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ABSTRACT

UTILIZATION OF GAUSSIAN SPLATTING IN VISUAL SLAM

Sarıkamış, Furkan Aykut

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Aydın Alatan

January 2025, 69 pages

3D Gaussian Splatting has emerged as a promising alternative to neural implicit rep-

resentations in SLAM systems. However, current methods often lack dense depth

maps or tailored designs for large-scale environments. To address these issues, this

thesis introduces IG-SLAM, an RGB-only SLAM system that combines robust track-

ing methods with Gaussian Splatting. The system builds a 3D map using accurate

poses and dense depth from tracking while leveraging depth uncertainty for improved

reconstruction. Our decay strategy enhances convergence and enables real-time op-

eration at 10 fps in a single process. IG-SLAM achieves competitive results with

state-of-the-art RGB-only SLAM systems at significantly faster speeds, demonstrat-

ing photo-realistic 3D reconstruction on several datasets. The project is available at

https://github.com/Liouvi/IG-SLAM.

Keywords: Gaussian Splatting, SLAM, NeRF
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ÖZ

GÖRSEL EŞ ZAMANLI KONUMLANDIRMA VE HARİTALAMADA
GAUSS SIÇRAMASININ KULLANIMI

Sarıkamış, Furkan Aykut

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. A. Aydın Alatan

Ocak 2025 , 69 sayfa

3D Gaussian Splatting, SLAM sistemlerinde sinirsel örtük temsilcilere karşı umut ve-

rici bir alternatif olarak ortaya çıkmıştır. Ancak mevcut yöntemler genellikle yoğun

derinlik haritalarından veya büyük ölçekli çevreler için özel tasarımlardan yoksun-

dur. Bu sorunları çözmek için, bu tez, güçlü izleme yöntemlerini Gaussian Splat-

ting ile birleştiren, yalnızca RGB kullanan bir SLAM sistemi olan IG-SLAM’ı ta-

nıtmaktadır. Sistem, izlemeyi kullanarak doğru pozlar ve yoğun derinlik ile bir 3D

harita oluştururken, derinlik belirsizliğini iyileştirilmiş rekonstrüksiyon için kulla-

nır. Öğrenme hızını yavaşlatma stratejimiz, yakınsama hızını artırır ve sistemi tek

bir işlemde 10 fps hızında gerçek zamanlı çalıştırmayı mümkün kılar. IG-SLAM, en

son teknoloji RGB-SLAM sistemleriyle rekabetçi sonuçlar elde ederken, çok daha

hızlı çalışır. Birçok veri setinde foto-gerçekçi 3D rekonstrüksiyon sergiler. Proje,

https://github.com/Liouvi/IG-SLAM adresinde mevcuttur.

Anahtar Kelimeler: Gaussian Splatting, SLAM, NeRF
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CHAPTER 1

INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a core and fundamental tech-

nique in the fields of robotics, augmented reality (AR), virtual reality (VR), and

autonomous vehicles. It enables an agent to construct a map of an unknown envi-

ronment while simultaneously localizing itself within that map. Despite its critical

role in these domains, achieving real-time performance with high-fidelity 3D recon-

structions remains a significant challenge, particularly in dynamic and unstructured

environments.

Traditional SLAM [1, 2, 3] systems have primarily relied on sparse representations of

the environment, which, while computationally efficient, often fail to capture the vi-

sual richness required for photorealistic 3D reconstruction. Recent advances in neural

rendering [4, 5, 6, 7] have introduced new possibilities for high-quality scene recon-

struction, but their application in real-time SLAM systems [8, 9] has been limited due

to the substantial computational resources required.

This thesis introduces IG-SLAM [10], a novel SLAM framework that integrates Gaus-

sian Splatting, a state-of-the-art neural rendering technique, into the SLAM pipeline.

The goal is to enhance the quality and photorealism of 3D scene reconstructions while

maintaining real-time performance. By adopting Gaussian Splatting, IG-SLAM [10]

offers a continuous and dense representation of the environment, enabling the capture

of fine details that are often missed by traditional SLAM methods.

The key contributions of this thesis are threefold. First, we design and implement

a novel pipeline that integrates Gaussian Splatting into SLAM, providing a unified

system capable of handling both static and dynamic scenes. Second, we develop op-
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timization techniques to balance computational efficiency and reconstruction quality,

ensuring that real-time performance is preserved. Third, we demonstrate the system’s

robustness through extensive experiments on diverse datasets, showcasing its ability

to operate effectively in challenging real-world environments.

IG-SLAM [10] represents a shift from traditional sparse representations to a dense

and continuous mapping approach, bridging the gap between classical SLAM tech-

niques and modern neural rendering paradigms. In this manner, this system opens

new possibilities for high-fidelity 3D mapping in real-time applications, which is cru-

cial for interactive AR/VR experiences, robotics, and autonomous navigation.

Since the focus of this thesis is the utilization of neural rendering methods in SLAM,

the work initially focused on Neural Radiance Fields (NeRF) [4], an approach that

integrates neural networks into the photorealistic reconstruction pipeline. However,

with the advent of Gaussian Splatting [5], which provides significant advantages in

terms of computational efficiency and flexibility, the focus of our research shifted

to this method. Nevertheless, to provide a comprehensive perspective and preserve

the context of our early investigations, This thesis includes a discussion of NeRF in

the Appendix. This ensures a complete documentation of our research process and

highlights the transition from one state-of-the-art technique to another.

The remainder of this thesis is structured as follows. Chapter 2 provides a review

of related work in SLAM literature. Chapter 3 introduces the Gaussian Splatting

Algorithm [5]. Chapter 4 explains how Gaussian Splatting can be integrated into

SLAM, outlining its key concepts and methodologies. Chapter 5 focuses on the IG-

SLAM framework, detailing its design, implementation, and components. Chapter

6 presents the experimental evaluation, showcasing both quantitative and qualitative

results that demonstrate the performance and effectiveness of IG-SLAM. Chapter 7

concludes the thesis, summarizing the key findings and contributions. Finally, the

Appendices include an explanation of NeRF and its application in SLAM algorithms.
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CHAPTER 2

SIMULTANEOUS LOCALIZATION AND MAPPING

2.1 Introduction

The Simultaneous Localization and Mapping (SLAM) problem involves creating a

map of an unknown environment while simultaneously estimating the position of

a robot within that environment. As part of this problem, no prior knowledge of the

environment is given. The robot in the SLAM problem can be as simple as a calibrated

camera, a calibrated camera paired with an inertial measurement unit (IMU), or any

other sensor with the possibility of sensing landmarks in the environment.

In this thesis, the main focus is on visual SLAM (VSLAM). Therefore, a body or

robot means only a calibrated camera. Visual landmarks detected by a simple camera

might be edges, corners, blobs, ridges, features, the whole image itself, etc. The map

is classically built incrementally by the 3D points associated with these matched 2D

features detected by the camera.

Although map optimization methods can vary and be diverse, one can divide the

visual tracking task into two categories: Indirect and Direct. The indirect approaches

[2, 3, 11, 1] utilize sparse 3D points during optimization, such as corners, and the

direct approaches [12, 13, 14] directly make use of the measured intensities of the

image. Since the agent is a camera in VSLAM, it is convenient to review camera

basics first.
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2.2 Camera Basics

In VSLAM, the camera is utilized to detect visual features. A simple pinhole camera

projection as a function can be understood as

Π: R4 → R3

Xw 7→ x.

where Π is the projection function, Xw = [X, Y, Z, 1] is the homogeneous coordinate

of a 3D point with respect to a fixed frame, called World Frame, x = [x, y, 1] is the

2D location of the point on the camera frame. To find the projection function Π,

the first step is to express the 3D point w.r.t. camera coordinates. The coordinate

transformation Tw
c is defined as

Tw
c : R4 → R4

Xw 7→ Xc.

When the points are expressed as homogeneous coordinates, the coordinate transfor-

mation becomes linear as Xc = Tw
c Xw where Tw

c ∈ R4x4 becomes

Tw
c =

R t

0 1


where R ∈ R3x3, t ∈ R3 is the rotation matrix and translation vector between the

frames, and 0 = [0, 0, 0]. Note that this transformation is simply a linear and compact

form of the coordinate transformation in R3 i.e. X′ = RX + t. Once the point is

expressed in the camera coordinate frame, the projection of it can be modeled as

P : R4 → R3

Xc 7→ x.
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where x = (x, y, 1) and (x, y, 1) = (fX/Z, fY/Z, 1). The projection P can also be

represented as a linear transformation

P =


f 0 0 0

0 f 0 0

0 0 1 0


Therefore, the projection operation that projects a 3D point expressed in world coor-

dinates to a camera frame is simply given as in Equation (2.1)

Π = PTw
c (2.1)

2.3 Problem Definition

SLAM tackles the problem of acquiring an accurate trajectory and a consistent map

at the same time. Assume that while the camera follows a certain trajectory as in

Figure 2.1, some 3D features Fj of the camera at different locations Xi are covisible.

The goal is to achieve an accurate trajectory and global consistency in the mapping.

Some auxiliary definitions are needed to define global consistency.

3D features w.r.t. world coordinate designated with capital letters as F. The 2D

feature location spotted by the camera is given by f . The number of 2D features

is designated as mi. The projection function that projects a 3D point to the image

plane of the camera at ith position is given as Πi. The global consistency is achieved

by minimizing geometric displacement error for all features observed in all cameras.

Therefore, the total error can be given as in Equation (2.2).

E =
∑
i

mi∑
j=1

||fj − Πi(Fj)|| (2.2)

where ||.|| is an appropriate norm which is usually selected as L2.

One important distinction in this formulation is the nature of the features. If the fea-

tures are sparse corners, blobs, edges, etc, the method is denoted as indirect SLAM;

5



Camera

X0

X1

X2

Xi

F0
F1

Fj

Figure 2.1: A typical SLAM scenario, where red dashed line corresponds to the cam-

era trajectory, Fj’s are 3D features and Xi’s are the camera positions.

whereas the direct methods utilize the intensities of the dense image pixels. Most of

the direct methods compute intensity difference based photometric loss instead of the

projection error defined in Equation (2.2).

Since the objective is now clearly defined, the tools to be used in SLAM algorithms

can be discussed. The sub-blocks that are utilized in VSLAM are mainly visual odom-

etry, loop closure, global, and local bundle adjustment.

2.4 Sub-blocks of a VSLAM System

The building blocks of VSLAM can be constructed using different strategies. How-

ever, a classical VSLAM algorithm is constituted by visual odometry whose concern

is to track the agent by consecutive frames, loop closure whose main concern is to

detect loops in the trajectory of the agent, and finally, local and global bundle adjust-

ment to increase local and global consistency.
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2.4.1 General Visual Odometry

The visual odometry algorithm tackles the problem of computing relative rotation

and translation between two consecutive frames and concatenates these rotation and

translation information to get the overall trajectory of the agent. As the simple con-

catenation suggests, the visual odometry drifts away from the ground truth trajectory.

