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ABSTRACT

THE ROLE OF PERCEIVED MATERIAL IN ASSOCIATIVE RECOGNITION OF
FAMILIAR AND UNFAMILIAR OBJECTS

OZDEMIR, Oykii Goze
M.S., The Department of Psychology
Supervisor: Assoc. Prof. Dr. Dicle N. DOVENCIOGLU
Co-supervisor: Assoc. Prof. Dr. Asli KILIC

February 2025, 123 pages

Previous research suggests that object features such as color or shape enhance
memory processes, but none of them specifically focus on the material of objects,
which is a crucial feature. This thesis seeks to understand how object features such as
shape, material, surface texture, and reflectance influence the encoding and retrieval
of objects in associative memory. Associative memory refers to how associations are
formed across items either strategically, semantically, or perceptually. Specifically, I
used a recognition task to understand the nature of associations formed when
perceiving familiar and unfamiliar objects with congruent and incongruent materials.
The stimuli in Experiment 1 contained three-dimensional (3D) model images of four
familiar objects (jug, water glass, goblet, mug) rendered with four materials (wood,
metal, glass, stone). The stimuli in Experiment 2 contained images of unfamiliar 3D
models rendered with the same material categories as in Experiment 1. The stimuli in
Experiment 3 contained images of one unfamiliar object rendered with seven texture
categories (wood, metal, glass, stone, copper, plastic, and jelly) and two surface

reflectance categories (matte, glossy). The findings revealed that recognition

v



sensitivity (d”) was higher for material, shape, and reflectance congruent conditions
than incongruent ones. There was no significant difference between material
congruency and shape congruency as a memory facilitator in Experiment 1. On the
other hand, for unfamiliar objects, the material feature was significantly better
remembered than the shape and reflectance features. These findings shed light on the
crucial role of the object material, complementing shape and reflectance, in

associative recognition.

Keywords: Material perception, associative recognition, object perception, object

memory



0z

MALZEME ALGISININ BIiLINEN VE BILINMEYEN OBJELERDE
CAGRISIMSAL BELLEGE ETKISI

OZDEMIR, Oykii Goze
Yiiksek Lisans, Psikoloji Boliimii
Tez Yoneticisi: Dog. Dr. Dicle N. DOVENCIOGLU
Ortak Tez Yoneticisi: Dog. Dr. Ashi KILIC

Subat 2025, 123 sayfa

Onceki arastirmalar, renk veya sekil gibi belirgin nesne &zelliklerinin hafiza
stireglerini giliclendirebilecegini gdstermistir, ancak hicbiri nesnelerin malzemesine
0zel olarak odaklanmamistir. Bu calisma, sekil, malzeme ve ylizey dokusu ve
yansimas1l gibi nesne Ozelliklerinin c¢agrisimsal nesne belleginin kodlanmasi ve
hatirlanmas1 iizerindeki etkisini anlamayr amagclamaktadir. Ozellikle, eslesen ve
eslesmeyen malzemelerle islenmis tanidik ve tanidik olmayan nesnelerin bellege
kodlanmasinda olusan iliskilerin dogasini anlamak i¢in bir tanima gérevi kullandim.
Deney 1'deki uyaranlar, dort tanidik nesnenin (siirahi, su bardagi, kadeh, kupa) dort
malzeme (ahsap, metal, cam ve tag) ile olusturulmus ii¢ boyutlu (3B) model
goriintiilerini igeriyordu. Deney 2'deki uyaranlar, Deney 1'dekiyle ayni malzeme
kategorileriyle olusturulmus tanidik olmayan 3B model goriintiilerini igeriyordu.
Deney 3'teki uyaranlar, yedi malzeme kategorisiyle (ahsap, metal, cam, tag, bakir,
plastik ve jole) ve iki ylizey yansima kategorisiyle (mat, parlak) olusturulmus tanidik
olmayan nesne goriintiilerini igeriyordu. Bulgular, tanima duyarhiliginin (d’)

malzeme, sekil ve yansima uyumlu kosullarda uyumsuz kosullara kiyasla daha
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yiiksek oldugunu ortaya koydu. Tanidik nesnelerde, malzeme ve sekil 6zelliklerinin
tanima duyarlilig1 arasinda anlamli bir fark bulunmadi. Ote yandan, tamidik olmayan
nesnelerde, malzeme 6zelligi sekil ve yansima ozelliklerine kiyasla énemli dlciide
daha iyi hatirlandi. Tezdeki bulgular nesnelerin malzeme o6zelliklerinin, sekil ve
yansima Ozelliklerine kiyasla iliskisel tanimada kritik roliinii ilk kez ortaya

koymaktadir.

Anahtar Kelimeler: Malzeme algisi, cagrisimsal bellek, obje algisi, obje hafizasi
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CHAPTER 1

INTRODUCTION

1.1. Material Perception

Our daily experiences involve interacting with numerous objects, made of various
materials, some familiar and others not. We can identify and recognize these
materials and infer their physical characteristics at a glance (Wiebel et al., 2013;
Sharan et al., 2009). An object's material properties offer vital cues about its identity,
usefulness, and affordance, hence determining our interaction with the object. For
this reason, material perception studies explore how humans visually perceive and
understand the properties of different object materials automatically and effortlessly
(Adelson, 2001; Buckingham et al., 2009; Liu et al., 2010; Fleming, 2017). The
range of materials we encounter daily is rich: Each of wood, stone, metal, and glass
has distinct object properties such as roughness, heaviness, reflectance, translucency,
and geometry, with practical affordances that influence how we interact with them.
This interaction depends on our perception of the material properties often before we
physically touch it. Hence, without touching the object, we have a general
understanding and expectation about how the object would feel and even what the

object would be used for in daily life (Nagai et al., 2015).

1.1.1. Surface Features of Objects

The way a material looks is influenced not just by how it reflects light but also by the
combination of the three-dimensional (3D) shape, surrounding illumination, texture,
and color of its surface (Motoyoshi et al., 2007; Ho et al., 2008; Marlow et al., 2011;
Sharan et al., 2013; Sawayama & Nishida, 2018). These features provide valuable
details about the object.



Surface reflectance is a property of the material that describes how light interacts
with its surface. It is specifically about how the surface bounces or reflects light
(Nishida & Shinya, 1998; Fleming et al., 2003; Motoyoshi et al., 2007; Doerschner et
al., 2010). Reflectance is just one of several surface features that influence how a
material appears, alongside texture, color, and 3D shape (Ho et al., 2008; Olkkonen
& Brainard, 2010). Especially the shape of a surface is a crucial factor in determining
how light reflects off it, and this plays a significant role in the material's final visual
appearance (Lagunas et al., 2021; Serrano et al., 2021). Hence, our ability to

recognize materials relies on surface features like shape, color, and texture.

Shape has been the focus of object recognition for some time (Logothetis &
Sheinberg, 1996). However, the shape of an object does not always provide enough
information to determine its material identity, and material estimation does not
merely depend on the perception of shape-based object identity. ImageNet-trained
CNNs were found to recognize objects based on local textures rather than global
object shapes (Liang, 2018), contrary to human participants, who relied primarily on
shape information (Serrano et al., 2021). Moreover, material recognition cannot be
explained by surface characteristics such as shape, reflectance, texture, and color
alone. For instance, surfaces made of different materials can display similar
reflectance characteristics, and surfaces with similar texture patterns can be made of
different materials. Hence, it is possible to have two different materials look the

same (Sharan et al., 2013; Vangorp et al., 2007).

Local surface information, such as color or texture, does not always benefit material
perception and recognition (Xiao & Brainard, 2008; Sharan et al., 2009; Giesel &
Gegenfurtner, 2010). In the perception of static unfamiliar objects, shape was found
to play a significant role only when the material of the objects was held constant, but
when the material varied, observers no longer relied on shape cues to judge the
object's stiffness (Schmidt, 2017). Here, instead of relying on ambiguous cues
(unfamiliar objects), the visual system focuses on the more reliable information
provided by the optical nature of the material. Various visual cues, such as color, fine
details (high spatial frequencies), contrast, texture, and shape, appear to play a role in

how we categorize materials. However, relying on any single one of these cues is not
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enough to fully explain how we accurately identify and recognize different materials.
In summary, the visual system exploits multiple low-level cues in combination with

high-level object knowledge to recognize materials.

1.1.2. Material Perception in the Visual System Hierarchy

Our visual experience is built upon perceiving a variety of surfaces and objects. Each
has its own 3D shape, material composition, and way of reflecting light, influenced
by the illumination (Lagunas et al., 2021). To understand how we perceive materials,
we need to look at the mid-level vision, part of the visual perception hierarchy that
tries to understand how the visual system derives such information from images.
This complex process involves organizing visual data into a complete picture of
surfaces and materials. It is a multi-sensory process with a hierarchical structure,
meaning it builds upon simpler visual perceptions to achieve a deeper understanding
(Anderson et al., 2009). Our ability to effortlessly recognize a wide range of
materials despite their potentially limitless visual appearances is worth noting: How
does the brain decipher the multitude of factors that contribute to the images we see,
allowing us to perceive the world around us? This question is a compelling example
of an essential but unresolved challenge in visual neuroscience (Adelson, 2000;

Fleming et al., 2001; Schmid et al., 2023).

There are three stages in the visual processing hierarchy involved in material
perception. The first stage is low-level image feature extraction, in which basic local
feature elements from an image, such as shapes, colors, textures, and illusory
contours, are collected and then used to build a more comprehensive version of what
is being seen. For instance, material categories, such as wood and stone, can be
discriminated around 100 ms stimulus onset, likely due to differences in the low-
level image material surface features (Wiebel et al., 2014).In the second stage, mid-
level surface computations, the visual system starts interpreting the collected features
to estimate material properties; thus, it involves understanding and differentiating the
surface characteristics of materials, such as reflectance, texture, and color. In the
final stage, high-level recognition, the visual system uses the information processed
in the previous stages to categorize materials into various classes based on their

estimated properties. This level of processing allows for the organization and
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recognition of various materials quickly and accurately in different contexts;
therefore, in this stage, more complex top-down processes are in place (Sharan et al.,

2009; Fleming, 2017; Alley et al., 2020).

Neural processing in material perception was found to incorporate recognizing low-
level image attributes in the early visual areas like primary and secondary visual
cortex (Baumgartner & Gegenfurtner, 2016) to categorizing surface materials in
higher-level category areas, such as the parahippocampal gyrus, fusiform gyrus, and
collateral sulcus (Komatsu & Goda, 2018). Moreover, neurophysiological evidence
also shows that the primary processing and categorizing visual perception of
materials occur via a hierarchical structure within the ventral visual pathway
(Komatsu & Goda, 2018), which is crucial for object recognition. Activities related
to texture and materials are not restricted to a single area but are dispersed along the
collateral sulcus, extending into adjacent gyri in the medial-lateral direction (Cant et
al., 2009; Cavina-Pratesi et al., 2010). In summary, from basic low-level image
feature detection to sophisticated material recognition and categorization, our visual
system undercovers complex visual information to understand and interact with

different materials in our environment (Fleming, 2017; Schmid et al., 2023).

1.1.3. Models of Material Perception

There are different levels of how we visually perceive materials. According to the
model developed by Schmidt et al. (2017), there are two main routes of material
perception: the association route and the estimation route. The estimation route
allows material recognition to be achieved through the direct estimation of material
properties from image features. This process happens without the need for explicit
material identification and relies on the analysis of visual cues alone, such as surface
reflectance, to infer material properties (Van Assen & Fleming, 2016). For instance,
gloss was found to be a material property that takes effect via the estimation route

(Vangorp et al, 2017).

Another way we identify materials is by using learned associations. The association

route facilitates linking visual cues, like the texture of a surface, with the properties
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of that material, like whether it is soft or hard, based on the material identity formed
with learned object-material associations (Fleming et al., 2013; Schmidt et al.,
2017). Hence, over a lifetime, we develop strong connections between the visual
appearance of an object and its typical material properties, and we depend on these
associations when identifying materials (Sharan, 2009; Alley et al., 2020). Therefore,
visual priors about materials can shape our expectations and modify how we perceive
them. The shape-based identity of an object can trigger associations with specific
material properties, meaning that recognizing an object's shape can lead to strong
predictions about its material composition. This means that via the association route,
we do not just passively receive visual material information but actively interpret it

based on prior experience.

1.2. Material and Object Category Recognition

Material category membership is formed based on the similarities of both perceptual
and semantic qualities binding the gap between sensory perception and semantic
interpretation (Sharan et al., 2013). Fleming et al. (2013) demonstrated that
individuals can make consistent and accurate judgments about the visual properties
of materials when presented with photographic stimuli. They tested nine distinct
perceptual qualities, and participants were able to reliably assess each one suggesting
a strong relationship between the visual assessment of material qualities and the
semantic representation of different material classes. However, materials can be
incredibly diverse in their physical forms. For example, the material category of
glass can include a broad range of appearances, from water glass to a magnificent
chandelier. This introduces a challenge for our cognitive system. The numerous
ranges of shapes a material can adopt make it difficult to establish clear boundaries
for material categorization only based on perceptual or semantic similarity (Fleming
et al., 2015; Caputa et al., 2010). Consequently, it is tempting to simplify the concept
of material recognition to the field of object recognition. For instance, expecting a
mug to be made of ceramic rather than wood is highly basic. Although there is a fair,
statistically relevant correlation between object identity and material identity, shape-
based object identity does not account for material recognition. It is important to

emphasize that their relationship is not directly symmetrical. Objects with the same
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identity can be made of different materials, while objects from different identities
can belong to the same material category (Bileschi et al., 2005; Sharan, 2009, Figure
1.1). Recognizing materials involves unique processes that go beyond simply

identifying objects.

Sharan and colleagues (2009) demonstrated that our ability to visually identify and
classify everyday materials from images is rapid and precise, even with a short
presentation time of 40 ms. Moreover, they also reported that in addition to the fast
and accurate material category estimation, people reliably evaluate different aspects
of material surface features, such as whether it is soft or rough, matte or glossy,
opaque or translucent. Thus, they concluded that material perception can be as fast as
object recognition. Conversely, a study by Wiebel et al. (2013) revealed that material
recognition is accurate but slower than object recognition, and discriminating

materials is more complicated than objects.

: v (’!;;)

Figure 1. 1. Objects that belong to the same identity category and are made of
different materials are shown on the left side. Objects that belong to different identity
categories and are made of the same materials are shown on the right side. Here, the
shape-based object identity of the fish does not provide any cue for the glass material
identity. On the other hand, the shape-based object identity of the goblet provides
relevant information on its material identity, which is glass.

In addition to this, the findings of Nagai and colleagues (2015) revealed that
evaluations of features like glossiness and transparency were linked to enhanced
performance in discriminating materials for short reaction times, and non-visual
feature ratings such as heaviness and warmness were associated with longer reaction
times. The authors concluded that visual surface features are the primary source of
material recognition compared to non-visual features in everyday life. For instance,
we rarely estimate gloss and translucency only from haptic information without

visual input (Okamoto et al., 2013; Xiao et al., 2014). According to the study
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conducted by Sharan et al. (2013), relying solely on local image details such as
texture, local shape, and color was found to be insufficient for accurately recognizing
material categories. The authors report that participants performed better at
recognizing the material category when they were given global image information

(object-relevant details).

1.3. Object Memory

When interacting with objects, we combine different types of information, such as
their semantic function, technical/mechanical, and sensorimotor eclements, in a
continuous feedback loop (Federico et al., 2023). Even though we see objects from
various angles and situations, we can still identify them as the same object. This
means many different "views" of an object are mapped and encoded to a single,
unique identity as a unitary configuration called object files (Schacter et al., 1990;
Mitroff & Alvarez, 2007; Osiurak et al., 2020). Object files store and update episodic
visual representations (surface features such as shape, color, and texture) of objects
over time and motion (Mitroff & Alvarez, 2007). Studying an object activates and
strengthens the memory file of that object, which makes it more accessible and
requires less effort to retrieve when reencountered. Information about global and
local object features is very beneficial in the overall retrieval process, even though
learning and remembering stimuli with multiple properties increases the cognitive
load and makes retrieval more demanding (Olson & Jiang, 2002; Alvarez &

Cavanagh, 2004; Eng et al., 2005).

1.3.1. Object Memorability

Studies exploring how people remember images have revealed that specific pictures
consistently stick in people's minds while others fade from memory. Participants
show remarkably similar patterns in which images they memorize or forget (Isola et
al., 2011; Isola et al., 2011; Isola et al., 2013; Khosla et al., 2015; Bainbridge et al.,
2017). Research suggests that an image's ability to be remembered is fundamentally

built into its characteristic features (Shoval et al., 2023). And if an image is



memorable, remembering that image will also be relatively more straightforward
(Bainbridge et al., 2017). Object memorability refers to how effectively an object
will be stored in a person's memory following a brief single exposure (Basavaraju et
al., 2019). While earlier studies examined what makes images stick in memory, they
did not explicitly investigate which individual objects within those images are most
memorable. The initial investigation of object memorability was conducted by
Dubey and colleagues (2015). Their research revealed that images that people tend to
remember well usually include at least one inherently memorable object. And not all
object features have the same memorability. According to their findings, visual
attributes such as hue, saturation, shape, and pixel measurements fail to reliably
predict object memorability (Dubey et al., 2015). On the other hand, they showed
that object category plays an important role in determining visual object
memorability. For example, while animals, people, and vehicles were found to be
more memorable, furniture, buildings, and devices were generally less memorable.
They also showed that object memorability decreases as the number of objects and

the other object categories increase (Dubey, 2015).

Other research discovered that the features related to an object's semantic meaning
are the strongest predictors of object memorability compared to visual features like
color and shape (Khosla et al., 2015; Konkle et al., 2010; Hovhannisyan et al., 2021;
Kramer et al., 2022; Kramer et al., 2023; Schiffer, 2023). The research findings also
suggest that object memorability appears to be more dependent on conceptual
distinctiveness than perceptual distinctiveness (Konkle et al., 2010; Kramer et al.,
2023). Moreover, the most typical examples within an object category were found to

be slightly more memorable than others (Lee et al., 2023; Kramer et al., 202).

One study indicated that object memorability can be purely based on visual
characteristics, even without any semantic content (Lin et al., 2021). This was
demonstrated by keeping low-level visual elements while removing semantic
features. Furthermore, the placement of objects within an image significantly affects
object memorability (Basavaraju et al., 2019). Items positioned in the middle of
images are more memorable than those placed in corner areas (Basavaraju et al.,

2019). Also, it was found that larger objects are more memorable than smaller ones,
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with a clear positive correlation between size and memorability (Basavaraju et al.,
2019). Therefore, a single object's memorability can vary depending on its location
and size within the image (Basavaraju et al., 2019). When real-world objects, colored
photographs, or black-and-white line drawings were used as stimuli in an object
recognition task, the real objects were found to be more memorable than pictorial
stimuli (Snow et al., 2014). In summary, object memorability depends on semantic
features more than perceptual ones. However, if we cannot access meaningful or
semantic characteristics, then we start to depend on perceptual features for object

memorability.

1.3.2. The Role of Shape and Color in Object Memory

When the memory system has access to both semantic and visual shape information
of objects, it prioritizes and relies on the semantic aspects, however, when semantic
interpretation is not possible, memory defaults to storing objects based on their
physical form (Van Weelden et al., 2015). According to shape perception research,
the visual system depends on the fundamental 3D components as the main elements
for identifying objects (Hayward, 1998; Lloyd-Jones & Luckhurst, 2002; Lloyd-
Jones et al.,, 2012). The outer edge of an object plays a crucial role in object
recognition, even when we view it from different angles. This outline shape allows
for maintaining consistent object identification despite changes in perspective. Thus,
among visual properties, shape is believed to be the prevalent feature in object
recognition (Biederman, 1987; Hummel & Biederman, 1992; Hayward et al., 1999).
According to a study conducted by Lloyd-Jones et al. (2012), the visual processing
system uses object shape as the fundamental gateway for other object features such

as color and texture.

Examples from the literature also report that basic color properties such as hue and
saturation have minimal impact on object memorability (Dubey et al., 2015). Also, it
was found that people tend to remember colors more reliably and accurately when
they represent clear, typical examples of specific color categories. For instance, a
pure, distinct red is more likely to be remembered correctly than an ambiguous shade

between red and orange (Bae et al., 2015). Considering the role of color in object
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recognition, a meta-study conducted by Bramao et al. (2011) found that the effect of
color on object recognition was moderate (Cohen’s d = 0.28). According to a study
conducted by Cave et al. (1996), when the same-colored and different-colored
pictures were used in the study and test phases, no performance difference was
observed between the same-color and different-color conditions. Hence, they

concluded that object recognition was not influenced by the changes in color.

When participants were shown object pictures whose colors were typical, moderately
atypical, or bizarre, color bizarreness was found not to affect the object recognition
memory (Morita & Kambara, 2021). On the other hand, some studies showed that
objects whose color is strongly associated with their shape-based object identity play
an important role in object recognition, which is called color typicality or color
diagnosticity (Redmann et al., 2019; Reppa et al., 2020; Nagai & Yokosawa, 2003).
Tanaka and Presnell (1999) demonstrated that color has a significant role in
recognizing high-color diagnostic objects and has no effect on recognizing objects
with non-color diagnosticity. Ovalle-Fresa et al. (2021) found that visual associative
recognition memory was better for concrete object—color associations than abstract
fractal-color associations. Yet another study found that recognition of shape and
color function independently, relying on distinct sensory and memory processes,
contradicting the abovementioned evidence for color typicality (Stefurak & Boynton,
1986). One study suggests that color helps us recognize pictures not because we
remember the colors themselves but because color highlights distinctive surface
features and contours (Suzuki & Takahashi, 1997; Lewis et al., 2013). In short, when
we store information about objects, we process color and shape characteristics and
these two visual properties are integrated into how we remember objects we

encounter.

