroni adjustment revealed the false alarm rate of incongruent conditions 

(M=0.43, SE=0.014) were higher than the congruent conditions (M=0.37, SE=0.016), 

mean difference = 0.06, standard error = 0.01, p < .001 (Table E.5). There was a 

significant main effect of the object feature on the false alarm rates of unfamiliar 

objects, F(1, 56) = 15.36, p < 0.001, η²p = 0.21. Post hoc analysis with a Bonferroni 

adjustment revealed the false alarm rate of shape conditions (M=0.41, SE=0.013) 

was higher than the material conditions (M=0.40, SE=0.013), mean difference = 

0.007, standard error = 0.002, p < .001 (Table E.4). There was a significant 

interaction effect between congruency and object feature on the false alarm rates of 

unfamiliar objects, F(1, 56) = 15.36, p < 0.001, η²p = 0.21. The false alarm rate of 

the material incongruent (M=0.45, SE=0.014) condition was higher than the material 

congruent condition (M=0.34, SE=0.018), mean difference = 0.11, standard error = 

0.02, p < .001. The false alarm rate of the shape congruent (M=0.40, SE=0.018) 

condition was higher than the material congruent condition (M=0.34, SE=0.018), 

mean difference = 0.06, standard error = 0.015, p = .001. The false alarm rate of the 
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material incongruent (M=0.45, SE=0.014) condition was higher than the shape 

incongruent condition (M=0.41, SE=0.015), mean difference = 0.04, standard error = 

0.011, p = .001 (Figure 3.10).  

 

Furthermore, a two-way 2 (congruency) x 2 (object feature) repeated measures 

ANOVA was conducted to examine the effect of congruency (congruent, 

incongruent) and object feature (material, shape) on the false alarm rates of 

rearranged pairs. The findings revealed a significant main congruency effect on the 

false alarm rates of rearranged pairs, F(1, 56) = 4.04, p = 0.049, η²p = 0.07 (Table 

E.9). Post hoc analysis with a Bonferroni adjustment revealed the false alarm rate of 

rearranged pairs in congruent conditions (M=0.79, SE=0.024) were higher than in the 

incongruent conditions (M=0.75, SE=0.026), mean difference = 0.03, standard error 

= 0.016, p = 0.049 (Table E.10).  

 

 
Figure 3. 10. The hit rates (HR) and false alarm rates (FAR) of four conditions (MC, 
SC, MI, SI) of unfamiliar objects. The X-axis represents object features, the Y-axis 
represents the HRs and FARs. The yellow bars display congruent and the gray bars 
display incongruent conditions, and the error bars represent standard errors of the 
mean. 
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CHAPTER 4 

 
 

EXPERIMENT 3 
 

 

4.1. Experiment 3: Texture vs. Material of Unfamiliar Objects 

 
The findings of the second experiment revealed that the material feature was as 

effective as the shape in facilitating unfamiliar object memory. When the objects 

were unfamiliar and evoked no prior knowledge, the material of objects was more 

reliable than the shape. Also, the glass material was remembered better than all other 

materials in Experiment 2. The salient material attributes of the glass, such as 

glossiness and texture, could have improved its memory. Therefore, I added three 

more material texture classes (copper, plastic, jelly) and manipulated their 

reflectance characteristics (matte, glossy) in the next experiment. In Experiment 3, 

by keeping the geometry of objects constant across all conditions, I eliminated 

shape-based object recognition with a goal to isolate the role of material in object 

memory under varying surface reflectance conditions.  
 
4.1.1. Metod 

 
In the third experiment, the same procedure was used with a single unfamiliar shape 

and with seven texture and two reflectance categories. Participants completed an 

associative recognition task where they studied paired images of unfamiliar objects 

under different surface features (texture, reflectance) in congruent and incongruent 

conditions to investigate which conditions would have higher recognition rates. 

 

4.1.2. Participants 

 

The study was approved by the Human Studies Ethical Committee of Middle East 

Technical University. A priori G Power calculation was conducted to determine the 
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sample size. For the experiment to have 0.95 power, 0.25 effect size, and .05 alpha 

level for two-way Repeated Measures ANOVA within factors, the estimated sample 

size was 54 (Faul et al., 2009). Fifty-seven participants (44 females, 12 males, 1 non-

binary) aged between 19-29 (M= 22.5, SD= 2.17) from Middle East Technical 

University took part in this experiment in exchange for course credit or voluntarily. 

Participants were native Turkish speakers with normal or corrected vision. All 

participants gave written informed consent after a brief outline of the study's nature, 

methods, and ensuring the privacy of the participants' responses before participating. 
 

4.1.3. Experimental Setup 
 

The experimental setup was the same as Experiment 1 and 2.  
 

4.1.4. Materials 
 

The experimental stimuli in this study consisted of 28 images of one unfamiliar 

object based on the glaven models provided by Philips (2004) under two surface 

reflectance categories (glossy, matte) and seven material texture categories (wood, 

metal, glass, stone, plastic, copper, jelly). In other words, there were 2 images of one 

unfamiliar object rendered with seven different materials and two different 

reflectance features that were generated using Blender 4.1.1, an open-source 3D 

computer graphics application (Blender, 2024; Figure 4.1). 
 

 
Figure 4. 1. The stimuli of Experiment 3, one unfamiliar object rendered with seven 
texture categories, and two reflectance features. The glossy-copper, glossy-glass, 
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glossy-jelly, glossy-metal, glossy-plastic, glossy-stone, glossy-wood glaven3 (A, C); 
matte-copper, matte-glass, matte-jelly, matte-metal, matte-plastic, matte-stone, 
matte-wood glaven3 (B, D). The study list stimuli (A, B), and the new unstudied 
stimuli that did not appear on the study list and was only shown in the test list (C, D) 
are displayed.   

 

The seven material textures with glossy and matte reflectance features were selected 

from the assets of BlenderKit, an open extension of Blender that provides assets for 

models, materials, scenes, etc. Also, for the glossy glass, metal, and copper materials, 

a forest lane is used as an environmental map from the HDRs of Blenderkit. The 

selected glaven was chosen from the Glaven Set provided by Philips on GitHub 

(2004), which was the BigGlaven3. The rotation of glaven3 was (1.4°, -4.8°, -

589.4°), and the location of glaven3 was (5.4m, 0.2m, 22.6m) on the XYZ plane. The 

luminance properties used when rendering the four materials were selected and 

modeled by the eye to portray the reflectance, transparency, translucency, and texture 

characteristics of each material most optimally. For the glass and jelly renderings, the 

rectangle area light engine had a 200000- 500000 W power interval; for the wood, 

stone, and plastic renderings, the point light engine had a 200-700 W power interval; 

for the metal and copper renderings, the sun light engine had a 50-200 W power 

interval (no shadow option was used). The camera viewed the objects from the front 

and slightly from above with the perspective camera type and a 50 mm focal length. 

The objects with glass, jelly, wood, plastic, and stone materials were rendered with 

the EEVEE render engine with a sampling level of 16 and 64 samples per pixel. The 

objects with metal and copper material were rendered with the Workbench render 

engine with eight samples and specular reflections. 

 

The images of unfamiliar objects were listed as pairs in an associative recognition 

task. There was a total of four item conditions: in the texture congruent item 

condition (TC, Figure 4.2A), paired items were the images of glaven3 either with the 

same or different reflectance but made of the same texture category. In the 

reflectance congruent item condition (RC, Figure 4.2B), paired items were the 

images of glaven3 either with the same or different textures but made of the same 

reflectance category. In texture incongruent item condition (TI, Figure 4.2C), paired 

items were the images of glaven3 either with the same or different reflectance but 
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made of different textures. Lastly, in reflectance incongruent item condition (RI, 

Figure 4.2D), paired items were the images of glaven3 made of either the same or 

different textures but with different reflectance categories. 
 

 
Figure 4. 2. This figure illustrates examples from the four conditions of Experiment 
3 in the associative recognition task. 

 

4.1.5. Procedure  

 

Before the experiment started, the experimenter instructed the participants about the 

experiment, explaining every stage in the study in detail using instruction slides with 

visuals. After the instructions, the experimenter left the room, and the experiment 

started. Instructions were also provided on screen for the participants to read between 

each stage during the experiment. 

In the study stage of Experiment 3, participants were shown a study list containing 7 

pairs for every four conditions (TC, RC, TI, RI). A total of 28 pairs were randomly 

presented for 4 seconds and a four-second inter-stimulus interval prior to the 

presentation of the next pair. Participants were instructed to study these pairs in the 

study list for a later memory test. The study stage was followed by the distraction 

stage, which included a distractor task in which participants completed addition and 

subtraction calculations in a random order for two minutes. Immediately after the 
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distractor stage, the retrieval stage took place with an associative recognition task, 

where participants were shown a test list containing pairs for every four conditions 

(TC, RC, TI, RI). A total of 55 pairs were shown, containing 28 intact pairs that were 

in the study list and 19 new, unstudied pairs that were not in the study list (Figure 

4.1). Material and shape combinations of the objects in the unstudied pairs were 

shown for the first time in the retreival stage. Also, there were 8 rearranged pairs 

consisting of objects that were in the study list but belonged to different pairs and 

were rearranged in the retrieval stage. Participants were required to press the key "e" 

on the keyboard if they had recognized the pair from the study list or "h" if they had 

not recognized the pair from the study list with no time limit. This study used a 

within-subject design with an associative recognition task, and all responses were 

collected using a keyboard (Figure 4.3).  

 
Figure 4. 3. The experimental procedure of the study stage and the retrieval stage of 
Experiment 3. 

 

4.1.6. Results 

 

A Phyton code was written to organize the data (Visual Studio Code version 1.91, 

2024) using the SciPy package. Each participant's hit rate for intact pairs in every 

four conditions (TC, RC, TI, RI) and false alarm rate for rearranged and new pairs in 

every four conditions (TC, RC, TI, RI) were calculated. Hence, the sensitivity d′ 

scores of every four conditions (TC, RC, TI, RI) for each participant were computed 
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by subtracting z-scores of false alarm rate from the hit rate (MacMillan & Creeman, 

1991). Inferential statistics were run in JASP (JASP Team, 2024) and figures were 

drawn in R (R Core Team, 2021). 

 

A one-sample t-test was conducted to examine the response bias of participants on 

associative recognition of unfamiliar objects. The normality assumption was not 

violated; the Shapiro-Wilk test indicated that differences between participants were 

normally distributed, W(57)= 0.96, p= 0.07. The findings revealed a significant main 

effect of response bias (M=-0.3, SD=0.3) between participants, t(56)= -7.05, p< 

0.001, d= -0.93, which means that participants had a liberal bias in Experiment 3. 

A two-way 2 (congruency) x 2 (surface feature) repeated measures ANOVA was 

conducted to examine the effect of congruency (congruent, incongruent) and surface 

feature (texture, reflectance) on the d-prime scores. The findings revealed a 

significant main congruency effect on associative recognition memory of unfamiliar 

objects, F(1, 56) = 62.7, p < 0.001, η²p = 0.52 (Table 4.1). Post hoc analysis with a 

Bonferroni adjustment revealed the recognition sensitivity d' score of texture 

congruent condition (M=1.66, SD=0.6) was higher than the texture incongruent 

condition (M=1.02, SD=0.45), mean difference = 0.64, standard error = 0.09, 95% CI 

[0.39, 0.89], p < .001. And the recognition sensitivity d' score of the reflectance 

congruent (M=1.43, SD=0.54) condition was higher than the reflectance incongruent 

(M=1.14, SD=0.46) condition, mean difference = 0.3, standard error = 0.09, 95% CI 

[0.06, 0.54], p = .007. This means that both the texture and reflectance feature 

congruent pairs were better recognized than incongruent pairs in the associative 

recognition of unfamiliar objects, mean difference = 0.47, standard error = 0.06, 95% 

CI [0.35, 0.59], p < .001 (Figure 4.4).  

Table 4. 1. Repeated Measures ANOVA for Experiment 3 

 Sum of 
Squares df Mean 

Square F p η²p  

Surface feature  0.190  1  0.190  15.087  < .001  0.212  

Residuals  0.706  56  0.013         

Congruency  12.591  1  12.591  62.760  < .001  0.528  
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Table 4.1. (continued) 

Residuals  11.235  56  0.201         

Surface feature ✻ 
Congruency 

 1.692  1  1.692  6.747  0.012  0.108  

Residuals  14.045  56  0.251         

 
Table 4. 2. Mean of Hit Rates, False Alarm Rates and Sensitivity d’ Scores of 
Conditions in Experiment 3 

 

There was a significant main effect of the surface feature on associative recognition 

of unfamiliar objects, F(1, 56) = 15, p < 0.001, η²p = 0.2, mean difference = 0.06, 

standard error = 0.01, 95% CI [0.03, 0.09], p < 0.001. According to post hoc analysis 

with a Bonferroni adjustment, the sensitivity d' score of the texture feature (M=1.34, 

SE=0.05) was significantly higher than the reflectance feature (M=1.28, SE=0.05); 

the recognition sensitivity d' score of texture congruent condition (M=1.66, SD=0.6) 

was higher than the reflectance congruent condition (M=1.43, SD=0.54), mean 

difference = 0.23, standard error = 0.07, 95% CI [0.02, 0.44], p = .02. This means 

that the texture feature of unfamiliar objects effects the associative recognition 

memory more significantly than the reflectance feature of unfamiliar objects. There 

was a significant interaction effect between congruency and surface feature on 

associative recognition of unfamiliar objects, F(1, 56) = 1.92, p = 0.01, η²p  = 0.1. 