Therefore, an optimization may be applied to reduce this drift.

The first visual odometry algorithm can be examined in [15] which also coined the

term visual odometry. A general visual odometry algorithm is summarized in Fig-

ure 2.2.

Image

Feature Extraction

Feature Matching

Estimating Motion

Optimization

Figure 2.2: The Visual Odometry Algorithm

The feature extraction step is achieved by searching salient points on the image. The

salient points might be corners and blobs for visual odometry. A corner is defined

as the intersection of two edges and a blob is defined as a point that differs in inten-

sity from its neighbors. Popular corner detectors are Harris [16], Shi-Thomasi [17],

Forstner [18], and FAST [19], and blob detectors are SIFT [20], SURF [21], and

CENSURE [22].

Once the features are extracted via the aforementioned methods, they are to be matched

between the consecutive frames. Feature matching can be performed by comparison

of the descriptors or by tracking the individual points in its vicinity as in the KLT
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tracker [23]. While the details of feature selection and matching techniques are dif-

ferent in this area of research, it can generally be stated that blob detectors are slow

to detect compared to corner detectors. However, blob detectors are more robust,

distinctive, and descriptive.

Sparse feature matching with descriptors is more appropriate when the rotation and

translation between two frames are not small; i.e. wide-baseline. Otherwise, KLT-

based tracking is more suitable for narrow-baseline scenarios. The matched pairs

in two frames are called feature correspondences. As examples from the litera-

ture, VINS-Mono utilizes Shi-Thomasi [17], ORB-SLAM3[3] exploits ORB [24],

and OpenVINS [1] utilizes FAST [19] as feature detection and matching.

After feature matching, the motion is estimated with the extracted feature correspon-

dences. The estimation can be done with 2D-2D or 2D-3D feature correspondences.

The 2D correspondences are obtained by matching them in consecutive frames. The

3D correspondences are the ones that are triangulated to get a 3D position in the

space.

The initial three legitimate frames to be matched are handle in a special way in SLAM

algorithms. Since there are no 3D points available, it is necessary to perform a 2D-2D

match to estimate the relative motion and estimate 3D point locations via triangula-

tion.

The rotation and translation relation between the 2D correspondence coordinates at

two frames is formulated by the Essential Matrix E such that E = tR where t is the

skew-symmetric matrix form of the up to a scale translation:

t =


0 −tz ty

tz f −tx
−ty tx 1


and R is the rotation matrix with orthonormal rows/columns. The scale ambiguity

comes from a simple observation that Equation (2.3) is the true multiplication of E

with any scalar. Therefore, it is impossible to determine the exact translation between

two frames.
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One of the most important properties of the essential matrix E is called epipolar con-

straint. The epipolar constraint simply constrains the position of a feature in a frame

on a line, called the epipolar line, depending on the position of the correspondence of

it in another frame. The constraint can be stated in a simple expression as in Equa-

tion (2.3) and [25]

p′TEp = 0 (2.3)

where p = [u, v, 1], u, v are the pixel locations of the feature, and p′ is the one for the

correspondence. To compute the essential matrix E, several algorithms exist. Two of

the most popular ones are the 8-point algorithm [26] and the 5-point algorithm [27].

The 8-point algorithm expands the equation for 8 correspondence and solves for co-

efficients of E and the 5-point additionally utilizes a constraint of E to decrease the

required correspondence to 5. The procedure to solve for the essential matrix is quite

standard. The algorithms are not used to find definitive results for E but rather to

generate a hypothesis for RANSAC [28].

Since there are generally more than 5 or 8 pairs, random pairs are selected for the

minimal solution, the result, namely hypothesis, is tested at other points and if the

majority of points meet the constraint of E, the result is accepted. Otherwise, the

procedure is followed one more time again with random samples. After solving for

E, it is decomposed to find R and t. At this point, the rotation and up to a scale

translation between two frames are obtained.

Since the 2D correspondences and the 3D position of the frames are known, the 2D

correspondences can be triangulated to estimate their 3D positions. The triangulation

algorithm starts with unprojecting rays from the correspondences. These rays ide-

ally should intersect and the intersection point would be designated as a 3D point as

depicted in Figure 2.3.

However, due to matching errors and sensor noise, this ideal intersection is rarely the

case. Therefore, the minimum distance between two rays is obtained and the middle

point between these two closest points on the rays is designated as an estimated 3D

point position. The resulting 3D point set, i.e. 3D point-cloud, is essentially one of

9



C0 C1

Figure 2.3: Given two frames, I0 and I1, from two camera positions, triangulation

algorithm estimates rhe 3D location of the corresponding scene point

the most popular ways to describe the environment, and the general process to obtain

them is called mapping in SLAM literature.

Intuitively, the 2D-2D match and triangulation steps can be repeated to calculate the

trajectory of the agent and the 3D point cloud of the environment. However, estimat-

ing motion from a 2D-2D match is quite noise-prone; therefore, it is less preferred;

instead, 3D-2D matching is utilized. In 3D-2D matching, 2D-2D matching is per-

formed as usual; the matches that have 3D points are utilized in a Perspective-n-Point

algorithm [29].

In general, the Perspective-n-Point problem is to find the camera position given 3D

points and their corresponding 2D points. The minimal case is called the Perspective-

3-Point problem and its solution has been known for centuries. The solution is to get

the camera position from trigonometric similar triangle relations that are created by

3D points, 2D points on the camera with physical 3D coordinates, and the camera

center. This minimal solution can be similarly utilized as a hypothesis in RANSAC

to get the solution that has a sufficient inlier ratio. After finding the camera position,

2D-2D matches that do not have a 3D correspondence triangulated. The procedure is

summarized in Figure 2.4

Therefore, the full algorithm is to 2D-2D match once to get the initial 3D points and

then proceed to 3D-2D matching algorithm repeatedly to get the trajectory of the

agent. While visual odometry and SLAM are quite similar concepts, their philosophy

10



Image

Feature Extraction

2D-2D Matching

Get Camera Pose from PnP

Triangulate new features

Repeat

Figure 2.4: 3D-2D Matching Algorithm Block Diagram

is entirely different. Visual Odometry’s only concern is the camera position; the

resulting 3D points do not have to be globally consistent. However, in SLAM, that

3D scene point has to be recognized and be at the same location on the map every

time the agent crosses the same location. To achieve this recognition of the same

location loop closure algorithms are utilized on top of visual odometry.

2.4.2 Loop Closure

The main aim of a loop closure algorithm is to recognize the same scene location

when the agent arrives at that location again and update its location. The update of

loop closure on this location is the only way to get better location information coming

from the visual odometry itself, since the visual odometry calculates the position of

the agent by concatenating the relative poses and it is prone to drifting.

While the loop closure algorithms slightly differ, their main idea is usually the same.

For example, a simple but efficient algorithm candidate might be the one in the VINS-

Mono algrorithm[2]. The keyframes are selected in equal time intervals and, the

Harris corner features are extracted in these keyframes with their BRIEF descriptors

11



[30]. The descriptor matching is performed using RANSAC [28]. Additionally, a

PnP test is achieved between 2D points and 3D points. If the aforementioned two

tests are successful, then the current frame’s position is taken constant as the matched

previous keyframe, and reprojection error is minimized with this new constraint. The

result essentially brings the drifted position of the same location to the previous less

drifted one. In order to further increase global and local consistency, global and local

bundle adjustments might also be exploited.

2.4.3 Global and Local Bundle Adjustment

All 2D points in each frame and their corresponding 3D point coordinates constrain

the pose of the agent in that frame of the camera. Hence, using these constraints,

the drift effect of the visual odometry can be reduced by global and local bundle

adjustment.

In this optimization, the accumulated 3D points are projected onto the frames, and

reprojection error is calculated by Equation (2.2). Since the projection matrix Π con-

sists of rotation, this optimization is a nonlinear optimization and the reprojection

error is generally minimized by Levenberg-Marquardt optimization [31].

Performing this optimization on every frame is denoted as global bundle adjustment.

Due to its computational complexity, it is not generally possible to achieve global

bundle adjustment in real time. Hence, the approach is to perform the bundle adjust-

ment in the last several frames, called local bundle adjustment, and apply a global

adjustment less frequently.

The optimized poses of the agent and the map of the environment made up of 3D

points are the outputs of a classical SLAM system. However, these 3D points are

not necessarily the only way to represent the environment. The 3D points represent

the environment in the sense that there is some visual information at that 3D point

that is salient. However, only if the point cloud is dense, one can get a sense of the

local topology of that particular location. Otherwise, the sparse point cloud fails to

represent the environment photo-realistically.

12



2.5 Related Work

Pioneering dense SLAM algorithms, such as Dense Tracking and Mapping (DTAM)

[12] and KinectFusion [32], demonstrated the feasibility of real-time dense SLAM

despite its inherent computational complexity. DTAM [12] focuses on generating

dense depth maps associated with the keyframes, following a view-centric approach.

In this method, depth maps are computed and associated with specific viewpoints,

which allows for detailed scene representation. However, this approach involves cer-

tain computational limitations when extended to larger-scale or more dynamic envi-

ronments.

Subsequent research took inspiration from DTAM’s view-centric model but intro-

duced crucial distinctions. While traditional dense SLAM methods typically decou-

ple the optimization processes for dense depth maps and camera poses, some recent

works moved toward joint optimization, aiming to optimize both simultaneously for

better consistency and accuracy. Such joint optimization methods, however, face sig-

nificant challenges, since the optimization of full-resolution depth maps is particu-

larly expensive in terms of computation. The high number of independent variables

involved in optimizing dense maps makes it infeasible to handle full-resolution depth

information in real-time applications directly.

To address this, quite recent data-driven methods have focused on reducing the com-

putational complexity of joint optimization in dense SLAM. For instance, BA-Net

[33] integrates a depth map into the bundle adjustment process by utilizing a basis

of depth maps and optimizing the linear combination coefficients. This approach

significantly reduces the computational burden by working with a smaller set of pa-

rameters while still maintaining a high degree of accuracy. Similarly, Code-SLAM

[34] introduces an autoencoder-inspired architecture to reduce the dimensionality of

dense maps. This method compresses depth maps into a more manageable form while

retaining the essential features needed for effective SLAM.

DROID-SLAM [13], another noteworthy advancement, optimizes down-sampled dense

maps using a bundle adjustment layer with reprojection error and incorporates optical

flow revisions from [35] to refine the results. DROID-SLAM method provides an
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efficient way of handling large-scale dense maps by working with simplified, lower-

resolution representations, which reduces computational complexity while maintain-

ing good accuracy. This work relies on DROID-SLAM [13] as its tracking module.

