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ABSTRACT

MULTILINGUAL, MULTIMODAL AND EXPLAINABLE APPROACHES
FOR AUTOMATED FACT-CHECKING PROBLEM

Çekinel, Recep Fırat

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Pınar Karagöz

January 2025, 116 pages

Automated fact-checking methods primarily rely on content-based approaches, uti-

lizing deep neural networks to extract sophisticated features from text for predic-

tion. However, the inherently black-box nature of these models makes their decision-

making processes challenging to interpret. Another challenge for automated fact-

checking models is their dependence on language-specific data, with limited mul-

tilingual datasets available for training. Moreover, the multimodal nature of fake

posts—including text, images, and speech—presents an additional challenge. This

thesis addresses automated fact-checking research, aiming to predict the veracity of

claims while extending contributions to explainable solutions for fact-checking and

sarcasm detection. We propose explainable models through multi-task learning and

causal inference, evaluate cross-lingual transfer learning for low-resource languages,

and examine how recent VLMs utilize text and image information for fact-checking.

Our multi-task learning approach involves a T5-based encoder-decoder model trained

for text summarization and veracity prediction, with generated summaries serving as

explanations for predicted veracity labels. Moreover, a Turkish fact-checking dataset

is released and experiments are conducted using transfer learning and machine trans-

v



lation to address data scarcity. In multimodality, we investigate VLMs’ effectiveness

in representing text and image information, finding that while multimodal embed-

dings generally enhance performance, discrete text-only and image-only models often

outperform them. Lastly, we apply causal inference to text analysis, examining how

sarcastic linguistic features and punctuation impact text popularity and leveraging

clustering and topic modeling to uncover latent information on irony and popularity.

Keywords: fact-checking, explainability, cross-lingual learning, multimodality, causal

inference
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ÖZ

OTOMATİK DOĞRULUK KONTROLÜ PROBLEMİ İÇİN ÇOK DİLLİ,
ÇOK MODLU VE AÇIKLANABİLİR YAKLAŞIMLAR

Çekinel, Recep Fırat

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Pınar Karagöz

Ocak 2025 , 116 sayfa

Otomatik doğruluk kontrolü yöntemleri, ağırlıklı olarak içerik tabanlı yaklaşımlara

dayanmakta ve tahmin için metinden sofistike özellikler çıkarmak üzere derin sinir

ağlarını kullanmaktadır. Ancak, bu modellerin doğası gereği kara kutu oluşu, karar

verme süreçlerinin anlaşılmasını zorlaştırmaktadır. Otomatik doğruluk kontrolü mo-

delleri için bir diğer zorluk, dil spesifik verilere olan bağımlılıklarıdır ve eğitim için

mevcut çok dilli veri kümeleri sınırlıdır. Ayrıca, sahte gönderilerin metin, görseller ve

konuşma gibi çok modlu yapısı ek bir zorluk teşkil etmektedir. Bu tez, otomatik doğ-

ruluk kontrolü araştırmalarını ele alarak iddiaların doğruluklarını tahmin etmeyi he-

deflemekte ve doğruluk kontrolü ile alaycılık tespiti için açıklanabilir çözümler geliş-

tirmeye katkı sağlamaktadır. Çok görevli öğrenme ve nedensel çıkarım yoluyla açık-

lanabilir modeller önermekte, düşük kaynaklı diller için çapraz dilli aktarım yoluyla

öğrenimini değerlendirmekte ve son dönemdeki Görsel-Dil Modellerining (GDM)

doğruluk kontrolü için metin ve görsel bilgiyi nasıl kullandığını incelemekteyiz. Çok

görevli öğrenme yaklaşımımız, metin özetleme ve doğruluk tahmini için eğitilmiş T5

tabanlı bir kodlayıcı-çözücü modelini içermektedir; oluşturulan özetler, tahmin edilen
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doğruluk etiketleri için açıklamalar olarak kullanılmaktadır. Ayrıca, Türkçe bir doğ-

ruluk kontrolü veri kümesi yayımlanmış ve veri yetersizliğini ele almak için transfer

öğrenimi ve makine çevirisi kullanılarak deneyler gerçekleştirilmiştir. Çok modluluk

bağlamında, GDM’nin metin ve görsel bilgiyi temsil etme etkinliğini araştırmakta

ve çok modlu gömme yöntemlerinin genelde performansı artırmasına rağmen, yal-

nızca metin veya yalnızca görsel tabanlı modellerin sıklıkla daha iyi sonuç verdiğini

bulmaktayız. Son olarak, metin analizinde nedensel çıkarımı uygulayarak alaycı dil-

sel özelliklerin ve noktalamanın metin popülerliği üzerindeki etkisini incelemekte ve

ironi ve popülerlik hakkında örtük bilgileri ortaya çıkarmak için kümeleme ve konu

modellemeyi kullanmaktayız.

Anahtar Kelimeler: doğruluk kontrolü, açıklanabilirlik, diller arası öğrenme, çoklu

mod, nedensel çıkarım
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Statement

There has been a significant increase in misinformation and disinformation on social

media, with fake stories being fabricated to influence public opinion on various cam-

paigns. Consequently, automated fact-checking studies have focused on assessing the

truthfulness of claims using evidence documents.

These automated methods mostly depend on content-based approaches that utilize

deep neural networks to extract sophisticated features from text for making predic-

tions. However, deep neural networks are inherently black-box models, making their

internal workings difficult to interpret. Providing explanations for their decision-

making processes is vital, especially in critical decision-making contexts. This need

has been emphasized by the recent EU AI Act legislation that mandates explanations

for models used in decision-making. Additionally, new regulations require online

platforms in the EU to ensure transparency in their reporting.

Another challenge for automated fact-checking models is their reliance on language-

specific data. There are limited multilingual datasets available for training, making

it essential to explore methods to learn from English training data and adapt to new

domains and languages.

Social media platforms are increasingly becoming the primary source of news for

many people. However, these platforms are susceptible to the rapid spread of fake

stories, which can be used to manipulate public opinion [2]. Fabricated posts may

include false text, images, videos, or speech content [3, 4, 5], designed to deceive

1



Figure 1.1: Example multimodal fact-checking from Snopes

social media users. Therefore, automated fact-checking systems should be able to

consider information from different modalities [6]. For instance, on the Snopes web-

site, a claim1 about an edited image was proven to be fake by providing the original

image and explaining how it was fabricated to manipulate public opinion about public

figures. To verify the truthfulness of such content, it is essential to process both text

and image information (see Figure 1.1).

This thesis details automated fact-checking research which involves predicting claims’

veracity. Its contributions extend beyond fact-checking to offer broader explainable

machine-learning solutions for fact-checking and sarcasm detection problems.

1.2 Proposed Methods and Models

Within the scope of this thesis, we tackle misinformation detection and sarcasm de-

tection problems. First, we propose explainable models for these problems by im-

plementing a multi-task model and leveraging causal inference. Additionally, we

evaluate the viability of cross-lingual transfer learning for large language models that

were massively pre-trained on English. Finally, we examine how recent VLMs utilize

1 https://www.snopes.com/fact-check/hitler-trump-image-fake/
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text and image information for fact-checking problem.

Multi-task learning: We propose a multi-task encoder-decoder model trained jointly

for text summarization and veracity prediction. We formulate the explanation gener-

ation process for the model’s veracity prediction as a text summarization problem. In

other words, the generated summary serves as the explanation for the predicted ve-

racity label. During training, the encoder is shared between both summarization and

classification tasks. The decoder generates a summary, while the classification head

takes the encoder representation as input and processes it through a feed-forward net-

work for text classification. The overall loss is computed by taking the weighted sum

of the summary and classification losses, using both static and dynamic loss weight-

ing strategies.

Cross-lingual transfer learning: The state-of-the-art LLMs are massively pre-

trained in English and most annotated fact-checking datasets are in English as well.

Therefore, we explore a cross-lingual transfer learning approach for low-resource

languages, such as Turkish, in the context of fact-checking. Specifically, we aim

to utilize an English fact-checking dataset to address the lack of data for Turkish.

To achieve this, we collect a Turkish fact-checking dataset and conduct experiments

with transfer learning by fine-tuning large language models and using machine trans-

lation. In addition to evaluating the feasibility of transfer learning, our results offer

preliminary insights into the types of information, knowledge, or styles employed by

automated fact-checking models.

Multimodality: VLMs utilize both text and image data to generate text responses.

This thesis study investigates the application of VLMs for multimodal fact-checking,

an area that has received limited attention. Specifically, it examines the effectiveness

of VLMs in representing both text and image information. The proposed method ex-

tracts embeddings from the last hidden layer of selected VLMs and inputs them into

a feed-forward network for multi-class veracity classification. The study first con-

firms the necessity of multimodal information using two multimodal fact-checking

datasets. Then, it evaluates three recently released VLMs against separate text-only

and image-only models.
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Causal inference: Black-box models often rely on statistical correlations between

features, which can introduce bias. To create robust systems, it is important to con-

sider causality when estimating the data-generating process for a given task. In this

thesis study, we investigate text-based causal inference for detecting irony and sar-

casm. We also model latent confounders through unsupervised data analysis tech-

niques, such as clustering and topic modeling. Our findings offer insights into causal

explainability in irony detection.

1.3 Contributions and Novelties

Our contributions are as follows:

• We evaluate the effectiveness of multi-task training for veracity prediction and

text summarization using a T5-based explainable model, finding that joint train-

ing enhances text classification performance in the Flan-T5 model with a slight

decrease in summarization, while significantly improving summarization in the

T5 model with less impact on classification. This work was also accepted to

IEEE Big Data 2024 10th Special Session on Intelligent Data Mining [7].

• We introduce a novel Turkish fact-checking dataset, comprising 3,238 claims

with accompanying metadata and demonstrate that fine-tuning a large language

model on this dataset significantly outperforms zero-shot and few-shot approaches,

highlighting the value of language-specific for low-resource languages. This

work was accepted to LREC-COLING 2024 [8].

• We propose a probing classifier pipeline using VLMs for multimodal fact-

checking, finding that while multimodal embeddings generally improved per-

formance over base VLM inference, discrete text-only and image-only models

outperformed them. This work was accepted to COLING 2025 [9].

• We apply causal inference to text analysis to examine how sarcastic linguistic

features and punctuation affect text popularity while also leveraging clustering

and topic modeling to uncover latent information on irony and popularity. This

work was accepted to DAWAK 2022 [10].
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1.4 The Outline of the Thesis

The organization of this thesis is as follows:

• Chapter 2: Presents an extensive overview of the background information and

existing literature review of the methodologies used in misinformation detec-

tion. The aim is to contextualize the current research landscape and highlight

open problems that contribute to this thesis.

• Chapter 3: Presents a multi-task explainable misinformation detection model

that combines veracity prediction and text summarization, where the summaries

provide justifications for the model’s predictions, utilizing a new architecture

that integrates various neural models to enhance both fact-checking and ex-

planatory tasks.

• Chapter 4: Includes releasing a Turkish fact-checking dataset, assessing the

efficiency of transfer learning for low-resource languages like Turkish, demon-

strating the superiority of fine-tuning a large language model with a Turkish

dataset over few-shot learning and presents experimental results comparing

zero- and few-shot prompt learning with fine-tuning on large language mod-

els, emphasizing the importance of using native data.

• Chapter 5: Examines the use of multimodal information (text and image) ver-

sus embeddings from text-only and image-only models for fact-checking and

proposes a computationally efficient approach using the last hidden layer’s rep-

resentation from VLMs as input for a small feed-forward neural network to

determine if recent VLMs can effectively leverage multimodal information for

veracity classification.

• Chapter 6: Examines the causal effects of linguistic properties on irony and

sarcasm detection, models latent confounders with K-Means clustering and

LDA topic modeling and provides insights into causal explainability.

• Chapter 7: Summarizes the thesis findings, emphasizing the contributions to

fact-checking through advanced machine learning techniques, and proposes po-

tential future research directions.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter presents a comprehensive review of the fact-checking problem and ex-

isting literature relevant to the methodologies used in misinformation detection. The

goal is to contextualize the current state of research and highlight the open problems

that contribute to the thesis.

2.1 Misinformation Detection

Progresses in social networking and social media have not only made information

more accessible but have also enabled the rapid spread of false information on these

platforms [11]. As a result, disseminating fake stories has emerged as a powerful

instrument for manipulating public opinion, as observed during the 2016 US Presi-

dential Election [2]. Fake news can be described as media content that contains false

information with the intent to mislead individuals [12, 13]. The goal of fake news

detection is to evaluate the correctness of statements within the message content.

The traditional method of evaluating the correctness of a claim involves seeking the

expertise of specialists who assess the claim by examining the available evidence.

For instance, organizations like PolitiFact1 and Snopes2 rely on editors to validate

the correctness of statements. However, this approach is both time-consuming and

expensive. To address this issue, automated methods for fact-checking have emerged,

intending to assess the truthfulness of claims while reducing the need for human

intervention [14].

1 https://www.politifact.com/
2 https://www.snopes.com/fact-check/
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Additionally, the explainability of fake news detection has gained attention. In gen-

eral, biases inherent in AI systems, such as gender or race biases, can undermine

model reliability [15]. Model explainability is about discovering the reasons be-

hind the given model decision for a particular instance. While the black-box neu-

ral architectures dominate the fake news detection literature, various explainability

approaches have been proposed to uncover AI-based models’ reasoning.

Prior studies have revealed that fact-checking models often make predictions solely

considering claim statements and ignore the evidence documents [16]. Addition-

ally, such models make more mistakes on uncertainties such as "unproven" and "not

enough information" cases. In situations where insufficient evidence exists to verify

or refute a claim, it becomes crucial to determine the sufficiency of information for

assessing correctness.

Like many other problems in NLP, the vast majority of available fact-checking re-

sources released are primarily in English [17]. However, misinformation is not spe-

cific to content generated in English. Automated fact-checking systems are also

needed for other languages, despite having much lower amount of expert annotated

fact-checking data. Besides supervised data availability, the distribution of languages

in pretraining data of state-of-the-art models also creates a big imbalance between

English and other languages. Since creating large, manually annotated fact-checking

data is a very expensive endeavor and finding the amount of unannotated data in lan-

guages other than English to (pre)train large language models are impractical (if not

impossible), one promising solution is linguistic transfer: leveraging large datasets

in English and cross-lingual transfer learning methods to build fact-checking systems

for other, low-resource languages.

Fabricated social media posts may include false text, images, videos, or speech con-

tent [3, 4, 5], designed to deceive social media users. Therefore, automated fact-

checking systems should be able to consider information from different modalities

[6]. For instance, on the Snopes website, a claim 3 about an edited image was proven

to be fake by providing the original image and explaining how it was fabricated to

manipulate public opinion about public figures. To verify the truthfulness of such

3 https://www.snopes.com/fact-check/zelenskyy-money-stacks/
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content, it is essential to process both text and image information.

2.2 Causal Inference

Typical NLP models use statistical associations to make decisions and estimate the

dataset’s distribution using the training data. On the other hand, causal inference

is an inverse problem that figures out the structural causal model of the data gener-

ating process, which leads to more robust and invariant models. Causal inference

is about answering the counterfactual queries based on the intervention of interest.

However, the counterfactual outcomes do not exist in the observational data in most

cases. Therefore, the causal effect is the change of outcome variable Y by the inter-

vention on treatment X when all other covariates are kept constant.

The initial step of causal inference represents the association between variables as

Structural Causal Models (SCMs). The SCMs consist of directed acyclic graphs

(DAGs) and a mathematical problem formulation. The variables are represented as

nodes, and edges represent the causal relationship between variables.

Structural Causal Model: It consists of 3-tuples (U, V, E) where U denotes a set

of exogenous variables (independent from the states), V denotes a set of endogenous

variables (dependent to other states in the system) and they are connected by a set of

structural equations, E, where each equation defines endogenous variables in terms of

U and V.

After representing the causal model as a graph, interventions on a treatment can be

expressed using Pearl’s do-calculus notation [18]. Three rules of do-calculus which

allow to simulate interventions on treatment to identify causal relationships in DAGs

are summarized below:

• Rule 1: Insertion and deletion of observations

P(Y |do(X), Z, W) = P(Y |do(X), Z), if W is irrelevant to Y

• Rule 2: Action/observation exchange

P(Y |do(X), Z) = P(Y |X, Z), if Z blocks all back-door paths from X to Y
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• Rule 3: Insertion and deletion of actions

P(Y |do(X)) = P(Y), if there is no causal path from X to Y

The first rule suggests that we can omit variables W if it is irrelevant to outcome Y.

However, the second rule states that if variables Z blocks all backdoor paths from

treatment X to Y, we must condition on Z. Finally, the third rule asserts that if there

is no causal path from X to Y, we should not condition on X. A causal inference

framework can estimate the counterfactual outcomes by making some assumptions

that need to satisfy three criteria listed below:

• Ignorability: The treatment assignment and the counterfactual outcomes must

be independent by randomizing the treatment assignment. However, for ob-

servational data, it is not feasible. Therefore, softer conditional ignorability

criteria should be satisfied, which requires no unobserved confounders in the

dataset.

• Positivity: For all covariates, the probability of receiving treatment must be

greater than 0.

