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ABSTRACT

LIE ALGEBRA BASED AUGMENTED STATE EKF DESIGN FOR
INFORMATION FUSION IN ODOMETRY

Yalçın, Haktan

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Afşar Saranlı

Co-Supervisor: Assoc. Prof. Dr. M. Mert Ankaralı

January 2025, 87 pages

Rigid transformations or rotation matrices, which inherently do not belong to any vec-

tor space, are frequently encountered in state estimation. However, many state esti-

mation frameworks are designed to operate on vector spaces. This thesis explores the

application of Lie Algebra to effectively handle rigid transformations within state es-

timation. Specifically, it examines methods for expressing the uncertainty associated

with rigid transformations and for differentiating nonlinear functions with respect to

rotation matrices. As a key contribution, an augmented state extended Kalman filter

is developed to integrate incremental pose information derived from a stereo camera

setup with inertial measurements. The proposed framework is evaluated using the

publicly available KITTI dataset. Experimental results demonstrate the effectiveness

of the fusion in obtaining more accurate trajectory estimation.

Keywords: Lie Algebra, Extended Kalman Filter, State Estimation, Visual Inertial

Odometry, Dense Odometry
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ÖZ

ODOMETRİDE BİLGİ FÜZYONU İÇİN LİE CEBİRİNE DAYALI ÇOKLU
DURUM EKF TASARIMI

Yalçın, Haktan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Afşar Saranlı

Ortak Tez Yöneticisi: Doç. Dr. M. Mert Ankaralı

Ocak 2025 , 87 sayfa

Konum ve yönelim bilgisi, matematiksel olarak, SE(3) grubu olarak tanımlanır. Grup-

lar, çoğu zaman vektörel bir uzay oluşturmazlar. Ancak, geleneksel durum kestirimi

yöntemleri, kestirilen durumun vektörel bir uzay oluşturduğu varsayımına dayanarak

tasarlanmıştır. Bu tez kapsamında, Lie cebiri kullanarak, konum ve yönelime ait ha-

tayı ve belirsizliği nasıl tanımlayabileceğimizi inceliyorum. Dahası, bu tanım üzerine

inşa edilmiş çoklu durum Kalman filitresi tasarlıyorum. Tasarladığım filitrenin amacı,

ikili kamera düzeneğinden gelen ardışık görüntüler arası göreceli konum bilgisi ile

ataletsel sensörden gelen ölçümleri birleştirerek daha hassas ve gürbüz bir şekilde

konum ve yönelim kestirimi sağlamaktır. Öne sürdüğüm yöntemi, KITTI verisetinde

test ederek, tasarlanan filitrenin amacını yerine getirdiğini gösteriyorum.

Anahtar Kelimeler: Lie Cebiri, Genişletilmiş Kalman Filitresi, Durum Kestirimi, Görsel-

Ataletsel Odometri, Yoğun Odometri
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CHAPTER 1

INTRODUCTION

Simultaneous Localization and Mapping (SLAM) and odometry are critical to en-

abling uninterrupted real-time pose estimation in autonomous systems like unmanned

aerial vehicles, self-driving cars, indoor robotics, underwater robots, and racing drones.

These algorithms typically utilize sensors such as LiDAR, cameras, and Inertial Mea-

surement Units (IMUs) to gather fast and precise pose information, all without relying

on external infrastructure or setups.

In many SLAM and odometry pipelines, the probability distribution function (pdf ) of

the state is evaluated , instead of a single point in the state space. The multivariate

Gaussian density remains the gold standard for navigation systems. However, the

state in navigation systems often includes rotation matrices or quaternions that do not

live in a vector space but rather belong to mathematical groups. We will see that fitting

a Gaussian density to a trajectory that evolves on such a manifold is impractical.

In addition to inherent challenges in the definition of the state, the state evolution

through time also follows a set of nonlinear equations. Hence, the manipulation of

the pdf, representing the pose estimation, requires linearizations and approximations.

We will also see that such linearizations lead to superiors information gain in unob-

servable state modes.

To address the aforementioned challenges, researchers have incorporated Lie Algebra

into state estimation frameworks. Although Lie Algebra dates back to the 1880s, its

adoption by the robotics community is relatively recent, beginning in the early 2000s.

Even today, some state-of-the-art works in the literature have not fully leveraged the

advantages of Lie Algebra yet.
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The primary reason for the slow adoption of Lie Algebra is its inherent complexity as

a deep research field, requiring a strong mathematical background. However, the as-

pects of Lie Algebra relevant to navigation and state estimation are relatively compact

and focused. The first objective of this thesis is to provide a self-contained and con-

cise discussion of Lie Algebra, tailored specifically to its applications in navigation

and state estimation.

In the scope of this thesis, I leverage Lie Algebra to design an augmented state ex-

tended Kalman filter. The objective of the filter is to enhance the performance of

stereo visual odometry by fusing measurements from an IMU. The proposed filter

operates as an error-state Kalman filter, where the error state is defined using the

exponential map of Lie Algebra.

The designed filter can be summarized as follows: The state is the pose and velocity of

a moving body. The state transition is formulated by integrating IMU measurements

between two successive image frames. The measurement in the system is defined

as the relative rigid transformation between camera frames, obtained from a readily

available stereo visual odometry algorithm, namely VOLDOR [35]. Experimental re-

sults demonstrate that fusing IMU measurements significantly improves the trajectory

estimation accuracy of VOLDOR [35].

Notably, the state definition includes historical clones of the active state, which is why

the designed filter is referred to as an augmented state filter (or multi-state filter). As

a byproduct of this thesis, it will be highlighted that the augmented state formulation

enables the effective incorporation of delayed measurements.

As a final remark, the proposed Extended Kalman Filter fuses relative rigid transfor-

mations with IMU measurements. As previously mentioned, the relative rigid trans-

formations are derived using VOLDOR [35]. While I provide an exploration of how

VOLDOR [35] estimates these transformations, this discussion is included solely for

the sake of completeness and is not central to the content of this thesis.

2



1.1 Structure of the Thesis

Chapter 2 is dedicated to the literature review. First, I discuss the evolution of the

error state definition over time. Then, I explore the most influential visual-inertial

odometry (VIO) methods in the literature.

Chapter 3 presents the background. I begin with explaining the motivation for uti-

lization of Lie Algebra in robotics applications. Next, I provide a compact and self-

contained exploration of Lie Algebra. Finally, I revisit VOLDOR [35] to illustrate

how the stereo camera setup is used to compute the relative rigid transformations

between two camera frames. As highlighted in the introduction, VOLDOR [35] is

explored for the completeness of the thesis and the reader can skip the discussion

without hesitation.

Chapter 4 introduces the proposed Extended Kalman Filter framework. I provide a

detailed definition of the state, including the consecutive error state. The state tran-

sition and measurement update processes are explained. While the state definition

and transition equations are adopted from existing work, the measurement update

equations are derived specifically as part of this thesis.

Finally, Chapter 5 presents an extensive set of experiments designed to evaluate the

performance and robustness of the proposed method. This chapter details the exper-

imental setup, datasets, evaluation metrics, and results. The experiments are con-

ducted to demonstrate the effectiveness of the proposed framework in real-world sce-

narios.

3



1.2 Notation

• Basics:

– Bold uppercase characters, denoted as A,B,Ξ, · · · , are utilized to indi-

cate matrices.

– Bold lowercase characters, denoted as a,b,ξ, ζ, · · · , are employed to in-

dicate vectors.

– The character t represents a continuous time instant, whereas k is used to

denote a discrete time index, as exemplified by vt and vk.

• State Items:

– Rβ
α ∈ R3×3: Rotation Matrix from frame−α to frame−β. (Column vec-

tors of Rβ
α constitute the axes of frame−α resolved in frame−β)

– vγβα ∈ R3×1: velocity of frame−α with respect to frame−β resolved in

frame−γ.

– tγβα ∈ R3×1: translation vector of frame−α with respect to frame−β re-

solved in frame−γ.

– To increase the readability of the notation, we have

vββα = vβα pββα = pβα

– bg ∈ R3×1: Gyroscope biases

– ba ∈ R3×1: Accelerometer biases

Note that the notation permits to write

tζβα = Rζ
γ t

γ
βα (1.1)

tβγα = tββα − tββγ (1.2)

tγβα = −tγαβ (1.3)

• Coordinate frames:

– g: Global frame (or the navigation frame)

– b: Body frame. For simplicity we assume that the body frame and IMU

frame are the same.

4



– c: Camera Frame.

• Skew-Symmetric Matrix Form

Ω
∆
= ⌊ω⌋ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 where ω =


ω1

ω2

ω3

 ∈ R3×1

• We represent gyroscope measurement with ω ∈ R3×1.

• We represent accelerometer measurement with f ∈ R3×1.

• The gravity compensation term is denoted by g.

5
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CHAPTER 2

LITERATURE REVIEW

Simultaneous Localization and Mapping (SLAM) and odometry are critical for en-

abling real-time, uninterrupted pose estimation in autonomous systems like unmanned

aerial vehicles, self-driving cars, indoor robotics, underwater robots, and racing drones.

These algorithms typically utilize sensors such as LiDAR [47], cameras [38], Inertial

Measurement Units (IMUs) [27], or a combination of all [53] to gather fast and pre-

cise pose information without relying on external infrastructure or setups. Throughout

the thesis, I will only consider Visual Inertial Odometry (VIO) methods that utilize

camera and IMU.

VIO is broadly categorized into three main approaches: filter-based [25, 23, 9],

optimization-based [15, 11, 20, 39], and learning-based [49, 37]. Filter-based meth-

ods are known for their computational efficiency while maintaining reasonable ac-

curacy. Optimization-based methods, although computationally demanding, excel in

robust estimation performance, making them suitable for applications requiring high

reliability. Learning-based approaches, on the other hand, offer the flexibility to learn

the sensor noise characteristics and calibration without manual adjustments [2]. Re-

cently, the hybrid models [44, 31, 40, 38], that exploits the geometry through filtering

or optimization while boosting the performance through learning, have particularly

shown promising results.

The concept of the error state is fundamental to both filter-based and optimization-

based approaches, as it facilitates the incorporation of rotation matrices into estima-

tion pipelines.Hence, I will begin with a historical overview of the error state, tracing

its evolution through time. Following this, I delve into the fundamentals of filter-

based, optimization-based approaches.

7



2.1 A Historical Overview of Error State
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Figure 2.1: Comparison of a Gaussian Distribution and a Constrained Distribution

Both the Kalman filter framework and the optimization framework operate under the

assumption that the system’s state can be represented as a multivariate Gaussian dis-

tribution. At least the residual, defined as the discrepancy between the estimated

measurement and the observed measurement, should live in a vector space. How-

ever, this assumption breaks down when applied to constrained states, such as ro-

tation matrices, which cannot be accurately represented by a Gaussian distribution.

This concept is illustrated in Figure 2.1, where we see that a constrained system can-

not be described using a Gaussian model. The left-hand figure illustrates a Gaussian

distribution, whereas the right-hand figure shows samples confined to a circular struc-

ture. This circular structure can be interpreted as a manifold. The key observation is

that distributions constrained to manifolds exhibit fundamentally different properties

compared to Gaussian distributions, emphasizing the need for specialized modeling

techniques when analyzing data constrained by such geometrical structures.

Differentiating a nonlinear function with respect to constrained representations, such

as rotation matrices and quaternions, expands the search space beyond what the prob-

lem actually requires. Moreover, during an optimization or filtering framework, the

constraints might be violated. Hence, practitioners usually define a constraint-free er-

ror term, allowing differentiation to be performed with respect to the error state rather

8



than the full rotation matrix or quaternion. For example, early attempts such as [27]

defined the error state by leveraging the small angle approximation as in Equation

2.1. This approach allowed researchers to confine the search space to R3×1 by differ-

entiating the residual terms in the original problem with respect to ψ ∈ R3×1 instead

of R ∈ SO(3) ⊂ R3×3.

R
∆
= R̂ R̃ ≈ R̂

(
I3 + ⌊ψ⌋

)
(2.1)

In Equation 2.1, it is assumed that the estimation error is sufficiently small to justify

the use of the small-angle approximation. Even the original paper of the famous

MSCKF [36] uses small angle approximation to define error state. However, this

introduces additional linearization errors. On the other hand, with the incorporation

of Lie Algebra [41] in robotic applications, researchers defined the error term using

the exponential map as in Equation 2.2.

R
∆
= R̂ R̃ = R̂ exp

(
⌊ψ⌋

)
= R̂

∞∑
n=0

⌊ψ⌋n
n!

(2.2)

A comparison between Equation 2.1 and 2.2, illustrates that the small angle approx-

imation in Equation 2.1 is equivalent to first order approximation of the exponential

map in Equation 2.2.

Navigation entails the estimation of position and velocity of the body in addition to

rotation. Hence, researchers represented the estimated state as SO(3) × R6×1. A

separate vector x ∈ R6×1 is utilized to store the position and velocity. As a result,

the error state for velocity and position is defined through conventional subtraction

operator as in Equation 2.3.

x̃
∆
= x− x̂ (2.3)

The error state of the overall system is defined through concatenation of ψ and x̃.