Its components and design are explained in detail in Section 5.1

Further innovation can be found in FlowMap [36], which estimates dense depth maps

through a convolutional neural network (CNN) and calculates the camera pose an-

alytically using the optical flow. This approach introduces a neural network-based

method for estimating depth maps, offering improved accuracy for real-time applica-

tions.

3D scene representation can be extended to a model that enables rendering from any

point in the environment from any direction. By the help of extending the notion

of representing the environment, novel view synthesis methods can be utilized in

a SLAM system, namely Neural Radiance Fields [4] and Gaussian Splatting [5].

This thesis proposed a novel method for the utilization of the Gaussian Splatting [5]

technique in a SLAM system.
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CHAPTER 3

GAUSSIAN SPLATTING

Gaussian Splatting is a novel view synthesis method for 3D scene representation that

utilizes Gaussian functions to model and reconstruct environments. This approach

stands out by offering a more flexible and computationally efficient alternative to

traditional 3D reconstruction methods, such as voxel grids and meshes. In this tech-

nique, the scene is represented as a collection of 3D Gaussian functions, where each

Gaussian encodes information about the scene’s geometry and appearance. This con-

tinuous modeling allows for dense scene representations which can be efficiently ren-

dered and manipulated.

3.1 Theory

A Gaussian function is described uniquely by its mean and covariance as

G(x) = e−
1
2
(x−µ)TΣ−1(x−µ) (3.1)

where x is the independent vector variable of the Gaussian function, Σ is its covari-

ance matrix, and µ is the mean vector. The Gaussian function in Equation (3.1) is

centered at its mean value µ and the mean physically represents the position of the

Gaussian, whereas its shape is determined by the covariance matrix. In the remaining

formulations, x denotes the 3D coordinates of a scene point.

The alpha-blending of Gaussians requires the projection of 3D Gaussians. The mean

value µ can be directly projected since it’s a 3D point. For the covariance, the pro-

jected 2D covariance is given in Equation (3.2). The derivation can be found in [37].
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Σ′ = JWΣW TJT (3.2)

In the relation above, W is the viewing transformation, and J is the Jacobian of the

affine approximation of the projection transformation.

However, the covariance matrix itself has a positive definiteness constraint which is

difficult to enforce during optimization. Instead, representing the covariance matrix

as a combination of 3D scaling S = {Sx, Sy, Sz} and 3D rotation R is much more

intuitive and easy to optimize. Therefore, the covariance matrix in 3D is decomposed

as follows:

Σ = RSSTRT (3.3)

The rotation R is represented as quaternion and scaling is represented as 3 indepen-

dent parameters. The Gaussians’ color is encoded as spherical harmonics and the

coefficients of Spherical Harmonics are optimized. This approach resembles the po-

sitional encoding as in Equation (A.10) of the color in NeRF (please see Appendix)

and is performed to represent the color by not only 3 numbers as in RGB but in a

higher dimensional space to increase color accuracy. The main algorithm to optimize

position µ, α, covariance Σ, and, the spherical harmonic coefficient for color is shown

in Figure 3.1

Figure 3.1: The building blocks of the Gaussian Splatting algorithm adapted from [5].

The initial position of the Gaussians is determined by any conventional Structure-

from-Motion (SfM) points. 3D Gaussians are projected into 2D image plane and

rasterized with α-blending. The error is calculated between the rendered image and

the ground truth image.

The algorithm starts with the initialization of Gaussian functions at sparse 3D points.
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The mean vectors of the 3D Gaussians are initialized by the estimated SfM points.

In the original article, these sparse SfM points are obtained by the popular structure

from motion method COLMAP [38]. The covariance matrices are initialized to be

a diagonal matrix of the mean distance of the closest three SfM points. Following

initialization, the optimization process begins with rasterization and proceeds with

backpropagation.

Figure 3.2: An illustration of the Forward Process in Gaussian Splatting. The figure

is adapted from [39].

An illustration of the rasterization process is given in Figure 3.2. (a) The splatting step

involves projecting 3D Gaussians into the image space. (b) The image is divided into

multiple tiles. (c) Gaussians that span multiple tiles are replicated, with each copy

assigned a unique identifier (d) Rendering the sorted Gaussians allows for computing

all pixels within each tile. It is important to note that the computational workflows

for both pixels and tiles are independent, enabling parallel processing.

While the sorting approach might lead to inaccurate ordering for some pixels, the au-

thors state that this does not deteriorate the performance immensely because the size

of Gaussians becomes as small as a pixel at the end of the optimization. Finally, the

ordered Gaussians are α-blended in parallel. The α-blending starts from the front to

the back. The blending only stops when α is equal to 1 or all the Gaussians are ren-

dered. Then, the L1 loss between the rendered and ground truth image is calculated.

The loss is backpropagated through the fully differentiable rendering pipeline. The

mean, rotation, scaling, color, and opacity of the Gaussians are optimized to represent

the scene as illustrated in Figure 3.3. For example, thin regions are represented by

elongated Gaussians, transparent regions are represented by Gaussians with α ≈ 0.

During the optimization of the Gaussians, they are densified to fill the empty areas at

17



Figure 3.3: An example of Gaussian Splatting Representation. The rasterized Gaus-

sians (left) and the Gaussians shaded to emphasize geometry (right) are shown. The

figure is adapted from [40]

every N = 100 iteration. The transparent Gaussians are eliminated at this point. The

densification is achieved at the regions where the average positional gradient is high.

The reason behind this strategy is the intuitive observation that the positional gradient

should be high due to the fact that the region is not represented adequately and the

optimization tries to move Gaussians aggressively to make them right.

Densification of small Gaussians is simply achieved by cloning and sending them

towards the gradient direction, whereas densification of large Gaussians is performed

by dividing them into two by a scale factor. The new Gaussians are sampled using

the large Gaussian as PDF.

A specific problem, known as floaters in both NeRF and Gaussian Splatting, causes

defects to occur close to the camera location. This problem is avoided by setting α of

the Gaussians close to zero at every M = 3000 iteration. The optimization increases

α where it is required. Therefore, the floaters are removed, since their α parameter

stays low and, as mentioned, transparent Gaussians are removed at every N iteration.

3.2 Related Work on Gauss Splatting

To improve the consistency and reconstruction quality of Gaussian Splatting, several

enhancements have been proposed. One such improvement includes leveraging its

2D counterpart [41], which is designed to enhance multi-view consistency across

viewpoints, ensuring that the representation remains coherent even when observed
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from different perspectives.

Another challenge in Gaussian Splatting arises from the use of α-blending for depth

rendering, as employed in the original formulation of 3D Gaussian Splatting. This

approach can lead to noisy and inconsistent surfaces due to ambiguities in the depth

estimation. More rigorous methods have been proposed to address this, which in-

troduce viewpoint-dependent depth variations for each Gaussian. These methods dy-

namically adapt the depth of individual Gaussians based on the observer’s viewpoint,

thereby significantly reducing noise and improving surface quality [42, 43].

Due to its fast rendering capabilities and its explicit scene representation, Gaussian

Splatting has rapidly gained traction in the SLAM literature. Unlike NeRF [4] (please

examine Appendix), which rely on implicit representations and are computationally

intensive, Gaussian Splatting offers a real-time alternative suitable for SLAM appli-

cations.
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CHAPTER 4

GAUSSIAN SPLATTING SLAM

The utilization of the Gaussian Splatting paradigm in a SLAM system can be per-

formed in two ways. The first approach is to invert Gaussian Splatting for tracking

and use it for mapping. The second approach is to utilize classical SLAM algorithms

for tracking and use Gaussian splatting for only mapping. In Section 4.1, the method-

ology of the first approach is examined.

4.1 Inverting Gaussian Splatting

In Gaussian Splatting [5], 3D Gaussians have a universal position and color. These

Gaussians are projected onto the image plane. Since the projection operation is com-

posed of transformation into the camera frame and then projection onto the image

plane, the projection depends on the pose of the camera and is differentiable w.r.t. the

camera pose. Therefore, an analysis by synthesis method is possible.

The key idea is to extend backpropagation up to the pose itself. Instead of optimizing

the position and shape of the Gaussians, the camera pose is optimized. In other words,

the main question of the optimization becomes "Where should the camera be located

to render an image that will be as similar as possible to the ground truth camera

frame?".

The 3D transformation representation SE(3) or homogeneous coordinate formulation

in 4x4 matrices has 16 parameters. The last row of the matrix is constant. Therefore,

we have 12 meaningful parameters. This is more than sufficient since 6 parameters

(3 for translation and 3 for rotation) are required to describe a 3D motion. Therefore,
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the most straightforward solution where we calculate the Jacobian of the mean and

the variance of the Gaussians is not optimal.

MonoGS [40] is the pioneering work that takes the derivative of Gaussians’ position

(mean vector) and shape (covariance matrix) w.r.t the camera pose. Assume that the

mean and covariance of an arbitrary Gaussian G in world coordinates is given as µW

and ΣW . Therefore, the projection of mean and covariance onto the image frame µI

and ΣI is given as in Equation (4.1)

µI = Π(TCW · µW ), ΣI = JWΣWW
TJT (4.1)

In Equation (4.1), the second equation is the same as Equation (3.2) and the first

equation is just a simple projection operation of a scene point in world coordinates to

camera coordinates. The gradient that needs to be calculated is shown in Figure 4.1.

Figure 4.1: The original building blocks of the Gaussian Splatting algorithm adapted

from [5]. The gradient that needs to be calculated is shown in the red circle. This gra-

dient is, of course, nonexistent in the original Gaussian Splatting since the algorithm

takes posed images as input. This gradient is essentially the gradient of projected 2D

Gaussians’ position and covariance w.r.t camera pose.

The mean and covariance gradient with respect to camera pose i.e. ∂µI

∂TCW
and ∂ΣI

∂TCW

highlighted in Figure 4.1 can be given as in Equation (4.2) and Equation (4.3) by

partial derivation.

∂µI

∂TCW

=
∂µI

∂µC

DµC

DTCW

(4.2)

∂ΣI

∂TCW

=
∂ΣI

∂J

∂J

∂µC

DµC

DTCW

+
∂ΣI

∂W

DW
DTCW

(4.3)
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where ∂
∂(.)

is partial derivative and D
D(.)

is derivative on the manifold. The difference is

that ordinary partial derivative ∂µC

∂TCW
instead of DµC

DTCW
would mean standard Jacobian

3x12 Jacobian of the camera coordinate mean w.r.t 12 parameters of TCW . However,

this is not the optimal way of calculating the derivatives since 6 parameters are suffi-

cient for describing a pose. Therefore, Lie algebra should be utilized. The details of

the Jacobian derivation can be found in the Appendices.

As it can be observed in Figure 4.1, the gradient already flows from the error to the

first rendered image and then to 2D Gaussians. Therefore concatenating the gradient

in Equation (A.2) to the existing ones yields the full gradient up to the camera pose.

