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ABSTRACT

BUCKETING RANKING-BASED LOSSES FOR EFFICIENT TRAINING OF
OBJECT DETECTORS

Yavuz, Feyza

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Sinan Kalkan

Co-Supervisor: Assoc. Prof. Dr. Emre Akbaş

January 2025, 72 pages

Object detection is a fundamental computer vision task that focuses on classifying and

locating objects in an image. Classification and localization of objects are commonly

supervised with score-based loss functions, e.g., Cross-entropy Loss for classification

and L1 Loss for localization. On the other hand, ranking-based loss functions, such as

Average Precision Loss and Rank & Sort Loss, better align with the evaluation crite-

ria, have fewer hyperparameters, and offer robustness against the imbalance between

positive and negative samples. However, they require pairwise comparisons among

P positive and N negative predictions, introducing a time complexity of O(PN),

which is prohibitive since N is often large. Despite their advantages, the widespread

adoption of ranking-based losses has been hindered by their high time and space com-

plexities.

In this thesis, we focus on improving the efficiency of ranking-based loss functions.

To this end, we propose Bucketed Ranking-based (BR) Losses which group negatives

into B buckets (B ≪ N ) to reduce the number of pairwise comparisons. Thanks

to bucketing, our method reduces the time complexity to O(max(N log(N), P 2)).
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To validate our approach, we conducted experiments on two different tasks, three

different datasets, seven different detectors. We show that BR Losses yield the same

accuracy with their unbucketed versions and provide 2× faster training on average.

Lower complexity of BR Losses enable us to train, for the first time, transformer-

based object detectors using a ranking-based loss. When we train CoDETR, a state-

of-the-art transformer-based object detector, we consistently outperform its original

results over several different backbones.

Keywords: Object Detection, Detection Transformers, Loss Functions, Ranking-based

Losses, Efficient Ranking-based Losses
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ÖZ

NESNE TESPİTÇİLERİNİN ETKİN EĞİTİMİ İÇİN SIRALAMA BAZLI
KAYIP FONKSİYONLARINI GRUPLAMA

Yavuz, Feyza

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Sinan Kalkan

Ortak Tez Yöneticisi: Doç. Dr. Emre Akbaş

Ocak 2025, 72 sayfa

Nesne tespiti, bir görüntüdeki nesneleri tanımlama ve konumlandırmaya odaklanan

bir bilgisayarlı görü problemidir. Nesnelerin sınıflandırılması ve sınırlayıcı kutu ko-

ordinatlarının tahmin edilmesi genellikle puan tabanlı kayıp fonksiyonları ile denet-

lenir. Örneğin, sınıflandırma için Cross-entropy Loss ve konumlandırma için L1 Loss

kullanılır. Buna karşın, Average Precision Loss ve Rank&Sort Loss gibi sıralama ta-

banlı (ranking-based) kayıp fonksiyonları, değerlendirme kriterleriyle daha iyi uyu-

şur, daha az hiperparametreye sahiptir ve pozitif-negatif örnekler arasındaki denge-

sizliğe karşı daha dayanıklıdır. Ancak bu fonksiyonlar, (P ) pozitif ve (N ) negatif

tahmin arasında ikili karşılaştırmalar gerektirdiğinden O(PN) zaman karmaşıklığı

ortaya çıkar; bu da N genellikle büyük olduğu için engelleyici boyutlara ulaşabilir.

Bu tezde, sıralama tabanlı kayıp fonksiyonlarının verimliliğini artırmaya odaklanıyo-

ruz. Bu doğrultuda, negatif tahminleri B gruba (B ≪ N ) ayırarak çift yönlü karşı-

laştırmaların sayısını azaltmayı hedefleyen Bucketed Ranking-based Losses (Grup-

landırılmış Sıralama Tabanlı Kayıplar) yöntemini öneriyoruz. Yöntemimiz, zaman
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karmaşıklığını O(max(N log(N), P 2)) seviyesine düşürmektedir. Yöntemimizin ge-

çerliliğini göstermek ve genelliğini doğrulamak için iki farklı problem, üç farklı veri

seti ve yedi farklı tespitçi üzerinde deneyler gerçekleştirdik. Sonuçlarımız, Gruplan-

dırılmış Sıralama Tabanlı Kayıpların gruplandırılmamış versiyonlarla aynı doğruluğu

sağladığını ve ortalama olarak iki kat daha hızlı bir eğitim sunduğunu göstermektedir.

Ayrıca, bu verimlilik sayesinde, ilk kez sıralama tabanlı kayıplar kullanılarak trans-

former tabanlı nesne tespitçileri eğitilmiştir. CoDETR adlı, transformer tabanlı nesne

tespitçiyi Bucketed Ranking-based Loss ile eğittiğimizde, farklı omurgalar üzerinde

orijinal sonuçlarından sürekli olarak daha iyi performans elde ettik.

Anahtar Kelimeler: Nesne Tespiti, Tespit Transformerları, Kayıp Fonksiyonları, Sıra-

lama Bazlı Kayıplar, Verimli Sıralama Tabanlı Kayıplar
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Figure 1.1: Object detection pertains to localizing and classifying objects in images.

[Image from the COCO dataset]

Object detection is a fundamental problem in computer vision, requiring the classi-

fication and localization of objects within an image (Figure 1.1). Training an object

detector is more challenging than that of a classifier since it requires more sophisti-

cated learning algorithms, usually including a combination of (i) dynamically assign-

ing a large number of hypotheses to objects [7–13], (ii) sampling among these hy-
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potheses to ensure that the background class does not dominate training [10, 14–16]

and (iii) optimizing a multi-task objective function [10, 17–19]. While the choices

on assignment and sampling generally vary depending on the trained object detec-

tor, it is very common to combine Cross Entropy or Focal Loss [19] with a regression

loss [20,21] as the multi-task loss function. However, the imbalance between positive

and negative examples during training affects score-based classification losses. The

background class, i.e., negatives, constitutes up to 99.9% of the hypotheses generated

during training [22]. Recently proposed ranking-based loss functions [1,2,17,18] of-

fer an alternative approach for addressing these challenges by formulating the training

objective based on the rank of positive examples over negative examples. Recently

proposed ranking-based loss functions [1, 2, 17, 18] offer an alternative approach for

addressing these challenges by formulating the training objective based on the rank

of positive examples over negative examples. Figure 1.2 illustrates the difference be-

tween common score-based classification losses and ranking-based losses in terms of

computation.

Benefits of ranking-based losses. First, they are inherently robust to imbalance [17]

and hence, do not require any sampling mechanism under very challenging scenar-

ios [18], e.g., even when the background-foreground ratio is 10K for LVIS [23]. Sec-

ond, they are shown to generalize over different detectors with diverse architectures

– with the exception of transformer-based ones [4–6], since ranking-based losses fur-

ther slow down the training of transformer-based detectors, which we address in this

paper. Such losses also offer significant performance gain over their score-based

counterparts, and having less hyperparameters, they are much easier to tune [17, 18].

The drawback of ranking-based losses. Compared to score-based losses, ranking-

based losses are less efficient as the ranking operation inherently requires each pair

of object hypotheses to be compared against each other (Figure 1.3(a)), inducing a

quadratic complexity on the large number of object hypotheses (e.g., 108 for ATSS [7]

on COCO [24]). As a result, vectorized implementations for parallel GPU processing

are infeasible as such large matrices (e.g., with∼ 1016 entries for ATSS) do not fit into

GPU memories. This has driven researchers towards alternative ways of computing

these matrices, which, in the end, saves from the storage complexity but results in

more inefficient algorithms [1, 2] in terms of time complexity. Two techniques were

2
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Figure 1.2: a) Score-based classification losses compute the loss according to each

prediction and its label for training object detectors. b) Ranking-based losses offer

a different approach by ranking positives over negatives and sorting positives con-

cerning their IoU scores. si, IoUi denote respectively the classification score and the

Intersection-over-Union (IoU) score for box i.

specifically proposed to address these drawbacks: implementing a loop over positive

examples and discarding trivial negatives. By introducing these techniques, storage

complexity is significantly reduced; however, time complexity remains an important

drawback.

1.2 Problem Definition and Scope of the Thesis

In this thesis, we aim to address the inefficiencies in ranking-based loss functions.

Specifically, we focus on reducing their computational complexity while preserving

their theoretical robustness and advantages. To achieve this, we introduce a novel

bucketing approach that efficiently handles negative predictions.

The core idea of our approach is to sort all examples by their scores and group the

3
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Figure 1.3: (a) Existing ranking-based losses (i.e., AP Loss [1, 2]) incur significant

overhead owing to pairwise comparisons between positives and negatives. (b) We

propose bucketing negatives to decrease the number of comparisons, and hence the

complexity. Under certain assumptions, our bucketing approach provides equal gra-

dients with conventional ranking-based losses such as AP Loss in (a). [Figure from

our ECCV 2024 paper [3]]

negatives located between successive positives into buckets. Each bucket of neg-

atives is treated as a single negative prediction, represented by their average score

(Figure 1.3(b)). This restructuring reduces the computational overhead associated

with ranking-based loss functions.

To demonstrate the effectiveness of our approach, we integrate this bucketing mech-

anism into established ranking-based loss functions such as AP Loss [1, 2] and RS

Loss [18]. Furthermore, we propose a gradient computation that ensures the gradi-

ents remain the same with their original formulations, under certain assumptions.

From a theoretical perspective, our approach provides exact gradients compared to

conventional ranking-based losses while significantly reducing time complexity. Prac-

tically, we achieve up to a 40× reduction in loss computation time and a 6× reduc-

tion in training time for object detectors.
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These improvements eliminate the primary drawback of ranking-based loss func-

tions, that is, their computational cost. By bridging the gap between score-based

and ranking-based loss functions in terms of training efficiency, we enable, for the

first time, the training of high-performing transformer-based object detectors such as

Co-DETR [6] using our loss functions.

As a result, ranking-based loss functions not only maintain their advantages, but also

close the gap in terms computational efficiency. This thesis contributes to advancing

object detection by making ranking-based loss functions more efficient for object

detection frameworks.

1.3 Contributions

In this thesis, we make the following contributions:

• We propose a novel bucketing approach to improve the efficiency of computa-

tionally expensive ranking-based losses to train object detectors. Theoretically,

our approach yields the same gradients with the original ranking-based losses

while decreasing their time complexity. Practically, we enable up to 6× faster

training using our bucketing approach with no accuracy loss.

• For the first time, we incorporate ranking-based loss functions to transformer-

based detectors. Specifically, we construct an object detector called BRS-

DETR by replacing the training objective of the state-of-the-art transfomer-

based object detector Co-DETR [6] by our Bucketed RS (BRS) Loss.

• Our comprehensive experiments on detection and instance segmentation on

three different challenging datasets, five backbones and seven detectors show

the effectiveness and generalizability of our approach. Our BRS-DETR reaches

50.3 AP on COCO val set with only 12 epochs and ResNet-50 backbone, out-

performing all existing detectors using the same backbone and 300 queries.

BRS-DETR also outperforms CoDETR with the Swin-T and Swin-L back-

bones, reaching 57.2 AP on the COCO dataset.

The main contributions of the thesis have been published at the European Conference
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on Computer Vision (ECCV) 2024 [3].

1.4 The Outline of the Thesis

In Chapter 2, we provide a detailed explanation of the object detection problem and

discuss various aspects of existing detectors. Additionally, we present well-known

loss functions used in state-of-the-art detectors. We also include a brief overview of

evaluation metrics and datasets used for experiments.

In Chapter 3, we begin by providing a detailed explanation of AP Loss and RS Loss

in terms of their formulation and optimization, as these are the core methods of our

research. Next, we introduce our novel approach and describe how it can be inte-

grated with these losses. We discuss both the theoretical and practical aspects of our

proposed bucketing method.

In Chapter 4, we describe the experiments we conducted to validate our method and

present results with various architectures and datasets.

Finally, in Chapter 5, we summarize the effects and limitations of our method while

outlining future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Object Detection

Object detection is a fundamental task in computer vision that focuses on recognizing

and localizing objects within an image or video frame. This involves not only classi-

fying the objects but also predicting their spatial bounding box coordinates. Formally,

given an input image I , the objective is to predict a set of N objects, where each ob-

ject is represented by its class label ci ∈ C and its bounding box bi = (xi, yi, wi, hi).

Here, C denotes the set of predefined object classes, (xi, yi) are the coordinates of the

top-left corner of the bounding box, and wi, hi represent its width and height.

A major challenge in object detection is matching the predicted bounding boxes to

the actual objects during training. This matching process, known as assignment in

object detection, aligns each predicted anchor with the correct class label and real

bounding box. Object detection uses different assignment techniques that adapt to

the properties of the predictions and ground truth. These techniques may use overlap-

based criteria, such as Intersection over Union (IoU), or more advanced methods like

adaptive thresholding and probabilistic matching.

Once assignments are identified, the object detection task involves jointly optimiz-

ing two objectives: the classification loss, which ensures the correct assignment of

class labels ci, and the localization loss, which minimizes the error between predicted

bounding boxes bi and their corresponding ground-truth boxes. Together, these losses

guide the model in learning both the semantic and spatial characteristics of objects.

The overall loss can be expressed as:

L = Lcls + λLloc, (2.1)
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where Lcls measures the classification error, Lloc measures the localization error, and

λ balances the contributions of the two losses.

Object detection has progressed significantly, shifting from traditional handcrafted

methods [25–27] to approaches based on deep learning [14,28–30]. Early techniques

used fixed feature extractors but struggled with scalability and efficiency, especially

on large datasets. The introduction of convolutional neural networks (CNNs) was a

significant success because of the use of learnable features that adapt to various tasks.

CNNs became essential for capturing spatial and semantic details in images, laying

the groundwork for improvements in object detection. While CNNs dominated the

field for years [7,10–12,28,31–37], their reliance on local receptive fields caused chal-

lenges in capturing global context, particularly in complex scenes with overlapping or

distant objects. Initially developed for natural language processing tasks, transform-

ers outperform other works of modeling relationships across sequences. Adapting

transformers to vision tasks with Visual Transformers (ViT) [38] improved object

detection by addressing these limitations through global attention mechanisms.