Several well-known implementations in the literature, such as OpenVINS[23], and

ORB-SLAM3 [11] have used SO(3) × R6×1 representation. However, linearization

of SO(3)× R6 based methods introduces an observability issue.

More recent studies, including [6] and [7], have demonstrated that linearization er-

rors can be further minimized by employing the Extended Special Euclidean group
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SE2(3). We borrow the definition of SE2(3) from [10] and slightly modify it to be con-

sistent with the work [51]. Throughout the thesis, SE2(3) is defined as in Equation

2.4.

SE2(3)
∆
=

{ R t v

02×3 I2

 ∣∣∣∣∣R ∈ SO(3), t,v ∈ R3×1

}
(2.4)

The key difference between the state representations SO(3) × R6×1 and SE2(3) lies

in the definition of the error state, or residual. I have already defined the error state

for SO(3)× R6×1. In contrast, the error state for the SE2(3) group is defined through

exponential map as in Equation 2.5.

T ∆
= T̂ T̃ = T̂ Exp(ζ∧) (2.5)

where T ∈ SE2(3) and ξ ∈ R9×1. Moreover, the wedge operator (·)∧ for SE2(3) is

defined as follows

ζ∧
∆
=

 ⌊ψ⌋ ρ ν

02×3 02×2

 (2.6)

For a more detailed discussion on SE2(3), you can refer to [10].

2.2 Filter Based Approaches

Assume that we have a state xk, which stores all the relevant information regarding

to a system. For example, in a SLAM pipeline, the state is composed of body pose,

velocity, orientation and the map of the scene. In such systems, we usually do not

have a direct access to some of the state items. Hence, our goal is to estimate the

whole state xk, using only the partial information available.

State is governed by its partially known dynamics, which determines the evolution

of the state through time. Hence, given the pdf of xk, we can compute, or at least

approximate, the pdf of xk+1. The pdf of the transition from state xk to state xk+1 is

denoted as p(xk+1|xk).

In addition to state dynamics, we might have sensors such as camera, GPS and Li-

DAR. The probability distribution of observing a measurement zk depends on the

state. The pdf of a measurement, conditioned on the state, is represented as p(zk|xk).
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With the definition of the state transition model p(xk+1|xk) and sensor model p(zk|xk),
I visualize a filtering framework in Figure 2.2. In the Figure, I implicitly assume that

the Markovian property holds. In other words,

p(xk+1|xk) = p(xk+1|xk,xk−1, · · · ,x0)

Figure 2.2: Filter Based SLAM/Odometry

The model illustrated in Figure 2.2 enables us to propose a simple and iterative odom-

etry framework. In the proposed framework, a single iteration is composed of two

steps. Assume that the initial distribution of the state, p(x0), is available.

1. State Transition:

p(xk|z0:k−1) = p(xk|xk−1, z0:k−1) p(xk−1|z0:k−1) (2.7)

= p(xk|xk−1) p(xk−1|z0:k−1) (2.8)

where we insert that the state transition p(xk|xk−1, z0:k−1) only depends on the

state itself and we let p(xk|xk−1, z0:k−1) = p(xk|xk−1).

2. Measurement Update:

p(xk|z0:k) =
p(zk|xk, z0:k−1) p(xk|z0:k−1)∫
p(zk|xk, z0:k−1) p(xk|z0:k−1) dxk

(2.9)

=
p(zk|xk) p(xk|z0:k−1)∫
p(zk|xk) p(xk|z0:k−1) dxk

(2.10)

where we use the Bayes’ rule. Note that p(zk|xk) is the measurement model

and assumed to be available. Moreover, we have the prior distribution of

p(xk|z0:k−1) from state transition step.
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A Kalman framework can be utilized to efficiently compute p(xk|z0:k), the posterior

distribution of the state xk given all measurements up to time k. However, the per-

formance of the filter heavily depends on the definition of the state and the available

sensors.

The gold standard for filter-based visual-inertial approaches in the literature is the

Multi-State Constraint Kalman Filter (MSCKF) [36]. Many subsequent works [43,

8, 14] have adopted and extended the state definition introduced in MSCKF [36],

demonstrating its robustness and adaptability across various scenarios.

I also adopt the state in MSCKF [36], which I will elaborate on in subsequent sec-

tions. However, the state in [36] is defined as S3×R6, where S3 represents the attitude

in quaternion form, and R6 stores three components for position and three for veloc-

ity. This formulation introduces additional linearization errors during the covariance

estimation of the state. It would be beneficial to discuss the issues associated with

using SO(3)×R6 or S3×R6 and the solutions proposed by the community to address

these challenges.

The linearization of SO(3) × R6-based methods introduces an observability issue,

as the rank of the observability matrix for the linearized system exceeds that of the

original nonlinear system. This discrepancy results in inconsistencies in Extended

Kalman Filter EKF-based VINS estimators due to the gain of spurious information

in unobservable directions [13]. To mitigate this issue, First Estimate Jacobian (FEJ)

[29, 13, 15] and observability-constrained filters (OCF) [28, 33] have been proposed.

FEJ maintains the evaluation of the linearized system state transition matrix and Ja-

cobians at the initial estimate across all time periods, preventing the 4-DOF unob-

servable VINS subspace from gaining erroneous information [13]. Conversely, OCF

enhances the consistency of SO(3) by artificially adjusting the Jacobian to enforce the

system’s unobservability along specified directions [48].

Lie group symmetries have proven useful for consistent observer construction [25].

Consequently, equivariant filter design has garnered significant attention in the com-

munity, such as the Invariant Extended Kalman Filter (IEKF)[7], Invariant Particle

Filter [6], and the Equivariant Filter (EqF) [24]. Equivariant-filter-based VIO algo-

rithms have been proposed to enhance the consistency and accuracy of navigation
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further [48, 25].

2.3 Optimization Based Approaches

The key distinction between optimization and filtering lies in how the state estimate is

determined. Optimization seeks to compute an optimal solution for the current state

estimate by processing data within a sliding window, rather than iteratively updating

the state.

Optimization-based approaches commonly utilize pose graphs [42, 19, 12]. Figure

2.3 depicts a pose graph where the nodes represent the variables to be estimated.

Edges, on the other hand, are the mathematical constraints to be satisfied. The con-

straints can be obtained through system dynamics between states {xn}Nn=0 as well as

sensor measurements between estimated variables {zn}Mn=0 and {xn}Nn=0.

Figure 2.3: Optimization Based SLAM/Odometry

As a toy example, let us consider the connection between state xk and the landmark

zi. A sensor measurement at time instant k creates a constraint in the form of

fk,i(xk, zi) = 0d (2.11)

Due to the sensor noise and non-ideal system dynamics, there is usually no feasible

solution {zn}Mn=0 and {xn}Nn=0 that satisfy all constraints. But it is possible to obtain

a solution {zn}Mn=0 and {xn}Nn=0 that minimizes a cost function. Usually, the cost
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function is defined as follows

C
∆
=
∑
i,j

∥fi,j(xi, zj)∥Σ−1
f(i,j)

+
∑
i,j

∥hi,j(xi,xj)∥Σ−1
h(i,j)

(2.12)

where Σh(i,j) and Σf(i,j) are covariances of the corresponding constraints.

Many optimization libraries are available to efficiently solve optimization problems

such as [17, 1]. Additionally, there are optimization libraries specifically tailored for

pose graph optimization, including [32, 16, 46].

In contrary to filter based approach in Figure 2.2, pose graph permits multiple connec-

tions. We immediately recognize that the structure of the pose graph is more suitable

for SLAM applications compared to filtering. For example, a landmark zi can be

visible through multiple time instants {· · · , k− 2, k− 1, · · · }. However, the iterative

nature of filtering does not permit such connections. To close this gap, multi-state

(augmented state) Kalman filters are employed [36]. We will discuss the augmented

state in detail in Section 4.2.

A concise and clear summary of graph-based SLAM is provided in [26].
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CHAPTER 3

MATHEMATICAL BACKGROUND

I will discuss and solidify why we need Lie algebra to handle rotation matrices and

rigid transformations. The reader, who is not familiar with definition and properties

of rotation matrices and rigid transformations can refer to Appendix A.

The content on this section is adopted from [34] and [3].

3.1 Groups and Vector Spaces

This section is engineered to illustrate the necessity of Lie Algebra, specifically in the

context of handling rotation matrices within robotic applications. A formal treatment

of Lie Algebra, with the foundational concepts and tools will be rigorously defined

and explored in the subsequent section.

3.1.1 Groups

First I provide the definition of group, which shows similarities to definition of vector

spaces.

Consider a set G and a binary operator ◦ defined over the set G. The pair (G, ◦) is

called a group if it satisfies the following three axioms.

1. Closeness Under Binary Operation ◦: The set G is closed under the binary

operation ◦.

g1 ◦ g2 ∈ G ∀g1, g2 ∈ G
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2. Existence of Identity: There exists an identity element e such that

e ◦ g = g ∀g ∈ G

3. Existence of Inverse: ∀g ∈ G, there exists an element g−1 ∈ G such that

g ◦ g−1 = e

The reader might recognize that the rotation matrices also constitute a group under

matrix multiplication.

• Closeness Under Matrix Multiplication:

R3
∆
= R1 R2 ∈ SO(3) ∀R1,R2 ∈ SO(3)

• Existence of Identity:

I3 R = R ∀R ∈ SO(3)

• Existence of Inverse

RT R = I3 ∀R ∈ SO(3)

In contrast to vector spaces, groups cannot interact with scalars. For example, we

cannot multiply a rotation matrix with an arbitrary scalar to obtain a new rotation

matrix.

aR /∈ SO(3) unless a = 1

Likewise, we cannot use vector additions for groups. In other words

R1 +R2 /∈ SO(3) for R1,R2 ∈ SO(3)

3.1.2 Toy Example

In the previous discussion, we have seen that the groups are different from vector

spaces and they are more challenging to manipulate. For example, consider that
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we want to interpolate two rotation matrices, R1,R2 ∈ SO(3). How do we define

Rinterpolated?

In vector spaces, we can interpolate two vectors by simply computing the average of

them.

vinterpolated = 0.5 (v1 + v2)

Unfortunately, neither the vector addition nor the scalar multiplication is a valid op-

eration for rotation matrices. On the other hand, we can map rotation matrices into a

vector space.

Inspired by Claim 12, we map R1,R2 into corresponding skew symmetric matrices

through matrix logarithm. Let us denote the set of skew symmetric matrices as S.

Here, we recall that S is a vector space under matrix addition. Hence, the interpola-

tion might take place in S.

S1
∆
= logm(R1) ∈ S

S2
∆
= logm(R2) ∈ S

Sinterpolated = 0.5 (S1 + S2)

Rinterpolated = expm(Sinterpolated)

In conclusion, I point out that it might be possible to map a group into a vector space

where robotic applications are handled easily. Throughout the thesis, we will only

consider matrix Lie groups where such a mapping is always possible.

3.1.3 Differentiation w.r.t. Rotation Matrices

Differentiation of a nonlinear function with respect to a rotation matrix is a funda-

mental step both in optimization and filter frameworks. To illustrate the concept, I

provide a toy example.

argmin
R∗

C = ∥R v1 − v2∥2 (3.1)
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Imagine that we want to find the optimal solution for the problem given in Equation

3.1. One approach would be to compute the differentiation of the cost with respect to

each element of the rotation matrix and apply gradient descent algorithm.

∇RC
∆
=


dC
dr11

dC
dr12

dC
dr13

dC
dr21

dC
dr22

dC
dr23

dC
dr31

dC
dr32

dC
dr33

 (3.2)

R(k+1) ← R(k) − η∇RC (3.3)

where subscript (·)(k) denotes the optimization iteration. However we see that in

Equation 3.3, we subtract a matrix from a rotation matrix. Hence, it is not guaranteed

that R(k+1) will be still a rotation matrix. We can always insert the constraints of a

rotation matrix into our optimization framework. However, we see that the search

space is expanded to 9 parameters with 6 constraints while the original problem only

has 3 degree of freedom.

Another approach for solving Equation 3.1 would be utilization of matrix exponential.

Let us express the problem using the skew symmetric representation of the rotation

matrix.

argmin
ψ∗

C = ∥expm(⌊ψ⌋) v1 − v2∥2 (3.4)

The new representation of the rotation ψ ∈ R3×1 is a constraint free vector. Hence,

we can easily apply the gradient descent method. Mathematically,

∇ψC ∆
=


dC
dψ1

dC
dψ2

dC
dψ3

 (3.5)

ψ(k+1) ← ψ(k) − η∇ψC (3.6)

The optimal rotation matrix R∗ is written as R∗ = expm(⌊ψ∗⌋).

3.2 Lie Algebra

This section presents essential definitions and proofs from the literature on Lie Alge-

bra. While a comprehensive and rigorous study of Lie Algebra necessitates a com-

18



plete book chapter, only a small portion of this extensive work is relevant to the thesis.

All relevant definitions are comprehensively addressed within this section.

Even though provided definitions exist for a larger set of groups, we will specifically

examine SO(3) and SE(3).