• Consistency: The outcome at unit i is only affected by the treatment at the same

unit.

2.2.1 Causal Model Explainability

Texts are inherently high dimensional, and by encoding texts using language mod-

els, hidden factors such as topic, tone, and writing style can be discovered. BERT

[19], a bi-directional transformer-based language model, had a breakthrough on NLP

which outperformed previous models on many tasks with significant margins. How-

ever, Feder et al. [20] indicated that such models utilize statistical relationships while

making decisions. Therefore, their predictions can be considered unreliable. More-

over, McCoy et al. [21] pointed out that these language models may fail when the

data distribution of the test set changes significantly since these models rely on sta-

tistical associations. As a result, causal models are required to increase the models’

generalization performance.
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Secondly, the reasoning of any model can be evaluated with sensitivity and invariance

tests. The former identifies how much minimal perturbation is necessary to switch

the model’s decision for the given sample. On the other hand, the latter determines

whether a change in a causally unrelated feature impacts the model’s decision. These

tests can be valuable to interpret the model’s robustness by feeding counterfactual

inputs. Besides, Veitch et al. [22] stated that invariant models can perform better on

different data distributions.

Language models such as BERT are not inherently explainable. According to Moraf-

fah et al. [23] exploiting network artifacts such as attention weights is one approach

to infer the decisions of a neural model. However, these approaches can only describe

token-wise information. In addition, perturbating instances near decision boundary is

another way of explainability [24, 25]. Yet, sentence-level estimates of such models

may not be so successful [20]. In other words, these approaches may result in erro-

neous explanations to the decision-makers since they compute correlations between

features [26, 27, 28].

In this context, causal models can generate counterfactual instances which can be used

for interpretability [20]. For instance, a data sample’s prediction can be compared

with its counterfactual representative. More specifically, if a text contains a concept,

its counterfactual will not include that concept, and their outputs can be compared to

learn how the model makes decisions.

2.3 Related Work

2.3.1 Datasets

In recent years, numerous datasets have emerged for fact-checking and they can be

categorized based on how claim statements are obtained. Some studies that create

claim statements by extracting and manipulating content from source documents such

as Wikipedia articles can be categorized as artificial claims [29, 30, 31, 32, 33]. These

studies involve human annotators who systematically generate meaningful claims.

On the other hand, another approach involves collecting claims by crawling fact-
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checking websites such as Politifact [34, 35] that primarily focuses on political claims

and Snopes [36] that covers a broader range of topics. Additionally, some studies

gather fact-checked claims from the Web [37, 38], specifically targeting domains like

healthcare [39, 40], science [41], e-commerce [42]. Furthermore, Su et al. [43] in-

troduced a hybrid dataset that includes both human-annotated and language model-

generated claims.

Fact-checking datasets in languages other than English, and multilingual datasets are

limited in comparison to English. FakeCovid [44] includes 5182 multilingual news

articles related to COVID-19. DANFEVER [45], a Danish fact-checking dataset,

comprises 6407 claims generated systematically following the FEVER [29] approach.

Similarly, CsFEVER [46] features 3097 claims in Czech using a similar methodology.

Additionally, CHEF [47] contains 10K claims in Chinese. Furthermore, CT-FCC-

18 [48] contains political fact-checking claims in both English and Arabic, focusing

on the 2016 US Election Campaign debates. X-Fact [49] comprises 31189 short

statements from fact-checking websites across 25 languages. Lastly, Dravidian_Fake

[50] consists of 26K news articles in four Dravidian languages.

The majority of existing datasets have concentrated on textual content for fact-checking.

Nevertheless, some claims can benefit from the integration of various modalities, in-

cluding images, videos and audio. Resende et al. [51] provide video, image, audio

and text content from WhatsApp chats to detect the dissemination of misinforma-

tion in Portuguese. In addition both visual and textual information were utilized for

fact-checking [52, 53, 54, 55, 56]. Additionally, MuMiN [57] incorporates the social

context in the X platform (aka Twitter) and includes 12914 claims in 41 languages.

To the best of our knowledge, the only other fact-checking dataset that includes Turk-

ish is X-Fact [49] which includes claims and evidence documents in 25 languages.

Besides the differences in the size of the corpus, their Turkish data diverges from ours

in a number of ways. Mainly, our focus in the corpus collection is richer monolingual

data, rather than a large coverage of languages. The evidence documents in X-fact

are through web searches, rather than crawling directly from the fact-checking site.

Although there is some overlap in our sources, our data is also more varied in terms

of fact-checking sites and topics of the claims. We also include short summaries pro-
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vided in justifications and additional metadata. The summaries can be valuable for ex-

plainability in fact-checking [58, 39, 59, 60, 7]. In addition, a semi-automated method

is applied to eliminate duplicate claims that we crawled from different sources.

2.3.2 Automated Fact-Checking

Automated fact-checking has been studied from data mining [12] and natural lan-

guage processing [14, 17, 61] perspectives. The methods can be classified as content-

based and context-based.

Zhou and Zafarani [13] further classify content-based methods as knowledge-based

[62, 63] and style-based [64, 65, 66, 67]. Both approaches utilize news content to ver-

ify the veracity of a statement. While knowledge-based models assess statements by

referencing their knowledge base, style-based methods typically prioritize assessing

the lexical, syntactic and semantic attributes during verification.

Similarly, the authors categorized context-based methods as propagation-based [68,

69] and source-based [70, 71]. Both methods aim to capture social context to uncover

the spread of information. While propagation-based models leverage interactions

among users on social media by enhancing the interaction network with additional

details like spreaders and publishers, source-based approaches rely on the credibility

of sources which can also be employed to identify bot accounts on social media.

2.3.3 Explainable Fact-Checking

Kotonya and Toni [72] conducted a survey of the explainable fact-checking litera-

ture and classified the studies based on explanation generation approaches. These

methods include exploiting neural network artifacts [73, 74, 75, 76, 77], rule-based

approaches [78, 79, 80], summary generation [58, 39, 59, 60, 7], adversarial text

generation [81, 82, 83], causal inference [84, 85, 86, 87], neurosymbolic reasoning

[88, 89] and question-answering [90, 91].

Schmitt et al. [92] propose a framework for evaluating human-centric explanations

for disinformation detection problem. The authors stated that free-text explanations
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contribute to the non-expert individuals’ performance. MADR [93] is a framework for

generating faithful explanations utilizing LLM agents to refine explanations. JustiLM

[94] employs a retrieval augmented generation (RAG) module for retrieving evidence

and utilizes language models for explanation generation. And finally, the Climinator

[95] framework parses claims into subclaims and uses specialized LLMs to evaluate

these claims against credible sources. A mediator LLM synthesizes the verdicts of

specialized LLMs.

The most related study in the literature was the E-BART model [60] that was trained

for both classification and summarization by introducing a joint prediction head on

top of the BART [96] language model. In other words, the encoder and decoder of

the BART model are shared for both tasks. In contrast to this approach, this work

incorporates the T5 Encoder as a shared module. For summarization, a T5 Decoder

is trained while feed-forward layers are employed for classification. We also mea-

sured the effect of using two loss weighting strategies and evaluated the impact of

instruction fine-tuning by switching the T5 model with the Flan-T5 [97] version.

Another related study in the literature was proposed by Atanasova et al. [58] who

trained a joint veracity and summarization model (Explain-MT). The authors used

DistilBERT [98] model’s contextual embeddings for veracity prediction and text sum-

marization and fed them to a cross-stitch layer [99]. This model generated extractive

summaries which formed an outline using the evidence sentences. On the contrary,

our multi-task model generate abstractive summaries which distill the information

more conveniently. Additionally, according to Magooda et al. [100], multi-task learn-

ing could improve abstractive summarization performance in low-resource languages.

2.3.4 Cross-lingual Fact-Checking

Transfer learning approaches are limited for fact-checking. One approach in this field

focuses on claim matching, aiming to link a claim in one language with its fact-

checked counterpart in another language [101, 102]. Another approach focuses on

out-of-domain generalization, involving the training of multilingual language models

in a cross-lingual context [49, 103]. Besides, cross-lingual evidence retrievers can be

employed to retrieve evidence documents in any language corresponding to a claim
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made in a different language, thereby enhancing the cross-lingual fact-checking ca-

pabilities [104].

2.3.5 Text-Based Fact-Checking

Shared tasks such as FEVER [29], CLEF2018 [105] and AVeriTeC [106] evaluate

fact-checking systems on textual claims. Although LLMs achieved high success rates

on fact-checking with English data even in zero-shot settings [107], Zhang et al. [108]

emphasize the need for language models that are specifically pre-trained on the tar-

get language. Similarly, Cekinel et al. [8] investigate cross-lingual transfer learning

using LLMs. Additionally, FactLLaMA [109] incorporates external evidence during

instruction-tuning to enhance the knowledge of LLMs. Moreover, MetaAdapt [110]

focuses on cross-domain knowledge transfer with in-context learning. MiniCheck

[111] verifies the factuality of synthetically generated claims against grounding doc-

uments. LLMs are also used for explanation generation [112, 94, 113] and neuro-

symbolic program generation [88] for fact-checking. While these works primarily

focus on enhancing models’ knowledge, we aim to explore how they can leverage

different modalities.

2.3.6 Multimodal Fact-Checking

While SpotFake+ [114] concatenates extracted text and image features for further

processing through feed-forward layers, CARMN [115] fuses multimodal informa-

tion using a cross-modal attention residual network. Pre-CoFactv2 [116] imple-

ments a multi-type fusion model that uses cross-modality and cross-type relations.

COOLANT [117] implemented a contrastive learning based fusion method for image-

text alignment. [118] incorporates the information extracted from the tweet graph

with text and image embeddings for improving fake news detection. Liu et al. [119]

examined the impact of audio in multimodal fact-checking by proposing a frame-

work that fuses text, video and audio information with the cross-attention mechanism.

Wang et al. [120] align news text with images by cross-modal attention model.

Geng et al. [121] propose an evaluation framework for VLMs that assesses the pre-
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trained knowledge of these models in fact-checking without evidence. RAGAR [122]

presents a RAG-based model that reframes the problem as question-answering for

retrieved evidence pieces. MMIDR [123] trains a distilled model to generate expla-

nations. SARD framework [124] applies multimodal semantic alignment to integrate

multimodal network features. LVLM4FV [125] is an evidence-ranking approach and

was evaluated on two benchmark datasets using LLMs and VLMs with zero-shot

setting.

Although recent studies have focused on developing multimodal models for fact-

checking using various fusion approaches, we aim to explore how effectively VLMs

utilize different modalities. Geng et al. [121] also evaluated the robustness of recent

VLMs for this problem by comparing the pre-trained knowledge of selected models

and their prediction accuracy and confidence rates in zero-shot and few-shot settings.

In contrast, we aim to leverage VLM representations by proposing a pipeline that

trains a classifier using these embeddings. Furthermore, our primary focus is on uti-

lizing multimodal information. In the experiments, we evaluate the intrinsic fusion of

multimodal information against the extrinsic fusion of separate text-only and image-

only representations.

2.3.7 NLP with Causality

Keith et al. [126] summarize the methods to adjust texts for causal inference. More-

over, Fong et al. [127] discuss the required assumptions to use latent features of text

as treatment. In another study, they also use topic modeling to discover latent treat-

ments in texts [128]. Moreover, Wood-Doughty et al. [129] address the challenges of

using proxy treatments for causal inference.

Recently, Yang et al. [130] conduct a survey of existing causality extraction methods

for texts. Moreover, Feder et al. [20] provide a review of the use-cases of text-based

causal inference and discuss fairness, interpretability, and robustness aspects. Texts

can be considered as treatment [1, 131], confounder [132, 126], outcome [133] and

even mediator [134] settings. Sridhar et al. [135] examine the causal effect of tone

on online debates. Koroleva et al. [136] propose a model to measure the similarity of

pairs of clinical trial outcomes and reports semantically using BERT-based language
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models.

There exist comprehensive studies that review models to explain black-box NLP mod-

els [137, 23, 20]. More recently, Chou et al. [28] also examine an in-depth review of

the studies on model-agnostic counterfactual algorithms and argue that many such

studies do not rely on causal theoretical formalism. Wang et al. [138] utilize a

causal approach to exploit the attention weights of a sentiment classifier. Besides,

perturbation-based approaches [24, 25] have been used for explanation. Another

prominent and challenging text-based causal explanation method is counterfactual

statement generation [139, 140, 141] which requires manipulating text in a meaning-

ful manner. Therefore, instead of modifying the text itself, changing its representation

has emerged by [142, 143]. Besides, Buyukbas et al. [144] and Cemek et al. [145]

work on the same Turkish tweet dataset as in this chapter and examine the explain-

ability of transformer architectures using two popular explainability tools, LIME [24]

and SHAP [25] for irony detection task. Likewise, Hazarika et al. [146] propose the

CASCADE model that utilizes both contextual and content information to improve

the sarcasm detection performance significantly on SARC [147] dataset.
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CHAPTER 3

EXPLAINING VERACITY PREDICTIONS WITH EVIDENCE

SUMMARIZATION: A MULTI-TASK MODEL APPROACH

Multi-task learning (MTL) is a technique in machine learning to train similar tasks

at the same time by leveraging their differences and commonalities [148, 149, 150].

Additionally, MTL allows data utilization as the model can transfer knowledge be-

tween tasks. Notably, the insights gained while learning one task can benefit other

related tasks, leading to better generalization across tasks. Moreover, from the busi-

ness point of view, deploying a single multi-task model may reduce the complexity

of maintenance and resource requirements.

This chapter primarily focuses on designing a multi-task explainable misinformation

detection model. To be more specific, a fact-checking model is trained on veracity

prediction and text summarization tasks simultaneously. The generated summaries

are derived from evidence documents and serve as justifications for the model’s ve-

racity prediction. Therefore, it should not be considered as a post-hoc explainabil-

ity model. Figure 3.1 presents an example claim alongside our model’s predictions.

Based on supplementary information provided under the "Evidence" section, the

claim has been verified by a human annotator. The gold summary was also written

by human annotators while the abstractive summary was generated by a our multi-

task model. The generated summary not only aligns with the veracity label but can

be considered as an explanation of the model’s reasoning behind its decision. More

examples are provided in Appendix A.1.

The contribution of this work lies in the following:

• The use of multi-task learning for combining fact-checking and text summa-
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Claim: Study says too many Americans still drink too much.

Evidence: “. . . The researchers found that 64 percent of men and 79 percent of

women said they drank no alcohol at all that day, and another 18 percent of men and

10 percent of women drank within the recommended amounts. Nine percent of men

said they had three to four drinks the day before and 8 percent of women said they

drank two to three alcoholic beverages, the researchers said. The heaviest drinkers of

all were the 8 percent of men who had five or more drinks, and 3 percent of women

who had four or more. "Overall the study confirms that rates of unhealthy alcohol

use in the U.S. are significant,” said Jennifer Mertens, a research medical scientist

at Kaiser Permanente Division of Research in Oakland, California, who was not part

of the study. "

Gold Summary: On any given day in the United States, 18 percent of men and 11

percent of women drink more alcohol than federal guidelines recommend, according

to a study that also found that 8 percent of men and 3 percent of women are full-

fledged “heavy drinkers.”

Our Summary: Americans are still drinking too much alcohol, even if they don’t

drink at all on any given day, according to a new study.

Veracity Label: TRUE

Figure 3.1: Sample instance from PUBHEALTH dataset with the gold justification

and our model’s summary.

rization tasks. The tasks, fact-checking and summarization, complement each

other such that one does misinformation detection while the other explains the

reason for the model’s decision.

• Training a shared encoder and separate classification and summarization heads

to perform both tasks simultaneously.

• Evaluating the performance of the proposed model on three benchmark datasets

against the related studies.

The source codes are available at: https://github.com/firatcekinel/Multi-task-Fact-

checking
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Figure 3.2: The multi-task model architecture

3.1 Method

In this chapter, a multi-task model that is based on the T5 [151] transformer is pro-

posed. The model is trained on text summarization and veracity prediction tasks

jointly. T5 transformer is an encoder-decoder model that converts each task to a

text-to-text problem. Flan-T5 [97] model employs instructional fine-tuning to further

improve the T5 model that is also utilized in the evaluation.

The model architecture is given in Figure 3.2. Both summarization and classification

tasks share a T5 Encoder during training. At first, the T5 Encoder encodes the claim

and evidence sentences in a latent space. Afterwards, the T5 Decoder produces a

summary using the T5 Encoder’s representation. Simultaneously, for the veracity

prediction, the encoder’s output is processed by two feed-forward layers respectively.
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We employ the ReLU activation function and apply dropout between two linear layers

and the sigmoid activation function after the second linear layer. Besides, the cross

entropy loss is used for measuring summary and classification losses.

The overall loss is calculated by taking the weighted sums of the summary loss (ws)

and the classification loss (wc) that is given in multi-task model loss Equation (3.1).

Loss = ws × Losssumm + wc × Losscl (3.1)

Two loss weighting strategies are employed: i) static loss coefficients and ii) un-

certainty weighting. For the static loss coefficients, constant weights are set for the

classification and summarization losses prior to training. To determine the optimal

weights, grid search-based validation experiments are performed. In addition to the

static loss coefficients, this paper also utilizes the uncertainty weighting strategy [152]

that enables dynamic adjustment of the weights based on prediction confidence. Sub-

sequently, the overall loss is calculated by taking the weighted sums of the summary

loss and the classification loss.