This means that the effect of congruency on associative object recognition was more 

 TC TI RC RI 

HR 0.83 0.77 0.82 0.77 

FAR-unstudied 0.29 0.21 0.23 0.28 

FAR-rearrange         - 0.64 0.60 0.67 

FAR-total 0.29 0.43 0.35 0.38 

Sensitivity d’ 1.67 1.02 1.43 1.14 
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effective for the material texture compared to the reflectance feature of the 

unfamiliar object (Figure 4.5). 

 

 
Figure 4. 4. The recognition sensitivity of four conditions (TC, RC, TI, RI) of 
unfamiliar objects. The X-axis represents surface features, the Y-axis represents the 
sensitivity d’ scores. The yellow bars display congruent and the gray bars display 
incongruent conditions, and the error bars represent standard errors of the mean. 
 

To further examine the effect of texture of unfamiliar objects on associative 

recognition memory in more detail, a one-way repeated measures ANOVA with 

seven levels for material texture (wood, stone, glass, metal, plastic, jelly, copper) was 

performed as a post-test. The sphericity assumption was violated, which was 

significant, χ2(20) = 33, p =.03; thus, the degrees of freedom were corrected using 

the Greenhouse-Geisser correction, ε = 0.85. The findings with Greenhouse-Geisser 

correction revealed a significant material effect on associative recognition of 

unfamiliar objects, F(5, 56) = 14.7, p < 0.001, η²p  = 0.2. Post hoc analysis with a 

Bonferroni adjustment revealed that the congruent pairs rendered as wood (M=0.92, 

SD=0.52) were better recognized than the metal (M=0.53, SD=0.3, mean difference = 

-0.4, standard error = 0.08, 95% CI [-0.6, -0.1], p < 0.001), the stone (M=0.4, 

SD=0.4, mean difference = -0.5, standard error = 0.08, 95% CI [-0.8, -0.21], p < 
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0.001), the copper (M=0.5, SD=0.5, mean difference = -0.43, standard error = 0.09, 

95% CI [-0.7, -0.2], p < 0.001), and the plastic (M=0.5, SD=0.3, mean difference = -

0.4, standard error = 0.07, 95% CI [-0.6, -0.17], p < 0.001) material textures.  

 

Also, the congruent pairs rendered as jelly (M=0.95, SD=0.5) were better recognized 

than the metal (M=0.53, SD=0.3, mean difference = -0.42, standard error = 0.07, 

95% CI [-0.7, -0.2], p < 0.001), the stone (M=0.4, SD=0.4, mean difference = -0.54, 

standard error = 0.09, 95% CI[-0.8, -0.2], p < 0.001), the copper (M=0.5, SD=0.5, 

mean difference = -0.47, standard error = 0.01, 95% CI [-0.8, -0.2], p < 0.001), and 

the plastic (M=0.5, SD=0.3, mean difference = 0.47, standard error = 0.07, 95% CI [-

0.7, -0.2], p < 0.001) textures.  

 

Furthermore, the congruent pairs rendered as glass (M=0.7, SD=0.5) were better 

recognized than the stone material (M=0.4, SD=0.4, mean difference = 0.3, standard 

error = 0.08, 95% CI [0.01, 0.5], p = 0.035, Figure 4.6).  

 

 

Figure 4. 5. The recognition sensitivity of four conditions (TC, RC, TI, RI) of 
unfamiliar objects. The X-axis represents congruency, the Y-axis represents the 
sensitivity d’ scores. The yellow line displays texture and the gray line displays 
reflectance conditions, and the error bars represent standard errors of the mean. 
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To further examine the reflectancy effect of unfamiliar objects on associative 

recognition memory in more detail, a paired samples t-test with two levels (glossy, 

matte) was performed as a post-test. The normality assumption was not violated; the 

Shapiro-Wilk test indicated that differences between conditions were normally 

distributed, W(57)= 0.1, p= 0.23. Post t-test with a Bonferroni adjustment revealed 

that reflectance had a significant effect on the associative recognition of unfamiliar 

objects, t(56)= 2.11, p= 0.039, with a small effect size (d= 0.28). The sensitivity d 

score of the matte reflectance (M=1.5, SD=0.61) was higher than the glossy 

reflectance (M=1.2, SD=0.65) (Figure 4.7).   

 

 
Figure 4. 6. The recognition sensitivity of texture congruent pairs with glass, jelly, 
metal, copper, stone, plastic, and wood material textures. The X-axis represents the 
seven material textures, the Y-axis represents the sensitivity d’ scores, and the error 
bars represent standard errors of the mean. 

 
A two-way 2 (congruency) x 2 (surface feature) repeated measures ANOVA was 

conducted to examine the effect of congruency (congruent, incongruent) and surface 

feature (texture, reflectance) on the hit rates of unfamiliar objects. The findings 

revealed a significant main congruency effect on the hit rates of unfamiliar objects, 

F(1, 56) = 12.29, p < 0.001, η²p = 0.18 (Table F.1). Post hoc analysis with a 
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Bonferroni adjustment revealed the hit rate of congruent conditions (M=0.82, 

SE=0.016) were higher than the incongruent conditions (M=0.77, SE=0.016), mean 

difference = 0.05, standard error = 0.015, p < .001 (Table F.2). There was no 

significant main effect of the surface feature on the hit rates of unfamiliar objects, 

F(1, 56) = -0.004, p = 1, η²p = -7.901×10-5. Meaning that both the texture and the 

reflectance features of unfamiliar objects affect the hit rates equally. There was no 

significant interaction effect between congruency and surface feature on the hit rates 

of unfamiliar objects, F(1, 56) = 0.26, p = 0.87, η²p  = 4.557×10-4. This means that 

the effect of congruency on hit rates was similar for the texture and the reflectance of 

the object (Figure 4.8). 
 

 
Figure 4. 7. The recognition sensitivity of reflectance congruent pairs with matte and 
glossy reflectance. the X-axis represents the two reflectance features, the Y-axis 
represents the sensitivity d’ scores, and the error bars represent standard errors of the 
mean. 
 

A two-way 2 (congruency) x 2 (surface feature) repeated measures ANOVA was 

conducted to examine the effect of congruency (congruent, incongruent) and surface 

feature (texture, reflectance) on the false alarm rates of unfamiliar objects. The 

findings revealed a significant main congruency effect on the false alarm rates of 

unfamiliar objects, F(1, 56) = 32.31, p < 0.001, η²p = 0.37 (Table F.3). Post hoc 

analysis with a Bonferroni adjustment revealed the false alarm rate of incongruent 
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conditions (M=0.41, SE=0.015) were higher than the congruent conditions (M=0.32, 

SE=0.016), mean difference = 0.08, standard error = 0.015, p < .001 (Table F.5). 

There was a significant main effect of the surface feature on the false alarm rates of 

unfamiliar objects, F(1, 56) = 16.32, p < 0.001, η²p = 0.23. Post hoc analysis with a 

Bonferroni adjustment revealed the false alarm rate of reflectance conditions 

(M=0.37, SE=0.014) was higher than the texture conditions (M=0.36, SE=0.013), 

mean difference = 0.012, standard error = 0.003, p < .001 (Table F.4). There was a 

significant interaction effect between congruency and surface feature on the false 

alarm rates of unfamiliar objects, F(1, 56) = 10.17, p = 0.002, η²p = 0.15. The false 

alarm rate of the texture incongruent (M=0.43, SE=0.018) condition was higher than 

the texture congruent condition (M=0.29, SE=0.020), mean difference = 0.14, 

standard error = 0.03, p < .001. The false alarm rate of the reflectance congruent 

(M=0.35, SE=0.018) condition was higher than the texture congruent condition 

(M=0.29, SE=0.020), mean difference = 0.07, standard error = 0.02, p = 0.010. The 

false alarm rate of the texture incongruent condition (M=0.43, SE=0.018) was higher 

than the reflectance incongruent condition (M=0.38, SE=0.015), mean difference = 

0.045, standard error = 0.015, p = .023 (Figure 4.8).  

 

 
Figure 4. 8. The hit rates (HR) and false alarm rates (FAR) of four conditions (TC, 
RC, TI, RI) of unfamiliar objects. The X-axis represents surface features, the Y-axis 
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represents the HRs and FARs. The yellow bars display congruent and the gray bars 
display incongruent conditions, and the error bars represent standard errors of the 
mean. 
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CHAPTER 5 

 

 

GENERAL DISCUSSION 
 

 

In this thesis, I explore the facilitatory role of object material in associative 

recognition of familiar and unfamiliar shapes in three experiments and a preliminary 

study. The main focus was to understand how participants form associations between 

objects with information coming from features such as material, shape, surface 

reflectance, and texture.  

 

5.1. Experiment 1  

The aim of Experiment 1 was to investigate how people form associations between 

two familiar objects based on their shared object features like material and shape. 

Thus, a set of familiar objects (jug, mug, goblet, water glass) made of everyday 

materials (wood, stone, glass, metal) were chosen as stimuli in Experiment 1. The 

results of Experiment 1 revealed that participants benefitted when material and shape 

features were congruent in associative recognition of familiar objects, as expected.  

Contrary to the hypotheses of this thesis, shape information did not affect the 

associative recognition more than the material information. There was no difference 

between the material and shape features of familiar objects in associative 

recognition.  

Therefore, material information was found to be equally important as the shape of 

familiar objects in the associative recognition memory. Furthermore, it is reasonable 

to think that pre-experimental familiarity of object identity and object-material 

associations may play a role in object recognition during Experiment 1 (Sharan et al., 

2009; Ngo et al., 2018).  
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5.2. Preliminary Study and Experiment 2  

 

The aim of the Preliminary study was, before conducting Experiment 2, to view 

whether the unfamiliar glaven2 rendered with four different material categories 

(wood, metal, stone, glass) were perceived as the intended materials by the 

participants. The results revealed that participants correctly identified most of the 

material categories of metal, stone, and wood materials but not the glass material. 

Even though the same glass asset from BlenderKit was used in Experiment 1 with 

familiar shapes (jug, water glass, mug, goblet), participants could not recognize the 

glass material with the unfamiliar shape of glaven 2. So, instead of the glass 

rendering parameters of the Preliminary Study, I used a different glass asset from the 

Blenderkit in Experiment 2. In addition to that, different from Experiment 1 and the 

Preliminary Study, I used a forest lane as an environmental map from the HDRs of 

Blenderkit, which improved the glass renderings.  

 

The aim of Experiment 2 was to investigate how people form associations between 

two unfamiliar objects based on their shared surface properties like material and 

shape. Thus, a set of four unfamiliar glavens made of the same material categories as 

Experiment 1 (wood, stone, glass, metal) were chosen as stimuli in Experiment 2. 

The reason I used unfamiliar objects like glavens, which were images varied in the 

underlying geometry, was to suppress any shape-based object identity or familiarity 

regarding these objects, which was not the case in Experiment 1. The results of 

Experiment 2 also revealed a congruency effect for both material and shape in 

associative recognition of unfamiliar objects. As expected, the material feature was 

found to dominate the shape feature in associative recognition memory of unfamiliar 

objects. It was found that when objects are not familiar, participants identified the 

familiar features (Schmidt et al., 2020). Hence, in Experiment 2, participants 

depended on the only reliable and familiar surface information when forming 

associations between objects, which was the material feature and not the unfamiliar 

shape.  

 

Another result of Experiment 2 was the high associative recognition rate of glass 

material compared to other materials (metal, wood, stone) in the material congruent 
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condition. This finding may result from the saliency of glass, which has reflective 

surface properties such as gloss (Okamoto et al., 2013), translucency (Xiao et al., 

2014), and transparency (Fleming et al., 2011; Dövencioğlu et al., 2018). These 

properties have primarily visual characteristics, unlike the other materials I used, 

which mainly have tactile characteristics like the hardness and roughness of wood 

and stone (Nagai et al., 2015). 

 

Furthermore, the shape feature of the glavens used in Experiment 2 was as 

discriminative as the materials (Table H.1). The associative recognition sensitivity of 

glaven7 was higher than the other three glavens in the shape-congruent condition 

(Table H.3, Figure H.1). This means that participants were able to distinguish the 

shape of unfamiliar glavens as well as their material. However, they were better at 

recognizing the material-congruent unfamiliar object pairs than shape-congruent 

pairs. 

 

In Experiment 1, the two distinct routes of material perception can be observed in 

estimating the materials of familiar objects. The association route can be used for 

established material-object associations (Sharan, 2009; Schmidt et al., 2017; Alley et 

al., 2020). For instance, identifying the glass material of the mug, goblet, water glass, 

or jug can be executed based on the glass identity formed by the associations with 

these objects. However, with uncommon material-object combinations (e.g., stone 

jug), the estimation route can be used to assess material properties directly from 

visual image features (Van Assen & Fleming, 2016). Similarly, in Experiment 2, the 

association route of material estimation is not possible due to the unfamiliarity of 

objects and the absence of learned associations. Hence, the estimation route alone is 

used when identifying the materials of unfamiliar objects. 