3.2.1 Definition of Lie Algebra

Consider a smooth manifoldM and a point X (t) which stays on the manifold for all

time instants t. For smooth manifolds such as rotation matrices and rigid transforma-

tions, any velocity vector Ẋ ∆
= dX (t)/dt lies within the tangent space at that point on

the manifold. The tangent space at a specific point X on the manifoldM is denoted

as TXM. Moreover, the tangent space TEM at the identity element E is called the

Lie Algebra of the manifold and represented by m.

• Lie Algebra of SO(3) is represented by so(3).

Claim 1. so(3) is equivalent to skew symmetric matrices. In other words

so(3) = {⌊ψ⌋ | ψ ∈ R3×1} (3.7)

Proof.

RRT = I3 → d
dt

RRT =
d
dt
I3 → Ṙ RT +R ṘT = 03×3 (3.8)

Tangent space is equivalent to the space spanned by all possible Ṙ matrices.

We are interested in the tangent space at identity; hence, insert R = I3.

Ṙ RT +R ṘT = 03×3 = 03×3
at identity−−−−−→
R=I3

Ṙ+ ṘT = 03×3 (3.9)

Ṙ+ṘT = 03×3 implies that Ṙ is a skew symmetric matrix. Q.E.D.

• Lie Algebra of SE(3) is represented by se(3). Moreover,

se(3) =


⌊ξψ⌋ ξρ

01×3 0

 ξψ, ξρ ∈ R3×1

 (3.10)
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3.2.2 Wedge and Vee Operators

Wedge operator (·)∧ maps a vector into Lie algebra of the corresponding manifold.

Vee operator (·)∨, on the other hand, is the inverse of the wedge operator.

• Wedge operator for SO(3) maps the vector ψ ∈ R3×1 into so(3).

ψ∧ ∆
= ⌊ψ⌋ ∈ so(3) (3.11)

⌊ψ⌋∨ ∆
= ψ ∈ R3×1 (3.12)

• Wedge operator for SE(3) maps the vector ξ ∈ R6×1 into se(3).

ξ∧
∆
=

⌊ξψ⌋ ξρ

01×3 0

 ∈ se(3) (3.13)

⌊ξψ⌋ ξρ

01×3 0

∨

∆
= ξ ∈ R6×1 (3.14)

where ξ =

ξψ
ξρ

 and ξψ, ξρ ∈ R3×1

3.2.3 Capitalized Exponential and Logarithmic Maps

Capitalized exponential and logarithmic map for any matrix Lie group is defined as

follows.

Exp(v) ∆
= expm(v

∧) (3.15)

Log(V)
∆
= logm(V)∨ (3.16)

Note that

Exp
(

Log(V)
)
= V Log

(
Exp(v)

)
= v (3.17)

• ExpSO(3)(·) : R3×1 → SO(3)

ExpSO(3)(ψ) = expm(ψ
∧) = expm(⌊ψ⌋) ∈ SO(3) (3.18)
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Moreover, we have closed form expression for ExpSO(3)(v), called the Ro-

driques formula.

ExpSO(3)(v)
∆
=

∞∑
n=0

⌊v⌋n
n!

(3.19)

By Claim 13−−−−−−→ = I3 +
sin(∥v∥)
∥v∥ ⌊v⌋+ 1− cos(∥v∥)

∥v∥2 ⌊v⌋2 (3.20)

• ExpSE(3)(·) : R6×1 → SE(3)

ExpSE(3)(ξ) = expm(ξ
∧) = expm

⌊ξψ⌋ ξρ

01×3 0

 ∈ SE(3) (3.21)

We have the closed form expression

ExpSE(3)(ξ) =
∞∑
n=0

(ξ∧)n

n!
(3.22)

=

ExpSO(3)(ξψ) JlSO(3)
(ξψ)ξρ

01×3 1

 (3.23)

where JlSO(3)
(·) : R3×1 → R3×3 is called left Jacobian of SO(3) and defined in

the next subsection.

3.2.4 Left and Right Jacobians

Left Jacobian of a group G is defined as follows:

JlG(v)
∆
= lim
τ→0

LogG

(
ExpG(v + τ ) ExpG(v)

−1
)

τ
(3.24)

=
∂

∂τ
LogG

(
ExpG(v + τ ) ExpG(v)

−1
)

(3.25)

Right Jacobian of a group G is defined as follows:

JrG(v)
∆
= lim
τ→0

LogG

(
ExpG(v)

−1 ExpG(v + τ )
)

τ
(3.26)

=
∂

∂τ
LogG

(
ExpG(v)

−1 ExpG(v + τ )
)

(3.27)
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• Left and right Jacobians for SO(3).

JlSO(3)
(ψ)

∆
= lim
τ→0

LogSO(3)

(
ExpSO(3)(ψ + τ ) ExpSO(3)(ψ)

−1
)

τ
(3.28)

=
∞∑
n=0

⌊ψ⌋n
(n+ 1)!

(3.29)

JrSO(3)
(ψ) = JlSO(3)

(−ψ) (3.30)

Moreover, we have the closed form expression for JlSO(3)
(ψ).

JlSO(3)
(ψ) =

∞∑
n=0

⌊ψ⌋n
(n+ 1)!

(3.31)

= I3 −
1− cos(∥ψ∥)
∥ψ∥2 ⌊ψ⌋+ ∥ψ∥ − sin(∥ψ∥)

∥ψ∥3 ⌊ψ⌋2 (3.32)

We frequently encounter the inverse of the Jacobians of SO(3) in state estima-

tion. Hence, I also provide the related closed form expressions.

J −1
lSO(3)

(ψ)
∆
=

∞∑
n=0

Bn

n!
⌊ψ⌋n (3.33)

= I3 −
1

2
⌊ψ⌋+

(
1

∥ψ∥2 −
1 + cos(∥ψ∥)

2 ∥ψ∥ sin(∥ψ∥)

)
⌊ψ⌋2 (3.34)

J −1
rSO(3)

(ψ) = J −1
lSO(3)

(−ψ) (3.35)

B1, B2, · · · are the Bernoulli numbers.

• Left and right Jacobians for SE(3) turn out to be more difficult to acquire.

Hence, closed form expressions are not provided here intentionally.

3.2.5 Adjoint Matrix

Consider a manifold G with Lie Algebra g. The adjoint matrix on a specific point

V ∈M satisfy the following equality.

ExpG(AdV τ ) = V ExpG(τ )V
−1 (3.36)

where τ∧ ∈ g, τ ∈ Rn×1 and AdV ∈ Rn×n.

Remark: Expression (3.37) is equivalent to (3.36).

ExpG(τ )V = V ExpG(AdV−1 τ ) (3.37)
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• Adjoint matrix for SO(3):

Claim 2. Adjoint matrix for SO(3) is simply equal to AdR = R. In other

words, it holds that

R ExpSO(3)(ψ)R
T = ExpSO(3)(Rψ), ∀R ∈ SO(3), ∀ψ ∈ so(3)

Proof. We directly use the definition for the proof.

ExpSO(3)(AdRψ) = R ExpSO(3)(ψ)R
T (3.38)

= R
∞∑
n=0

⌊ψ⌋n
n!

RT (3.39)

=
∞∑
n=0

R⌊ψ⌋nRT

n!
(3.40)

=
∞∑
n=0

R⌊ψ⌋RRT ⌊ψ⌋n−1RT

n!
(3.41)

=
∞∑
n=0

(R⌊ψ⌋RT )n

n!
(3.42)

=
∞∑
n=0

⌊Rψ⌋n
n!

(3.43)

= ExpSO(3)(Rψ) (3.44)

Q.E.D.

• Adjoint matrix for SE(3):

AdT =

 R 03×3

⌊t⌋R R

 where T =

 R t

01×3 1

 (3.45)

The proof is provided in Claim 14.

3.3 Inertial Navigation on Inertial Frames

Inertial Measurement Units (IMUs) are essential components in navigation systems

[27]. Despite their susceptibility to vibrations and drift errors that can quickly accu-

mulate, IMUs can significantly boost the performance of SLAM and odometry when

integrated with complementary sensors such as cameras, LiDAR, and GPS. Their
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straightforward output and minimal computational demand make them an attractive

option.

This section examines the dynamics of IMUs equipped with accelerometers and gyro-

scopes. Although some IMU designs incorporate magnetometers, their susceptibility

to interference from nearby metals poses challenges for creating robust, generalized

navigation systems.

For the completeness of the thesis, Figure 3.1 depicts an IMU with gyroscope and

accelerometer measurements. The gyroscope measures the angular velocity along

each axis, denoted as ωb
gb = (ωx, ωy, ωz). On the other hand, the accelerometer

captures the linear acceleration along each axis, represented as fbgb = (fx, fy, fz).

Note that the gravity affects the accelerometer measurement. Specifically

f ggb = ab
gb −Rb

g g (3.46)

where g = (0, 0, 9.81) m/sec2 is the gravity term and ab
gb is the acceleration of the

body b with respect to global frame g resolved in body frame b. The remaining of this

section examines how to relate the IMU measurements ωb
gb and fbgb with the position,

velocity and orientation of the body b with respect to global frame g.

3.3.1 Attitude Update

In Claim 11, we have shown that the differentiation of a rotation matrix can be ex-

pressed as

Ṙg
b = Rg

b S (3.47)

where S is a skew symmetric matrix. Now, I further claim that S = ⌊ωb
gb⌋, where ωb

gb

is the gyroscope measurement. The detailed proof can be found in [27].

In practical applications, IMU measurements are typically recorded at time intervals

of 2ms − 20ms, necessitating the discretization of the system. At a given time in-

stant tk, the body rotation relative to the global frame is represented by Rg
b[k] and

the gyroscope measurement is denoted by ωk. Assuming that the angular rate ω is

constant and equal to ωk for time interval [tk, tk+1), we compute the body rotation at
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Figure 3.1: An IMU Sensor with Gyroscope and Accelerometer

time instant tk+1 as follows.

Rg
b[k + 1] = Rg

b[k] expm(⌊ωk⌋∆t) (3.48)

where ∆t = tk+1 − tk.

3.3.2 Velocity Update

The differentiation of velocity with respect to time is acceleration.

v̇g
gb = ag

gb (3.49)

To relate the IMU measurements to ag
gb, it is crucial to note that the IMU measures ab

gb

with gravity term, rather than directly measuring ag
gb. There is a simple conversion.

Eq 3.46−−−→ fbgb = ab
gb −Rb

g g (3.50)

= Rb
ga

g
gb −Rb

g g (3.51)

⇒ ag
gb = Rg

b f
b
gb + g (3.52)
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As the final step, we need to discretize the Equation (3.49).

v̇g
gb(t) = ag

gb(t) (3.53)
Eq. (3.52)−−−−−→ = Rg

b(t) f
b
gb(t) + g (3.54)

⇒ vg
gb[k + 1] = vg

gb[k] +

∫ tk+1

tk

(
Rg

b(t) f
b
gb(t) + g

)
dt (3.55)

= vg
gb[k] +

∫ tk+1

tk

(
Rg

b(t) f
b
gb(t)

)
dt+ g∆t (3.56)

= vg
gb[k] +

∫ tk+1

tk

(
Rg

b(t) f
b
gb(t)

)
dt+ g∆t (3.57)

Assuming that the specific force fbgb(t) is constant and equal to fk for time interval

[tk, tk+1), we obtain

vg
gb[k + 1] = vg

gb[k] +

∫ tk+1

tk

Rg
b(t)fkdt+ g∆t (3.58)

= vg
gb[k] +

∫ tk+1

tk

Rg
b(t) dt fk + g∆t (3.59)

For time interval [tk, tk+1), we have Rg
b(t) = Rg

b[k] expm

(
⌊ωk⌋ (t− tk)

)

vg
gb[k + 1] = vg

gb[k] +

∫ tk+1

tk

Rg
b(t) dt fk + g∆t (3.60)

= vg
gb[k] +

∫ tk+1

tk

Rg
b[k] expm

(
⌊ωk⌋ (t− tk)

)
dt fk + g∆t (3.61)

= vg
gb[k] +Rg

b[k]

∫ tk+1

tk

expm

(
⌊ωk⌋ (t− tk)

)
dt fk + g∆t (3.62)

Even though a closed form expression for (3.62) is available in [50], practitioners

usually tend to use an approximation of (3.60). The most simple approximation of

(3.60) is that Rg
b(t) is also assumed to be constant for the small time interval [tk, tk+1).

vg
gb[k + 1] = vg

gb[k] +

∫ tk+1

tk

Rg
b(t) dt fk + g∆t (3.63)

≈ vg
gb[k] +

∫ tk+1

tk

Rg
b[k] dt fk + g∆t (3.64)

= vg
gb[k] +Rg

b[k] fk ∆t+ g∆t (3.65)
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One the other hand, [27] uses triangle approximation.

vg
gb[k + 1] = vg

gb[k] +

∫ tk+1

tk

Rg
b(t) dt fk + g∆t (3.66)

≈ vg
gb[k] + 0.5

(
Rg

b[k] +Rg
b[k + 1]

)
fk + g∆t (3.67)

In the scope of this thesis, I use the closed form solution provided by [50]. For the

convenience of the reader, I explain how to take the integral of a rotation matrix in

appendix A.6.2.