Modern object detectors rely on numerous hand-crafted components carefully de-

signed to improve detection accuracy and efficiency. These components often include

predefined anchor boxes for region proposals, filtering overlapping predictions, and

heuristics for matching predictions with ground-truth objects and they require exten-

sive hyperparameter tuning and limit the model’s scalability to diverse datasets.

2.1.1 Object Detectors

Object detectors in the literature can be broadly categorized into two classes: anchor-

based and anchor-free detectors.

Anchor-based methods [7, 8, 10, 11, 14, 16, 19, 30, 39–44] rely on predefined anchor

boxes to suggest regions of interest and predict objects within those regions. These

methods are further divided into one-stage and two-stage detectors. One-stage detec-

tors [7, 8, 14, 30, 42, 45, 46] directly predicts object classes and bounding boxes. In

contrast, two-stage detectors [9–11,16,29,39,41,47,48] follow a multi-step approach

where they first generate object proposals and then classify and localize objects within
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those proposals. Two-stage detectors often achieve higher accuracy but comes with

increased computational complexity.

On the other hand, anchor-free detectors [12, 31, 49–53] focus on detecting objects

based on keypoints, object centers, or other features directly from the image. They

can simplify the detection process and reduce the need for the extensive hyperparam-

eter tuning generally associated with anchor-based methods, providing an alternative

framework for object detection.

2.1.2 Anchor based detectors

One-stage Object Detectors simplify the object detection process by directly pre-

dicting object locations and class probabilities from the input image in a single pass.

The general pipeline begins with a backbone network extracting features from the

image, often enhanced by multi-scale feature maps for detecting objects of various

sizes. Prediction heads simultaneously perform classification to identify object cate-

gories and regression to predict bounding box coordinates. Finally, a post-processing

step like Non-Maximum Suppression (NMS) eliminates duplicate detections, ensur-

ing only the most confident predictions remained.

YOLO (You Only Look Once) [30] was one of the first one-stage object detectors. It

was designed to divide the input image into a grid and predict both bounding boxes

and class probabilities in a single pass. Over the years, the original YOLO has been

enhanced with various improvements, including multi-stage detection [39, 41], ad-

vanced backbone networks for better feature extraction [54], and anchor-free tech-

niques that boost accuracy, efficiency, and adaptability [55, 56].

Introduced in the same year as YOLO [30], SSD [14, 46] (Single Shot MultiBox De-

tector) builds on the one-stage paradigm by introducing multi-scale feature maps and

predefined anchor boxes, improving the detection of objects of varying sizes. SSD

balances speed and accuracy, outperforming YOLO for small and medium objects but

still behind two-stage detectors. Over the years, various improvements to SSD have

been proposed.

Numerous studies have explored ways to enhance the assignment process between
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predictions and ground-truth objects [7, 8, 42, 57, 58] . In 2020, PAA (Probabilis-

tic Anchor Assignment) [8] introduced a probabilistic method for assigning anchors,

eliminating the need for fixed Intersection over Union (IoU) thresholds. PAA calcu-

lates anchor scores based on the model’s predictions and fits a probability distribution

to these scores. Anchors are then classified as positive or negative based on their

probabilities. Furthermore, to bridge the gap between training and testing objectives,

PAA [8] predicts the IoU values of the detected boxes to assess localization quality.

Published in the same year, ATSS (Adaptive Training Sample Selection) [7] also in-

troduced a mechanism to dynamically select positive and negative samples based on

the properties of the dataset. It establishes a threshold using the mean and standard

deviation of IoU values from a group of the nearest k anchors corresponding to each

ground-truth object. To determine candidate anchors, ATSS selects pre-defined num-

ber of anchors per FPN level whose centers are closest to the ground-truth bounding

box and evaluates IoU for these anchors. Samples with IoU above the threshold

and center inside the ground-truth bounding box are defined as positive. Both meth-

ods significantly improved training stability and overall detection performance by

addressing the limitations of traditional assignment techniques.

In summary, one-stage detectors are known for their speed thanks to their architectural

design; however, they often lag behind two-stage detectors in terms of performance.

Recent advancements in anchor assignment and post-processing strategies have fur-

ther improved the performance of one-stage detectors. Techniques such as PAA and

ATSS are helping one-stage methods to narrow the performance gap, providing a

better balance between speed and accuracy.

Two-stage Object Detectors work in two separate phases to achieve high accuracy.

In the first stage, candidate regions (proposals) that are likely to contain objects are

generated using various methods. These methods may include a Region Proposal Net-

work (RPN) or alternatives such as selective search, edge boxes, or attention-based

mechanisms . In the second stage, these proposals are refined, and their class labels

are predicted through classification and regression networks. Two-stage detectors

utilize shared convolutional features for efficiency and employs several techniques to

extract region-specific features for precise localization. Although two-stage detectors
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are more computationally intensive than one-stage detectors, the two-stage approach

outperforms in accuracy.

R-CNN (Region-Based Convolutional Neural Network) [29], introduced in 2014, was

a significant approach that integrated deep learning into object detection by combin-

ing region proposals with deep learning. It generates around 2,000 candidate regions

using Selective Search method and processes each region individually. Features are

extracted from these regions using a pre-trained CNN, and the extracted features are

then sent to an SVM classifier to predict object classes, while a bounding box re-

gressor is used for localization. Although R-CNN significantly improved detection

performance compared to traditional methods, it remains computationally expensive

because each region is processed independently. To solve the inefficiency problem of

R-CNN, Fast R-CNN [59] was introduced in 2015. Instead of processing each region

proposal independently, the entire image is passed through a CNN once to produce

a feature map. Region proposals are then projected onto this feature map, and Re-

gion of Interest (ROI) pooling extracts fixed-size feature representations for each pro-

posal. Then produced features are fed into fully connected layers for classification and

bounding box regression. Fast R-CNN significantly reduces computational overhead,

allowing faster training and inference while maintaining high accuracy. However, it

still relies on Selective Search to generate regional proposals.

Faster R-CNN [10] was developed shortly after Fast R-CNN. Introducing the Region

Proposal Network (RPN) created a fully end-to-end trainable system and established

a benchmark for two-stage object detection models. The RPN is integrated into the

CNN, allowing it to generate region proposals directly from the feature map in a fully

trainable manner. These proposals are then refined using the same ROI pooling and

fully connected layers as in Fast R-CNN [59]. By unifying the region proposal and

detection processes, Faster R-CNN significantly improves speed and efficiency. Sev-

eral works [9, 11, 16, 47, 48, 60, 61] have been introduced to extend the performance

of Faster R-CNN. Some of the most acknowledged works are Mask R-CNN [61]

and Cascade R-CNN [11]. Mask R-CNN [61], introduced by He et al., adds a seg-

mentation branch to Faster R-CNN, enabling instance segmentation alongside object

detection. It uses ROIAlign instead of ROI pooling for better alignment of features

and outputs a binary mask for each detected object, making it suitable for tasks re-
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quiring pixel-level accuracy. Cascade R-CNN [11], proposed by Cai and Vasconce-

los, improves detection performance by introducing a multi-stage refinement process.

Each stage applies a higher IoU threshold to refine the quality of bounding boxes

and classification progressively. While Mask R-CNN focuses on integrating detec-

tion and segmentation, Cascade R-CNN emphasizes robust, high-quality detection

through sequential refinement.

2.1.3 Anchor-free detectors

Anchor-free methods differ from anchor-based methods in defining and localizing

bounding boxes. As described above, anchor-based methods rely on predefined an-

chor boxes and refine them through regression; anchor-free methods directly predict

bounding box coordinates or key points without anchors. Anchor-free methods do not

require matching anchors and need less fine-tuning. On the other hand, anchor-based

methods usually provide better performance.

Many prominent anchor-free methods have been introduced over the years. A well-

known example, CornerNet [12], formulates object detection as the task of finding the

corners of the boxes containing. It is implemented using a single CNN. CornerNet

further introduces a novel corner pooling layer to enhance the localization of these

corners.

CenterNet [31], introduced in 2019, enhances the CornerNet model by focusing on

detecting the centers of objects rather than just their corners. It predicts the central

point of an object, its dimensions, and offset values, which simplifies the detection

process. By focusing on object centers, CenterNet achieves faster inference and im-

proved accuracy, making it more efficient than CornerNet. Similarly, FCOS (Fully

Convolutional One-Stage Object Detection) [49], also released in 2019, adopts a dif-

ferent anchor-free approach. It treats object detection as a dense regression problem

by predicting the distances from each point in the feature map to the edges of the

object’s bounding box while simultaneously classifying the object. FCOS includes a

centerness scoring mechanism that prioritizes central locations, enhancing localiza-

tion accuracy and minimizing duplicate detections.
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2.1.4 Transformer-based Object Detectors

Initially developed for Natural Language Processing (NLP), transformers are neu-

ral network architectures that utilize self-attention mechanisms to model global de-

pendencies. Their ability to capture complex relationships across sequences has led

to state-of-the-art performance in machine translation and text understanding tasks.

Building on their success in NLP, Vision Transformers (ViTs) [38] adapt the transfor-

mer architecture for image analysis by dividing images into patches, treating them as

sequences, and processing them with the same attention-based approach. The atten-

tion mechanism enables ViTs to capture long-range spatial dependencies and global

context more effectively than CNNs, constrained by local receptive fields. The first

significant implementation of transformers in object detection was DETR (DEtection

TRansformer) [4]. CNN-based methods in object detection suffer from several prob-

lems. They rely on components like anchor boxes, region proposal networks, and

NMS, which means non-end-to-end pipelines in object detection.

As illustrated in Figure 2.1, DETR [4] is the first work that simplifies the pipeline

into a fully end-to-end trainable system by introducing assignment problem as set-

matching problem. DETR starts by passing the input image through a CNN to ex-

tract feature maps. Next, using a self-attention mechanism, the encoder processes

these feature maps to capture global dependencies across all spatial regions. DETR

uniquely approaches object detection as a set prediction problem and introduces a

fixed set of learnable embeddings known as object queries, which are processed by

the decoder. The number of object queries determines the maximum number of ob-

jects that model can predict. Each object query represents a potential object in the

image, and the decoder refines these queries based on the global context provided

by the encoder. It employs a Hungarian matching algorithm during training to as-

sign ground-truth objects to the predictions. This method ensures that each predicted

object uniquely corresponds to a ground truth object, preventing any overlap in pre-

dictions. After decoding, each object query outputs a class label and a bounding box.

DETR achieves outstanding results across various datasets and sets a new benchmark

in detection research. DETR has one significant issue: slow convergence. Typically,

DETR requires between 50 to 500 epochs to converge, whereas general detection
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models usually only need about 12 epochs for training. Numerous studies have pro-

posed analyses and solutions have been proposed to address DETR’s slow conver-

gence [5, 6, 62–70]. End-to-End Object Detection with Transformers 7
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Fig. 2: DETR uses a conventional CNN backbone to learn a 2D representation of an
input image. The model flattens it and supplements it with a positional encoding before
passing it into a transformer encoder. A transformer decoder then takes as input a
small fixed number of learned positional embeddings, which we call object queries, and
additionally attends to the encoder output. We pass each output embedding of the
decoder to a shared feed forward network (FFN) that predicts either a detection (class
and bounding box) or a “no object” class.

Transformer decoder. The decoder follows the standard architecture of the
transformer, transforming N embeddings of size d using multi-headed self- and
encoder-decoder attention mechanisms. The difference with the original trans-
former is that our model decodes the N objects in parallel at each decoder layer,
while Vaswani et al. [47] use an autoregressive model that predicts the output
sequence one element at a time. We refer the reader unfamiliar with the concepts
to the supplementary material. Since the decoder is also permutation-invariant,
the N input embeddings must be different to produce different results. These in-
put embeddings are learnt positional encodings that we refer to as object queries,
and similarly to the encoder, we add them to the input of each attention layer.
The N object queries are transformed into an output embedding by the decoder.
They are then independently decoded into box coordinates and class labels by
a feed forward network (described in the next subsection), resulting N final
predictions. Using self- and encoder-decoder attention over these embeddings,
the model globally reasons about all objects together using pair-wise relations
between them, while being able to use the whole image as context.

Prediction feed-forward networks (FFNs). The final prediction is com-
puted by a 3-layer perceptron with ReLU activation function and hidden dimen-
sion d, and a linear projection layer. The FFN predicts the normalized center
coordinates, height and width of the box w.r.t. the input image, and the lin-
ear layer predicts the class label using a softmax function. Since we predict a
fixed-size set of N bounding boxes, where N is usually much larger than the
actual number of objects of interest in an image, an additional special class la-
bel ∅ is used to represent that no object is detected within a slot. This class
plays a similar role to the “background” class in the standard object detection
approaches.

Auxiliary decoding losses. We found helpful to use auxiliary losses [1] in
decoder during training, especially to help the model output the correct number

Figure 2.1: Overview of the DETR pipeline. The input image is passed through a

CNN backbone to produce feature maps, which are then processed by the Transformer

encoder to capture global context. Simultaneously, a set of learnable object queries

is refined by the Transformer decoder, producing bounding box coordinates and class

labels in the prediction heads. [Figure taken from [4]]

Specifically, Sun et al. [62] proposed a detailed analysis of the optimization diffi-

culty in DETR training. Their analysis focuses mainly on three issues: Instability of

Bipartite Matching, Attention Modules, and Cross-attention. They stated that Hun-

garian matching, which is bipartite, could cause instability due to the randomness in

the initialization of the Hungarian matching and noisy conditions in different training

epochs. Their experiments showed that the instability in the bipartite matching com-

ponent of DETR only contributes partially to the slow convergence (especially in the

early training stage) but not necessarily the primary cause. Next, they examine how

much the sparsity dynamics of transformer attention modules in DETR contribute

to convergence. Transformer attention maps are nearly uniform in the initialization

stage but gradually become more and more sparse during the training process toward

the convergence. They stated that cross-attention sparsity consistently increases even

after 100 epochs. This means that the cross-attention part of DETR is a more signif-

icant factor for the slow convergence compared to the early-stage bipartite-matching

instability. Lastly, they studied the effect of cross-attention by removing the cross-

attention module from DETR and designing an encoder-only version. Initially, the

decoder produces the detection results per object query in DETR. In contrast, the

encoder-only version of DETR directly uses the outputs of the transformer encoder
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for object prediction. Their experiments showed that the encoder-only DETR out-

performs the original DETR significantly on small and partially on medium but un-

derperforms on large objects. Overall, the study suggests that all three issues can be

further improved, and many proposed studies have begun to address these challenges.