The main algorithm of MonoGS [40] is quite similar to iMAP [9] given in the Ap-

pendix. The tracking is achieved by optimizing the pose while fixing the Gaussians.

On the mapping side, keyframes are used to train the Gaussian Splatting. To prevent

the network from catastrophic forgetting, two images from the previous keyframes

are also used. The authors [40] state that the elongation of Gaussians along the view-

ing direction was a problem in their system; hence, a cost function that punishes

non-spherical shapes is added to the cost as well.

4.2 Related Work on using Gaussian Splatting for SLAM

Several pioneering works have explored the use of Gaussian Splatting in SLAM sys-

tems. MonoGS [40], GS-SLAM [44], and SplaTAM [45] are among the earliest

SLAM algorithms that exclusively utilize Gaussian Splatting for scene representation.

These systems jointly optimize both the 3D Gaussians and camera poses, ensuring a

cohesive integration of mapping and localization.

Gaussian-SLAM [46] introduced a novel concept of sub-maps to tackle the problem

of neural forgetting, which can occur when the SLAM system overwrites previously

learned information during map updates. By maintaining sub-maps, the system pre-

serves scene details while ensuring scalability.

Photo-SLAM [47], on the other hand, takes a hybrid approach by decoupling the pro-

cesses of tracking and mapping. It employs a traditional visual SLAM algorithm [3]
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for tracking and integrates a coarse-to-fine optimization strategy for refining the Gaus-

sian map. This decoupling allows the system to leverage the robustness of classical

SLAM algorithms while benefiting from the detailed scene representation provided

by Gaussian Splatting.

The original Gaussian Splatting [5] algorithm renders depth by α-blending. How-

ever, this approach causes inconsistency when rendered from different points of view.

RTG-SLAM [48] addresses depth-related challenges by considering only the fore-

most opaque Gaussians during depth rendering. This approach avoids ambiguities

caused by overlapping Gaussians, resulting in more accurate depth maps.

The most recent work, Splat-SLAM [49], introduces the use of proxy depth maps to

supervise the map optimization process. By using these proxy maps as references,

the system achieves higher accuracy and consistency in the reconstructed scene.

Together, these advancements demonstrate the capability and popularity of Gaussian

Splatting in SLAM systems within such a short period of time. However, MonoGS

[40] and Photo-SLAM [47] lack dense depth maps, and Splat-SLAM [49] does not

perform mapping efficiently, suffering from low frame rate.

In order to address all these drawbacks, IG-SLAM [10] is introduced as the main

outcome of this thesis.
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CHAPTER 5

IG-SLAM: INSTANT GAUSSIAN SLAM

Figure 5.1 presents an overview of the proposed method [10]. The main idea is to

supervise real-time Gaussian Splatting mapping with the aid of dense depth maps

generated by the tracking. The tracking algorithm in Section 5.1 produces a dense

depth map, depth uncertainty, and the camera poses for each keyframe. These outputs

serve as inputs to guide the mapping algorithm in Section 5.2. The initialization

of Gaussians relies on the camera pose and dense depth, and their optimization is

performed using color and weighted depth loss functions. The real-time performance

is ensured by employing a sliding window of keyframes.

Figure 5.1: System Overview: The system has two main components: tracking and

mapping. Tracking involves the creation of keyframes and optimization of the dense

depth map, camera pose, and depth map covariance. Mapping reconstructs the 3D

scene with Gaussian Splatting. The figure is adapted from [10]
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5.1 Tracking

The system utilizes DROID-SLAM [13] as its tracking module. DROID-SLAM [13]

maintains two key state variables for each camera frame t: the camera pose Gt and

the inverse depth dt.

DROID-SLAM algorithm constructs a frame graph (V , E), where V represents the

keyframes and E represents the edges between them, based on co-visibility. Keyframes

are selected from the available camera frames when the average optical flow magni-

tude exceeds a specified threshold. If there is a visual overlap between two frames i

and j, an edge is established between the corresponding vertices in V . This graph is

dynamically updated during inference.

Given the initial estimates for pose and depth, (Gi,di) and (Gj ,dj), for frames i

and j, the optical flow field is computed by unprojecting the pixels from frame i,

reprojecting them into frame j, and calculating the pixel-wise positional difference.

Specifically, the reprojected pixel locations pij are determined as described below:

pij = Π(Gij ◦ Π−1(pi,di)), pij ∈ RH×W×2 (5.1)

The relative transformation between frames i and j is defined as Gij = G−1
j ◦ Gi.

Using this, the initial optical flow is computed as pij −pj . This initial flow estimate is

then passed through a Gated Recurrent Unit (GRU) architecture, along with a correla-

tion vector derived from the inner product of the feature representations of the frames.

GRU module outputs flow corrections rij and confidence weights wij . The refined

reprojected pixel locations p∗
ij are subsequently calculated in a manner similar to

Equation (5.1), incorporating the flow corrections provided by the GRU. Finally, the

dense bundle adjustment layer minimizes the cost function defined in Equation (5.2).

E(G′,d′) =
∑
i,j∈E

∥∥p∗
ij − p′

ij

∥∥2

Σij

p′
ij = Π(G′

ij ◦ Π−1(pi,d
′
i)) (5.2)
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In the above equation, Σij = diag(wij), and ∥.∥Σ represents the Mahalanobis norm

weighted by the confidence weights wij . Equation (5.2) is linearized around the cur-

rent estimates (G′,d′), and updates for the pose and depth, (∆ξ,∆d), are computed

using the Gauss-Newton algorithm. The linearized system of equations can then be

expressed as in Equation (5.3).

Hx = b, H =

 C E

ET P

 , x =

∆ξ
∆d

 ,b =

v

w

 (5.3)

In this context, H represents the Hessian matrix, x = [∆ξ,∆d] denotes the updates

for pose and depth, and b = [v,w] corresponds to the residuals for pose and depth.

C is the block camera matrix, E consists of the off-diagonal block matrices for the

camera and depth, and P is the diagonal matrix that accounts for disparities per pixel

for each keyframe.

The bundle adjustment layer processes the initial flow estimates and updates the poses

and depth maps of the keyframes. Optical flow is then revised by using the refined

poses and depth maps, which are fed back into the dense bundle adjustment layer.

After several iterations of refinement on the keyframe graph, the poses and depth

maps are expected to converge.

Following the dense bundle adjustment step, the covariance for the depth estimates is

calculated. As demonstrated in NeRF-SLAM [50], the same Hessian structure from

Equation (5.3) is utilized to compute the covariance for both depth estimates Σd and

poses ΣG, as shown in Equation (5.4). The depth covariance serves a dual purpose:

it acts as a mask for initializing Gaussians and as weights in the depth component of

the loss function.

Σd = P−1 + P−TETΣGEP
−1

ΣG = (LLT )−1 (5.4)

For keyframing, the system includes all keyframes that are actively optimized during

the tracking process, without any filtering. Each keyframe used in the mapping pro-
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cess contains its camera image I , depth map d, depth covariance Σd, and pose G. A

keyframe is only accepted for mapping if it is not already inside the sliding window.

It is important to note that not all keyframes generated during a mapping cycle are

sent; only the most recent keyframe is used. As a result, some keyframes might be

excluded from the optimization. However, this design selection helps avoid sudden

changes in the sliding window caused by abrupt camera movements.

Once the total number of keyframes exceeds the length of the sliding window for

Dense Bundle Adjustment, the system periodically performs Global Bundle Adjust-

ment on all the existing keyframes using a separate graph, as outlined in GO-SLAM

[51]. This graph uses a distance metric, where the average optical flow magnitude

determines the distance between frame pairs. The edges of the graph are formed be-

tween consecutive keyframes and those that are close based on the distance metric.

Dense bundle adjustment is then applied to this graph every 10 keyframes. At the

start of each mapping cycle, the pose and depth maps are updated, along with their

corresponding covariances. Finally, a last global BA is performed at the end of the

tracking process.

5.2 Mapping

The mapping process handles the 3D reconstruction using keyframes, which include

pose, image, depth, and covariance data obtained from the tracking process.

The system uses Gaussian Splatting [5] for scene representation. The Gaussian func-

tion is defined the same as Equation (3.1).

In this formulation, µ and Σ represent the mean and covariance, which define the

position and shape of the Gaussian. Σ is decomposed as RSSTRT , where R is the

rotation matrix and S is the scaling matrix.

For rendering, the set of visible Gaussians N from a given viewpoint is initially pro-

jected onto the image plane. The 2D Gaussians are then arranged based on their

depths and rasterized using α-blending, as outlined in Equation (5.5) for color and

depth.
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Ĉ =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), D̂ =
∑
i∈N

diαi

i−1∏
j=1

(1− αj) (5.5)

Given the availability of dense depth maps for keyframes, a training strategy similar

to RGB-D MonoGS [40] is employed, but with a coarse-to-fine approach inspired by

Photo-SLAM [47] and InstantNGP [52].

For each keyframe, an image pyramid is created by downsampling the image, depth,

and covariance by a factor of s using bilinear interpolation, as shown in Equation (5.6).

KFl
i = {I li ,dl

i,Σ
l
di}

I li = I0i ↓ sl, dl
i = d0

i ↓ sl, Σl
di = Σ0

di ↓ sl (5.6)

Here, ↓ represents the downsampling operation using linear interpolation, with l in-

dicating the pyramid level, and I0i , d0
i , and Σ0

di referring to the full-resolution image,

depth, and covariance, respectively. In Photo-SLAM [47], the authors use a sharp

downsampling factor of 0.5 and a 2-level pyramid. In contrast, IG-SLAM [10] uses

a smoother downsampling factor of 0.8, similar to Instant-NGP [52], along with a

3-level pyramid.

At each pyramid level, Gaussians are initialized through unprojection as follows:

Points are randomly sampled from the most recent keyframe using a downsampling

factor θ. These sampled points are then unprojected based on the depth maps. To ad-

dress noise in the depth maps, regions with high covariance are masked out, making

the Gaussian initialization more robust to noise. Equation (5.7) defines the mask for

a given normalized depth covariance.

M = {(i, j) | σij < 0.2} (5.7)

Here, M denotes the binary mask matrix, with i and j indicating the pixel locations.

The mask is generated by normalizing the covariance Σd to a range between 0 and

1 and identifying pixel values that fall below a threshold of 0.2 for the normalized
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covariance σd. The mask is then smoothed through a thresholding operation, as de-

scribed in Equation (5.7), which includes a maximum filter followed by a majority

filter. An example of such a mask for a given covariance is shown in Figure 5.2

Figure 5.2: An example of normalized covariance (left) and corresponding mask

(right). The figure is adapted from [10]

Map optimization is carried out within a sliding window using a coarse-to-fine ap-

proach. To meet real-time constraints, the last N keyframes within the sliding win-

dow are kept. As the number of iterations increases, the training is shifted to higher

resolutions in the image pyramid. At the start of optimization at each level l, Gaus-

sians are unprojected according to their corresponding depth map dl
i. The Gaussians

are then rendered from the keyframes’ viewpoints within the sliding window, and the

loss function is computed based on the rendered image and depth. Camera images

and dense depth maps are used as ground truth for mapping supervision.