3.3.3 Position Update

We have the simple expression

ṫggb(t) = vg
gb(t) (3.68)

Apply discretization

tggb[k + 1] = tggb[k] +

∫ tk+1

tk

vg
gb(t) dt (3.69)

By Eq. (3.62)−−−−−−→ = tggb[k] +

∫ tk+1

tk

(
vg
gb[k] +Rg

b[k]

∫ t

tk

expm

(
⌊ωk⌋ (τ − tk)

)
dτ fk + g∆t

)
dt

(3.70)

A few algebraic manipulation leads to

tggb[k + 1] = tggb[k] + vg
gb[k] ∆t+ 0.5∆t2 g + · · ·

· · ·+Rg
b[k]

∫ tk+1

tk

∫ t

tk

expm

(
⌊ωk⌋ (τ − tk)

)
dτ dt fk (3.71)

Again, a closed form expression for the term
∫ tk+1

tk

∫ t

tk

expm

(
⌊ωk⌋ (τ − tk)

)
dτ dt

is provided in [50]. The derivation is similar to appendix A.6.2. However, many

practitioners prefer to use triangle approximation for solving (3.69), which leads to a

simple and intuitive solution.

tggb[k + 1] ≈ tggb[k] + 0.5(vg
gb[k] + vg

gb[k + 1]) (3.72)

Throughout the thesis, I will employ the closed form expression provided by [50]

rather than using the approximations.
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3.3.4 Summary

IMU dynamics can be summarized with 3 equations

1. Attitude Update

Rg
b[k + 1] = Rg

b[k] expm(⌊ωk⌋∆t)

2. Velocity Update

vg
gb[k + 1] = vg

gb[k] +Rg
b[k]

∫ tk+1

tk

expm

(
⌊ωk⌋ (t− tk)

)
dt fk + g∆t

≈ vg
gb[k] + 0.5

(
Rg

b[k] +Rg
b[k + 1]

)
fk + g∆t

3. Position Update

tggb[k + 1] = tggb[k] + vg
gb[k] ∆t+ 0.5∆t2 g + · · ·

· · ·+Rg
b[k]

∫ tk+1

tk

∫ t

tk

expm

(
⌊ωk⌋ (τ − tk)

)
dτ dt fk

≈ tggb[k] + 0.5(vg
gb[k] + vg

gb[k + 1])

3.4 Error State Kalman Filter

In this section, I provide an overview of error state EKF framework. Assume that the

actual state at time instant k is represented byXk. The actual state might be composed

of vectors and groups. On the other hand, the error state is represented by δx, that

lives in a vector space. The error state EKF is summarized as follows

• Prediction step

Xk+1|k, δx+ = f(Xk|k, δx = 0,ηq = 0) (3.73)

Σk+1|k = FkΣk|kF
T
k +GkQGT

k (3.74)

I assume that the error state is defined such that δx+ = 0 though its covariance

Σk+1|k has nonzero entries.
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• Measurement Update

Sk = HkΣk+1|kH
T
k +WkRW

T
k (3.75)

Kk = Σk+1|kH
T
kS

−1
k (3.76)

δx = Kk

(
zk − h(Xk+1|k, δx = 0,ηr = 0)

)
(3.77)

Xk+1|k+1 ← Xk+1|k ⊕ δx (3.78)

where

Fk
∆
=

∂ δx+

∂ δx
Gk

∆
=

∂ δx+

∂ηq
(3.79)

Hk
∆
=

∂h(·)
∂ δx

Wk
∆
=

∂h(·)
∂ηr

(3.80)

The sign ⊕ in (3.78) is a special addition operation which depends on the definition

of the error state.

It is important to note that both the actual state X and the error state δx evolve ac-

cording to the same dynamics f(·) in (3.75).However, the evaluated covariance cor-

responds to the error state. Consequently, the Jacobians in (3.79) and (3.80) are com-

puted with respect to the error state, δx. This approach allows us to operate within a

vector space, even though the actual state X does not belong to any vector space.

3.5 VOLDOR Revisited

Remark: This section, which is provided for the completeness of the thesis, is not

fully integrated into the scope of this work. Hence, the reader can skip without any

hesitation. In the proposed method, I solely utilize the output of VOLDOR [35] with-

out any intervention in its inner dynamics. The output of VOLDOR [35] is discussed

in detail in the relevant section.

Warning: Readers who are not familiar with optical flow and depth maps are encour-

aged to review Appendices B.1 and B.2. In these sections, I provide an exploration

of optical flow and depth maps, supplemented with detailed visuals.

VOLDOR [35] is a stereo visual odometry algorithm introduced in 2020 at the Inter-

national Conference on Robotics and Automation (ICRA). Unlike other visual naviga-
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tion systems, VOLDOR [35] processes optical flow vectors between successive image

frames instead of the raw image data. Consequently, VOLDOR [35] performs SLAM

directly using dense optical flow.

Figure 3.2 illustrates a sample frame from KITTI dataset with optical flow and corre-

sponding inverse depth map.

(a) Frame

(b) Optical Flow

(c) Depth Map

Figure 3.2: Frame, Optical Flow and Depth Map
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Consider two image frames I1 ∈ RH×W×3 and I2 ∈ RH×W×3. The relative poses

between two camera frames, Tc1
c2 ∈ SE(3) is defined such that

Tg
c2 = Tg

c1T
c1
c2

Denote the depth map of I1 as D1 ∈ RH×W×1. Finally, optical flow vectors from I1

to I2 are stored in F1→2 ∈ RH×W×2.

Claim 3. Given F1→2 and Tc1
c2, we can compute D1.

Claim 4. Given F1→2 and D1, we can compute Tc1
c2.

Extraction of optical flow from image pairs is a well-studied problem in literature

[18, 30, 54] and F1→2 can be easily extracted. During the experiments, RAFT [45] is

used to extract optical flow vectors. However, the difficulty in visual SLAM usually

arises from the fact that we neither have Tc1
c2 between successive frames nor the depth

map D1.

VOLDOR [35] employs a calibrated stereo camera setup to solve the unknown Tc,k
c,k+1

and D1 dilemma. Let us denote the successive frames belonging to left camera as

I l,1,I l,2,I l,3 ∈ RH×W×3. Similarly, frames belonging to right camera is denoted as

Ir,1,Ir,2, · · · . Frames I l,1,I l,2,I l,3,I l,4 and Ir,1 are visualized in Figure 3.3.

Figure 3.3: Stereo Frames I l,1,I l,2,I l,3,I l,4 and Ir,1
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We have the relative poses of the right and left camera, Tc,r
c,l . Then, by Claim 3, we

can compute the depth map Dl,1 for the image frame I l,1. Now, we have Dl,1; hence,

we can compute Tc,l1
c,l2 by the Claim 4. Doing the same operation for each arrived

image pair, we can obtain the full trajectory.

Tc,g
c,ln = Tc,g

c,l0 T
c,l0
c,l1 T

c,l2
c,l1 · · · T

c,l(n−1)
c,ln (3.81)

This simple, yet effective, approach enables us to execute a dense odometry. A sample

point cloud obtained by VOLDOR [35] is depicted in Figure 3.4. The curious reader

is encouraged to read [35] for details.

For the sake of notation simplicity, the incremental pose is defined only for the left

camera and is denoted as Tcn
c(n+1). For the remainder of the thesis, I will assume that

the incremental pose is readily available.
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Figure 3.4: 3D Point Clouds Generated by VOLDOR on KITTI Dataset
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CHAPTER 4

METHODOLOGY

In the previous Chapter, we first explored the Special Euclidean Group SE(3) and

Extended Special Euclidean Group SE2(3). We discussed how to represent and ma-

nipulate the error term regarding to these groups through Lie Algebra.

Moreover, we have examined the geometric relations of the IMU measurements and

the body state. However, we have not discussed how to propagate the error state of

the body, which lives in se2(3), through IMU measurements.

The previous chapter, finally examined a visual SLAM system, demonstrating that

there is a geometric relation between the depth map of the image, successive opti-

cal flow vectors and the motion of the camera. Moreover, I provided an overview

of VOLDOR [35], which exploits these geometric constraints to construct a Stereo

Visual Odometry pipeline.

In this Chapter, on the other hand, I will examine how the error state evolves given the

successive IMU measurements. Moreover, I will propose an extended Kalman Filter

framework to fuse IMU measurements to enhance the performance of VOLDOR [35].

4.1 Overview of the Methodology

In order to implement a Kalman filter, we have to define 3 core components

1. State Definition (including the actual state and error state)

2. State Transition (Time propagation)

3. Measurement Update Equation
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I will define the state in Section 4.2 with the corresponding error state explored in

Section 4.3. Then, the state transition will be defined through IMU measurements in

Section 4.4. The dynamics of the error state with respect to IMU measurements will

be examined in this section.

Finally, we will examine the measurement model in Section 4.5. Here, the measure-

ment is defined as the iterative (or incremental) camera poses obtained by VOLDOR

[35]. In this section, I assume that incremental camera poses are available without

any reference to VOLDOR [35]. The focus will be fusion of these incremental poses

with IMU measurements.

I remark the fact that the state definition and state transition proposed in this thesis

is adopted from the existing work. However, necessity for fusing incremental pose

with IMU measurements is indicated within the scope of this thesis and the result-

ing Kalman measurement update equations are derived as a contribution to the state

estimation community.

4.2 State Definition

The state definition adopted in this work follows the structure introduced in MSCKF

[36], that consists of the active IMU state and its historical clones. Specifically, the

full state is represented as:

x =
[
xIMU xclone,1 xclone,2 · · · xclone,N

]
(4.1)

This structure is also called the augmented state [5]. Active IMU state, denoted as

xIMU , stores the current up-do-date estimations of rotation, position and velocity of

the body b with respect to global reference frame g. In addition, the active IMU state

also includes the estimated biases for the gyroscope and accelerometer, represented

as bg and ba, respectively.

xIMU =
[
Rg

b tgb vg
b, bg ba

]
(4.2)

On the other hand, each historical clone stores the pose of the body at a specific

previous time instant.

xclone,i =
[
Rg

clone,i tgclone,i

]
(4.3)
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Depending on the application, we can initialize a new historical clone for each IMU

measurement or we can initialize clones at specific time instants. For example, [36]

and [23] initialize a new clone for each arrived image frame. To maintain a bounded

computational load, a sliding window approach is employed. In other words, the

oldest historical clones are removed from the state as new clones are initialized.

As a final remark, it is important to emphasize that the historical clones and the ac-

tive IMU state are correlated variables. Consequently, when a new measurement is

received for one of the historical clones, the active IMU state is also updated during

the measurement update phase of the MSCKF framework. As a result, the presence

of historical clones allows the system to incorporate measurements from previous

time instants, thereby refining the active IMU state and improving the accuracy of the

current state estimation.

4.3 Error State Definition

An EKF framework operates under the assumption that the system’s state can be

modeled as a multivariate Gaussian distribution. However, this assumption breaks

down when applied to constrained states, such as rotation matrices, which cannot

be accurately represented by a Gaussian distribution. To overcome this technical

difficulty, researchers have proposed the error state. In this section, we discuss the

error state for the proposed framework.

The active IMU state is represented as SE2(3) × R6, where SE2(3) is called the ex-

tended special Euclidean group [10]. SE2(3) stores the rotation, position and velocity

while R6 stores the gyroscope and accelerometer biases. Error state for SE2(3) is

defined as a perturbation term, which is adopted from [10].

T g
b =

 Rg
b tgb vg

b

02×3 I2

 (4.4)

= T̂
g

b ExpSE2(3)
(ζ) (4.5)

Where T g
b is the actual state, T̂

g

b is the estimated state and ζ ∈ R9×1 is the perturba-

tion term.
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The error states for the gyroscope and accelerometer biases are defined through con-

ventional subtraction, specifically as b̃g
∆
= bg − b̂g and b̃a

∆
= ba − b̂a. Similarly, we

define the error state for clones.

Tg
clone,i = T̂g

clone,i ExpSE(3)(ξclone,i) (4.6)

ξclone,i ∈ R6 is the error state for clone i. The overall error state, represented by x̃, is

formed by concatenating individual error states.

x̃
∆
=



ζ

b̃g

b̃a

ξclone,1
...

ξclone,n


(4.7)

4.4 State Transition Model

This section examines the state transition equations derived from the integration of

IMU measurements. All the derivations in this section are adopted and borrowed from

[10] and [51], which are the extended versions of [4]. Note that we will examine the

evolution of the error state rather than the pose of the system. We will see that while

the mean of the error remains zero, its covariance evolves during state transitions.

We previously analyzed IMU dynamics in Section 3.3 and presented three key equa-

tions as a summary in Subsection 3.3.4. Recall that, within the state, we have defined

bias terms bg and ba, which also should be included in state transition.

The overall state transition is examined in two steps.

1. First assume that the IMU is noise-free. Obtain the state-to-state transition.

2. Include IMU noise, examine imu noise-to-state transition.
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4.4.1 Error State Dynamics with Noise-Free IMU

Recall that we employ the extended special Euclidean group SE(3).