Some studies have focused on improving the assignment [6, 63, 69, 71] process by

using auxiliary heads [6,63] or transforming one-to-one assignment into one-to-many

assignment [71]. Other studies have concentrated on the transformer architecture

[72], attention modules [5, 63, 65, 73], or enhancements to the learnable queries [64,

67, 70]. Deformable DETR [5], DINO [70], and Co-DETR [6] are some of the most

significant studies among these works.

Zhu et al. [5] introduce a deformable attention module that targets a small set of

sampling locations to help identify key elements from all pixels in the feature map.

This module can be easily expanded to combine features from different scales with-

out needing Feature Pyramid Networks (FPN) [43]. They replace the transformer

attention modules with multi-scale deformable attention modules for processing fea-

ture maps. The approach achieves convergence ten times faster. Additionally, they

propose iterative refinement for bounding boxes and a two-stage Deformable DETR.

This two-stage process generates region proposals using an encoder and sent to a de-

coder for further bounding box refinement, specifically step-by-step box refinement.

DINO [70] presents three techniques built upon various robust methods from differ-

ent DETRs. Following DAB-DETR [67], queries in the decoder are formulated as

dynamic anchor boxes, refining them progressively across decoder layers. Ground

truth labels and bounding boxes with added noise are incorporated into the transfor-

mer decoder layers by DN-DETR [64] to stabilize the bipartite matching. Different

from these models, DINO [70] proposes three key methods: First, contrastive denois-

ing training is employed to mitigate duplicate predictions by introducing both positive

and negative samples for the same ground truth. Noise is added to the ground truth

box, with the box having smaller noise marked as positive and the other as negative.

Second, DINO addresses the limitations of step-by-step box refinement from De-

formable DETR by introducing a look-forward-twice scheme. Look-forward-twice

refines parameters iteratively while including gradients from later decoder layers.
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Lastly, DINO adopts a mixed query selection strategy, initializing positional queries

using anchor boxes derived from the encoder’s output while leaving content queries

as learnable embeddings.

The most recent state-of-the-art model is Co-DETR [6], which employs a novel

training scheme called collaborative hybrid assignments to introduce additional pos-

itive queries. Co-DETR can be easily integrated with Deformable DETR [5] and

DINO [70]. Zong et al. [6] increase the number and variation of positive examples in

the transformer head by utilizing one-to-many assignment strategies in anchor-based

detectors as auxiliary heads. In our thesis, we will be integrating ranking-based losses

into Co-DETR, and a detailed explanation of Co-DETR will be provided in Section

3.5.

2.2 Loss Functions for Object Detection

Loss functions play an important role in object detection due to the need for multi-

task optimization. Described earlier, this task involves two main goals: classification,

which identifies object categories, and localization, which predicts accurate bounding

box coordinates. Each objective presents unique challenges that require specific loss

functions to optimize performance and improve accuracy in both classification and

localization tasks.

2.2.1 Score-based Loss Functions

2.2.1.1 Classification Losses

Cross-Entropy Loss. Cross-entropy loss [74] is a widely used loss function for clas-

sification tasks, including object detection. It measures the dissimilarity between the

predicted probability distribution and the true class labels, penalizing incorrect pre-

dictions. Although Cross-Entropy Loss is a simple and well-known loss function, it

struggles with a class imbalance in object detection, particularly for dense predictions,

often favors common classes.
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Formally, Cross-Entropy Loss for binary classification can be expressed as:

L(pt) = − log(pt), (2.2)

where pt represents the predicted probability for the ground-truth class and p ∈ [0, 1]

is the model’s estimated probability for the class, defined as:

pt =

p if the sample is positive,

1− p if the sample is negative (background).
(2.3)

Binary Cross-entropy can be adapted for multi-class classification, where each sample

can belong to one of C classes by modifying the target vector into a one-hot vector

that represents one positive class and C − 1 negative classes.

Cross-entropy penalizes all misclassifications equally, making it less effective in ad-

dressing problems with significant class imbalance.

Focal Loss. RetinaNet [19] introduced Focal Loss to tackle the problem of class

imbalance in dense predictions, enabling the model to concentrate on hard-to-classify

objects. Since its introduction, Focal Loss has become one of object detection’s most

widely used classification loss functions. It is known for its effectiveness in improving

model performance across imbalanced datasets and its generalizability. Over time,

several variants of Focal Loss have been proposed, such as Adaptive Focal Loss [75],

Generalized Focal Loss [76] and it’s variants [77], to further refine its application and

adapt it to diverse detection tasks. Focal Loss dynamically scales the weight of each

prediction based on how difficult it is, prioritizing hard examples.

Formally, Focal Loss can be defined as:

L(pt) = −αt(1− pt)
γ log(pt), (2.4)

where pt defined as it is in Cross-entropy loss, αt is a balancing factor to address class

imbalance, assigning different weights to positive and negative samples and γ ≥ 0 is

a parameter that reduces the loss for well-classified examples, allowing the model to

focus on harder examples (γ ̸= 0 differs Focal Loss from Cross-Entropy Loss).
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2.2.1.2 Localization Losses

Localization losses measure the difference between the predicted and ground-truth

bounding boxes. One of the most popular losses is the L1 loss and Smooth L1

Loss, which evaluates the absolute differences between the predicted and ground-

truth bounding box coordinates. It is defined as:

LL1 = |xi − x̂i|+ |yi − ŷi|+ |wi − ŵi|+ |hi − ĥi|, (2.5)

where (xi, yi, wi, hi) represents the ground-truth bounding box coordinates and the

quadruple (x̂i, ŷi, ŵi, ĥi) represents the predicted bounding box coordinates. L1 loss

only considers the distance between two bounding boxes, which causes all errors to

be treated equally. This can be suboptimal for object detection tasks where the quality

of the predicted bounding box is critical. To address these limitations and measure

the quality, several losses considering Intersection over Union (IoU) metric have been

introduced. Specifically, for predicted bounding box b̂ and ground-truth bounding box

b, IoU Loss , defines the localization error as:

LIoU = 1− Intersection(b̂, b)

Union(b̂, b)
. (2.6)

Several losses have also been introduced to improve IoU-based losses further. Namely,

GIoU Loss (Generalized IoU Loss) [20], DIoU Loss (Distance IoU Loss) [21], and

CIoU Loss (Complete IoU Loss) [78] extend the basic IoU metric by addressing lim-

itations such as non-overlapping boxes, central point alignment, and aspect ratio con-

sistency.

2.2.2 Ranking-based Loss Functions

Ranking-based losses differ from score-based losses in their optimization focus, par-

ticularly classification in object detection tasks. While score-based losses, such as

Cross-Entropy or Focal Loss, aim to maximize the confidence of correct predictions

and minimize it for incorrect ones independently, ranking-based losses emphasize the

relative ordering of predictions. This means they prioritize ensuring that foreground

objects are ranked higher than background objects. Unlike score-based losses, which

treat predictions individually, ranking-based losses consider the relationships between
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predictions, making them particularly effective for tasks like Non-Maximum Sup-

pression (NMS), where the ranking of detections is crucial for performance. Further-

more, ranking-based loss functions offer significant advantages, such as easing the

hyperparameter tuning process and directly optimizing the Average Precision (AP)

performance metric. Though they have shown outstanding results in various object

detection and instance segmentation tasks, it is important to recognize that they are

computationally expensive than score-based losses.

Mohapatra et al. [79] was one of the first to focus on improving the efficiency of

ranking-based losses specifically for Support Vector Machines (SVMs). They intro-

duced a quicksort-inspired algorithm to optimize ranking losses with reduced compu-

tational complexity for AP and NDCG. However, their solutions have been primarily

limited to training linear SVMs and consequently to problems that can be addressed

using linear functions.

One of the main challenges with ranking-based losses is their non-differentiability due

to the discrete nature of ranking. Several significant works have addressed this issue,

proposing different solutions. Rolinek et al. [80, 81] introduced a framework based

on black box backpropagation, leveraging combinatorial optimization. This method

allows gradient computation through a non-differentiable black box implementation,

enabling robust optimization of ranking losses. Additionally, DR Loss [82] presents a

differentiable approach that utilizes Hinge Loss to maintain a margin between positive

and negative predictions. Introduced by Chen et al., AP Loss [1,2] is a ranking-based

loss function that directly optimizes the AP using an error-driven update algorithm

inspired by perceptron learning and backpropagation algorithms. A detailed explana-

tion of AP Loss can be found in Section 3.1.2. Smooth AP [83] introduces a smooth,

differentiable approximation of AP, with the assumption that |N | is not large.

Although Average Precision (AP) Loss is an important step in ranking-based losses, it

primarily focuses on optimizing the ranking of predictions based on confidence scores

and does not explicitly consider the quality of bounding box localization. To address

this limitation, aLRP Loss [17] extends AP loss by incorporating localization qual-

ity into the optimization process. Specifically, aLRP builds upon the Localization-

Recall-Precision (LRP) performance metric [84], just as AP loss expands the concept
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of precision within a ranking-based loss function for classification. In 2021, Oksuz et

al. [18] further enhanced the concept of ranking by considering not only the distinc-

tions between positive and negative predictions but also among positive predictions

themselves. With this approach, Rank&Sort Loss addresses a gap in both AP and

aLRP Loss. By sorting positive predictions based on their continuous Intersection

over Union (IoU) values, models can receive several advantages in terms of align-

ment with localization. As a result of prioritizing positives during training, detectors

trained with RS Loss do not require an auxiliary head. Detailed explanation of RS

Loss is provided in Section 3.1.5.

Rank&Sort Loss obtains state-of-the-art results in both one-stage and two-stage de-

tectors, offering a great alternative to score-based losses. However, AP, aLRP, and RS

Losses suffer significantly from time complexity due to the requirement for pairwise

ranking. This complexity causes such a disadvantage of ranking-based loss functions

prevent their applicability to larger visual detectors and recently proposed state-of-

the-art transformer based-methods. In this thesis, we focus on improving AP Loss

and RS Loss [1, 2, 18] that can be used for training complex deep networks such as

object detectors.

2.3 Performance Evaluation

2.3.1 Average Precision

We evaluate our experiments with Average Precision (AP), the primary metric used to

evaluate the performance of object detection models. It measures the area under the

precision-recall curve across various confidence thresholds. For a more comprehen-

sive evaluation, AP is reported at different Intersection over Union (IoU) thresholds,

such as AP@50 and AP@75, and the mean AP across a range of IoU values from 0.5

to 0.95.
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2.4 Datasets

We utilize several datasets to evaluate our proposed method and provide various in-

sights. Initially, we conducted experiments using artificially generated toy data. A

detailed description of the synthetic data generation process can be found in Sec-

tion 4.1.1. For the majority of our experiments involving different detectors, we em-

ployed the COCO dataset [24], which is a large-scale dataset extensively used for

object detection, segmentation, and image captioning. Additionally, we demonstrate

the performance of our method on the instance segmentation task using the LVIS

dataset [23], which highlights its effectiveness with long-tailed data. Furthermore,

we include results from the Cityscapes dataset [85]. Detailed descriptions of these

datasets are provided in the following sections.

COCO. The COCO (Common Objects in Context) [24] dataset is a large-scale

dataset used for object detection, segmentation, and captioning tasks. We used the

COCO dataset for object detection experiments. It includes 330,000 images, of which

200,000 are annotated specifically for object detection, segmentation, and captioning.

The dataset features 80 different object categories.

Cityscapes. For our instance segmentation experiments, we utilized the Cityscapes

[85] dataset. Cityscapes is a large-scale database designed for semantic understanding

of urban street scenes. It offers semantic, instance-wise, and dense pixel annotations

for 30 classes that are categorized into eight groups. The dataset contains approxi-

mately 5,000 finely annotated images.

LVIS. LVIS (Large Vocabulary Instance Segmentation) [23] is a dataset designed

for long-tail instance segmentation tasks. It contains annotations for over 1,000 object

categories across 164,000 images and emphasizes rare object classes. We extend our

instance segmentation experiments further with LVIS to emphasize the effect of our

method on the imbalanced dataset.

21



2.5 Comparative Summary

Object detection has advanced significantly, from traditional methods with hand-

crafted components to modern deep learning-based models. CNN-based detectors

[10,11,59,61] introduced end-to-end training and improved detection accuracy. Trans-

former-based models [4] simplified the pipeline with self-attention mechanisms and

global feature extraction. However, these models faced challenges such as slow con-

vergence and optimization difficulties, which were addressed in subsequent works

[5, 63, 64, 67, 70].

In this thesis, we focus on ranking-based losses applied to both CNN and Transformer

architectures. Our work is the first to address the issue of computational complexity

associated with known ranking-based losses. We improved the efficiency of these

losses, allowing for their integration into state-of-the-art transformer-based models,

namely Co-DETR [6].

In Chapter 3, we first examine AP and RS Losses [1, 2, 18] and provide a detailed

analysis explaining how we integrate our proposed method into ranking-based losses.

Then, we extend the bucketed version of these losses to Co-DETR. Meanwhile, Chap-

ter 4 demonstrates the comparative results of our experiments.
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CHAPTER 3

BUCKETING RANKING-BASED LOSS FUNCTIONS

In this chapter, we present our novel approach of grouping negative samples into

buckets to minimize the number of pairwise comparisons, thus addressing the time

inefficiency issues associated with existing ranking-based losses. Our method reduces

the time complexity to O(max(N log(N), P 2)). First, we provide a background de-

scription of Average Precision (AP) Loss and Rank&Sort (RS) Loss. Next, we intro-

duce our method in relation to these losses and discuss the theoretical foundations of

our approach. Finally, we explain how we integrate our method with Co-DETR.