3.2 Experimental Results

In this section, the proposed model was evaluated on three benchmark datasets. Note

that we employed the T5-large and Flan-T5 large models in the Huggingface’s trans-

former library and only the best results obtained during the validation experiments for

each model are presented. Note that the experiments were conducted using Nvidia

RTX A6000 GPUs.

3.2.1 PUBHEALTH Results

The PUBHEALTH [39] dataset consists of health-related claims with justifications

written by journalists which were considered as gold explanations to evaluate the

correctness of claims. Each claim was annotated as True, False, Mixture or Unproven.

The training set consists of 9466 claims and 1183 claims exist in validation and test

sets.
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Table 3.1: Summarization results on PUBHEALTH

Model Rouge-1 Rouge-2 Rouge-L

Oracle [39] 39.24 14.89 32.78

Lead-3 [39] 29.01 10.24 24.18

EXPLAINERFC-EXPERT [39] 32.30 13.46 26.99

T5 single-task 30.90 13.40 27.16

T5 multi-task 32.55 14.54 28.60

Flan-T5 single-task 33.50 14.64 29.54

Flan-T5 multi-task 32.38 14.03 28.41

In the experiments, the dropout and the learning rate were set to 0.1 and 1e-4 re-

spectively with an Adam optimizer with a linear decay scheduler was employed. In

addition, the hidden layer size (denoted as "m" in Figure 3.2) was determined as 128.

The weights were assigned as follows: wsummary and wclassification were set to 0.5,

wmixture to 2.5, and wunproven to 7.

To assess the summarization performance of the multi-task model, the ROUGE-N

[153] and ROUGE-L [154] metrics were employed. These metrics were utilized to

compare the proposed model against a baseline, an oracle, and summarization models

implemented by Kotonya and Toni [39]. ROUGE-N measures the overlap of n-gram

sequences between the ground truth and the given model’s output. Likewise, the

ROUGE-L metric captures the longest common co-occurring n-gram sequences.

Table 3.1 displays the summarization outcomes of the proposed models in comparison

to the baseline and Oracle models. Lead-3 served as the baseline that utilized the first

three sentences as a summary. Oracle was an extractive summary model that served

as an upper bound. Additionally, EXPLAINERFC-EXPERT [39] was a single-task

abstractive summary generator model that performed slightly better than T5 single-

task model. On the other hand, the T5 multi-task model outperformed the state-

of-the-art model in all Rouge metrics which implies that multitasking improved the

summarization results for the T5 model. Note that the T5 single-task and the T5

multi-task models were almost identical to the model architecture given in Figure 3.2

but the classification head of the T5 single-task model was set to 0.
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Table 3.2: Veracity results on PUBHEALTH

Model Precision Recall F1-macro Accuracy

BERT (rand. sentences) [39] 38.97 39.38 39.16 20.99

BERT (all sentences) [39] 56.50 56.50 56.50 56.40

BERT (top-k) [39] 77.39 54.77 63.93 66.02

SCIBERT [39] 75.69 66.20 70.52 69.73

T5 single-task 78.24 71.05 61.08 71.05

T5 multi-task 77.62 70.32 60.93 70.32

Flan-T5 single-task 74.80 73.56 61.39 73.56

Flan-T5 multi-task 76.46 76.64 65.18 76.64

Furthermore, the Flan-T5 multi-task model represents an instruction fine-tuned vari-

ant of T5 that performed slightly less effectively than the single-task Flan-T5 (for

summarization), but both models outperformed the state-of-the-art model.

The results for veracity prediction using the precision, recall, F1-macro and accu-

racy metrics were presented in Table 3.2. The first two rows indicated the baselines.

BERT (top-k) and SCIBERT models applied a sentence selection based on the sen-

tences’ semantic similarity with the claim sentences. For evidence selection, the au-

thors employed the S-BERT [155] model. Therefore, we followed a similar approach

and selected the top-5 evidence sentences and the claim statement as input for these

models.

The results indicate that the Flan-T5 variant outperformed the T5-based models for

veracity prediction but on the F1-macro metric the state-of-the-art SCIBERT model

performed significantly better than the proposed models. The main reason for this

difference can be attributed to the considerable imbalance in label distribution. For

instance, the ratio of claims labeled as Unproven is approximately 3.2% while the

Mixture cases constitute around 15.2% of the dataset.

The confusion matrix for the veracity prediction task 3.2 is given in Table 3.3 which

revealed that the margins between the state-of-the-art model’s and our models’ F1-

macro scores are attributed to the class distributions. More specifically, the dataset
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Table 3.3: Confusion Matrix

Model Unproven False Mixture True Accuracy

T5 Unproven 27 8 5 5 60.00

single False 31 244 94 19 62.89

task Mixture 17 41 131 12 65.17

True 21 8 96 474 79.13

T5 Unproven 26 10 4 5 57.78

multi False 31 236 106 15 62.43

task Mixture 13 37 137 14 68.16

True 15 17 99 468 78.13

Flan-T5 Unproven 25 14 1 5 55.56

multi False 14 307 48 19 79.12

task Mixture 9 61 87 44 43.28

True 9 25 39 526 87.81

is highly imbalanced and despite boosting the Unproven and Mixture instances, the

models suffered from the class imbalance problem. Moreover, another takeaway is

that boosting the Mixture instances decreased the accuracy of False claims, particu-

larly for T5 models.

3.2.2 FEVER Results

FEVER [29] is a benchmark dataset that includes 185K claims with related evidence

documents from Wikipedia. The dataset was published for the FEVER shared tasks

in 2018. For the fact-checking task, the claim statements were annotated as Supports,

Refutes and Not enough info.

Since the FEVER test set did not contain the true labels, the multi-task model’s ve-

racity prediction performance was evaluated using the development set. To retrieve

evidence documents, DOMLIN system [156] was employed. DOMLIN is a two-stage

evidence retrieval system designed to enhance evidence recall. First, the document
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retrieval module selects sentences that can be considered as potential evidence. Sec-

ondly, hyperlinks and the content of the hyperlinked pages are examined to uncover

additional evidence. Additionally, the authors utilized BERT-base for evidence re-

trieval which was upgraded to ROBERTA-base [157] in the enhanced DOMLIN++

[59] version.

DOMLIN retrieved evidence documents for 17K out of the 20K claims in the devel-

opment set, while labeling the remaining instances as "not enough info." With this

supporting information, our multi-task model achieved an accuracy score of 76.18%.

However, its Flan-T5-based counterpart outperformed it with a score of 80.44%. It’s

worth noting that the DOMLIN model [156] achieved an accuracy of 71.44%, DOM-

LIN++ [59] achieved 77.48%, and the E-BART [60] model reached an accuracy of

75.10% by utilizing the similar evidence retrieval method.

3.2.3 e-FEVER Results

The e-FEVER dataset [59] is a subset of the original FEVER dataset and consists of

67687 claims with evidence documents retrieved using the DOMLIN system. In ad-

dition to claims and evidence documents, the authors published the summaries using

the GPT-3 model [158] for each claim. Hence, these summaries were leveraged as

ground-truth explanations to compare our model’s decision-making process with the

GPT-3-based model.

The authors pointed out that the GPT-3-based model generated null summaries for

certain claims. To address this issue, similar to Brand et al. [60], two variations of the

dataset were utilized: e-FEVER_Full and e-FEVER_Small. The former contains all

claims, while the latter excluded instances with null summaries. The e-FEVER_Small

consists of 40702 instances. Moreover, the authors provided some examples labeled

as Not enough info that could be either refuted or supported based on the provided

evidence documents. Therefore, the binary veracity prediction performance of the

multi-task model was measured by ignoring the Not enough info instances. Likewise,

similar to Brand et al. [60] two variations of the multi-task model were trained: T5-

Small and T5-Full where the former was trained on e-FEVER_Small and the latter

was trained on e-FEVER_Full.
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Table 3.4: Veracity and summarization results on e-FEVER

Model Dataset
Acc.

(w/o N.E.I)
Acc. Rouge-1 Rouge-2 Rouge-L

E-BARTSmall [60] eFever_Small 87.2 78.2 73.58 64.37 71.43

T5-Small eFever_Small 91.11 74.75 74.00 63.64 72.78

T5-Small

(uncertainty

weighting)

eFever_Small 90.66 74.57 74.46 64.32 73.19

T5-Full ( only

summarization)
eFever_Full - - 65.94 57.53 65.09

Flan-T5-Full (only

summarization)
eFever_Full - - 68.79 60.87 67.92

T5-Full (only

classification)
eFever_Full 91.12 73.61 - - -

Flan-T5-Full (only

classification)
eFever_Full 93.94 78.87 - - -

E-BARTFull [60] eFever_Full 85.2 77.2 65.51 57.60 64.07

T5-Full eFever_Full 90.91 75,26 68,16 59,96 67,26

T5-Full

(uncertainty

weighting)

eFever_Full 90.90 74,28 67,30 59,36 66,49

Flan-T5 eFever_Full 94.36 79.91 66.75 58.42 65.88

Flan-T5

(uncertainty

weighting)

eFever_Full 93.94 79.02 68.84 60.89 67.97

After conducting several validation experiments, the best results were obtained on the

e-FEVER dataset by setting the batch size to 4 and the hidden layer size (denoted as

"m" in Figure 3.2) to 32. Moreover, we conducted experiments by employing both

static loss weighting and uncertainty loss weighting strategies. For the static loss strat-

egy, the weights were assigned as follows: wsummary is set to 0.2 and wclassification to

0.8.

Table 3.4 demonstrated the summarization and veracity prediction results on the e-

FEVER dataset. To the best of our knowledge, only Brand et al. [60] reported results

on this dataset. The first three rows indicated the models that utilized e-FEVER_Small
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dataset. Both of the T5-based multi-task models performed slightly better than the

E-BART Small model for summarization (except Rouge-2) and binary classification.

However, E-BARTSmall achieved significantly higher accuracy (78.2%) than the pro-

posed models in three-class classification.

Secondly, the baseline models were outlined starting from the fourth row to the sev-

enth row which were trained specifically for either summarization or classification.

Therefore, we did not report the classification results for the summarization model,

and vice versa. Similarly, on eFever_Full the multi-task T5 models achieved higher

binary classification accuracy and summarization scores but performed worse than the

E-BARTFull model (77.2%) in multi-class classification. On the other hand, replac-

ing T5 with the Flan-T5 version led to the highest accuracy scores in both binary and

multi-class classification (94.36% and 79.91% respectively). Moreover, the Rouge

scores of the T5 and Flan-T5 models were higher than the E-BART model on the

eFever_Full dataset.

Furthermore, we also evaluated the impact of the loss strategy. To be more spe-

cific, we employed static loss weighting and uncertainty loss weighting which dy-

namically adapts the loss weights during training. According to the results, with

uncertainty loss weighting the multi-task models performed slightly better on sum-

marization but performed slightly worse on classification on both eFever_Small and

eFever_Full. Overall, similar to the PUBHEALTH results, the multi-task models

based on Flan-T5 demonstrated improved performance in classification through joint

training. However, there was a slight decline in summary quality with multi-tasking.

Conversely, T5-based models significantly improved on summarization with the aid

of multi-tasking but decreased slightly in binary prediction accuracy.
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CHAPTER 4

CROSS-LINGUAL LEARNING VS. LOW-RESOURCE FINE-TUNING: A

CASE STUDY WITH FACT-CHECKING IN TURKISH

Cross-lingual learning has been studied in related problems such as hate speech de-

tection [159], rumor detection [160], abusive language detection [161] and malicious

activity detection on social media [162]. For fact-checking, Du et al. [163] proposed

a model that jointly encodes COVID-19-related Chinese and English texts. Addition-

ally, Raja et al. [50] employed joint training of English and Dravidian news articles

and also applied zero-shot transfer learning by fine-tuning with English data and test-

ing on Dravidian data.

Our primary aim in this chapter to test the viability of cross-lingual transfer learn-

ing approaches for fact-checking. We particularly focus on making use of data in

English for fact-checking in Turkish for the cases of no or limited data availability.

For this purpose, we collect a fact-checking data set for Turkish, and perform experi-

ments with transfer learning through fine-tuning large language models and utilizing

machine translation. Besides an assessment of the feasibility of transfer learning

approaches, our results also provide some preliminary evidence for the type of infor-

mation, knowledge or style, used in automated fact-checking models.

Our contributions can be summarized as:

• Releasing a Turkish fact-checking dataset obtained by crawling three Turkish

fact-checking websites.1

• Assessing the efficiency of transfer learning for low-resource languages, with a

specific emphasis on Turkish.
1 https://github.com/firatcekinel/FCTR
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• Presenting experimental results, comparing zero- and few-shot prompt learning

and fine-tuning on large language models and underscoring the need to utilize

a small amount of native data.

4.1 Data

Fact-checking datasets in both Turkish and English, are released by crawling Turkish

fact-checking organizations and Snopes for English content. The significant similar-

ity between the fact-checking domains of the Turkish websites and Snopes presents

a valuable opportunity for transfer learning. In this chapter, various experiments are

conducted to evaluate the necessity of collecting datasets in low-resource languages

versus the effectiveness of transfer learning for these languages. Furthermore, we also

conducted topic modeling to explore the latent topics within the datasets in Appendix

B.1 and examined the potential content-based discrepancies between true and fake

claims in Appendix B.2.

4.1.1 Dataset for Fact-Checking in Turkish (FCTR)

We crawled 6787 claims from the three Turkish fact-checking websites: Teyit2, Do-

grulukpayi3 and Dogrula4.

All are listed as fact-checking organizations on the Duke Reporters’ Lab.5 Dogruluk-

payi and Teyit are also members of the International Fact-Checking Network (IFCN)

which is a global community of fact-checkers. Our data collection process involved

extracting claim statements, the corresponding evidence presented by the editorial

teams, summaries providing justifications which are also written by the editors, ve-

racity labels, website URLs and the publication dates of the URLs.

Claims retrieved from Teyit are summarized using the ‘findings’ section, which pro-

vides an overview of the evidence statements. Likewise, when it comes to claims

sourced from Dogrula, the summary is derived from the final paragraph within the
2 https://teyit.org/analiz
3 https://www.dogrulukpayi.com
4 https://www.dogrula.org/dogrulamalar
5 https://reporterslab.org/fact-checking/
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Figure 4.1: A fact-checked claim with multi-modal components 6

‘evidences’ section, encapsulating the key findings. In the case of claims obtained

from Dogrulukpayi, the dataset includes a dedicated paragraph following the rating

section that encapsulates both the claim and the supporting evidence. This paragraph

serves as the summary of these claims. Moreover, unique IDs were assigned to each

claim in the dataset.

Claims were also marked as multi-modal if they contained keywords such as ‘video’,

‘photo’ and ‘image’ etc. This classification was made because we recognize that

claims featuring such terms require verification not only of their textual content but

also of any associated visual or video elements. For example, consider the fact-

checked claim presented in Figure 4.1, which includes an image. In this claim, it

was stated that the video shared on social media shows the moments when protesters

in France set fire to the Alcazar Library in Marseille during the recent protests. The

reviewer who gathered supporting information noted that ‘According to inverse visual

search results, the video is not from Marseille; it’s from the Philippines. The building

that caught fire is the Manila Central Post Office.’ As a result, in order to verify such

claims every aspect of evidences should be processed. Since our focus in this chap-

ter is linguistic aspects of fact-checking, we do not make use of claims that require

multimodal processing.

Last but not least, since the claims were collected from three distinct sources, we

reviewed the claims to identify candidate duplicate claims. To accomplish this, the

BERTScore metric [164] was employed that calculates a similarity score by analyzing

the contextual embeddings of individual tokens within claim statements. We set the

6https://teyit.org/analiz/videodaki-yanginin- marsilyadaki-kutuphaneden-oldugu-iddiasi
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Table 4.1: Veracity label counts in the FCTR dataset

Label Sources Counts

false Dogrula, Teyit, Dogrulukpayi 2780

true Dogrula, Teyit, Dogrulukpayi 203

mixed Teyit 109

partially false Dogrulukpayi 72

unproven Teyit 37

half true Dogrula 17

mostly false Dogrula 14

mostly true Dogrula 6

similarity threshold to 0.85 and execute the metric three times in data source pairs.

Subsequently, a manual verification process was conducted to confirm whether the

outputs from BERTScore indeed corresponded to duplicate claims.

After the preprocessing step, the dataset contains 3238 claims dating from July 23,

2016 to July 11, 2023. The value counts for each label are presented in Table 4.1.

Furthermore, 742 claims of the final dataset were sourced from Dogrulukpayi, 525

claims were retrieved from Dogrula and 1971 fact-checked claims were gathered from

Teyit.