T g
bt
=

 Rg
bt tgbt vi

bt

02×3 I2

 (4.8)

The notation T g
bt

stands for the extended pose of body b with respect to global frame

g at time instant t.

First, [4] examined the error state dynamics of SE(3). Later, [10] extended this work

to include velocity in the analysis. As highlighted by these studies, the IMU dynamics

can be expressed in the form of matrix multiplication.

T g
bt
= Γt Φt(T g

b0
)Υt (4.9)

where

Γt
∆
=

 I3 0.5gt2 gt

02×3 I2

 Φt(T g
b)

∆
=

 Rg
b tgb + vg

bt vg
b

02×3 I2

 (4.10)

And Υt is the integrated IMU measurements

Υt
∆
=

 ∆R(t) ∆t(t) ∆v(t)

02×3 I2

 (4.11)

and we have

∆R(t) = Exp
(∫ t

0

ωb
ibdτ

)
∆v(t) =

∫ t

0

∆R(τ) f(τ)dτ ∆t(t) =

∫ t

0

∆v(τ)dτ

(4.12)

Discretization of (4.9) leads to

T g
bk+1

= Γk Φt(T g
bk
)Υk (4.13)

Now, we are ready to examine the error dynamics. Decompose T g
bk+1

into state and

error state.

T g
bk

= T̂
g

bk
Exp(ζk) (4.14)
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Insert (4.14) into (4.13).

T̂
g

bk+1
Exp(ζk+1) = Γk Φt

(
T̂

g

bk
Exp(ζk)

)
Υk (4.15)

By Claim−−−−→
16

= Γk Φt

(
T̂

g

bk

)
Φt

(
Exp(ζk)

)
Υk (4.16)

By Claim−−−−→
15

= Γk Φt

(
T̂

g

bk

)
Exp

(
F ζk

)
Υk (4.17)

By Equation−−−−−−→
3.37

= Γk Φt

(
T̂

g

bk

)
Υk Exp(AdΥ−1

k
F ζk) (4.18)

where

F =


I3 00×3 00×3

00×3 I3 I3 t

00×3 00×3 I3


In summary, we have

T̂
g

bk+1
Exp(ζk+1) = Γk Φt

(
T̂

g

bk

)
Υk Exp(AdΥ−1

k
F ζk) (4.19)

Moreover, the estimated state also obeys Equation (4.13).

T̂
g

bk+1
= Γk Φt

(
T̂

g

bk

)
Υk (4.20)

Insert (4.20) into (4.19)

T̂
g

bk+1
Exp(ζk+1) = T̂

g

bk+1
Exp(AdΥ−1

k
F ζk) (4.21)

⇐⇒ Exp(ζk+1) = Exp(AdΥ−1
k

F ζk) (4.22)

Unfortunately, the map Exp(·) is not one-to-one. Hence, we cannot directly claim

that

Exp(ζk+1) = Exp(AdΥ−1
k

F ζk) ⇐⇒ ζk+1 = AdΥ−1
k

F ζk

However, for errors, where the magnitude of ζψ is smaller than π, we can safely

assume that

ζk+1 = AdΥ−1
k

F ζk (4.23)

It turns out that, even though the original state dynamics are highly nonlinear,

the error state evolves through a linear system given in (4.23).
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4.4.2 Error State Dynamics with Noisy IMU

In the previous part, we analyzed the state transition assuming a noise-free IMU. Now,

we extend this analysis to include IMU noise. Recall the equation (4.17).

T̂
g

bk+1
Exp(ζk+1) = Γk Φt

(
T̂

g

bk

)
Exp

(
F ζk

)
Υk

Here, the IMU measurements are represented by Υk where noise-related errors are

inherently included. To account for this, we decompose Υk into two components:

Υk = Υ̂k Υ̃k (4.24)

where Υ̂k denotes the measurement, and Υ̃k is the error term. In this section, we will

derive Υ̃k.

Derivation of Υ̃

Let us recall the definition of Υ̃.

Υk
∆
=

 ∆R[k] ∆t[k] ∆v[k]

02×3 I2


with

∆R[k] = Exp
(∫ tk+1

tk

ωb
ibdt
)

∆v[k] =

∫ tk+1

tk

∆R(t) f(t)dt ∆t[k] =

∫ tk+1

tk

∆v(t)dt

Here we will represent the arrived gyroscope and accelerometer measurements by

ωm and fm, respectively. Recall that we have estimates of the bias terms. Then, the

estimated angular velocity and linear specific force are

ω̂
∆
= ω − b̂g (4.25)

f̂
∆
= fm − b̂a (4.26)

In such a case, the bias error states, b̃g and b̃a, as well as instantaneous IMU noises,

ηg and ηa, appears as the source of the error. Let us examine the noise within each

term.
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1. IMU Noise in Orientation Estimation

∆R = Exp
(
(ω̂ − b̃g − ηg)∆t

)
(4.27)

≈ Exp
(
ω̂∆t

)
︸ ︷︷ ︸

=∆̂R

Exp
(
− Jr(ω̂∆t)(b̃g + ηg)∆t

)
︸ ︷︷ ︸

∆̃R

(4.28)

2. IMU Noise in Velocity Estimation

∆v =

∫ ∆t

0

∆R(τ)dτ (f̂ − b̃a − ηa) (4.29)

=

∫ ∆t

0

Exp
(
(ω̂ − b̃g − ηg)τ

)
dτ (f̂ − b̃a − ηa) (4.30)

≈
∫ ∆t

0

Exp
(
ω̂τ
)

Exp
(
− Jr(ω̂τ)(b̃g + ηg)τ

)
dτ (f̂ − b̃a − ηa) (4.31)

≈
∫ ∆t

0

Exp
(
ω̂τ
)(
I3 − ⌊Jr(ω̂τ)(b̃g + ηg)τ⌋

)
dτ (f̂ − b̃a − ηa)

(4.32)

Ignore second order term (b̃g + ηg)(b̃a + ηa). Also use the property ⌊a⌋b =

−⌊b⌋a

∆v ≈
∫ ∆t

0

Exp
(
ω̂τ
)

dτ f̂︸ ︷︷ ︸
=∆̂v

+

∫ ∆t

0

Exp
(
ω̂τ
)
⌊f̂⌋Jr(ω̂τ)τdτ︸ ︷︷ ︸

∆
=Jvg

(b̃g + ηg)

(4.33)

−
∫ ∆t

0

Exp
(
ω̂τ
)

dτ︸ ︷︷ ︸
∆
=Jva

(b̃a + ηa) (4.34)

Then

∆̃v = Jvg(b̃g + ηg) + Jva(b̃a + ηa) (4.35)
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3. IMU Noise in Position Estimation

∆t =

∫ ∆t

0

∆v(τ) dτ (4.36)

=

∫ ∆t

0

(∫ τ

0

∆R(δ)dδ (f̂ − b̃a − ηa)
)

dτ (4.37)

=

∫ ∆t

0

(∫ τ

0

∆R(δ)dδ
)

dτ (f̂ − b̃a − ηa) (4.38)

=

(∫ ∆t

0

∫ τ

0

∆R(δ) dδ dτ
)
(f̂ − b̃a − ηa) (4.39)

Let us examine the term
∫ ∆t

0

∫ τ

0

∆R(δ) dδ dτ .

∫ ∆t

0

∫ τ

0

∆R(δ) dδ dτ ≈

≈
∫ ∆t

0

∫ τ

0

Exp
(
ω̂δ
)

Exp
(
− Jr(ω̂δ)(b̃g + ηg)δ

)
dδ dτ (4.40)

≈
∫ ∆t

0

∫ τ

0

Exp
(
ω̂δ
) (

I3 − ⌊Jr(ω̂δ)(b̃g + ηg)δ⌋
)

dδ dτ (4.41)

≈
∫ ∆t

0

∫ τ

0

Exp
(
ω̂δ
)

dδ dτ−

−
∫ ∆t

0

∫ τ

0

Exp
(
ω̂δ
)
⌊Jr(ω̂δ)(b̃g + ηg)δ⌋

)
dδ dτ (4.42)

Insert (4.42) into (4.39) and ignore the second order term (b̃a + ηa)(b̃g + ηg).

Then, we obtain

∆t ≈
∫ ∆t

0

∫ τ

0

Exp
(
ω̂δ
)

dδ dτ f̂︸ ︷︷ ︸
∆
=∆̂t

+ Jtg(b̃g + ηg) + Jta(b̃a + ηa)︸ ︷︷ ︸
∆
=∆̂t

(4.43)

where

Jtg =

∫ ∆t

0

∫ τ

0

(
Exp

(
ω̂δ
)
⌊f̂⌋Jr(ω̂δ)δ

)
dδ dτ (4.44)

Jta = −
∫ ∆t

0

∫ τ

0

Exp
(
ω̂δ
)

dδ dτ (4.45)
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Note that the closed form expressions (analytical solutions) for Jvg, Jva, Jtg, Jta are

available at [51]. Now, put everything in matrix form.

Υ
∆
=

 ∆R ∆t ∆v

02×3 I2

 =

 ∆̂R∆̃R ∆̂t + ∆̃t ∆̂v + ∆̃v

02×3 I2

 (4.46)

=

 ∆̂R ∆̂t ∆̂v

02×3 I2


︸ ︷︷ ︸

=Υ̂

 ∆̃R ∆̂T
R∆̃t ∆̂T

R∆̃v

02×3 I2


︸ ︷︷ ︸

=Υ̃

(4.47)

Even though we have managed to obtain an expression for the term Υ̃, it remains

necessary to express Υ̃ in the Lie algebra of the corresponding manifold, so2(3). This

ensures that both the IMU noise representation and the state noise representation are

consistently expressed in the same space, so2(3).

In other words, we express Υ̃ as a matrix exponential.

Υ̃ =

 ∆̃R ∆̂T
R∆̃t ∆̂T

R∆̃v

02×3 I2

 (4.48)

= Exp




Log(∆̃R)

J −1
l

(
Log(∆̃R)

)
∆̂T

R∆̃t

J −1
l

(
Log(∆̃R)

)
∆̂T

R∆̃v


 (4.49)

≈ Exp




Log(∆̃R)

∆̂T
R∆̃t

∆̂T
R∆̃v


 (4.50)

= Exp



−Jr(ω̂∆t)(b̃g + ηg)∆t 03×6

∆̂T
RJtg ∆̂T

RJta

∆̂T
RJvg ∆̂T

RJva


b̃g + ηg
b̃a + ηa


 (4.51)

∆
= Exp

(
υ̃k

)
(4.52)
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4.4.3 The Full State Transition Matrix

In this section, we will put everything into matrix form. The objective is to linearize

state transition matrix. Recall the equation (4.17).

T̂
g

bk+1
Exp(ζk+1) = Γk Φt

(
T̂

g

bk

)
Exp

(
F ζk

)
Υk

We further decomposed the term Υk into measurement Υ̂k and error term Exp
(
υ̃k

)
.

As a result, we have,

T̂
g

bk+1
Exp(ζk+1) = Γk Φt

(
T̂

g

bk

)
Exp

(
F ζk

)
Υ̂k Exp

(
υ̃k

)
(4.53)

By Equation−−−−−−→
3.37

= Γk Φt

(
T̂

g

bk

)
Υ̂k︸ ︷︷ ︸

∆
=T̂ g

bk+1

Exp
(
Ad

Υ̂
−1
k
F ζk

)
Exp

(
υ̃k

)
(4.54)

It is obvious that

Exp(ζk+1) = Exp
(
Ad

Υ̂
−1
k
F ζk

)
Exp

(
υ̃k

)
(4.55)

We cannot directly deduce that ζk+1 = Ad
Υ̂

−1
k
Fζk+ υ̃k. However, the linearization

around the estimated error state ζk = 0, b̃g = 0, b̃a = 0, leads to

ζk+1 ≈ Ad
Υ̂

−1
k
F ζk + υ̃k (4.56)

Put everything into matrix form,


ζk+1

b̃g[k + 1]

b̃a[k + 1]

 = Φk


ζk

b̃g[k]

b̃a[k]

+Gk


ηg

ηa

ηbg

ηba

 (4.57)

where ηbg and ηba are the random walk parameters for the bias terms. The random

walk in bias is modeled as

b̃g[k + 1] = b̃g[k] + ηbg∆t (4.58)

b̃a[k + 1] = b̃a[k] + ηba∆t (4.59)
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Finally, we obtain

Φk =


Ad

Υ̂
−1
k
F

−Jr(ω̂∆t)∆t 03×3

∆̂T
RJtg ∆̂T

RJta

∆̂T
RJvg ∆̂T

RJva

06×9 I6



Gk =


−Jr(ω̂∆t)∆t 03×3

∆̂T
RJtg ∆̂T

RJta

∆̂T
RJvg ∆̂T

RJva

09×6

06×6 I6 ∆t



4.4.4 State Augmentation

In the previous section, we have explored how to propagate the noise given the IMU

measurements. Now, we will examine how to initialize a new historical clone. As-

sume that at a specific time instant tk, we desire to store the current state as a clone.