Some material in this chapter is adapted from our ECCV 2024 paper [3].

3.1 Background on Ranking-based Losses

In this section, we first define the problem with a suitable notation and provide the

necessary background for our approach by reviewing Average Precision Loss [1, 2]

and Rank&Sort Loss [18].

3.1.1 Problem Definition and Notation

We have an object detection problem wherein we are interested in finding the class

label ci ∈ C and the bounding box coordinates bi ∈ R4 for each object i in an input

image. Given an image, an object detector generally provides many candidate object

predictions where each prediction i has an associated confidence score over classes

si ∈ R|C| in addition to the box coordinates bi. An object detector is convention-

ally trained to minimize a weighted combination of a classification loss Lcls (e.g.,
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Cross Entropy Loss [74], Focal Loss [19]) and a localization loss Lloc (e.g., Smooth-

L1 Loss, Intersection-over-Union-based Losses [20, 21, 78]). During training in this

conventional approach, each prediction is penalized based only on its closeness to its

target.

Ranking-based approaches can be used for Lcls (e.g., in Average Precision Loss [1,

2]) or both Lcls and Lloc (in Rank&Sort Loss [18]). Unlike the conventional losses,

ranking-based losses aim to rank the scores of positive detections above negative

detections.

Ranking-based losses for object detection rely on pairwise comparisons between the

scores of different detections to determine the rank of a detection among positives and

negatives. Denoting the score of the ith detection by si, we can compare the scores of

two detections i and j with a simple difference transform: xij = sj − si. By counting

the number of instances with xij > 0, we can determine ith detection’s rank among

positives (P) and all detections (positives and negatives: P ∪N ) as follows:

rank+(i) =
∑
j∈P

H̄(xij), and rank(i) =
∑

j∈P∪N

H̄(xij), (3.1)

where H̄(x) is one if x > 0 and zero otherwise. Since dH̄(x)/dx is either infinite (at

x = 0) or zero (for x ̸= 0), a smoothed version is used (δ: a hyper-parameter):

H(x) =


0 , x < −δ
x

2δ
+ 0.5 , −δ ≤ x ≤ δ

1 , δ < x

(3.2)

An illustration of this smoothed Heaviside step function can be found in Figure 3.1.

3.1.2 Revisiting Average Precision (AP) Loss

Given the definitions in Equation 3.1, AP Loss [1, 2] can be defined as:

LAP = 1− AP = 1− 1

|P|
∑
i∈P

precision(i) = 1− 1

|P|
∑
i∈P

rank+(i)

rank(i)
. (3.3)
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Figure 3.1: Plot of smoothed Heaviside step function with different delta values.

Chen et al. [1, 2] simplified Equation 3.3 by rewriting it in terms of pairwise compar-

isons between positive and negative detections:

LAP =
1

|P|
∑
i∈P

∑
j∈N

H(xij)

rank(i)
=

1

|P|
∑
i∈P

∑
j∈N

LAP
ij , (3.4)

where LAP
ij = H(xij)/rank(i) is called the primary term. Note that LAP

ij is non-

differentiable since the step function (H(·)) applied on xij is non-differentiable, which

will be discussed next.

3.1.3 Revisiting Identity Update

Oksuz et al. [18] showed that various ranking-based losses (including AP Loss in

Equations 3.3 & 3.4) can be written in a general form as:

L =
1

Z

∑
i∈P∪N

(ℓ(i)− ℓ∗(i)), (3.5)
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where ℓ(i) is the ranking-based error (e.g., precision error) computed on the ith de-

tection, ℓ∗(i) is the target ranking-based error (the lowest error possible) and Z is the

normalization constant.

The loss in Equation 3.5 can be computed and optimized as follows [18]:

1. Computation of the Loss. First, each pair of logits (si and sj) are compared by

calculating their difference transforms as xij = sj − si. With the step function H(·)
(Equation 3.2), the number of detections higher than si (and therefore its precision

error, ℓ(i)) can be easily calculated (see Section 3.1.2). Given xij , the loss can be

re-written and calculated in terms of primary terms Lij as:

L =
1

Z

∑
i∈P∪N

∑
j∈P∪N

Lij, (3.6)

by taking:

Lij = (ℓ(i)− ℓ∗(i)) p(j|i), (3.7)

where p(j|i) is a probability mass function (pmf) that distributes the error computed

on the ith example over the jth example in order to determine the pairwise primary

term Lij . p(j|i) is commonly taken as a uniform distribution [17, 18].

2. Optimization of the Loss. The gradient of the primary term wrt. the difference

transform (∂Lij/∂xij) is non-differentiable. Denoting this term by ∆xij , we have

[1, 2]:

∂L
∂si

=
∑
j,k

∂L
∂Ljk

∂Lij

∂xij

∂xjk

∂si
=
∑
j,k

∂L
∂Ljk

∆xjk
∂xjk

∂si
=

1

Z

(∑
j

∆xji −
∑
j

∆xij

)
.

(3.8)

Therefore, optimizing a ranking-based loss function reduces to determining ∆xij . In-

spired by Chen et al. [1, 2], Oksuz et al. [18] employ Perceptron Learning [86] and

show that ∆xij in Equation 3.8 is simply the primary term itself: ∆xij = −(L∗
ij −

Lij) = −(0− Lij) = Lij , hence the name Identity Update. Plugging this into Equa-

tion 3.8 yields (see Oksuz et al. [18] for the steps of the derivation):

∂L
∂si

=
1

Z

(∑
j

Lji −
∑
j

Lij

)
. (3.9)

Therefore, both computing and optimizing the loss reduces determining the primary

term Lij .
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3.1.4 Revisiting AP Loss with Identity Update

For defining AP Loss with identity update, the errors in Equation 3.5 can be derived

as ℓR(i) = NFP(i)
rank(i)

, ℓ∗R(i) = 0 and Z = |P|. Furthermore, defining pR(j|i) as a

uniform pmf, that is pR(j|i) =
H(xij)

NFP(i)
, we can obtain the primary terms of AP Loss

using Identity Update, completing the derivation for computation and optimization

(Equation 3.9):

LAP
ij =

(ℓR(i)− ℓ∗R(i)) pR(j|i), for i ∈ P , j ∈ N ,

0, otherwise,
(3.10)

Replacing Lij in Equation 3.9, the gradient of AP Loss [1, 2] is defined as follows:

∂LAP

∂si
=


1
|P|
∑

j∈P ℓR(j)pR(i|j), for i ∈ N

− 1
|P|ℓR(i), for i ∈ P ,

3.1.5 Revisiting RS Loss with Identity Update

In addition to AP Loss [1,2], RS Loss [18] includes an additional sorting objective to

promote better-localized positives to be ranked higher than other positives. RS Loss

is the average difference between the current (ℓRS(i)) and the target (ℓ∗RS(i)) RS errors

over positives where labels for positives are defined as their IoU values, IoUi:

LRS :=
1

|P|
∑
i∈P

(ℓRS(i)− ℓ∗RS(i)) , (3.11)

where ℓRS(i) is a summation of the current ranking error and current sorting error and

(ℓ∗RS(i)) is a summation of the target ranking error and target sorting error:

ℓRS(i) :=
NFP(i)

rank(i)︸ ︷︷ ︸
ℓR(i): Current Ranking Error

+

∑
j∈P

H(xij)(1− IoUj)

rank+(i)︸ ︷︷ ︸
ℓS(i): Current Sorting Error

. (3.12)

When i belongs to the positive set P , the current ranking error is calculated as the

precision error. The current sorting error, on the other hand, assigns a penalty to the

positives with logits greater than si. This penalty is proportional to the average of
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Algorithm 1 AP Loss and RS Loss algorithms. Grey shows the additional operations

of RS Loss compared to AP Loss.

Require: {si}, predicted logits and {ti}, corresponding labels

Ensure: {gi}, Gradient of loss wrt. input

1: ∀i, gi ← 0, P ← {i | ti = 1}, N ← {i | ti = 0}
2: smin ← mini∈P{si}, N̂ ← {i ∈ N | si > smin − δ}
3: for i ∈ P do

4: ∀j ∈ P ∪ N̂ , xij = sj − si

5: Ranking error ℓR(i) = H(xij)/NFP(i) and ℓ∗R(i) = 0

6: ∀j ∈ N̂ , Lij = ℓR(i) · pR(j|i) ▷ Equation 3.10

7: ∀j ∈ P , Current sorting error ℓS(j) ▷ Equation 3.12

8: ∀j ∈ P , Target sorting error ℓ∗S(j) ▷ Equation 3.13

9: ∀j ∈ P , Lij = (ℓS(i)− ℓ∗S(i)) · pS(j|i) ▷ Equation 3.14

10: Obtain gradient gi for ith positive ▷ Equation 3.9

11: Obtain gradients gj for ∀j ∈ N̂ ▷ Equation 3.9

12: end for
13: ∀i, gi ← gi/|P| ▷ Normalization

their inverted labels, 1− IoUj:

ℓ∗RS(i) =���*0
ℓ∗R(i) +

∑
j∈P

H(xij)[IoUj ≥ IoUi](1− IoUj)∑
j∈P

H(xij)[IoUj ≥ IoUi]︸ ︷︷ ︸
ℓ∗S(i):Target Sorting Error

, (3.13)

where [·] denotes the Iverson Bracket. The target ranking of i, which is based on its

desired position in the ranking, is compared to this measure. The target sorting error

is calculated by averaging over the inverted IoU values of j ∈ P with larger logits

and labels than i ∈ P , corresponding to the desired sorted order.

Please note that the current ranking error and the target ranking error are the same

when using the AP Loss definition.

Based on these definitions, we presented the following primary terms of RS Loss:
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Lij =


(ℓR(i)− ℓ∗R(i)) pR(j|i), for i ∈ P , j ∈ N

(ℓS(i)− ℓ∗S(i)) pS(j|i), for i ∈ P , j ∈ P ,

0, otherwise,

(3.14)

where ranking and sorting errors on i are uniformly distributed with ranking pmf

pR(j|i) and sorting pmf pS(j|i):

pR(j|i) =
H(xij)∑

k∈N
H(xik)

, (3.15)

pS(j|i) =
H(xij)[IoUj < IoUi]∑

k∈P
H(xik)[IoUk < IoUi]

. (3.16)

Similar to what we did for AP Loss, replacing Lij in Equation 3.9, we obtain the

gradient of RS Loss [18] for i ∈ P as follows:

∂LRS

∂si
=

1

|P|
(

ℓ∗RS(i)− ℓRS(i)︸ ︷︷ ︸
Update signal to promote i

+
∑
j∈P

(ℓS(j)− ℓ∗S(j)) pS(i|j)︸ ︷︷ ︸
Update signal to demote i

)
. (3.17)

Doing the same for i ∈ N yields:

∂LRS

∂si
=

1

|P|
∑
j∈P

ℓR(j)pR(i|j), (3.18)

which completes the derivation of the gradients for RS Loss.

3.1.6 Complexity of Ranking-based Loss Functions

These loss functions originally have the space complexity ofO((|P|+ |N |)2) [1,2] as

they need to compare each pair. This quadratic space complexity makes it infeasible

compute these loss functions using modern GPUs as the number of logits in object

detection is very large. To alleviate that, Chen et al. [1, 2] introduced two tricks

at the expense of making the computation inefficient: (1) Loop on Positives: By

implementing a loop over the positive examples, Chen et al. managed to reduce

the time complexity to O(|P|(|P| + |N |)) ≈ O(|P||N |) since N ≫ P and the

space complexity toO(|P|+ |N |). (2) Discard Trivial Negatives: AP Loss considers
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negative examples that meet the condition sj − si ≤ −δ for all i ∈ P and j ∈
N , categorizing these instances as trivial negative samples. This may not lead to a

significant improvement in speed during the initial stages of training, as almost all

negative samples are non-trivial at that point. However, as the detector’s performance

improves,authors argued that the algorithm will gradually become faster.

3.2 Limitations of Existing Ranking-based Losses

Training object detectors with existing ranking losses require computing an error be-

tween each pair of examples (Figure 1.3), referred to as primary terms (as reviewed in

Section 3.1.2). Ideally, these primary terms should be obtained in parallel, however,

due to the large number of examples in object detection, it requires a huge amount

of GPU memory to the extent that all primary terms do not fit into the memory of

modern GPUs. For that reason, Chen et al. [1, 2] suggested the two aforementioned

tricks for making AP Loss computation feasible. As one of the main tricks, instead

of obtaining the errors between each pair, they employ a loop over the positive exam-

ples as indicated in the red box of 1. This loop decreases the space complexity of the

algorithm, however, it makes the computation significantly inefficient, which results

in up to 6× slower training as in the case of Co-DETR [6].

• The number of negatives |N | is a prohibitive factor in these losses. For exam-

ple, in Faster R-CNN [10], in the first epoch, |P| ∼ 5.102 whereas |N | ∼ 106.

• As |N | is large, the positive-negative pair-wise comparisons (to obtain Lij)

and subsequent derivations cannot be stored as matrices in memory. Therefore,

ranking-based loss implementations use iterations, making them significantly

slower compared to score-based losses.

3.3 Bucketed Ranking-based Loss Functions

Our main intuition is to bucket the sequential negative examples considering that

they will have very similar or equal gradients. Figure 1.3(a) demonstrates this phe-

nomenon in which n1, n2 both are assigned equal gradients as well as each nega-
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tive among n3, n4, n5, n6 in the standard AP Loss. Formally, we sort all given logits

si ∈ P ∪ N using a conventional sorting methods. Let us denote this sorted per-

mutation of the logits by ŝ1, ŝ2, ...., ŝ|P∪N|, i.e., ŝ1 > ŝ2 > .... > ŝ|S|. Given these

sorted logits and denoting the ith positive logit in the ordering by ŝ+i , the buckets of

negatives B1, ..., B|P+1| can be obtained by:

B1 > ŝ+1 > B2 > ŝ+2 > ... > ŝ+|P| > B|P+1|. (3.19)

We will denote the size of the ith negative bucket by bi. Having created the buckets,

we now determine a single logit value for each bucket, which we call as the prototype

logit as it is necessary while assigning the ranking error. We denote the prototype logit

for the ith bucket by sbi . Note that if δ = 0 in Equation 3.2, then any logit satisfying

ŝ+i−1 > sbi > ŝ+i can be a prototype logit as the ranking stays the same. However,

in the case of δ > 0, the boundaries between the logits are smoothed. That’s why,

practically, we find it effective to use the mean logit of a bucket as its prototype logit.