 

Across all three experiments, participants were more likely to falsely identify 

rearranged pairs as "studied" compared to completely new, unstudied pairs. This 

pattern reveals two important findings about memory performance. First, participants 

were generally good at distinguishing between pairs they had studied and completely 

new pairs they had never seen before. However, they had difficulty when presented 

with rearranged pairs that included objects they had studied but not in that particular 
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combination. This difficulty can be explained by individual object interference 

(Rotello & Heit, 2000). When participants saw a rearranged pair, they recognized 

both individual objects from their study session (since each object was indeed 

studied, just in different pairs). This recognition of the individual objects sometimes 

led participants to mistakenly conclude they had studied these objects together as a 

pair when in fact, they had studied them as parts of different pairs. Hence, when both 

objects in a rearranged pair feel familiar (due to their presence in the study phase), 

participants may struggle to overcome this familiarity to accurately reject the novel 

pairing (Yonelinas, 2002). The higher false alarm rates for rearranged pairs 

demonstrate that having strong item memory (recognizing individual objects) does 

not necessarily translate to accurate associative memory (remembering which objects 

were paired together) (Humphreys, 1978; Clark et al., 1993; Cohn & Moscovitch, 

2007). Hence, instead of a recall-like process, creating a compound cue is also 

possible in forming associations between items (Gronlund & Retcliff 1989). 

 

Furthermore, congruency increased the interference of rearranged pairs (false alarm 

rates of rearranged pairs) both in Experiment 1, F(1, 73) = 25.5, p < 0.001, η²p = 

0.26 (Table D.5), and Experiment 2, F(1, 73) = 04.4, p = 0.049, η²p = 0.07 (Table 

E.9). This finding could be due to the increased recognition strength of congruent 

pairs compared to incongruent ones. Hence, stronger item recognition could have led 

to higher interference and impaired the ability to discriminate specific associations in 

congruent conditions (Johnson et al., 2013). Especially familiar objects in 

Experiment 1 could have induced more substantial interference and increased 

susceptibility to false recognition in the congruent conditions compared to 

Experiment 2 (as indicated by the larger effect size: η²p = 0.26 vs. η²p = 0.07).  

 

Moreover, the sensitivity d’ scores of unfamiliar objects in Experiment 2 were higher 

than the sensitivity d’ scores of familiar objects in Experiment 1. This finding can 

also be explained by the interference of familiar objects compared to unfamiliar 

ones. I found that familiar objects induced more substantial interference (η²p = 0.26) 

compared to unfamiliar objects (η²p = 0.07) in the congruent conditions, suggesting 

that familiarity increased susceptibility to false recognition.  
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Furthermore, the total false alarm rates of familiar objects were higher than those of 

unfamiliar objects. Thus, this drop in associative recognition sensitivity of familiar 

objects could be explained by the pre-existing object-material associations, which 

can create interference and false recognition during retrieval. For familiar objects in 

Experiment 1, both the association and estimation routes of material perception are 

active (Schmidt et al., 2017). For instance, recognizing an object's identity can lead 

to strong predictions about its material composition (Alley et al., 2020; Sharan et al., 

2009) and these predictions could have interfered with the retrieval of the studied 

pairs in Experiment 1. With unfamiliar objects, only the estimation route is available, 

potentially leading to more focused and efficient processing based purely on visual 

features. Therefore, the higher sensitivity scores for unfamiliar objects may reflect a 

more focused perceptual processing strategy independent of pre-existing semantic 

associations. 

 

5.3. Experiment 3 

 

The aim of Experiment 3 was to investigate how people form associations between 

two unfamiliar objects based on their shared surface properties like texture and 

reflectance while holding shape constant. Thus, one unfamiliar glaven made of seven 

textures (glass, metal, wood, stone, plastic, copper, jelly) and two reflectance 

features (matte, glossy) were chosen as stimulus conditions in Experiment 3. As in 

Experiment 2, the reason I used one type of glaven in this experiment was to 

suppress any additional, shape-based object identity and familiarity regarding these 

objects. 

 

The effect of object shape on reflectance perception is long known. For instance, the 

glossiness of a surface has been found to make curved surfaces appear more curved 

(Nishida & Shinya, 1998). Also, it was found that objects with identical reflectance 

properties were perceived as having different levels of glossiness depending on their 

shape (Ho et al., 2008). Also, the impact of surface texture on reflectance perception 

(glossiness) was shown (Ho et al., 2008). In Experiment 3, I displayed surfaces that 

are made of different textures but have similar reflectance properties, along with 

surfaces with similar reflectance patterns but made of different textures. Similar to 
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the previous findings, the results of Experiment 3 also revealed a congruency effect 

for both texture and reflectance in associative recognition of unfamiliar objects, as 

expected. The texture feature was found to have higher sensitivity than the 

reflectance feature in associative recognition memory of unfamiliar objects. 

Although the surface reflectance property was distinctive enough to show a 

congruency effect, where reflectance congruent object pairs were better remembered 

than incongruent pairs across all textures, the surface reflectance information was 

still not strong enough to predominate the texture information in associative 

recognition of unfamiliar objects. When exposed to an unfamiliar shape that does not 

provide any type of information and is constant in all trials, participants relied on 

both texture and reflectance but focused more on the textures. 

 

The reason surface texture showed higher sensitivity than surface reflectance in 

Experiment 3 is because of the higher false alarm rate of surface reflectance 

compared to surface texture. Similarly, the reflectance-congruent condition had a 

higher false alarm rate than the texture-congruent condition. Thus, participants were 

good at differentiating the surface texture of studied pairs from non-studied ones but 

poor at differentiating the surface reflectance of studied pairs from non-studied ones. 

One possible explanation could be that surface textures can provide distinctive 

surface patterns and visual cues that can make them easier to discriminate. 

 

My findings are in line with a study conducted by Fleming et al. (2003) in which the 

authors used a surface reflectance matching task and found that the matching 

performance of surface reflectance estimation was reliable and precise. They suggest 

that the visual system examines the local reflectance highlights when distinguishing 

glossy from matte surfaces. Thus, they conclude that how a material reflects, bends, 

transmits, or scatters light gives us critical clues about its properties when estimating 

materials (Fleming et al., 2003). Hence, the light reflected by a surface holds 

information about the material's properties (Motoyoshi & Matoba, 2012; Kim et al., 

2020). Furthermore, the Bidirectional Reflectance Distribution Function (BRDF) is a 

mathematical function that models how light interacts with different materials 

(Nishida, 2019). It emphasizes that the appearance of a material is not static but 

rather depends on the specific lighting and viewing conditions. Also, different 
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material classes, such as metal, wood, and glass, exhibit different BRDFs (Xiao et 

al., 2012). A series of experiments investigated the relationship between the 

reflectance properties of a material and its perceived appearance and found that 

systematically changing reflectance properties also alters the perceived material 

(Schmid et al., 2020). For instance, the perceived gloss was found to change with 

material class, indicating that gloss should be viewed in the context of its material 

(Schmid et al., 2020). For example, the visual appearance of materials like steel and 

plastic can vary significantly based on their surface reflectance. Steel can appear 

polished, scratched, or rusted, while plastic can be smooth and glossy to rough and 

dull. Thus, a lack of overall matte/glossy difference in my findings might be due to 

the interplay between reflectance and texture. 

 

One observation in Experiment 3 was the high associative recognition rate of the 

matte surfaces over the glossy surfaces in the surface congruent condition. The 

reason matte surfaces showed higher associative recognition sensitivity than glossy 

surfaces is that the glossy pairs had higher false alarm rates compared to matte pairs. 

This means that participants were good at differentiating the matte surfaces of 

studied pairs from non-studied ones but poor at differentiating the glossy surfaces of 

studied pairs from non-studied ones. This could be because, unlike glossy surfaces, 

matte surfaces do not have specular highlights (Nayar & Oren, 1995; Dana et al., 

1999; Pont et al., 2015; Toscani et al., 2017; Olkkonen & Brainard, 2010). Thus, 

light reflects more uniformly across matte surfaces and creates stable (more 

discriminable) patterns compared to glossy surfaces (Nayar & Oren, 1995; Dana et 

al., 1999; Fleming et al., 2003; Kim et al., 2012). One possible explanation could be 

that matte surfaces have fewer bright reflections of light; therefore, details and 

textures on the surface could be simpler to distinguish between the studied pairs and 

non-studied ones in the associative recognition task.  

 

Parallel to this view, glossy condition in Experiment 3 might have appeared less 

discriminable than the matte-textured condition since the perception of highlights on 

a surface is closely linked to surface geometry and perceived shape (Dövencioğlu et 

al 2015, 2017). Using a single geometry for all conditions in Experiment 3 might 

have created a very similar specular highlight pattern across all glossy materials, 
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causing the texture information in the glossy condition to be less informative than the 

matte-textured condition.  

 

Another result of Experiment 3 was the high association recognition rate of wood 

and jelly materials in the texture-congruent condition compared to other materials. 

This is consistent with the finding that wood and minerals were easiest to identify 

due to their distinctive surface patterns, with metal being the most difficult to 

recognize due to the absence of characteristic textures (Yoonessi & Zaidi, 2010; 

Zaidi, 2011). However, how can we explain the high associative recognition of 

material jelly? One explanation is especially for the jelly material; the perception of 

translucency may depend on image cues such as color gradients (Liao et al., 2022). 

Therefore, the role of color in material, reflectance, and object recognition should 

also be examined. The color literature on material and object recognition is 

somewhat convoluted. One study showed that there was no material effect in the 

color-matching paradigm using objects with identical colors but made of different 

materials and those made of the same material but with different colors (Giesel & 

Gegenfurtner, 2010). Likewise, another study indicated that the influence of material 

on color matching was minimal (Xiao & Brainard, 2008). Another study revealed 

that when participants were expected to make matches from three objects varying in 

material and color, they always selected the material match if the material was 

identical to the target (Radonjić et al., 2018). However, as the color difference 

between the matching materials increased, people were more likely to select the 

object with the matching color. Suggesting that as the material's color becomes more 

distant, it is easier for the observer to focus on color rather than material distinctions 

(Radonjić et al., 2018).  

 

Furthermore, it was found that color is an important cue for identifying objects when 

surface details, such as texture or shadow, are not present, which is typically not the 

case because color is not perceived in isolation but rather in conjunction with other 

surface features such as texture and shading (Bramão et al., 2011), which is the case 

in all the three experiments. While the color of highlights and lowlights was found to 

provide some information about material properties, the characteristics of the gloss 

itself, such as contrast and sharpness, are much more critical cues (Brainard et al., 
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2018). Although Experiment 3 was not designed to directly investigate the role of 

color in object memory, these examples could account for the prominent effect of 

texture since I used distant colors for each texture condition (e.g., red plastic, green 

jelly). Further studies that control for color properties while manipulating textures 

are needed to fully understand the dissociation between the roles of color and texture 

in object memory. 

 

What about the material-specific color information? Almost every language links 

color names to materials. According to research by Zaidi (2011), color is a key part 

of how we mentally picture what things are made of. Thus, our perception of color 

and material must accurately correlate to provide beneficial information about 

surface features (Burghouts & Geusebroek, 2009; Brainard et al., 2018). Recent 

work showed that we can more effectively discriminate between different objects by 

using both color and glossiness cues (Saarela & Olkkonen, 2017).  

 

Interestingly, maintaining color constancy was significantly greater for glossy 

objects than matte objects (Granzier et al., 2014). In Experiment 3, the exact opposite 

finding was observed: matte surfaces were better recognized than glossier ones. This 

contrasting result suggests that color perception may not have been the main factor 

driving performance in Experiment 3. If color had been the primary basis for 

recognition, my findings should have aligned with Granzier et al.'s results, showing 

better performance with glossy surfaces. In summary, color perception and object 

recognition interact with each other to provide the most accurate information about 

the materials and objects (Witzel & Gegenfurtner, 2018). In conclusion, although 

color is a critical part of material and object recognition, it by itself does not define 

surface features such as material, and texture. Therefore, the superior material effect 

of glavens over the shape and reflectance found in this study cannot be reduced to 

color.  

 

5.4. Memory Load in Different Conditions 

 

The overlapping pairs between conditions in all experiments introduce memory load 

variations within conditions. It should be kept in mind that this could have influenced 
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the results in ways that are difficult to separate from the main effects being studied. 

For instance, in the material-congruent condition (MC), when participants 

encountered pairs with congruent features (same material and shape, two object 

features), the lower memory load likely made these pairs easier to remember (Olson 

& Jiang, 2002; Alvarez & Cavanagh, 2004). In contrast, pairs that were congruent on 

one feature but incongruent on another (same material but different shapes, three 

object features) had a higher memory load with perceptual complexity and would 

have required more cognitive resources to encode and retrieve these pairs (Eng et al., 

2005; Alvarez & Cavanagh, 2004).  

 

In other words, mixing pairs with varying memory loads within conditions makes it 

harder to isolate the specific effects of object features on associative memory. 

Performance in each condition might reflect an average of two different levels of 

memory load rather than a pure measure of how one type of congruency affects 

memory. As mentioned in the method section of Experiment 1, one way to eliminate 

this memory load difference within conditions would be using material-congruent 

shape-incongruent, shape-congruent material-incongruent, material and shape 

congruent, and material and shape incongruent conditions. This alternative design 

can provide memory load distinctions between conditions and account for the 

specific effects of object feature congruency on associative memory. 

 

In summary, perceptually congruent shape, material, texture, and reflectance pairs 

were more memorable than incongruent pairs in all three experiments. Moreover, the 

results of Experiment 1 showed that material information was as important as shape-

based object identity in familiar object memorability.  