At the given time stamp, we have the state[
xIMU xclone,1 xclone,2 · · · xclone,N

]
The error state is represented by

x̃ =
[
x̃TIMU ξTclone,1 ξTclone,2 · · · ξTclone,N

]T
∈ R15+6N

with the covariance Σ ∈ R(15+6N)×(15+6N). Creating a new clone is equivalent to a

simple matrix multiplication. Only the first 6 items of the error is stored in the new

clone.

x̃augmented =

 x̃

ξclone,N+1

 =

 I15+6N

I6 09+6N


︸ ︷︷ ︸

∆
C

x̃ (4.60)

We also need to compute the covariance of the augmented state, Σaugmented.

Σaugmented = CΣ CT ∈ R
(
15+6(N+1)

)
×
(
15+6(N+1)

)
(4.61)
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4.5 Measurement Model

The base algorithm, VOLDOR [35], provides estimates of the relative rigid trans-

formation between two successive frames, referred to as the incremental pose and

denoted as Zc1
c2. In other words,

Tg
c2 = Tg

c1 Z
c1
c2 (4.62)

where Tg
c,n is the camera pose at time instant n.

For simplicity, I assume that the incremental poses between camera frames are readily

available. Readers unfamiliar with VOLDOR [35] may assume that this incremental

pose information comes from an external source. The objective is to fuse this infor-

mation into the IMU-propagated state.

It is important to note that the incremental pose is defined between the camera frames,

while the estimation is performed for the IMU frame. The extrinsic calibration be-

tween the IMU and the camera, Tc
b, is assumed to be known. The measurement is

visualized in Figure 4.1.

IMU Measurements

Figure 4.1: Measurement Visualized

The frequency of IMU is higher than the camera. Measurements arrive only between

camera frames. Hence, historical clones of the active state are stored only for the

instants when a new image frame arrives.

To update the state within the Kalman framework, it is first necessary to express the

measurement in terms of the estimated state parameters. Here, I remind you that the

estimated state is x̃, which is declared in (4.7).
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The measurement only depends on the error states of the corresponding clones, ξ1
and ξ2.

Zc1
c2

∆
= Tc1

c2 Exp(ηz) (4.63)

= Tc1
g Tg

c2 Exp(ηz) (4.64)

= (Tg
c1)

−1 Tg
c2 Exp(ηz) (4.65)

= (Tg
b1 T

b
c )

−1 Tg
b2 T

b
c Exp(ηz) (4.66)

= Tc
b (T

g
b1)

−1 Tg
b2 T

b
c Exp(ηz) (4.67)

= Tc
b

(
T̂g

b1 Exp(ξ1)
)−1

T̂g
b2 Exp(ξ2)T

b
c Exp(ηz) (4.68)

= Tc
b

(
Exp(ξ1)

)−1

(T̂g
b1)

−1 T̂g
b2 Exp(ξ2)T

b
c Exp(ηz) (4.69)

= Tc
b

(
Exp(ξ1)

)−1

T̂b1
g T̂g

b2 Exp(ξ2)T
b
c Exp(ηz) (4.70)

= Tc
b Exp(ξ−1

1 ) T̂b1
b2 Exp(ξ2)T

b
c Exp(ηz) (4.71)

By 3.37−−−→ = Tc
b T̂

b1
b2 Exp(AdT̂b2

b1
ξ−1
1 ) Exp(ξ2) Exp(AdTb

c
ηz)T

b
c (4.72)

In (4.71), with an abuse of notation, I declare ξ−1
1 such that

Exp(ξ−1
1 )

∆
=
(

Exp(ξ1)
)−1

(4.73)

Note that the measurement Zc1
c2 does not belong to any vector space. Hence, the

measurement is mapped to the Lie Algebra of SE(3) through logarithmic map.

z
∆
= Log

(
T̂b2

b1 T
b
c Z

c1
c2 T

c
b

)
(4.74)

= Log
(

Exp(AdT̂b2
b1
ξ−1
1 ) Exp(ξ2) Exp(AdTb

c
ηz)
)

(4.75)

where the measurement model is simplified by eliminating the terms T̂b2
b1 and Tb

c .

In order to implement an EKF, we need the differentiation of the measurement with

respect to error state. It is trivial to show that

∂z

ξ1

∣∣∣∣
ξ1=0,ξ2=0,ηz=0

= −AdT̂b2
b1

(4.76)

∂z

ξ2

∣∣∣∣
ξ1=0,ξ2=0,ηz=0

= I6 (4.77)

∂z

ηz

∣∣∣∣
ξ1=0,ξ2=0,ηz=0

= AdTb
c

(4.78)
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CHAPTER 5

EXPERIMENTS

5.1 Dataset Description

The KITTI Vision Benchmark Suite [21, 22] is a publicly available dataset collected

especially for stereo, optical flow, visual odometry, 3D object detection and 3D track-

ing. An accurate ground-truth is provided through a velodyne laser scanner and a

GPS localization system. I summarize the sensor setup in Table 5.1.

Table 5.1: Available Sensors

Sensor Model Resolution FPS

2 Color Cameras Point Grey Flea 2 (FL2-14S3M-C) 1382× 512 10 FPS

2 Grayscale Cameras Point Grey Flea 2 (FL2-14S3C-C) 1382× 512 10 FPS

GPS/IMU OXTS RT 3003 − 100 FPS

Laser Scanner Velodyne HDL-64E ≈ 100k per scan 10 FPS

During the tests, I only utilize the stereo color camera frames and IMU measurements.

Both the image frames and IMU measurements are timestamped with synchronized

clocks. GPS is employed as the ground-truth.

Extrinsic calibrations between sensors are available. Moreover, the radial distortion

in the camera frames are corrected and the rectified frames are shared along with

their corresponding calibration parameters. Through the experiments, I only utilize

the rectified image frames with raw GPS/IMU data.

As a final remark, calibration is essential for achieving precise odometry. KITTI

provides a well calibrated sensor setup.
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5.1.1 Test Sequences

The KITTI dataset includes sequences of varying durations. To emphasize the effec-

tiveness of the proposed fusion, the longest sequences are specifically selected, and

the proposed framework is evaluated on these sequences. A list of sequences with

sequence durations are provided in Table 5.2.

Table 5.2: Evaluated Data Sequences (Ordered with Sequence Duration)

Data

Sequence

Official

Sequence Name

Sequence

Duration

Seq1 2011_09_30_drive_0028 530 secs

Seq2 2011_10_03_drive_0034 310 secs

Seq3 2011_09_30_drive_0033 164 secs

Seq4 2011_09_30_drive_0018 150 secs

The trajectory of Sequence 1 is shown in Figure 5.1. It can be observed that the

ground truth is corrupted in the down channel at t = 100sec. Points where the GPS

data is definitively corrupted will be excluded during the evaluation.
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Figure 5.1: Trajectory of Sequence 1
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5.1.2 Dataset Visualization

In this section, to visualize the dataset, I present a sample stereo image pair from

the KITTI dataset in Figure 5.2. Moreover, the disparity between the frames are

illustrated for the convenience of the reader.

In Figure 5.2c, I put the stereo image pair on top of each other using weighted sum of

the images. Then, the optical flow vectors (disparity vectors) are illustrated.

(a) Left Camera From Sequence 1

(b) Right Camera From Sequence 1

(c) Disparity Vectors Between Stereo Frames

Figure 5.2: A Sample Stereo Visual Pair From Sequence 1
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5.2 Performance Metrics

For M Monte Carlo runs, each with N samples (time instants), the performance met-

rics are defined as follows:

• Orientation: Orientation error is converted into an angle-axis representation,

providing an intuitive measure of rotational discrepancy.

Rerr
∆
= R̂b

gR
g
b (5.1)

serr = LogSO(3)(Rerr) (5.2)

where R̂b
g is the estimated state, and Rg

b is the ground-truth. serr represents the

angle-axis form of the rotation error, where its direction indicates the rotation

axis, and its magnitude corresponds to the rotation angle. The root mean square

error (RMSE) for orientation is defined as follows.

RMSEori =

√√√√ 1

M ·N
M∑
m=1

N∑
n=1

∥serr∥2 (5.3)

• Velocity and Position: For velocity and position, errors are assessed using the

conventional RMSE metric.

RMSEvel =

√√√√ 1

M ·N
M∑
m=1

N∑
n=1

∥vg
b − v̂g

b∥2 (5.4)

RMSEpos =

√√√√ 1

M ·N
M∑
m=1

N∑
n=1

∥tgb − t̂gb∥2 (5.5)

52



Table 5.3: Numerical Comparisons

Open

VINS
DM-VIO

VOLDOR

(Base

Method)

iVOLDOR

(ours)

Sensor Setup
Stereo Cam

+ IMU

Mono Cam

+ IMU
Stereo Cam

Stereo Cam

+ IMU

Initialization
Initialized

with GT

Automatically

Initialized

Not

Required

Initialized

with GT

Alignment with GT

prior to evaluation

Not

Required

Umeyma’s

Method [52]

Analytically

Computed

Not

Required

Seq1

RMSEori 0.02792 0.0151 0.0658 0.0160

RMSEvel 0.3427 – – 0.2941

RMSEpos 10.55 20.76 26.57 8.70

Seq2

RMSEori 0.0145 0.0152 0.0443 0.0162

RMSEvel 0.6822 – – 0.7315

RMSEpos 7.17 23.46 16.35 10.00

Seq3

RMSEori 0.01542 0.0138 0.0230 0.0125

RMSEvel 0.8208 – – 0.8324

RMSEpos 7.90 16.22 13.01 7.4736

Seq4

RMSEori 0.0121 0.0080 0.0206 0.0128

RMSEvel 0.2160 – – 0.2472

RMSEpos 2.35 16.38 3.51 4.36

5.3 Experimental Results

The primary objective of the tests is to demonstrate the effectiveness of the pro-

posed fusion of IMU and incremental pose. Initially, the VOLDOR [35] algorithm

is evaluated as the baseline. Subsequently, by integrating the IMU measurements

with the incremental poses of VOLDOR [35], an inertial-aided version, referred to

as iVOLDOR, is obtained. For completeness, I also evaluated two state-of-the-art

odometry algorithms, OpenVINS and DM-VIO.
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Each test sequence is analyzed individually in the following sections. However, the

overall results are first presented in Table 5.3. As an initial observation, iVOLDOR

demonstrates performance improvements over VOLDOR [35]. Furthermore, the pro-

posed method competes closely with OpenVINS in all sequences. Although DM-VIO

is a promising algorithm, its reliance on a monocular camera limits its performance,

resulting in less satisfactory results.

Finally, Figure 5.3 presents an overview of the estimated trajectories for each se-

quence, showing the estimated paths alongside the actual trajectory.
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5.3.1 Seq1 - Error Plots
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Figure 5.4: Error Plot For Sequence 1

Figure 5.4 demonstrates the orientation, velocity and position errors for each x, y and

z channel. For the convenience of the reader, I also provide the l2 norm of the error in

the last row. As outlined before, for a small portion of the trajectory, the ground-truth

is corrupted. The corrupted region is highlighted in the Figure and not included in

RMSE evaluation in Table 5.3.

Figure 5.4 reveals that even though the performance of VOLDOR [35] is less satis-

factory compared to OpenVINS and DM-VIO, the integration of inertial data signifi-

cantly enhances its performance, enabling iVOLDOR to achieve superior results.
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5.3.2 Seq2 - Error Plots
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Figure 5.5: Error Plot For Sequence 2

5.3.3 Seq3 - Error Plots
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Figure 5.6: Error Plot For Sequence 3
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5.3.4 Seq4 - Error Plots and a Failure Case

This test sequence reveals a very fundamental failure case for conventional odometry

algorithms. First, examine Figure 5.7. First of all, the dataset duration is nearly 300

seconds while only the first 150 seconds is employed during the RMSE evaluation for

Table 5.3.
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Figure 5.7: Error Plot For Sequence 4

In Figure 5.7, it is observed that the error sharply increases for both OpenVINS and

DM-VIO at approximately t = 150s. Up to that point, OpenVINS demonstrated the

best performance among all methods.
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Figure 5.8: Time Intervals Between Successive IMU Measurements

To understand the underlying cause of the abrupt performance degradation, we refer

to Figure 5.8, which illustrates the time intervals between successive IMU measure-

57



ments. While the IMU is expected to output measurements at 100 Hz, it experiences

a delay of approximately 1.6 second around t = 150. This highlights a critical limi-

tation of conventional visual-inertial navigation methods, which assume regular IMU

measurement intervals and utilize a zero-order holder. Consequently, a single de-

layed measurement leads to catastrophic performance degradation. When this pattern

is repeated, the algorithms even tend to diverge.

5.4 Comparison of OpenVINS and VOLDOR

The experiments demonstrate that OpenVINS and iVOLDOR achieve competitive

performance despite their fundamentally different approaches. OpenVINS is a lightweight,

feature-based system that extracts sparse features using the Harris Corner detector,

discarding the rest of the image. This results in a minimal and computationally effi-

cient image processing pipeline that runs on a CPU. In contrast, iVOLDOR employs

a dense methodology, using a deep neural network to compute optical flow vectors

and generate a depth map for the entire image. This approach utilizes every pixel

for estimation but requires significantly higher computational resources, including a

GPU.