Note that this bucketing approach reduces the number of logits (positive and prototype

negative) to a maximum of 2|P| + 1. As a result, the pairwise errors can now fit

into the memory. Consequently, the loop in the red box of Algorithm 1 is no longer

necessary, which gives rise to efficient ranking-based loss functions which we discuss

in the following.

3.3.1 Bucketed Ranking-based Loss Functions

Here, we introduce Bucketed versions of AP and RS Losses. Please refer to Algo-

rithm 2 for the algorithm.

3.3.1.1 Bucketed AP Loss

Definition. To define Bucketed version of AP Loss, we need to define current (ℓbR(i))

and target ranking errors (ℓb,∗R (i)) for the ith positive. Similar to previous works [1, 2,

18], we use a target ranking error of 0, i.e., ℓb,∗R (i) = 0. Defining the current ranking

error, similar to Equation 3.3, requires rank(i) and NFP(i). These two quantities can

easily be defined using the bucket size bi and the prototype logit. Different from the
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Algorithm 2 Bucketed RS and AP Losses. Grey shows the additional operations of

BRS Loss compared to BAP Loss.

Require: All scores {si} and corresponding labels {ti}
Ensure: Gradient of input {gi}, ranking loss ℓR, sorting loss ℓS

1: Sort logits to obtain ŝ1, ŝ2, ...., ŝ|S|.

2: Bucket consecutive negative logits to obtain B1, ..., B|P+1|.

3: ∀i ∈ P , ∀jb ∈ Ñ , Calculate xb
ij

4: ∀i ∈ P , Calculate bucketed ranking error ℓbR ▷ Equation 3.20

5: ∀i ∈ P , ∀jb ∈ Ñ , Calculate Lb
ij ▷ Equation 3.21

6: Calculate current sorting error ℓbS ▷ Equation 3.12

7: Calculate target sorting error ℓ∗bS ▷ Equation 3.13

8: ∀i ∈ P , ∀j ∈ P , Lij = (ℓbS(i)− ℓ∗bS (i)) · pS(j|i) ▷ Equation 3.14

9: ∀i ∈ P , obtain gradients gi ▷ Equation 3.9

10: ∀j ∈ Ñ , find gradients for each prototype negative gbj ▷ Equation 3.9

11: ∀j ∈ Ñ , normalize gbj by bucket size bj to obtain gi, ∀i ∈ N
12: ∀i, gi ← gi/|P| ▷ Normalization

conventional AP Loss, we obtain the pairwise relation H(xb
ij) using the prototype

logit sbi . Particularly, with the ordering in Equation 3.19, rank(i) =
∑i

j=1 H(xij) +

H(xb
ij)bj and NFP(i) =

∑i
j=1 H(xb

ij)bj where xb
ij = sbj − si. Then, the resulting

ranking error computed on ith positive is:

ℓbR(i) =
NFP(i)

rank(i)
=

∑i
j=1 H(xb

ij)bj∑i
j=1 H(xij) +H(xb

ij)bj
, i ∈ P . (3.20)

Optimization. Here, we need to define the primary terms, as the product between

the error and the pmf following Identity Update [18]. Unlike the previous work, the

weights of each prototype negative are not equal as a bucket includes varying number

of negatives. Therefore, we use a weighted pmf while distributing the ranking error

over negatives. Formally, if j is the jth prototype negative, then we define the pmf

as p(jb|i) = bj/NFP(i). The resulting primary term between the ith positive and jbth

negative is then:

Lb
ij =

∑i
j=1 H(xb

ij)bj∑i
j=1H(xij) +H(xb

ij)bj
× bj

NFP(i)
, i ∈ P , j ∈ Ñ (3.21)
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where Ñ is the set of prototype negatives. However, we need the primary terms for

the ith negative, not for the prototype ones. Given Lb
ij , the gradients of the proto-

type negatives and actual negatives can easily be obtained following Identity Update.

However, we still need to find the gradients of the actual negatives. To do so, we sim-

ply normalise the prototype gradient by its bucket size bj and distribute the gradients

to actual negatives, completing our method.

The Gradients of Bucketed AP Loss. While obtaining the gradients of Bucketed

AP (BAP) Loss, we follow the Identity Update framework, which basically requires

the definition of the primary terms. The primary terms in Equation 3.21 can be more

compactly stated as:

Lb
ij =


(
ℓbR(i)p(j

b|i)
)
, i ∈ P , j ∈ Ñ ,

0, otherwise,
(3.22)

in which

ℓb(i) =

∑i
j=1H(x

b
ij)bj∑i

j=1H(xij) + H(xb
ij)bj

, (3.23)

and p(jb|i) = bj
NFP(i)

.

Following Identity Update, the gradients for the ith logit is defined as:

∂L
∂si

=
1

Z

(∑
j

Lji −
∑
j

Lij

)
. (3.24)

Therefore, we need to replace Lij by the primary term of the BAP Loss and set Z =

|P| to find the gradients. First, we do this for the positive logit si in the following.

Replacing Lij by Lb
ij and for i ∈ P we obtain:

∂LBAP

∂si
=

1

|P|

(∑
j

Lb
ji −

∑
j

Lb
ij

)
(3.25)

=
1

|P|

∑
j∈P

Lb
ji +

∑
j∈Ñ

Lb
ji −

∑
j∈P

Lb
ij +

∑
j∈Ñ

Lb
ij

 (3.26)

Since there is no error defined among positives in AP and BAP loss,
∑

j∈P Lb
ji and∑

j∈P Lb
ij = 0. Lb

ji is also equal to zero from our primary term definition ( Equation
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3.22). Hence, Equation 3.26 becomes:

1

|P|


�
�
�
��
0∑

j∈P

Lb
ji +

�
�
�
��
0∑

j∈Ñ

Lb
ji −


�

�
�
��
0∑

j∈P

Lb
ij +

∑
j∈Ñ

Lb
ij

 (3.27)

= − 1

|P|
∑
j∈Ñ

Lb
ij = −

1

|P|
∑
j∈Ñ

ℓbR(i)p(j
b|i) (3.28)

= − 1

|P|ℓ
b
R(i)

∑
j∈Ñ

p(jb|i). (3.29)

Considering that
∑

j∈Ñ p(jb|i) = 1 as p(jb|i) is a probability mass function,

∂LBAP

∂si
= − 1

|P|ℓ
b
R(i), if i ∈ P (3.30)

Now we follow Identity Update considering that si is a prototype-negative logit, in

which case we have:

∂LBAP

∂si
=

1

|P|

∑
j∈P

Lb
ji +

�
�

�
��
0∑

j∈Ñ

Lb
ji −


�

�
�
��
0∑

j∈P

Lb
ij +

�
�
�
��
0∑

j∈Ñ

Lb
ij

 . (3.31)

The three terms in the equation cancel to 0, considering that the primary term Lij can

be positive only in the case when i is a positive and j is a negative (more precisely,

prototype negative in this case). Then, the following expression yields the gradients

for the prototype negative:

∂LBAP

∂si
=

1

|P|
∑
j∈P

Lb
ji =

1

|P|
∑
j∈P

ℓbR(j)p(i
b|j). (3.32)

However, we need to obtain the gradient for kth negative. To this end, we simply dis-

tribute the gradient considering the size of the bucket containing the kth negative, that

is the ith bucket. Representing the bucket size by bi, and with a uniform distribution

from the ith prototype negative over the kth negative in the ith bucket, the gradient

for the kth negative is then:

∂LBAP

∂sk
=

1

|P|
∑
j∈P

ℓbR(j)p(i
b|j) 1

bi
, (3.33)

concluding the derivation of the gradients for Bucketed AP Loss.

3.3.1.2 Bucketed RS Loss

Given that we obtained Bucketed AP Loss, converting RS Loss into a bucketed form

is more straightforward. This is because (i) the primary term and its gradients of
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RS Loss are equal to those of AP Loss if i ∈ P , j ∈ N and we simply use Lb
ij

in such cases; and (ii) if i ∈ P , j ∈ P , then an additional term is included in RS

Loss to estimate the pairwise relations between positives (Equation 3.14), which is

not affected by bucketing.

3.3.2 The Gradients of Bucketed RS Loss

In this section, we describe how we apply our bucketing approach to RS Loss, first

for the negative logits and then for the positive logits, similar to what we did for AP

Loss in the previous section. Comparing Equation 3.18 and Equation 3.1.4, one can

easily note that the gradient of the RS Loss is equal to the gradient of AP Loss if sk

is a negative logit. In this case, one can refer to our derivation for Bucketed AP Loss,

as they are identical. Consequently, for i ∈ N , using the same notation from the

previous section, the gradient of the Bucketed RS Loss is:

∂LBRS

∂sk
=

1

|P|
∑
j∈P

ℓbR(j)p(i
b|j) 1

bi
. (3.34)

For i ∈ P , the gradient of RS Loss is expressed in Equation 3.17

1

|P|
(
ℓ∗RS(i)− ℓRS(i) +

∑
j∈P

(ℓS(j)− ℓ∗S(j)) pS(i|j)
)
, (3.35)

which can be decomposed as:

=
1

|P|
(
ℓ∗R(i)− ℓR(i) + ℓ∗S(i)− ℓS(i) +

∑
j∈P

(ℓS(j)− ℓ∗S(j)) pS(i|j)
)
, (3.36)

=
1

|P|
(
− ℓR(i) + ℓ∗S(i)− ℓS(i) +

∑
j∈P

(ℓS(j)− ℓ∗S(j)) pS(i|j)
)
. (3.37)

Please note that calculating the sorting errors above (ℓS(j), ℓ∗S(j)) requires only posi-

tives, which can be efficiently computed. Then, the only term requiring the relations

between the positives and the negatives is ℓR(i). We simply replace this term by the

bucketed ranking error ℓbR(i) in Equation 3.23. Consequently, the resulting gradient

for the ith positive is:

1

|P|
(
− ℓbR(i) + ℓ∗S(i)− ℓS(i) +

∑
j∈P

(ℓS(j)− ℓ∗S(j)) pS(i|j)
)
. (3.38)

This concludes the derivation of the gradients for Bucketed RS Loss. Please see

Figure 3.2 for an example in which we illustrate obtaining the gradient of BRS Loss.
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Target Sorting Error, 𝓁𝑠
∗(𝑖) (Eq. S4)

Current Sorting Error, 𝓁𝑠(𝑖) (Eq. S3)

Target Ranking Error, 𝓁𝑟
𝑏∗(𝑖)

Ranking Loss, 𝓁𝑏𝑟(𝑖) − 𝓁𝑟
𝑏∗(𝑖)

Sorting Loss, 𝓁𝑠(𝑖) − 𝓁𝑠
∗(𝑖)
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Distribute error via sorting pmf (Eq. S8)
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Gradients for 𝑠𝑖
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Gradients for 𝑠𝑖
𝑏 and Ƹ𝑠𝑗

Gradients for 𝑠𝑖

Sort logits wrt. 𝒔𝒊

Figure 3.2: An example illustrating the computation of gradients in BRS Loss. The

colors green, red, and orange represent positive, negative, and prototype negative

logits, respectively. [Figure from our ECCV 2024 paper [3]]

3.4 Theoretical Discussion

The first theorem ensures that the gradients provided by our loss functions are iden-

tical with their conventional counterparts under certain circumstances. The second

states that our algorithm is theoretically faster than the conventional AP and RS

Losses.

Theorem. Bucketed AP Loss and Bucketed RS Loss provide exactly the same gradi-

ents with AP and RS Losses respectively when δ = 0.

Proof. We divide the theorem into two parts, in which we first show that the gradients

of Bucketed AP Loss reduce to those of AP Loss once δ = 0. And this will be

followed by RS Loss.

Case 1. On the equality of the gradients for AP Loss and Bucketed AP Loss. Similar
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to how we obtained the gradients of AP Loss, we investigate this for positive and

negative logits respectively:

Case 1a. si is a positive logit. In this case, the gradient of Bucketed AP Loss is de-

fined in Equation 3.30 as follows:

∂LBAP

∂si
= − 1

|P|ℓ
b
R(i), if i ∈ P , (3.39)

where, by denoting the pair-wise relations between the ith positive and the jth proto-

type negative by H(xb
ij) and the size of the jth bucket bj , the bucketed ranking error

is:

ℓbR(i) =

∑i
j=1H(x

b
ij)bj∑i

j=1H(xij) + H(xb
ij)bj

, (3.40)

=

∑i
j=1H(x

b
ij)bj∑i

j=1H(xij) +
∑i

j=1H(x
b
ij)bj

. (3.41)

Considering that H(xb
ij) = 0 for j > i, we can express the bucketed ranking error as

follows:

ℓbR(i) =

∑
j∈Ñ H(xb

ij)bj∑
j∈P H(xij) +

∑
j∈Ñ H(xb

ij)bj
. (3.42)

Please note that in the case that δ = 0, the step function H(·) corresponds to Equation

3.2 in the following form:

H(x) =

0 , x < 0

1 , 0 < x,
(3.43)

where we assume that no logits are exactly equal (i.e., x ̸= 0) for the sake of simplic-

ity. As a result, the term
∑

j∈Ñ H(xb
ij)bj both in the numerator and the denominator

of Equation 3.42 can be expressed as:∑
j∈Ñ

H(xb
ij)bj =

∑
j∈N

H(xij). (3.44)

This is because, for any prototype logit sbj , sj−1 > sbj > sj holds and the cardinality

of the jth bucket is bj . In other words, counting the number of negatives one-by-

one as in the right-hand side of the equation versus counting each bucket size of

negatives and summing over the bucket sizes (in the left-hand side expression) are

equal. Furthermore, these expressions both yield the number of false positives on
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the ith positive examples, i.e., NFP(i). Consequently, replacing this term in Equation

3.42 shows that the bucketed ranking error is equal to the ranking error when δ = 0:

ℓbR(i) =

∑
j∈Ñ H(xb

ij)bj∑
j∈P H(xij) +

∑
j∈Ñ H(xb

ij)bj
, (3.45)

=

∑
j∈N H(xij)∑

j∈P H(xij) +
∑

j∈N H(xij)
, (3.46)

= ℓR(i). (3.47)

As a result:

∂LBAP

∂si
= − 1

|P|ℓ
b
R(i) = −

1

|P|ℓR(i) =
∂LAP

∂si
, if i ∈ P , (3.48)

Case 1b. si is a negative logit. For this case, the gradient expression of the Bucketed

AP Loss is presented in Equation 3.33 as follows:

∂LBAP

∂si
=

1

|P|
∑
j∈P

ℓbR(j)p(k
b|j) 1

bk
, (3.49)

where k represents the bucket containing the ith negative. In case 1a, we have already

shown that ℓbR(j) = ℓR(j) when δ = 0. Hence, now we focus on the p(ib|j) 1
bi

, which

reduces to:

p(kb|j) 1
bk

=
bk

NFP(j)

1

bi
=

1

NFP(j)
. (3.50)

Please note that, for a negative logit si with a higher value than sj , which is the case

for the probability mass function of AP Loss, 1 = H(xij) holds. As a result:

1

NFP(j)
=

H(xij)

NFP(j)
= p(i|j). (3.51)

Finally, replacing these terms in Equation 3.49, we have

∂LBAP

∂si
=

1

|P|
∑
j∈P

ℓbR(j)p(k
b|j) 1

bk
(3.52)

=
1

|P|
∑
j∈P

ℓR(j)p(i|j) =
∂LAP

∂si
, (3.53)

completing the proof for Bucketed AP Loss.