1.3.3. The Role of Familiarity in Object Memory

Our everyday experience suggests that we effortlessly recognize familiar objects
even when the visual information we receive about them changes significantly.
Familiar objects often have distinct features that make them stand out from

unfamiliar ones, such as consistent shape-color associations (Tanaka & Presnell,

10



1999; Reppa et al., 2020), established object-material associations (Sharan et al.,
2009; Schmidt et al., 2017) and learned semantic associations (Martin & Chao, 2001;
Martin, 2007). Having familiarity and prior knowledge about an object creates a
mental representation that can be used to enhance perception and memory processing
of that object (Boucart & Bonnet, 1991; Kahneman, 2011). The ease of recognizing
familiar objects might be partially attributed to our ability to access semantic
information, such as the object's name and its associated meaning or shape
nameability (Craddock & Lawson, 2008; Walker & Cuthbert, 1998). For instance, it
was found that when objects are not familiar enough, we attempt to identify the
familiar elements of the unfamiliar object as much as possible (Schmidt et al., 2020).
If the object is familiar or has mostly familiar elements like global shape
information, we base our judgments on semantic information (Schmidt et al., 2020).
New-association priming refers to the phenomenon where exposure of two unrelated
items together can lead to the creation of links between the items that were
previously unrelated (Musen et al., 1999). It was found that object familiarity
increases new association priming, as it allows individuals to access the already
existing memory representations for both elements and focus on merging the new
association (Musen et al., 1999). However, if the stimuli are unfamiliar new-
association priming does not occur (Musen et al., 1999). Hence, it is easier to
associate if representations already exist; otherwise, memory representations must be

created first.

The strong connection between object meaningfulness and object memorability
suggests that people rely on an object's semantic content to indicate how likely they
will remember it later. Objects with greater meaningful content were less perceived
by their visual features and more by their semantic features (Shoval et al., 2023).
Memory improves when we can attach verbal descriptions to what we see.
Specifically, when people are provided with labels for unfamiliar or ambiguous
objects, they tend to remember them more effectively than those without labels
(Kouststaal et al., 2003). This could be due to the familiarity that object
meaningfulness holds, and the more familiar an object is, the more increased
memory performance is observed (Blalock, 2015; Xie, 2017). Overall, these findings

indicate that familiarity, typicality, and co-occurrence were found to have enhancing
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effects on object memory (Green & Hummel, 2005, 2006; Ngo et al., 2018; Schiffer,
2023; Kramer et al., 2023).

1.3.4. The Role of Visual Saliency in Object Memory

When images are simple - containing minimal objects or objects with few notable
features - visual saliency effectively predicts how memorable those objects will be.
However, this predictive power diminishes significantly in more complex images
where multiple objects with different object features are observed. Hence, visual
saliency was found to reliably predict object memorability only when the image has
minimal complexity (Dubey et al., 2015; Bainbridge, 2019). Therefore, an image's
ability to be remembered depends not solely on its visual attention-grabbing features.
Highly memorable images do not necessarily stand out immediately or catch our eye
- their memorability derives from factors beyond just attention-capturing visual
elements (Bainbridge, 2020). On the other hand, images depicting noticeable or
distinctive salient movements were found to be better remembered (Basavaraju et al.,
2018). In conclusion, contrary to common thinking, visual saliency is not a universal
indicator of memorability (Isola et al., 2011). Similarly, images that are considered
particularly unique or aesthetically appealing do not demonstrate a strong connection
with being more memorable (Dubey et al., 2015; Isola et al., 2013). Nevertheless, to

my knowledge, no study has investigated the role of material in object memorability.

1.4. Perception and Memory

Is it too daring to say memory is perception? In other words, we have memory-
driven expectations, how objects are perceived depends on their representation over
experience; hence, perception is memory (Buckingham, 2009). According to visual
sensory memory, later called iconic memory (Neisser, 1978), object recognition is an
active process where the current visual input of an object is constantly being
compared with existing perceptual representations of similar objects. Thus, many
detailed memory representations are the very representations that underlie visual
object perception. Moreover, grounded cognition (Barsalou, 2005) argues that this

comparison is modal, not amodal, as it is assumed by classic approaches. According
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to the embodied theory of memory, perception and memory are deeply
interconnected operations, both being constructive processes influenced by the
observer's experiences, interpretations, and categorizations. They are closely linked
because perceiving an object is not merely about gathering perceptual data, but it
also involves comparing sensory features of objects and materials with stored
representations of these sensory inputs. In other words, what we perceive or
remember is shaped by previous experiences and the meanings we attribute to them
rather than being direct reflections of reality. Thus, it boils down to what is
remembered depends on how it was recorded into memory, suggesting that our
memory results from our perception that can influence and be influenced by
perceptual experiences (Barsalou, 1999). Both memory and perception involve
categorization to manage the vast amount of information, a necessary process based
on the observer's knowledge and experience. These categorizations may create
prototypes, omitting some of the specific details that, in return, could lead to
perceptual and memory illusions, also highlighting the connection between the two
(Quirago, 2016). As perceptual inferences can lead to visual illusions, memory can
also be distorted, leading to false memories, such as falsely recognizing a word

associated with a list (Roediger & McDermott, 1995).

Memory is spread throughout the same neural networks engaged in sensory-motor
activities (Slotnick, 2004). The view that perception and memory share mutual
neural pathways is supported by neuroimaging research that shows activation of
sensory-motor areas during memory tasks (Martin & Chao, 2001; Weinberger, 2004;
Versace et al., 2009).

There are many studies investigating how memory traces can actively influence
perceptual processing. For example, a shape associated with a sound in a learning
phase was found to influence the perception of that related auditory property in the
test phase, even when only the shape was present, and the sound was not present
(Brunel et al., 2010). In another study, when a sensory property (like sweetness) was
associated with a visual pattern, it was found that the pattern previously associated
with the property of sweetness had a facilitatory effect on the categorization of the

pictures of sweet products (Rey et al., 2013). In their experiment involving a visual
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search task where the typical size and perceptual size of objects were manipulated,
Riu et al. (2011) found that participants had faster reaction times when there was
congruency between the typical size of objects (stored information) and their
perceived size in the task. Contrariwise, when there was incongruency between these

two aspects of size, reaction times in the visual search task increased.

One study examined working memory's role in maintaining material constancy
(Tsuda et al., 2020), referring to the ability to consistently perceive materials under
varying lighting conditions. The study revealed that when perceptual and memory
congruent performances were directly compared, working memory representation
was less accurate than perception, highlighting the need to consider memory
processes in understanding, perceiving, and remembering material properties (Tsuda
et al., 2020). Memory plays a vital role in constancy: To make a successful match,
one needs to compare presently perceived input with an encoded representation seen
previously. Constancy was also found in working memory for glossiness perception,
which is robust to illumination changes (Tsuda & Saiki, 2018). Nevertheless, it
should be noted that not many studies examine how perceptual mechanisms interplay

in a memory-related task.

1.5. Associative Recognition Memory

The concept of association is fundamental to learning and memory. Associations
formed between sensory stimuli, such as surface texture or material of objects,
provide information about environmental regularities and are crucial for predicting
and interpreting future sensory inputs and defining the semantic properties that are
stored in the memory (Albright, 2012). Associative memory can be influenced by
how items are semantically organized or clustered, leading people to remember items
that are related in meaning, such as those in the same taxonomic group, thereby
creating a network of semantic associations. Two main experimental techniques are
commonly used to investigate associative memory. The first technique, the cued-
recall task, involves participants studying pairs of items and then being prompted
with one item, from which they must recall the corresponding pair (Tulving, &

Thomson, 1973). The second technique, the associative recognition task, requires
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participants to study item pairs and then identify whether presented pairs are the
same as those studied by answering "yes" for recognized pairs and "no" for
unrecognized ones (Clark et al., 1993; Rotello & Heit, 2000; Cohn & Moscovitch,
2007; Kahana, 2012).

In associative recognition task, three different types of pairs are used during the
retrieval stage to test memory. Each type serves a specific purpose and requires
different responses from participants. Intact pairs are exactly the same as what
participants saw during the study phase; both the items and their pairing remain
unchanged. When participants see these pairs, they should respond "yes" because
these are the original pairs they have learned. Unstudied pairs are completely new
pairs that participants have never seen either of the items before. These pairs appear
for the first time during the retrieval stage and serve as new information. Participants
should respond "no" to these pairs since they were not in the original study list.
Rearranged pairs contain individual items from the study list, but these items have
been mixed up to create incorrect combinations in the retrieval stage to serve as
lures. Participants should respond "no" to these pairs since they did not appear in the

study list as a pair (Rotello & Heit, 2000; Cohn & Moscovitch, 2007).

According to dual-process theory, recognition memory is the ability to distinguish
between old (previously encountered) and new information. It is thought to be based
on two fundamentally different processes: 1) A subjective sense of familiarity
without remembering specifics is often used to make swift memory judgments, and
2) the recollection which is an effortful process of retrieving precise details

(Yonelinas, 2002; Nagai & Yokosawa, 2003).

Intact pairs are used because they activate both familiarity and recollection processes
simultaneously. When participants see an intact pair, they can recognize it through
both the familiarity of individual items and their recollection of the specific
association between them. These pairs activate both the item and associative
information. Rearranged pairs serve a crucial methodological purpose; they force
participants to rely on associative memory rather than just item memory. To

correctly reject these pairs, participants must use one item to retrieve its original
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partner (Humphreys,1978). Therefore, the rearranged pairs depend on not just the
individual item memory but also the associations formed between two individual
items (Cohn & Moscovitch, 2007). The unstudied pairs serve as a baseline control
condition; they contain completely new items. This allows pure novelty detection

and false alarm rates.

1.6. Why Study the Role of Material Perception on Associative Recognition of

Familiar and Unfamiliar Objects

The influence of material perception on visual object memory has been largely
neglected in research despite the ecological significance of recognizing materials and
their properties (Adelson, 2001; Wiebel, 2014; Fleming, 2014; Fleming et al., 2015;
Nagai et al., 2015). To my knowledge, no previous study directly investigated the
role of object material and compared this to the role of object shape in memorability.
There is a gap in the literature about which material features are more memorable
and whether material memorability is superior for familiar vs. unfamiliar objects.
Hence, I focus on the impact of perceptual features such as material, shape, and
reflectance on object memorability. I used a set of objects that change in perceptual
congruency with familiar and unfamiliar objects. By perceptual congruency, I mean
choosing two objects that have the same perceptual components as pairs. For
instance, when two objects in a pair have the same shape or material, they are
perceptually congruent. When they have different shapes or materials, they are
perceptually incongruent. Therefore, this thesis focuses on how material information
is stored and retrieved from associative object memory compared to other surface
characteristics such as shape and reflectance. Moreover, this thesis is interested in
how shape-based familiarity and unfamiliarity play a role in associative object

memory.

This type of research can provide valuable insights into the interplay between shape
perception and material perception in associative object recognition, shedding light
on how these aspects of visual processing influence each other. Hence, building
paired samples that vary in material, shape, and reflectance in a controlled and

systematic way will be useful for studying the relationship between these variables.
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Also, investigating how people interact with novel, functionless objects with no
familiarity, such as spherical objects called Glavens (Phillips, 2004; Phillips et al.,
2009) -similar to Gibson's feelies (Gibson, 1962)- can provide valuable insights into
the cognitive mechanisms that underlie our ability to perceive and recognize
materials as well as objects. Understanding how incoming familiar and unfamiliar
sensory evidence is combined with high-level expectations is essential to
understanding how the human visual system executes material perception and forms

shape—material associations (Alley et al., 2020).

1.7. Aims and Hypotheses

In this thesis, I investigate the role of perceived material on the associative
recognition memory of familiar and unfamiliar objects compared to other object
features, such as shape and surface reflectance. To do this, a set of familiar objects
with different object identities made of everyday materials were chosen as stimuli in
the first experiment. A set of unfamiliar objects with different shapes made of the
same everyday materials were chosen as stimuli in the second and third
experiments. The aim of Experiment 1 was to investigate how participants form
associations between two familiar objects based on their shared object features like
material and shape-based object identity. The main research question was whether
participants rely on the material or the shape information when forming associations
between two familiar objects. The hypotheses of Experiment 1 are as follows: (1)
The shape-congruent and material-congruent familiar object pairs will be recognized
better than the shape-incongruent and material-incongruent familiar object pairs,
showing a congruency effect. (2) The shape information of familiar objects will

predominate the material information when forming associations in memory.

The aim of Experiment 2 was to investigate whether the congruency effect transfers
to unfamiliar objects. I investigated how participants form associations between two
unfamiliar objects based on their shared object features, such as material and shape.
The main research question was whether participants rely on the material or the
shape information when forming associations between two unfamiliar objects. The

hypotheses of Experiment 2 are as follows: (1) The shape-congruent and material-
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congruent unfamiliar object pairs will be recognized better than the shape-
incongruent and material-incongruent unfamiliar object pairs, showing a congruency
effect. (2) The material information of unfamiliar objects will predominate the shape

information when forming associations in memory.

Finally, the aim of Experiment 3 was to investigate how people form associations
between two unfamiliar objects (when shape is kept constant) based on their shared
surface properties like texture and reflectance. The main research question was
whether people rely on the texture or the reflectance information when forming
associations between two unfamiliar objects. It is expected that (1) a surface
congruency effect of unfamiliar objects with identical geometries will also be
observed here. The reflectance-congruent and texture-congruent unfamiliar object
pairs will be recognized better than the reflectance-incongruent and texture-
incongruent unfamiliar object pairs. Also, (2) the texture information of unfamiliar
objects will predominate the reflectance information when forming associations due
to distinctive surface patterns and visual cues that textures can offer, which can make

them easier to discriminate.
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CHAPTER 2

EXPERIMENT 1

2.1. Experiment 1: Shape vs. Material of Familiar Objects

2.1.1. Method

In the first experiment, participants completed an associative recognition task where
they studied paired images of familiar objects with varying congruency of object
features (material, shape). Congruent and incongruent material and shape properties
were tested to investigate whether congruency would enhance recognition

performance.

2.1.2. Participants

The study was approved by the Human Studies Ethical Committee of Middle East
Technical University. A post G-Power calculation was conducted to determine the
sample size. For the experiment to have 0.95 power, 0.25 effect size, and 0.05 alpha
level for two-way Repeated Measures ANOV A within factors, the estimated sample
size was 54 (Faul et al., 2009). Seventy-four participants (54 females, 18 males, 2
non-binary) aged between 19-30 (M= 21.9, SD= 2.16) from Middle East Technical
University took part in the experiment in exchange for course credit or voluntarily.
Participants were native Turkish speakers with normal or corrected vision. All
participants gave written informed consent after a brief outline of the study's nature,

methods, and ensuring the privacy of the participants' responses before participating.

2.1.3. Experimental Setup

The experiment was written and carried out using Python (Psychopy v2023.2.3)
software and presented on an HP 24f (2XN60AA) monitor at a resolution of 1,920 x
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1,080 pixels. The experiment was conducted in a sound-proof laboratory setting to
avoid any disturbance that could distract participants from the task. The distance
from the computer (50 cm) and the illumination of the room was kept constant for all

participants.

2.1.4. Materials

The experimental stimuli in this study consisted of 32 images of familiar objects
under four shape categories (jug, goblet, water glass, mug) and four material
categories (wood, metal, glass, stone). In other words, in every shape category, there
were 4 images of an object rendered with four different materials (and vice versa)
that were generated using the program Blender 4.1.1, an open-source 3D computer

graphics application (Blender, 2024; Figures 2.1, 2.2).

Figure 2. 1. The study list stimuli of Experiment 1, four familiar objects rendered
with four materials: wood jug, glass jug, stone jug and metal jug (A); wood water
glass (WQG), glass WG, stone WG, and metal WG (B); wood goblet, glass goblet,
stone goblet, and metal goblet (C); wood mug, glass mug, stone mug, and metal mug

(D).

The four objects and materials were selected from the assets of BlenderKit, an open
extension of Blender that provides assets for models, materials, scenes, etc. The

rotation of the jug was (0°, 0°, 54.8°), the rotation of the goblet was (2°, 2°, 2°), the
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rotation of the mug was (0°, 0°, -120°), and the rotation of the water glass was (1°,
1.3°, 0.5°) on the XYZ plane. The location of the jug, goblet, and water glass was
(0.5m, -0.4m, -0.8m), and the location of the mug was (0.2m, -0.2m, -0.5m) on the
XYZ plane. The luminance properties used when rendering the four materials were
selected and modeled by the eye to portray the reflectance, transparency,
translucency, and texture characteristics of each material optimally. For the glass
renderings, the rectangle area light engine had a 200000 W- 500000 W power
interval; for the wood and stone renderings, the point light engine had a 200-700
power interval; for the metal renderings, the sunlight engine had a 50-200 power
interval (no shadow option was used). The camera viewed the objects from the front
and slightly from above with the perspective projection and a 50 mm focal length.
The objects with glass, wood, and stone materials were rendered with the EEVEE
render engine with a sampling level of 16 and 64 samples per pixel. The objects with
metal material were rendered with the Workbench render engine with eight samples

and specular reflections.
A B C D

Figure 2. 2. The new unstudied experimental stimuli that did not appear on the study
list and was only shown in the test list. Four familiar objects rendered with four
materials: wood jug, glass jug, stone jug and metal jug (A); wood WG, glass WG,
stone WG, and metal WG (B); wood goblet, glass goblet, stone goblet, and metal
goblet (C); wood mug, glass mug, stone mug, and metal mug (D).

Bl g

These images of objects were listed as pairs in an associative recognition task to

further assess the associative object memory of participants. There was a total of four
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conditions: in the material-congruent item condition (MC, Figure 2.3A), paired items
were the images of either the same or different object shapes made of the same
material. In the shape-congruent item condition (SC, Figure 2.3B), paired items were
the objects with identical shapes made of either the same or different materials. In
material-incongruent condition (MI, Figure 2.3C), paired items were images of either
the same or different shapes made of different materials. Lastly, in the shape-
incongruent condition (SI, Figure 2.3D), paired items were images of objects made

of either the same or different material categories with different shapes.

A Material Congruent Condition (MC) B Shape Congruent Condition (SC)

Figure 2. 3. This figure illustrates examples from the four conditions in the
associative recognition task of Experiment 1.

In the original design, each main condition (material-congruent, material-
incongruent, shape-congruent, and shape-incongruent) contained repeating object
pairs that appeared across conditions. In material-congruent (MC) conditions, half
the pairs were material-congruent but shape-incongruent, and half were both material
and shape-congruent. In shape-congruent (SC) conditions, half the pairs were shape-
congruent but material-incongruent, and half were both material and shape-congruent.
In material-incongruent (MI) conditions, half the pairs were material-incongruent but
shape-congruent, and half were both material and shape-incongruent. Similarly, in
shape-incongruent (SI) conditions, half the pairs were shape-incongruent, but

material-congruent and half were both material and shape-incongruent.

22



While these repeating pairs were equally distributed across conditions and did not
confound the experimental design, they could potentially influence the results by
increasing memory sensitivity overall. An alternative approach would have been to
use four distinct conditions without overlap: material-congruent shape-incongruent
condition, shape-congruent material-incongruent condition, material and shape
congruent condition, and material and shape incongruent condition. However, the
current design was chosen for all three experiments to independently examine how
associative memory changes between congruent and incongruent conditions for
individual object and surface features (material vs. shape, texture vs. reflectance)

rather than studying their combined effects.

2.1.5. Procedure

Before the experiment started, the experimenter instructed the participants about the
experiment, explaining every stage of the study in detail using instruction slides with
visuals. After the instructions, the experimenter left the room, and the experiment
started. Instructions were also provided on screen for the participants to read between

each stage during the experiment.

The experiment consisted of three stages: the study stage, the distraction stage, and
the retrieval stage. In the study stage, participants were shown a study list containing
16 pairs for every four conditions (MC, SC, MI, SI). A total of 64 pairs were
randomly presented for 4 seconds and a four-second inter-stimulus interval prior to
the presentation of the next pair. Participants were instructed to study these pairs in
the study list for a later memory test. The study stage was followed by the distraction
stage, which included a distractor task in which participants completed addition and
subtraction calculations in a random order for two minutes. Immediately after the
distractor stage, the retrieval stage took place with an associative recognition task.
Participants were shown a test list containing 15 pairs for each of the four conditions
(MC, SC, M1, SI) in a random order. A total of 60 pairs were shown, containing 32
intact pairs that were in the study list and 16 new, unstudied pairs that were not in the
study list (Figure 2.2). Material and shape combinations of the objects in the

unstudied pairs were shown for the first time in the retreival stage. Also, there were
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12 rearranged pairs consisting of objects that were in the study list but belonged to
different pairs and were rearranged in the retrieval stage. Participants were required
to press the key "e" on the keyboard if they had recognized the pair from the study
list or "h" if they had not recognized the pair from the study list with no time limit.
This study used a within-subject design with an associative recognition task, and all

responses were collected using a keyboard (Figure 2.4).

Study Stage Retrieval Stage

rearranged pair (12)

Figure 2. 4. The experimental procedure of the study stage and the retrieval stage of
Experiment 1.

2.1.6. Results

A Python code was written to organize the data (Visual Studio Code version 1.91,
2024) using the SciPy package. Each participant's hit rate for intact pairs in every
four conditions (MC, SC, MI, SI) and false alarm rate for rearranged and new pairs
in every four conditions (MC, SC, M1, SI) were calculated. Hence, the sensitivity d’
scores of every four conditions (MC, SC, MI, SI) for each participant were computed
by subtracting z-scores of the false alarm rates from the hit rates (MacMillan &
Creeman, 1991). Inferential statistics were run in JASP (JASP Team, 2024) and
figures were plotted in R (R Core Team, 2021).