 

Also, the material feature of unfamiliar objects was more memorable than the shape, 

and the texture of unfamiliar objects was more memorable than the surface 

reflectance in Experiments 2 and 3. Lastly, the material properties facilitated 

associative recognition of unfamiliar objects stronger than familiar objects. In 

conclusion, these are the first findings directly relating shape and surface properties 

to object memorability using familiarity as a moderator. 
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5.5. Limitations 

 

The first limitation of this thesis was that there were repeating object pairs in the 

congruent and incongruent conditions in all three experiments. For instance, in 

Experiments 1 and 2, material-congruent object pairs were present in the material-

congruent (MC) and shape-incongruent (SI) conditions. Material-incongruent object 

pairs were present in the material-incongruent (MI) and shape-congruent (SC) 

conditions. Similarly, shape-congruent object pairs were present in both shape-

congruent (SC) and material-incongruent (MI) conditions. And shape incongruent 

object pairs were present in the shape-incongruent (SI) and material-congruent (MC) 

conditions. Although the number of these repeating pairs was controlled with equal 

distribution (half and half) in all conditions, the memory load of object pairs differed 

within the same condition. For example, in the material-congruent condition (MC), 

there were object pairs with both the same object shape and material, which had 

lower memory load than pairs with the same object material and different shapes. 

Therefore, the repeating pairs and the difference in memory load within experimental 

conditions could have partially influenced the findings of this thesis.  

 

Another limitation was that the glass material of the unfamiliar object (glaven) was 

not well identified compared to other wood, metal, and stone materials in the 

Preliminary study. The glass material was relatively more challenging than other 

materials to render with glavens. For this reason, in Experiment 2, glass rendering 

parameters were improved by using a different "glass" asset from the Blenderkit. 

Therefore, the glass materials used in Experiment 2 and Experiment 1 were different 

from each other, and the improved recognition sensitivity of the material glass in 

Experiment 2 could be due to this change. Another limitation was that the study 

stimuli and the new-unstudied stimuli of wood and jelly materials in Experiment 3 

had relatively more distinguishable color characteristics from each other compared to 

other materials. Therefore, because it was easier to discriminate between the studied 

and the unstudied pairs of these materials from each other, this could influence the 

associative recognition performance. Another limitation was that I referenced the 

dual-process theory in discussing my results, and other alternative recognition 

models (Dunn, 2008) should also be addressed in future studies.  
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The last limitation was that, in Experiment 1, lighting direction was inconsistent 

across the object renderings, resulting in varying shadow patterns. This inconsistency 

is significant because lighting and shadows (illuminance flow) provide essential 

information about how light interacts with objects and reveals their 3D texture 

structure and shape (Nishida & Shinya, 1998; Pont et al., 2015; Pont & Te Pas, 

2006). Since the lighting conditions were not standardized between stimuli, this 

variation could have influenced how participants perceived and remembered the 

object material and shape, potentially affecting the study's results. 

 

5.6. Future Research  

 

This thesis unlocks the way for several different directions in future research. The 

first one is that the current data does not permit us to conclusively exclude the 

influence of color in associative object recognition. Color may be a valuable cue for 

identifying the material composition of an object, and future research should 

investigate the role of color in material memorability. More specifically, future 

research should focus on how the visual system adjusts its processing of color 

information to account for variations in texture, glossiness, and other material 

properties. Further studies are needed to examine the role of color in the perception 

of materials, particularly investigating whether color cues enhance our ability to 

perceive and remember materials in both familiar and unfamiliar objects (Yoonessi 

& Zaidi, 2010; Witzel & Gegenfurtner, 2018).  

 

Second, the role of semantic features (Konkle et al., 2010; Isola et al., 2013; Shoval 

et al., 2023) of familiar objects and affordance attributes (Mecklinger et al., 2004; 

Green & Hummel, 2006; Lindemann et al., 2006) in Experiment 1 could account for 

the associative recognition performance. I did not control the semantic and 

affordance features of these familiar objects; thus, future work could investigate the 

role of semantic features of objects, such as their object category membership and 

affordance characteristics compared to perceptual object features. Third, the object 

properties used in this thesis (shape-base object identity, shape, material, surface 

reflectance) can be modeled as a simple additive process where each property 

influences the other to observe their interaction (Ho et al., 2008; Hansmann-Roth & 



 
70 

Mamassian, 2017). And lastly, future research can look into the role of illumination 

flow in associative object recognition. 

 

5.7. Conclusion 

 

Earlier studies in material perception have often explored one object property at a 

time (Ho et al., 2008), yet most objects exhibit several interacting properties. Here, I 

investigated two object features (shape-material) and surface features (reflectance-

texture) and how they interact in three experiments. This thesis is the first to explore 

what makes familiar and unfamiliar objects memorable with different materials and 

investigate which material properties improve object memorability. This thesis 

focused on the role of material perception in associative recognition of familiar and 

unfamiliar objects. In the scope of this thesis, there was no difference between 

material and shape information in forming associations between familiar objects. 

However, texture information was found to predominate the shape and reflectance 

information in creating associations of unfamiliar objects. This thesis contributes to 

visual perception and memory research by highlighting the role of materials in object 

memorability for the first time. The findings of this thesis can also apply to real-

world situations, for instance, in the industry by suggesting marketers to strategically 

use packaging with matte surfaces and materials like wood, glass, and jelly to be 

recognized better based on the results of this thesis. Also, the findings can be applied 

to selecting memorable materials for design choices, particularly when choosing 

materials for everyday items like home furnishings and tableware. 
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D. HIT RATES AND FALSE ALARM RATES OF EXPERIMENT 1 

 

Table D. 1. Repeated Measures ANOVA of HRs in Experiment 1 

 Sum of 
Squares df Mean 

Square F p η²p  

Object Feature  9.121×10-

31  
 1  9.121×10-

31  
 1.499×10-

13  
 1.000  2.054×10-

15  
 

Residuals  4.441×10-

16  
 73  6.083×10-

18  
        

Congruency  1.906  1  1.906  83.174  < .001  0.533  

Residuals  1.673  73  0.023         

Object Feature 
✻ 
Congruency 

 0.014  1  0.014  0.984  0.324  0.013  

Residuals  1.002  73  0.014         

 

Table D. 2. Post Hoc Comparison of HRs of Congruency in Experiment 1 
  Mean Difference SE t pbonf  

congruent  incongruent  0.127  0.014  9.212  < .001  

 

Table D. 3. Repeated Measures ANOVA of FARs in Experiment 1 

 Sum of 
Squares df Mean 

Square F p η²p  

Object Feature  5.865×10-4   1  5.865×10-4   1.246  0.268  0.017  

Residuals  0.034  73  4.706×10-4          

Congruency  1.188  1  1.188  84.861  < .001  0.538  

Residuals  1.022  73  0.014         

Object Feature ✻ 
Congruency 

 0.029  1  0.029  1.246  0.268  0.017  

Residuals  1.683  73  0.023         
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Table D. 4. Post Hoc Comparison of FARs of Congruency in Experiment 1 
  Mean Difference SE t pbonf  

congruent  incongruent  0.127  0.014  9.212  < .001  

 
Table D. 5. Repeated Measures ANOVA of FAR-rearranged in Experiment 1 

 Sum of 
Squares df Mean 

Square F p η²p  

Object feature  0.001  1  0.001  0.173  0.679  0.002  

Residuals  0.557  73  0.008         

Congruency  0.582  1  0.582  25.530  < .001  0.259  

Residuals  1.664  73  0.023         

Object feature ✻ 
Congruency 

 0.012  1  0.012  0.173  0.679  0.002  

Residuals  5.015  73  0.069         

 

Table D. 6. Post Hoc Comparison of FAR-rearranged of Congruency in Experiment 1 

  Mean Difference SE t pbonf  

congruent  incongruent  0.089  0.018  5.053  < .001  
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E. HIT RATES AND FALSE ALARM RATES OF EXPERIMENT 2 
 

Table E. 1. Repeated Measures ANOVA of HRs in Experimet 2 

 Sum of 
Squares df Mean 

Square F p η²p  

Object Feature  1.756×10-

31  
 1  1.756×10-

31  
 

-
2.835×10-

14  
 1.000  

-
5.063×10-

16  
 

Residuals  
-

3.469×10-

16  
 56  

-
6.195×10-

18  
        

Congruency  0.741  1  0.741  31.983  < .001  0.364  

Residuals  1.298  56  0.023         

Object Feature 
✻ 
Congruency 

 0.020  1  0.020  1.449  0.234  0.025  

Residuals  0.765  56  0.014         

 

Table E. 2. Post Hoc Comparison of HRs of Congruency in Experimet 2 
  Mean Difference SE t pbonf  

congruent  incongruent   0.114  0.020  5.655  < .001  

 

Table E. 3. Repeated Measures ANOVA of FARs in Experiment 2 

 Sum of 
Squares df Mean 

Square F p η²p  

Object Feature  0.003  1  0.003  15.362  < .001  0.215  

Residuals  0.012  56  2.083×10-4          

Congruency  0.191  1  0.191  13.647  < .001  0.196  

Residuals  0.785  56  0.014         

Object Feature ✻ 
Congruency 

 0.157  1  0.157  15.362  < .001  0.215  

Residuals  0.572  56  0.010         
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Table E. 4. Post Hoc Comparison of FARs of Object Feature in Experiment 2 
  Mean Difference SE t pbonf  

material  shape  -0.007  0.002  -3.919  < .001  

 

Table E. 5. Post Hoc Comparison of FARs of Congruency in Experiment 2 
  Mean Difference SE t pbonf  

congruent  incongruent  -0.058  0.016  -3.694  < .001  

 

Table E. 6. Repeated Measures ANOVA of Materials HRs in Material Congruent 
Condition in Experiment 2 

 Sum of Squares df Mean Square F p η²p  

HR  0.494  3  0.165  4.483  0.005  0.074  

Residuals  6.177  168  0.037         
 

 

Table E. 7. Repeated Measures ANOVA of Material FARs in Material Congruent 
Condition in Experiment 2 

 Sum of Squares df Mean Square F p η²p  

FAR  0.395  3  0.132  2.987  0.033  0.051  

Residuals  7.410  168  0.044         
 

 
Table E. 8. Mean of Hit Rates, False Alarm Rates and Sensitivity d’ Scores of 
Materials in Material Congruent Condition in Experiment 2  

 Metal Wood Stone Glass 

HR 0.85 0.89 0.77 0.86 

FAR-unstudied 0.17 0.18 0.09 0.40 

FAR-rearranged 0.75 0.82 0.77 0.79 

FAR-total 0.39 0.40 0.31 0.29 

Sensitivity d’ 1.14 1.01 0.95 1.49 
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Figure E. 1. The hit rates (HR) and false alarm rates (FAR) of material congruent 
pairs with glass, metal, stone, and wood materials. The X-axis represents the four 
materials, the Y-axis represents the HRs and FARs, and the error bars represent 
standard errors of the mean. 

 
Table E. 9. Repeated Measures ANOVA of FAR-rearranged in Experiment 2 

 Sum of 
Squares df Mean 

Square F p η²p  

Object Feature  6.853×10-

5  
 1  6.853×10-

5  
 0.015  0.904  2.618×10-

4  
 

Residuals  0.262  56  0.005         

Congruency  0.058  1  0.058  4.045  0.049  0.067  

Residuals  0.798  56  0.014         

Object Feature 
✻ 
Congruency 

 6.168×10-

4  
 1  6.168×10-

4  
 0.015  0.904  2.618×10-

4  
 

Residuals  2.355  56  0.042         

 
 
Table E. 10. Post Hoc Comparison of FAR-rearranged of Congruency in Experiment 2 

  Mean Difference SE t pbonf  

congruent  incongruent  0.032  0.016  2.011  0.049  
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F. HIT RATES AND FALSE ALARM RATES OF EXPERIMENT 3 

 

Table F. 1. Repeated Measures ANOVA of HRs in Experiment 3 

 Sum of 
Squares df Mean 

Square F p η²p  

Surface 
Feature 

 1.754×10-
20  

 1  1.754×10-
20  

 -0.004  1.000  
-

7.901×10-
5  
 

Residuals  -
2.220×10-

16  
 56  

-
3.965×10-

18  
        

Congruency  0.158  1  0.158  12.287  < .001  0.180  

Residuals  0.720  56  0.013         

Surface 
Feature ✻ 
Congruency 

 3.580×10-
4  
 1  3.580×10-

4  
 0.026  0.874  4.557×10-

4  
 

Residuals  0.785  56  0.014         

 
Table F. 2. Post Hoc Comparison of HRs of Congruency in Experimet 3 

  Mean Difference SE t pbonf  

congruent  incongruent  0.053  0.015  3.505  < .001  

 
Table F. 3. Repeated Measures ANOVA of FARs in Experiment 3 

 Sum of 
Squares df Mean 

Square F p η²p  

Surface Feature  0.008  1  0.008  16.318  < .001  0.226  

Residuals  0.026  56  4.652×10-4          

Congruency  0.412  1  0.412  32.312  < .001  0.366  

Residuals  0.714  56  0.013         

Surface Feature 
✻ Congruency 

 0.183  1  0.183  10.170  0.002  0.154  

Residuals  1.007  56  0.018         
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Table F. 4. Post Hoc Comparison of FARs of Surface Feature in Experimet 3 

  Mean Difference SE t pbonf  

material  reflectance  -0.012  0.003  -4.040  < .001 *** 

 

Table F. 5. Post Hoc Comparison of FARs of Congruency in Experimet 3 

  Mean Difference SE t pbonf  

congruent  incongruent  -0.085  0.015  -5.684  < .001 *** 

 

Table F. 6. Repeated Measures ANOVA of Texture HRs in Texture Congruent 
Condition in Experiment 3 

 Sum of Squares df Mean Square F p η²p  

HR  0.585  6  0.098  1.350  0.234  0.024  

Residuals  24.272  336  0.072         

 

Table F. 7. Repeated Measures ANOVA of Texture FARs in Texture Congruent 
Condition in Experiment 3 

 Sphericity 
Correction 

Sum of 
Squares df Mean 

Square F p η²p  

FAR  None  12.351 a 6.000 a 2.058 a 15.368 a < .001 a 0.215  

   Greenhouse-
Geisser 

 12.351  4.662  2.649  15.368  < .001  0.215  

Residuals  None  45.006  336.000  0.134         

   Greenhouse-
Geisser  45.006  261.067  0.172         

ᵃ Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p < .05). 
 