The system uses a loss function that combines weighted depth loss Ldepth and color

loss Lcolor, as defined in Equation (5.8)

Ldepth =
∥∥∥D − D̂

∥∥∥1

Σ−1
d

, Lcolor =
∥∥∥C − Ĉ

∥∥∥1

(5.8)

Here, D and C represent the ground truth depth and image, respectively, while D̂

and Ĉ are the rendered depth and image, as defined in Equation (5.5). The depth loss

Ldepth is weighted by the inverse covariance to reduce the influence of pixels with high

uncertainty. The total loss is given by L = αLcolor + (1−α)Ldepth, with α = 0.5 used

in all of the experiments. This loss is then backpropagated through a differentiable

Gaussian Splatting pipeline.
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The system enhances the mapping results by refining the map through several it-

erations, following the methods used in MonoGS [40], GlORIE-SLAM [53], and

Splat-SLAM [49]. To do this, individual frames are randomly selected and the map

is optimized using the same loss function employed in the mapping process. For fair-

ness, the same number of iterations as in MonoGS [40] and Splat-SLAM [49] are

performed.

5.3 Training Strategy

A key aspect of our training strategy is that while dense depth maps might contain

noise, they generally do not affect the depth order. In other words, using a position

learning rate that causes Gaussians to shift positions during training is unnecessary

and can actually slow down optimization convergence. This scenario is illustrated in

Figure 5.3. It is important to note that this issue does not arise in standard Gaussian

Splatting training, where the method typically begins with a sparse SfM point cloud.

However, in our approach, since Gaussians are initialized from a dense depth map,

they start off relatively close to each other.

Figure 5.3: Three hypothetical cases to encounter in training. The figure is adapted

from [10]

In Figure 5.3, the dashed lines indicate the ground truth positions of the Gaussians

relative to the camera center. The faded Gaussians show their previous positions,

while the red lines represent the position updates along the gradient direction. In

Figure 5.3. A, a large position update causes the order of the Gaussians to shift,

resulting in TV-static-like noise during training. In Figure 5.3. B, multiple iterations
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are required to adjust the Gaussians to their correct positions due to smaller position

updates.Figure 5.3. C illustrates the ideal scenario, where the position update exactly

matches the position error.

Figure 5.3 demonstrates that high learning rates cause optimization to oscillate Gaus-

sians around the target position. On the other hand, caseFigure 5.3. C, representing

the opposite extreme, also impedes convergence. Since determining an ideal learning

rate for each iteration is neither practical nor feasible, a decaying learning rate strat-

egy is adopted during training, as described in Equation (5.9), to mitigate this "TV

static" noise. The learning rate is initialized to encompass the full range required to

refine the model from coarse to fine details, allowing for a gradual decay over time.

lr(t) = exp((1− t) ln(lri) + t ln(lrf )) (5.9)

Here, t = n/τ represents the iteration number n normalized by the decay constant τ ,

while lri and lrf denote the initial and final learning rates, respectively. The effect of

the learning rate and its decay on training performance is analyzed in Chapter 6.

Due to the coarse-to-fine approach and decay strategy, the proposed Gaussian Splat-

ting training requires significantly fewer iterations. For instance, Splat-SLAM [49]

typically performs 60 iterations per mapping call, whereas the proposed system usu-

ally completes the task in just 8 iterations. This efficiency allows our system to func-

tion on independent threads without relying on interleaved operations.

The same pruning and densification procedure are adopted as MonoGS [40]. Prun-

ing is guided by occlusion-aware visibility: Gaussians initialized in recent keyframes

are discarded, if they remain invisible from the current keyframe after optimization.

Furthermore, Gaussians with opacity below 0.1 are removed every 150 mapping it-

erations. Densification occurs at the same interval by splitting larger Gaussians and

duplicating smaller ones in areas with high-loss gradients.
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CHAPTER 6

TESTS AND RESULTS

The system is evaluated on a variety of synthetic and real-world datasets. Ablation

studies and hyperparameter analyses are included to support the design selections.

6.1 Experimental Setup

Datasets The system is evaluated on the Replica [54], TUM RGB-D [55], ScanNet

[56], and EuRoC MAV [57] datasets.The Replica dataset consists of synthetic indoor

scenes, while the TUM RGB-D dataset includes sequences recorded in small indoor

office environments. ScanNet dataset features six sequences of real-world indoor

environments, and EuRoC provides stereo images of larger-scale indoor spaces cap-

tured by a Micro Aerial Vehicle (MAV). Evaluations are conducted without clipping,

except for EuRoC, where sequences are clipped at the start to skip initial pauses.

Each sequence is run three times, and average results are reported to account for the

non-deterministic behavior of multi-processing.

Metrics In line with conventions in view synthesis SLAM literature, the evaluation

employs PSNR, SSIM, and LPIPS [58]. Additionally, a depth L1[cm] metric is pro-

vided, comparing predicted depths with ground truth in the Replica dataset. The eval-

uation is conducted after post-processing every 5 frames in the sequences, excluding

keyframes used for mapping. This methodology is consistent with the evaluation

strategies of MonoGS [40] and Splat-SLAM [49].

Implementation Details The system is tested on a PC equipped with a 3.6GHz AMD

Ryzen Threadripper PRO 5975WX and an NVIDIA RTX 4090 GPU. For all ex-
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periments, hyperparameters for mapping are set as s = 0.8, θ = 128, α = 0.5,

lri = 1.6 × 10−4, lrf = 1.6 × 10−6, and τ = 3000. The parameter β is set to 2000

for the EuRoC [57] and Replica [54] datasets, and 26000 for the TUM RGB-D [55]

and ScanNet [56] datasets, consistent with values used in MonoGS [40] and Splat-

SLAM [49]. Tracking leverages pre-trained GRU weights from DROID-SLAM [13],

with the mean optical flow threshold for keyframe selection set to 4.0 pixels and a

local dense bundle adjustment window of 16. Tracking optimizations are performed

using the LieTorch [59] framework. The mapping process only accepts the most re-

cent keyframe after completing its optimization step, provided it is not already in the

sliding window.

Baselines The system is compared against state-of-the-art RGB-only Gaussian Splat-

ting and NeRF SLAM algorithms, including MonoGS [40], Photo-SLAM [47], GlORIE-

SLAM [53], and Splat-SLAM [49].

MonoGS [40] is a leading SLAM algorithm focused solely on representation, utilizing

Gaussian scene representation for both tracking and mapping. Like GlORIE-SLAM

[53], Splat-SLAM [49], and the proposed system, Photo-SLAM [47] employs a de-

coupled tracking and mapping design. However, unlike the others, Photo-SLAM does

not incorporate dense depth maps during mapping. GlORIE-SLAM and Splat-SLAM

rely on monocular depth estimation [60] combined with a dense bundle adjustment

layer. The key distinction between the two lies in their scene modeling: GlORIE-

SLAM [53] uses NeRF [4], while Splat-SLAM [49] employs 3D Gaussian Splatting

[5].

6.2 Evaluation

The system is compared with state-of-the-art algorithms based on rendering quality,

3D reconstruction accuracy, and runtime performance.

Rendering and Reconstruction Accuracy Rendering and reconstruction accuracy

are evaluated for the Replica [54] dataset in Table 6.1, where the algorithm’s perfor-

mance is comparable to Splat-SLAM [49]. A direct comparison with GlORIE-SLAM

[53] on the ScanNet [56] dataset, shown in Table 6.2, reveals that the system lags be-
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hind Splat-SLAM [49]. The fast camera movements in ScanNet [56] lead to skipped

keyframes during mapping, suggesting that reconstruction could improve with inter-

leaved tracking and mapping. In Table 6.3, the system ranks just behind Splat-SLAM,

but outperforms other algorithms on the TUM RGB-D [55] dataset. Notably, it excels

in on-the-fly map optimization compared to Splat-SLAM, as seen in Table 6.6. The

system outperforms others on the EuRoC [57] dataset, achieving a significant margin

over Photo-SLAM [47], and produces photorealistic reconstruction results even for

large-scale sequences in EuRoC [57]. A qualitative comparison is provided in Fig-

ure 6.1 and Figure 6.2. The performance on the EuRoC MH-01 dataset can be viewed

via this link.

Metrics
Mono-

GS [40]

GlORIE-

SLAM [53]

Photo-

SLAM [47]

Splat -

SLAM [49]
Ours

PSNR↑ 31.22 31.04 33.30 36.45 36.21

SSIM ↑ 0.91 0.91 0.93 0.95 0.96

LPIPS↓ 0.21 0.12 - 0.06 0.05

Depth L1↓ - - - 2.41 4.34

Table 6.1: Rendering and Tracking Results on the Replica Dataset [54] for RGB-

Based Methods. The results are averaged over 8 scenes, with each scene’s result

being the average of 3 runs. Data is taken from [49], except for our results. The top

results are highlighted as first and second . Our method demonstrates performance

comparable to Splat-SLAM [49] while outperforming all other methods. The table is

adapted from [10].

Runtime Analysis The real-time performance of our algorithm is evaluated in Ta-

ble 6.5. Benchmarks were conducted on a 3.6GHz AMD Ryzen Threadripper PRO

5975WX and an NVIDIA GeForce RTX 4090 with 24 GB of memory. Our system

achieves 9.94 fps, making it 8 times faster than the single-process implementation

of Splat-SLAM [49]. Our approach outperforms other algorithms while maintaining

visual quality. In its reference multi-process implementation, our method reaches a

frame rate of 16 fps. The peak memory usage and map size of our method are similar

to those of existing methods.
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Figure 6.1: Qualitative rendering results from Photo-SLAM [47] and IG-SLAM.

The visual quality of the methods is compared on the large-scale EuRoC dataset [57].

Method Metric 0000 0059 0106 0169 0181 0207 Avg.

MonoGS [40]

PSNR↑ 16.91 19.15 18.57 20.21 19.51 18.37 18.79

SSIM ↑ 0.62 0.69 0.74 0.74 0.75 0.70 0.71

LPIPS↓ 0.70 0.51 0.55 0.54 0.63 0.58 0.59

GlORIE-

SLAM [53]

PSNR↑ 23.42 20.66 20.41 25.23 21.28 23.68 22.45

SSIM ↑ 0.87 0.87 0.83 0.84 0.91 0.76 0.85

LPIPS↓ 0.26 0.31 0.31 0.21 0.44 0.29 0.30

Splat-

SLAM [49]

PSNR↑ 28.68 27.69 27.70 31.14 31.15 30.49 29.48

SSIM ↑ 0.83 0.87 0.86 0.87 0.84 0.84 0.85

LPIPS ↓ 0.19 0.15 0.18 0.15 0.23 0.19 0.18

IG-SLAM

(Ours)

PSNR↑ 24.68 20.09 25.30 27.85 25.80 26.69 25.07

SSIM ↑ 0.74 0.68 0.83 0.82 0.83 0.78 0.78

LPIPS ↓ 0.29 0.39 0.22 0.19 0.27 0.27 0.27

Table 6.2: Rendering Performance on ScanNet [56]. The result for each scene

is averaged over 3 runs. The values are taken from [49], except for our own. Our

method demonstrates competitive performance compared to state-of-the-art tech-

niques, achieving the second-highest visual quality results. The table is adapted from

[10]

.