The response bias is the different range of memory evidence that participants require
to call an item "old" free of any experimental manipulation. The measure of response

bias is the criterion value (c), which is the decision threshold to distinguish old from
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new items and is calculated by -1/2 (z(H) + z(F)). A neutral bias has a 0 value of ¢;
hence, the overall error rate is minimized. A conservative bias has a positive ¢ value,
and a liberal bias has a negative ¢ value (Macmillan & Creelman, 1990). A one-
sample t-test was conducted to examine the response bias of participants on
associative recognition of familiar objects. The normality assumption was not
violated; the Shapiro-Wilk test indicated that differences between participants were
normally distributed, W(74)= 0.97, p= 0.13. The findings revealed a significant main
effect of response bias (M=-0.32, SD=0.34) between participants, #73)= -8, p<
0.001, d= -0.93, which means that participants had a liberal bias in Experiment 1.

A two-way 2 (congruency) x 2 (object feature) repeated measures ANOVA was
conducted to examine the effect of congruency (congruent, incongruent) and object
feature (material, shape) on the d-prime scores. The findings revealed a significant
main congruency effect on associative object recognition memory, meaning that
material and shape congruent pairs were better recognized than material and shape
incongruent pairs, F(1, 73) = 14.3, p < 0.001, #’» = 0.16, mean difference = 0.2,
standard error = 0.05, 95%CI [0.09, 0.29], p < .001. I did not observe a difference

between the object features (material vs. shape, Table 2.1).

Table 2. 1. Repeated Measures ANOVA for Experiment 1

Sum of Mean 5
Squares Square p v
Object feature 0.00553 I 0.00553 0.459  0.500 0.006
Residual 0.87802 73 0.01203
Congruency 2.68953 I 2.68953 14307 <.001 0.164
Residual 13.72349 73  0.18799

Surface feature 55639 1 055639 1921 0170  0.026

Congruency
Residual 21.14301 73  0.28963

There was no significant main effect of the object feature on the associative
recognition of familiar objects, F(1, 73) = 0.45,p = 0.05, 5% = 0.006, mean
difference = -0.008, standard error = 0.01, 95% CI [-0.03, 0.17], p = .05. Hence,
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there was no significant difference between sensitivity d' scores of material
congruent and shape congruent conditions as well as the material incongruent and
shape incongruent conditions. This might indicate that both the material and the
shape features of familiar objects affect the associative object recognition equally.
There was no significant interaction effect between congruency and object feature on
associative recognition of familiar objects, F(1, 73) = 1.92, p =0.17, % = 0.02. This
means that the effect of congruency on associative object recognition was similar for

the material and the shape of the object (Figure 2.6).

Table 2. 2. Mean of Hit Rates, False Alarm Rates and Sensitivity d’ Scores of
Conditions in Experiment [

MC MI SC SI
HR 0.80 0.65 0.80 0.63
FAR-unstudied 0.53 0.25 0.48 0.29
FAR-rearranged 0.70 0.63 0.72 0.62
FAR-total 0.59 0.44 0.56 0.46
Sensitivity d’ 0.70 0.59 0.79 0.50

Post hoc tests using Bonferroni correction revealed that the recognition sensitivity d’
score of the shape congruent (M=0.78, SD=0.57) condition was higher than the shape
incongruent (M=0.50, SD=0.47) condition, mean difference = 0.3, standard error =
0.07, 95% CI [0.08, 0.47], p < .001. This means that shape congruent pairs were
better recognized than incongruent pairs in the associative recognition of familiar

objects (Figure 2.5).

A two-way 2 (congruency) x 2 (object feature) repeated measures ANOVA was
conducted to examine the effect of congruency (congruent, incongruent) and object
feature (material, shape) on the hit rates of familiar objects. The findings revealed a

significant main congruency effect on the hit rates of familiar objects, F(1, 73) =
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83.1, p < 0.001, #°p = 0.53 (Table D.1). There was no significant main effect of the
object feature on the hit rates of familiar objects, F(1, 73) = 1.499x10-13,p =1, %
=2.054x10-15 (Table D.1). Meaning that both the material and the shape features of
familiar objects affect the hit rates equally. There was no significant interaction
effect between congruency and object feature on the hit rates of familiar objects, F(1,
73) = 0.98,p = 0.32, °p = 0.01. This means that the effect of congruency on hit
rates was similar for the material and the shape of the object (Figure 2.7). Post hoc
analysis with a Bonferroni adjustment revealed the hit rate of congruent conditions
(M=0.80, SE=0.01) were higher than the incongruent conditions (M=0.64, SE=0.02),
mean difference = 0.16, standard error = 0.01, p <.001 (Table D.2).

1.0
0.9
0.8
0.7

0.6 T Congruency

= 0.5 i J_ D congruent

incongruent

—
—
—

ivity d'

0.3
0.2
0.1
0.0

material shape
Object Feature

Figure 2. 5. The recognition sensitivity of four conditions (MC, SC, MI, SI) with
familiar objects. The X-axis represents object features, the Y-axis represents the
sensitivity d’ scores. The yellow bars display congruent and the gray bars display
incongruent conditions, and the error bars represent standard errors of the mean.

A two-way 2 (congruency) x 2 (object feature) repeated measures ANOVA was
conducted to examine the effect of congruency (congruent, incongruent) and object
feature (material, shape) on the false alarm rates of familiar objects. The findings
revealed a significant main congruency effect on the false alarm rates of familiar
objects, F(1, 73) = 84.9, p < 0.001, n’p = 0.54 (Table D.3). There was no significant

main effect of the object feature on the false alarm rates of familiar objects, F(1, 73)
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=1.25,p = 0.27, n’p = 0.017. Meaning that both the material and the shape features
of familiar objects affect the false alarm rates equally. There was no significant
interaction effect between congruency and object feature on the false alarm rates of
familiar objects, F(1, 73) = 1.25, p = 0.27, n’p = 0.017. This means that the effect of
congruency on false alarm rates was similar for the material and the shape of the
object (Figure 2.7). Post hoc analysis with a Bonferroni adjustment revealed the false
alarm rate of congruent conditions (M=0.57, SE=0.02) were higher than the
incongruent conditions (M=0.45, SE=0.02), mean difference = 0.13, standard error =

0.01, p <.001 (Table D.4).
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congruent incongruent
Congruency

Figure 2. 6. The recognition sensitivity of four conditions (MC, SC, MI, SI) with
familiar objects. The X-axis represents congruency, the Y-axis represents the
sensitivity d’ scores. The yellow line displays material and the gray line displays
shape conditions, and the error bars represent standard errors of the mean.

Furthermore, a two-way 2 (congruency) x 2 (object feature) repeated measures
ANOVA was conducted to examine the effect of congruency (congruent,
incongruent) and object feature (material, shape) on the false alarm rates of
rearranged pairs. The findings revealed a significant main congruency effect on the
false alarm rates of rearranged pairs, F(1, 73) = 25.5, p < 0.001, ’p = 0.26 (Table

D.5). Post hoc analysis with a Bonferroni adjustment revealed the false alarm rate of
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rearranged pairs in congruent conditions (M=0.71, SE=0.02) were higher than in the
incongruent conditions (M=0.62, SE=0.02), mean difference = 0.09, standard error =

0.02, p <.001 (Table D.6).

1.0 1.0
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6

Congruency Congruency

g:: 0.5 I congruent < 0.5 I congruent

[T .
incongruent incongruent
04 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0.0 0.0
material shape material shape
Object Feature Object Feature

Figure 2. 7. The hit rates (HR) and false alarm rates (FAR) of four conditions (MC,
SC, M1, SI) of familiar objects. The X-axis represents object features, the Y-axis
represents the HRs and FARs. The yellow bars display congruent and the gray bars
display incongruent conditions, and the error bars represent standard errors of the
mean.
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CHAPTER 3

PRELIMINARY STUDY AND EXPERIMENT 2

3.1. Preliminary Study

3.1.1. Method

Data from Experiment 1 suggest that for familiar objects, shape is an important
feature in object recognition, as sensitivity scores for shape-congruent pairs were
found to be remembered better than shape-incongruent pairs. This was not the case
for the material feature in Experiment 1. So in Experiment 2, I used unfamiliar
shapes to diminish the strong effects of familiar object shapes and tested the role of

material information in unfamiliar object recognition.

Before conducting Experiment 2, an online preliminary study was carried out using
Google Forms to see whether an unfamiliar object rendered with four different
material categories (wood, metal, stone, glass) was, in fact, perceived as the intended

materials by the participants.

3.1.2. Participants

The study was approved by the Human Studies Ethical Committee of Middle East
Technical University. Thirty-one participants (18 females, 13 males) aged between
18-40 (M= 23.3, SD= 4.37) from Middle East Technical University took part in this
experiment in exchange for course credit or voluntarily. Participants were native
Turkish speakers with normal or corrected vision. All participants gave written
informed consent after a brief outline of the study's nature, methods, and ensuring the

privacy of the participants' responses before participating.
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3.1.3. Materials

The experimental stimuli in this study consisted of 19 images of unfamiliar objects
based on the glaven models provided by Philips (2004) under four material
categories (wood, metal, glass, stone). The stimuli were generated using Blender

4.1.1, an open-source 3D computer graphics application (Blender, 2024).

The four material categories were selected from the assets of BlenderKit, an open
extension of Blender that provides assets for models, materials, and scenes. The
glaven model (Glaven2) was chosen from the Glaven Set provided by Philips on
GitHub (2004). There were four versions of the material category of glass and stone,
five versions of the material metal, and six versions of the material wood (Figure

3.1).

3
22.6% 32.2% 61.3% 61.3% 61.3% 77.4%
41.9% 32.2% 45.1% 71.4% 48.3%
67.7% 67.7% 70.9% 70 9%
N
|
Glass
19.3% 25.8% 29% 6.4%

Figure 3. 1. The stimuli of the preliminary study, glaven2 rendered with different
versions of four material categories with the percentage of participants correctly
identifying the material category of each object.

The location of glaven2 was (0, 0, 0). The luminance properties used when rendering
the four materials were selected and modeled by the eye to portray the reflectance,
transparency, translucency, and texture characteristics of each material most
optimally. For the glass renderings, the rectangle area light engine had a 200000-

500000 W power interval; for the wood and stone renderings, the point light engine
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had a 200-700 W power interval; for the metal renderings, the sun light engine had a
50-200 W power interval without shadow option were used. The camera viewed the
objects from the front and slightly from above with the perspective camera type and
a 50 mm focal length. The objects with glass, wood, and stone materials were
rendered with the EEVEE render engine with a sampling level of 16 and 64 samples

per pixel. Workbench render engine with eight samples and specular reflections.

3.1.4. Procedure

This study was conducted online using Google Forms. On the top of the screen, the
instructions for the task were given to the participants: "Please write down the
material of the objects you will see" (Tr., “Liitfen ekranda gdreceginiz objelerin
hangi malzemeden yapildigini diislinliyorsaniz yaziniz”). Nineteen images of
glaven2 with different versions of four material categories (wood, metal, stone,
glass) were displayed for the participants to write down which materials they thought

the objects were made of.

3.1.5. Results

Results revealed that for the wood material category, woodl was correctly identified
by 22.6%, wood2 was correctly identified by 32.2%, wood3 was correctly identified
by 61.3%, wood4 was correctly identified by 61.3%, wood5 was correctly identified
by 61.3%, and wood6 was correctly identified by 77.4% of participants (Figure 3.1,
top row). Hence, wood6 and wood4 were chosen as the wood material category for
the object renderings in Experiment 2. For the stone material category, stonel was
correctly identified by 67.7%, stone2 was correctly identified by 67.7%, stone3 was
correctly identified by 70.9%, and stone4 was correctly identified by 70.9% of
participants (Figure 3.1, second row). Hence, stone3 and stone4 were chosen as the
stone material category for the object renderings in Experiment 2. For the metal
material category, metall was correctly identified by 41.9%, metal2 was correctly
identified by 32.2%, metal3 was correctly identified by 45.1%, metal4 was correctly
identified by 77.4%, and metal5 was correctly identified by 48.3% of participants

(Figure 3.1, third row). Thus, metal4 and metal5 were chosen as the metal material

32



category for the object renderings in Experiment 2. Finally, for the glass material
category, glassl was correctly identified by 19.3%, glass2 was correctly identified by
25.8%, glass3 was correctly identified by 29%, and glass4 was correctly identified
by 6.4% of participants (Figure 3.1, bottom row). Due to the insufficient percentage
of correct identifications of the glass material, none of the versions in this study were
chosen as the glass material category in the second experiment. Instead, I used an

improved method to render shapes in glass for Experiment 2.

3.2. Experiment 2: Shape vs. Material of Unfamiliar Objects

The findings of Experiment 1 suggested that the material feature could be as crucial
as the shape feature in familiar object memory. Prior knowledge of the familiar
objects could have improved the shape recognition in Experiment 1. Therefore, I
used unfamiliar objects without prior knowledge in Experiment 2. This way, only the
perceptual impact of material and shape features on object memory could be

observed without the semantic intrusions.

3.2.1. Method

A new group of participants completed a similar experiment to Experiment 1, this
time with unfamiliar shapes. In an associative recognition task, they studied paired
images of unfamiliar objects under different object features (material, shape) in
congruent and incongruent conditions to investigate which factors would yield higher

recognition performance.

3.2.2. Participants

The study was approved by the Human Studies Ethical Committee of Middle East
Technical University. A priori G Power calculation was conducted to determine the
sample size. For the experiment to have 0.95 power, 0.25 effect size, and .05 alpha
level for Repeated Measures ANOVA within factors, the estimated sample size was
54 (Faul et al., 2009). Fifty-seven participants (51 females, 4 males, 2 non-binary)
aged between 18-30 (M= 21.1, SD= 1.93) from Middle East Technical University
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took part in this experiment in exchange for course credit or voluntarily. Participants
were native Turkish speakers with normal or corrected vision. All participants gave
written informed consent after a brief outline of the study's nature, methods, and

ensuring the privacy of the participants' responses before participating.

3.2.3. Experimental Setup

The experimental setup was the same as Experiment 1.

3.2.4. Materials

The experimental stimuli in this study consisted of 32 images of unfamiliar objects. I
used four object curvature categories (glavenl, glaven4, glaven7, glaven8) based on
the glaven models provided by Philips (2004) and four material categories (wood,
metal, glass, stone). In every object shape and material category, there were 4 images
of each object rendered with four different materials which were generated using
Blender 4.1.1, an open-source 3D computer graphics application (Blender, 2024,
Figure 3.2, 3.3).
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Figure 3. 2. The study list stimuli of Experiment 2, four unfamiliar objects rendered
with four materials: wood glavenl, glass glavenl, stone glavenland metal glavenl
(A); wood glavend, glass glaven4, stone glaven4, and metal glavend4 (B); wood
glaven7, glass glaven7, stone glaven7, and metal glaven7 (C); wood glaven§, glass
glaven8, stone glaven8, and metal glaven8 (D).
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The four materials were selected from the assets of BlenderKit, an open extension of
Blender that provides assets for models, materials, scenes, etc. Also, for the glass
material, a forest lane is used as an environmental map from the high dynamic range
images (HDRs) of Blenderkit. The glavens were chosen from the Glaven Set
provided by Philips on GitHub (2004), which were BigGlavenl, BigGlaven4,
BigGlaven7, and BigGlaven8. The rotation of glavenl was (54.8°, -9.7°, 22.6°); the
rotation of the galven2, glaven7, and glaven8 were (37.2°, 3.1°, 106.9°) on the XYZ

plane.
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Figure 3. 3. The new unstudied experimental stimuli of Experiment 2 that did not
appear on the study list and were only shown in the test list. Four unfamiliar objects
rendered with four materials: wood glavenl, glass glavenl, stone glavenl, and metal
glavenl (A); wood glaven4, glass glaven4, stone glaven4, and metal glaven4 (B);
wood glaven7, glass glaven7, stone glaven7, and metal glaven7 (C); wood glavens§,
glass glaven8, stone glaven8, and metal glaven8 (D).

The luminance properties used when rendering the four materials were selected and
modeled by the eye to portray the reflectance, transparency, translucency, and texture
characteristics of each material optimally. For the glass renderings, the rectangle area
light engine had a 200000- 500000 W power interval; for the wood and stone
renderings, the point light engine had a 200-700 W power interval; for the metal
renderings, the sunlight engine had a 50-200 W power interval (no shadow option

was used). The camera viewed the objects from the front and slightly from above
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with the perspective camera type and a 50 mm focal length. The objects with glass,
wood, and stone materials were rendered with the EEVEE render engine with a
sampling level of 16 and 64 samples per pixel. The objects with metal material were
rendered with the Workbench render engine with eight samples and specular

reflections.

The images of unfamiliar objects were listed as pairs in an associative recognition
task. There were four item conditions: in the material-congruent item condition (MC,
Figure 3.4A), paired items were the images of either the same or different glavens
made of the same material. In the shape-congruent item condition (SC, Figure 3.4B),
paired items were images of the same glavens rendered with either identical or
different materials. In material-incongruent item condition (MI, Figure 3.4C), paired
items were images of either the same or different glavens made of different
materials. Lastly, in shape-incongruent item condition (SI, Figure 3.4D), paired items
were the images of glavens made of either the same or different material with

different glaven categories.

A Material Congruent Condition (MC) B Shape Congruent Condition (SC)

Figure 3. 4. This figure illustrates examples from the four conditions of Experiment
2 in the associative recognition task.
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3.2.5. Procedure

Experiment 2 followed an identical procedure to the first experiment (Figure 3.5).

Retrieval Stage

Study Stage

4s '
+
+ unstudied pair (16)
Yes / No
4s ‘N
Trial 1 + f /ﬁ 4%
'}

intact pair (32)

0

Yes / No

Trial 64

rearranged pair (12)

Figure 3. 5. The experimental procedure of the study stage and the retrieval stage of
Experiment 2.

3.2.6. Results

A Phyton code was written to organize the data (Visual Studio Code version 1.91,
2024) using the SciPy package. Each participant's hit rate for intact pairs in every
four conditions (MC, SC, MI, SI) and false alarm rate for rearranged and new pairs
in every four conditions (MC, SC, MI, SI) were calculated. Hence, the sensitivity d’
scores of every four conditions (MC, SC, MI, SI) for each participant were computed
by subtracting z-scores of the false alarm rate from the hit rate (MacMillan &
Creeman, 1991). Inferential statistics were run in JASP (JASP Team, 2024) and

figures were drawn in R (R Core Team, 2021).

A one-sample t-test was conducted to examine the response bias of participants on
associative recognition of unfamiliar objects. The normality assumption was not
violated; the Shapiro-Wilk test indicated that differences between participants were
normally distributed, W(57)= 0.98, p= 0.32. The findings revealed a significant main
effect of response bias (M=-0.36, SD=0.35) between participants, #(56)= -7.8, p<
0.001, d= -1.03, which means that participants had a liberal bias in Experiment 2.
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A two-way 2 (congruency) x 2 (object feature) repeated measures ANOVA was
conducted to examine the effect of congruency (congruent, incongruent) and object
feature (material, shape) on the d-prime scores. The findings revealed a significant
main congruency effect on associative recognition memory of unfamiliar objects,
F(1, 56) = 70.7,p < 0.001, #°p = 0.55 (Table 3.1). There was a significant main
effect of the object feature on associative recognition of unfamiliar objects, F(1, 56)
=6.36, p =0.01, °p = 0.1, mean difference = -0.024, standard error = 0.009, 95% CI
[0.005, 0.4], p = 0.015. Post hoc analysis with a Bonferroni adjustment revealed the
sensitivity d' score of the material feature (M=1.25, SE=0.06) was ever so slightly but
significantly higher than the shape feature (M=1.23, SE=0.06), which might mean
that the material feature of unfamiliar objects affects the associative recognition
memory more significantly than the shape. There was no significant interaction
effect between congruency and object feature on recognition sensitivity scores of
unfamiliar objects, F(1, 56) = 1.92, p = 0.2, n’p = 0.2. This means that the effect of

congruency was similar for the material and the shape of the object (Figure 3.7).

Table 3. 1. Repeated Measures ANOVA for Experiment 2

Sum of Mean 5
Squares df Square F p Tp
Object feature 0.0319 1 0.03190 6.36  0.015 0.102
Residual 0.2807 56 0.00501
Congruency 18.0022 1 18.00218 70.77 <.001 0.558
Residual 14.2445 56 0.25437

Surface feature % 3090 | 034700 162 0209  0.028

Congruency
Residual 12.0203 56  0.21465

Table 3. 2. Mean of Hit Rates, False Alarm Rates and Sensitivity d’ Scores of
Conditions in Experiment 2

MC MI SC SI

HR 0.85 0.75 0.88 0.73
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Table 3.2. (continued)

FAR-unstudied 0.12 0.15 0.21 0.06
FAR-rearranged 0.78 0.76 0.80 0.75
FAR-total 0.34 0.45 0.40 0.40
Sensitivity d’ 1.57 0.93 1.47 0.99
2.0
1.8

—

—

14
o]
:?1'2 —|— Congruency
‘; —|_ D congruent
(}% J_ J_ |:| incongruent

© 0 o o o =
o N M ® ® O

material shape
Object Feature

Figure 3. 6. The recognition sensitivity of four conditions (MC, SC, MI, SI) with
unfamiliar objects. The X-axis represents object features, the Y-axis represents the
sensitivity d’ scores. The yellow bars display congruent and the gray bars display
incongruent conditions, and the error bars represent standard errors of the mean.