Table F. 8. Mean of Hit Rates, False Alarm Rates and Sensitivity d’ Scores of 
Textures in Texture Congruent Condition in Experiment 3  

 Metal Wood Stone Glass Plastic Copper Jelly 

HR 0.90 0.80 0.80 0.79 0.88 0.80 0.81 

FAR-total 0.60 0.12 0.48 0.28 0.19 0.44 0.10 

Sensitivity d’ 0.53 0.92 0.41 0.69 0.50 0.48 0.96 
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Figure F. 1. The hit rates (HR) and false alarm rates (FAR) of texture congruent 
pairs with glass, metal, stone, wood, plastic, copper and jelly textures. The X-axis 
represents the textures, the Y-axis represents the HRs and FARs, and the error bars 
represent standard errors of the mean. 
 
Table F. 9. Paired Samples T-Test of Reflectance HRs in Reflectance Congruent 
Condition in Experiment 3 

Measure 1   Measure 2 t df p Cohen's d 

HR_glossy  -  HR_matte  0.98  56  0.33  0.13  
 

Table F. 10. Paired Samples T-Test of Reflectance FARs in Reflectance Congruent 
Condition in Experiment 3 

Measure 1   Measure 2 t df p Cohen's d  

AR_glossy  -  FAR_matte  3.5 
  

56 
  < .001  0.47  

 

Table F. 11. Mean of Hit Rates, False Alarm Rates and Sensitivity d’ Scores of 
Reflectance Features in Reflectance Congruent Condition in Experiment 3  

 Matte Glossy 

HR 0.81 0.84 

FAR-total 0.30 0.41 

Sensitivity d’ 1.47 1.22 
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Figure F. 2. The hit rates (HR) and false alarm rates (FAR) of reflectance congruent 
pairs with glossy and matte reflectance features. The X-axis represents the 
reflectance features, the Y-axis represents the HRs and FARs, and the error bars 
represent standard errors of the mean. 
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G. THE RESPONSE BIAS IN EXPERİMENTS 1, 2 AND 3 

 
Table G. 1. Repeated Measures ANOVA of Criterion in Experiment 1 

 Sum of 
Squares df Mean 

Square F p η²p  

Object Feature  0.001  1  0.001  0.276  0.601  0.004  

Residuals  0.271  73  0.004         

Congruency  15.435  1  15.435  105.714  < .001  0.592  

Residuals  10.659  73  0.146         

Object Feature 
✻ Congruency 

 0.004  1  0.004  0.032  0.859  4.344×10-

4  
 

Residuals  8.096  73  0.111         

 
 
Table G. 2. Post Hoc Comparison of Criterion of Congruency in Experimet 1 
 

  Mean Difference SE t pbonf  

congruent  incongruent  -0.457  0.044  -10.282  < .001  
 
 
 
Table G. 3. Repeated Measures ANOVA of Criterion in Experiment 2 

 Sum of 
Squares df Mean 

Square F p η²p  

Object Feature  0.014  1  0.014  5.960  0.018  0.095  

Residuals  0.138  57  0.002         

Congruency  1.138  1  1.138  8.442  0.005  0.129  

Residuals  7.685  57  0.135         

Object Feature ✻ 
Congruency 

 0.784  1  0.784  9.306  0.003  0.140  

Residuals  4.805  57  0.084         



 
103 

Table G. 4. Post Hoc Comparison of Criterion of Object Feature in Experimet 2 

  Mean Difference SE t pbonf  

material  shape  0.016  0.006  2.441  0.018  
 
 
Table G. 5. Post Hoc Comparison of Criterion of Congruency in Experimet 2 

  Mean Difference SE t pbonf  

congruent  incongruent  -0.140  0.048  -2.905  0.005  
 
 
Table G. 6. Repeated Measures ANOVA of Criterion in Experiment 3 

 Sum of 
Squares df Mean 

Square F p η²p  

Surface Feature  0.022  1  0.022  6.861  0.011  0.109  

Residuals  0.179  56  0.003         

Congruency  0.039  1  0.039  0.420  0.520  0.007  

Residuals  5.231  56  0.093         

Surface Feature ✻ 
Congruency 

 0.361  1  0.361  3.283  0.075  0.055  

Residuals  6.162  56  0.110         

 
Table G. 7. Post Hoc Comparison of Criterion of Surface Feature in Experimet 3 
 

  Mean Difference SE t pbonf  

texture  reflectance  0.020  0.007  2.619  0.011  
 
 
Table G. 8. The Mean Criterion Values of Conditions in Experiments 1 and 2 
 

 MC MI SC SI 

Criterion (c) 

Experimet 1 

-0.12 -0.57 -0.13 -0.59 

Criterion (c) 

Experimet 2 

-0.36 -0.34 -0.50 -0.24 
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Table G. 9. The Criterion Values of Conditions in Experiments 3 
 
 TC TI RC RI 

Criterion (c) 

Experimet 3 

-0.21 -0.32 -0.31 -0.26 
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H. THE SHAPE DISCRIMINABILITY OF GLAVENS IN EXPERIMENT 2 

 
Table H. 1. Repeated Measures ANOVA of Sensivity d’of Glaven Shapes in 
Experiment 2 

Cases Sphericity 
Correction 

Sum of 
Squares df Mean 

Square F p η²p  

shape  None  23.892 a 3.000 a 7.964 a 42.552 a < .001 a 0.427  

   Greenhouse-
Geisser 

 23.892  2.542  9.397  42.552  < .001  0.427  

Residuals  None  32.003  171.000  0.187         

   Greenhouse-
Geisser  32.003  144.914  0.221         

ᵃ Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p < .05). 
 
 
Table H. 2. The Mean Sensivity d’ Difference of Glaven Shapes in Experiment 2 

 95% CI for Mean Difference  

Shape Marginal Mean Lower Upper SE 

glaven1  1.908  1.778  2.038  0.065  
glaven4  1.427  1.291  1.562  0.068  
galven7  2.259  2.155  2.363  0.052  

glaven8  1.576  1.439  1.712  0.068  

 
 
Table H. 3. The Post Hoc Comparisons of Glaven Shapes in Experiment 2 

  Mean Difference SE t pbonf  

glaven1  glaven4  0.481  0.093  5.200  < .001  
   galven7  -0.351  0.060  -5.813  < .001  
   glaven8  0.332  0.080  4.176  < .001  

glaven4  galven7  -0.832  0.073  -11.339  < .001  
   glaven8  -0.149  0.095  -1.564  0.740  

galven7  glaven8  0.684  0.076  9.038  < .001  

Note.  P-value adjusted for comparing a family of 6 
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Figure H. 1. The sensitivity d scores of shape congruent pairs with glaven1, glaven4, 
glaven7, and glaven8. The X-axis represents the four shapes, the Y-axis represents 
the recognition sensitivity, and the error bars represent standard errors of the mean. 
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I. TURKISH SUMMARY / TÜRKÇE ÖZET 

 

 

BÖLÜM 1 

 

GİRİŞ 
 

1.1. Malzeme Algısı 

Günlük deneyimlerimiz, bazıları tanıdık, bazıları ise tanıdık olmayan çeşitli 

malzemelerden yapılmış nesnelerle etkileşimi içermektedir. Bu malzemeleri 

tanımlayabilir, tanıyabilir ve fiziksel özelliklerini bir bakışta çıkarabiliriz (Wiebel ve 

diğerleri, 2013; Sharan ve diğerleri, 2009). Bir nesnenin malzeme özellikleri, onun 

kimliği, kullanılabilirliği ve sağladığı olanaklar hakkında önemli ipuçları sunar, 

dolayısıyla nesneyle etkileşimimizi belirler. Bu nedenle, malzeme algısı çalışmaları, 

insanların farklı malzeme özelliklerini görsel olarak nasıl otomatik ve zahmetsiz bir 

şekilde algıladığını araştırır (Adelson, 2001; Buckingham ve diğerleri, 2009; Liu ve 

diğerleri, 2010; Fleming, 2017). Günlük hayatta karşılaştığımız malzemelerin 

yelpazesi geniştir: Ahşap, taş, metal ve cam gibi her malzemenin pürüzlülük, ağırlık, 

yansıma, yarı saydamlık ve geometri gibi benzersiz yüzey özellikleri vardır ve bunlar 

nesnelerle etkileşimimizi etkiler. Bu etkileşim, malzemenin özelliklerine dair 

algımıza dayanır ve bu algı çoğu zaman fiziksel olarak nesneye dokunmadan 

gerçekleşir. Böylece, nesneye dokunmadan onun nasıl hissedeceği ve günlük hayatta 

ne için kullanılacağı hakkında genel bir anlayışa ve beklentiye sahip oluruz (Nagai 

ve diğerleri, 2015). 

1.1.1. Malzeme Yüzey Özellikleri 

 

Bir malzemenin görünümü yalnızca ışığı nasıl yansıttığıyla değil, aynı zamanda üç 

boyutlu şekil, yansıma, çevresel aydınlatma, doku ve yüzey renginin birleşimiyle de 

etkilenir. Bu özellikler, malzeme kategorileri arasında ve içinde nesne hakkında 



 
108 

değerli bilgiler sağlar (Motoyoshi ve diğerleri, 2007; Marlow ve diğerleri, 2011; 

Sharan ve diğerleri, 2013; Sawayama & Nishida, 2018). Özellikle bir yüzeyin şekli, 

ışığın nasıl yansıdığını belirleyen önemli bir faktördür ve bu, malzemenin 

görünümünde önemli bir rol oynar (Lagunas ve diğerleri, 2021; Serrano ve diğerleri, 

2021). Dolayısıyla, malzemeleri tanıma yeteneğimiz şekil, renk ve doku gibi yüzey 

özelliklerine dayanır. Sonuç olarak, malzeme algısı, malzemeleri tanımak için erken 

seviyedeki ipuçlarını ileri seviyeli nesne bilgisiyle birleştirerek çalışır. 

 

1.1.2. Malzeme Algısının Seviyeleri 

 

Malzemeleri görsel olarak algılamamızın farklı seviyeleri vardır. Schmidt ve 

diğerleri (2017) tarafından geliştirilen modele göre, malzeme algısının iki ana yolu 

vardır: çağrışım yolu ve tahmin yolu (Van Assen & Fleming, 2016). Tahmin yolu, 

malzeme özelliklerinin doğrudan görüntü özelliklerinden tahmin edilmesiyle 

malzeme tanımayı sağlar. Bu süreç, açık bir malzeme kimliği belirlemeye ihtiyaç 

duymadan, yalnızca görsel ipuçlarının analizi yoluyla gerçekleşir ve yüzey yansıması 

gibi görsel ipuçlarına dayanarak malzeme özelliklerini çıkarır.  

 

Malzemeleri tanımlamanın bir diğer yolu ise öğrenilmiş çağrışımlar kullanmaktır. 

Çağrışım yolu, yüzey dokusu gibi görsel ipuçlarını, yumuşak veya sert gibi malzeme 

özellikleriyle ilişkilendirerek, hafızadan öğrenilmiş nesne-malzeme çağrışımlarına 

dayalı malzeme kimliğini oluşturur. Bu nedenle, yaşam boyunca bir nesnenin 

görünümü ile tipik malzeme özellikleri arasında güçlü bağlantılar geliştiririz ve 

malzeme tanımlarken bu çağrışımlara güveniriz (Sharan, 2009; Alley ve diğerleri, 

2020).  

 

1.2. Malzeme ve Nesne Kategorisi Tanıma 

 

Malzemelerin sınıflandırılması, algı ve anlamsal yorum arasındaki boşluğu dolduran 

algısal ve anlamsal niteliklerin benzerliklerine dayalı olarak oluşur (Sharan ve 

diğerleri, 2013). Bu durum, malzeme niteliklerinin görsel değerlendirilmesi ile farklı 

malzeme sınıflarının anlamsal temsili arasında güçlü bir ilişki olduğunu 

göstermektedir. Ancak malzemelerin oluşturduğu nesneler fiziksel formları açısından 
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inanılmaz derecede çeşitli olabilir. Bu durum bilişsel sistemimiz için bir zorluk 

oluşturur. Bir malzemenin alabileceği çok sayıda şekil, yalnızca algısal veya 

anlamsal benzerlik temelinde malzemelerin sınıflandırması için net sınırlar 

oluşturmayı zorlaştırır (Fleming ve diğerleri, 2015; Caputa ve diğerleri, 2010). 

Dolayısıyla, malzeme tanıma konseptini nesne tanıma alanına indirgemek kolay 

olabilir. Nesne kimliği ile malzeme kimliği arasında istatistiksel olarak anlamlı bir 

ilişki olmasına rağmen, şekil temelli nesne kimliği, malzeme tanımayı açıklayamaz. 

Bu açıdan nesne-malzeme ilişkisinin doğrudan simetrik olmadığı vurgulanmalıdır. 