OpenVINS delivers competitive results due to two key factors. First, its sensor-level

information fusion integrates visual and IMU data at an early stage, enabling better

exploitation of complementary data. iVOLDOR, on the other hand, relies on decision-

level fusion, where visual and IMU information is combined at a later stage, limit-

ing the benefits of early integration. Second, OpenVINS employs a robust feature-

tracking mechanism, preserving long-term dependencies by tracking sparse features

across frames. In contrast, iVOLDOR uses dense optical flow without feature track-

ing, leading to a loss of long-term dependencies during application.

5.4.1 Real Time Performances

Both iVOLDOR and OpenVINS can achieve real-time operation, but their computa-

tional requirements depend on the selected parameters and system configuration. For

OpenVINS, the number of historical clones is a critical factor. Typically, 10-20 clones
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are used for effective operation, but some applications may demand longer clone se-

quences. When exceeding 50 clones, the state dimension grows significantly, poten-

tially hindering real-time performance. In such cases, additional hardware and further

parallelization may be necessary. Despite this, OpenVINS remains lightweight and

energy-efficient as it is fully implemented on a CPU.

In contrast, iVOLDOR inherently requires a GPU alongside a CPU for real-time per-

formance. The image resolution is a key parameter; as every pixel contributes to the

estimation process, resizing the frames is often necessary to maintain real-time op-

eration. Furthermore, the optical flow computation relies on a deep neural network,

and depending on the selected model, the user may require two GPUs. One GPU can

handle optical flow estimation, while the second manages depth map computations

and SLAM tasks. Consequently, iVOLDOR demands more computational resources

and hardware for real-time application compared to OpenVINS.

5.5 Conclusions

This thesis primarily explores the application of Lie Algebra in state estimation. It

begins by introducing the challenges posed by rotation matrices and rigid transfor-

mations in representing error and uncertainty. Subsequently, it demonstrates how Lie

Algebra effectively addresses these challenges. The main objective is to provide a

compact and concise review of Lie Algebra specifically within the context of state es-

timation, avoiding unnecessary in-depth discussions that would require multiple book

chapters.

To illustrate the practical utilization of Lie Algebra, a simple extended Kalman filter

is proposed, which fuses IMU measurements with incremental poses. Experimental

results show that combining these two sources of information yields more accurate

trajectory estimates. Furthermore, the proposed method, termed iVOLDOR, proves

to be competitive with existing approaches.

However, it is important to emphasize that the proposed fusion method operates at

higher levels. The visual SLAM system has already determined incremental poses,

and these processed data are then fused with IMU measurements. Fusion at such
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higher levels often leads to inferior performance. In contrast, OpenVINS fuses in-

formation at lower levels, resulting in better performance across different sequences,

despite being computationally much more lightweight. These experiments underscore

the importance of lower-level fusion.

Additionally, as a byproduct, the experiments reveal that most conventional odometry

methods heavily depend on the assumption that IMU data or camera frames arrive at

regular intervals. Consequently, a single delayed IMU measurement—by just one

second—can cause the entire system to diverge. This issue highlights the need for

practical systems to handle such delays effectively.

60



REFERENCES

[1]Sameer Agarwal, Keir Mierle, and The Ceres Solver Team. Ceres Solver. Ver-

sion 2.2. Oct. 2023. URL: https://github.com/ceres- solver/

ceres-solver.

[2]Ahmet Akman, Abdullah Aydın Alatan, and YUNUS BİLGE KURT. “Causal
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Appendix A

APPENDIX FOR LIE ALGEBRA

A.1 Skew Symmetric Matrices

Skew-symmetric matrices play a crucial role in handling rotation matrices. Therefore,

I present several useful properties of skew-symmetric matrices that will be employed

in various proofs.

• Skew Symmetric Matrix Operator : ⌊·⌋

ω =


ω1

ω2

ω3

 ∈ R3×1 ⌊ω⌋ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ R3×3 (A.1)

• Let R ∈ SO(3) be a rotation matrix and v ∈ R3×1 be any vector. Then,

R ⌊v⌋RT = ⌊R v⌋ (A.2)

Equivalently

R ⌊v⌋ = ⌊R v⌋R (A.3)

• ∀a,b ∈ R3×1

⌊a⌋b = −⌊b⌋a (A.4)

• For a unit norm vector a ∈ R3×1 where ∥a∥2 = 1, it is given that

⌊a⌋ ⌊a⌋ = −I3 + aaT (A.5)

⌊a⌋ ⌊a⌋ ⌊a⌋ = −⌊a⌋ (A.6)
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Claim 5. For a unit norm vector a ∈ R3×1 where ∥a∥2 = 1, ⌊a⌋k can be expressed

in terms of ⌊a⌋ or ⌊a⌋2 for any positive integer k. Specifically,

⌊a⌋2k =

⌊a⌋⌊a⌋, if k is an odd number

−⌊a⌋⌊a⌋, if k is an even number
(A.7)

⌊a⌋2k+1 =

−⌊a⌋, if k is an odd number

⌊a⌋, if k is an even number
(A.8)

Proof.

By A.6−−−→ ⌊a⌋3 = −⌊a⌋ (A.9)

⌊a⌋4 = −⌊a⌋ ⌊a⌋ (A.10)

⌊a⌋5 = −⌊a⌋ ⌊a⌋ ⌊a⌋ = ⌊a⌋ (A.11)

⌊a⌋6 = ⌊a⌋ ⌊a⌋ (A.12)

⌊a⌋7 = ⌊a⌋ ⌊a⌋ ⌊a⌋ = −⌊a⌋ (A.13)

⌊a⌋8 = −⌊a⌋ ⌊a⌋ (A.14)

⌊a⌋9 = −⌊a⌋ ⌊a⌋ ⌊a⌋ = ⌊a⌋ (A.15)
...

Q.E.D.

A.2 Taylor Expansion of sin(·) and cos(·)

Within the thesis, I will need the Taylor expansion of sin(·) and cos(·).

sin(θ) = θ − θ3

3!
+

θ5

5!
− θ5

5!
+ · · · =

∞∑
n=0

(−1)n θ2n+1

(2n+ 1)!
(A.16)

cos(θ) = 1− θ2

2!
+

θ4

4!
− θ6

6!
+ · · · =

∞∑
n=0

(−1)n θ2n
(2n)!

(A.17)

A.3 Rotation Matrices and Rigid Transformations - Representing The Pose

Navigation aims to estimate both the rotation and position of a body relative to a

predefined coordinate frame. The combined term for rotation and position is referred
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to as "pose". This section focuses on explaining the representation and manipulation

of pose in navigation systems.

Figure A.1: Visualization of 2 Distinct Frames (α and β)

In Figure A.1, two distinct frames are depicted. The origins of these frames are

separated by the vector tαβ , and their axes are not aligned. For example, assume

that frame α is the global navigation frame, fixed relative to the Earth, while frame β

represents the body of a drone navigating outdoors.

The most intuitive way to express the rotation (attitude) of frame β with respect to

frame α is by representing each axis of frame β in terms of frame α. This involves

resolving the directions of the axes xβ , yβ , and zβ with respect to the α frame, denoted

as xαβ ∈ R3×1, yαβ ∈ R3×1, and zαβ ∈ R3×1, respectively. In order to provide a compact

representation, we define the rotation matrix Rα
β ∈ R3×3.

Rα
β

∆
=
[
xαβ yαβ zαβ

]
(A.18)

We can express an arbitrary vector v ∈ R3 with respect to any coordinate frame α.

Superscript in vα indicates that the resolving frame is α.

Claim 6. We can change the resolving frame of an arbitrary vector vβ ∈ R3 by

multiplying it on the left by the rotation matrix Rα
β . In other words,

vα = Rα
βv

β (A.19)

Proof. Let us express the vector vβ in terms of the basis vectors of the coordinate
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frame β by decomposing it as a linear combination of the basis vectors e1, e2, e3

vβ = v1e1 + v2e2 + v3e3 (A.20)

where

e1 =


1

0

0

 e2 =


0

1

0

 e3 =


0

0

1

 (A.21)

To express the same vector v in α frame, we can represent the basis vectors of the β

frame in Equation A.20 with respect to the α frame. In other words, the vector vα

can be written as:

vα = v1xαβ + v2yαβ + v3zαβ (A.22)

Recall the definition of Rα
β in Equation A.18. One can write

vα = v1xαβ + v2yαβ + v3zαβ (A.23)

= v1R
α
βe1 + v2R

α
βe2 + v3R

α
βe3 (A.24)

= Rα
β

(
v1e1 + v2e2 + v3e3

)
(A.25)

vα = Rα
βv

β (A.26)

Q.E.D.

Claim 7. We have the following relation between rotation matrices.

Rα
γ = Rα

β R
β
γ (A.27)

Proof.

Rα
β R

β
γ = Rα

β

[
xβγ yβγ zβγ

]
(A.28)

=
[
Rα
βx

β
γ Rα

βy
β
γ Rα

βz
β
γ

]
(A.29)

=
[
xαγ yαγ zαγ

]
(A.30)

= Rα
γ (A.31)

Q.E.D.
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It is important to note that we are considering vector quantities. Therefore, the specific

starting point of the vector is irrelevant in this context.

In contrary to vectors, the position (or coordinates) of a point cannot be transformed

by simple multiplication with a rotation matrix. Let us examine Figure A.2 which

illustrates the fact that

tααγ = tααβ + tαβγ (A.32)

= tααβ +Rα
βt

β
βγ (A.33)

Figure A.2: Visualization of 3 Distinct Frames (α, β and γ)

Now, we are ready to introduce the Special Euclidean Group SE(3) to represent the

pose of a frame β with respect to frame α. Tα
β ∈ SE(3) ⊂ R4×4 is defined as follows

Tα
β

∆
=

 Rα
β tααβ

01×3 1

 (A.34)

Claim 8. We have the following relation between frames

Tα
γ = Tα

β T
β
γ (A.35)
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Proof.

Tα
β T

β
γ =

 Rα
β tααβ

01×3 1

 Rβ
γ tββγ

01×3 1

 (A.36)

=

Rα
βR

β
γ Rα

βt
β
βγ + tααβ

01×3 1

 (A.37)

By Eq. A.27 and Eq. A.33−−−−−−−−−−−−→ =

 Rα
γ tααγ

01×3 1

 (A.38)

By definition−−−−−−−−→
given in Eq. A.34

= Tα
γ (A.39)

Q.E.D.

Finally, we define the homogeneous coordinates of frame β with respect to frame α.

tαβ
∆
=

tααβ
1

 ∈ R4×1 (A.40)
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Claim 9. We have the following relation

tαγ = Tα
β t

β
γ (A.41)

Proof.

Tα
β t

β
γ =

 Rα
β tααβ

01×3 0

tββγ
1

 (A.42)

=

Rα
β t

β
βγ + tααβ

1

 (A.43)

By Eq. A.33−−−−−−→ =

tααγ
1

 (A.44)

By definition−−−−−−−−→
given in Eq. A.40

= tαγ (A.45)

Q.E.D.

A.4 Matrix Exponential and Matrix Logarithm

Throughout the thesis, we will frequently encounter matrix exponential and matrix

logarithm functions. We will see that these functions play crucial role in Lie Algebra,

which will enable us to take the derivative of a function with respect to a rotation

matrix.

The exponential of a square matrix A ∈ Rd×d is defined through Taylor expansion.

expm(A)
∆
=

∞∑
n=0

An

n!
(A.46)

Matrix logarithm logm(·) is defined as the inverse of expm(·).

Claim 10. If we have AB = BA where A ∈ Rd×d and B ∈ Rd×d, then the following

relation holds

expm(A+B) = expm(A) expm(B) (A.47)
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Proof.

expm(A+B) =
∞∑
n=0

(A+B)n

n!
(A.48)

Binomial−−−−−→
Expansion

=
∞∑
n=0

n∑
k=0

1

n!

(
n

k

)
AkBn−k (A.49)

=
∞∑
n=0

n∑
k=0

1

n!

n!

(n− k)! k!
AkBn−k (A.50)

=
∞∑
n=0

n∑
k=0

1

(n− k)! k!
AkBn−k (A.51)

=
∞∑
k=0

∞∑
n=k

1

(n− k)! k!
AkBn−k (A.52)

Change of Variable−−−−−−−−−→
m

∆
=n−k

=
∞∑
k=0

∞∑
m=0

1

m! k!
AkBm (A.53)

=
∞∑
k=0

Ak

k!

∞∑
m=0

Bm

m!
(A.54)

= expm(A) expm(B) (A.55)

Note that the Binomial expansion in Equation A.49 is guaranteed to be valid only if

we have AB = BA. In other words,

AB = BA⇒ (A+B)n =
n∑
k=0

(
n

k

)
AkBn−k (A.56)

Q.E.D.

A.5 More on to Rotation Matrices

Claim 11. The differentiation of a rotation matrix is expressed as

Ṙ = R S

where S is a skew-symmetric matrix.
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Proof.

RTR = I3 (A.57)

→ ṘTR+RT Ṙ = 03×3 (A.58)

→ ṘTR = −RT Ṙ = 03×3 (A.59)

→ ṘTR = −(ṘTR)T (A.60)

Equation A.60 indicates that ṘTR is a skew symmetric matrix. Let S ∆
= −ṘTR and

insert to Equation A.58.