Post hoc analysis with a Bonferroni adjustment revealed the recognition sensitivity d'
score of material congruent condition (M=1.57, SD=0.58) was higher than the
material incongruent condition (A=0.93, SD=0.53), mean difference = 0.64, standard
error = 0.08, 95% CI [0.39, 0.88], p < .001. And the recognition sensitivity d' score
of the shape congruent (M=1.47, SD=0.57) condition was higher than the shape
incongruent (M=0.98, SD=0.57) condition, mean difference = 0.48, standard error =

0.09, 95% CI [0.23, 0.73], p < .001. This means that both the material and shape
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congruent pairs were better recognized than incongruent pairs in the associative
recognition of unfamiliar objects, mean difference = 0.2, standard error = 0.009, 95%

CI10.005, 0.042], p < .001 (Figure 3.6).

To further examine the effect of material of unfamiliar objects on associative
recognition memory in more detail, a one-way repeated measures ANOVA with four
levels for material (wood, stone, glass, metal) was performed as a post hoc test. The
sphericity assumption was not violated, y2(5) = 4.3, p = 0.5. The findings revealed a
significant material effect on associative recognition of unfamiliar objects, F(3, 56) =
12.7,p < 0.001, n’p = 0.18. A post hoc analysis with a Bonferroni adjustment
revealed that the material congruent pairs rendered as glass material (M=1.49,
SD=0.54) were better recognized than the metal (M=1.14, SD=0.61, mean difference
= 0.35, standard error = 0.01, 95% CI [0.09, 0.61], p < 0.004), the stone (M=0.94,
SD=0.58, mean difference = 0.54, standard error = 0.01, 95% CI [0.28, 0.81], p <
0.001), and the wood (M=1.02, SD=0.63, mean difference = 0.47, standard error =
0.09, 95% CI1[0.23, 0.72], p < 0.001) materials (Figure 3.8). Differences between the

remaining materials remained below the significance threshold.
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congruent incongruent
Congruency

Figure 3. 7. The recognition sensitivity of four conditions (MC, SC, MI, SI) of
unfamiliar objects. The X-axis represents congruency, the Y-axis represents the
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sensitivity d’ scores. The yellow line displays material and the gray line displays
shape conditions, and the error bars represent standard errors of the mean.

Experiments 1 and 2 were identical, except that instead of using familiar objects in
Experiment 1, unfamiliar objects were used in Experiment 2. And by this
experimental manipulation, d' sensitivity score of the material congruent condition
improved from 0.70 to 1.57 in Experiment 2. The d' sensitivity score of the shape
congruent condition enhanced from 0.79 to 1.47. The d' sensitivity score of the
material incongruent condition increased from 0.59 to 0.93. The d' sensitivity score
of the shape incongruent condition increased from 0.50 to 0.99 in Experiment 2
(Table 3.3). Hence, while there was no significant difference between the material
and shape features on associative object recognition in Experiment 1, the material
feature of objects was better recognized than the shape in Experiment 2. Indicating a
material superiority effect on the associative recognition of unfamiliar objects

(Figure 3.9).
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Figure 3. 8. The recognition sensitivity of material congruent pairs with glass, metal,
stone, and wood materials. The X-axis represents the four materials, the Y-axis
represents the sensitivity d’ scores, and the error bars represent standard errors of the
mean.
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Table 3. 3. Mean Sensitivity d’ Scores of Conditions in Experiment I and 2

MC MI SC SI

Sensitivity d>  0.70 0.59 0.79 0.50

Experiment 1

Sensitivity d>  1.57 0.93 1.47 0.99

Experiment 2

Experiment 1 Experiment 2

1.8 1.8

1.6 1.6 T —"

14 14 J‘ l

1.2 1.2
o] o] T
g‘ 1.0 Congruency é‘ 1.0 —‘7 Congruency
E I:l congruent .E l I:l congruent
% 08 —‘r T |:| incongruent % 0.8 l |:] incongruent
n J_ n

0.6 l I "|' 0.6

0.4 l 0.4

0.2 0.2

0.0 0.0

material shape material shape
Object Feature Object Feature

Figure 3. 9. Sensitivity scores of four conditions (MC, SC, MI, SI) of Experiment 1
and 2. The X-axis represents object features, the Y-axis represents the sensitivity d’
scores. The yellow bars display congruent and the gray bars display incongruent
conditions, and the error bars represent standard errors of the mean.

A two-way 2 (congruency) x 2 (object feature) repeated measures ANOVA was

conducted to examine the effect of congruency (congruent, incongruent) and object
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feature (material, shape) on the hit rates of unfamiliar objects. The findings revealed
a significant main congruency effect on the hit rates of unfamiliar objects, F(1, 56) =
32,p < 0.001, #°p = 0.36 (Table E.1). There was no significant main effect of the
object feature on the hit rates of unfamiliar objects, F(1, 56) = -2.835x10-14,p =1,
n’p = -5.063x10-16. Meaning that both the material and the shape features of
unfamiliar objects affect the hit rates equally. There was no significant interaction
effect between congruency and object feature on the hit rates of unfamiliar objects,
F(1,56)=1.45, p=0.23, n°p = 0.02. This means that the effect of congruency on hit
rates was similar for the material and the shape of the object (Figure 3.10). Post hoc
analysis with a Bonferroni adjustment revealed the hit rate of congruent conditions
(M=0.86, SE=0.01) were higher than the incongruent conditions (M=0.74, SE=0.03),
mean difference = 0.11, standard error = 0.02, p <.001 (Table E.2).

A two-way 2 (congruency) x 2 (object feature) repeated measures ANOVA was
conducted to examine the effect of congruency (congruent, incongruent) and object
feature (material, shape) on the false alarm rates of unfamiliar objects. The findings
revealed a significant main congruency effect on the false alarm rates of unfamiliar
objects, F(1, 56) = 13.65, p < 0.001, ’p = 0.2 (Table E.3). Post hoc analysis with a
Bonferroni adjustment revealed the false alarm rate of incongruent conditions
(M=0.43, SE=0.014) were higher than the congruent conditions (M=0.37, SE=0.016),
mean difference = 0.06, standard error = 0.01, p < .001 (Table E.5). There was a
significant main effect of the object feature on the false alarm rates of unfamiliar
objects, F(1, 56) = 15.36, p < 0.001, #°p = 0.21. Post hoc analysis with a Bonferroni
adjustment revealed the false alarm rate of shape conditions (M=0.41, SE=0.013)
was higher than the material conditions (M=0.40, SE=0.013), mean difference =
0.007, standard error = 0.002, p < .001 (Table E.4). There was a significant
interaction effect between congruency and object feature on the false alarm rates of
unfamiliar objects, F(1, 56) = 15.36, p < 0.001, #?p = 0.21. The false alarm rate of
the material incongruent (M=0.45, SE=0.014) condition was higher than the material
congruent condition (M=0.34, SE=0.018), mean difference = 0.11, standard error =
0.02, p < .001. The false alarm rate of the shape congruent (A=0.40, SE=0.018)
condition was higher than the material congruent condition (M=0.34, SE=0.018),
mean difference = 0.06, standard error = 0.015, p = .001. The false alarm rate of the
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material incongruent (M=0.45, SE=0.014) condition was higher than the shape
incongruent condition (M=0.41, SE=0.015), mean difference = 0.04, standard error =
0.011, p =.001 (Figure 3.10).

Furthermore, a two-way 2 (congruency) x 2 (object feature) repeated measures
ANOVA was conducted to examine the effect of congruency (congruent,
incongruent) and object feature (material, shape) on the false alarm rates of
rearranged pairs. The findings revealed a significant main congruency effect on the
false alarm rates of rearranged pairs, F(1, 56) = 4.04, p = 0.049, n’p = 0.07 (Table
E.9). Post hoc analysis with a Bonferroni adjustment revealed the false alarm rate of
rearranged pairs in congruent conditions (M=0.79, SE=0.024) were higher than in the
incongruent conditions (M=0.75, SE=0.026), mean difference = 0.03, standard error
=0.016, p = 0.049 (Table E.10).

1.0 1.0
0.9 0.9
I T
0.8 T T 0.8
0.7 1 | 0.7
0.6 0.6
Congruency Congruency
% 05 D congruent < 05 D congruent
incongruent T incongruent
0.4 0.4 - I I
' ' T
0.3 0.3 L
0.2 0.2
0.1 0.1
0.0 0.0
material shape material shape

Object Feature Object Feature

Figure 3. 10. The hit rates (HR) and false alarm rates (FAR) of four conditions (MC,
SC, M1, SI) of unfamiliar objects. The X-axis represents object features, the Y-axis
represents the HRs and FARs. The yellow bars display congruent and the gray bars
display incongruent conditions, and the error bars represent standard errors of the
mean.
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CHAPTER 4

EXPERIMENT 3

4.1. Experiment 3: Texture vs. Material of Unfamiliar Objects

The findings of the second experiment revealed that the material feature was as
effective as the shape in facilitating unfamiliar object memory. When the objects
were unfamiliar and evoked no prior knowledge, the material of objects was more
reliable than the shape. Also, the glass material was remembered better than all other
materials in Experiment 2. The salient material attributes of the glass, such as
glossiness and texture, could have improved its memory. Therefore, I added three
more material texture classes (copper, plastic, jelly) and manipulated their
reflectance characteristics (matte, glossy) in the next experiment. In Experiment 3,
by keeping the geometry of objects constant across all conditions, I eliminated
shape-based object recognition with a goal to isolate the role of material in object

memory under varying surface reflectance conditions.

4.1.1. Metod

In the third experiment, the same procedure was used with a single unfamiliar shape
and with seven texture and two reflectance categories. Participants completed an
associative recognition task where they studied paired images of unfamiliar objects
under different surface features (texture, reflectance) in congruent and incongruent

conditions to investigate which conditions would have higher recognition rates.

4.1.2. Participants

The study was approved by the Human Studies Ethical Committee of Middle East

Technical University. A priori G Power calculation was conducted to determine the
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sample size. For the experiment to have 0.95 power, 0.25 effect size, and .05 alpha
level for two-way Repeated Measures ANOVA within factors, the estimated sample
size was 54 (Faul et al., 2009). Fifty-seven participants (44 females, 12 males, 1 non-
binary) aged between 19-29 (M= 22.5, SD= 2.17) from Middle East Technical
University took part in this experiment in exchange for course credit or voluntarily.
Participants were native Turkish speakers with normal or corrected vision. All
participants gave written informed consent after a brief outline of the study's nature,

methods, and ensuring the privacy of the participants' responses before participating.

4.1.3. Experimental Setup

The experimental setup was the same as Experiment 1 and 2.
4.1.4. Materials

The experimental stimuli in this study consisted of 28 images of one unfamiliar
object based on the glaven models provided by Philips (2004) under two surface
reflectance categories (glossy, matte) and seven material texture categories (wood,
metal, glass, stone, plastic, copper, jelly). In other words, there were 2 images of one
unfamiliar object rendered with seven different materials and two different
reflectance features that were generated using Blender 4.1.1, an open-source 3D

computer graphics application (Blender, 2024; Figure 4.1).

&
&
&
&

Figure 4. 1. The stimuli of Experiment 3, one unfamiliar object rendered with seven
texture categories, and two reflectance features. The glossy-copper, glossy-glass,
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glossy-jelly, glossy-metal, glossy-plastic, glossy-stone, glossy-wood glaven3 (A, C);
matte-copper, matte-glass, matte-jelly, matte-metal, matte-plastic, matte-stone,
matte-wood glaven3 (B, D). The study list stimuli (A, B), and the new unstudied
stimuli that did not appear on the study list and was only shown in the test list (C, D)
are displayed.

The seven material textures with glossy and matte reflectance features were selected
from the assets of BlenderKit, an open extension of Blender that provides assets for
models, materials, scenes, etc. Also, for the glossy glass, metal, and copper materials,
a forest lane is used as an environmental map from the HDRs of Blenderkit. The
selected glaven was chosen from the Glaven Set provided by Philips on GitHub
(2004), which was the BigGlaven3. The rotation of glaven3 was (1.4°, -4.8°, -
589.4°), and the location of glaven3 was (5.4m, 0.2m, 22.6m) on the XYZ plane. The
luminance properties used when rendering the four materials were selected and
modeled by the eye to portray the reflectance, transparency, translucency, and texture
characteristics of each material most optimally. For the glass and jelly renderings, the
rectangle area light engine had a 200000- 500000 W power interval; for the wood,
stone, and plastic renderings, the point light engine had a 200-700 W power interval;
for the metal and copper renderings, the sun light engine had a 50-200 W power
interval (no shadow option was used). The camera viewed the objects from the front
and slightly from above with the perspective camera type and a 50 mm focal length.
The objects with glass, jelly, wood, plastic, and stone materials were rendered with
the EEVEE render engine with a sampling level of 16 and 64 samples per pixel. The
objects with metal and copper material were rendered with the Workbench render

engine with eight samples and specular reflections.

The images of unfamiliar objects were listed as pairs in an associative recognition
task. There was a total of four item conditions: in the texture congruent item
condition (TC, Figure 4.2A), paired items were the images of glaven3 either with the
same or different reflectance but made of the same texture category. In the
reflectance congruent item condition (RC, Figure 4.2B), paired items were the
images of glaven3 either with the same or different textures but made of the same
reflectance category. In texture incongruent item condition (TI, Figure 4.2C), paired

items were the images of glaven3 either with the same or different reflectance but
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made of different textures. Lastly, in reflectance incongruent item condition (RI,
Figure 4.2D), paired items were the images of glaven3 made of either the same or

different textures but with different reflectance categories.

B
Texture Congruent Condition (TC) Reflectance Congruent Condition (RC)

Texture Incongruent Condition (TI) Reflectance Incongruent Condition (RI)

Figure 4. 2. This figure illustrates examples from the four conditions of Experiment
3 in the associative recognition task.

4.1.5. Procedure

Before the experiment started, the experimenter instructed the participants about the
experiment, explaining every stage in the study in detail using instruction slides with
visuals. After the instructions, the experimenter left the room, and the experiment
started. Instructions were also provided on screen for the participants to read between

each stage during the experiment.

In the study stage of Experiment 3, participants were shown a study list containing 7
pairs for every four conditions (TC, RC, TI, RI). A total of 28 pairs were randomly
presented for 4 seconds and a four-second inter-stimulus interval prior to the
presentation of the next pair. Participants were instructed to study these pairs in the
study list for a later memory test. The study stage was followed by the distraction
stage, which included a distractor task in which participants completed addition and

subtraction calculations in a random order for two minutes. Immediately after the
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distractor stage, the retrieval stage took place with an associative recognition task,
where participants were shown a test list containing pairs for every four conditions
(TC, RC, TL, RI). A total of 55 pairs were shown, containing 28 intact pairs that were
in the study list and 19 new, unstudied pairs that were not in the study list (Figure
4.1). Material and shape combinations of the objects in the unstudied pairs were
shown for the first time in the retreival stage. Also, there were 8 rearranged pairs
consisting of objects that were in the study list but belonged to different pairs and
were rearranged in the retrieval stage. Participants were required to press the key "e"
on the keyboard if they had recognized the pair from the study list or "h" if they had
not recognized the pair from the study list with no time limit. This study used a
within-subject design with an associative recognition task, and all responses were

collected using a keyboard (Figure 4.3).

Study Stage Retrieval Stage

unstudied pair (19)

rearranged pair (8)

Figure 4. 3. The experimental procedure of the study stage and the retrieval stage of
Experiment 3.

4.1.6. Results

A Phyton code was written to organize the data (Visual Studio Code version 1.91,
2024) using the SciPy package. Each participant's hit rate for intact pairs in every
four conditions (TC, RC, TI, RI) and false alarm rate for rearranged and new pairs in
every four conditions (TC, RC, TI, RI) were calculated. Hence, the sensitivity d’

scores of every four conditions (TC, RC, TI, RI) for each participant were computed
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by subtracting z-scores of false alarm rate from the hit rate (MacMillan & Creeman,
1991). Inferential statistics were run in JASP (JASP Team, 2024) and figures were
drawn in R (R Core Team, 2021).

A one-sample t-test was conducted to examine the response bias of participants on
associative recognition of unfamiliar objects. The normality assumption was not
violated; the Shapiro-Wilk test indicated that differences between participants were
normally distributed, W(57)= 0.96, p= 0.07. The findings revealed a significant main
effect of response bias (M=-0.3, SD=0.3) between participants, #(56)= -7.05, p<
0.001, d= -0.93, which means that participants had a liberal bias in Experiment 3.

A two-way 2 (congruency) x 2 (surface feature) repeated measures ANOVA was
conducted to examine the effect of congruency (congruent, incongruent) and surface
feature (texture, reflectance) on the d-prime scores. The findings revealed a
significant main congruency effect on associative recognition memory of unfamiliar
objects, F(1, 56) = 62.7, p < 0.001, #’p = 0.52 (Table 4.1). Post hoc analysis with a
Bonferroni adjustment revealed the recognition sensitivity d' score of texture
congruent condition (M=1.66, SD=0.6) was higher than the texture incongruent
condition (M=1.02, SD=0.45), mean difference = 0.64, standard error = 0.09, 95% CI
[0.39, 0.89], p < .001. And the recognition sensitivity d' score of the reflectance
congruent (M=1.43, SD=0.54) condition was higher than the reflectance incongruent
(M=1.14, SD=0.46) condition, mean difference = 0.3, standard error = 0.09, 95% CI
[0.06, 0.54], p = .007. This means that both the texture and reflectance feature
congruent pairs were better recognized than incongruent pairs in the associative
recognition of unfamiliar objects, mean difference = 0.47, standard error = 0.06, 95%

CI10.35,0.59], p <.001 (Figure 4.4).

Table 4. 1. Repeated Measures ANOVA for Experiment 3

swares O Squae PP
Surface feature 0.190 1 0.190 15.087 <.001 0.212
Residuals 0.706 56 0.013
Congruency 12.591 1 12.591  62.760  <.001  0.528
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Table 4.1. (continued)

Residuals 11.235 56 0.201

Surface feature * 1692 1 1692 6747 0012 0.108
Congruency

Residuals 14.045 56 0.251

Table 4. 2. Mean of Hit Rates, False Alarm Rates and Sensitivity d’ Scores of
Conditions in Experiment 3

TC TI RC RI
HR 0.83 0.77 0.82 0.77
FAR-unstudied 0.29 0.21 0.23 0.28
FAR-rearrange - 0.64 0.60 0.67
FAR-total 0.29 0.43 0.35 0.38
Sensitivity d’ 1.67 1.02 1.43 1.14

There was a significant main effect of the surface feature on associative recognition
of unfamiliar objects, F(1, 56) = 15, p < 0.001, #?p = 0.2, mean difference = 0.06,
standard error = 0.01, 95% CI[0.03, 0.09], p < 0.001. According to post hoc analysis
with a Bonferroni adjustment, the sensitivity d’ score of the texture feature (M=1.34,
SE=0.05) was significantly higher than the reflectance feature (M=1.28, SE=0.05);
the recognition sensitivity d’ score of texture congruent condition (M=1.66, SD=0.6)
was higher than the reflectance congruent condition (M=1.43, SD=0.54), mean
difference = 0.23, standard error = 0.07, 95% CI [0.02, 0.44], p = .02. This means
that the texture feature of unfamiliar objects effects the associative recognition
memory more significantly than the reflectance feature of unfamiliar objects. There
was a significant interaction effect between congruency and surface feature on
associative recognition of unfamiliar objects, F(1, 56) = 1.92, p = 0.01, ’p = 0.1.

This means that the effect of congruency on associative object recognition was more
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effective for the material texture compared to the reflectance feature of the

unfamiliar object (Figure 4.5).
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Figure 4. 4. The recognition sensitivity of four conditions (TC, RC, TI, RI) of
unfamiliar objects. The X-axis represents surface features, the Y-axis represents the
sensitivity d’ scores. The yellow bars display congruent and the gray bars display
incongruent conditions, and the error bars represent standard errors of the mean.

To further examine the effect of texture of unfamiliar objects on associative
recognition memory in more detail, a one-way repeated measures ANOVA with
seven levels for material texture (wood, stone, glass, metal, plastic, jelly, copper) was
performed as a post-test. The sphericity assumption was violated, which was
significant, y2(20) = 33, p =.03; thus, the degrees of freedom were corrected using
the Greenhouse-Geisser correction, ¢ = 0.85. The findings with Greenhouse-Geisser
correction revealed a significant material effect on associative recognition of
unfamiliar objects, F(5, 56) = 14.7, p < 0.001, #?p = 0.2. Post hoc analysis with a
Bonferroni adjustment revealed that the congruent pairs rendered as wood (M=0.92,
SD=0.52) were better recognized than the metal (M=0.53, SD=0.3, mean difference =
-0.4, standard error = 0.08, 95% CI [-0.6, -0.1], p < 0.001), the stone (M=0.4,
SD=0.4, mean difference = -0.5, standard error = 0.08, 95% CI [-0.8, -0.21], p <
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0.001), the copper (M=0.5, SD=0.5, mean difference = -0.43, standard error = 0.09,
95% CI [-0.7, -0.2], p < 0.001), and the plastic (M=0.5, SD=0.3, mean difference = -
0.4, standard error = 0.07, 95% CI [-0.6, -0.17], p < 0.001) material textures.

Also, the congruent pairs rendered as jelly (M=0.95, SD=0.5) were better recognized
than the metal (M=0.53, SD=0.3, mean difference = -0.42, standard error = 0.07,
95% CI [-0.7, -0.2], p < 0.001), the stone (M=0.4, SD=0.4, mean difference = -0.54,
standard error = 0.09, 95% CI[-0.8, -0.2], p < 0.001), the copper (M=0.5, SD=0.5,
mean difference = -0.47, standard error = 0.01, 95% CI [-0.8, -0.2], p < 0.001), and
the plastic (M=0.5, SD=0.3, mean difference = 0.47, standard error = 0.07, 95% CI [-
0.7,-0.2], p <0.001) textures.