Since both Splat-SLAM [49] and our system use DROID-SLAM [13] for tracking,

the difference in runtime performance can be attributed solely to the efficiency of

our mapping design. Our system performs 8 iterations per mapping call, whereas
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Splat-SLAM performs 60 iterations, making our system 8 times faster. The slight

runtime improvement over GO-SLAM [51] is likely due to the faster training process

of Gaussian Splatting [5] compared to NeRF [4].

Qualitative Results As shown in Figure 6.1 and Figure 6.2, photorealistic mapping

is achieved even for relatively large-scale scenes, such as those in the EuRoC dataset

[57]. Small-scale details, like pipes, are accurately captured within these expansive

environments. The rapid convergence of on-the-fly mapping allows our system to

build complex scenes with minimal reliance on post-processing. A detailed ablation

analysis of the post-processing operations can be found in Section 6.3.

Figure 6.2: Qualitative results of IG-SLAM on EuRoC [57]. The results in the first

row and second row correspond to MH-02 and MH-03, respectively. The figure is

adapted from [10]

.

6.3 Ablations

Post-processing, decay, and weighted depth loss are key design choices in the system.

Ablation studies are provided to validate and justify each of these decisions.
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Method Metric f1/desk f2/xyz f3/off Avg.

Photo-SLAM [47]

PSNR↑ 20.97 21.07 19.59 20.54

SSIM ↑ 0.74 0.73 0.69 0.72

LPIPS ↓ 0.23 0.17 0.24 0.21

MonoGS [40]

PSNR↑ 19.67 16.17 20.63 18.82

SSIM ↑ 0.73 0.72 0.77 0.74

LPIPS ↓ 0.33 0.31 0.34 0.33

GlORIE-

SLAM [53]

PSNR↑ 20.26 25.62 21.21 22.36

SSIM ↑ 0.79 0.72 0.72 0.74

LPIPS ↓ 0.31 0.09 0.32 0.24

Splat-

SLAM [49]

PSNR↑ 25.61 29.53 26.05 27.06

SSIM ↑ 0.84 0.90 0.84 0.86

LPIPS ↓ 0.18 0.08 0.20 0.15

IG-SLAM

(Ours)

PSNR↑ 24.45 26.35 25.27 25.36

SSIM ↑ 0.80 0.85 0.83 0.83

LPIPS ↓ 0.20 0.10 0.17 0.16

Table 6.3: Rendering Performance on TUM-RGBD [55]. The result for each scene

is averaged over 3 runs. The values are taken from [49], except for our own. Our

method shows performance comparable to Splat-SLAM [49], with a clear perfor-

mance advantage over other methods. The table is adapted from [10]

Post Processing Post-processing ablation results are presented in Table 6.6. PSNR

and Depth L1 metrics are recalculated every 500 post-processing iterations. Our

method shows only a slight decrease in visual quality when post-processing is skipped

(denoted as 0K in Table 6.6), while Splat-SLAM [49] experiences a significant drop

in visual quality without post-processing. Our system demonstrates diminishing re-

turns as the number of post-processing iterations increases. The rapid convergence of

our map, high frame rate, and reduced dependency on post-processing are attributed

to our training strategy.

Decay Learning rate decay ablation results are shown in Table 6.7. Three constant

learning rates without decay are compared against decaying learning rates. The cho-

sen learning rates are lrf = 1.6×10−6 (lower bound), lri = 1.6×10−4 (upper bound),

and the mean learning rate value of 5 × 10−5, as calculated in Equation (5.9). This
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Method Metric MH-01 MH-02 V1-01 V2-01 Avg.

Photo-SLAM [47]

PSNR↑ 13.95 14.20 17.07 15.68 15.23

SSIM ↑ 0.42 0.43 0.62 0.62 0.52

LPIPS ↓ 0.37 0.36 0.27 0.32 0.33

IG-SLAM

(Ours)

PSNR↑ 22.33 22.31 20.55 24.59 22.44

SSIM ↑ 0.78 0.77 0.79 0.85 0.80

LPIPS ↓ 0.22 0.23 0.29 0.18 0.23

Table 6.4: Rendering Performance on EuRoC [57]. The result for each scene is

averaged over 3 runs. The values for Photo-SLAM [47] are taken from their work. A

photorealistic 3D reconstruction comparison of the large indoor environment EuRoC

[57] MH-01 is shown in Figure 6.1. The table is adapted from [10].

GO-SLAM [51] GlORIE-SLAM [53] MonoGS [40] Splat-SLAM [49] Ours

GPU Usage [GiB] 18.50 15.22 14.62 17.57 16.20

Map Size [MB] - 114.0 6.8 6.5 14.8

Avg. FPS 8.36 0.23 0.32 1.24 9.94

Table 6.5: Memory and Running Time Evaluation on Replica [54] room0. The run-

time statistics are measured using the single-process implementation of our method.

The values are taken from [49], except for our own. Our peak memory usage and map

size are similar to those of existing works. However, our method achieves state-of-

the-art 3D reconstruction at higher frame rates compared to other methods. The table

is adapted from [10].

experiment is conducted with and without post-processing. As seen in the no post-

processing scenario in Table 6.7, learning with decay significantly improves visual

quality compared to non-decaying learning rates. Qualitative results can be seen in

Figure 6.3, where fine details are missed with non-decaying learning rates. Addi-

tionally, post-processing completely mitigates the convergence issues associated with

constant learning rates, as shown in the post-processing experiment in Table 6.7. The

decay strategy allows our system to use fewer iterations per mapping call without
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Nbr of Final Iterations β Metric 0K 0.5K 1K 2K

Splat-

SLAM [49]

PSNR ↑ 30.50 39.87 40.59 41.20

Depth L1 ↓ 6.55 2.37 2.34 2.40

Ours
PSNR ↑ 38.30 40.92 41.53 41.68

Depth L1 ↓ 2.63 2.18 2.17 2.30

Table 6.6: Post-processing Iterations Ablation on Replica [54] office0. The val-

ues for Splat-SLAM [49] are taken from their work. Thanks to the rapid convergence

of mapping during tracking, our method does not rely heavily on post-processing.

The reconstruction shows only slight improvements from post-processing. The table

is adapted from [10].

Figure 6.3: Qualitative Results for Learning Rate Decay Ablation Study. The four

cases examined in Table 6.7 are presented in the figure. The results include constant

learning rates of 1.6 × 10−4 at the top-left, 5 × 10−5 at the top-right, 1.6 × 10−6 at

the bottom-left, and the decaying 1.6 × 10−4 learning rate at the bottom-right as a

reference. The figure is adapted from [10]

sacrificing visual quality. The impact of this efficient mapping design on runtime is

shown in Table 6.5.
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Metric Learning Rate 1.6× 10−6 5× 10−5 1.6× 10−4 1.6× 10−4 w/ decay

w/o Post Processing

PSNR ↑ 31.92 35.84 34.71 38.30

Depth L1 ↓ 5.37 2.71 2.76 2.63

w/ Post Processing

PSNR ↑ 39.71 39.91 40.85 41.68

Depth L1 ↓ 2.73 2.17 2.20 2.30

Table 6.7: Learning Rate Hyperparameter Search on Replica [54] office0. Our

system performs significantly better with a slow learning rate combined with decay.

When reliable depth maps are available, an excessively high learning rate leads to

TV-static noise and hinders the convergence of the map. The table is adapted from

[10].

Depth Loss The ablation results for the weighted depth loss are presented in Ta-

ble 6.8. The weighted depth loss, as defined in Equation (A.14), is compared to

scenarios where no depth loss is included in the overall loss function (α = 1) and

where raw depth values are used without applying depth covariance weighting. Post-

processing is disabled to ensure the results are not influenced.

Metric Weighted No Depth Raw Depth

PSNR↑ 31.91 31.56 30.81

Depth L1 ↓ 6.33 13.16 6.39

Table 6.8: Weighted Depth Loss Ablation on Replica [54] office2. The utiliza-

tion of weighted depth loss improves reconstruction quality while maintaining visual

quality.

As it can be observed from Table 6.8, the weighted depth loss outperforms the other

options. While a pure color loss yields good visual quality, it degrades the recon-

struction quality. Using raw depth values in the loss function results in poorer visual

quality compared to the weighted loss. Weighting the depth helps maintain visual

quality by preventing degradation in high uncertainty regions, while also improving
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reconstruction quality by supervising the depth. The differences in visual quality are

not drastic, possibly due to the fact that the proposed system initializes Gaussians

based on depth maps, meaning that the initialized Gaussians are already close to the

corresponding depth values.
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CHAPTER 7

CONCLUSIONS

This thesis presents IG-SLAM, a novel RGB-only dense SLAM system that com-

bines robust tracking methods with the promising 3D Gaussian Splatting technique.

Through this work, we addressed the challenges of efficiently handling large-scale

environments while maintaining high-quality 3D reconstruction. By integrating ac-

curate pose and dense depth information, along with leveraging depth uncertainty in

map optimization, IG-SLAM achieves photo-realistic results and operates at signifi-

cantly higher speeds than previous state-of-the-art RGB-only SLAM systems.

The experiments conducted on various datasets, including Replica, TUM-RGBD,

ScanNet, and EuRoC, demonstrate IG-SLAM’s competitive performance, particu-

larly in large-scale environments where our system excels. The decay strategy incor-

porated in the optimization process not only enhances convergence but also ensures

real-time operation, making it a viable solution for practical applications.

This work lays the foundation for future advancements in RGB-only SLAM systems,

with potential improvements in both optimization techniques and real-time perfor-

mance. The combination of Gaussian Splatting and dense SLAM provides a promis-

ing direction for high-quality 3D mapping and reconstruction in dynamic and com-

plex environments.