Aynı sınıftaki nesneler farklı malzemelerden yapılabilirken, farklı sınıflardan 

nesneler aynı malzeme kategorisine ait olabilir (Bileschi ve diğerleri, 2005; Sharan, 

2009). Malzemeleri tanımak, nesneleri tanımanın ötesine geçen benzersiz süreçleri 

içerir. 

 

Sharan ve çalışma arkadaşları (2009), günlük malzemeleri görsel olarak tanıma ve 

sınıflandırma yetimizin hızlı olduğunu, hatta 40 ms'lik kısa bir sunum süresiyle bile 

başarılı olduğunu göstermiştir. Bu nedenle, malzeme algısının nesne tanıma kadar 

hızlı olabileceği sonucuna varmışlardır. Buna karşılık, Wiebel ve diğerlerinin (2013) 

çalışması, malzeme tanımanın nesne tanımadan daha yavaş olduğunu ve malzemeleri 

ayırt etmenin nesnelerden daha karmaşık olduğunu ortaya koymuştur. Nagai ve 

çalışma arkadaşlarının (2015) bulguları, parlaklık ve saydamlık gibi özelliklerin kısa 

reaksiyon sürelerinde malzemeleri ayırt etme performansını artırdığını, ağırlık ve 

sıcaklık gibi görsel olmayan özellik derecelendirmelerinin ise daha uzun reaksiyon 

süreleriyle ilişkili olduğunu göstermiştir. Yazarlar, gündelik hayatta malzeme 

tanımada görsel yüzey özelliklerinin, görsel olmayan özelliklere kıyasla birincil 

kaynak olduğunu belirtmişlerdir. Örneğin, parlaklık ve saydamlığı sadece dokunsal 

bilgi ile görsel girdi olmadan tahmin etmek nadirdir (Okamoto ve diğerleri, 2013). 

 

1.3. Nesne Belleği 

 

Nesnelerle etkileşimde bulunduğumuzda, anlamsal işlev, teknik/mekanik ve 

sensorimotor unsurlar gibi farklı bilgi türlerini sürekli bir geri bildirim döngüsünde 

birleştiririz (Federico ve diğerleri, 2023). Nesne belleği araştırmaları, nesneleri 

kodlarken ve tanırken şekil ve rengin baskın özellikler olduğunu göstermektedir 
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(Schmidt ve diğerleri, 2020; Schacter ve diğerleri, 1990; Nako ve diğerleri, 2016). 

Şeklin (Logothetis & Sheinberg, 1996; Serrano ve diğerleri, 2021) ve rengin (Tanaka 

& Presnell, 1999; Redmann ve diğerleri, 2019; Reppa ve diğerleri, 2020; Nagai & 

Yokosawa, 2003) nesne hatırlanabilirliği üzerindeki kolaylaştırıcı rolü 

vurgulanmaktadır. 

 

Renk, özellikle rengi nesne kimliği ve şekliyle güçlü bir şekilde eşleşen nesnelerin 

tanınmasında önemli bir rol oynar; bu durum "renk tanılayıcılığı" olarak adlandırılır. 

Benzer şekilde, aşinalık, tipiklik ve eşzamanlılık, nesne hatırlanabilirliği üzerinde 

artırıcı etkilere sahiptir (Ngo ve diğerleri, 2018; Green & Hummel, 2005, 2006; 

Schiffer, 2023; Kramer ve diğerleri, 2023). Ayrıca, nesnelerin anlamsal özelliklerinin 

görsel özelliklerinden daha iyi hatırlandığı bulunmuştur (Schiffer, 2023; Kramer ve 

diğerleri, 2023). Gerçek nesneler, renkli fotoğraflar veya siyah beyaz çizimlerin 

kullanıldığı nesne tanıma görevlerinde, gerçek nesnelerin diğer görsel uyaranlardan 

daha hatırlanabilir olduğu bulunmuştur (Snow ve diğerleri, 2014). Ancak, 

malzemenin nesne hatırlanabilirliği üzerindeki rolünü inceleyen herhangi bir çalışma 

bulunmamaktadır. 

 

1.4. İlişkisel Tanıma Belleği 

 

Çağrışım kavramı, öğrenme ve belleğin temelini oluşturur. Nesnelerin yüzey dokusu 

kategorisi veya malzeme kategorisi gibi duyusal uyaranlar arasında kurulan 

çağrışımlar, çevresel düzenlilikler hakkında bilgi sağlar ve gelecekteki duyusal 

girdileri tahmin etmek ve yorumlamak için bellekte depolanan anlamsal özellikleri 

tanımlamada kritik bir rol oynar (Albright, 2012). İlişkisel bellek, maddelerin 

anlamsal olarak nasıl organize edildiğinden veya gruplandığından etkilenebilir. Bu 

durum, aynı anlamsal gruptaki maddeleri hatırlamaya eğilim göstermemize neden 

olarak anlamsal çağrışımlar ağını oluşturur. İlişkisel tanıma görevi, katılımcılardan 

madde çiftlerini çalışmaları ve ardından sunulan çiftlerin daha önce çalışılanlarla 

aynı olup olmadığını belirlemelerini ister. Tanınan çiftler için “evet” ve tanınmayan 

çiftler için “hayır” cevabı verilir (Clark ve diğerleri, 1993; Rotello & Heit, 2000; 

Cohn & Moscovitch, 2007; Kahana, 2012). 
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1.5. Neden Tanıdık ve Tanıdık Olmayan Nesnelerin İlişkisel Tanımasında 

Malzeme Algısını Araştırmalıyız? 
 

Malzemeleri tanımanın ve özelliklerini değerlendirmenin ekolojik açıdan önemi göz 

önüne alındığında, nesne algısı üzerine geniş bir literatür olmasına rağmen, malzeme 

algısının görsel nesne algısı üzerindeki etkisi son zamanlara kadar araştırmalarda 

büyük ölçüde göz ardı edilmiştir (Wiebel, 2014; Nagai ve diğerleri, 2015; Adelson, 

2001; Fleming, 2014; Fleming ve diğerleri, 2015). Bu tezde, malzeme bilgisinin, 

nesne yüzey özelliklerinden şekil ve yansıma gibi diğer faktörlere kıyasla, ilişkisel 

nesne belleğinde nasıl saklandığı ve geri çağrıldığı incelenmiştir. Ayrıca şekil temelli 

tanıdıklık ve tanıdık olmama durumlarının, malzeme algısına kıyasla ilişkisel nesne 

belleğinde nasıl bir rol oynadığı araştırılmıştır. 
 

Nesne tanıdıklığı, tanıdık olmama durumu, şekil, malzeme ve yansımanın ilişkisel 

bellek oluşumunu nasıl etkilediğini anlamak için daha fazla araştırmaya ihtiyaç 

vardır. Malzeme, şekil ve yansıma açısından kontrollü ve sistematik bir şekilde 

değişen çift örnekleri oluşturmak, bu değişkenler arasındaki ilişkiyi incelemek için 

faydalı olacaktır. Bunun yanında, herhangi bir tanıdıklığı veya işlevi olmayan 

(özellikle Glavens gibi küresel nesneler kullanarak) nesnelerle yapılan çalışmalar  

önceki bilgilere dayanmayı zorlaştırır (Phillips, 2004; Phillips ve diğerleri, 2009). Bu 

sonuçlar malzemeleri ve nesneleri algılayıp tanırken bilişsel mekanizmaların nasıl 

çalıştığını anlamamıza yardımcı olabilir. Gelen tanıdık ve tanıdık olmayan duyusal 

bilginin yüksek düzeyde beklentilerle nasıl birleştirildiğini anlamak, insan görsel 

sisteminin malzeme algısını ve nesne-malzeme çağrışımlarını nasıl oluşturduğunu 

anlamak için önemlidir (Alley ve diğerleri, 2020). 
 

1.6. Amaç ve Hipotezler 

 

Bu tezde, tanıdık ve tanıdık olmayan nesnelerin malzemesinin, şekil ve yansıma gibi 

diğer nesne özelliklerine kıyasla ilişkisel tanıma belleğindeki rolü araştırılmıştır. 

Bunu yapmak için, birinci deneyde günlük malzemelerden yapılmış farklı nesne 

kimliklerine sahip bir dizi tanıdık nesne, ikinci ve üçüncü deneyde ise aynı 

malzemelerden yapılmış farklı şekillere sahip tanıdık olmayan nesneler uyaran 

olarak kullanılmıştır. 
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Deney 1’in amacı, insanların tanıdık iki nesne arasında malzeme ve şekil bilgileri 

gibi ortak özelliklerine dayalı belleklerinde nasıl çağrışımlar kurduklarını 

araştırmaktır. Ana araştırma sorusu, insanların tanıdık iki nesne arasında çağrışım 

kurarken daha çok malzeme mi yoksa şekil bilgisine mi güvendikleridir. Hipotezler: 

(1) Şekil ve malzeme açısından uyumlu tanıdık nesne çiftleri, uyumsuz olanlardan 

daha iyi tanınacaktır (yüzey uyumu etkisi). (2) Tanıdık nesnelerle yapılan tanıma 

belleği görevinde şekil bilgisinin faydası, malzeme bilgisine kıyasla daha baskın 

olacaktır.Deney 2’nin amacı, tanıdık olmayan iki nesne arasında yüzey özelliklerine 

dayalı çağrışımların nasıl oluştuğunu incelemektir. Hipotezler: (1) Şekil ve malzeme 

açısından uyumlu tanıdık olmayan nesne çiftleri, uyumsuz olanlardan daha iyi 

tanınacaktır. (2) Tanıdık olmayan nesnelerle yapılan tanıma belleği görevinde 

malzeme bilgisinin faydası, şekil bilgisine kıyasla daha baskın olacaktır. 

 

Deney 3’ün amacı, tanıdık olmayan nesnelerde malzeme ve yansıma bilgisine dayalı 

çağrışımların nasıl oluştuğunu incelemektir. Hipotezler: (1) Malzeme ve yansıma 

açısından uyumlu çiftler, uyumsuz olanlardan daha iyi tanınacaktır. (2) Tanıma 

belleği görevinde malzeme bilgisinin faydası, yansıma bilgisine kıyasla daha baskın 

olacaktır. 

 

BÖLÜM 2 

 

DENEY 1 
 

2.1. Yöntem 

İlk deneyde, katılımcılar, farklı nesne özelliklerinin (malzeme, şekil) eşleştiği ve 

eşleşmediği koşullarda tanıdık nesnelerin eşleştirilmiş görselleri inceledikleri bir 

çağrışımsal tanıma görevi tamamladılar. Bu deney, hangi koşullarda tanıma 

oranlarının daha yüksek olacağını araştırmak amacıyla gerçekleştirilmiştir. 

2.2. Katılımcılar 

Bu çalışma, Orta Doğu Teknik Üniversitesi İnsan Araştırmaları Etik Kurulu 

tarafından onaylanmıştır. Deneye, Orta Doğu Teknik Üniversitesi’nden 74 katılımcı 
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(54 kadın, 18 erkek, 2 non-binary) 19-30 yaş aralığında (M= 21.9, SD= 2.16) ders 

kredisi karşılığında veya gönüllü olarak katılmıştır. Katılımcılar, normal veya 

düzeltilmiş görme yetisine sahip ana dili Türkçe olan bireylerdi. Tüm katılımcılardan 

bilgilendirilmiş onay alınmıştır. 

2.3. Uyaranlar 

Bu çalışmadaki deneysel uyaranlar, dört şekil (sürahi, kadeh, su bardağı, kupa) ve 

dört malzeme kategorisi (ahşap, metal, cam, taş) altında sunulan tanıdık nesnelere ait 

32 görselden oluşmaktadır. Diğer bir deyişle, her şekil ve malzeme kategorisinde, bir 

nesnenin dört farklı malzeme ile oluşturulmuş 4 görüntüsü, açık kaynaklı bir üç 

boyutlu bilgisayar grafik uygulaması olan Blender 4.1.1 programı kullanılarak 

üretilmiştir (Blender, 2024).  

Toplam dört madde koşulu vardır: Malzeme-uyumlu koşul (MU), Malzeme-uyumsuz 

koşul (MUmz), Şekil-uyumlu koşul (ŞU), Şekil-uyumsuz koşul (ŞUmz). 

2.5. Prosedür 

Deney üç aşamadan oluşmuştur: çalışma aşaması, dikkat dağıtma aşaması ve 

bellekten geri çağırma aşaması. Çalışma aşamasında, katılımcılara dört koşuldan her 

biri için 16 çift içeren bir çalışma listesi gösterilmiştir. Toplamda 64 çift, rastgele 

sırayla ve her çift için dört saniye süreyle sunulmuştur.  

Katılımcılardan, bu çiftleri daha sonra yapılacak bir bellek testi için öğrenmeleri 

istenmiştir. Dikkat dağıtma aşamasının hemen ardından, geri çağırma aşaması 

gerçekleştirilmiştir. Bu aşamada, katılımcılara bir çağrışımsal tanıma görevi 

kapsamında, her dört koşul için 15 çift içeren bir test listesi gösterilmiştir. 

Katılımcılardan, eğer çifti çalışma listesinden hatırlıyorlarsa klavyede “e” tuşuna, 

hatırlamıyorlarsa “h” tuşuna basmaları istenmiştir.  