Furthermore, the congruent pairs rendered as glass (M=0.7, SD=0.5) were better
recognized than the stone material (M=0.4, SD=0.4, mean difference = 0.3, standard

error = 0.08, 95% CI[0.01, 0.5], p = 0.035, Figure 4.6).
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Figure 4. 5. The recognition sensitivity of four conditions (TC, RC, TI, RI) of
unfamiliar objects. The X-axis represents congruency, the Y-axis represents the
sensitivity d’ scores. The yellow line displays texture and the gray line displays
reflectance conditions, and the error bars represent standard errors of the mean.
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To further examine the reflectancy effect of unfamiliar objects on associative
recognition memory in more detail, a paired samples t-test with two levels (glossy,
matte) was performed as a post-test. The normality assumption was not violated; the
Shapiro-Wilk test indicated that differences between conditions were normally
distributed, W(57)= 0.1, p= 0.23. Post t-test with a Bonferroni adjustment revealed
that reflectance had a significant effect on the associative recognition of unfamiliar
objects, #56)= 2.11, p= 0.039, with a small effect size (d= 0.28). The sensitivity d
score of the matte reflectance (M=1.5, SD=0.61) was higher than the glossy
reflectance (M=1.2, SD=0.65) (Figure 4.7).
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Figure 4. 6. The recognition sensitivity of texture congruent pairs with glass, jelly,
metal, copper, stone, plastic, and wood material textures. The X-axis represents the
seven material textures, the Y-axis represents the sensitivity d’ scores, and the error
bars represent standard errors of the mean.

A two-way 2 (congruency) x 2 (surface feature) repeated measures ANOVA was
conducted to examine the effect of congruency (congruent, incongruent) and surface
feature (texture, reflectance) on the hit rates of unfamiliar objects. The findings
revealed a significant main congruency effect on the hit rates of unfamiliar objects,

F(1, 56) = 12.29,p < 0.001, #’» = 0.18 (Table F.1). Post hoc analysis with a
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Bonferroni adjustment revealed the hit rate of congruent conditions (M=0.82,
SE=0.016) were higher than the incongruent conditions (M=0.77, SE=0.016), mean
difference = 0.05, standard error = 0.015, p < .001 (Table F.2). There was no
significant main effect of the surface feature on the hit rates of unfamiliar objects,
F(1, 56) = -0.004, p = 1, n°p = -7.901x10-5. Meaning that both the texture and the
reflectance features of unfamiliar objects affect the hit rates equally. There was no
significant interaction effect between congruency and surface feature on the hit rates
of unfamiliar objects, F(1, 56) = 0.26, p = 0.87, n°p = 4.557%10-4. This means that
the effect of congruency on hit rates was similar for the texture and the reflectance of

the object (Figure 4.8).
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Figure 4. 7. The recognition sensitivity of reflectance congruent pairs with matte and
glossy reflectance. the X-axis represents the two reflectance features, the Y-axis
represents the sensitivity d’ scores, and the error bars represent standard errors of the
mean.

A two-way 2 (congruency) x 2 (surface feature) repeated measures ANOVA was
conducted to examine the effect of congruency (congruent, incongruent) and surface
feature (texture, reflectance) on the false alarm rates of unfamiliar objects. The
findings revealed a significant main congruency effect on the false alarm rates of
unfamiliar objects, F(1, 56) = 32.31,p < 0.001, #°p = 0.37 (Table F.3). Post hoc

analysis with a Bonferroni adjustment revealed the false alarm rate of incongruent
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conditions (M=0.41, SE=0.015) were higher than the congruent conditions (M=0.32,
SE=0.016), mean difference = 0.08, standard error = 0.015, p < .001 (Table F.5).
There was a significant main effect of the surface feature on the false alarm rates of
unfamiliar objects, F(1, 56) = 16.32, p < 0.001, #?p = 0.23. Post hoc analysis with a
Bonferroni adjustment revealed the false alarm rate of reflectance conditions
(M=0.37, SE=0.014) was higher than the texture conditions (M=0.36, SE=0.013),
mean difference = 0.012, standard error = 0.003, p < .001 (Table F.4). There was a
significant interaction effect between congruency and surface feature on the false
alarm rates of unfamiliar objects, F(1, 56) = 10.17, p = 0.002, #?p = 0.15. The false
alarm rate of the texture incongruent (A=0.43, SE=0.018) condition was higher than
the texture congruent condition (M=0.29, SE=0.020), mean difference = 0.14,
standard error = 0.03, p < .001. The false alarm rate of the reflectance congruent
(M=0.35, SE=0.018) condition was higher than the texture congruent condition
(M=0.29, SE=0.020), mean difference = 0.07, standard error = 0.02, p = 0.010. The
false alarm rate of the texture incongruent condition (AM=0.43, SE=0.018) was higher
than the reflectance incongruent condition (M=0.38, SE=0.015), mean difference =

0.045, standard error = 0.015, p = .023 (Figure 4.8).
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Figure 4. 8. The hit rates (HR) and false alarm rates (FAR) of four conditions (TC,
RC, TI, RI) of unfamiliar objects. The X-axis represents surface features, the Y-axis
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represents the HRs and FARs. The yellow bars display congruent and the gray bars
display incongruent conditions, and the error bars represent standard errors of the
mean.
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CHAPTER 5

GENERAL DISCUSSION

In this thesis, I explore the facilitatory role of object material in associative
recognition of familiar and unfamiliar shapes in three experiments and a preliminary
study. The main focus was to understand how participants form associations between
objects with information coming from features such as material, shape, surface

reflectance, and texture.

5.1. Experiment 1

The aim of Experiment 1 was to investigate how people form associations between
two familiar objects based on their shared object features like material and shape.
Thus, a set of familiar objects (jug, mug, goblet, water glass) made of everyday
materials (wood, stone, glass, metal) were chosen as stimuli in Experiment 1. The
results of Experiment 1 revealed that participants benefitted when material and shape

features were congruent in associative recognition of familiar objects, as expected.

Contrary to the hypotheses of this thesis, shape information did not affect the
associative recognition more than the material information. There was no difference
between the material and shape features of familiar objects in associative

recognition.

Therefore, material information was found to be equally important as the shape of
familiar objects in the associative recognition memory. Furthermore, it is reasonable
to think that pre-experimental familiarity of object identity and object-material
associations may play a role in object recognition during Experiment 1 (Sharan et al.,

2009; Ngo et al., 2018).
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5.2. Preliminary Study and Experiment 2

The aim of the Preliminary study was, before conducting Experiment 2, to view
whether the unfamiliar glaven2 rendered with four different material categories
(wood, metal, stone, glass) were perceived as the intended materials by the
participants. The results revealed that participants correctly identified most of the
material categories of metal, stone, and wood materials but not the glass material.
Even though the same glass asset from BlenderKit was used in Experiment 1 with
familiar shapes (jug, water glass, mug, goblet), participants could not recognize the
glass material with the unfamiliar shape of glaven 2. So, instead of the glass
rendering parameters of the Preliminary Study, I used a different glass asset from the
Blenderkit in Experiment 2. In addition to that, different from Experiment 1 and the
Preliminary Study, I used a forest lane as an environmental map from the HDRs of

Blenderkit, which improved the glass renderings.

The aim of Experiment 2 was to investigate how people form associations between
two unfamiliar objects based on their shared surface properties like material and
shape. Thus, a set of four unfamiliar glavens made of the same material categories as
Experiment 1 (wood, stone, glass, metal) were chosen as stimuli in Experiment 2.
The reason I used unfamiliar objects like glavens, which were images varied in the
underlying geometry, was to suppress any shape-based object identity or familiarity
regarding these objects, which was not the case in Experiment 1. The results of
Experiment 2 also revealed a congruency effect for both material and shape in
associative recognition of unfamiliar objects. As expected, the material feature was
found to dominate the shape feature in associative recognition memory of unfamiliar
objects. It was found that when objects are not familiar, participants identified the
familiar features (Schmidt et al., 2020). Hence, in Experiment 2, participants
depended on the only reliable and familiar surface information when forming
associations between objects, which was the material feature and not the unfamiliar

shape.

Another result of Experiment 2 was the high associative recognition rate of glass

material compared to other materials (metal, wood, stone) in the material congruent
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condition. This finding may result from the saliency of glass, which has reflective
surface properties such as gloss (Okamoto et al., 2013), translucency (Xiao et al.,
2014), and transparency (Fleming et al., 2011; Dovencioglu et al., 2018). These
properties have primarily visual characteristics, unlike the other materials I used,
which mainly have tactile characteristics like the hardness and roughness of wood

and stone (Nagai et al., 2015).

Furthermore, the shape feature of the glavens used in Experiment 2 was as
discriminative as the materials (Table H.1). The associative recognition sensitivity of
glaven7 was higher than the other three glavens in the shape-congruent condition
(Table H.3, Figure H.1). This means that participants were able to distinguish the
shape of unfamiliar glavens as well as their material. However, they were better at
recognizing the material-congruent unfamiliar object pairs than shape-congruent

pairs.

In Experiment 1, the two distinct routes of material perception can be observed in
estimating the materials of familiar objects. The association route can be used for
established material-object associations (Sharan, 2009; Schmidt et al., 2017; Alley et
al., 2020). For instance, identifying the glass material of the mug, goblet, water glass,
or jug can be executed based on the glass identity formed by the associations with
these objects. However, with uncommon material-object combinations (e.g., stone
jug), the estimation route can be used to assess material properties directly from
visual image features (Van Assen & Fleming, 2016). Similarly, in Experiment 2, the
association route of material estimation is not possible due to the unfamiliarity of
objects and the absence of learned associations. Hence, the estimation route alone is

used when identifying the materials of unfamiliar objects.

Across all three experiments, participants were more likely to falsely identify
rearranged pairs as "studied" compared to completely new, unstudied pairs. This
pattern reveals two important findings about memory performance. First, participants
were generally good at distinguishing between pairs they had studied and completely
new pairs they had never seen before. However, they had difficulty when presented

with rearranged pairs that included objects they had studied but not in that particular
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combination. This difficulty can be explained by individual object interference
(Rotello & Heit, 2000). When participants saw a rearranged pair, they recognized
both individual objects from their study session (since each object was indeed
studied, just in different pairs). This recognition of the individual objects sometimes
led participants to mistakenly conclude they had studied these objects together as a
pair when in fact, they had studied them as parts of different pairs. Hence, when both
objects in a rearranged pair feel familiar (due to their presence in the study phase),
participants may struggle to overcome this familiarity to accurately reject the novel
pairing (Yonelinas, 2002). The higher false alarm rates for rearranged pairs
demonstrate that having strong item memory (recognizing individual objects) does
not necessarily translate to accurate associative memory (remembering which objects
were paired together) (Humphreys, 1978; Clark et al., 1993; Cohn & Moscovitch,
2007). Hence, instead of a recall-like process, creating a compound cue is also

possible in forming associations between items (Gronlund & Retcliff 1989).

Furthermore, congruency increased the interference of rearranged pairs (false alarm
rates of rearranged pairs) both in Experiment 1, F(1, 73) = 25.5,p < 0.001, % =
0.26 (Table D.5), and Experiment 2, F(1, 73) = 04.4, p = 0.049, n’p = 0.07 (Table
E.9). This finding could be due to the increased recognition strength of congruent
pairs compared to incongruent ones. Hence, stronger item recognition could have led
to higher interference and impaired the ability to discriminate specific associations in
congruent conditions (Johnson et al., 2013). Especially familiar objects in
Experiment 1 could have induced more substantial interference and increased
susceptibility to false recognition in the congruent conditions compared to

Experiment 2 (as indicated by the larger effect size: n?p = 0.26 vs. n’p = 0.07).
p

Moreover, the sensitivity d’ scores of unfamiliar objects in Experiment 2 were higher
than the sensitivity d’ scores of familiar objects in Experiment 1. This finding can
also be explained by the interference of familiar objects compared to unfamiliar
ones. I found that familiar objects induced more substantial interference (n*p = 0.26)
compared to unfamiliar objects (n?p = 0.07) in the congruent conditions, suggesting

that familiarity increased susceptibility to false recognition.
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Furthermore, the total false alarm rates of familiar objects were higher than those of
unfamiliar objects. Thus, this drop in associative recognition sensitivity of familiar
objects could be explained by the pre-existing object-material associations, which
can create interference and false recognition during retrieval. For familiar objects in
Experiment 1, both the association and estimation routes of material perception are
active (Schmidt et al., 2017). For instance, recognizing an object's identity can lead
to strong predictions about its material composition (Alley et al., 2020; Sharan et al.,
2009) and these predictions could have interfered with the retrieval of the studied
pairs in Experiment 1. With unfamiliar objects, only the estimation route is available,
potentially leading to more focused and efficient processing based purely on visual
features. Therefore, the higher sensitivity scores for unfamiliar objects may reflect a
more focused perceptual processing strategy independent of pre-existing semantic

associations.

5.3. Experiment 3

The aim of Experiment 3 was to investigate how people form associations between
two unfamiliar objects based on their shared surface properties like texture and
reflectance while holding shape constant. Thus, one unfamiliar glaven made of seven
textures (glass, metal, wood, stone, plastic, copper, jelly) and two reflectance
features (matte, glossy) were chosen as stimulus conditions in Experiment 3. As in
Experiment 2, the reason I used one type of glaven in this experiment was to
suppress any additional, shape-based object identity and familiarity regarding these

objects.

The effect of object shape on reflectance perception is long known. For instance, the
glossiness of a surface has been found to make curved surfaces appear more curved
(Nishida & Shinya, 1998). Also, it was found that objects with identical reflectance
properties were perceived as having different levels of glossiness depending on their
shape (Ho et al., 2008). Also, the impact of surface texture on reflectance perception
(glossiness) was shown (Ho et al., 2008). In Experiment 3, I displayed surfaces that
are made of different textures but have similar reflectance properties, along with

surfaces with similar reflectance patterns but made of different textures. Similar to
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the previous findings, the results of Experiment 3 also revealed a congruency effect
for both texture and reflectance in associative recognition of unfamiliar objects, as
expected. The texture feature was found to have higher sensitivity than the
reflectance feature in associative recognition memory of unfamiliar objects.
Although the surface reflectance property was distinctive enough to show a
congruency effect, where reflectance congruent object pairs were better remembered
than incongruent pairs across all textures, the surface reflectance information was
still not strong enough to predominate the texture information in associative
recognition of unfamiliar objects. When exposed to an unfamiliar shape that does not
provide any type of information and is constant in all trials, participants relied on

both texture and reflectance but focused more on the textures.

The reason surface texture showed higher sensitivity than surface reflectance in
Experiment 3 is because of the higher false alarm rate of surface reflectance
compared to surface texture. Similarly, the reflectance-congruent condition had a
higher false alarm rate than the texture-congruent condition. Thus, participants were
good at differentiating the surface texture of studied pairs from non-studied ones but
poor at differentiating the surface reflectance of studied pairs from non-studied ones.
One possible explanation could be that surface textures can provide distinctive

surface patterns and visual cues that can make them easier to discriminate.

My findings are in line with a study conducted by Fleming et al. (2003) in which the
authors used a surface reflectance matching task and found that the matching
performance of surface reflectance estimation was reliable and precise. They suggest
that the visual system examines the local reflectance highlights when distinguishing
glossy from matte surfaces. Thus, they conclude that how a material reflects, bends,
transmits, or scatters light gives us critical clues about its properties when estimating
materials (Fleming et al., 2003). Hence, the light reflected by a surface holds
information about the material's properties (Motoyoshi & Matoba, 2012; Kim et al.,
2020). Furthermore, the Bidirectional Reflectance Distribution Function (BRDF) is a
mathematical function that models how light interacts with different materials
(Nishida, 2019). It emphasizes that the appearance of a material is not static but

rather depends on the specific lighting and viewing conditions. Also, different
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material classes, such as metal, wood, and glass, exhibit different BRDFs (Xiao et
al., 2012). A series of experiments investigated the relationship between the
reflectance properties of a material and its perceived appearance and found that
systematically changing reflectance properties also alters the perceived material
(Schmid et al., 2020). For instance, the perceived gloss was found to change with
material class, indicating that gloss should be viewed in the context of its material
(Schmid et al., 2020). For example, the visual appearance of materials like steel and
plastic can vary significantly based on their surface reflectance. Steel can appear
polished, scratched, or rusted, while plastic can be smooth and glossy to rough and
dull. Thus, a lack of overall matte/glossy difference in my findings might be due to

the interplay between reflectance and texture.

One observation in Experiment 3 was the high associative recognition rate of the
matte surfaces over the glossy surfaces in the surface congruent condition. The
reason matte surfaces showed higher associative recognition sensitivity than glossy
surfaces is that the glossy pairs had higher false alarm rates compared to matte pairs.
This means that participants were good at differentiating the matte surfaces of
studied pairs from non-studied ones but poor at differentiating the glossy surfaces of
studied pairs from non-studied ones. This could be because, unlike glossy surfaces,
matte surfaces do not have specular highlights (Nayar & Oren, 1995; Dana et al.,
1999; Pont et al., 2015; Toscani et al., 2017; Olkkonen & Brainard, 2010). Thus,
light reflects more uniformly across matte surfaces and creates stable (more
discriminable) patterns compared to glossy surfaces (Nayar & Oren, 1995; Dana et
al., 1999; Fleming et al., 2003; Kim et al., 2012). One possible explanation could be
that matte surfaces have fewer bright reflections of light; therefore, details and
textures on the surface could be simpler to distinguish between the studied pairs and

non-studied ones in the associative recognition task.

Parallel to this view, glossy condition in Experiment 3 might have appeared less
discriminable than the matte-textured condition since the perception of highlights on
a surface is closely linked to surface geometry and perceived shape (Ddvencioglu et
al 2015, 2017). Using a single geometry for all conditions in Experiment 3 might

have created a very similar specular highlight pattern across all glossy materials,
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causing the texture information in the glossy condition to be less informative than the

matte-textured condition.

Another result of Experiment 3 was the high association recognition rate of wood
and jelly materials in the texture-congruent condition compared to other materials.
This is consistent with the finding that wood and minerals were easiest to identify
due to their distinctive surface patterns, with metal being the most difficult to
recognize due to the absence of characteristic textures (Yoonessi & Zaidi, 2010;
Zaidi, 2011). However, how can we explain the high associative recognition of
material jelly? One explanation is especially for the jelly material; the perception of
translucency may depend on image cues such as color gradients (Liao et al., 2022).
Therefore, the role of color in material, reflectance, and object recognition should
also be examined. The color literature on material and object recognition is
somewhat convoluted. One study showed that there was no material effect in the
color-matching paradigm using objects with identical colors but made of different
materials and those made of the same material but with different colors (Giesel &
Gegenfurtner, 2010). Likewise, another study indicated that the influence of material
on color matching was minimal (Xiao & Brainard, 2008). Another study revealed
that when participants were expected to make matches from three objects varying in
material and color, they always selected the material match if the material was
identical to the target (Radonji¢ et al., 2018). However, as the color difference
between the matching materials increased, people were more likely to select the
object with the matching color. Suggesting that as the material's color becomes more
distant, it is easier for the observer to focus on color rather than material distinctions

(Radonji¢ et al., 2018).

Furthermore, it was found that color is an important cue for identifying objects when
surface details, such as texture or shadow, are not present, which is typically not the
case because color is not perceived in isolation but rather in conjunction with other
surface features such as texture and shading (Bramao et al., 2011), which is the case
in all the three experiments. While the color of highlights and lowlights was found to
provide some information about material properties, the characteristics of the gloss

itself, such as contrast and sharpness, are much more critical cues (Brainard et al.,
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2018). Although Experiment 3 was not designed to directly investigate the role of
color in object memory, these examples could account for the prominent effect of
texture since I used distant colors for each texture condition (e.g., red plastic, green
jelly). Further studies that control for color properties while manipulating textures
are needed to fully understand the dissociation between the roles of color and texture

in object memory.

What about the material-specific color information? Almost every language links
color names to materials. According to research by Zaidi (2011), color is a key part
of how we mentally picture what things are made of. Thus, our perception of color
and material must accurately correlate to provide beneficial information about
surface features (Burghouts & Geusebroek, 2009; Brainard et al., 2018). Recent
work showed that we can more effectively discriminate between different objects by

using both color and glossiness cues (Saarela & Olkkonen, 2017).

Interestingly, maintaining color constancy was significantly greater for glossy
objects than matte objects (Granzier et al., 2014). In Experiment 3, the exact opposite
finding was observed: matte surfaces were better recognized than glossier ones. This
contrasting result suggests that color perception may not have been the main factor
driving performance in Experiment 3. If color had been the primary basis for
recognition, my findings should have aligned with Granzier et al.'s results, showing
better performance with glossy surfaces. In summary, color perception and object
recognition interact with each other to provide the most accurate information about
the materials and objects (Witzel & Gegenfurtner, 2018). In conclusion, although
color is a critical part of material and object recognition, it by itself does not define
surface features such as material, and texture. Therefore, the superior material effect
of glavens over the shape and reflectance found in this study cannot be reduced to

color.

5.4. Memory Load in Different Conditions

The overlapping pairs between conditions in all experiments introduce memory load

variations within conditions. It should be kept in mind that this could have influenced
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the results in ways that are difficult to separate from the main effects being studied.
For instance, in the material-congruent condition (MC), when participants
encountered pairs with congruent features (same material and shape, two object
features), the lower memory load likely made these pairs easier to remember (Olson
& Jiang, 2002; Alvarez & Cavanagh, 2004). In contrast, pairs that were congruent on
one feature but incongruent on another (same material but different shapes, three
object features) had a higher memory load with perceptual complexity and would
have required more cognitive resources to encode and retrieve these pairs (Eng et al.,

2005; Alvarez & Cavanagh, 2004).