4.1.2 Snopes Dataset

Snopes is an independent organization committed to fact-checking in English. They

employ human reviewers who collect information about claims and write detailed

explanations as justifications. It covers a broad range of topics, including politics,

health, science, popular culture, etc. We collected claims along with their metadata in-

cluding the justifications written by human annotators, veracity labels, website URLs

and publication dates. We collected 6402 claims ranging from November 24, 1996

to August 17, 2023 and the label distribution is shown in Table 4.2. Even though

Snopes covers a significantly wider date range than the FCTR, the majority of claims
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Figure 4.2: Number of claims by year in FCTR and Snopes datasets

are verified within the period from 2015 to 2023 as illustrated in Figure 4.2.

To the best of our knowledge, Snopes corpus was also crawled by Hanselowski et al.

[36] and Augenstein et al. [37]. The reason why we re-collected the Snopes claims

is that the previous corpus were released in 2019 but our FCTR corpus is up-to-date.

Since we aim to evaluate the effectiveness of cross-lingual transfer learning and con-

sidering the potential overlap in fact-checking similar claims across both languages,

we gathered the recent fact-checked claims in both English and Turkish.

4.2 Method

4.2.1 Model

In this chapter, we fine-tuned the LLaMA-2 [165] model for the veracity prediction

task. Llama-2 is an open-source, auto-regressive transformer-based language model

that was released by the Meta AI team. It has three variants, with parameter sizes

of 7 billion, 13 billion, and 70 billion. Our main rationale for utilizing Llama-2 is

7‘other’ encompasses the following labels: scam, outdated, misattributed, originated as satire, legend, research

in progress, fake, recall, unfounded, legit
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Table 4.2: Veracity label counts in the Snopes dataset7

Veracity Labels Counts

false 2270

true 1467

mixture 588

miscaptioned 375

unproven 284

labeled satire 283

correct attribution 247

mostly false 237

mostly true 198

other 453

that it has a very large and almost up-to-date knowledge base. To be more specific,

the pretraining data includes information up to September 2022, while the fine-tuning

data is up to June 2023.

State-of-the-art language models comprise billions of parameters, demanding large

GPU memory resources during fine-tuning for downstream tasks. Additionally, the

deployment of such models in real-time applications has become increasingly imprac-

tical. Therefore, we adopted parameter-efficient fine-tuning and quantization to make

the Llama-2 model fit within our GPU memory constraints without sacrificing infor-

mation. First, LoRA [166] introduces a small number of additional parameters and

updates their weights while keeping the original parameters frozen. Similarly, QLora

[167] employs quantization to the frozen parameters to increase memory efficiency

without a significant trade-off.

4.2.2 Instruction Prompting

Instruction tuning is a method that involves additional training of language models us-

ing template instruction-output pairs. It is shown that instruction tuning significantly

improves the performance of large language models across a range of tasks [168].
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This is because feeding such tuples to describe the task, allows it to better grasp the

domain in question. Additionally, prompting was shown to be an effective way to

describe models’ reasoning steps by enabling the generation of coherent reasoning

chains leading to the desired output [169].

Zero-shot prompting is a method of instructing a language model to generate predic-

tions based on a provided prompt template, without the need for specific examples.

During this decision-making process, language models can utilize both the knowledge

that they acquired during pretraining and the template prompt. Zero-shot prompting

proves particularly useful when you have fine-tuned a language model for a related

task but lack labeled data for the specific task at hand. On the other hand, providing

one or more examples from the intended task as prompts is referred to as few-shot

prompting. By presenting these samples within the prompt, the model gains a bet-

ter understanding of the desired output and its structure. Therefore, it often leads to

superior performance compared to zero-shot prompting.

4.3 Experiments and Results

This section assesses the efficacy of transfer learning in the context of low-resource

languages with a specific focus on Turkish. Note that only the best results achieved

during the validation experiments for each model are presented.

4.3.1 Setup

The experiments were performed on two distinct datasets: Snopes and FCTR. Given

the highly imbalanced nature of the Turkish fact-checking dataset, we conducted

experiments on two variants of FCTR, namely FCTR500 and FCTR1000. In the

FCTR500 dataset, all true claims along with 297 randomly sampled false claims

were included. Conversely, in the FCTR1000 dataset, 797 false claims were ran-

domly sampled and combined with 203 true claims. FCTR500 represents a balanced

dataset, while FCTR1000 serves as its imbalanced counterpart. Other labels were

excluded because of their relatively low instance count and the varying labeling con-

ventions within fact-checking communities for ambiguous cases such as partially true
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### Instruction: Is the following statement "true"

or "false"?

### Input:

A series of photographs show the skeletal remains of

the biblical giant Goliath.

### Response:

false

Figure 4.3: Prompt template

and unproven claims. Similarly, when evaluating the language models on the Snopes

dataset, we focused specifically on true and false instances. In both datasets, we ran-

domly select 80% of the data for training, 10% for validation, and 10% for testing.

The SVM model [170] and the multilingual BERT (mBERT) model [171] were both

trained on the same datasets with identical train-dev-test partitions as a baseline. For

the SVM model, we used sparse word and n-gram features weighted by tf-idf. The

training instances are weighted with inverse class frequency to counteract the class

imbalance, particularly in the case of FCTR100 trials. Similarly, we modified the

cross-entropy loss function for the mBERT model. This adaptation took into account

the inverse class ratios, causing the models to assign a higher penalty to the errors on

the minority class compared to the majority class.

Prompt engineering played a critical role in the experiments. Various prompt formats

were evaluated and the best results were achieved using the Alpaca prompt template

[172], which is provided in Figure 4.3. The LLaMA-2 implementations in the Hug-

gingface’s transformers library were utilized language models in our transfer learning

experiments. Although the LLaMA-2 language model was primarily pretrained on

English data, we confirmed its proficiency in Turkish as well. Since it was pretrained

on relatively recent data, we preferred LLaMA-2 in our experiments.

In the experiments, we used the SFTTrainer (from trl library) to fine-tune our models.

While fine-tuning the LLMs cross entropy loss and Adam optimizer (paged_adamw_32bit)
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with linear scheduler were employed. Additionally, we used a half-precision floating

point format (fp16) to accelerate computations. Moreover, we applied parameter-

efficient fine-tuning utilizing the QLoRA [167] method to fit the language models to

Nvidia Quadro RTX 5000 and Nvidia RTX A6000 GPUs. The configuration included

setting the dimension of the low-rank matrices (r) to 16, establishing the scaling fac-

tor for the weight matrices (lora_alpha) at 64, and specifying a dropout probability of

0.1 for the LoRA layers (lora_dropout).

4.3.2 Evaluation

In its prototypical use, fact-checking is very similar to many retrieval problems. We

would like to identify a few non-factual texts (e.g., fake news) among (presumably)

many factual documents (legitimate news). As a result, binary precision, recall and F1

scores considering non-factual texts as positive instances is a natural choice for eval-

uation. However, the datasets at hand provide an interesting challenge for evaluating

fact-checking models. Since both classes are obtained from fact-checking organiza-

tions, most claims they care to consider are not factual.8 Hence, the data sets at hand

show a reverse class-imbalance compared to what we expect to observe in real use

of such systems. As a result, for all experiments reported in this paper, we report

F1-macro and F1-binary scores with respect to the ‘false’ class. The hyperparameter

sweeps are performed to optimize the F1-macro score.

4.3.3 Results

Snopes Results: First of all, we conducted fine-tuning of the LLaMA and baseline

models using the Snopes dataset. In all trials, input consisted solely of claim state-

ments, without the inclusion of any supporting evidence. The results are summarized

in Table 4.3. According to the results, the LLaMA-2 model with 70 billion parame-

ters exhibited the best performance compared to other models. Since no supporting

evidence was provided, the models were expected to rely on stylistic features for their

8 Obtaining claims by other means may be a possible way to restore the class balance. However, such an
approach also risks introducing spurious correlations with the veracity label (e.g., topic, style due to collection
procedure).
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Table 4.3: Veracity prediction on the Snopes data

Input Model F1-macro F1-binary

claim 10-fold SVM 0.651 0.709

claim SVM 0.695 0.763

claim mBERT 0.705 0.802

claim LLaMA-7B 0.766 0.838

claim LLaMA-13B 0.814 0.866

claim LLaMA-70B 0.826 0.890

predictions. It is noteworthy that the SVM models learned purely from stylistic fea-

tures. Nevertheless, a substantial performance gap exists between the SVM and the

LLaMA-2 models. This margin could be attributed to the pretrained knowledge em-

bedded in LLaMA-2 models. Moreover, the larger LLaMA-2 models outperformed

LLaMA-7B, suggesting that LLaMA-13B and LLaMA-70B leverage their knowledge

better than their smaller variant.

FCTR Results: Table 4.4 and Table 4.5 present the fine-tuning results on the FCTR500

and FCTR1000 datasets respectively. According to the findings, when using only the

claim statement as input, the SVM model which bases its predictions solely on stylis-

tic features achieved the highest F1-macro score on the FCTR500 and FCTR1000

datasets. While evaluating with claim statements only, on FCTR1000 dataset, we

fine-tuned the LLaMA models on the Snopes dataset for two epochs initially and

continued fine-tuning on the FCTR1000 dataset for one epoch to achieve the best re-

sults. Besides, the class weights of the cross entropy loss function of the multilingual

BERT model were adjusted according to the class proportions inversely to get the best

result.

Furthermore, when both the claim statement and the summary (which summarizes the

evidence provided by crowd workers) were given as input, the LLaMA-13B model

reached a superior 0.89 and 0.828 F1-macro scores on FCTR500 and FCTR1000

datasets respectively and 0.923 and 0.947 F1-binary scores respectively. These scores

were substantially higher compared to training the model with claims alone. The rea-
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Table 4.4: Fine tuning on the FCTR500 data

Input Model F1-macro F1-binary

claim 10-fold SVM 0.682 0.610

claim SVM 0.714 0.709

claim mBERT 0.653 0.750

claim LLaMA-7B 0.632 0.765

claim LLaMA-13B 0.635 0.679

claim LLaMA-70B 0.649 0.783

+summary mBERT 0.752 0.861

+summary LLaMA-13B 0.890 0.923

Table 4.5: Fine tuning on the FCTR1000 data

Input Model F1-macro F1-binary

claim SVM 0.671 0.842

claim mBERT 0.518 0.797

claim LLaMA-7B 0.561 0.864

claim LLaMA-13B 0.642 0.839

+summary mBERT 0.729 0.902

+summary LLaMA-13B 0.828 0.947

son why we incorporated summaries as input was to examine whether this additional

information improves the models’ capabilities. Notably, the LLaMA models have

limited proficiency in Turkish and we observed poor performance when solely pre-

sented with claim statements.

4.3.4 Assessing the Impact of Number of Training Instances

In this experiment, we examined the influence of varying training data quantities on

model performance. We maintained consistency by utilizing the identical test set
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Table 4.6: Impact of number of inputs on the FCTR500 data

Model Input F1-macro F1-binary

LLaMA-7B 50 claims 0.566 0.644

LLaMA-7B 100 claims 0.570 0.716

LLaMA-7B 200 claims 0.576 0.677

LLaMA-7B 300 claims 0.649 0.783

LLaMA-7B 400 claims 0.632 0.765

employed in the previous experiment given in Table 4.4. Table 4.6 illustrates the con-

sequences of manipulating the quantity of training data when employing the LLaMA-

7B model. According to the results, as the number of training instances increases, the

F1-macro score exhibits gradual improvement. However, when we employed 300

and 400 training instances, the model’s performance remained almost constant, with

both cases yielding remarkably similar results with only a single instance having a

label change in the negative direction. This observation suggests that beyond a cer-

tain threshold, additional training instances may not provide substantial performance

gains, highlighting the presence of a saturation point in the learning curve.

4.3.5 Cross-Lingual Transfer Learning

Zero-shot learning and few-shot learning can be achieved by providing prompts to

large language models. In the zero-shot setting, no specific instances are provided

for the given task. Instead, the model makes predictions based solely on the provided

instructional prompts and input statements. In contrast, in the K-shot setting, K in-

stances for each class along with their labels are included in the input prompt. This

approach enables the model to gain a better understanding of the task’s intention and

the desired answer format. We evaluated the effectiveness of transfer learning on two

distinct datasets: FCTR500, which is more balanced, and FCTR1000, which is im-

balanced. Note that in the experiments, we employed the models that were fine-tuned

on the Snopes dataset with the corresponding results provided in Table 4.3.
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Moreover, we conducted transfer learning experiments by repeating few-shot settings

five times and reported the average scores along with the standard errors. Accord-

ing to Table 4.7 and Table 4.8, few-shot learning appears to be beneficial for the

LLaMA variants. In other words, providing sample instances within prompts slightly

enhanced their performance. However, fine-tuning LLaMA language models with

Turkish data resulted in a substantial improvement in the F1-macro score. For in-

stance, on the FCTR1000 dataset, while few-shot learning achieved the highest F1-

macro score of 0.560 (in Table 4.8), fine-tuning with Turkish data boosted all LLaMA

variants to F1-macro score of 0.642 (in Table 4.5).

4.3.6 Neural Machine Translation

Neural machine translation is an approach that employs deep learning models to trans-

late a text from a source language to a target language [173]. The transformer-based

generative large language models are pretrained massively in English. Therefore,

their performance in other languages may not be equally impressive. To tackle this

challenge, we conducted translations of the Turkish fact-checking dataset into En-

glish utilizing the ChatGPT API. Table 4.9 presents the veracity detection results on

the translated data. Note that we employed the models fine-tuned on the Snopes

dataset.

The results suggest that employing translated claims led to higher success rates for

LLaMA models compared to the few-shot prompting approach. However, the suc-

cess rate of mBERT was not positively influenced by translation. This phenomenon

may be attributed to the differences in pretraining data between LLaMA models and

mBERT. To be more specific, the LLaMA models were massively trained on English

corpora, while the pretrained data for mBERT might exhibit a more uniform language

distribution.

Additionally, we annotated the test set of FCTR500 data based on claim statements,

marking them as either "local" or "global". Claims that specifically related to Turkiye

were marked as "local" claims, while claims with broader implications were labeled

as "global". This categorization was done to assess the impact of the LLaMA model’s

pretrained knowledge on the claim category. We expected that the model would per-
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Table 4.7: Transfer learning on the FCTR500 data

Input Model F1-macro F1-binary

zero shot mBERT 0.550 0.667

zero shot LLaMA-7B 0.488 ∓ 0.026 0.577 ∓ 0.027

1-shot LLaMA-7B 0.536 ∓ 0.006 0.742 ∓ 0.009

2-shot LLaMA-7B 0.545 ∓ 0.035 0.632 ∓ 0.045

3-shot LLaMA-7B 0.577 ∓ 0.011 0.642 ∓ 0.029

4-shot LLaMA-7B 0.538 ∓ 0.021 0.609 ∓ 0.024

5-shot LLaMA-7B 0.533 ∓ 0.021 0.647 ∓ 0.022

zero shot LLaMA-13B 0.498 ∓ 0.014 0.699 ∓ 0.006

1-shot LLaMA-13B 0.489 ∓ 0.026 0.683 ∓ 0.023

2-shot LLaMA-13B 0.530 ∓ 0.028 0.689 ∓ 0.019

3-shot LLaMA-13B 0.482 ∓ 0.022 0.670 ∓ 0.028

4-shot LLaMA-13B 0.529 ∓ 0.036 0.638 ∓ 0.028

5-shot LLaMA-13B 0.514 ∓ 0.013 0.632 ∓ 0.007

zero shot LLaMA-70B 0.527 ∓ 0.042 0.773 ∓ 0.016

1-shot LLaMA-70B 0.507 ∓ 0.036 0.766 ∓ 0.018

2-shot LLaMA-70B 0.539 ∓ 0.021 0.754 ∓ 0.013

3-shot LLaMA-70B 0.492 ∓ 0.030 0.692 ∓ 0.023

4-shot LLaMA-70B 0.542 ∓ 0.021 0.709 ∓ 0.014

5-shot LLaMA-70B 0.585 ∓ 0.017 0.709 ∓ 0.023

form better on global claims, given the possibility that it might have pretrained in-

formation related to such claims from the web. The results indicate that using the

LLaMA-13B model, the average F1-macro for local claims was 0.520 ∓ 0.036 while

the average F1-macro score for global claims was 0.582 ∓ 0.056. However, using the

LLaMA-7B model, we obtained the average F1-macro scores of 0.567 ∓ 0.017 for

local claims and 0.541 ∓ 0.015 for global claims. The results imply that the higher

F1-macro score for global claims with the larger LLaMA model may be attributed to

its pretraining knowledge that should be addressed in further research.
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Table 4.8: Transfer learning on the FCTR1000 data