Case 2. On the equality of the gradients for RS Loss and Bucketed RS Loss. Similar

to how we obtained the gradients of AP Loss, we investigate this for the positive and

negative logits respectively:
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Case 2a. si is a positive logit. Please note that the gradient of RS Loss in this case is

defined in Equation 3.38. As we have already shown in Case 1a that ℓbR(j) = ℓR(j)

when δ = 0 and we do not modify the remaining terms, this case holds.

Case 2b. si is a negative logit. Similarly, when the logit is negative, the gradient of RS

Loss is equal to the gradient of AP Loss as we discussed in Section 3.3.2. Following

from Case 1b, this case also holds, completing proof of the theorem.

Theorem. Bucketed RS and Bucketed AP Losses haveO(max((|P|+ |N |) log(|P|+
|N |), |P|2)) time complexity.

Proof. We first summarize the time complexity for each line of 2 and then provide

the derivation details.

Line in Algorithm 2 Time Complexity

Line 1 O((|P|+ |N |) log(|P|+ |N |))
Line 2 O(|P|+ |N |)
Line 3 O(|P|2)
Line 4 O(|P|2)
Line 5 O(|P|2)
Line 6 O(|P|2)
Line 7 O(|P|2)
Line 8 O(|P|2)
Line 9 O(|P|2)

Line 10 O(|P|2)
Line 11 O(|P|+ |N |)
Line 12 O(|P|+ |N |)
Overall O(max((|P|+ |N |) log(|P|+ |N |), |P|2))

Now we provide the derivation details for each line:

Line 1: Sorting logits. For sorting the logits, we use torch.sort, which inter-

nally employs the Quicksort implementation of NumPy (np.sort). Therefore, the

time complexity of Line 1 is O (|S| log |S|), where |S| = |P ∪ N | = |P| + |N | is
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the length of the array to be sorted. Since |P| is negligible (|P| ≪ |N |), the time

complexity at 1 can be approximated as O (|N | log |N |).

Line 2: Bucketing. Bucketing the sorted array of ŝ1, ŝ2, ...., ŝ|S| can be computed

in one pass. Therefore, its time complexity is O(|S|) ≈ O(|N |) since the length of

the pass is S| = |P ∪ N | = |P|+ |N | and |P| ≪ |N |.

Line 3: Difference Terms. For one i ∈ P and ∀jb ∈ Ñ , the time complexity of the

term xb
ij = sbj − si is constant, i.e. O(1). Therefore, the worst-case time complexity

of Line 3 is O(|P| · |Ñ |) ≈ O(|P|2)) since |Ñ | ≤ |P|+ 1.

Line 4: Current Bucketed Ranking Error. The worst-case scenario for the cur-

rent ranking error ℓbR is when i = |S̃| = 2|P| + 1 since the worst-case scenarios

for both NFP(i) =
∑i

j=1H(x
b
ij)bj and rank(i) =

∑i
j=1H(xij) + H(xb

ij)bj are when

i = |S̃| = 2|P| + 1. That is, the time complexity of NFP(|S̃|) and rank(|S̃|) is

O(|S̃|) = O(|P|), so is the time complexity of the current ranking error. Therefore,

computing the current ranking loss for |P| positive logits has a time complexity of

O(|P|2).

Line 5: Bucketed Primary Terms. The target ranking error ℓ∗bR = 0, making its

complexity constant, i.e. O(1). Therefore, the computation of the primary terms Lb
ij

= (ℓR(i)− ℓ∗R(i)) pR(j|i) for every i ∈ P and every j ∈ Ñ has a worst-case time

complexity of O(|P| · |Ñ |). Since |Ñ | ≤ |P| + 1, the complexity of Line 5 can be

approximated as O(|P|2).

Line 6 and Line 7: Bucketed Sorting Error. The time complexity of the cur-

rent sorting error ℓbS at the worst case is the maximum of time complexities of the

numerator and denominator terms in Equation 3.12. The numerator is the summation

of terms with constant time complexities. The denominator, rank+(i), has a time

complexity of O(|P|) in the worst case, similar to rank(i). Therefore, the worst-case

time complexity of the current sorting error is O(|P|). Similar to the current sorting

error, both the numerator and the denominator of Equation 3.13 are summations of

the terms with constant time complexities. Therefore, the worst-case time complexity

of the target sorting error isO(|P|) as well. Lastly, computing the current sorting loss

ℓbS and the target sorting loss ℓ∗bS for every positive logits corresponds to O(|P|2).
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Line 8: Primary Terms. Similar to Line 5, the computation of the primary terms

Lij =
(
ℓbS(i)− ℓ∗bS (i)

)
pS(j|i) for every i, j ∈ P has a worst-case time complexity of

O(|P| · |P|) = O(|P|2).

Line 9: Final Gradients for Positive Logits. Calculating the final gradients ∂L
∂si

=

1
Z

∑
j∈S̃

(
Lji − Lij

)
in Equation 3.24 has a time complexity of O(|S̃|) = O(|P|) since

the primary terms are already calculated in Line 8 and |S̃| ≤ 2|P| + 1. Therefore,

computing the final gradients for every positive logits is O(|P|2).

Line 10: Final Gradients for Negative Prototypes. Similar to Line 9, the time

complexity of computing final gradients ∂L
∂si

for every negative prototype logits is

O(|Ñ | · |P|) = O(|P|2) since |Ñ | ≤ |P|+ 1.

Line 11: Final Gradients for Negative Logits. Distributing the final gradients

computed for every negative prototype logits, i.e. Ñ , to negative logits, i.e. N , has a

time complexity of O(|N |), since it can be done in one pass over the sorted array ŝ1,

ŝ2, ...., ŝ|S| and related gradients for negative prototype logits are computed already

in Line 11.

Line 12: Normalization. Applying normalization operation, with time complexity

O(1), for each gradient corresponding to the logits in the sorted array ŝ1, ŝ2, ...., ŝ|S|

has a time complexity of O(|S|) = O(|N |) since |S| = |P ∪ N | = |P| + |N | and

|P| ≪ |N |.

Overall time complexity of Algorithm 2. The time complexity of the whole al-

gorithm is the sum of the time complexity at each line, which equals to the time

complexity of the line with the maximum time complexity. That is, O(max((|P| +
|N |) log(|P|+ |N |), |N |, |P|2)) = O(max((|P|+ |N |) log(|P|+ |N |), |P|2)).

3.5 Bucketed Rank-Sort (BRS) DETR

While transformer-based detectors [4–6, 63, 64, 66, 67, 70] have been providing the

best performance in several object detection benchmarks, optimizing such detectors

using ranking-based losses based on performance measures has not been investigated.

Here, we address this gap by incorporating our BRS Loss into Co-DETR [6] as the
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current SOTA detector on the common COCO benchmark [24].

Co-DETR [6] introduces a collaborative hybrid assignment training scheme. Zong

et al. [6] focus on the intuitive drawback of one-to-one set matching in DETR-based

models: it explores less positive queries. This will lead to severe inefficient training

issues. They analyze this from two aspects, the latent representation generated by the

encoder and the attention learning in the decoder. The key insight of Co-DETR is to

use one-to-many label assignments to improve the training efficiency and effective-

ness of both the encoder and decoder. By using auxiliary heads, Co-DETR increases

the number and variation of the positive examples in the transformer head by leverag-

ing one-to-many assignment strategies in anchor-based detectors (such as ATSS [7]

and Faster R-CNN [10]) as auxiliary heads. As the number of proposals is large in

such detectors, they can easily provide more and diverse examples, resulting in better

performance of the transformer head. Through extensive experiments, the number

of auxiliary heads is set to 2, specifically using ATSS [7] and Faster R-CNN [10] as

the auxiliary heads. To enhance clarity, one can refer to Figure 3.3. Please note that

auxiliary heads are only used during the training phase.

⋯⋯

Input Image

Backbone

Transformer Decoder Transformer DecoderTransform
er Encoder

𝐐𝟏

Transformer Decoder

One-to-One Set Matching "𝓐

𝐐𝒌

One-to-Many Label Assignments 𝓐𝟏 𝓐𝒌⋯⋯

⋯⋯Auxiliary Head 1Multi-scale Adapter Auxiliary Head K

𝐁𝟏
{𝒑𝒐𝒔} 𝐁𝒌

{𝒑𝒐𝒔}

𝓐𝟏 𝓐𝒌

Training-only

Training-only

Figure 4. Framework of our Collaborative Hybrid Assignment Training. The auxiliary branches are discarded during evaluation.

signs spatial locations near the center of each bounding box
as positives. Moreover, the adaptive mechanism is incorpo-
rated into one-to-many label assignments to overcome the
limitation of fixed label assignments. ATSS [41] performs
adaptive anchor selection by the statistical dynamic IoU val-
ues of top-k closest anchors. PAA [17] adaptively separates
anchors into positive and negative samples in a probabilis-
tic manner. In this paper, we propose a collaborative hybrid
assignment scheme to improve encoder representations via
auxiliary heads with one-to-many label assignments.
One-to-one set matching. The pioneering transformer-
based detector, DETR [1], incorporates the one-to-one set
matching scheme into object detection and performs fully
end-to-end object detection. The one-to-one set matching
strategy first calculates the global matching cost via Hun-
garian matching and assigns only one positive sample with
the minimum matching cost for each ground-truth box. DN-
DETR [18] demonstrates the slow convergence results from
the instability of one-to-one set matching, thus introducing
denoising training to eliminate this issue. DINO [39] inher-
its the advanced query formulation of DAB-DETR [23] and
incorporates an improved contrastive denoising technique
to achieve state-of-the-art performance. Group-DETR [5]
constructs group-wise one-to-many label assignment to ex-
ploit multiple positive object queries, which is similar to the
hybrid matching scheme in H-DETR [16]. In contrast with
the above follow-up works, we present a new perspective of
collaborative optimization for one-to-one set matching.

3. Method
3.1. Overview

Following the standard DETR protocol, the input image
is fed into the backbone and encoder to generate latent fea-
tures. Multiple predefined object queries interact with them
in the decoder via cross-attention afterwards. We introduce
Co-DETR to improve the feature learning in the encoder
and the attention learning in the decoder via the collabora-

tive hybrid assignments training scheme and the customized
positive queries generation. We will detailedly describe
these modules and give insights why they can work well.

3.2. Collaborative Hybrid Assignments Training

To alleviate the sparse supervision on the encoder’s out-
put caused by the fewer positive queries in the decoder, we
incorporate versatile auxiliary heads with different one-to-
many label assignment paradigms, e.g., ATSS, and Faster
R-CNN. Different label assignments enrich the supervisions
on the encoder’s output which forces it to be discrimina-
tive enough to support the training convergence of these
heads. Specifically, given the encoder’s latent feature F ,
we firstly transform it to the feature pyramid {F1, · · · ,FJ}
via the multi-scale adapter where J indicates feature map
with 22+J downsampling stride. Similar to ViTDet [20],
the feature pyramid is constructed by a single feature map
in the single-scale encoder, while we use bilinear interpo-
lation and 3 × 3 convolution for upsampling. For instance,
with the single-scale feature from the encoder, we succes-
sively apply downsampling (3×3 convolution with stride 2)
or upsampling operations to produce a feature pyramid. As
for the multi-scale encoder, we only downsample the coars-
est feature in the multi-scale encoder features F to build
the feature pyramid. Defined K collaborative heads with
corresponding label assignment manners Ak, for the i-th
collaborative head, {F1, · · · ,FJ} is sent to it to obtain the
predictions P̂i. At the i-th head, Ai is used to compute the
supervised targets for the positive and negative samples in
Pi. Denoted G as the ground-truth set, this procedure can
be formulated as:

P
{pos}
i ,B

{pos}
i ,P

{neg}
i = Ai(P̂i,G), (1)

where {pos} and {neg} indicate the pair set of (j, positive
coordinates or negative coordinates in Fj) determined by
Ai. j means the feature index in {F1, · · · ,FJ}. B{pos}

i is

3

Figure 3.3: Architecture of Co-DETR. Elements shared with DETR [4] and De-

formable DETR [5] (e.g., the backbone, Transformer encoder-decoder, and set match-

ing) remain unchanged. Key additions include a multi-scale adapter to better capture

features at different resolutions, as well as new auxiliary heads that support extra

positive queries. [Figure from [6]]

The Co-DETR pipeline can be outlined as follows: Like other DETR-based detectors,

it begins by extracting features from a CNN backbone, after which the encoder gen-

erates representations based on these features. These representations are then trans-
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formed and fed into auxiliary heads to create additional positive sets known as extra

positive queries. Queries are subsequently introduced to the decoder for extra super-

vision. It is important to note that Co-DETR employs a two-stage approach followed

by Deformable-DETR [5]. Given that the pipeline includes several optimization ob-

jectives, the overall loss function can defined as:

L∑
l=1

(
L̃Dec

l + λ1

K∑
k=1

L̃Aux
k,l + λ2

K∑
k=1

LAux
k,l

)
, (3.54)

where λ1 and λ2 weigh each loss component. The first two components, L̃Dec
l and

L̃Aux
k,l , are the losses of the lth decoder layer in the following form:

λclsLcls + λbboxLbbox + λIoULIoU , (3.55)

and Lcls, Lbbox and LIoU are Focal Loss, L1 Loss and GIoU Loss respectively [6].