Görevde süre sınırı bulunmamaktadır. Bu çalışmada, çağrışımsal tanıma görevi ile 

denek içi desen (tekrarlanan ölçümler) kullanmıştır ve tüm yanıtlar bir klavye 

aracılığıyla toplanmıştır. 
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2.6. Sonuçlar 

Verileri düzenlemek için SciPy paketi kullanılarak Visual Studio Code üzerinden bir 

Python kodu yazıldı. Duyarlılık (d’) ölçümlerine iki yönlü tekrarlı ölçümler varyans 

analizi, 2 (uyum) x 2 (yüzey özelliği), yapılarak uyumun (uyumlu, uyumsuz) ve 

nesne özelliklerinin (malzeme, şekil) tanıdık nesnelerin çağrışımsal tanıması 

üzerindeki etkisi incelenmiştir. Bulgular, uyumlu çiftlerin uyumsuz çiftlere kıyasla 

daha iyi tanındığını göstermiştir, F(1, 73) = 14.3, p < 0.001, η²p = 0.16. Şekil-uyumlu 

koşullarda tanıma duyarlılığı d' skoru uyumsuz koşullardan daha yüksek 

bulunmuştur. Malzeme ve şekil özellikleri arasında anlamlı bir fark gözlenmemiştir, 

F(1, 73) = 0.45, p = 0.05, η²p  = 0.006. Ayrıca, uyum ve yüzey özelliği arasında 

anlamlı bir etkileşim bulunmamıştır (p = 0.17), bu da malzeme ve şeklin tanıma 

üzerindeki etkisinin eşit olabileceğine işaret etmektedir. 

BÖLÜM 3 
 

ÖN ÇALIŞMA VE DENEY 2 
 

3.1. Ön Çalışma 
 

3.1.1. Yöntem 

Deney 2'yi gerçekleştirmeden önce, Google Forms kullanılarak çevrimiçi bir ön 

çalışma yapılmıştır. Bu ön çalışmanın amacı, tanıdık olmayan nesnelerin dört farklı 

malzeme kategorisi (ahşap, metal, taş, cam) ile oluşturulduğunda katılımcılar 

tarafından gerçekten hedeflenen malzemeler olarak algılanıp algılanmadığını 

incelemektir. 

3.1.2. Katılımcılar 

Orta Doğu Teknik Üniversitesi’nden 31 katılımcı (18 kadın, 13 erkek), 18-40 yaş 

aralığında (M= 23.3, SD= 4.37) gönüllü olarak veya ders kredisi karşılığında 

katılmıştır. Tüm katılımcılar yazılı olarak bilgilendirilmiş onay formunu 

doldurmuştur. 
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3.1.3 Uyaranlar ve Prosedür 

Bu çalışmadaki deneysel uyaranlar, Philips (2004) tarafından sağlanan Glaven 

modellerine dayanan ve dört farklı malzeme kategorisinde (ahşap, metal, cam, taş) 

oluşturulmuş 19 tanıdık olmayan nesne görüntüsünden oluşmaktadır.  

Uyaranlar, açık kaynaklı bir üç boyutlu bilgisayar grafik uygulaması olan Blender 

4.1.1 programı kullanılarak üretilmiştir (Blender, 2024). Dört malzeme kategorisi, 

BlenderKit varlıklarından seçilmiştir. Kullanılan Glaven modeli, Philips tarafından 

GitHub'da (2004) sağlanan Glaven Seti'nden Glaven2 modelidir.  

Bu çalışma, Google Forms kullanılarak çevrimiçi olarak gerçekleştirilmiştir. Görevin 

yönergesi, ekranın üst kısmında katılımcılara "Lütfen ekranda göreceğiniz objelerin 

hangi malzemeden yapıldığını düşünüyorsanız yazınız" şeklinde sunulmuştur. 

Katılımcılara, dört farklı malzeme kategorisine (ahşap, metal, taş, cam) ait 

Glaven2'nin farklı versiyonlarının 19 görseli gösterilmiş ve nesnelerin hangi 

malzemeden yapıldığını düşündüklerini yazmaları istenmiştir. 

3.1.4. Sonuçlar 

Sonuçlar, ahşap malzeme kategorisinde wood1'in yüzde 22.6, wood2'nin yüzde 32.2, 

wood3, wood4 ve wood5'in yüzde 61.3 ve wood6'nın yüzde 77.4 oranında doğru 

tanımlandığını ortaya koymuştur. Bu nedenle Deney 2'deki nesne oluşturma 

sürecinde ahşap malzeme kategorisi olarak wood6 ve wood4 seçilmiştir.  

Taş malzeme kategorisinde stone1 ve stone2 yüzde 67.7, stone3 ve stone4 yüzde 

70.9 oranında doğru tanımlanmıştır. Bu nedenle stone3 ve stone4 seçilmiştir. Metal 

kategorisinde metal1 yüzde 41.9, metal2 yüzde 32.2, metal3 yüzde 45.1, metal4 

yüzde 77.4 ve metal5 yüzde 48.3 oranında doğru tanımlanmıştır. Bu nedenle metal4 

ve metal5 seçilmiştir.  

Cam malzemesinde ise glass1 yüzde 19.3, glass2 yüzde 25.8, glass3 yüzde 29 ve 

glass4 yüzde 6.4 oranında doğru tanımlanmıştır. Cam malzemesi için doğru tanıma 

oranları yetersiz kaldığından, ikinci deneyde farklı bir cam malzemesi kullanılmıştır. 
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3.2. Deney 2 

3.2.1. Yöntem 

İkinci deneyde, katılımcılar tanıdık olmayan nesnelerin eşleştirilmiş görsellerini 

inceledikleri bir çağrışımsal tanıma görevi tamamladılar. Bu görseller, farklı nesne 

özellikleri (malzeme, şekil) açısından eşleşen ve eşleşmeyen koşullarda sunuldu. 

Çalışmanın amacı, hangi koşulların daha yüksek tanıma oranlarına sahip olacağını 

araştırmaktı. 

3.2.2. Katılımcılar 

Çalışma, Orta Doğu Teknik Üniversitesi İnsan Araştırmaları Etik Kurulu tarafından 

onaylanmıştır. Örneklem büyüklüğünü belirlemek için bir G Power hesaplaması 

yapılmıştır. İki yönlü tekrarlı ölçümler ANOVA analizi için, 0.95 güç, 0.25 etki 

büyüklüğü ve 0.05 alfa düzeyine sahip olmak amacıyla tahmini örneklem büyüklüğü 

54 olarak belirlenmiştir (Faul ve diğerleri, 2009). Orta Doğu Teknik 

Üniversitesi'nden 18-30 yaş aralığında (M= 21.1, SD= 1.93) 57 katılımcı (51 kadın, 4 

erkek, 2 non-binary) bu deneye gönüllü olarak ya da ders kredisi karşılığında 

katılmıştır. Katılımcıların ana dili Türkçe olup, görme yetileri normal ya da 

düzeltilmiştir. Tüm katılımcılardan yazılı bilgilendirilmiş onay alınmıştır. 

3.2.3. Uyaranlar ve Prosedür 

Bu çalışmadaki deneysel uyaranlar, Philips (2004) tarafından sağlanan glaven 

modellerine dayanan dört nesne kategorisi (glaven1, glaven4, glaven7, glaven8) ve 

dört malzeme kategorisinde (ahşap, metal, cam, taş) oluşturulmuş 32 tanıdık 

olmayan nesne görüntüsünden oluşmaktadır. Glavenler, Philips tarafından GitHub'da 

(2004) sağlanan Glaven Seti'nden seçilmiş olup BigGlaven1, BigGlaven4, 

BigGlaven7 ve BigGlaven8 modelleridir. Toplam dört madde koşulu vardır: 

Malzeme-uyumlu koşul (MU), Malzeme-uyumsuz koşul (MUmz), Şekil-uyumlu 

koşul (ŞU), Şekil-uyumsuz koşul (ŞUmz). 

Deney 2’nin prosedürü Deney 1’in aynısıdır. 
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3.2.4. Sonuçlar 

 

Verileri düzenlemek için SciPy paketi kullanılarak Visual Studio Code üzerinden bir 

Python kodu yazıldı. Duyarlılık (d’) ölçümlerine iki yönlü 2 (uyum) x 2 (yüzey 

özelliği) tekrarlı ölçümler ANOVA analizi, uyumun (uyumlu, uyumsuz) ve nesne 

özelliğinin (malzeme, şekil) tanıdık olmayan nesnelerin çağrışımsal tanıma 

üzerindeki etkisini incelemek için yapıldı. Bulgular, tanıdık olmayan nesnelerin 

tanıma belleğinde anlamlı bir uyum etkisi olduğunu ortaya koydu, F(1, 56) = 70.7, p 

< 0.001, η²p = 0.55.  

 

Bonferroni düzeltmesiyle yapılan sonraki (post hoc) analiz, malzeme uyumlu 

koşulun duyarlılık skoru d'nin malzeme uyumsuz koşuldan daha yüksek olduğunu 

gösterdi. Aynı şekilde şekil uyumlu koşulun skoru da şekil uyumsuz koşuldan 

anlamlı derecede yüksekti. Tanıma üzerinde yüzey özelliğinin anlamlı bir ana etkisi 

bulundu, F(1, 56) = 6.36, p = 0.01, η²p = 1; malzeme özelliğinin duyarlılık skoru, 

şekil özelliğinden daha yüksek çıktı. Ancak, uyum ve yüzey özelliği arasında anlamlı 

bir etkileşim gözlenmedi (p = 0.2). Ayrıca, malzemenin etkisini daha detaylı 

incelemek için tek yönlü tekrarlı ölçümler ANOVA uygulandı, F(3, 56) = 12.7, p < 

0.001, η²p  = 0.18. Sonuçlar, cam malzemesinin metal, taş ve ahşap malzemelerine 

kıyasla daha iyi tanındığını ortaya koydu. 

 

BÖLÜM 4 

 

DENEY 3 

 

3.1. Yöntem 

Üçüncü deneyde, katılımcılar farklı yüzey özelliklerinin (malzeme, yansıma) 

eşleştiği ve eşleşmediği koşullar altında tanıdık olmayan nesnelerin eşleştirilmiş 

görsellerini inceledikleri bir çağrışımsal tanıma görevi tamamladılar. Bu çalışma, 

hangi koşulların daha yüksek tanıma oranlarına sahip olacağını araştırmak amacıyla 

gerçekleştirilmiştir. 
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3.2. Katılımcılar 

Çalışma, Orta Doğu Teknik Üniversitesi İnsan Araştırmaları Etik Kurulu tarafından 

onaylanmıştır. Örneklem büyüklüğünü belirlemek için bir G Power hesaplaması 

yapılmıştır. İki yönlü tekrarlı ölçümler ANOVA analizi için, 0.95 güç, 0.25 etki 

büyüklüğü ve 0.05 alfa düzeyine sahip olmak amacıyla tahmini örneklem büyüklüğü 

54 olarak belirlenmiştir (Faul ve diğerleri, 2009). Deneye, Orta Doğu Teknik 

Üniversitesi'nden 19-29 yaş aralığında (M= 22.5, SD= 2.17) 57 katılımcı (44 kadın, 

12 erkek, 1 non-binary) ders kredisi karşılığında veya gönüllü olarak katılmıştır. 

Katılımcıların ana dili Türkçe olup, görme yetileri normal ya da düzeltilmişti. Tüm 

katılımcılardan yazılı bilgilendirilmiş onay alınmıştır. 

3.3. Uyaranlar 
 

Bu çalışmadaki deneysel uyaranlar, Philips (2004) tarafından sağlanan glaven 

modellerine dayalı, iki yüzey yansıma kategorisi (parlak, mat) ve yedi malzeme 

kategorisi (ahşap, metal, cam, taş, plastik, bakır, jöle) altında oluşturulan tek bir 

tanıdık olmayan nesneye ait 28 görüntüden oluşmaktadır. Parlak ve mat yansıma 

özelliklerine sahip yedi malzeme, BlenderKit’ten seçilmiştir. Seçilen glaven modeli, 

Philips tarafından GitHub’da (2004) sağlanan Glaven Seti’nden BigGlaven3’tür. 

Toplam dört madde koşulu vardır: Malzeme-uyumlu koşul (MU), Malzeme-uyumsuz 

koşul (MUmz), Yansıma-uyumlu koşul (YU), Yansıma-uyumsuz koşul (YUmz). 
 

3.4. Prosedür 

Üçüncü deney, birinci deneye benzer bir prosedürü takip etmiştir. Deney üç 

aşamadan oluşmuştur: çalışma aşaması, dikkat dağıtma aşaması ve test aşaması. 

Çalışma aşamasında, katılımcılara her dört madde koşulu için 7 çift içeren bir 

çalışma listesi gösterilmiştir. Toplamda 28 çift, her çift için dört saniye süreyle 

rastgele sırayla sunulmuştur. Test aşaması, çağrışımsal bir tanıma görevi kapsamında 

gerçekleştirilmiştir. Bu aşamada katılımcılara, her dört madde koşulu için çiftler 

içeren bir test listesi gösterilmiştir. Toplamda 55 çift sunulmuştur. Katılımcılardan, 

eğer çifti çalışma listesinden hatırlıyorlarsa klavyede e tuşuna, hatırlamıyorlarsa h 

tuşuna basmaları istenmiştir. Görevde süre sınırı bulunmamaktadır. Bu çalışmada, 
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çağrışımsal tanıma görevi ile denek içi desen kullanmış ve tüm yanıtlar bir klavye 

aracılığıyla toplanmıştır. 

3.5. Sonuçlar 

 

Verileri düzenlemek için SciPy paketini kullanarak bir Python kodu yazılmıştır. 