In other words, mixing pairs with varying memory loads within conditions makes it
harder to isolate the specific effects of object features on associative memory.
Performance in each condition might reflect an average of two different levels of
memory load rather than a pure measure of how one type of congruency affects
memory. As mentioned in the method section of Experiment 1, one way to eliminate
this memory load difference within conditions would be using material-congruent
shape-incongruent, shape-congruent material-incongruent, material and shape
congruent, and material and shape incongruent conditions. This alternative design
can provide memory load distinctions between conditions and account for the

specific effects of object feature congruency on associative memory.

In summary, perceptually congruent shape, material, texture, and reflectance pairs
were more memorable than incongruent pairs in all three experiments. Moreover, the
results of Experiment 1 showed that material information was as important as shape-

based object identity in familiar object memorability.

Also, the material feature of unfamiliar objects was more memorable than the shape,
and the texture of unfamiliar objects was more memorable than the surface
reflectance in Experiments 2 and 3. Lastly, the material properties facilitated
associative recognition of unfamiliar objects stronger than familiar objects. In
conclusion, these are the first findings directly relating shape and surface properties

to object memorability using familiarity as a moderator.
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5.5. Limitations

The first limitation of this thesis was that there were repeating object pairs in the
congruent and incongruent conditions in all three experiments. For instance, in
Experiments 1 and 2, material-congruent object pairs were present in the material-
congruent (MC) and shape-incongruent (SI) conditions. Material-incongruent object
pairs were present in the material-incongruent (MI) and shape-congruent (SC)
conditions. Similarly, shape-congruent object pairs were present in both shape-
congruent (SC) and material-incongruent (MI) conditions. And shape incongruent
object pairs were present in the shape-incongruent (SI) and material-congruent (MC)
conditions. Although the number of these repeating pairs was controlled with equal
distribution (half and half) in all conditions, the memory load of object pairs differed
within the same condition. For example, in the material-congruent condition (MC),
there were object pairs with both the same object shape and material, which had
lower memory load than pairs with the same object material and different shapes.
Therefore, the repeating pairs and the difference in memory load within experimental

conditions could have partially influenced the findings of this thesis.

Another limitation was that the glass material of the unfamiliar object (glaven) was
not well identified compared to other wood, metal, and stone materials in the
Preliminary study. The glass material was relatively more challenging than other
materials to render with glavens. For this reason, in Experiment 2, glass rendering
parameters were improved by using a different "glass" asset from the Blenderkit.
Therefore, the glass materials used in Experiment 2 and Experiment 1 were different
from each other, and the improved recognition sensitivity of the material glass in
Experiment 2 could be due to this change. Another limitation was that the study
stimuli and the new-unstudied stimuli of wood and jelly materials in Experiment 3
had relatively more distinguishable color characteristics from each other compared to
other materials. Therefore, because it was easier to discriminate between the studied
and the unstudied pairs of these materials from each other, this could influence the
associative recognition performance. Another limitation was that I referenced the
dual-process theory in discussing my results, and other alternative recognition

models (Dunn, 2008) should also be addressed in future studies.
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The last limitation was that, in Experiment 1, lighting direction was inconsistent
across the object renderings, resulting in varying shadow patterns. This inconsistency
is significant because lighting and shadows (illuminance flow) provide essential
information about how light interacts with objects and reveals their 3D texture
structure and shape (Nishida & Shinya, 1998; Pont et al., 2015; Pont & Te Pas,
2006). Since the lighting conditions were not standardized between stimuli, this
variation could have influenced how participants perceived and remembered the

object material and shape, potentially affecting the study's results.

5.6. Future Research

This thesis unlocks the way for several different directions in future research. The
first one is that the current data does not permit us to conclusively exclude the
influence of color in associative object recognition. Color may be a valuable cue for
identifying the material composition of an object, and future research should
investigate the role of color in material memorability. More specifically, future
research should focus on how the visual system adjusts its processing of color
information to account for variations in texture, glossiness, and other material
properties. Further studies are needed to examine the role of color in the perception
of materials, particularly investigating whether color cues enhance our ability to
perceive and remember materials in both familiar and unfamiliar objects (Yoonessi

& Zaidi, 2010; Witzel & Gegenfurtner, 2018).

Second, the role of semantic features (Konkle et al., 2010; Isola et al., 2013; Shoval
et al., 2023) of familiar objects and affordance attributes (Mecklinger et al., 2004;
Green & Hummel, 2006; Lindemann et al., 2006) in Experiment 1 could account for
the associative recognition performance. I did not control the semantic and
affordance features of these familiar objects; thus, future work could investigate the
role of semantic features of objects, such as their object category membership and
affordance characteristics compared to perceptual object features. Third, the object
properties used in this thesis (shape-base object identity, shape, material, surface
reflectance) can be modeled as a simple additive process where each property

influences the other to observe their interaction (Ho et al., 2008; Hansmann-Roth &
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Mamassian, 2017). And lastly, future research can look into the role of illumination

flow in associative object recognition.

5.7. Conclusion

Earlier studies in material perception have often explored one object property at a
time (Ho et al., 2008), yet most objects exhibit several interacting properties. Here, I
investigated two object features (shape-material) and surface features (reflectance-
texture) and how they interact in three experiments. This thesis is the first to explore
what makes familiar and unfamiliar objects memorable with different materials and
investigate which material properties improve object memorability. This thesis
focused on the role of material perception in associative recognition of familiar and
unfamiliar objects. In the scope of this thesis, there was no difference between
material and shape information in forming associations between familiar objects.
However, texture information was found to predominate the shape and reflectance
information in creating associations of unfamiliar objects. This thesis contributes to
visual perception and memory research by highlighting the role of materials in object
memorability for the first time. The findings of this thesis can also apply to real-
world situations, for instance, in the industry by suggesting marketers to strategically
use packaging with matte surfaces and materials like wood, glass, and jelly to be
recognized better based on the results of this thesis. Also, the findings can be applied
to selecting memorable materials for design choices, particularly when choosing

materials for everyday items like home furnishings and tableware.
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ARASTIRMAYA GONULLU KATILIM FORMU

Bu calisma ODTU Psikoloji Béliimii 6gretim yelerinden Dog. Dr. Dicle Doyengioglu ve Dog. Dr. Ash Kilig danismanliginda
Oykii Goze Ozdemir’in yiiksek lisans tezi kapsaminda yiiriitiilmektedir. Bu form sizi arastirma kosullari hakkinda
bilgilendirmek igin hazirlanmistir.

Calismanin Amaci Nedir?

insanlarin hafizasi gordiikleri uyaranlara gére farkliliklar gésterebilir. Bu calismanin amaci gosterilen farkli
uyaranlarin gagrigimsal bellek tizerine etkisini 6lgmektir.

Bize Nasil Yardimci Olmanizi isteyecegiz?

Arastirma psikoloji boliim laboratuarinda yapilacaktir. Universite dgrencileri katilimci olarak davet edilecek,
katilmak isteyenler yaklagik 20 dakikalik bir laboratyar. seansina katilacaklardir. Calismada sizden gdsterilen uyaranlari
hafizanizda tutmaniz ve daha sonra gérdiigiiniizii hatirladiginiz uyaranlar igin “evet” hatirlamadiklariniz igin_“hayir”
segeneklerini isaretlemeniz istenmektedir.

Katil la ilgili bil iz gerekenler:

Bu galigmaya katilmak tamamen géndlltliik esasina dayalidir. Herhangi bir yaptirima veya cezaya maruz
kalmadan calismaya katilmayi reddedebilir veya galismayi birakabilirsiniz. Aragtirma esnasinda cevap vermek
istemediginiz sorular olursa bog birakabilirsiniz.

Aragtirmaya katilanlardan toplanan veriler tamamen gizli tutulacak, veriler ve kimlik bilgileri herhangi bir sekilde
eslestirilmeyecektir. Katiimcilarin isimleri bagimsiz bir listede toplanacaktir. Ayrica toplanan verilere sadece
arastirmacilar ulagabilecektir. Bu aragtirmanin sonuglari bilimsel ve profesyonel yayinlarda veya egitim amagli
kullanilabilir, fakat katilimcilarin kimligi gizli tutulacaktir.

Caligmaya katilanlar bu duyurunun yapildigi ders igin bonus puan alacaklardir. Alinacak puan dersin 6gretim
tyesi tarafindan belirlenecektir.

Aragtirmayla ilgili daha fazla bilgi almak isterseniz:

Caligmayla ilgili soru ve yorumlarinizi aragtirmaciya ~adresinden iletebilirsiniz.

Yukaridaki bilgileri okudum ve bu ¢alismaya tamamen géniillii olarak katiliyorum.
(Formu doldurup imzaladiktan sonra uygulayiciya geri veriniz).

isim Soyad Tarih imza

B ey B
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C. AN EXAMPLE SCREENSHOT FROM THE PRELIMINARY STUDY

Litfen ekranda goreceginiz objelerin hangi materyalden yapildigini diiglinliyorsaniz yaziniz.

ornegin: metal, cam, tas, plastik, ahsap

Soru *

Kisa yanit metni
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D. HIT RATES AND FALSE ALARM RATES OF EXPERIMENT 1

Table D. 1. Repeated Measures ANOVA of HRs in Experiment [

Sum of Mean F )
Squares Square p e
Object Feature 9.121><1(3)1' 1 9.121><1(3)1' 1.499><1(1)3' 1.000 2.054><1?5'
Residuals 4.441><1(1)6' 73 6'083”%
Congruency 1.906 1 1.906 83.174  <.001 0.533
Residuals 1.673 73 0.023
Object Feature
x 0.014 1 0.014 0.984 0.324 0.013
Congruency
Residuals 1.002 73 0.014
Table D. 2. Post Hoc Comparison of HRs of Congruency in Experiment 1
Mean Difference SE t Phont
congruent incongruent 0.127 0.014 9.212 <.001
Table D. 3. Repeated Measures ANOVA of FARs in Experiment 1
Sum of Mean )
Squares df Square F p T
Object Feature 5.865x10™* 1 5.865x10 1.246 0.268 0.017
Residuals 0.034 73 4.706x10™
Congruency 1.188 1 1.188 84.861 <.001 0.538
Residuals 1.022 73 0.014
Object Feature % 0029 1 0029 1246 0268 0.017
Congruency
Residuals 1.683 73 0.023
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Table D. 4. Post Hoc Comparison of FARs of Congruency in Experiment 1
Mean Difference SE t Phont

congruent incongruent 0.127 0.014 9.212 <.001

Table D. 5. Repeated Measures ANOVA of FAR-rearranged in Experiment 1

Sum of Mean

Squares df Square F p M
Object feature 0.001 1 0.001 0.173 0.679  0.002
Residuals 0.557 73 0.008
Congruency 0.582 1 0.582 25.530 <.001  0.259
Residuals 1.664 73 0.023
gﬁfgﬁfﬁ‘;f@ * 0012 1 0012 0173 0679 0.002
Residuals 5.015 73 0.069

Table D. 6. Post Hoc Comparison of FAR-rearranged of Congruency in Experiment [

Mean Difference SE t Pbont

congruent  incongruent 0.089 0.018  5.053 <.001
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E. HIT RATES AND FALSE ALARM RATES OF EXPERIMENT 2

Table E. 1. Repeated Measures ANOVA of HRs in Experimet 2

Sum of Mean ,
Squares df Square F p T
Object Feature /2019 1736100 g3si0- 1000 5.063x10°
14 16
Residuals 3.469x10° 56 6.195x%10
16 18
Congruency 0.741 1 0.741 31983  <.001 0.364
Residuals 1.298 56 0.023
Object Feature
x 0.020 1 0.020 1.449 0.234 0.025
Congruency
Residuals 0.765 56 0.014
Table E. 2. Post Hoc Comparison of HRs of Congruency in Experimet 2
Mean Difference SE t Phont

congruent  incongruent

0.114

0.020 5.655 <.001

Table E. 3. Repeated Measures ANOVA of FARs in Experiment 2

Sum of

df Mean

Squares Square F p o
Object Feature 0.003 1 0.003 15362 <.001 0.215
Residuals 0.012 56  2.083x10*
Congruency 0.191 1 0.191 13.647 <.001 0.196
Residuals 0.785 56 0.014
8512%12513;‘“ * 0.157 1 0.157 15362 <.001 0215
Residuals 0.572 56 0.010
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Table E. 4. Post Hoc Comparison of FARs of Object Feature in Experiment 2
Mean Difference SE t Phont

material shape -0.007 0.002 -3.919 <.001

Table E. 5. Post Hoc Comparison of FARs of Congruency in Experiment 2
Mean Difference SE t Phont

congruent incongruent -0.058 0.016 -3.694 <.001

Table E. 6. Repeated Measures ANOVA of Materials HRs in Material Congruent
Condition in Experiment 2

Sum of Squares df Mean Square F p %
HR 0.494 3 0.165 4483  0.005 0.074
Residuals 6.177 168 0.037

Table E. 7. Repeated Measures ANOVA of Material FARs in Material Congruent
Condition in Experiment 2

Sum of Squares df Mean Square F p %
FAR 0.395 3 0.132 2987  0.033  0.051
Residuals 7.410 168 0.044

Table E. 8. Mean of Hit Rates, False Alarm Rates and Sensitivity d’ Scores of
Materials in Material Congruent Condition in Experiment 2

Metal Wood Stone Glass
HR 0.85 0.89 0.77 0.86
FAR-unstudied 0.17 0.18 0.09 0.40
FAR-rearranged 0.75 0.82 0.77 0.79
FAR-total 0.39 0.40 0.31 0.29
Sensitivity d’ 1.14 1.01 0.95 1.49
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Figure E. 1. The hit rates (HR) and false alarm rates (FAR) of material congruent
pairs with glass, metal, stone, and wood materials. The X-axis represents the four
materials, the Y-axis represents the HRs and FARs, and the error bars represent
standard errors of the mean.

Table E. 9. Repeated Measures ANOVA of FAR-rearranged in Experiment 2

Sum of Mean

2
Squares df Square F p e

Object Feature 000310 6853004 515 g ggq  2:618%10
Residuals 0.262 56 0.005

Congruency 0.058 1 0.058 4.045 0.049 0.067
Residuals 0.798 56 0.014

Object Feature i i )
@ 6.168><104 1 6.168><104 0.015  0.904 2.618><104
Congruency

Residuals 2.355 56 0.042

TableE. 10. Post Hoc Comparison of FAR-rearranged of Congruency in Experiment 2

Mean Difference SE t Phont

congruent incongruent 0.032 0.016 2.011 0.049
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F. HIT RATES AND FALSE ALARM RATES OF EXPERIMENT 3

Table F. 1. Repeated Measures ANOVA of HRs in Experiment 3

Sum of Mean )
Squares Square p Tp
Surface 1.754%10" 1.754%10" -
Feature 50 1 50 -0.004 1.000  7.901x 105
Residuals 2.220x 1(1); 56 3.965x 1(1);
Congruency 0.158 1 0.158 12.287 <.001 0.180
Residuals 0.720 56 0.013
Surface i i i
Feature sk 3.580X104 1 3.580X104 0.026 0.874 4.557X104
Congruency
Residuals 0.785 56 0.014

Table F. 2. Post Hoc Comparison of HRs of Congruency in Experimet 3

Mean Difference SE

t Pbonf

congruent  incongruent

0.053 0.015

3.505 <.001

Table F. 3. Repeated Measures ANOVA of FARs in Experiment 3

Sum of

Mean

Squares df Square F p m
Surface Feature 0.008 1 0.008 16.318 <.001 0.226
Residuals 0.026 56 4.652x10*
Congruency 0.412 1 0412 32312 <.001 0.366
Residuals 0.714 56 0.013
Suréifgffj;‘fye 0183 1 0.183 10170  0.002  0.154
Residuals 1.007 56 0.018
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Table F. 4. Post Hoc Comparison of FARs of Surface Feature in Experimet 3

Mean Difference SE t Pbonf

material  reflectance -0.012 0.003 -4.040 < .001***

Table F. 5. Post Hoc Comparison of FARs of Congruency in Experimet 3

Mean Difference SE t Pbonf

congruent  incongruent -0.085 0.015 -5.684 <.001***

Table F. 6. Repeated Measures ANOVA of Texture HRs in Texture Congruent
Condition in Experiment 3

Sum of Squares df  Mean Square F p %
HR 0.585 6 0.098 1.350 0.234 0.024
Residuals 24.272 336 0.072

Table F. 7. Repeated Measures ANOVA of Texture FARs in Texture Congruent
Condition in Experiment 3

Sphericity Sum of daf Mean )
Correction Squares Square p e
FAR None 12.351 6.000? 2.0582 15.3682 <.001= 0.215
Greenhouse- 12.351 4.662 2649 15368  <.001 0215
Geisser
Residuals None 45.006 336.000 0.134
Greenhouse- 45.006  261.067 0.172
Geisser

@ Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p <.05).

Table F. 8. Mean of Hit Rates, False Alarm Rates and Sensitivity d’ Scores of
Textures in Texture Congruent Condition in Experiment 3

HR
FAR-total

Sensitivity d’

Metal

0.90

0.60

0.53

Wood

0.80

0.48

0.41

Stone

Glass

0.79
0.28

0.69
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Figure F. 1. The hit rates (HR) and false alarm rates (FAR) of texture congruent
pairs with glass, metal, stone, wood, plastic, copper and jelly textures. The X-axis
represents the textures, the Y-axis represents the HRs and FARs, and the error bars
represent standard errors of the mean.

Table F. 9. Paired Samples T-Test of Reflectance HRs in Reflectance Congruent
Condition in Experiment 3

Measure 1 Measure 2 t df p Cohen's d

HR_glossy - HR_matte 098 56 033  0.13

Table F. 10. Paired Samples T-Test of Reflectance FARs in Reflectance Congruent
Condition in Experiment 3

Measure 1 Measure 2 t df p Cohen's d

56

AR _glossy FAR matte 33 <.001 0.47

Table F. 11. Mean of Hit Rates, False Alarm Rates and Sensitivity d’ Scores of
Reflectance Features in Reflectance Congruent Condition in Experiment 3

Matte Glossy
HR 0.81 0.84
FAR-total 0.30 0.41
Sensitivity d’ 1.47 1.22
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Figure F. 2. The hit rates (HR) and false alarm rates (FAR) of reflectance congruent
pairs with glossy and matte reflectance features. The X-axis represents the
reflectance features, the Y-axis represents the HRs and FARs, and the error bars
represent standard errors of the mean.
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G. THE RESPONSE BIAS IN EXPERIMENTS 1,2 AND 3

Table G. 1. Repeated Measures ANOVA of Criterion in Experiment 1

Sum of Mean

Squares df Square F p '

Object Feature 0.001 1 0.001 0.276 0.601 0.004
Residuals 0271 73 0.004

Congruency 15.435 1 15.435 105.714  <.001 0.592
Residuals 10.659 73 0.146

Object Feature 0004 1 0004 0032 0859 34410
*k Congruency

Residuals 8.096 73 0.111

Table G. 2. Post Hoc Comparison of Criterion of Congruency in Experimet 1

Mean Difference SE t Pbont

congruent incongruent -0.457 0.044 -10.282 <.001

Table G. 3. Repeated Measures ANOVA of Criterion in Experiment 2

Sum of Mean

Squares df Square F p M
Object Feature 0.014 1 0.014 5.960 0.018  0.095
Residuals 0.138 57 0.002
Congruency 1.138 1 1.138 8.442  0.005 0.129
Residuals 7.685 57 0.135
k) egiiii;‘re * 0784 1 078 9306 0003 0.140
Residuals 4.805 57 0.084
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Table G. 4. Post Hoc Comparison of Criterion of Object Feature in Experimet 2

Mean Difference SE t Phont

material shape 0.016 0.006 2.441 0.018

Table G. 5. Post Hoc Comparison of Criterion of Congruency in Experimet 2

Mean Difference SE t Pbonf

congruent  incongruent -0.140 0.048  -2.905  0.005

Table G. 6. Repeated Measures ANOVA of Criterion in Experiment 3

s T gqae PP
Surface Feature 0.022 1 0.022 6861 0011 0.109
Residuals 0.179 56 0.003
Congruency 0.039 1 0.039 0420 0520 0.007
Residuals 5.231 56 0.093
g‘éfgsseif;m * 0.361 1 0361 3283  0.075 0.055
Residuals 6.162 56 0.110

Table G. 7. Post Hoc Comparison of Criterion of Surface Feature in Experimet 3

Mean Difference SE t Pbonf

texture reflectance 0.020 0.007 2.619 0.011

Table G. 8. The Mean Criterion Values of Conditions in Experiments 1 and 2

MC MI SC SI
Criterion (¢) -0.12 -0.57 -0.13 -0.59
Experimet 1
Criterion (c) -0.36 -0.34 -0.50 -0.24

Experimet 2
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Table G. 9. The Criterion Values of Conditions in Experiments 3

104



H. THE SHAPE DISCRIMINABILITY OF GLAVENS IN EXPERIMENT 2

Table H. 1. Repeated Measures ANOVA of Sensivity d’of Glaven Shapes in
Experiment 2

Sphericity Sum of Mean
Cases Correction Squares df Square p
shape None 23.892: 3.000¢ 7.9642 42.552» <.001»
Greenhouse- 23.892 2.542 9397 42552  <.001
Geisser
Residuals None 32.003 171.000 0.187
Greenhouse- 32.003  144.914 0.221
Geisser

@ Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p < .05).