L̃Dec
l and L̃Aux

k,l differ in their input queries. That is, while L̃Dec
l follows standard

DETR-based models [4,5] with one-to-one matching of the queries, L̃Aux
k,l is computed

based on positive anchors of kth auxiliary head with one-to-many assignment. And

LAux
k,l is the conventional loss of the kth auxiliary head, e.g., the weighted sum of

classification, localisation and centerness losses for ATSS [7].

In order to align the training and evaluation objectives better, we replace L̃Dec
l and

L̃Aux
k,l in Equation 3.55 by:

LBRS + λbboxLbbox + λIoULIoU , (3.56)

and set λbbox and λIoU dynamically during training to LBRS/Lbbox and LBRS/LIoU

to simplify the hyperparameter tuning following Oksuz et al. [18]. Similarly, we

replace the loss functions of the auxiliary ATSS [7] and Faster R-CNN [10] heads

(LAux
k,l in Equation 3.54) by our BRS Loss. This modification also aligns with the

objective of the auxiliary heads by the performance measure, hence results in more

accurate auxiliary heads. Furthermore, as using BRS Loss with Faster R-CNN does

not require sampling thanks to its robustness to imbalance, no limitation is imposed

on the number of positives in Faster R-CNN. Hence, the main aim of Co-DETR, that

is to introduce more positive examples to the transformer head, is corroborated. As

a result, our BRS DETR enables significantly efficient training compared to RS Loss

also by improving the performance of Co-DETR.
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CHAPTER 4

EXPERIMENTS

In this chapter, we evaluate the effectiveness of our bucketing method across different

backbones and datasets. To comprehensively analyze the effectiveness of our bucket-

ing method, we design experiments on real-world and synthetic data. For the former,

we aim to present that our method significantly decreases the training time of the

detection and segmentation methods (up to ∼ 5×). As training the entire detector

does not isolate the runtime of the loss function, on which our main contribution is,

we also design an experiment with synthetic data. This set of experiments show that

our bucketing approach decreases the loss function runtime by up to 40×, thereby

resulting in shorter training time of the detectors.

We analyze our contributions in three primary sections. First, we evaluate the ef-

fectiveness of our bucketing approach by contrasting it with RS Loss [18] and AP

Loss [1, 2] across different CNN-based visual detectors, on object detection and in-

stance segmentation tasks. Next, we compare score-based loss functions and other

ranking-based loss functions in the literature. Finally, we thoroughly examine how

our bucketed RS Loss performs on transformer-based object detectors, specifically

Co-DETR [6] with different backbones. This is the first time a ranking-based loss

is applied to transformer-based object detectors, thanks to the time efficiency of our

bucketing method. Our experiments demonstrate that our BRS loss is preferable to

any existing loss function in training object detectors in terms of training time, accu-

racy, and ease of tuning. Some material in this chapter is adapted from our ECCV

2024 paper [3].
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4.1 Training Details

4.1.1 Dataset and Performance Measures

We initially evaluated our method using synthetic data. Next, for object detection,

unless otherwise noted, we train all models on COCO trainval35k (115k images) and

test them on minival (5k images). We use COCO-style Average Precision (AP) and

also report AP50, AP75 as the APs at IoUs 0.50 and 0.75; and APS, APM and APL

to present the accuracy on small, medium and large objects. Additionally, we also

perform experiments on the LVIS and Cityscapes datasets, specifically for instance

segmentation. Please note that AP75 is not reported in the Cityscapes dataset.

Synthetic Data Generation. In our analyses using the synthetic data, we generate

logits with different cardinalities L = {10K, 100K, 1M} also for various percentages

of positives m = {0.1, 1.0, 2.0, 5.0}. Specifically, we sample positive and negative

logits from the Gaussian distributions, s+i ∼ N (−1, 1) and s−i ∼ N (1, 1) respec-

tively. Please note that the mean of the negative logits is higher than that of the

positive logits. This ensures that the sampled set of logits is likely to include trivial

cases in which all the positives have higher confidence than all the negatives, and con-

sequently, the set of negative logits is empty and the loss computation is trivial. For

RS and Bucketed RS-Loss experiments, we generated uniformly distributed random

IoU values for positive logits.

CNN-based Visual Detectors. In order to comprehensively demonstrate the effi-

ciency of our approach, we use five different detectors: Faster R-CNN [10], Cas-

cade R-CNN [11], ATSS [7] and PAA [8] for object detection, as well as Mask R-

CNN [61] for instance segmentation. For all methods evaluated on both COCO [24]

and LVIS [23], we adopt the experimental setup from RSLoss [18], only replacing

the loss function with our bucketed loss function to maintain comparability and con-

sistency of results.

Specifically, similar to RS Loss [18], while training multi-stage detection and seg-

mentation methods, i.e., Faster R-CNN [10], Cascade R-CNN [11] and Mask R-

CNN [61], we do not use random sampling different from the original architecture.
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We use all anchors for RPN and top-1000 proposals for Faster R-CNN [10] and top-

2000 proposals for Cascade R-CNN [11]. Again similar to RS Loss, we replace soft-

max classifier with class-wise binary sigmoid classifiers. For multi-stage methods,

we start with an initial learning rate of 0.012, while for one-stage methods, we set it

at 0.008. After the 8th and 11th epochs, we reduce the learning rate by a factor of 10,

as the models are trained for a total of 12 epochs. We train the ATSS [7] and PAA [8]

methods without using centerness head. During the training of PAA, we maintain

the scoring function while splitting positives and negatives. For the RS Loss and AP

Loss, we use the same scheduling and configuration to ensure a fair comparison.

We utilize the MMDetection [87] framework and distribute our computations across

4 Tesla A100 GPUs. Each GPU processes 4 images concurrently, leading to a total

batch size of 16.

Additionally, for experiments with Cityscapes [85], we follow the Mask R-CNN [61]

configuration provided in MMDetection and replace the loss function with Bucketed

RS Loss and RS Loss.

BRS-DETR. We incorporate our BRS Loss into the official Co-DETR repository to

be aligned with the original implementation and keep its settings unless otherwise

explicitly stated. We train our BRS-DETR for 12 epochs on 8 Tesla A100 GPUs,

with each GPU processing 2 images, resulting in a total batch size of 16. Testing is

conducted at a single scale with images of 1333×800 size. We initialize the learning

rate to 0.0002 and decrease it by a factor of 5 after epochs 10 and 11. We employ

the setting of Co-DETR with 300 queries. As for the auxiliary heads, we similarly

use ATSS [7] and Faster-RCNN [10]. One key difference when using ranking-based

losses is that they do not rely on sampling, since they are robust to long-tailed data.

In line with RS-R-CNN, we eliminate sampling in Faster R-CNN, and similarly with

RS-ATSS, we remove the centerness head from ATSS. For both auxiliary heads, we

replace the classification loss with BRS Loss and incorporate the self-balancing tech-

niques proposed by Oksuz et al. [18].

The original Co-DETR employed a two-stage method from Deformable DETR [5] in

the transformer head, so they have encoder and decoder losses. In both the encoder

and each layer of the decoder, we change the classification losses (Focal Loss) to
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Figure 4.1: Performance Comparison of AP and BAP Loss Functions: Log-Scale

Analysis of Computational Time and number of floating point operations (FLOPs)

across various data cardinalities and percentages. [Figure from our ECCV 2024 paper

[3]]

BRS-Loss. Co-DETR [6] employs L1 Loss and GIoU Loss for localization so that we

keep these losses for localization. As described in Section 3.5, we also employ self-

balancing in Co-DETR localization losses. Finally, once our loss function is used,

we find it useful (i) to increase the classification loss weight used for the Hungarian

assignment of the proposals as positives or negatives from 2 to 4 and (ii) to decrease

the auxiliary head weights from 12 to 5.

4.2 Experiments on Bucketed Losses with Synthetic Data

Since our method only focuses on the loss computation step, it is essential to demon-

strate its effectiveness independently from the full pipeline of the detectors, as the

training pipeline includes several steps. Hence, an analysis that considers only this

part can reveal our contribution more clearly. Therefore, we design a simple exper-

iment using synthetic data. As described in Training Details, we randomly generate

L logits such that m% of these logits are positive. For the sake of simplicity, here

we compare our BAP Loss with AP Loss in terms of time efficiency and number of

floating point operations (FLOPs) and report the mean iteration time of three inde-
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pendent runs with each setting. To illustrate the extreme case, one might consider

L = 1M logits with m = 0.1 correspond to anchor-based detector making dense

predictions such as RetinaNet [19], the smaller number of logits mimics the R-CNN

head of two-stage detectors, and finally L = 10K with higher m approximates recent

transformer-based detectors.

Figure 4.1 shows that our bucketing approach, in fact, improves loss efficiency by up

to ∼ 40×, a very significant improvement. This enhancement becomes increasingly

evident as the total number of logits increases. Furthermore, when we focus on the

FLOPs of the AP loss, it decreases from 76M to 900k with our BAP loss, introducing

more than 80× less FLOPs and further validating the effectiveness of our approach.

Table 4.1: Bucketed Losses (BRS, BAP) vs. RS & AP Losses on COCO object

detection for one-stage object detectors.

Detector Backbone Loss
Time Accuracy

Titer(s) ↓ AP ↑ AP50 ↑ AP75 ↑

ATSS [7]

ResNet50

AP 0.32 38.1 58.2 41.0

BAP 0.15 2.1x ↓ 38.5 58.6 41.3

RS 0.36 39.8 58.9 42.6

BRS 0.15 2.4x ↓ 39.8 58.8 42.9

PAA [8]

AP 0.45 37.3 54.3 41.2

BAP 0.30 1.5x ↓ 37.2 56.2 40.2

RS 0.57 40.8 58.8 44.6

BRS 0.30 1.9x ↓ 40.9 59.0 44.4

4.3 Experiments on Bucketed Losses with One Stage Detectors

To show that our gains generalize to one-stage detectors, we train the common ATSS

and PAA detectors with our BAP and BRS Losses and compare them with AP and

RS Losses. To show that our gains generalize to one-stage detectors, we train the

common ATSS and PAA detectors with our BAP and BRS Losses and compare them

with AP and RS Losses.
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Table 4.2: BRS Loss vs. RS Loss on COCO object detection for multi-stage object

detectors. Models with R-101 are trained 36 epochs.

Detector Backbone Loss
Time Accuracy

Titer(s) ↓ AP ↑ AP50 ↑ AP75 ↑

Faster R-CNN [10]

ResNet50
RS 0.50 39.4 59.5 43.0

BRS 0.17 3.0x ↓ 39.5 59.5 42.8

ResNet101
RS 0.75 47.3 67.4 51.2

BRS 0.38 2.0x ↓ 47.7 67.8 51.5

Cascade R-CNN [11] ResNet50
RS 1.28 41.1 58.7 44.1

BRS 0.24 5.3x ↓ 41.1 58.8 44.2

In Table 4.1, we compare both AP Loss with its bucketed version (BAP) and RS Loss

with its bucketed version (BRS)on one-stage object detectors. Table 4.1 validates our

previous claims: Our bucketed losses obtain similar performance in around half of

the training time required for AP and RS Losses. Compared to AP Loss, BAP Loss

consistently speeds up training (from 1.5× to 2.1×) while preserving AP scores.

Similar to the AP Loss experiments, leveraging our tailored gradient adjustment

method, we have secured Average Precision (AP) scores on par with RSLoss [18].

As can be seen from Table 4.1, we have also managed to cut down the training time

by about 2.3 times for ATSS [7] and nearly 1.9 times for PAA [8].

4.4 Experiments on BRS Losses with Multi Stage Detectors

Among multi-stage detectors, we train the commonly-used Faster R-CNN [10] and

Cascade R-CNN [11] with RS Loss [18] and BRS Loss, and present average iteration

time as well as AP of the trained models. In order to evaluate our contribution com-

prehensively, we train Faster R-CNN also with a stronger setting, in which, we use

ResNet-101, train it for 36 epochs using multi-scale training similar to RS Loss [18].

The results are presented in Table 4.2, in which we can clearly see that BRS Loss

consistently reduces the training time of all three detectors as well as preserves (or

slightly improve) their performance. Especially for Cascade R-CNN, which is still
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a very popular and strong object detector along with its variants such as HTC [88],

the training time decreases by 5.3×. This is because the loss function is applied to

the logits for three times based on the cascaded nature of this detector, and therefore,

our contribution can be easily noticed. Moreover, it might seem that the efficiency

gain decreases once the size of the backbone increases from R-50 to R-101 in Faster

R-CNN. However, this is an expected result as the overall feature extraction time in-

creases due to the larger number of parameters in the backbone, and hence, as we will

discuss in the synthetic experiments, this is independent from our bucketing approach,

operating on the loss function after the feature extraction.