Input Model F1-macro F1-binary

zero shot mBERT 0.529 0.736

zero shot LLaMA-7B 0.479 ∓ 0.019 0.647 ∓ 0.018

1-shot LLaMA-7B 0.501 ∓ 0.017 0.857 ∓ 0.013

2-shot LLaMA-7B 0.518 ∓ 0.010 0.706 ∓ 0.006

3-shot LLaMA-7B 0.501 ∓ 0.010 0.691 ∓ 0.024

4-shot LLaMA-7B 0.512 ∓ 0.023 0.694 ∓ 0.024

5-shot LLaMA-7B 0.502 ∓ 0.030 0.690 ∓ 0.048

zero shot LLaMA-13B 0.502 ∓ 0.011 0.803 ∓ 0.006

1-shot LLaMA-13B 0.550 ∓ 0.016 0.811 ∓ 0.014

2-shot LLaMA-13B 0.539 ∓ 0.033 0.788 ∓ 0.020

3-shot LLaMA-13B 0.533 ∓ 0.017 0.763 ∓ 0.016

4-shot LLaMA-13B 0.537 ∓ 0.010 0.758 ∓ 0.010

5-shot LLaMA-13B 0.533 ∓ 0.029 0.737 ∓ 0.021

zero shot LLaMA-70B 0.521 ∓ 0.018 0.865 ∓ 0.002

1-shot LLaMA-70B 0.528 ∓ 0.011 0.858 ∓ 0.011

2-shot LLaMA-70B 0.560 ∓ 0.033 0.841 ∓ 0.012

3-shot LLaMA-70B 0.536 ∓ 0.023 0.806 ∓ 0.018

4-shot LLaMA-70B 0.520 ∓ 0.019 0.808 ∓ 0.016

5-shot LLaMA-70B 0.521 ∓ 0.018 0.778 ∓ 0.015

Furthermore, we employed Opus-MT’s [174] opus-mt-tc-big-en-tr model to translate

the Snopes dataset into Turkish and subsequently fine-tuned the language models us-

ing the translated Snopes’ claims. This experiment was conducted to examine the

impact of translating an English dataset into a low-resource language, specifically

Turkish, on model performance. The fine-tuned models were then evaluated on the

test splits of FCTR500 and FCTR100 to maintain consistency with the other experi-

ments. According to Table 4.10, the F1-macro scores slightly decreased compared to

the results presented in Table 4.9 when translating to a low-resource language.
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Table 4.9: Turkish to English machine translation results

Dataset Model F1-macro F1-binary

fctr500 mBERT 0.561 0.789

fctr500 LLaMA-7B 0.576 ∓ 0.014 0.782 ∓ 0.007

fctr500 LLaMA-13B 0.567 ∓ 0.018 0.739 ∓ 0.013

fctr500 LLaMA-70B 0.571 ∓ 0.015 0.771 ∓ 0.007

fctr1000 mBERT 0.485 0.840

fctr1000 LLaMA-7B 0.524 ∓ 0.011 0.847 ∓ 0.003

fctr1000 LLaMA-13B 0.573 ∓ 0.013 0.879 ∓ 0.004

fctr1000 LLaMA-70B 0.581 ∓ 0.012 0.883 ∓ 0.003

Table 4.10: English to Turkish machine translation results

Dataset Model F1-macro F1-binary

fctr500 mBERT 0.532 0.757

fctr500 LLaMA-7B 0.523 ∓ 0.019 0.630 ∓ 0.023

fctr500 LLaMA-13B 0.544 ∓ 0.018 0.708 ∓ 0.006

fctr500 LLaMA-70B 0.553 ∓ 0.025 0.725 ∓ 0.022

fctr1000 mBERT 0.474 0.826

fctr1000 LLaMA-7B 0.481 ∓ 0.023 0.705 ∓ 0.020

fctr1000 LLaMA-13B 0.552 ∓ 0.044 0.800 ∓ 0.024

fctr1000 LLaMA-70B 0.556 ∓ 0.018 0.832 ∓ 0.011

Fine-tuning on translated data involves certain considerations. To be more specific,

despite the state-of-the-art machine translation models accurately translating content,

it might not be always feasible to maintain all context after translation. Additionally,

since the current language models have a better understanding of English, it is an

expected outcome that they would exhibit better performance on data translated from

Turkish to English. Likewise, the results suggested that collecting native data for low-

resource languages (Turkish for this case) is still required to ensure the development
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of successful models.

4.4 Discussion

The main objective of this chapter is to test the possibility and the extent of making

use of a large amount of fact-checking data and large language models that were

heavily pretrained in English for fact-checking in other languages with much less

labeled data, and much smaller pretraining data for large language models. We focus

on Turkish as a low-resource language for this task. Although focusing on a single

familiar language allows us to curate a better fact-checking corpus, and perform more

meaningful error analysis, our approach is applicable to many languages. Results are

likely to differ based on typological similarity of the languages in question, as well

other factors like geographical proximity and cultural similarity of the communities

that speak the language.

Our experiments demonstrate some small gains from the high-resource language in

zero-shot and few-shot settings, where few-shot learning shows slight improvement

over zero-shot. The results in Table 4.7 and Table 4.8 shows a small but consistent

increase in F1-macro scores when a few examples are included. The benefit of more

few-shot examples is unclear, however. The same is true for making use of machine

translation from low-resource language to high-resource language. The test instances

translated to English labeled by the models trained on English data clearly better than

an uninformed system. Even a small amount of training data provides better results

than zero- or few-shot approaches.

Another interesting outcome of our results is the success of small models that rely

only on surface cues on the FCTR data. There are no obvious latent variables (e.g.,

authors, source websites) that can identify the veracity label of short claim texts. This

means some relevant information is available on the surface features. However, the

large language models surpass the simple ones on English with a large margin (see

Table 4.3). This may indicate both the help of the linguistic and perhaps factual

information brought by these models.9 However, most probably the comparatively

9 A potential problem here is these models may have the full fact-checking report for the test instances,
including the clearly stated verdict in their pretraining data.
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smaller Turkish data during pretraining is possibly a factor in low scores of LLaMA

with fine-tuning with Turkish (Tables 4.4 and 4.5).

In the majority of the experiments, only the claim statements were employed as input,

since this is a more realistic scenario as individuals typically seek to assess the truth-

fulness of a claim before spending time gathering additional information. We also

include evidence statements as input in some experiments, which show a clear benefit

in providing additional information. However, evidence retrieval is also a challeng-

ing problem in fact-checking (which falls beyond the scope of this chapter). A further

problem with providing evidence may be discouraging the model from leveraging its

pretrained knowledge while making decisions.
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CHAPTER 5

MULTIMODAL FACT-CHECKING WITH VISION LANGUAGE MODELS:

A PROBING CLASSIFIER BASED SOLUTION WITH EMBEDDING

STRATEGIES

A vision language model (VLM) consists of an image encoder, a text encoder and a

mechanism such as contrastive learning [175] and cross attention [176] to fuse text

and image information. By this way, the model leverages the text and visual infor-

mation while generating a response text. VLMs consist of billions of parameters

and fine-tuning these models requires significant computational resources. Although

parameter-efficient fine-tuning approaches [177, 178] have proven to be very effec-

tive for large language models, VLMs do not scale well horizontally. Consequently,

such VLMs cannot be fine-tuned with moderate batch size and sequence length on a

single GPU for problems like fact-checking that requires long text inputs.

Instead of fine-tuning, probing classifiers are trained on the representations of a pre-

trained model [179] to predict linguistic features such as dependency parsing [180]

and POS tagging [181]. A key advantage of probing classifiers is their ability to assess

how well the pre-trained model has captured linguistic properties. In this chapter, we

aim to evaluate how VLMs leverage both text and images for the fact-checking task

by training a probing classifier. The following research questions are addressed in the

paper.

RQ1: Validating the need for multimodality: Does incorporating multimodal data

improve performance in the fact-checking task or are text-only models sufficient?

RQ2: Leveraging multimodal content: How effectively do VLMs utilize both text

and image information to enhance fact-checking performance?
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Figure 5.1: Overview of our probing fact-verification classifier. ReLU activation

is applied after each linear layer with dropout for better generalization. The dashed

lines indicate optional embeddings. In other words, evidence text and evidence image

representations are optional in this pipeline.

RQ3: Evaluating probing classifiers: How does a probing neural classifier compare

to baseline models in the context of the fact-checking task?

This chapter proposes a probing classifier that involves extracting the last hidden

layer’s representation and using it as input for a neural network. By introducing this

pipeline, we aim to elaborate on the utilization of multimodal information, text and

image, compared to embeddings extracted from discrete text-only and image-only

models for the fact-checking problem. The source code is available at the following

GitHub repository1.

1 https://github.com/firatcekinel/Multimodal-Fact-Checking-with-Vision-Language-Models
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5.1 The Proposed Method

5.1.1 Feed-Forward Veracity Classifier

We introduce a probing classifier to examine the efficiency of multimodal embeddings

compared to separate embeddings extracted from text-only and image-only models

for veracity prediction. The VLM embeddings fuse text and image modalities intrin-

sically but distinct text and image encoder embeddings are fused extrinsically by the

probing classifier as illustrated in Figure 5.1.

First, the last hidden layer representation is extracted from a VLM or a text/image

encoder. The neural classifier either receives the VLM representation or embed-

dings from the corresponding text encoder and image encoder, then predicts veracity

classes. If multiple input tensors are fed to the neural classifier, they are processed by

a linear layer and after the first layer, all tensors are resized to a "hidden_size" — a

hyper-parameter determined by validation experiments — and then concatenated. We

concatenate after the first layer because the text and image embedding sizes vary sig-

nificantly. To utilize both types of information equally, we resize these embeddings

to the same dimension and concatenate them afterward. On the other hand, if only

the VLM embedding is given to the network as input, two linear layers process the

tensor sequentially without any concatenation.

In both of the probing classifier architectures, we implement a weighted cross-entropy

loss, with weights determined by inverse class ratios to penalize the majority class

more. Since PyTorch’s cross-entropy loss implementation combines softmax with

negative log-likelihood loss, the output tensor predicts class probabilities. Conse-

quently, the classifier predicts the class with the highest probability for a given in-

stance.

5.1.2 Models

The primary goal of this chapter is to examine whether merging image and text infor-

mation provides gains for the fact-checking problem. To this end, we selected three

multimodal models with different fusion mechanisms, as explained below.
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Qwen-VL [182] is a multimodal model introduced by Alibaba Cloud. Qwen-VL is

based on the Qwen-7B [183] language model and Openclip’s ViT-bigG [184] vision

transformer. The model leverages both modalities through a cross-attention mecha-

nism. Information from the vision encoder is fused into the language model using

a single-layer cross-attention adapter with query embeddings optimized during the

training phase. In this chapter, we employed Qwen-VL-Chat-Int4 checkpoint which

was the 4-bit quantized version.

Idefics2 [185] is a general-purpose multimodal VLM introduced by Huggingface. It

is based on the Mistral-7B [186] language model and SigLIP’s vision encoder [187]

(SigLIP-So400m/14). The model employs a vision-language connector that takes the

vision encoder’s representation as input, using perceiver pooling and MLP modality

projection. After these operations, the image information is concatenated with the

encoded text representation and fed into the language model decoder.

PaliGemma [188] is introduced by Google and is based on the Gemma-2B [189] lan-

guage model and SigLIP’s vision encoder [187] (SigLIP-So400m/14). Since Gemma-

2B is a decoder-only language model, the vision encoder’s representation is fed into

a linear projection, concatenated with text inputs, and then fed into the Gemma-2B

language model for text generation. In this chapter, we employed paligemma-3b-mix-

448 checkpoint that was fine-tuned on a mixture of downstream tasks.

5.1.3 Datasets

Mocheg [55] consists of 15K fact-checked claims from Politifact and Snopes. These

websites employ journalists to verify claims who collect evidence documents and

write ruling comments. The Mocheg dataset includes both text and image evidence

which were crawled from the reference articles linked on the fact-checked claims’

webpages. In cases where multiple evidence images were available for a claim, some

collected images were found to be irrelevant. Therefore, for the experiments, only the

first image was used as the evidence image.

Factify2 [190] is a challenge dataset containing 50K claims. The authors collected

true claims from tweets by Indian and US news agencies and false claims from fact-
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checking websites. They scraped text and image evidence from external articles and

also collected claim images from the headlines of the claims. The fact-verification

task was reformulated as an entailment problem where claims were annotated to indi-

cate whether the claim text and image were entailed by the evidence text and image.

5.2 Experiments

We conducted experiments on compute nodes with 4x40GB Nvidia A100 GPUs.

While evaluating the models on the datasets, we ignore the instances that have missing

text evidence or images. For the Mocheg dataset, we used the original train-dev-test

splits. The dataset has three labels "supported", "refuted" and "not enough info (NEI)"

and we used the labels as it is.

Regarding the Factify2 dataset, since the labels in the test set were unavailable, the

original validation data was kept for testing. Instead, we randomly selected 10%

of the training set for validation but kept the same percentages of classes in each

split. Similar to Tahmasebi et al. [125], we reduced the original five labels to three

classes: Support (Support_Multimodal & Support_Text), Refute and Not enough info

(Insufficient_Multimodal & Insufficient_Text) to evaluate the proposed approach.

During the training of the probing classifier using the embeddings, validation experi-

ments were conducted through grid search within the parameter space detailed below.

Note that only the best parameter settings are presented in Appendix C.1. Last but

not least, we reported F1-macro scores and F1 scores for each class in the following

experiments.

5.2.1 Zero-Shot Inference

In this experiment, we evaluated the zero-shot inference performance of text-only

language models and multimodal VLMs on selected datasets. The text-only models

were the same language models used in the VLMs for text processing. The purpose of

reporting the results on text-only models is to examine the necessity of image content

for the fact-checking problem.
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Table 5.1: Text-only and multimodal inference results

MOCHEG FACTIFY2

Models Inputs Support Refute NEI F1-macro Support Refute NEI F1-macro

Qwen-7B text 0.533 0.262 0.169 0.321 0.524 0.458 0.281 0.421

Mistral-7B text 0.505 0.281 0.216 0.334 0.575 0.561 0.093 0.409

Gemma-2b text 0.610 0.462 0.315 0.462 0.562 0.119 0.083 0.255

Qwen-VL text + image 0.168 0.472 0.186 0.275 0.463 0.460 0.369 0.431

Idefics2-8b text + image 0.619 0.547 0.385 0.517 0.586 0.644 0.303 0.511

PaliGemma-3b text + image 0.222 0.347 0.449 0.339 0.149 0.139 0.186 0.158

LVLM4FV text 0.575 0.542 0.439 0.519 0.593 0.581 0.560 0.578

LVLM4FV text + image 0.578 0.569 0.457 0.535 0.678 0.605 0.508 0.597

MOCHEG text + image 0.490 0.604 0.282 0.459 0.547 0.621 0.275 0.481

Table 5.2: PaliGemma-3b fine-tuning results

MOCHEG FACTIFY2

Models Inputs Support Refute NEI F1-macro Support Refute NEI F1-macro

PaliGemma-3b text + image 0.412 0.514 0.173 0.366 0.751 0.997 0.757 0.835

Assess the factuality of the following claim by

considering evidence. Only answer "supported",

"refuted" or "not enough info".

Claim: {claim}

Evidence: {evidence}

Figure 5.2: Prompt template

For the text-only models, the claim and evidence text were provided as a single

prompt, as illustrated in Figure 5.2. Similarly, for each claim statement, the evidence

text and evidence image were fed to the VLMs using a similar prompt template. Note

that we reported results only for instances where the models responded with "sup-

ported," "refuted," or "not enough info." In other words, if the models did not provide

a relevant justification, these cases were excluded from the reported results.

We also reported the performance of two baseline models, LVLM4V [125] and MOCHEG

[55], for comparison. MOCHEG concatenates the claim, evidence and image to
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generate CLIP [191] representations, employing attention mechanisms to update the

claim representation based on the evidence. LVLM4V uses two-level prompting, for-

mulating the problem as two binary questions and utilizing the Mistral [186] and

LLaVa [192] models.

F1-macro scores along with F1 scores for each class are presented in Table 5.1 for

both text-only and multimodal models. The results show that multimodality can en-

hance performance depending on the dataset and model configuration. For example,

both Idefics-8b and LVLM4FV consistently outperformed their text-only counter-

parts, while Qwen-VL performed slightly better on the Factify2 dataset but worse

on the Mocheg dataset. In contrast, PaliGemma consistently responded with, "sorry,

as a base VLM I am not trained to answer this question" to test queries, suggesting

that specific policies were implemented in the base VLM to prevent responses to am-

biguous queries. As a result, PaliGemma’s inference performance was significantly

lower than that of its language model counterpart, Gemma-2b (see Appendix C.2 for

response frequencies). The inference scores of Idefics2-8b suggest that images may

provide additional information for fact-checking, likely due to its fine-tuning on a

mixture of supervised and instruction datasets, which could explain its success on

these datasets. Additionally, LVLM4V’s prompting strategy appears more efficient,

as it first checks whether the evidence is sufficient for verification before issuing a

second prompt to verify or refute the claim.

Qualitative Analysis. A qualitative analysis was conducted to explore the types of

claims that were correctly predicted by multimodal models but incorrectly predicted

by text-only models. In this analysis, the predictions from both the text-only (Mistral-

7B) and multimodal (Idefics2-8b) models were employed on the Mocheg dataset. Al-

though for the fact-checking problem, textual contents are the primary source, images

are shown to be useful. After examining the instances that are correctly predicted by

the VLM but misclassified by the LLM, we found that such instances required image

information to accurately verify the claims, as illustrated in Figure 5.6.