Future research could focus on extending IG-SLAM to handle dynamic scenes more

effectively, as well as improving scalability and robustness for even larger environ-

ments. The insights and contributions made in this thesis contribute to the growing

field of SLAM, with potential applications in robotics, augmented reality, and be-

yond.
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APPENDIX

A.1 Gaussian Splatting Jacobian Derivation

Let v be a 6 dimensional vector in Lie algebra se(3) defined as [t,w]T ∈ se(3)

where t is 3D translation and w is 3-vector rotation. The exponential map exp :

se(3) 7→ SE(3) and logarithm map log : SE(3) 7→ se(3) is utilized to calculate the

derivative on SE(3) manifold. Intuitively, the exponential function maps an arbitrary

pose 6-vector v to the SE(3) manifold where the geometry is defined by constraints

of proper rotation and translation. The left-Jacobian of the Lie group is defined as in

Equation (A.1)

Df(T )
DT

:= lim
τ→0

log(f(exp(τ) ◦ T ) ◦ f(T )−1)

τ
(A.1)

where the infinitesimal τ ∈ se(3) is elevated to the manifold and the derivative is

taken there. Note that the left Jacobian is convenient at this formulation since con-

catenation of the poses is thought to be T = T1 ◦ T0. In other words, the poses are

concatenated by left. The derivatives, therefore, are given as in Equation (A.2)

DµC

DTCW

= [I −µ×
C ],

DW
DTCW

=


0 −W×

:,1

0 −W×
:,2

0 −W×
:,3

 (A.2)

where × represents the skew-symmetric matrix of the 3-vector and W:,i is the ith col-

umn of the matrixW . The dimensions of DµC

DTCW
and DW

DTCW
is 3x6 and 9x6 respectively.

Therefore, there are no unnecessary derivatives at the Jacobian.
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A.2 Neural Radiance Fields

Neural Radiance Fields (NeRF) [4] is another novel view synthesis method. It aims to

render the environment of interest from any direction and position in the environment.

To achieve this aim, direction-dependent color, and volume density are learned by a

Multilayer Perceptron (MLP). Classical view synthesis methods before NeRF tackled

the same problem by modeling the environment in a discrete manner, whereas in the

NeRF paradigm, the environment and rendering function are modeled continuously.

In other words, NeRF models the environment at every point in the space from every

direction as a simple model of color and volume density. Therefore, a simple volume

rendering method can be utilized to render an image of the environment from any

point and direction. After rendering, the rendered image can be compared to the orig-

inal image taken from that point. Since MLP and volume rendering are differentiable

operations, the system can be trained in a self-supervised manner.

In theory, several posed images are required to train NeRF. However, the pose of

the images can be calculated with a structure-from-motion (SfM) algorithm such as

COLMAP [38]. The idea is to render images of the environment from the positions

of posed images and backpropagate to train the MLPs.

A.2.1 Theory

In NeRF, an MLP is utilized to calculate the color and volume density of a point in

the environment. The purpose of the MLP is to calculate color and volume density at

sample points at are being used in volume rendering. The input-output relationship

of the NeRF MLP is given in Figure A.1.

FΘ (c, σ)(x, y, z, θ, ϕ)

Figure A.1: Input-Output relationship of NeRF MLP

where x,y,z is the position in the environment and θ, ϕ is the viewing direction in

spherical coordinate angles. NeRF MLP is executed in every sample point to render
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a pixel. Therefore, the architecture must be simple. The MLP in the original imple-

mentation is a rather simple network that has only 10 fully connected layers. The

MLP used in the original implementation is given in Figure A.2.

Figure A.2: The MLP used in the original implementation [4]. γ(x) and γ(d) are the

positional encodings of the position vector and direction vector. The numbers on the

blocks indicate the vector dimensions. Green boxes and red boxes represent the input

and the output.

The position is the input of MLP and additionally, it is concatenated at the 5th layer as

well. The direction is concatenated in the 9th layer. At the same layer, MLP outputs

volume density. The final output of the MLP is the RGB color. Unlike the general

machine learning algorithms, the NeRF MLP is a quite modest architecture. This

selection is because, unconventionally, memorization is aimed at NeRF. The aim of

the MLP is not to generalize the environment but rather to memorize the environment.

Assume that volume density and color of all space is given, continuous volume ren-

dering algorithm [61] is as follows. At every point on a ray r that starts from camera

center o through pixel of interest, the color is calculated. These colors on the line

are weighted and averaged to get the pixel color. The weights of the points are both

volume density σ and accumulated transmittence T . The equation to calculate the

color of the pixel corresponds to the ray r is given in Equation (A.3)

C(r) =

∫ t2

t1

T (t)σ(r(t))c(r(t),d)dt (A.3)

σ(r(t)) is the volume density of a point on the ray and c(r(t),d) is the direction-

dependent color of a point on the ray. The boundaries of the integral t1 and t2 are
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known as near and far bounds. The accumulated transmittance term T (t) is an intu-

itive term given in

T (t) = exp(−
∫ t2

t1

σ(r(u))du) (A.4)

The intuition in Equation (A.4) is as follows. The integral part increases as the ray

passes through opaque points. Therefore, transmittance decreases as more and more

opaque points are passed through. Meaning that a point’s weight is less when it is

occluded. The discretization of the equations is rather simple. Instead of continuous

integration, the points are sampled on the ray, and a weighted average is taken on

those points. The discrete equations are given as in Equation (A.5)

Ĉ(r) =
N∑
i=1

αiTici, Ti = exp(−
i−1∑
j=1

σjδj) (A.5)

where δi is the distance between the sample points i and i + 1,(σi, ci) is the volume

density and color of the sample points. αi is the opacity term from alpha compositing

given as

αi = 1− exp(−σiδi) (A.6)

An illustration of the volume rendering process is shown in Figure A.3.

In NeRF algorithm, c(r(t),d) and σ(r(t)) is calculated with the MLP. Note that the

calculation of color and volume density is done with MLP, which is, obviously a dif-

ferentiable process. Volume rendering after discretization is just a simple summation

operation, which is again differentiable. Therefore, the whole system is differentiable

if a simple error function as a square error between the ground truth pixel and the

rendered pixel is utilized. In other words, L2-norm loss is utilized as in equation A.7

L =
∑
r∈R

||Ĉ(r)− Cgt(r)||22 (A.7)

whereR is the set of rays associated with the pixels of the image. The volume density

accumulation can also be used to predict depth. The predicted depth is given in the
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FΘ

(x, y, z, θ, ϕ)

(ci, σi)

Figure A.3: An example volume rendering scenario where the pixel to be rendered

is shown as a red square, the black line passes through the camera center, and the

pixel, the points are sampled on the line. At each sample, color and volume density

are calculated with MLP. The samples are, then, used in volume rendering. Repeating

the same procedure for all pixels results in the output image.

equation A.8

d(r) =

∫ t2

t1

T (t)σ(r(t))tdt (A.8)

The equation is quite intuitive. As the ray passes through an opaque medium, T (t)

decreases exponentially. Therefore, the terms after a quite opaque point are small and

the integral total approximates to the depth. Discretizing the equation A.8, results is

in the summation form A.9

D̂(r) =
N∑
i=1

αitiTi (A.9)

The original implementation, as illustrated in A.1, does not utilize position directly.

Instead of 3 term position x, y, z and three-term direction d, the input of the MLP is

γ(x) which is given in general form as in equation A.10

γ(ν) = (sin(20πν), cos(20πν), sin(21πν), cos(21πν),

· · · , sin(2N−1πν), cos(2N−1πν))
(A.10)

In the original implementation N = 10 for position and N = 4 for direction. The
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reason for positional encoding is to increase the dependency of MLP on position and

direction. In other words, with positional encoding small position differences are

better resolved than directly using the position and direction.

In the original implementation, 256 points are sampled per ray. For an 800x800

image, 640k rays are needed. Therefore, NeRF MLP needs to be called for approxi-

mately 160 million times. This corresponds to tens of seconds to render an image and

hours or even days to train a model. The comparison between NeRF and Gaussian

Splatting is given in Figure A.4

Figure A.4: (a) NeRF operates by sampling points along a ray and querying a neural

network (MLP) to retrieve corresponding colors and opacities, a process that resem-

bles backward mapping (ray tracing). (b) Conversely, 3D Gaussian Splatting projects

all 3D Gaussians directly onto the image plane (splatting) and executes parallel ren-

dering, analogous to forward mapping (splatting and rasterization). The figure is

adapted from [39]

While NeRF in its original form is quite slow to be a part of the SLAM system, some

improvements have been made to accelerate the training and rendering process.

A.2.2 Related Work

Despite its revolutionary impact, the original NeRF [4] formulation has notable lim-

itations, particularly its slow training and rendering speeds, which hinder its practi-

cality for real-time or large-scale applications. These inefficiencies have motivated

researchers to propose a variety of enhancements and optimizations aimed at acceler-
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ating NeRF’s performance without sacrificing its quality.

One such improvement involves cone-shaped rendering [62], which addresses the

issue of anti-aliasing by introducing a more physically accurate method for integrating

radiance over a cone, rather than sampling individual rays. This modification not

only improves rendering quality but also reduces aliasing artifacts in the synthesized

images.

Additionally, several data structures have been employed to enhance the efficiency

of NeRF. Voxel grids [63, 6, 64], which divide the 3D space into discrete cells, en-

abling faster access and computation of radiance values. By combining voxel-based

representations with neural networks, these methods achieve substantial speedups.

Plenoctrees [65, 66, 67], which utilize a hierarchical octree structure to represent

radiance fields at multiple levels of detail. This approach efficiently allocates compu-

tational resources by focusing on regions with higher detail requirements.

Hash tables [52], which map spatial coordinates to compact representations stored in

hash maps, significantly reducing memory usage and computation time. This tech-

nique has proven particularly effective in achieving orders of magnitude faster train-

ing and rendering speeds compared to the original NeRF formulation.

Beyond these structural improvements, surface-based methods [68, 7, 69] have also

been developed to unify surface and volume rendering paradigms. These approaches

explicitly incorporate surface information into the radiance field representation, en-

abling more accurate modeling of scene geometry and achieving improved rendering

quality. By bridging the gap between surface-based and volumetric methods, these

techniques offer a more holistic representation of scenes, further expanding the ver-

satility of NeRF.

Together, these advancements highlight the rapid evolution of NeRF-based methods,

transforming the original formulation into a highly efficient and scalable framework

for 3D scene representation and rendering. These improvements have broadened

NeRF’s applicability, making it increasingly viable for use in real-world scenarios

requiring high-quality, real-time performance.
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A.3 Neural Radiance Fields SLAM

As an alternative to standard point cloud representation of the environment, NeRF,

represents the environment in the sense that if the environment could be rendered

from virtually any position and direction that would mean the environment is repre-

sented. This fundamentally different representation approach can be implemented in

two different ways. The first way utilizes NeRF in both tracking and mapping. The

second way is to make use of classical algorithms in tracking and maps with NeRF.