Table H. 2. The Mean Sensivity d’ Difference of Glaven Shapes in Experiment 2

95% CI for Mean Difference

Shape Marginal Mean Lower Upper SE
glavenl 1.908 1.778 2.038 0.065
glaven4 1.427 1.291 1.562 0.068
galven? 2.259 2.155 2.363 0.052
glaven8 1.576 1.439 1.712 0.068

Table H. 3. The Post Hoc Comparisons of Glaven Shapes in Experiment 2

Mean Difference SE t Phont
glavenl glaven4 0.481 0.093 5.200 <.001
galven?7 -0.351 0.060 -5.813 <.001
glaven8 0.332 0.080 4.176 <.001
glaven4 galven? -0.832 0.073 -11.339 <.001
glaven8 -0.149 0.095 -1.564 0.740

galven? glaven8 0.684 0.076 9.038 <.001

Note. P-value adjusted for comparing a family of 6
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Figure H. 1. The sensitivity d scores of shape congruent pairs with glavenl, glaven4,
glaven7, and glaven8. The X-axis represents the four shapes, the Y-axis represents
the recognition sensitivity, and the error bars represent standard errors of the mean.
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I. TURKISH SUMMARY / TURKCE OZET

BOLUM 1

GIRIS

1.1. Malzeme Algisi

Giinlik deneyimlerimiz, bazilar1 tanidik, bazilar1 ise tamidik olmayan cesitli
malzemelerden yapilmis nesnelerle etkilesimi igermektedir. Bu malzemeleri
tanimlayabilir, taniyabilir ve fiziksel 6zelliklerini bir bakista ¢ikarabiliriz (Wiebel ve
digerleri, 2013; Sharan ve digerleri, 2009). Bir nesnenin malzeme 06zellikleri, onun
kimligi, kullanilabilirligi ve sagladigi olanaklar hakkinda onemli ipuglar1 sunar,
dolayistyla nesneyle etkilesimimizi belirler. Bu nedenle, malzeme algis1 ¢alismalari,
insanlarin farkli malzeme 6zelliklerini gorsel olarak nasil otomatik ve zahmetsiz bir
sekilde algiladigini arastirir (Adelson, 2001; Buckingham ve digerleri, 2009; Liu ve
digerleri, 2010; Fleming, 2017). Giinlik hayatta karsilastigimiz malzemelerin
yelpazesi genistir: Ahsap, tas, metal ve cam gibi her malzemenin piiriizlilik, agirlik,
yansima, yar1 saydamlik ve geometri gibi benzersiz yiizey 6zellikleri vardir ve bunlar
nesnelerle etkilesimimizi etkiler. Bu etkilesim, malzemenin 06zelliklerine dair
algimiza dayanir ve bu algi ¢ogu zaman fiziksel olarak nesneye dokunmadan
gerceklesir. Boylece, nesneye dokunmadan onun nasil hissedecegi ve giinliik hayatta
ne i¢in kullanilacagi hakkinda genel bir anlayisa ve beklentiye sahip oluruz (Nagai

ve digerleri, 2015).

1.1.1. Malzeme Yiizey Ozellikleri
Bir malzemenin goriiniimii yalnizca 15181 nasil yansittigiyla degil, ayn1 zamanda {i¢

boyutlu sekil, yansima, ¢evresel aydinlatma, doku ve yiizey renginin birlesimiyle de

etkilenir. Bu ozellikler, malzeme kategorileri arasinda ve i¢inde nesne hakkinda
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degerli bilgiler saglar (Motoyoshi ve digerleri, 2007; Marlow ve digerleri, 2011;
Sharan ve digerleri, 2013; Sawayama & Nishida, 2018). Ozellikle bir yiizeyin sekli,
15181in  nasil yansidigint belirleyen Onemli bir faktordiir ve bu, malzemenin
goriiniimiinde 6nemli bir rol oynar (Lagunas ve digerleri, 2021; Serrano ve digerleri,
2021). Dolayistyla, malzemeleri tanima yetenegimiz sekil, renk ve doku gibi yiizey
ozelliklerine dayanir. Sonug olarak, malzeme algisi, malzemeleri tanimak i¢in erken

seviyedeki ipuglarini ileri seviyeli nesne bilgisiyle birlestirerek ¢alisir.

1.1.2. Malzeme Algisinin Seviyeleri

Malzemeleri gorsel olarak algilamamizin farkli seviyeleri vardir. Schmidt ve
digerleri (2017) tarafindan gelistirilen modele gore, malzeme algisinin iki ana yolu
vardir: ¢agrisim yolu ve tahmin yolu (Van Assen & Fleming, 2016). Tahmin yolu,
malzeme Ozelliklerinin dogrudan goriintii  6zelliklerinden tahmin edilmesiyle
malzeme tanimay1 saglar. Bu siireg, acik bir malzeme kimligi belirlemeye ihtiyag
duymadan, yalnizca gorsel ipuglarinin analizi yoluyla gerceklesir ve ylizey yansimasi

gibi gorsel ipuclarina dayanarak malzeme 6zelliklerini ¢ikarir.

Malzemeleri tanimlamanin bir diger yolu ise 6grenilmis ¢agrisimlar kullanmaktir.
Cagrisim yolu, ylizey dokusu gibi gorsel ipuglarini, yumusak veya sert gibi malzeme
ozellikleriyle iliskilendirerek, hafizadan 6grenilmis nesne-malzeme cagrigimlarina
dayali malzeme kimligini olusturur. Bu nedenle, yasam boyunca bir nesnenin
goriinimi ile tipik malzeme Ozellikleri arasinda giiglii baglantilar gelistiririz ve
malzeme tanimlarken bu cagrisimlara giiveniriz (Sharan, 2009; Alley ve digerleri,

2020).

1.2. Malzeme ve Nesne Kategorisi Tamima

Malzemelerin siniflandirilmasi, algi ve anlamsal yorum arasindaki boslugu dolduran
algisal ve anlamsal niteliklerin benzerliklerine dayali olarak olusur (Sharan ve
digerleri, 2013). Bu durum, malzeme niteliklerinin gorsel degerlendirilmesi ile farkli
malzeme smiflarinin  anlamsal temsili arasinda giicli bir iliski oldugunu

gostermektedir. Ancak malzemelerin olusturdugu nesneler fiziksel formlar1 agisindan
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inanilmaz derecede ¢esitli olabilir. Bu durum biligsel sistemimiz i¢in bir zorluk
olusturur. Bir malzemenin alabilecegi cok sayida sekil, yalnizca algisal veya
anlamsal benzerlik temelinde malzemelerin siniflandirmasi ig¢in net simirlar
olusturmay1 zorlastirir (Fleming ve digerleri, 2015; Caputa ve digerleri, 2010).
Dolayistyla, malzeme tanima konseptini nesne tanima alanina indirgemek kolay
olabilir. Nesne kimligi ile malzeme kimligi arasinda istatistiksel olarak anlamli bir
iligki olmasina ragmen, sekil temelli nesne kimligi, malzeme tanimay1 agiklayamaz.
Bu agidan nesne-malzeme iligkisinin dogrudan simetrik olmadig1 vurgulanmalidir.
Ayni smiftaki nesneler farkli malzemelerden yapilabilirken, farkli smiflardan
nesneler ayn1 malzeme kategorisine ait olabilir (Bileschi ve digerleri, 2005; Sharan,
2009). Malzemeleri tanimak, nesneleri tanimanin 6tesine gegen benzersiz siirecleri

igerir.

Sharan ve ¢alisma arkadaglar1 (2009), giinliik malzemeleri gorsel olarak tanima ve
smiflandirma yetimizin hizli oldugunu, hatta 40 ms'lik kisa bir sunum siiresiyle bile
basarili oldugunu gostermistir. Bu nedenle, malzeme algisinin nesne tanima kadar
hizl1 olabilecegi sonucuna varmislardir. Buna karsilik, Wiebel ve digerlerinin (2013)
caligmasi, malzeme tanimanin nesne tanimadan daha yavas oldugunu ve malzemeleri
ayirt etmenin nesnelerden daha karmasik oldugunu ortaya koymustur. Nagai ve
caligma arkadaslarinin (2015) bulgulari, parlaklik ve saydamlik gibi 6zelliklerin kisa
reaksiyon siirelerinde malzemeleri ayirt etme performansini artirdigini, agirlik ve
sicaklik gibi gorsel olmayan 6zellik derecelendirmelerinin ise daha uzun reaksiyon
stireleriyle 1iliskili oldugunu gostermistir. Yazarlar, giindelik hayatta malzeme
tanimada gorsel ylizey Ozelliklerinin, gorsel olmayan oOzelliklere kiyasla birincil
kaynak oldugunu belirtmislerdir. Ornegin, parlaklik ve saydamlig1 sadece dokunsal

bilgi ile gorsel girdi olmadan tahmin etmek nadirdir (Okamoto ve digerleri, 2013).

1.3. Nesne Bellegi

Nesnelerle etkilesimde bulundugumuzda, anlamsal islev, teknik/mekanik ve
sensorimotor unsurlar gibi farkli bilgi tiirlerini siirekli bir geri bildirim dongiistinde
birlestiririz (Federico ve digerleri, 2023). Nesne bellegi arastirmalari, nesneleri

kodlarken ve tanirken sekil ve rengin baskin 6zellikler oldugunu gostermektedir
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(Schmidt ve digerleri, 2020; Schacter ve digerleri, 1990; Nako ve digerleri, 2016).
Seklin (Logothetis & Sheinberg, 1996; Serrano ve digerleri, 2021) ve rengin (Tanaka
& Presnell, 1999; Redmann ve digerleri, 2019; Reppa ve digerleri, 2020; Nagai &
Yokosawa, 2003) nesne hatirlanabilirli§i  iizerindeki  kolaylagtirict  rolii

vurgulanmaktadir.

Renk, ozellikle rengi nesne kimligi ve sekliyle giiclii bir sekilde eslesen nesnelerin
taninmasinda 6nemli bir rol oynar; bu durum "renk tanilayicilig1" olarak adlandirilir.
Benzer sekilde, asinalik, tipiklik ve eszamanlilik, nesne hatirlanabilirligi {izerinde
artirict etkilere sahiptir (Ngo ve digerleri, 2018; Green & Hummel, 2005, 2006;
Schiffer, 2023; Kramer ve digerleri, 2023). Ayrica, nesnelerin anlamsal 6zelliklerinin
gorsel Ozelliklerinden daha iyi hatirlandigi bulunmustur (Schiffer, 2023; Kramer ve
digerleri, 2023). Gergek nesneler, renkli fotograflar veya siyah beyaz c¢izimlerin
kullanildig1 nesne tanima gorevlerinde, gergek nesnelerin diger gorsel uyaranlardan
daha hatirlanabilir oldugu bulunmustur (Snow ve digerleri, 2014). Ancak,
malzemenin nesne hatirlanabilirligi iizerindeki roliinii inceleyen herhangi bir ¢alisma

bulunmamaktadir.

1.4. Tliskisel Tamima Bellegi

Cagrisim kavrami, 6grenme ve bellegin temelini olusturur. Nesnelerin ylizey dokusu
kategorisi veya malzeme kategorisi gibi duyusal uyaranlar arasinda kurulan
cagrisimlar, cevresel diizenlilikler hakkinda bilgi saglar ve gelecekteki duyusal
girdileri tahmin etmek ve yorumlamak icin bellekte depolanan anlamsal 6zellikleri
tammlamada kritik bir rol oynar (Albright, 2012). iliskisel bellek, maddelerin
anlamsal olarak nasil organize edildiginden veya gruplandigindan etkilenebilir. Bu
durum, ayni anlamsal gruptaki maddeleri hatirlamaya egilim gostermemize neden
olarak anlamsal ¢agrisimlar agmi olusturur. Iliskisel tanima gdrevi, katilimcilardan
madde ciftlerini ¢alismalar1 ve ardindan sunulan ciftlerin daha 6nce c¢aligilanlarla
ayni olup olmadigini belirlemelerini ister. Taninan ¢iftler i¢in “evet” ve taninmayan
ciftler icin “hayir” cevabi verilir (Clark ve digerleri, 1993; Rotello & Heit, 2000;
Cohn & Moscovitch, 2007; Kahana, 2012).
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1.5. Neden Tamdik ve Tamidik Olmayan Nesnelerin Iliskisel Tanimasinda

Malzeme Algisim Arastirmaliyiz?

Malzemeleri tanimanin ve 6zelliklerini degerlendirmenin ekolojik agidan 6nemi goz
Ontline alindiginda, nesne algis1 lizerine genis bir literatlir olmasina ragmen, malzeme
algisinin gorsel nesne algis1 iizerindeki etkisi son zamanlara kadar aragtirmalarda
biiylik 6l¢iide goz ardi edilmistir (Wiebel, 2014; Nagai ve digerleri, 2015; Adelson,
2001; Fleming, 2014; Fleming ve digerleri, 2015). Bu tezde, malzeme bilgisinin,
nesne yiizey Ozelliklerinden sekil ve yansima gibi diger faktorlere kiyasla, iliskisel
nesne belleginde nasil saklandig1 ve geri ¢agrildigi incelenmistir. Ayrica sekil temelli
tanidiklik ve tanidik olmama durumlarinin, malzeme algisina kiyasla iligskisel nesne

belleginde nasil bir rol oynadig1 arastirilmistir.

Nesne tanidikligi, tanidik olmama durumu, sekil, malzeme ve yansimanin iligkisel
bellek olusumunu nasil etkiledigini anlamak i¢in daha fazla arastirmaya ihtiyag
vardir. Malzeme, sekil ve yansima agisindan kontrollii ve sistematik bir sekilde
degisen cift 6rnekleri olusturmak, bu degiskenler arasindaki iliskiyi incelemek igin
faydali olacaktir. Bunun yaninda, herhangi bir tamidikligi veya islevi olmayan
(6zellikle Glavens gibi kiiresel nesneler kullanarak) nesnelerle yapilan ¢alismalar
onceki bilgilere dayanmayi zorlastirir (Phillips, 2004; Phillips ve digerleri, 2009). Bu
sonuglar malzemeleri ve nesneleri algilayip tanirken biligsel mekanizmalarin nasil
calistigin1 anlamamiza yardimci olabilir. Gelen tanidik ve tanidik olmayan duyusal
bilginin yliksek diizeyde beklentilerle nasil birlestirildigini anlamak, insan gorsel
sisteminin malzeme algisin1 ve nesne-malzeme ¢agrisimlarini nasil olusturdugunu

anlamak i¢in 6nemlidir (Alley ve digerleri, 2020).

1.6. Amac ve Hipotezler

Bu tezde, tanidik ve tanidik olmayan nesnelerin malzemesinin, sekil ve yansima gibi
diger nesne Ozelliklerine kiyasla iliskisel tanima bellegindeki rolii aragtirilmistir.
Bunu yapmak i¢in, birinci deneyde giinlilk malzemelerden yapilmis farkli nesne
kimliklerine sahip bir dizi tamidik nesne, ikinci ve fgiincii deneyde ise ayni
malzemelerden yapilmig farkli sekillere sahip tanidik olmayan nesneler uyaran

olarak kullanilmistir.
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Deney 1’in amaci, insanlarin tanidik iki nesne arasinda malzeme ve sekil bilgileri
gibi ortak oOzelliklerine dayali belleklerinde nasil c¢agrisimlar kurduklarini
arastirmaktir. Ana arastirma sorusu, insanlarin tanidik iki nesne arasinda ¢agrisim
kurarken daha ¢ok malzeme mi yoksa sekil bilgisine mi glivendikleridir. Hipotezler:
(1) Sekil ve malzeme agisindan uyumlu tanidik nesne giftleri, uyumsuz olanlardan
daha iyi taninacaktir (ylizey uyumu etkisi). (2) Tanidik nesnelerle yapilan tanima
bellegi gorevinde sekil bilgisinin faydasi, malzeme bilgisine kiyasla daha baskin
olacaktir.Deney 2’nin amaci, tanidik olmayan iki nesne arasinda yiizey 6zelliklerine
dayali ¢agrisimlarin nasil olugtugunu incelemektir. Hipotezler: (1) Sekil ve malzeme
acisindan uyumlu tanidik olmayan nesne giftleri, uyumsuz olanlardan daha iyi
taninacaktir. (2) Tanidik olmayan nesnelerle yapilan tanima bellegi gorevinde

malzeme bilgisinin faydasi, sekil bilgisine kiyasla daha baskin olacaktir.

Deney 3’lin amaci, tanidik olmayan nesnelerde malzeme ve yansima bilgisine dayali
cagrisimlarin nasil olustugunu incelemektir. Hipotezler: (1) Malzeme ve yansima
acisindan uyumlu ¢iftler, uyumsuz olanlardan daha iyi taninacaktir. (2) Tanima
bellegi gorevinde malzeme bilgisinin faydasi, yansima bilgisine kiyasla daha baskin

olacaktir.

BOLUM 2

DENEY 1
2.1. Yontem

Ilk deneyde, katilimcilar, farkli nesne ozelliklerinin (malzeme, sekil) eslestigi ve
eslesmedigi kosullarda tanidik nesnelerin eslestirilmis gorselleri inceledikleri bir
cagrisimsal tanima gorevi tamamladilar. Bu deney, hangi kosullarda tanima

oranlarinin daha yiiksek olacagini arastirmak amaciyla gerceklestirilmistir.
2.2. Katihmcilar

Bu calisma, Orta Dogu Teknik Universitesi Insan Arastirmalari Etik Kurulu

tarafindan onaylanmistir. Deneye, Orta Dogu Teknik Universitesi’nden 74 katilimci
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(54 kadin, 18 erkek, 2 non-binary) 19-30 yas araliginda (M= 21.9, SD= 2.16) ders
kredisi karsiliginda veya goniillii olarak katilmistir. Katilimcilar, normal veya
diizeltilmis gdérme yetisine sahip ana dili Tiirk¢e olan bireylerdi. Tiim katilimcilardan

bilgilendirilmis onay alinmstir.

2.3. Uyaranlar

Bu c¢alismadaki deneysel uyaranlar, dort sekil (siirahi, kadeh, su bardagi, kupa) ve
dort malzeme kategorisi (ahsap, metal, cam, tas) altinda sunulan tanidik nesnelere ait
32 gorselden olugsmaktadir. Diger bir deyisle, her sekil ve malzeme kategorisinde, bir
nesnenin dort farkli malzeme ile olusturulmus 4 goriintiisii, agik kaynakli bir {i¢
boyutlu bilgisayar grafik uygulamasi olan Blender 4.1.1 programi kullanilarak
iiretilmistir (Blender, 2024).

Toplam dort madde kosulu vardir: Malzeme-uyumlu kosul (MU), Malzeme-uyumsuz

kosul (MUmz), Sekil-uyumlu kosul (SU), Sekil-uyumsuz kosul (SUmz).

2.5. Prosediir

Deney iic asamadan olusmustur: calisma asamasi, dikkat dagitma asamasi ve
bellekten geri cagirma asamasi. Calisma asamasinda, katilimcilara dort kosuldan her
biri i¢cin 16 ¢ift iceren bir ¢aligsma listesi gosterilmistir. Toplamda 64 cift, rastgele

sirayla ve her ¢ift icin dort saniye siireyle sunulmustur.

Katilimeilardan, bu ciftleri daha sonra yapilacak bir bellek testi i¢in 6grenmeleri
istenmistir. Dikkat dagitma asamasinin hemen ardindan, geri c¢agirma asamast
gerceklestirilmistir. Bu asamada, katilimcilara bir c¢agrisimsal tanima gorevi
kapsaminda, her dort kosul i¢in 15 ¢ift iceren bir test listesi gosterilmistir.

Katilimcilardan, eger cifti calisma listesinden hatirliyorlarsa klavyede “e” tusuna,

hatirlamiyorlarsa “h” tusuna basmalar1 istenmistir.

Gorevde siire sinirt bulunmamaktadir. Bu ¢alismada, cagrisimsal tanima gorevi ile
denek ici desen (tekrarlanan Olgiimler) kullanmistir ve tiim yanitlar bir klavye

aracilifiyla toplanmstir.
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2.6. Sonuclar

Verileri diizenlemek i¢in SciPy paketi kullanilarak Visual Studio Code iizerinden bir
Python kodu yazildi. Duyarlilik (d°) dl¢limlerine iki yonlii tekrarli dl¢iimler varyans
analizi, 2 (uyum) x 2 (ylizey 6zelligi), yapilarak uyumun (uyumlu, uyumsuz) ve
nesne Ozelliklerinin (malzeme, sekil) tanidik nesnelerin c¢agrisimsal tanimasi
tizerindeki etkisi incelenmistir. Bulgular, uyumlu ¢iftlerin uyumsuz ciftlere kiyasla
daha iyi tanindigin1 gostermistir, F(1, 73) = 14.3, p <0.001, #%p = 0.16. Sekil-uyumlu
kosullarda tanima duyarlilifi d' skoru uyumsuz kosullardan daha yiiksek
bulunmustur. Malzeme ve sekil 6zellikleri arasinda anlamli bir fark gézlenmemistir,
F(1, 73) = 0.45,p = 0.05, n% = 0.006. Ayrica, uyum ve yiizey Ozelligi arasinda
anlamli bir etkilesim bulunmamistir (p = 0.17), bu da malzeme ve seklin tanima

iizerindeki etkisinin esit olabilecegine isaret etmektedir.