Fine-tuning PaliGemma-3b. Fact-checking requires long evidence with support-

ing images, making it computationally challenging to fine-tune the VLMs with mod-
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Figure 5.3: Supported claim Figure 5.4: Refuted claim

Figure 5.5: Unproven claim

Figure 5.6: Qualitative examples for VLM and LLM inference predictions

erate batch sizes and sequence lengths on a single GPU. Therefore, we fine-tuned

only the PaliGemma-3b-pt-224 checkpoint using claim, evidence and claim image as

input. The experimental details are given in Appendix C.3.

Evidence in the Mocheg dataset was collected from reference web articles. In con-

trast, Factify2 used the justifications provided by fact-checkers as evidence. As a

result, Factify2’s evidence is more concise and self-explanatory. However, models

should interpret the knowledge from Mocheg’s evidence sources to make a final de-

cision. Because of the GPU memory considerations, evidence texts were cropped if

they exceeded 768 words.

Fine-tuning results, presented in Table 5.2, show a significantly lower score of 0.366

on the Mocheg dataset compared to inference results, due to cropping of the evidence

text. However, on the Factify2 dataset, the evidence texts were shorter and the model

leveraged the key information for making a decision and achieved 0.835 F1-macro

score. Note that, on the Factify2 challenge the best-performing model was Logically

[193] which was also fine-tuned on Factify2 dataset and it achieved 0.897 F1-macro

score. Due to computational constraints, we were unable to utilize the long text ev-
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idence, particularly in the Mocheg dataset. As a result, we introduced a probing

classifier instead of fine-tuning the selected VLMs.

Table 5.3: Intrinsic fusion of VLM embeddings: Feed-forward neural classification

with VLM embeddings

MOCHEG FACTIFY2

Model Inputs Support Refute NEI F1-macro Support Refute NEI F1-macro

Qwen-VL mm_claim 0.467 0.459 0.463 0.463 0.238 0.505 0.513 0.418

Idefics2-8b mm_claim 0.522 0.535 0.399 0.485 0.427 0.516 0.471 0.471

PaliGemma-3b mm_claim 0.495 0.510 0.451 0.485 0.398 0.387 0.503 0.429

Qwen-VL mm_claim+mm_evd 0.483 0.561 0.417 0.487 0.532 0.443 0.469 0.481

Idefics2-8b mm_claim+mm_evd 0.501 0.572 0.429 0.501 0.339 0.674 0.560 0.524

PaliGemma-3b mm_claim+mm_evd 0.522 0.592 0.444 0.519 0.307 0.604 0.575 0.495

5.2.2 Intrinsic Fusion of VLM Embeddings

In this experiment, we examined whether inherently multimodal models effectively

utilize both text and image information. First, we extracted embeddings from selected

VLMs and fed these vector representations into a feed-forward multi-class classifier.

We extracted the last hidden states and applied mean pooling to each token’s embed-

ding. In other words, the extracted embedding size was (1, ntokens, ndim), where

ntokens is the number of tokens and ndim is the dimension of each token embedding.

Mean pooling provided a single embedding for each instance.

We provided two sets of inputs for extracting embeddings: mm_claim and mm_evidence.

The mm_claim input consists of a claim and a corresponding image while the mm_evidence

input consists of text evidence and an evidence image. For the second setting, we

fed two input vectors to the classifier network: the mm_claim embedding and the

mm_evidence embedding. This is because mm_evidence includes only the evidence

representation - evidence image and evidence text - so we provided the claim infor-

mation by feeding a second input to the classifier.

According to Table 5.3, the mm_evidence input setting improved F1-macro scores

consistently for all models. This indicates that using both text and image evidence

improved classification performance on both datasets. The results suggest that the

selected VLMs effectively leverage information from evidence text and images on
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both the Mocheg and Factify2 datasets.

5.2.3 Extrinsic Fusion of Language Model and Vision Encoder Embeddings

Table 5.4: Extrinsic fusion of embeddings: Feed-forward neural classification with

distinct text and image embeddings

MOCHEG FACTIFY2

Model Inputs Support Refute NEI F1-macro Support Refute NEI F1-macro

Qwen-7B+Vit-bigG claim+image 0.472 0.533 0.438 0.481 0.520 0.854 0.514 0.629

Mistral-7B+SigLIP claim+image 0.515 0.555 0.498 0.522 0.095 0.951 0.654 0.566

Gemma-2b+SigLIP claim+image 0.506 0.555 0.430 0.497 0.479 0.809 0.481 0.590

Qwen-7B+Vit-bigG claim+clm_img+evd+evd_img 0.486 0.577 0.413 0.492 0.398 0.788 0.558 0.581

Mistral-7B+SigLIP claim+clm_img+evd+evd_img 0.503 0.574 0.407 0.495 0.580 0.607 0.362 0.516

Gemma-2b+SigLIP claim+clm_img+evd+evd_img 0.500 0.584 0.378 0.487 0.580 0.607 0.362 0.556

Qwen-VL mm_claim+mm_image 0.528 0.515 0.462 0.502 0.318 0.806 0.642 0.589

Idefics2-8b mm_claim+mm_image 0.555 0.578 0.452 0.528 0.437 0.982 0.593 0.670

PaliGemma-3b mm_claim+mm_image 0.551 0.453 0.390 0.465 0.606 0.583 0.000 0.396

Qwen-VL mm_text+mm_image 0.499 0.612 0.431 0.514 0.519 0.812 0.530 0.620

Idefics2-8b mm_text+mm_image 0.526 0.541 0.458 0.509 0.319 0.825 0.547 0.564

PaliGemma-3b mm_text+mm_image 0.467 0.512 0.447 0.475 0.623 0.681 0.001 0.435

Separate embeddings were extracted for text and image information from the vision

encoders and language models, respectively. Afterward, we performed mean pooling

to obtain one-dimensional vector representations for each instance. For this experi-

ment, we had four input setups:

Input1 (claim+image): The claim representation was taken from the language model

and the corresponding image representation was taken from the vision transformer.

Input2 (claim+claim_image+evd+evd_image): In addition to Input1, the evidence

text representation was extracted from the language model and the evidence image

representation was extracted from the vision transformer.

Input3 (mm_claim+mm_image): The embeddings extracted when the claim text is

given to the VLM and the embeddings extracted when only the claim image is given

were used separately.

Input4 (mm_text+mm_image): The embeddings extracted when all textual content

is given to the VLM and the embeddings extracted when only the images are given
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Table 5.5: Baseline classifiers’ results

MOCHEG FACTIFY2

Method Model Inputs Support Refute NEI F1-macro Support Refute NEI F1-macro

KNN

Qwen-VL mm_claim 0.253 0.433 0.235 0.307 0.422 0.025 0.485 0.311

Idefics2-8b mm_claim 0.254 0.438 0.276 0.322 0.394 0.013 0.471 0.308

PaliGemma-3b mm_claim 0.237 0.435 0.250 0.307 0.410 0.009 0.471 0.293

Qwen-VL mm_claim+mm_evd 0.207 0.433 0.160 0.267 0.417 0.023 0.484 0.299

Idefics2-8b mm_claim+mm_evd 0.206 0.450 0.122 0.259 0.405 0.016 0.477 0.296

PaliGemma-3b mm_claim+mm_evd 0.150 0.457 0.148 0.252 0.401 0.017 0.471 0.296

SVM

Qwen-VL mm_claim 0.375 0.453 0.273 0.367 0.234 0.156 0.512 0.301

Idefics2-8b mm_claim 0.432 0.491 0.284 0.402 0.268 0.238 0.479 0.217

PaliGemma-3b mm_claim 0.412 0.487 0.263 0.387 0.000 0.233 0.533 0.328

Qwen-VL mm_claim+mm_evd 0.380 0.490 0.233 0.368 0.583 0.046 0.023 0.320

Idefics2-8b mm_claim+mm_evd 0.392 0.514 0.231 0.379 0.592 0.187 0.181 0.255

PaliGemma-3b mm_claim+mm_evd 0.383 0.521 0.256 0.387 0.558 0.141 0.276 0.325

were used separately.

Inputs, except Input2, had two separate text and image embeddings. Only the second

setup had four embeddings: claim embedding, claim image embedding, text em-

bedding, and text image embedding. After extracting the embeddings, we trained

the proposed probing classifier as described in Section 5.1.1 for multi-class veracity

prediction. We extracted the embeddings for Input1 and Input2 using the selected

multimodels’ text and vision encoders that were also mentioned in Section 5.1.2.

According to Table 5.4, Idefics2 with the third input setup outperformed the other

models on both datasets. Note that Idefics2 also performed better in zero-shot evalua-

tions which could indicate that the model might have encountered similar data during

pre-training. Therefore, it may leverage its pre-training knowledge while processing

these claims.

5.2.4 Ablation Study

Our feed-forward classifier, illustrated in Figure 5.1, consists of two sequential linear

layers. The first layer resizes each input tensor to a "hidden size" before concatenat-

ing the tensors. We chose this approach because there was a significant difference

between the image and text embedding sizes. By reshaping each tensor to the same

size before concatenation, we aimed to utilize both types of information more effec-
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tively.

However, this approach has some limitations. If concatenation were performed before

the first hidden layer, linear layers would be common for all models and input setups.

In our approach, only the layers after concatenation are common so as the number of

inputs increases, the number of learned parameters for the non-common layers also

increases. Additionally, we did not validate the depth of the neural classifier and the

network depth might be too shallow for the veracity detection task.

To assess whether the neural classifier effectively learns the intended task, we con-

ducted an experiment using KNN and SVM classifiers with the same training embed-

dings as mentioned in Section 5.2.2. We set the number of neighbors (k), to seven

which was decided after exploring consecutive values. Similarly, we trained SVM

classifier with a linear kernel. As shown in Table 5.5, our approach outperformed the

baselines on both datasets which implies that the proposed neural classifier leveraged

the embeddings much better than the KNN and SVM classifiers on both datasets.

5.3 Discussion

First, we addressed RQ1 by conducting a zero-shot experiment to verify that mul-

timodality improves performance depending on the dataset and model configura-

tion, with models like Idefics-8b and LVLM4FV outperforming their text-only coun-

terparts. Idefics2-8b benefits from image information while LVLM4V’s efficient

prompting strategy further enhances verification accuracy.

Additionally, the proposed intrinsic fusion pipeline which utilizes VLM embeddings,

outperformed the VLMs’ base inference performance (see Table 5.1 and Table 5.3).

The only exception was the Idefics2 model on the Mocheg dataset, which had a 0.517

F1-macro inference score while the classifier achieved only a 0.501 F1-macro score.

Since the probing classifier has only two layers, it might be too shallow for this dataset

and model. Note that the primary goal of this chapter is not to achieve state-of-

the-art scores for the selected datasets. Instead, we aim to evaluate whether recent

VLMs improve performance on the fact-checking problem through multimodality or

if fusing externally the information from distinct models achieves superior results.
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Secondly, we addressed RQ2 by assessing how VLMs leverage text and image infor-

mation. According to the results, for Idefics2-8b and Qwen-VL, multimodal embed-

dings were outperformed by discrete models (see Table 5.3 and Table 5.4). In other

words, extracting separate embeddings resulted in higher F1-macro scores across all

models. To be more specific, on the Mocheg dataset, the highest F1-macro scores for

Qwen-VL and Idefics-8b were 0.514 and 0.528 respectively. Similarly, on the Fact-

ify2 dataset, the highest F1-macro scores were 0.629, 0.670 and 0.590 respectively.

Although the best results were achieved with different input setups, for all of the best

results, we extracted separate text and image embeddings. In contrast, when embed-

dings were extracted from inherently multimodal VLMs (as shown in Table 5.3), the

maximum F1-macro scores were lower except PaliGemma-3b on Mocheg dataset.

This indicates that for the given evaluation framework, using discrete text and image

embeddings yielded higher F1-macro scores.

Besides, RQ3 was addressed by conducting an ablation study to examine how the pro-

posed classifier leverages embeddings against KNN and SVM baselines. According

to our evaluations, the proposed classifier utilized the extracted embeddings signifi-

cantly better than the baseline approaches.

Finally, on the Mocheg dataset, the selected models struggle more on "not enough

info" cases, as their lowest success rates, even in the best settings, were consistently

associated with this class. This may be due to class relabeling, where the authors

of the Mocheg dataset reannotated the "Mixture," "Unproven," and "Multiple" cases

as "Not Enough Info" which may lead to confusion for the models. In contrast, on

the Factify2 dataset, the trained classifier was more successful in distinguishing fake

claims compared to other classes. This could be linked to the difference of data

domains, as the genuine news was sourced from news agencies while fake claims

were crawled from fact-checking sites and satirical articles.
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CHAPTER 6

TEXT-BASED CAUSAL INFERENCE ON IRONY AND SARCASM

DETECTION

Traditional NLP models can achieve accurate prediction results using statistical cor-

relations within data. However, performance of the conventional methods mainly

depends on the data distribution of the training and testing datasets. For this reason,

analyzing causal relationships which utilize the data generating process are helpful to

create robust models [20, 194]. More specifically, causal inference is a way of gener-

ating counterfactual explanations in hypothetical scenarios such as how the outcome

variable is affected by an intervention on a treatment variable. The causal inference

has been applied to create inferences on imaginary situations in several fields, but its

practical applications in NLP have started to gain attention.

The cause-effect relationships of linguistic properties can be examined using causal

inference by measuring the change in the outcome resulting from an intervention on a

treatment. Under an imaginary scenario, the potential outcomes can be estimated by

satisfying ignorability, positivity, and consistency assumptions (details given in Sec-

tion 2.2). Usually, NLP applications rely on observational data, so randomly assign-

ing texts is not feasible. In other words, to satisfy the ignorability assumption in ob-

servational studies while assigning treatment, there should not exist any unobserved

confounders (predict both treatment and outcome). Identification is also another key

aspect of causal inference for NLP, which suggests that the linguistic properties can

be expressed using proxy labels [1, 195, 196]. Additionally, it is assumed that proxy

labels can estimate the ground-truth causal relation of linguistic properties.

Many state-of-the-art NLP models can be considered black-box models, which re-

ceive text documents as input and generate an output dependent on the task. There-
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fore, explaining and intervening in the predictions of such models remain a challeng-

ing problem [137, 24, 20]. Some studies examined the applicability of causal methods

to interpret the black-box NLP models by generating counterfactual statements [23].

These works can be classified as data perspective [139] and model component per-

spective [197, 198] where the former is related to counterfactual statement generation

and exploiting network artifacts is an example of the latter.

In this chapter, we focus on irony and sarcasm detection problem, and explore text-

based causal inference by using the TextCause algorithm [1] to measure the causal

effect of linguistic properties on this problem. The authors use DistilBERT [98] lan-

guage model to adjust text and they are inspired by Veitch et al.’s CausalBERT study

[132] which adapts BERT to adjust texts as a confounder. Additionally, they generate

causal embeddings using causal topic models, which were adopted from Blei et al.

[199].

Irony and sarcasm detection refers to way of verbal expressions such that the one’s

meaning is expressed through signifying just the opposite. Therefore, the problem

includes difficulties and analyzing the causal relationships can provide insight for

explainability of the generated models and improving the detection performance. The

main contributions of this chapter can be summarized as follows:

• The causal effect of linguistic properties are examined in irony and sarcasm

detection tasks using the TextCause algorithm.

• Latent confounders within text documents are modeled by using K-Means clus-

tering and LDA topic modeling and their effects on the causal inference are

analyzed.

• The obtained results provide insight in terms of the causal interpretability and

explainability aspects.

6.1 Methods

In this work, we investigate the causal inference for irony and sarcasm detection prob-

lem, which involves text analysis. Therefore we apply text based causal inference
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Figure 6.1: The structural causal model in Pryzant et al. [1]

algorithm, TextCause, [1]. In addition to adapting TextCause to irony/sarcasm detec-

tion problem, we extend the use of confounders by using unsupervised data analysis.

6.1.1 Text-based Causal Inference using TextCause

TextCause [1], employs the CausalBERT model [132] that adjusts text for causal

inference. The key innovation of the TextCause algorithm is the assumption that nei-

ther the writer’s intent nor the reader’s perception can be identified from observational

data. Therefore, the authors express the need to employ a proxy label T̂ to estimate

the causal effect of a linguistic property. In other words, they train a proxy classifier

to capture both the writer’s intent and the reader’s perception. The proposed structural

causal model is presented in Figure 6.1. According to this structural causal model,

a writer writes a text W that contains a linguistic property T with other covariates

Z. A reader’s perception of that linguistic property is represented by T̃ and Z̃ and

affects the outcome Y which can be estimated using a proxy label T̂ . Besides, the

authors state that the bias due to proxy treatment decreases as the proxy classifier’s

accuracy increases. Therefore, for observational data, actual linguistic property T can

be measured using proxy labels T̂ .

The conditional ignorability assumption of causal inference requires that the treat-

ment assignment should be independent of the outcomes for observational data. In

other words, this assumption states that we need to adjust for all confounders to esti-

mate the causal effect of the treatment. The causal effect can be estimated using the

Average Treatment Effect (ATE), which is formulated in ATE calculation Equation
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(6.1).