4.5 Experiments on Instance Segmentation Methods

Given that our loss functions is efficient in object detectors, one simple extension

is to see their generalization to instance segmentation methods. To show that, we

train Mask R-CNN [61], a common baseline, with our BRS Loss on three different

dataset from various domains: (i) COCO (Table 4.3), (ii) Cityscapes [85] as an au-

tonomous driving dataset (Table 4.4) and LVIS [23] a long-tailed dataset with more

than 1K classes (Table 4.4). The results confirm our earlier findings that using BRS

Loss significantly reduces training time by approximately 2.3 times compared to RS

Loss, while maintaining accuracy across both backbones on the COCO dataset. Ad-

ditionally, when we extended our experiments to the Cityscapes and LVIS datasets,

we observed a similar training time reduction of around 2.5 times, even with the

imbalanced LVIS dataset. In Table 4.4, it is evident that BRS Loss narrows the train-

ing time gap compared to Cross-entropy Loss. Furthermore, BRS Loss outperforms

Cross-entropy Loss on both datasets with respect to +1.5AP and +3.3AP.

Given Similar Training Budget, Bucketed Ranking Based Loss Functions Sig-

nificantly Improve the Accuracy. There might be several benefits of reducing the

training time of the detector as more GPU time is saved. Here, we show a use-case in

which we ask the following question: what would happen if we allocate the similar

amount of training time to both bucketed and non-bucketed losses? To answer that,

we train Cascade R-CNN [11], a detector, and Mask R-CNN [61], an instance seg-

mentation method, using our BRS Loss. Considering our speed-ups on these models
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Table 4.3: Comparison with RS Loss on instance segmentation task on COCO val

using Mask R-CNN.

Backbone Loss
Efficiency Accuracy

Titer(s) ↓ AP ↑ AP50 ↑ AP75 ↑

ResNet 50
RS 0.56 36.3 57.2 38.8

BRS 0.24 2.3x ↓ 36.2 57.2 38.8

ResNet 101
RS 0.59 40.2 61.8 43.5

BRS 0.27 2.2x ↓ 40.3 62.0 43.8

Table 4.4: Comparison on different instance segmentation datasets using Mask R-

CNN. AP75 is N/A as it is not used for Cityscapes.

Dataset Loss
Efficiency Accuracy

Titer(s) ↓ AP ↑ AP50 ↑ AP75 ↑

Cityscapes [85]

Cross Entropy 0.18 41.8 67.1 N/A

RS 0.43 43.5 68.1 N/A

BRS 0.19 2.3x ↓ 43.3 67.7 N/A

LVIS [23]

Cross Entropy 0.32 22.5 36.9 23.8

RS 0.87 25.6 39.2 27.3

BRS 0.35 2.5x ↓ 25.8 39.6 27.4

(6.0× and 2.3×), we simply increased their training epochs from 12 to 36 and 27

respectively. Note that, for Cascade R-CNN, we still spend significantly less amount

of training time. Table 4.5 shows that models trained with the BRS Loss outperform

(with +1.2 and 1.0 AP) their counterparts trained with the RS Loss in both cases.

4.6 Comparison of BRS Loss with Score-based and Other Ranking-based Losses

In previous sections, we showed the efficiency of our loss functions compared to AP

and RS losses as their counterparts. This might give rise to the question whether

Bucketed loss functions can close the gap between ranking-based losses and score-

based losses such as Focal Loss [19]. To see that, we compare our bucketed losses
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Table 4.5: BRS Loss further improves performance with similar training budget. We

report mask AP for instance segmentation

Task Detector Loss AP ↑ AP50 ↑ AP75 ↑

Object Detection Cascade R-CNN [11]
RS 41.1 58.7 44.1

BRS 42.3 +1.2 60.2 45.2

Instance Segmentation Mask R-CNN [61]
RS 36.3 57.2 38.8

BRS 37.3 +1.0 58.4 40.2

with the score-based losses, i.e., cross-entropy and Focal Loss [19], and other ranking-

based losses including DR loss [82] and aLRP Loss [17].

To do so, in Tables 4.6 and 4.7, we report the average training time, AP for accuracy,

and number of hyperparameters to capture the simplicity of tuning the loss func-

tions. We note that our BRS and BAP Losses take similar training time with cross

entropy and focal loss, closing the gap between ranking-based losses and score-based

losses. Furthermore, our loss functions maintain the performance gain and tuning

simplicity of ranking-based loss functions. Having addressed the main shortcoming

of ranking-based losses, the performance margin between two popular score-based

methods, Cross-Entropy [74] and Focal Loss [19]. Our findings show that BRS Loss

reduces the gap between these losses, resulting in only a marginal increase in training

time for one-stage object detectors, which is approximately 1.05 times longer than

Focal Loss [19]. Furthermore, BRS Loss can improve the average precision (AP)

by roughly 0.5 points, whilst requiring only one hyper-parameter, compared to Focal

Loss [19] which requires 5. In the case of two-stage detectors, we have noticed a time

speed-up of 1.2× when using BRS Loss in comparison to Cross-Entropy Loss [74].

However, the use of BRS Loss results in a significant boost of +1.9 AP points in

performance and requires fewer hyper-parameters than the setup with Cross-Entropy

Loss [74] in Faster R-CNN [10]. Hence, our BRS Loss is either superior or on par

with existing score-based losses. As for other ranking-based losses in Table 4.7, our

BRS Loss is the most efficient and accurate ranking-based loss function for all three

detectors. As an example, compared to ATSS trained with DR Loss, our BRS Loss

yields 1.8AP better accuracy with 25% less training time and significantly less num-
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Table 4.6: Comparison with the score-based losses. The chosen score based loss func-

tions are the commonly used ones for each detector. Ours has very similar Titer(s)

also by being more accurate and simple-to-tune. #H: Number of hyperparameters.

Detector Loss Titer(s) ↓ AP ↑ #H

Faster R-CNN [10]

Cross Entropy+L1 0.14 37.6 9

RS 0.50 39.4 3

BRS (Ours) 0.17 39.5 3

ATSS [7]

Focal Loss+GIoU 0.14 39.3 5

RS 0.36 39.8 1

BRS (Ours) 0.15 39.8 1

Table 4.7: Comparison with other ranking-based losses. Our approach performs bet-

ter on both accuracy and efficiency.

Detector Loss Titer(s) ↓ AP ↑ #H

Faster R-CNN [10]
aLRP [17] 0.28 37.4 3

BRS (Ours) 0.17 39.5 3

ATSS [7]

AP [1] 0.32 38.1 5

DR [82] 0.20 38.1 5

aLRP [17] 0.32 37.7 1

BRS (Ours) 0.15 39.8 1

RetinaNet [19]
DR [82] 0.29 37.4 5

BRS (Ours) 0.23 38.3 1

ber of hyperparameters.

Therefore, our bucketed loss functions are now promising alternatives to train object

detectors. Figure 4.2 provides a comprehensive overview of our contributions across

a range of detectors.
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Figure 4.2: Accuracy and efficiency comparison across various detectors. Our BRS

formulation facilitates faster (between 1.9× and 6.0×) training of visual detectors

with similar AP. [Figure from our ECCV 2024 paper [3]]

4.7 Experiments of BRS Loss with Co-DETR

In previous experiments, we present the efficiency of BRS Loss in CNN-based visual

detectors. Most recent methods have shifted to using transformer-based approaches.

This switch is crucial for understanding the effect of ranking-based losses for a couple

of reasons: (i) Unlike CNN-based detectors, DETR variants propose a fixed number

of queries, typically ranging from 300 to 900. This results in fewer logits or predic-

tions compared to the dense detections produced by other models. (ii) The decoder

layers are stacked, and separate loss calculations are performed at each decoder layer,

with the number of layers usually set to six.

BRS-DETR Outperforms Existing Transformer-based Detectors Consistently.

To analyze whether ranking-based loss functions can also enhance the DETR vari-

ants, we first employ the ResNet-50 backbone, as it has been used by many detectors,

enabling us to compare our method with many different DETR-based manners in a

consistent manner. In this fair comparison, our BRS-DETR outperforms all existing
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DETR variants, achieving an AP of 50.1, as demonstrated in Table 4.8. For instance,

our BRS-DETR surpasses DN-DETR [64] by 1.5 AP and DINO [70] by 0.9 AP, while

requiring less training epochs or less queries. Additionally, it shows improvements

over Co-DETR, which we will discuss next.

BRS-DETR Improves Co-DETR over Different Backbones Consistently. In order

to show the effectiveness of our BRS Loss, we compare our results with Co-DETR

in Table 4.9 using different backbones. We note that we improve the baseline Co-

DETR consistently in all settings. For example, our improvement on ResNet-50 is

0.8AP, which is a notable improvement. However, as the backbone gets larger (e.g.,

Swin-L [89]), our gains decrease, which is expected and commonly observed in the

literature, e.g., [8].

Training Co-DETR with RS Loss takes 6x less time compared to using RS Loss.

Finally, we also compare the training efficiencies of BRS Loss and RS Loss on Co-

DETR [6]. When we train Co-Deformable DETR with RSLoss on 300 query settings,

we observe that training takes nearly 4 seconds per iteration. Hence, it’s not practical

to train Co-Deformable DETR. Furthermore, we observe that our BRS Loss with the

same training setup decreases the training time of Co-DETR by 6.0× (from 4.14s per

iteration to 0.69s) compared to RS Loss. We note that this is the largest training time

gain of our BRS Loss. This is because Co-DETR [6] consists of multiple transformer-

based as well as auxiliary heads, requiring multiple loss estimations.

Table 4.8: Comparison of our BRS-DETR with DETR variants (trained with their

original loss functions) w ResNet-50 on COCO val set.

Detector Query Epoch AP AP50 AP75 APs APm APl

DETR [4] 100 300 42.0 62.4 44.2 20.5 45.8 61.1

DN-DETR [64] 300 50 48.6 67.4 52.7 31.0 52.0 63.7

DINO [70] 900 12 49.4 66.9 53.8 32.3 52.5 63.9

H-DETR [63] 300 12 48.7 66.4 52.9 31.2 51.5 63.5

Co-DETR [6] 300 12 49.3 67.2 54.0 32.1 52.6 63.8

BRS-DETR 300 12 50.1 67.4 54.6 31.9 53.9 65.0
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Table 4.9: Comparison of our BRS-DETR with Co-DETR (trained with its original

loss function) on different backbones on COCO val set.

Backbone Detector AP AP50 AP75 APs APm APl

ResNet50
Co-DETR [6] 49.3 67.2 54.0 32.1 52.6 63.8

BRS-DETR 50.1 67.4 54.6 31.9 53.9 65.0

Swin-T
Co-DETR [6] 51.7 69.6 56.4 34.4 54.9 66.8

BRS-DETR 52.3 69.5 57.1 34.6 55.7 68.0

Swin-L
Co-DETR [6] 56.9 75.5 62.6 40.1 61.2 73.3

BRS-DETR 57.2 75.0 62.5 39.4 61.7 74.1

4.8 Discussion

In summary, we demonstrate the efficiency and generalizability of our bucketed rank-

ing-based loss functions across two different tasks, six detectors, and three datasets.

Notably, we observe a significant improvement by integrating ranking-based losses

into Co-DETR [6]. Furthermore, since we propose an efficient loss function, we may

achieve additional performance enhancements in other DETR variants as well.
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CHAPTER 5

CONCLUSION

In this thesis, we tackle an important problem in object detection, which involves

identifying and localizing objects in images. While score-based loss functions have

traditionally been used for classification, ranking-based losses more closely align with

evaluation criteria and are particularly effective in handling imbalanced data. How-

ever, their reliance on pairwise comparisons introduces computational inefficiencies,

limiting their broader applicability. To address this gap, we introduced a novel method

to improve the efficiency of ranking-based loss functions by binning negatives into

buckets and implementing positive-negative pairwise comparisons between positives

and these buckets. We showed that this approach reduces the computational com-

plexity to a level where pairwise comparisons can be stored as a matrix in memory,

bringing the running time close to that of score-based loss functions and paving the

way for more efficient large-scale object detection.

We thoroughly evaluated the performance of our method through comprehensive ex-

periments that include two different tasks, three different datasets, and six different

detectors. This wide range of experiments highlights the general applicability of our

approach. We first showcase the efficiency and generalizability of our method across

various tasks and datasets. We demonstrate that Bucketed Ranking-based Losses

achieve the same accuracy as their unbucketed counterparts while consistently reduc-

ing training time for ranking-based losses in both one-stage and multi-stage CNN-

based object detectors. Furthermore, we demonstrate that bucketed ranking-based

losses are also effective in instance segmentation tasks across different datasets. With

these improvements, ranking-based losses emerge as a strong alternative to score-

based losses, as they not only outperform them but also help close the training time

59



gap.

Also, for the first time, we integrated a ranking-based loss to Co-DETR [6], a DETR-

based state-of-the-art detector, which was possible thanks to our method’s lower com-

plexity and reported improvements on different backbones. With our BRS Loss, we

are able to obtain consistent performance gains over Co-DETR with different back-

bones, both on ResNet50, SwinT, and SwinL. Our experiments showed that bucketed

ranking-based losses can be incorporated into various DETR-based detectors, provid-

ing a valuable opportunity for further performance improvements.

5.1 Limitations and Future Work

The primary purpose of this thesis is to address the inefficiencies associated with

ranking-based losses. We close the performance gap and surpass score-based losses

by utilizing our bucketing ranking losses. This work is the first to integrate ranking-

based losses with detection transformers. The BRS Loss significantly enhances the

performance of Co-DETR. However, several factors could be explored in future re-

search.

First, it is important to note that there is a relationship between the cost function

used in Hungarian assignment and the loss function in a general adapted structure for

DETR [4]. Following the original DETR model, its variants have adapted the same

structure, ensuring that the cost function comprises the same components as the loss

function. Our integration of BRS Loss currently focuses solely on the loss function.

Replacing the Focal Cost with a Ranking-based Cost is not a straightforward task,

and introducing Ranking-based Cost functions could be a valuable contribution that

further enhances the effectiveness of BRS Loss. Additionally, the impact of each

component of the cost function can be analyzed in detail to reduce the number of

hyperparameters.

One minor limitation to consider is the need for training and fine-tuning large de-

tectors. While detailed fine-tuning has been conducted for the ResNet50 backbone

using a 12-epoch and 300-query setup, training times for the SwinL backbone, par-

ticularly with approaches like Co-DINO-DETR, can be excessively long. This issue
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may be addressed in future research. Additionally, there are numerous DETR variants

available, and our loss generalizability allows for the potential integration of more de-

tectors using ranking losses.
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