−S+RT Ṙ = 03×3 (A.61)

RT Ṙ = S (A.62)

Ṙ = R S (A.63)

Q.E.D.

Claim 12. A rotation matrix R can be expressed as a matrix exponential of a skew

symmetric matrix Ψ. Mathematically, R = expm(Ψ)

Proof. We have shown that Ṙ = RS where S is a skew symmetric matrix. Then

Rt = R0 expm

(∫ t

0

Sτ dτ
)

(A.64)

Let R0 = I3. Moreover, integration of skew symmetric matrices leads to a new skew

symmetric matrix. Recall that skew symmetric matrices constitute a vector space.

Rt = expm

(
Ψt

)
(A.65)

Q.E.D.
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A.6 Lie Algebra Derivations

A.6.1 Rodrigues’ Formula

In Claim 12, we have seen that every rotation matrix can be written as a matrix expo-

nential of a skew symmetric matrix.

R = expm(⌊ψ⌋) =
∞∑
n=0

⌊ψ⌋n
n!

(A.66)

However, practically, we cannot evaluate infinite summation whenever we need to

evaluate the term expm(⌊ψ⌋). Rather, we have a closed-form expression.

Claim 13. expm(⌊ψ⌋) has a closed form solution given as

expm(⌊ψ⌋) = I3 +
sin(∥ψ∥)
∥ψ∥ ⌊ψ⌋+ 1− cos(∥ψ∥)

∥ψ∥2 ⌊ψ⌋2 (A.67)

where ∥·∥ is the l2 norm.

Proof. Skew symmetric matrix form of unit vectors has useful properties. Hence,

express ψ in terms of corresponding unit vector and its magnitude.

Let ∥ψ∥ ∆
= θ and a =

ψ

∥ψ∥ =
ψ

θ
. Then we have

ψ = θ a (A.68)

Insert (A.68) into (A.67).

expm(⌊ψ⌋) =
∞∑
n=0

⌊ψ⌋n
n!

=
∞∑
n=0

θn

n!
⌊a⌋n (A.69)

Recall the Claim 5. Then,

expm(⌊ψ⌋) =
∞∑
n=0

θn

n!
⌊a⌋n = I3 +

θ

1
⌊a⌋1 + θ2

2!
⌊a⌋2 + θ3

3!
⌊a⌋3 + · · · (A.70)

= I3 +
(θ
1
− θ3

3!
+

θ5

5!
+ · · ·

)
⌊a⌋+

(θ2
2!
− θ4

4!
+

θ6

6!
+ · · ·

)
⌊a⌋2 (A.71)

By−−−−−−→
(A.16, A.17)

= I3 + sin(θ)⌊a⌋+
(
1− cos(θ)

)
⌊a⌋2 (A.72)

= I3 +
sin(θ)

θ
⌊θ a⌋+ 1− cos(θ)

θ2
⌊θ a⌋2 (A.73)

= I3 +
sin(∥ψ∥)
∥ψ∥ ⌊ψ⌋+ 1− cos(∥ψ∥)

∥ψ∥2 ⌊ψ⌋2 (A.74)

Q.E.D.
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A.6.2 First Order Integration of Rotation Matrix

We have examined the differentiation of a rotation matrix in Claim 11. Now, let us

see how to take the integral of a rotation matrix.∫ tk+1

tk

R(t) dt =
∫ tk+1

tk

R[k] expm(ωk t) dt = R[k]

∫ tk+1

tk

expm(ωk t) dt (A.75)

where we assume constant angular velocity for the time interval [tk, tk+1). Also, we

have closed form expression for the exponential map from Claim 13.

expm

(
⌊ωk⌋ τ

)
= I3 +

sin(∥ωk τ∥)
∥ωk τ∥

⌊ωk τ⌋+
1− cos(∥ωk τ∥)
∥ωk τ∥2

⌊ωk τ⌋2

= I3 +
sin(∥ωk∥ τ)
∥ωk∥

⌊ωk⌋+
1− cos(∥ωk∥ τ)

∥ωk∥2
⌊ωk⌋2

We can now evaluate the integral term.∫ ∆t

0

(
I3 +

sin(∥ωk∥ τ)
∥ωk∥

⌊ωk⌋+
1− cos(∥ωk∥ τ)

∥ωk∥2
⌊ωk⌋2

)
dτ

=

(
I3 +

− cos(∥ωk∥ τ)
∥ωk∥2

⌊ωk⌋+
∥ωk∥ τ + sin(∥ωk∥ τ)

∥ωk∥3
⌊ωk⌋2

)∣∣∣∣∆t
τ=0

= I∆t+
1− cos(∥ωk∥∆t)

∥ωk∥2
⌊ωk⌋+

∥ωk∥∆t+ sin(∥ωk∥∆t)

∥ωk∥3
⌊ωk⌋2
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A.6.3 Adjoint Matrix of SE(3)

Lemma 1. R JlSO(3)
(ψ) = JlSO(3)

(Rψ)R

Proof.

R JlSO(3)
(ψ) = R

∞∑
n=0

⌊ψ⌋n
(n+ 1)!

=
∞∑
n=0

R ⌊ψ⌋n
(n+ 1)!

(A.76)

=
∞∑
n=0

R ⌊ψ⌋ ⌊ψ⌋n−1

(n+ 1)!
(A.77)

By Equation−−−−−−→
A.3

=
∞∑
n=0

⌊Rψ⌋R ⌊ψ⌋n−1

(n+ 1)!
(A.78)

By Equation−−−−−−→
A.3

=
∞∑
n=0

⌊Rψ⌋2 R ⌊ψ⌋n−2

(n+ 1)!
(A.79)

=
∞∑
n=0

⌊Rψ⌋n R
(n+ 1)!

=
∞∑
n=0

⌊Rψ⌋n
(n+ 1)!

R (A.80)

= JlSO(3)
(Rψ)R (A.81)

Q.E.D.

Lemma 2. I3 − ExpSO(3)(ψ) = −JlSO(3)
(ψ) ⌊ψ⌋, where ψ ∈ so(3)

Proof.

I3 − ExpSO(3)(ψ) = I3 −
∞∑
n=0

⌊ψ⌋n
n!

= I3 − I3 −
∞∑
n=1

⌊ψ⌋n
n!

= −
∞∑
n=1

⌊ψ⌋n
n!

= −
∞∑
n=1

⌊ψ⌋n−1

n!
⌊ψ⌋

Let−−−−→
n=m+1

= −
∞∑
m=0

⌊ψ⌋m
(m+ 1)!

⌊ψ⌋

= −JlSO(3)
(ψ) ⌊ψ⌋

Q.E.D.
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Claim 14. The adjoint matrix for SE(3) is expressed as follows.

AdT =

 R 03×3

⌊t⌋R R

 where T =

 R t

01×3 1

 (A.82)

Proof. We will use the definition of the adjoint matrix for the proof.

ExpSE(3)(AdT ξ) = T ExpSE(3)(ξ)T
−1

=

 R t

01×3 1

 ExpSO(3)(ξψ) JlSO(3)
(ξψ)ξρ

01×3 1

 RT −RT t

01×3 1


=

R ExpSO(3)(ξψ) R JlSO(3)
(ξψ)ξρ + t

01×3 1

 RT −RT t

01×3 1


=

R ExpSO(3)(ξψ)R
T −R ExpSO(3)(ξψ)R

T t+R JlSO(3)
(ξψ)ξρ + t

01×3 1


By Claim−−−−→

2
=

ExpSO(3)(R ξψ) −ExpSO(3)(R ξψ)t+R JlSO(3)
(ξψ)ξρ + t

01×3 1


By Lemma−−−−−→

1
=

ExpSO(3)(R ξψ) −ExpSO(3)(R ξψ)t+ JlSO(3)
(R ξψ)R ξρ + t

01×3 1


=

ExpSO(3)(R ξψ)
(
I3 − ExpSO(3)(R ξψ)

)
t+ JlSO(3)

(R ξψ)R ξρ

01×3 1


By Lemma−−−−−→

2
=

ExpSO(3)(R ξψ) −JlSO(3)
(R ξψ) ⌊R ξψ⌋ t+ JlSO(3)

(R ξψ)R ξρ

01×3 1


BY Equation−−−−−−→

A.4
=

ExpSO(3)(R ξψ) JlSO(3)
(R ξψ) ⌊t⌋R ξψ + JlSO(3)

(R ξψ)R ξρ

01×3 1


=

ExpSO(3)(R ξψ) JlSO(3)
(R ξψ)

(
⌊t⌋R ξψ + R ξρ

)
01×3 1


In summary, we have

ExpSE(3)(AdT ξ) =

ExpSO(3)(R ξψ) JlSO(3)
(R ξψ)

(
⌊t⌋R ξψ + R ξρ

)
01×3 1


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It is trivial to show that

AdT ξ =

 R ξψ

⌊t⌋R ξψ + R ξρ


=

 R 03×3

⌊t⌋R R

 ξψ
ξρ


Q.E.D.

A.7 IMU Dynamics

A.7.1 Properties of Φt(T )

Φt(T ) : SE2(3)→ SE2(3) is defined as follows

Φt(T )
∆
=

 R t+ vt v

02×3 I2

 (A.83)

Claim 15. We have the following relation

Φt

(
Exp(ζ)

)
= Exp(F ζ) where F =


I3 00×3 00×3

00×3 I3 I3 t

00×3 00×3 I3

 (A.84)

Proof. Note that

ζ =


ζψ

ζρ

ζν

 F ζ =


ζψ

ζρ + t ζν

ζν

 (A.85)

Recall the definition of capitalized exponential matrix for SE2(3).

Exp(ζ) =

 ExpSO(3)(ζψ) JSO(3)(ζψ)ζρ JSO(3)(ζψ)ζν

02×3 I2

 (A.86)

=

 Rζ tζ vζ

02×3 I2

 (A.87)
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Then we have

Exp(F ζ) =

 ExpSO(3)(ζψ) JSO(3)(ζψ) (ζρ + t ζν) JSO(3)(ζψ)ζν

02×3 I2

 (A.88)

=

 Rζ tζ + vζ t vζ

02×3 I2

 (A.89)

= Φt

(
Exp(ζ)

)
(A.90)

Q.E.D.

Claim 16.

Φt(T 1 T 2) = Φt(T 1) Φt(T 2) (A.91)

Proof.

T 1 T 2 =

 R1 t1 v1

02×3 I2

 R2 t2 v2

02×3 I2

 (A.92)

=

 R1R2 R1t2 + t1 R1v2 + v1

02×3 I2

 (A.93)

→ Φt(T 1 T 2) =

 R1R2 R1t2 + t1 + t(R1v2 + v1) R1v2 + v1

02×3 I2

 (A.94)

=

 R1R2 R1(t2 + t v2) + t1 + tv1 R1v2 + v1

02×3 I2

 (A.95)

=

 R1 t1 + tv1 v1

02×3 I2

 R2 t2 + tv2 v2

02×3 I2

 (A.96)

= Φt(T 1) Φt(T 2) (A.97)

Q.E.D.
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Appendix B

APPENDIX FOR VISUAL SLAM

B.1 Optical Flow

Optical flow is a critical concept in visual SLAM. In this section, I explain and visu-

alize the concept to provide better insight.

Consider two successive frames, as shown in Figures B.1a and B.1b. Upon close

inspection, you may notice that some pixels shift slightly between the frames.

I combine Figures B.1a and B.1b by applying a weighted sum. Then, I represent

the motion of pixels through vectors, as shown in Figure B.1c. The saturation of the

vector colors indicates the magnitude, while the color hue represents the direction of

the vectors.

By visualizing the optical flow for every pixel, we obtain Figure B.1d. Upon close

inspection, you will notice that objects closer to the camera exhibit a higher optical

flow magnitude.

It is important to note that optical flow can also be computed for a stereo image

pair. Consider two cameras positioned side by side. The resulting optical flow, often

referred to as disparity, is visualized in Figure B.2.

Figures B.1 and B.2 demonstrate that optical flow is influenced by both the structure

of the scene and the motion of the camera.
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(a) Frame 320

(b) Frame 321

(c) Sparse Optical Flow Vectors

(d) Dense Optical Flow Vectors

Figure B.1: Visualization of Optical Flow
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(a) Left Frame 320

(b) Right Frame 320

(c) Sparse Optical Flow Vectors

(d) Dense Optical Flow Vectors

Figure B.2: Disparity for Stereo Frames
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B.2 Depth Map

Depth map is another important concept in visual SLAM. The depth of a pixel rep-

resents the distance between the observed object and the camera frame. When the

depth is computed for each pixel in the image, the result is a depth map.

It is also a common practice to store the inverse depth d−1 rather than the depth d.

Figure B.3 illustrates an example of an inverse depth map, where each pixel’s value

represents the inverse of the relative distance (d−1) to the corresponding object in the

scene. Brighter colors indicate a higher d−1, meaning the actual depth (d) is lower.

(a) Left Frame 320

(b) Depth Map

Figure B.3: Inverse Depth Map is Visualized
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