ATE = E[Y ; do(T = 1)]− E[Y ; do(T = 0)] (6.1)

ATE can be expressed as the difference between the interventional outcome (T=1)

and the counterfactual outcome (T=0). However, text documents may contain some

hidden confounders, such as tone and writing style, so we need to adjust the ATE

for all confounders using Pearl’s backdoor-adjustment [200]. Since the authors use

proxy labels to estimate the ATE, the modified ATE estimation is given in Equation

(6.2). The TextCause model uses DistilBERT to generate a representation of texts

and employs the special classification token, CLS, to approximate the confounding

information Ẑ. Therefore, the ATE estimator relies on the treatment, the language

model representation of text and the one-hot encoding of the covariates. As a result,

the model learns two vectors that corresponds to the language model representation

and one-hot encoded covariates respectively.

ATEproxy = EW [E[Y |T̂ = 1, Z̃ = f(W )]− E[Y |T̂ = 0, Z̃ = f(W )]] (6.2)

In addition to the text adjustment, another contribution of the TextCause algorithm

is improving the recall of the proxy labels, which is motivated by lexicon induc-

tion [201] and label propagation [202]. The authors train logistic regression and pu-

classifier models to predict proxy labels T̂ ∗ and relabel the instances that labeled as

T̂=0 but predicted as T̂ ∗=1. As a result, improved proxy labels and texts are required

to measure the causal effect. Additional covariates and language model representation

of a text should be adjusted as a confounder. Hence, the TextCause algorithm utilizes

both proxy label improvement and text adjustment to estimate the causal effect of the

desired linguistic property.

6.1.2 Unsupervised Data Analysis for Determining Confounders

While applying text-based causal inference on irony/sarcasm detection problem, the

categories or groupings within the text collection is considered as a confounder. In
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order to determine the subgroups, two different techniques1, topic modeling and clus-

tering, are used.

6.1.2.1 Topic Modeling

Topic modeling is a statistical method to discover latent topics in a corpus. It is an

unsupervised technique that examines semantic structures in a text. Moreover, the

topics represent a group of similar words that are determined by statistical models.

A document can be a mixture of several topics with different proportions based on a

word’s appearance in one of the topics. Therefore, a document can be classified using

topic modeling based on the words’ relevance to the abstract topics.

Latent Dirichlet Allocation (LDA) [199] is one of the most popular topic modeling

techniques. It is a generative statistical model that uses the Dirichlet priors for word-

topic and document-topic distributions and represents documents as a mixture of top-

ics where the distribution over words determines the proportions. Given a corpus with

M documents where a document wi contains N-words and α and β are the Dirichlet

prior parameters, the probability distribution of a document can be expressed as in

topic probability Equation (6.3). In this chapter, we lemmatized texts using SpaCy2

and performed LDA to discover abstract topics that highlight several aspects of the

document collection.

P (D,α, β) =
∏M

m=1

∫
P (θm|α)(

∏N
n=1

∑
Zmn

P (Zmn|θm)P (Wmn|Zmn, β))mθm (6.3)

6.1.2.2 Clustering

Texts are inherently high-dimensional, so a text should be encoded to a latent vec-

tor space. Sentence embeddings map sentences to vectors that can measure semantic

similarity between sentences or text summarization. Transformers [203] made a re-

markable impact on NLP tasks that passed previous models with a substantial margin.

1 https://github.com/firatcekinel/Unsupervised-Data-Analysis
2 https://spacy.io/
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Reimers et al. [155] introduce S-BERT, which is a transformer-based sentence em-

bedding model. S-BERT was built on top of the pre-trained BERT [19] model but

uses siamese and triplet networks to extract semantically meaningful sentence em-

beddings. The S-BERT produces large-sized vectors as sentence embedding, which

should be transformed into a lower-dimensional space for clustering. Dimensionality

reduction techniques such as PCA [204], and t-SNE [205] can be applied to transform

high-dimensional data into a lower-dimensional space by preserving the meaningful

information in the data.

Clustering is an unsupervised machine learning technique that groups similar data

instances together. K-Means clustering is one of the most popular clustering methods

that assign n data points to k clusters where each data point is assigned to a cluster

whose cluster center is the nearest. Since unsupervised models do not have a ground

truth, metrics such as the silhouette coefficient can measure the clustering quality. We

employ S-BERT to encode texts in a fixed-size latent space and applies dimensionality

reduction using PCA or t-SNE. Finally, the transformed data is given to a K-Means

model to group semantically similar texts.

6.1.3 Modeling Causal Inference for Irony and Sarcasm Detection

In this work, we explore the cause-effect relationship for irony and sarcasm detection

on two scenarios. The treatments (T), outputs (Y) and confounders (Z) considered in

the scenarios are as follows.

Case 1. We measure the effect of writing sarcastic posts (T) on the popularity of

the post, number of likes, (Y) and consider subreddit category, cluster label (by the

K-Means model) and the topic category (by the LDA model) as confounder (Z), sep-

arately.

Case 2. We examine whether putting an exclamation mark (!) affects irony detection.

In other words, we explore whether the exclamation mark (T) affects the readers’

perception of a text as ironic (Y). The cluster label and topic category were also

66



considered confounder (Z) in this scenario.

6.2 Experiments

6.2.1 Dataset and Settings

The first dataset that we use in our study is a Self-Annotated Reddit Corpus (SARC)

[147] that contains 1.3 million sarcastic Reddit posts. It is a publicly-available dataset,

and statements that end with "/s" marker, a common sarcastic marker of Reddit users,

are annotated as sarcastic. Therefore, we can consider that the dataset might contain

some false negative statements, such that there may be some statements that should

be annotated as sarcastic but not marked as such. Moreover, we should not assume

that all Reddit users know such markers, so the dataset might also contain some false

positive statements. Secondly, we use a Turkish tweet dataset for irony detection

[206, 145]. The dataset contains 300 non-ironic and 300 ironic tweets in Turkish,

which were annotated manually.

The experiments are performed on Nvidia GeForce RTX 2080 Super GPU with 8GB

memory. The computer also includes Intel i7-8700k CPU@3.7GHz with 12 cores.

While implementing the model, Huggingface’s multilingual DistilBERT [98] is used.

It is a lighter BERT model that performs very close to the original model using signif-

icantly fewer parameters. Additionally, we performed some validation experiments

to adjust hyperparameters such as epoch and learning rate. In Section 5.2, we present

only the results with the best hyperparameter settings.

6.2.2 Results

6.2.2.1 Case 1 Results

In this experiment, we assume that the subreddit category, topic label and cluster label

affect the treatment and outcome, so we consider these attributes as confounder.

Firstly, we gather the posts in "AskReddit" (Z=0), "news" (Z=1), "worldnews" (Z=2),
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Figure 6.2: Number of Reddit posts for each confounder settings

and "politics" (Z=3) subreddits. If the posts’ score is above five, we annotate them

as "liked" comments. Besides if the posts’ score is below 0, we annotate them as

"disliked" comments. Overall, the number of comments satisfying these conditions

are 37K approximately. ,The number of popular (liked) posts within each confounder

is given in Figure 6.2.

Secondly, we assume that the LDA topic models could be used as a confounder. We

measure the coherence score for various topic counts and observe that setting of 10

topics is a reasonable choice among a set of alternatives. The coherence score of this

setting is 0.312. Likewise, we apply K-Means clustering to find optimal number of

clusters with the collection of posts. According to Figure 6.3, K=3 is sensible among

the selected set of values according to elbow analysis. Additionally, for K=3, PCA
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and t-SNE plots are given in Figure 6.4.
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Figure 6.3: WSS and Silhouette Plots

Finally, we measure the ATE score using the subreddit category, topic label, and clus-

ter label as a confounder. Since the TextCause model requires proxy labels, we trained

a BERT model using 400K Reddit documents (80% - 20% train-val sets) from other

categories. The accuracy of the proxy classifier on the selected subreddits is 78.6%,

and the f1-score is also calculated as 0.806. The TextCause model measures the ora-

cle ATE value using the ground truth sarcastic label. The unadjusted ATE measures

the treatment effect without adjusting for any covariates. The T-boost values consider

improved proxy treatments using pu classifier (to improve the recall for positive in-

stances) and logistic regression. W adjust is another estimator that adjusts for text.

Moreover, the last two estimates combine W adjust with T-boost.

We trained the TextCause algorithm for five epochs. According to the ATE scores in

Table 6.1, adjusting for the topic label, cluster label, and subreddit category improves

the ATE result. The oracle value suggests that the sarcastic writing style increases

the chance of a post being liked between 6% and 10%. Additionally, the closest esti-

mations are predicted by the T-boost reg model, and the TextCause models’ subreddit

and cluster label estimations are very close to the oracle estimator. However, when we
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(b) t-SNE

Figure 6.4: K-Means clusters of Reddit comments

adjust for topic labels, the unadjusted ATE estimator, which calculates ATE without

adjusting for any covariate, becomes the second closest estimator overall.

6.2.2.2 Case 2 Results

In this experiment, we measure the effect of using an exclamation mark (!) on the

irony. Since the treatment is evident, there is no need for a proxy label. We evaluate

the causal question on the Turkish irony dataset, which is annotated by [145, 206]. As

in the the first experiment, we consider the topic and cluster labels as a confounder.
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Table 6.1: Case 1: Subreddit, topic and cluster labels were considered as confounder

Estimator ATEsubreddit ATElda ATEk−means

Oracle 0.0773 0.1029 0.0669

Unadjusted 0.1041 0.1041 0.1041

T-boost reg 0.0742 0.1037 0.0639

T-boost pu 0.0670 0.1005 0.0549

W adjust 0.0644 0.0659 0.0725

TextCause pu 0.0676 0.0776 0.0635

TextCause reg 0.0735 0.0719 0.0746

Figure 6.5 indicates the number of tweets for each confounder settings. According

to the WSS and silhouette plots given in Figure 6.3, the highest silhouette score is

measured when K=2. The clusters projected with the PCA and t-SNE are presented

in Figure 6.6. On the other hand, for LDA model, 10 topics settings is a reasonable

choice since the coherence score of this setting is measured as 0.7318.

We trained the TextCause algorithm for 15 epochs. According to the ATE results

that are presented in Table 6.2, the treatment has a considerable impact on the posts’

irony. However, contrary to our expectations, there is an inverse relationship between

the treatment and the outcome. As seen in Figure 6.5, this is possibly due to that

the number of ironic tweets that contain an exclamation mark is just 17% (51 out

of 300 tweets) of the all ironic tweets. In addition, text adjustment for LDA topic

labels estimates the closest prediction to the oracle value. However, for cluster labels

the unadjusted setting was the closest among the all estimators. Note that, we do not

present the results of the T-boost estimators because proxy labels were not appropriate

in this setting.
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Table 6.2: Case2: Topic and cluster labels were considered as confounder

Estimator ATEk−means ATElda

Oracle -0.3955 -0.3451

Unadjusted -0.3889 -0.3889

W adjust -0.3506 -0.3383

TextCause pu -0.0581 -0.0570

TextCause reg -0.0292 -0.0204
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CHAPTER 7

CONCLUSION

In this thesis, we evaluated the efficacy of multi-task training for veracity prediction

and text summarization. We formulated text summarization as an explanation for the

veracity prediction task, introducing a T5-based explainable multi-task fact-checking

model. Our experimental results indicate that for the Flan-T5 model, joint training

enhances text classification performance but slightly reduces summarization quality.

In contrast, the T5 model shows a significant improvement in summarization results

with minimal impact on classification performance.

We also introduced a novel Turkish fact-checking dataset, collected from three Turk-

ish fact-checking sources, containing 3238 claims with accompanying evidence and

summaries. Experiments demonstrated that fine-tuning a large language model on

this dataset yields superior results compared to zero-shot and few-shot approaches,

underscoring the value of datasets for languages with limited resources.

Additionally, we explored the use of VLMs for multimodal fact-checking. Our pro-

posed pipeline extracts embeddings from the last hidden layer of selected VLMs,

which are then processed by a simple feed-forward neural network for multi-class

veracity classification. Initial zero-shot experiments confirmed the necessity of lever-

aging multimodal information for selected datasets, with the proposed pipeline out-

performing base VLM inference performance. However, for all selected VLMs, mul-

timodal embeddings were outperformed by discrete text-only and image-only models.

Lastly, we addressed the application of causal inference to text analysis. To be more

specific, the TextCause algorithm [1] was employed to estimate the causal effect of

sarcastic linguistic properties on a text’s popularity, and use of punctuations, partic-
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ularly (!) on understanding/detecting irony. Moreover, we performed unsupervised

data analysis using clustering and topic modeling and utilized these methods’ output

for the causal inference. According to the measurements, cluster and topic labels

may contain latent information on ironic linguistic properties and the popularity of

the posts.

7.1 Limitations and Future Work

First, within the scope of the multi-task study, the T5 and Flan T5 models were pre-

trained massively on English corpora. Consequently, the performance of these models

on languages with limited resources may not be satisfactory. Secondly, the validation

experiments revealed significant fluctuations in the model’s performance when utiliz-

ing certain hyperparameter sets. Therefore, the hyperparameter optimization was a

critical part of the evaluation process. Furthermore, the interpretability of the gener-

ated explanations may vary depending on the complexity of the text. Therefore, future

research should address these limitations to enhance the robustness and applicability

of our approach. Moreover, we aim to conduct a user study to evaluate the model’s

explanations’ coherence and quality and also assess the explanations with the related

studies. Moreover, transformer-based language models demand substantial computa-

tional and hardware resources.

Secondly, for the FCTR dataset that was released as a part of this thesis study, we

did not process the collected data to ensure anonymization. The dataset encompasses

fact-checked claims about public figures including politicians and artists. If any indi-

vidual mentioned in a claim requests their removal, we can eliminate the associated

claims. In addition, the data acquisition process adhered to the regulations of the

Turkish text and data mining policy. This policy underlies that the datasets can be

used exclusively for research purposes. Moreover, the Snopes dataset was collected

in accordance with the Terms of Use set by Snopes. Therefore, anyone interested in

accessing the Snopes dataset must send a request that includes a commitment to use

the dataset only for non-commercial purposes.

Besides, as future work for multimodal fact-checking, we plan to employ VLMs as
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assistants rather than as primary fact-checkers. To be more specific, the VLM can be

used as an assistant that reviews the given text and image and returns a summary or

justification to guide the text-only model for the fact-checking task. Since the LLMs

are prone to hallucination and their accuracy depends on the quality of their train-

ing data which may be outdated or biased, incorporating knowledge grounding could

be a more reliable strategy for real-world deployment. Note that we tested a limited

number of models which may not fully capture the variability across different models

and configurations. Additionally, the evaluations were performed on English datasets,

restricting the assessment of multilingual capabilities. Furthermore, there is a poten-

tial risk that some dataset instances may overlap with the training data of the VLMs

which could bias the evaluation results. Furthermore, while LLMs and VLMs are

prone to hallucination, we did not perform any analysis on this phenomenon within

the scope of this thesis study.

Finally, within the scope of causal analysis, the results can be reexamined in-depth

in terms of explainability for future work. For instance, counterfactual statements

that do not contain a specific linguistic property can be generated and fed into the

causal-text model. The results can be examined in terms of invariance and sensitivity.
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APPENDIX A

APPENDIX A

A.1 More Examples for Generated Summaries

EXAMPLE 1

Claim: “While California is dying . . . Gavin (Newsom) is vacationing in Stevensville,

MT!”

Evidence: ... A Facebook post said, "While California is dying . . . Gavin (Newsom)

is vacationing in Stevensville, MT!" There is no evidence of this. Newsom’s office

said he has not been vacationing in Stevensville, and so did the lieutenant governor’s

office, the Montana governor’s office and the Stevensville mayor. Newsom gave a

live press conference from a California restaurant on May 18, the day the post went

up.

Gold Summary: Newsom has not been vacationing in Stevensville in recent weeks,

his office said. The Montana governor’s office and Stevensville mayor said the same

thing.

Generated Summary: A Facebook post said Newsom was vacationing in Stevensville,

Montana. The governor has not been there in recent weeks.

Gold Label: FALSE

Predicted Label: FALSE

EXAMPLE 2

Claim: Treating at the Earliest Sign of MS May Offer Long-Term Benefit

Evidence: ... this particular study is adding to evidence and is not particularly novel.

“Our study adds to the evidence supporting treatment at the earliest sign of the dis-
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ease and indicates that early treatment has a long-lasting effect on disease activity,”

a researcher says in the release. However, another novelty of the study is starting

treatment after one event and not waiting for any further events. This could lead to

a much larger market for the drug. It could be concerning since some patients only

have a few recurrences in their lifetime. There was no unjustifiable language.

Gold Summary: This release summarizes a study that followed 11-year treatment

outcomes of two groups of patients with early symptoms of multiple sclerosis (MS).