BOLUM 3
ON CALISMA VE DENEY 2
3.1. On Calisma

3.1.1. Yontem

Deney 2'yi gerceklestirmeden 6nce, Google Forms kullanilarak ¢evrimi¢i bir 6n
caligma yapilmistir. Bu 6n ¢alismanin amaci, tanidik olmayan nesnelerin dort farkl
malzeme kategorisi (ahsap, metal, tas, cam) ile olusturuldugunda katilimcilar
tarafindan gergcekten hedeflenen malzemeler olarak algilanip algilanmadigim

incelemektir.
3.1.2. Katilimcilar

Orta Dogu Teknik Universitesi’nden 31 katilime1 (18 kadin, 13 erkek), 18-40 yas
araliginda (M= 23.3, SD= 4.37) goniilli olarak veya ders kredisi karsiliginda
katilmigtir. Tiim katilimcilar yazili olarak bilgilendirilmis onay formunu

doldurmustur.
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3.1.3 Uyaranlar ve Prosediir

Bu c¢aligmadaki deneysel uyaranlar, Philips (2004) tarafindan saglanan Glaven
modellerine dayanan ve dort farkli malzeme kategorisinde (ahsap, metal, cam, tas)

olusturulmus 19 tanidik olmayan nesne goriintiisiinden olugsmaktadir.

Uyaranlar, acik kaynakli bir li¢ boyutlu bilgisayar grafik uygulamasi olan Blender
4.1.1 programi kullanilarak iiretilmistir (Blender, 2024). Dort malzeme kategorisi,
BlenderKit varliklarindan secilmistir. Kullanilan Glaven modeli, Philips tarafindan

GitHub'da (2004) saglanan Glaven Seti'nden Glaven2 modelidir.

Bu calisma, Google Forms kullanilarak ¢evrimigi olarak gergeklestirilmistir. Gorevin
yonergesi, ekranin iist kisminda katilimcilara "Liitfen ekranda goreceginiz objelerin
hangi malzemeden yapildigin1 diigiiniiyorsaniz yaziniz" seklinde sunulmustur.
Katilimcilara, dort farkli malzeme kategorisine (ahsap, metal, tag, cam) ait
Glaven2'nin farklt versiyonlarmin 19 gorseli gosterilmis ve nesnelerin hangi

malzemeden yapildigini diisiindiiklerini yazmalar1 istenmistir.

3.1.4. Sonuglar

Sonuglar, ahsap malzeme kategorisinde wood1'in yiizde 22.6, wood2'nin yiizde 32.2,
wood3, wood4 ve wood5'in yiizde 61.3 ve wood6'nin ylizde 77.4 oraninda dogru
tamimlandigini ortaya koymustur. Bu nedenle Deney 2'deki nesne olusturma

siirecinde ahsap malzeme kategorisi olarak wood6 ve wood4 secilmistir.

Tas malzeme kategorisinde stonel ve stone2 yiizde 67.7, stone3 ve stone4 yiizde
70.9 oraninda dogru tanimlanmistir. Bu nedenle stone3 ve stone4 secilmistir. Metal
kategorisinde metall yiizde 41.9, metal2 ylizde 32.2, metal3 yiizde 45.1, metal4
yiizde 77.4 ve metal5 ylizde 48.3 oraninda dogru tanimlanmistir. Bu nedenle metal4

ve metal5 secilmistir.

Cam malzemesinde ise glassl yiizde 19.3, glass2 yiizde 25.8, glass3 yiizde 29 ve
glass4 yiizde 6.4 oraninda dogru tanimlanmistir. Cam malzemesi i¢in dogru tanima

oranlar yetersiz kaldigindan, ikinci deneyde farkli bir cam malzemesi kullanilmistir.
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3.2. Deney 2
3.2.1. Yontem

Ikinci deneyde, katilimcilar tamidik olmayan nesnelerin eslestirilmis gorsellerini
inceledikleri bir ¢agrisimsal tanima gorevi tamamladilar. Bu gorseller, farkli nesne
ozellikleri (malzeme, sekil) acisindan eslesen ve eslesmeyen kosullarda sunuldu.
Calismanin amaci, hangi kosullarin daha yiiksek tanima oranlarina sahip olacagini

aragtirmakti.
3.2.2. Katimcilar

Calisma, Orta Dogu Teknik Universitesi Insan Arastirmalar1 Etik Kurulu tarafindan
onaylanmistir. Orneklem biiyiikliigiinii belirlemek icin bir G Power hesaplamasi
yapilmustir. Iki yonlii tekrarli dlgiimler ANOVA analizi icin, 0.95 gii¢, 0.25 etki
biiyiikligii ve 0.05 alfa diizeyine sahip olmak amaciyla tahmini 6rneklem biiytikliigi
54 olarak belirlenmistir (Faul ve digerleri, 2009). Orta Dogu Teknik
Universitesi'nden 18-30 yas araliginda (M= 21.1, SD=1.93) 57 katilime1 (51 kadm, 4
erkek, 2 non-binary) bu deneye goniillii olarak ya da ders kredisi karsiliginda
katilmigtir. Katilimeilarin ana dili Tirk¢e olup, gbrme yetileri normal ya da

diizeltilmistir. Tiim katilimcilardan yazil bilgilendirilmis onay alinmistir.
3.2.3. Uyaranlar ve Prosediir

Bu caligmadaki deneysel uyaranlar, Philips (2004) tarafindan saglanan glaven
modellerine dayanan dort nesne kategorisi (glavenl, glaven4, glaven7, glaven8) ve
dort malzeme kategorisinde (ahsap, metal, cam, tas) olusturulmus 32 tamidik
olmayan nesne goriintiisiinden olugmaktadir. Glavenler, Philips tarafindan GitHub'da
(2004) saglanan Glaven Seti'nden secilmis olup BigGlavenl, BigGlaven4,
BigGlaven7 ve BigGlaven8 modelleridir. Toplam dort madde kosulu vardir:
Malzeme-uyumlu kosul (MU), Malzeme-uyumsuz kosul (MUmz), Sekil-uyumlu
kosul (SU), Sekil-uyumsuz kosul (SUmz).

Deney 2’nin prosediirii Deney 1’in aynisidir.
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3.2.4. Sonuglar

Verileri diizenlemek i¢in SciPy paketi kullanilarak Visual Studio Code iizerinden bir
Python kodu yazildi. Duyarlilik (d’) dlgiimlerine iki yonli 2 (uyum) x 2 (yiizey
ozelligi) tekrarli dlglimler ANOVA analizi, uyumun (uyumlu, uyumsuz) ve nesne
ozelliginin (malzeme, sekil) tanidik olmayan nesnelerin cagrisimsal tanima
tizerindeki etkisini incelemek i¢in yapildi. Bulgular, tanidik olmayan nesnelerin
tanima belleginde anlamli bir uyum etkisi oldugunu ortaya koydu, F(1, 56) = 70.7, p
<0.001, n°p =0.55.

Bonferroni diizeltmesiyle yapilan sonraki (post hoc) analiz, malzeme uyumlu
kosulun duyarlilik skoru d'nin malzeme uyumsuz kosuldan daha yiiksek oldugunu
gosterdi. Ayni sekilde sekil uyumlu kosulun skoru da sekil uyumsuz kosuldan
anlamli derecede yiiksekti. Tanima iizerinde yiizey 6zelliginin anlamli bir ana etkisi
bulundu, F(1, 56) = 6.36, p = 0.01, #°p = 1; malzeme O6zelliginin duyarlilik skoru,
sekil ozelliginden daha yiiksek ¢ikti. Ancak, uyum ve yiizey 6zelligi arasinda anlaml
bir etkilesim gozlenmedi (p = 0.2). Ayrica, malzemenin etkisini daha detayh
incelemek i¢in tek yonlii tekrarl dlgtimler ANOVA uygulandi, F(3, 56) = 12.7,p <
0.001, #°p = 0.18. Sonuglar, cam malzemesinin metal, tas ve ahsap malzemelerine

kiyasla daha iyi tanindigini ortaya koydu.

BOLUM 4

DENEY 3

3.1. Yontem

Ucgiincii deneyde, katilimcilar farkli yiizey 6zelliklerinin (malzeme, yansima)
eslestigi ve eslesmedigi kosullar altinda tanidik olmayan nesnelerin eslestirilmis
gorsellerini inceledikleri bir ¢agrisimsal tanima gorevi tamamladilar. Bu g¢alisma,
hangi kosullarin daha yiiksek tanima oranlarina sahip olacagini arastirmak amaciyla

gerceklestirilmistir.
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3.2. Katihhmcilar

Calisma, Orta Dogu Teknik Universitesi Insan Arastirmalar1 Etik Kurulu tarafindan
onaylanmistir. Orneklem biiyiikliigiinii belirlemek icin bir G Power hesaplamasi
yapilmistir. Iki yonlii tekrarhi dlgiimler ANOVA analizi igin, 0.95 giic, 0.25 etki
biiyiikligii ve 0.05 alfa diizeyine sahip olmak amaciyla tahmini 6rneklem biiytikliigii
54 olarak belirlenmistir (Faul ve digerleri, 2009). Deneye, Orta Dogu Teknik
Universitesi'nden 19-29 yas araliginda (M= 22.5, SD= 2.17) 57 katilimc1 (44 kadn,
12 erkek, 1 non-binary) ders kredisi karsiliginda veya goniillii olarak katilmistir.
Katilimeilarin ana dili Tiirk¢e olup, gérme yetileri normal ya da diizeltilmisti. Tim

katilimcilardan yazili bilgilendirilmis onay alinmistir.
3.3. Uyaranlar

Bu caligmadaki deneysel uyaranlar, Philips (2004) tarafindan saglanan glaven
modellerine dayali, iki yiizey yansima kategorisi (parlak, mat) ve yedi malzeme
kategorisi (ahsap, metal, cam, tas, plastik, bakir, jole) altinda olusturulan tek bir
tanidik olmayan nesneye ait 28 goriintiiden olugsmaktadir. Parlak ve mat yansima
ozelliklerine sahip yedi malzeme, BlenderKit’ten secilmistir. Segilen glaven modeli,
Philips tarafindan GitHub’da (2004) saglanan Glaven Seti’nden BigGlaven3 tiir.
Toplam dort madde kosulu vardir: Malzeme-uyumlu kosul (MU), Malzeme-uyumsuz

kosul (MUmz), Yansima-uyumlu kosul (YU), Yansima-uyumsuz kosul (YUmz).
3.4. Prosediir

Ucgiincii deney, birinci deneye benzer bir prosediirii takip etmistir. Deney iig
asamadan olusmustur: caligma asamasi, dikkat dagitma asamasi ve test agamasi.
(Calisma asamasinda, katilimcilara her dort madde kosulu icin 7 ¢ift iceren bir
caligma listesi gosterilmistir. Toplamda 28 c¢ift, her ¢ift icin dort saniye siireyle
rastgele sirayla sunulmustur. Test asamasi, ¢cagrisimsal bir tanima gorevi kapsaminda
gerceklestirilmistir. Bu asamada katilimcilara, her dort madde kosulu icin ¢iftler
iceren bir test listesi gosterilmistir. Toplamda 55 ¢ift sunulmustur. Katilimeilardan,
eger cifti calisma listesinden hatirliyorlarsa klavyede e tusuna, hatirlamiyorlarsa h

tusuna basmalar1 istenmistir. Gorevde siire sinir1 bulunmamaktadir. Bu ¢aligmada,
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cagrisimsal tanima gorevi ile denek i¢i desen kullanmis ve tiim yanitlar bir klavye

aracilifiyla toplanmstir.

3.5. Sonuglar

Verileri diizenlemek icin SciPy paketini kullanarak bir Python kodu yazilmistir.
Duyarlilik (d’) dlgiimlerine tekrarl 6l¢timler iceren iki yonli 2 (uyum) x 2 (yiizey
ozelligi) ANOVA analizi, uyum (uyumlu, uyumsuz) ve yiizey 6zelligi (malzeme,
yansima) etkilerini incelemek i¢in yapilmistir. Bulgular, tanidik olmayan nesnelerin
cagrisimsal tanima belleginde anlamli bir uyum etkisi oldugunu gdstermistir, F(1,

56) = 62.7, p < 0.001, n%p = 0.52.

Bonferroni diizeltmeli post hoc analizde, malzeme uyumlu kosulun (M=1.66,
SD=0.6) tanima duyarliligt d' skorunun, malzeme uyumsuz kosuldan (M=1.02,
SD=0.45) daha yiiksek oldugu bulunmustur (ortalama fark = 0.64, standart hata =
0.09, p < .001). Ayrica, yansima uyumlu kosulun (M=1.43, SD=0.54) tanima
duyarliligr d' skoru, yansima uyumsuz kosuldan (M=1.14, SD=0.46) daha yiiksektir
(ortalama fark = 0.3, p =.007).

Sonuglar, malzeme ve yansima Ozelliklerinin uyumlu eslesmelerde daha 1iyi
tanindigin1 gostermektedir. Yiizey 6zelliginin tanima {izerinde anlamli bir ana etkisi
bulunmustur, F(1, 56) = 15, p < 0.001, n*p = 0.2. Malzeme o6zelliginin tanima
duyarliligt d' skoru (M=1.34), yansima ozelliginden (M=1.28) anlamli olarak daha
yiiksektir. Ayrica, uyum etkisinin malzeme 6zelliginde yansima 6zelligine kiyasla

daha etkili oldugu goriilmistiir.

Malzeme etkisini daha ayrintili incelemek i¢in, malzeme tiirlerine dayali bir yonli
tekrarli dlclimler ANOVA analizi yapilmistir. Bulgular, ahsap malzemesinin metal,
tag, bakir ve plastikten daha iyi tanindigin1 géstermistir. Ayrica jole malzemesinin de
metal, tas, bakir ve plastikten daha iyi tanindig1 goézlemlenmistir. Yansima etkisini
degerlendirmek i¢in yapilan ¢ift 6rneklem t-testinde, mat yansima o6zelligi (M=1.5)
parlak yansima 6zelliginden (M=1.2) daha yiiksek tanima duyarlili§i géstermistir (p
=0.039).
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BOLUM 5

GENEL TARTISMA

Bu tezde, malzeme algisinin tanidik ve tanidik olmayan nesnelerin cagrisimsal
tanima belleginde kolaylastirici rolii incelenmistir. Bu nedenle, katilimcilarin sekil,
yansima, malzeme gibi gorsel 6zelliklerden gelen bilgileri nasil birlestirdigi ve nesne
belleginde tanidiklik veya tanidik olmama durumuna bagh olarak hangi tiir bilginin
daha baskin oldugunu anlamak bu tezin odak noktasini olusturur. Bu amagla ii¢

deney ve bir 6n ¢alisma gergeklestirilmistir.
5.1. Deney 1 Sonuclarinin Tartismasi

Deney 1’in amaci, insanlarin tanidik iki nesne arasindaki cagrisimsal bellegi
malzeme ve sekil gibi 6zelliklere dayali olarak nasil olusturduklarini incelemekti.
Ayni zamanda katilimcilarin malzeme bilgisine mi yoksa sekil bilgisine mi daha
fazla giivendiklerini gérmek hedeflendi. Beklendigi gibi, hem malzeme hem de sekil
ozellikleri i¢in bir uyum etkisi gozlenmistir. Ancak, beklentinin aksine sekil bilgisi
malzeme bilgisine kiyasla ¢agrisimsal tanima performansinda baskin ¢ikmamuistir.
Tanidik nesnelerde ne malzeme ne de sekil bilgisi tek basina baskin bir rol
iistlenmistir. Bu durum, malzeme bilgisinin tanidik nesnelerde sekil kadar dnemli
olabilecegine isaret etmektedir. Ayrica, nesnelerin 6nceden tanidik olmasi, seklin
adlandirilabilirlik etkisine yol agmis olabilir (Walker & Cuthbert, 1998). Bu durum,
deney sirasinda nesne Ozelliklerinin nasil algilandigini ve tanindigini etkilemis

olabilir.
5.2. On Calisma ve Deney 2 Sonuclarinin Tartismasi

On ¢alismanin sonuglari, metal, tas ve ahsap malzemelerin dogru tanimlandigini
ancak cam malzemesinin dogru tanimlanmadiginmi ortaya koydu. Bu durum, cam
malzemesinin tanidik sekillerle (slirahi, su bardagi vb.) birlikte daha dogru
tanimlandigimi gostermektedir. Bu bulgu, seklin malzeme 6zelliklerinin algilanmasi
tizerindeki etkisiyle tutarlidir (Lagunas ve digerleri, 2021; Serrano ve digerleri,

2021).
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Deney 2’nin sonuglari, malzeme ve sekil 6zellikleri i¢in bir uyum etkisi oldugunu,
ancak tanidik olmayan nesnelerde malzeme bilgisinin sekil bilgisine kiyasla baskin
oldugunu gostermistir. Bu bulgu, Schmidt ve digerlerinin (2017) arastirmasiyla
tutarlidir: Tanidik olmayan nesnelerin algisinda, malzeme Ozelligi degistiginde
katilmecilarin  sekil ipuclarma giivenmedigi gozlemlenmistir. Ayrica, Deney 1
sonuglarinin aksine, Deney 2’de tanidik olmayan nesnelerde malzeme bilgisinin
baskin olmasi, katilimcilarin giivenilir ve tamidik yiizey bilgisine yoOnelmesiyle
aciklanabilir. Bu bulgu, Landau ve digerlerinin (1998) c¢alismasindan farklilik
gostermektedir. Aragtirmacilar, islevsel bilgi saglanmadiginda hem c¢ocuklarin hem
de yetiskinlerin sekil bilgisine dayandigini bulmuslardir. Bir bagska 6nemli bulgu ise
cam malzemesinin diger malzemelere (metal, ahsap, tas) gore daha yliksek tanima
oranina sahip olmasidir. Camin ylizey oOzelliklerinin (parlaklik, yari saydamlik)

gorsel olarak kolay ayirt edilebilmesi bu sonucu agiklayabilir (Okamoto ve digerleri,

2013).
5.3. Deney 3 Sonuclarinin Tartismasi

Deney 3’lin amaci, sekil sabit tutularak malzeme ve yansima 6zelliklerinin tanidik
olmayan nesnelerde cagrisimsal bellekte nasil rol oynadigini incelemekti. Deney
3’lin sonuglari, malzeme ve yansima 6zellikleri i¢in bir uyum etkisi oldugunu, ancak
malzeme bilgisinin yansima bilgisinden daha baskin oldugunu gostermistir. Yansima
ozellikleri eslesen nesne ¢iftleri daha iyi tanmsa da, malzeme bilgisi baskin bir rol
oynanustir. Ozellikle mat yiizeylerin parlak yiizeylere kiyasla daha iyi taninmasinin
nedeni, mat yiizeylerdeki dokunun parlak yiizeylerdeki 151k ve golge oyunlarindan
daha fazla bilgi saglamasi olabilir (Pont ve digerleri, 2015; Toscani ve digerleri,
2017). Ayrica, ahsap ve jole malzemelerinin yiiksek tanima oranma sahip olmasi,
ylizey dokularinin belirginligiyle agiklanabilir (Yoonessi & Zaidi, 2010). Jole
malzemesinin yar1 saydamlik gibi 6zelliklerinin algisinda renk gradyanlarmin rol

oynamasi (Liao ve digerleri, 2022) buradaki bulgulara da kismen 151k tutabilir.
5.4. Simirhliklar

Bu calisgmanin ilk smirliligi, Deney 3'te kullanilan ahsap ve jole malzemelerinin,

calisilan ve g¢alisilmayan ciftler arasinda diger malzemelere kiyasla renk agisindan
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daha belirgin ayirt edilebilir 6zelliklere sahip olmasidir. Bu durum, bu nesnelerin
daha kolay taninmasina ve cagrisimsal tanima performansinin etkilenmesine yol
acmis olabilir. Ikinci sinirhilik ise, uyaranlarm ii¢ boyutlu modelleri olusturulurken
151k kaynaginin yonii tim uyaranlarda kontrol edilmemistir. Tezin simurliliklart
arasinda, deneylerde tekrarlayan nesne c¢iftleri ve kosullardaki bellek yiikii
farkliliklar1 da yer almaktadir. Ayrica, 6n ¢aligmada glaven nesnesinin cam materyali
diger materyaller kadar net tanimlanamamig, ikinci deneyde farkli cam
gorsellestirme parametreleri kullanilmistir. Bu degisiklik, birinci ve ikinci deneylerde

cam materyalinin parametrelerinin farkli olmasina neden olusturmustur.
5.5. Gelecek Arastirmalar

Bu calisma, gelecekteki arastirmalar icin gesitli yonler sunmaktadir. ilk olarak,
mevcut veriler, malzeme algisinda rengin etkisini kesin olarak diglamak i¢in yeterli
degildir. Gelecekteki arastirmalar, 6zellikle renk bilgisinin doku, parlaklik ve diger
malzeme o6zellikleriyle birlikte nasil islendigini incelemelidir. Ikinci olarak,
gelecekteki aragtirmalar, nesnelerin anlamsal ve kullanimsal o6zelliklerinin
cagrisimsal nesne bellegi iizerindeki roliinii, algisal 6zelliklerle karsilagtirmali olarak
inceleyebilir. Uciincii olarak, bu calismada kullanilan nesne o6zellikleri (sekil,
yansima ve malzeme) birbirleriyle etkilesime girebilen eklemeli bir siire¢ olarak
modellenebilir (Ho ve digerleri, 2008). Ayrica, 151k akisinin malzeme ve yansima

algisindaki rolii gelecekte incelenebilir.
5.6. Sonuc

Bu tezde, malzeme algisinin tanidik ve tanidik olmayan nesnelerin cagrisimsal
belleginde oynadigi rol arastirilmistir. Ug deney sonucunda, tanidik nesnelerde
malzeme ve sekil bilgisinin esit derecede dnemli olabilecegi, ancak tanidik olmayan
nesnelerde malzeme bilgisinin sekil ve yansima bilgisine kiyasla baskin oldugu
bulunmustur. Bu c¢alisma, malzeme oOzelliklerinin gorsel algi ve bellek
arastirmalarina katkida bulunarak, nesne tanima siireglerinde malzemenin dnemini
vurgulamaktadir. Bu bulgular, pazarlama ve endiistri gibi alanlarda pratik

uygulamalar i¢in 6nemli ¢ikarimlar sunmaktadir.
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