A.3.1 Inverting Neural Radiance Fields

It should be noted that the NeRF algorithms, which are the main block as in Fig-

ure A.1, take position and viewing direction as input and give color and volume

density as outputs. Then the MLP is run repeatedly for the sample points on the

ray passing from the camera center through the pixel location. Then, these samples

are rendered and a L2 loss is calculated between the rendered pixel and the ground

truth pixel as demonstrated in Figure A.5. Starting from the end, the loss function

is a classic L2 loss, therefore, it is differentiable. The volume rendering is just a

weighted sum operation, therefore, it is differentiable. The standard MLP structure

is, of course, differentiable. Therefore, NeRF is a differentiable system and can be

trained. The optimization problem can be expressed as in Equation (A.11), where

T is the camera pose, I is the camera image, and Θ is the MLP parameters. The

optimization is only solved for Θ.

Θ̂ = argmin
Θ

L(Θ|I, T ) (A.11)

However, this is not enough for NeRF to be used as a tracking tool in a SLAM sys-

tem. The input to the NeRF MLP is positional-encoded camera location and direction.

Recall that, the positional encoding in Equation (A.10) encodes the 3 dimensional po-

sition and 2 dimensional viewing direction to higher dimensions as sines and cosines.

Therefore, it is possible to make the system differentiable up to the pose itself.
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FΘ

∑
(c, σ)γ(.)(x, y, z, θ, ϕ)

|| • − • ||22 Ĉ(r)

C(r)

L

Figure A.5: The schematic demonstration of the NeRF algorithm. The input

(x, y, z, θ, ϕ) passes through positional encoding γ(.). The NeRF MLP outputs the

color and volume density of the sample points. These sample points are, then, vol-

ume rendered indicated as
∑

and an error is calculated using resulting pixel Ĉ(r) and

the ground truth pixel C(r).

A.3.2 Related Work

The first publication to achieve inverting the NeRF to calculate pose is iNeRF [70].

Unlike standard NeRF training where the parameters of MLP are optimized and the

pose of the camera is considered fixed as input, iNeRF keeps the parameters of the

MLP fixed and tries to optimize the pose. In other words, while the standard NeRF

algorithm tackles the optimization given in Equation (A.11), the iNeRF algorithm

deals with the optimization given in Equation (A.12). Therefore, it can be said that

iNeRF takes 3 inputs: the camera image, a pretrained NeRF model, and the initial

pose estimate.

T̂ = argmin
T

L(T |I,Θ) (A.12)

The gradient optimization is utilized for the problem given in Equation (A.12). Adam

optimizer [71] with exponential decay is used. To make sure that the resulting T

satisfies the proper rotation and translation conditions such as the rotation matrix

being unitary T is parametrized in exponential coordinates. Suppose, the initial pose

estimate is T̂0, the pose estimate is given as in Equation (A.13)
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T̂i = e[Si]ΘiT̂0 (A.13)

Where only exponential coordinate part e[Si]Θi is optimized. The main challenge in

this optimization is the speed. Suppose, for each pixel n points are sampled. Ren-

dering a whole image requires O(HWn) forward MLP passes. Therefore, in each

iteration of pose optimization O(HWn) forward and O(HWn) backward pass of

MLP is required. Hence, it is not possible to utilize the whole image for optimiza-

tion. A batch of rays on the image has to be used. For this purpose in iNeRF, interest

points are generated and rays corresponding to these pixels are rendered and used in

the optimization. However, the authors state that this method results in getting stuck

in the local minima. It is argued that getting stuck in the local minima is caused by

interest points being in the same plane and carrying little or no additional informa-

tion different than others. To get rid of local minima, the interest points are generated

again and the points are randomly selected around a region centered at interest points.

At the original implementation, 2048 rays are sampled per iteration and 10 iterations

are done for pose optimization resulting in 1 Hz tracking.

The limitation of iNeRF is that it requires a pretrained NeRF model to operate. The

following works that are built on iNeRF’s inversion strategy do not require a pre-

trained NeRF model. Instead, they aim to train the model on the run. The first system

that can be labeled as a SLAM system utilizing the NeRF as scene representation is

iMAP [9]. The iMAP [9] system pipeline is shown in Figure A.6

iMAP [9] runs on two separate threads, the tracking and mapping threads. At the

tracking thread, since close-to-frame rate tracking is important in terms of perfor-

mance only pose is optimized and MLP parameters are kept fixed. At the mapping

thread, both MLP parameters and pose are optimized. Note that, doing tracking and

mapping in separate threads allow mapping to be slower than tracking. While doing

the joint optimization, the photometric loss and depth loss are utilized. The geometric

loss is calculated between predicted depth using A.9 and the depth information from

the RGB-D camera. The geometric loss function is given as in A.14
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Figure A.6: The iMAP system pipeline adapted from [9]. iMAP [9] takes RGB-D

image as input. The tracking is similar to iNeRF [70]. Joint optimization of the pose

and MLP parameters are only done on keyframes.

Lg =
1

M

W∑
i=1

∑
u,v∈si

egi [u, v]√
D̂var[u, v]

(A.14)

where egi [u, v] = |Di[u, v] − D̂i[u, v]| and si is the points selected in the keyframe.

The variance of the depth estimation is used as a normalization factor.

The keyframe selection is done based on the error in the depth prediction. If the depth

error is higher than a certain threshold, the current frame is selected as a keyframe.

The sample points are sampled uniformly in the image. To achieve that the image

is divided into grids and the same number of sample points are sampled randomly

from each grid. These prior sampled points are rendered and loss is generated. Then,

according to this loss, an active sampling strategy is utilized where more points are

sampled in the grid in which the loss is higher. These keyframes and points are fed

into MLP continuously to prevent catastrophic forgetting. The number of keyframes

is kept fixed at 5 to keep computation bounded.

In iMAP [9], 200 pixels are sampled for each image. For each pixel, 44 points are

sampled for volume rendering. iMAP [9] achieves 10 Hz tracking and 2 Hz mapping.

The main shortcoming of iMAP [9] is that it fails to learn relatively large scenes such

as an apartment with multiple rooms. This is speculated to be caused by only training

a simple MLP for all the details in the article [8].
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Nice-SLAM [8] algorithm tries to address the difficulty of having to learn all levels

of details with the same MLP. It employs hierarchical scene representation where

coarse, mid, and fine levels. This approach is popularized by the article [52]. While

the main purpose of the hierarchical representation in Instant-NGP is the increasing

speed, Nice-SLAM utilizes it to improve performance. Additionally, since the hash

encoding structure is not differentiable in its nature, the hash encoding is replaced by

its differentiable counterpart feature grid interpolation. The overview of the algorithm

is shown in the figure A.7

Figure A.7: The Nice-SLAM system overview adapted from [8]. The hierarchical

feature grid is utilized to learn all level of details independently. The decoder MLPs

are pre-trained and are kept fixed during the run. Overall, similar strategies for track-

ing and mapping are utilized.
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Nice-SLAM algorithm consists of 3 levels of encoder feature grids ϕl
θ and corre-

sponding decoder MLPs f l where l = {0, 1, 2} which are coined as coarse, mid, and,

fine level. A sampled point on a ray p is trilinearly interpolated at the feature grids ϕl
θ

and the output ϕl
θ(p) is decoded by MLPs. The decoding process is done in a slightly

different manner in each layer. At the coarse level sampled point p and coarse level

encoded features ϕ0
θ(p) is concatenated as an input to the coarse level decoder f 0 as

given in the equation A.15

o0p = f 0(p, ϕ0
θ(p)) (A.15)

The mid-level details are similarly decoded as in the equation A.16.

o1p = f 1(p, ϕ1
θ(p)) (A.16)

The fine-level details are used as a residual to the mid-level features where the output

of the fine-level decoder output δo1p is added to mid-level detail output o1p. Fine-level

decoder input is sampled point itself, mid-level encoded feature interpolation, and

high-level encoded feature interpolation as shown in the equation A.17.

∆o1p = f 2(p, ϕ1
θ(p), ϕ

2
θ(p)) (A.17)

Then the resulting residual is added to the mid-level detail output o1p as in the equation

∆op = o1p +∆o1p (A.18)

Finally, the color is calculated via a similar structure as

cp = gw(p, ψ(p)) (A.19)

where gw is the color decoder and ψ(p) is the feature grid for the color. The authors

state that the joint optimization of the decoder and encoder just for color improves

tracking performance.

67



On the mapping side, Nice-SLAM [8] only optimizes the feature grid parameters.

Recall that in the iMAP [9] algorithm, pose and MLP parameters are jointly opti-

mized. On the tracking side, only the pose is optimized. The same loss function

where depth loss and photometric loss are combined is used. Key frame selection is

done according to the increase in the loss function as in iMAP [9].

Building on the top of Nice-SLAM [8], Nicer-SLAM [72] incorporates off-the-shelf

depth and normal estimators [60] to improve reconstruction performance.

Inverting NeRFs [4] to be used in tracking intentionally couples the tracking and map-

ping process. While doing everything within the Neural Radiance Field landscape is

poetic, this naturally results in complications in the real-time mapping and training

performance since the training neural radiance fields just by itself is a delicate pro-

cess. This problem is addressed in NeRF-SLAM [50] and [51].

NeRF-SLAM [50] is a real-time dense monocular SLAM system that integrates NeRF

for accurate 3D scene reconstruction. By leveraging advances in DROID-SLAM [13]

and real-time volumetric NeRFs [52], it jointly optimizes camera poses and scene

representation using only monocular images. This approach achieves superior geo-

metric and photometric accuracy compared to competing methods since the tracking

part is decoupled from mapping.

GO-SLAM [51] incorporates robust pose estimation, efficient loop closing, and on-

line full bundle adjustment. GO-SLAM updates the implicit and continuous surface

representation [7] on the fly to ensure global consistency. It outperforms state-of-the-

art approaches in tracking robustness and reconstruction accuracy.

ESLAM [73] is an efficient dense SLAM system that combines signed distance fields

(SDFs) and point clouds to optimize memory and computational efficiency. It lever-

ages a hybrid representation, allowing for precise surface modeling through SDFs

while using point clouds for faster, lower-memory processing. This approach enables

ESLAM to perform real-time 3D reconstruction of large-scale environments with re-

duced computational cost compared to traditional dense SLAM methods.

Co-SLAM [74] is a neural network-based SLAM system that integrates localiza-

tion and mapping through joint optimization. It uses sparse parametric encodings
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along with coordinate-based representations, which allows for efficient processing

and mapping in real time. By utilizing neural networks, Co-SLAM can extract rele-

vant features and track the environment with high robustness, making it suitable for

large-scale, real-time applications.

MoD-SLAM [75] leverages neural implicit representations to create dense, unbounded

3D scene reconstructions using monocular input. The method utilizes a Signed Dis-

tance Function (SDF), a neural network-based implicit representation, to model the

3D geometry of the scene as a continuous field. This allows the system to describe

the distance to the nearest surface at any given point in space, which is more efficient

and compact compared to traditional point clouds or meshes.

GlORIE-SLAM [53] incorporates NeRF [4] instead of Gaussian Splatting [5] in a

similar manner to Splat-SLAM [49].
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