Duyarlılık (d’) ölçümlerine tekrarlı ölçümler içeren iki yönlü 2 (uyum) x 2 (yüzey 

özelliği) ANOVA analizi, uyum (uyumlu, uyumsuz) ve yüzey özelliği (malzeme, 

yansıma) etkilerini incelemek için yapılmıştır. Bulgular, tanıdık olmayan nesnelerin 

çağrışımsal tanıma belleğinde anlamlı bir uyum etkisi olduğunu göstermiştir, F(1, 

56) = 62.7, p < 0.001, η²p = 0.52.  

 

Bonferroni düzeltmeli post hoc analizde, malzeme uyumlu koşulun (M=1.66, 

SD=0.6) tanıma duyarlılığı d' skorunun, malzeme uyumsuz koşuldan (M=1.02, 

SD=0.45) daha yüksek olduğu bulunmuştur (ortalama fark = 0.64, standart hata = 

0.09, p < .001). Ayrıca, yansıma uyumlu koşulun (M=1.43, SD=0.54) tanıma 

duyarlılığı d' skoru, yansıma uyumsuz koşuldan (M=1.14, SD=0.46) daha yüksektir 

(ortalama fark = 0.3, p = .007). 

Sonuçlar, malzeme ve yansıma özelliklerinin uyumlu eşleşmelerde daha iyi 

tanındığını göstermektedir. Yüzey özelliğinin tanıma üzerinde anlamlı bir ana etkisi 

bulunmuştur, F(1, 56) = 15, p < 0.001, η²p = 0.2. Malzeme özelliğinin tanıma 

duyarlılığı d' skoru (M=1.34), yansıma özelliğinden (M=1.28) anlamlı olarak daha 

yüksektir. Ayrıca, uyum etkisinin malzeme özelliğinde yansıma özelliğine kıyasla 

daha etkili olduğu görülmüştür.  

Malzeme etkisini daha ayrıntılı incelemek için, malzeme türlerine dayalı bir yönlü 

tekrarlı ölçümler ANOVA analizi yapılmıştır. Bulgular, ahşap malzemesinin metal, 

taş, bakır ve plastikten daha iyi tanındığını göstermiştir. Ayrıca jöle malzemesinin de 

metal, taş, bakır ve plastikten daha iyi tanındığı gözlemlenmiştir. Yansıma etkisini 

değerlendirmek için yapılan çift örneklem t-testinde, mat yansıma özelliği (M=1.5) 

parlak yansıma özelliğinden (M=1.2) daha yüksek tanıma duyarlılığı göstermiştir (p 

= 0.039). 
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BÖLÜM 5 

 

GENEL TARTIŞMA 

Bu tezde, malzeme algısının tanıdık ve tanıdık olmayan nesnelerin çağrışımsal 

tanıma belleğinde kolaylaştırıcı rolü incelenmiştir. Bu nedenle, katılımcıların şekil, 

yansıma, malzeme gibi görsel özelliklerden gelen bilgileri nasıl birleştirdiği ve nesne 

belleğinde tanıdıklık veya tanıdık olmama durumuna bağlı olarak hangi tür bilginin 

daha baskın olduğunu anlamak bu tezin odak noktasını oluşturur. Bu amaçla üç 

deney ve bir ön çalışma gerçekleştirilmiştir. 

5.1. Deney 1 Sonuçlarının Tartışması 

Deney 1’in amacı, insanların tanıdık iki nesne arasındaki çağrışımsal belleği 

malzeme ve şekil gibi özelliklere dayalı olarak nasıl oluşturduklarını incelemekti. 

Aynı zamanda katılımcıların malzeme bilgisine mi yoksa şekil bilgisine mi daha 

fazla güvendiklerini görmek hedeflendi. Beklendiği gibi, hem malzeme hem de şekil 

özellikleri için bir uyum etkisi gözlenmiştir. Ancak, beklentinin aksine şekil bilgisi 

malzeme bilgisine kıyasla çağrışımsal tanıma performansında baskın çıkmamıştır. 

Tanıdık nesnelerde ne malzeme ne de şekil bilgisi tek başına baskın bir rol 

üstlenmiştir. Bu durum, malzeme bilgisinin tanıdık nesnelerde şekil kadar önemli 

olabileceğine işaret etmektedir. Ayrıca, nesnelerin önceden tanıdık olması, şeklin 

adlandırılabilirlik etkisine yol açmış olabilir (Walker & Cuthbert, 1998). Bu durum, 

deney sırasında nesne özelliklerinin nasıl algılandığını ve tanındığını etkilemiş 

olabilir.  

5.2. Ön Çalışma ve Deney 2 Sonuçlarının Tartışması 

Ön çalışmanın sonuçları, metal, taş ve ahşap malzemelerin doğru tanımlandığını 

ancak cam malzemesinin doğru tanımlanmadığını ortaya koydu. Bu durum, cam 

malzemesinin tanıdık şekillerle (sürahi, su bardağı vb.) birlikte daha doğru 

tanımlandığını göstermektedir. Bu bulgu, şeklin malzeme özelliklerinin algılanması 

üzerindeki etkisiyle tutarlıdır (Lagunas ve diğerleri, 2021; Serrano ve diğerleri, 

2021). 
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Deney 2’nin sonuçları, malzeme ve şekil özellikleri için bir uyum etkisi olduğunu, 

ancak tanıdık olmayan nesnelerde malzeme bilgisinin şekil bilgisine kıyasla baskın 

olduğunu göstermiştir. Bu bulgu, Schmidt ve diğerlerinin (2017) araştırmasıyla 

tutarlıdır: Tanıdık olmayan nesnelerin algısında, malzeme özelliği değiştiğinde 

katılımcıların şekil ipuçlarına güvenmediği gözlemlenmiştir. Ayrıca, Deney 1 

sonuçlarının aksine, Deney 2’de tanıdık olmayan nesnelerde malzeme bilgisinin 

baskın olması, katılımcıların güvenilir ve tanıdık yüzey bilgisine yönelmesiyle 

açıklanabilir. Bu bulgu, Landau ve diğerlerinin (1998) çalışmasından farklılık 

göstermektedir. Araştırmacılar, işlevsel bilgi sağlanmadığında hem çocukların hem 

de yetişkinlerin şekil bilgisine dayandığını bulmuşlardır. Bir başka önemli bulgu ise 

cam malzemesinin diğer malzemelere (metal, ahşap, taş) göre daha yüksek tanıma 

oranına sahip olmasıdır. Camın yüzey özelliklerinin (parlaklık, yarı saydamlık) 

görsel olarak kolay ayırt edilebilmesi bu sonucu açıklayabilir (Okamoto ve diğerleri, 

2013). 

5.3. Deney 3 Sonuçlarının Tartışması 

Deney 3’ün amacı, şekil sabit tutularak malzeme ve yansıma özelliklerinin tanıdık 

olmayan nesnelerde çağrışımsal bellekte nasıl rol oynadığını incelemekti. Deney 

3’ün sonuçları, malzeme ve yansıma özellikleri için bir uyum etkisi olduğunu, ancak 

malzeme bilgisinin yansıma bilgisinden daha baskın olduğunu göstermiştir. Yansıma 

özellikleri eşleşen nesne çiftleri daha iyi tanınsa da, malzeme bilgisi baskın bir rol 

oynamıştır. Özellikle mat yüzeylerin parlak yüzeylere kıyasla daha iyi tanınmasının 

nedeni, mat yüzeylerdeki dokunun parlak yüzeylerdeki ışık ve gölge oyunlarından 

daha fazla bilgi sağlaması olabilir (Pont ve diğerleri, 2015; Toscani ve diğerleri, 

2017). Ayrıca, ahşap ve jöle malzemelerinin yüksek tanıma oranına sahip olması, 

yüzey dokularının belirginliğiyle açıklanabilir (Yoonessi & Zaidi, 2010). Jöle 

malzemesinin yarı saydamlık gibi özelliklerinin algısında renk gradyanlarının rol 

oynaması (Liao ve diğerleri, 2022) buradaki bulgulara da kısmen ışık tutabilir. 

5.4. Sınırlılıklar 

Bu çalışmanın ilk sınırlılığı, Deney 3'te kullanılan ahşap ve jöle malzemelerinin, 

çalışılan ve çalışılmayan çiftler arasında diğer malzemelere kıyasla renk açısından 
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daha belirgin ayırt edilebilir özelliklere sahip olmasıdır. Bu durum, bu nesnelerin 

daha kolay tanınmasına ve çağrışımsal tanıma performansının etkilenmesine yol 

açmış olabilir. İkinci sınırlılık ise, uyaranların üç boyutlu modelleri oluşturulurken 

ışık kaynağının yönü tüm uyaranlarda kontrol edilmemiştir. Tezin sınırlılıkları 

arasında, deneylerde tekrarlayan nesne çiftleri ve koşullardaki bellek yükü 

farklılıkları da yer almaktadır. Ayrıca, ön çalışmada glaven nesnesinin cam materyali 

diğer materyaller kadar net tanımlanamamış, ikinci deneyde farklı cam 

görselleştirme parametreleri kullanılmıştır. Bu değişiklik, birinci ve ikinci deneylerde 

cam materyalinin parametrelerinin farklı olmasına neden oluşturmuştur. 

5.5. Gelecek Araştırmalar 

Bu çalışma, gelecekteki araştırmalar için çeşitli yönler sunmaktadır. İlk olarak, 

mevcut veriler, malzeme algısında rengin etkisini kesin olarak dışlamak için yeterli 

değildir. Gelecekteki araştırmalar, özellikle renk bilgisinin doku, parlaklık ve diğer 

malzeme özellikleriyle birlikte nasıl işlendiğini incelemelidir. İkinci olarak, 

gelecekteki araştırmalar, nesnelerin anlamsal ve kullanımsal özelliklerinin 

çağrışımsal nesne belleği üzerindeki rolünü, algısal özelliklerle karşılaştırmalı olarak 

inceleyebilir. Üçüncü olarak, bu çalışmada kullanılan nesne özellikleri (şekil, 

yansıma ve malzeme) birbirleriyle etkileşime girebilen eklemeli bir süreç olarak 

modellenebilir (Ho ve diğerleri, 2008). Ayrıca, ışık akışının malzeme ve yansıma 

algısındaki rolü gelecekte incelenebilir. 

5.6. Sonuç 

Bu tezde, malzeme algısının tanıdık ve tanıdık olmayan nesnelerin çağrışımsal 

belleğinde oynadığı rol araştırılmıştır. Üç deney sonucunda, tanıdık nesnelerde 

malzeme ve şekil bilgisinin eşit derecede önemli olabileceği, ancak tanıdık olmayan 

nesnelerde malzeme bilgisinin şekil ve yansıma bilgisine kıyasla baskın olduğu 

bulunmuştur. Bu çalışma, malzeme özelliklerinin görsel algı ve bellek 

araştırmalarına katkıda bulunarak, nesne tanıma süreçlerinde malzemenin önemini 

vurgulamaktadır. Bu bulgular, pazarlama ve endüstri gibi alanlarda pratik 

uygulamalar için önemli çıkarımlar sunmaktadır. 



 
123 

J. THESIS PERMISSION FORM / TEZ İZİN FORMU 

 

(Please fill out this form on computer. Double click on the boxes to fill them) 
 
ENSTİTÜ / INSTITUTE 

 
Fen Bilimleri Enstitüsü / Graduate School of Natural and Applied Sciences   ☐ 
 
Sosyal Bilimler Enstitüsü / Graduate School of Social Sciences    ☒ 
 
Uygulamalı Matematik Enstitüsü / Graduate School of Applied Mathematics  ☐ 
 
Enformatik Enstitüsü / Graduate School of Informatics    ☐ 
 
Deniz Bilimleri Enstitüsü / Graduate School of Marine Sciences   ☐ 
 

 
YAZARIN / AUTHOR 

 
Soyadı / Surname : Özdemir 
Adı / Name  : Öykü Göze 
Bölümü / Department : Psikoloji / Psychology 
 
 
TEZİN ADI / TITLE OF THE THESIS (İngilizce / English): MALZEME ALGISININ BİLİNEN VE BİLİNMEYEN 
OBJELERDE ÇAĞRIŞIMSAL BELLEĞE ETKİSİ/ THE ROLE OF PERCEIVED MATERIAL IN ASSOCIATIVE 
RECOGNITION OF FAMILIAR AND UNFAMILIAR OBJECTS 
 
TEZİN TÜRÜ / DEGREE: Yüksek Lisans / Master ☒  Doktora / PhD ☐ 

 
 

1. Tezin tamamı dünya çapında erişime açılacaktır. / Release the entire 
work immediately for access worldwide.     ☒ 
 

2. Tez iki yıl süreyle erişime kapalı olacaktır. / Secure the entire work for  
patent and/or proprietary purposes for a period of two years. *  ☐ 

 
3. Tez altı ay süreyle erişime kapalı olacaktır. / Secure the entire work for  

period of six months. *       ☐ 
 

* Enstitü Yönetim Kurulu kararının basılı kopyası tezle birlikte kütüphaneye teslim edilecektir. /  
A copy of the decision of the Institute Administrative Committee will be delivered to the library 
together with the printed thesis. 

 
Yazarın imzası / Signature ............................ Tarih / Date ............................ 
      (Kütüphaneye teslim ettiğiniz tarih. Elle doldurulacaktır.) 
      (Library submission date. Please fill out by hand.) 
Tezin son sayfasıdır. / This is the last page of the thesis/dissertation. 