All of the patients had experienced a first episode suggestive of MS, called clinically

isolated syndrome (CIS), and a magnetic resonance imaging (MRI) scan suggesting

MS. Up to 85 percent of people with CIS go on to develop MS. The two patient

groups were randomized to either receive interferon beta-1 by injection immediately

or receive a placebo for two years. After two years, the placebo group could receive

their treatment of choice. The patients who received the drug immediately appeared

to have fewer relapses over the 11 years of study, according to the lead author, but

no advantages were observed in other patient outcomes such as overall disability and

MRI scans. The release would have been stronger if it provided more context for

judging the reduced number of relapses, especially in light of the two groups showing

no difference in disability. The release also omitted mention of significant potential

conflicts of interest, the high annual cost of interferon beta-1 and the drug’s side ef-

fects. Society faces tough questions because of the high prices of drugs that target

the immune system, such as interferon beta-1b for multiple sclerosis. This news re-

lease suggests drug therapy should begin sooner for patients without including any of

the controversy on cost playing out in the United States and Europe. Last year au-

thors of a different research study, also published in Neurology, called the rise in MS

drug prices “alarming” and wrote it was also puzzling, since some of the drugs are

not new. “Why the costs of MS DMTs [disease modifying therapies] in the United

States have risen so dramatically is uncertain. However, the simplest explanation is

that pharmaceutical companies raise prices of new and old MS DMTs in the United

States to increase profits and our health care system puts no limits on these increases,’

they wrote. Why is cost so important to mention? This drug study, in particular, has

significant potential conflicts of interest, discussed below under the Funding Sources

& Conflict of Interest Disclosure criteria.

Generated Summary: This news release describes a study that found early treat-
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ment with interferon beta-1b (brand name Betaseron) for patients with demyelina-

tion, often an early sign of multiple sclerosis (MS), was associated with a lower rate

of relapses at 11 years. The release does a good job of explaining the study and its

limitations. However, it did not mention any potential harms of treatment. There

are significant side effects reported to therapy with interferon beta-1b, including de-

pression and thoughts of suicide, according to the National Library of Medicine. No

harms were mentioned in the study. We also wonder — if patients routinely receive a

therapy before official diagnosis — whether that risks treating people for a condition

they do not eventually develop. The published study states that about 85% of people

who encounter a single episode of demyelination (often an early sign of MS) go on

to develop MS.

Gold Label: MIXTURE

Predicted Label: MIXTURE

EXAMPLE 3

Claim: Queen Elizabeth II wore a Burmese Ruby Tiara as a slight against U.S. Pres-

ident Donald Trump.

Evidence: ... Given that Queen Elizabeth has worn this tiara in the company of a va-

riety of world leaders and for a number of different special occasions, those claiming

that she chose to wear it in June 2019 specifically as a slight against President Trump

appear to be revealing more about their own political beliefs than the queen’s.

Gold Summary: What’s true: Queen Elizabeth II wore a Burmese Ruby Tiara while

meeting President Donald Trump in June 2019. The 96 rubies that adorn this tiara are

said to symbolically protect the wearer from 96 diseases. What’s false: No evidence

exists that the queen specifically chose this tiara as a slight against Trump, and the

queen has worn this same tiara on several other occasions and in the company of a

wide range of world leaders.

Generated Summary: Did Queen Elizabeth II Wear a Burmese Ruby Tiara as a

Sighting of Disrespect?

Gold Label: FALSE

Predicted Label: UNPROVEN
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Table A.1: Grid search of loss coefficients

Veracity (a),

Summary (b)

loss coefficients

Veracity label coefficients Rouge-1 Rouge-2 Rouge-L F1-macro F1-weighted

a=0.7, b=0.3 mixture_coeff=1.75, unproven_coeff=5 31,99 14,14 28,18 51,14 66,66

a=0.7, b=0.3 mixture_coeff=1.75, unproven_coeff=7 31,93 14,26 28,46 60,76 73,16

a=0.7, b=0.3 mixture_coeff=1.75, unproven_coeff=9 31,87 14,16 28,13 48,62 63,93

a=0.6, b=0.4 mixture_coeff=1.75, unproven_coeff=5 31,25 13,81 27,59 54,71 69,92

a=0.6, b=0.4 mixture_coeff=1.75, unproven_coeff=7 32,36 14,59 28,67 57,22 71,47

a=0.6, b=0.4 mixture_coeff=1.75, unproven_coeff=9 31,85 14,21 28,16 54,14 68,48

a=0.5, b=0.5 mixture_coeff=1.75, unproven_coeff=5 32,52 14,50 28,74 56,71 69,86

a=0.5, b=0.5 mixture_coeff=1.75, unproven_coeff=7 31,87 13,94 27,09 52,00 67,25

a=0.5, b=0.5 mixture_coeff=1.75, unproven_coeff=9 31,71 13,88 28,19 51,12 65,78

a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=5 31,02 13,50 27,53 50,94 65,48

a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=7 31,82 14,00 28,12 55,87 68,57

a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=9 31,96 14,42 28,40 56,52 69,93

a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=5 31,43 14,03 27,75 50,59 65,76

a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=7 31,96 14,38 28,28 55,62 68,57

a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=9 32,54 14,48 28,69 60,07 72,50

a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=5 31,78 13,86 28,04 58,73 72,20

a=0.8, b=0.2 mixture_coeff=1.75, unproven_coeff=5 32,27 14,32 28,64 58,02 72,19

a=0.8, b=0.2 mixture_coeff=1.75, unproven_coeff=7 31,05 13,44 27,49 50,96 65,48

a=0.8, b=0.2 mixture_coeff=1.75, unproven_coeff=9 32,03 13,74 28,06 57,59 70,41

a=0.5, b=0.5 mixture_coeff=1.75, unproven_coeff=5 32,00 14,29 28,38 56,31 70,19

a=0.5, b=0.5 mixture_coeff=1.75, unproven_coeff=7 31,82 14,16 28,14 55,05 69,52

a=0.5, b=0.5 mixture_coeff=1.75, unproven_coeff=9 31,87 14,15 28,22 58,33 72,34

a=0.8, b=0.2 mixture_coeff=2.5, unproven_coeff=5 32,42 14,11 28,50 54,14 67,34

a=0.8, b=0.2 mixture_coeff=2.5, unproven_coeff=7 32,03 14,20 28,31 58,87 71,89

a=0.8, b=0.2 mixture_coeff=2.5, unproven_coeff=9 31,84 13,93 28,07 58,10 71,95

a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=5 31,85 14,25 28,13 52,58 66,45

a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=7 32,33 14,18 28,48 60,33 73,11

a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=9 31,90 14,14 28,27 55,56 70,32

A.2 Grid Search of Static Loss Coefficients

We performed an ablation study to explore candidate values to find an optimal set

of hyper-parameters for our multi-task model. We performed a grid search using

PUBHEALTH [39] dataset to determine the optimal set of loss coefficients. The

experimental results are presented in Table A.1. Note that, we kept the linear layers’

size (for veracity prediction), dropout probability, batch size and number of epoch

constant.
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Table A.2: Grid search of hidden layer size

Veracity (a),

Summary (b)

loss coefficients

Veracity label coefficients
Hidden

Dim
Rouge-1 Rouge-2 Rouge-L F1-macro F1-weighted

a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=7 16 31,82 14,00 28,12 55,87 68,57

a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=9 16 31,96 14,42 28,40 56,52 69,93

a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=7 16 31,96 14,38 28,28 55,62 68,57

a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=9 16 32,54 14,48 28,69 60,07 72,50

a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=7 16 32,33 14,18 28,48 60,33 73,11

a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=9 16 31,90 14,14 28,27 55,56 70,32

a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=7 32 31,97 14,21 28,23 51,14 65,77

a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=9 32 31,83 14,00 28,05 57,25 68,34

a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=7 32 31,82 14,21 28,14 58,96 60,78

a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=9 32 32,08 14,09 28,34 52,47 65,67

a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=7 32 32,07 14,33 28,32 59,18 71,91

a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=9 32 31,79 14,13 28,29 49,99 61,82

a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=7 64 32,55 14,54 28,60 60,93 72,51

a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=9 64 32,69 14,71 28,84 49,08 62,63

a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=7 64 31,97 14,28 28,30 44,73 57,52

a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=9 64 31,98 14,19 28,33 57,78 72,52

a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=7 64 31,78 13,95 28,01 59,22 72,20

a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=9 64 31,63 13,99 27,89 53,21 66,03

a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=7 128 31,97 14,21 28,23 51,14 65,77

a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=9 128 31,83 14,00 28,05 57,25 68,34

a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=7 128 31,82 14,21 28,14 48,42 60,78

a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=9 128 32,08 14,09 28,34 52,47 65,67

a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=7 128 31,79 14,13 28,29 49,99 61,82

a=0.5, b=0.5 mixture_coeff=2.5, unproven_coeff=9 128 32,55 14,54 28,60 60,93 72,51

a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=7 256 32,07 14,33 28,32 59,18 71,91

a=0.7, b=0.3 mixture_coeff=2.5, unproven_coeff=9 256 32,69 14,71 28,84 49,08 62,63

a=0.6, b=0.4 mixture_coeff=2.5, unproven_coeff=7 256 31,97 14,28 28,30 44,73 57,52

A.3 Grid Search of Hidden Layer Dimensions for Veracity Prediction

We also performed another ablation study to discover the optimal hidden layer size of

the classification head of our multi-task model using the PUBHEALTH [39] dataset.

The experimental results are presented in Table A.2. Note that, we kept the dropout

probability, batch size and number of epochs constant.
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APPENDIX B

APPENDIX B

B.1 Topic Modeling

Table B.1: Topic distribution in the FCTR dataset

Dataset Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

FCTR500-train 39 64 105 49 116 27

FCTR500-val 8 10 10 9 9 4

FCTR500-test 6 9 7 9 15 4

FCTR1000-train 73 132 174 130 237 54

FCTR1000-val 9 16 20 18 29 8

FCTR1000-test 12 11 19 21 35 2

FCTR 293 472 524 600 927 167

Table B.2: Topic distribution in the Snopes dataset

Dataset Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7

Snopes-train 206 1063 386 260 553 327 193

Snopes-val 26 125 52 27 73 48 23

Snopes-test 25 124 43 29 75 50 27

Topic modeling is a method for discovering abstract topics in a collection of doc-

uments. Latent topics indicate the patterns in the data that can be inferred by the

relationships between words that occur in the documents. The output of a topic mod-
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Table B.3: Representative words in FCTR dataset

Topics Representative Words (transl.)

Topic1 claim, news, person, sharing, information,

account, share, be, child, use

Topic2 photograph, image, account, sharing, share, claim,

video, name, view, use

Topic3 country, Turkiye, year, history, claim,

data, take, be, state, Turkic

Topic4 vaccine, be, virus, claim, work,

human, disease, research, person, impact

Topic5 video, claim, news, be, statement,

sharing, name, history, eat, talk

Topic6 use, product, breeding, water, electricity,

plane, production, year, logo, claim

eling is a set of abstract topics that are represented by a list of the most representative

words in the topic. In our analysis, Latent Dirichlet Allocation (LDA) [199] topic

modeling is applied to the Snopes and FCTR datasets to explore the latent patterns

using the coherence metric. The coherence score can be used to evaluate the semantic

similarity between the words in a topic.

The topic distributions for each data split are given in Table B.1 and Table B.2 re-

spectively. Even though we did not split the datasets according to the topic ratios,

the most dominant and the least frequent topics were preserved in all data splits. For

instance, in the FCTR dataset, The fifth topic is the most frequent topic in all subsets

except FCTR500-val in which the given topic is not the most dominant topic by a

small margin. Additionally, the sixth topic is the least frequent topic in all splits.

We utilized lemmatization, employing the Spacy library for English 1 and the Zeyrek

library for Turkish 2. Table B.3 and Table B.4 display the most representative words

for each topic. The coherence score for the Turkish dataset within these topics was

1 https://spacy.io/models/en
2 https://zeyrek.readthedocs.io/en/latest/
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Table B.4: Representative words in Snopes dataset

Topics Representative Words

Topic1 animal, water, world, report, military,

human, fire, Russian, area, Russia

Topic2 say, people, year, man, know, take,

make, time, go, get

Topic3 image, photograph, show, video, picture,

take, create, appear, film, real

Topic4 Trump, president, Obama, White House, former,

Clinton, President Donald, tweet, Donald Trump, say

Topic5 post, article, news, Facebook, claim,

story, publish, report, page, com

Topic6 state, law, government, report, vote,

bill, United States, federal, election, claim

Topic7 covid, vaccine, health, study, drug,

medical, cause, disease, use, patient

0.388, and the perplexity score was -7.699. The average entropy value per document

was calculated as 1.50, suggesting a moderate topic distribution level. Similarly, the

Snopes dataset achieved a coherence score of 0.450 and a perplexity score of -8.796.

Moreover, the average entropy score per document was found to be 1.94 which might

indicate that the documents cover multiple related topics without a strong focus on a

single one.

B.2 NELA Features

News Landscape (NELA) features [207] are manually crafted content-based tex-

tual attributes for news veracity detection. The authors divided the features into six

classes: style, complexity, bias, affect, moral and event. We applied NELA features

to examine the discrepancies of the features for fake and true claims in the FCTR

dataset and conducted Tukey’s pairwise test [208] to identify statistically significant
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Table B.5: Statistically significantly different NELA features

Subset Feature name Adjusted p-value

FCTR500 allcaps 0.023

FCTR500 avg_wordlen 0.018

FCTR500 coleman_liau_index 0.018

FCTR500 lix 0.032

FCTR1000 NNP 0.049

FCTR1000 avg_wordlen 0.048

FCTR1000 coleman_liau_index 0.045

FCTR1000 lix 0.048

differences.

Table B.5 presents features that exhibit statistically significant distinctions for FCTR500

and FCTR1000. We computed the NELA features for only claim statements and the

results indicate that only a few features demonstrate significant divergence for fake

and true claims.
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APPENDIX C

APPENDIX C

C.1 Hyperparameter Values for the Best Models

We set the number of epochs to 20, enabling early stopping with the patience of 5

and monitoring the validation loss. We used the Adam optimizer in combination with

a cosine scheduler, employing a warm-up ratio of 0.05. Moreover, we adjusted the

cross-entropy loss weight of the neural network according to the inverse class ratios.

In this way, the classifier was penalized more for the misclassifications of the minority

classes.

We performed a grid search to explore the following parameter space for the results

given in Table 5.3 and Table 5.4:

learning rate: { 0.00001, 0.0001, 0.001, 0.01, 0.1}, ,

batch size: {32, 64, 128},

hidden size (h in Figure 5.1): {128, 256, 512 } and

dropout: {0.05, 0.1, 0.2, 0.4}.

The parameter settings for the best results are detailed in Table C.1.

C.2 Zero-shot Model Response Frequencies

We used the prompt template shown in Figure 4.3 for all models in the zero-shot infer-

ence experiments. We expected the models’ responses to contain either "supported,"

"refuted," or "not enough info." If a model’s response did not contain these labels, we

ignored those instances. Additionally, we observed that PaliGemma consistently re-
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MOCHEG FACTIFY2

Embedding Input Batch LR Hidden size Dropout Batch LR Hidden size Dropout

Qwen-VL claim 32 0.01 128 0.1 64 0.001 128 0.1

idefics2-8b claim 32 0.01 256 0.05 32 0.0001 128 0.1

PaliGemma-3b claim 32 0.01 512 0.05 64 0.0001 128 0.05

Qwen-VL claim+evd 64 0.01 256 0.05 32 1E-05 256 0.05

idefics2-8b claim+evd 64 0.01 512 0.1 32 0.001 256 0.1

PaliGemma-3b claim+evd 64 0.001 256 0.1 64 1E-05 512 0.1

Qwen-7B+Vit-bigG input1 128 0.01 512 0.1 32 0.001 128 0.1

Mistral-7B+SigLIP input1 64 0.001 512 0.1 128 0.001 256 0.2

Gemma-2b+SigLIP input1 64 0.01 512 0.1 128 0.001 128 0.1

Qwen-7B+Vit-bigG input2 32 0.001 256 0.4 64 0.001 128 0.1

Mistral-7B+SigLIP input2 64 0.01 512 0.1 64 0.001 256 0.4

Gemma-2b+SigLIP input2 64 0.001 512 0.2 64 0.001 256 0.4

Qwen-VL input3 32 0.001 512 0.2 128 0.001 512 0.1

Idefics2-8b input3 128 0.001 512 0.1 128 0.01 512 0.1

PaliGemma-3b input3 64 0.001 256 0.1 64 0.001 256 0.2

Qwen-VL input4 64 0.001 512 0.1 128 0.001 128 0.4

Idefics2-8b input4 128 0.001 128 0.4 128 0.001 128 0.1

PaliGemma-3b input4 64 0.001 256 0.2 32 0.001 512 0.4

Table C.1: Parameter settings for the best models

Model Mocheg (1655) Factify2 (7273)

Qwen-7B 1366 (82.5%) 4335 (59.6%)

Mistral-7B 1361 (82.2%) 5756 (79.1%)

Gemma-2B 1617 (97.7%) 6136 (84.4%)

Qwen-VL 1646 (99.5%) 6483 (89.1%)

Idefics2-8b 1653 (99.9%) 5873 (80.7%)

PaliGemma-3b 320 (19.3%) 91 (1.2%)

Table C.2: Zero-shot response frequencies

sponded with "sorry, as a base VLM I am not trained to answer this question," which

could be due to injected policies. The frequencies of considered cases for each model

(with percentages in parenthesis) are given in Table C.2.
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C.3 Fine-tuning Parameter Settings

We employed QLoRA [209] adapter on top of attention weight matrices and fine-

tuned only the LoRA [177] adapters for 3 epochs. The batch size was set to 2 with

an initial learning rate of 2e-5 using a cosine scheduler and the Adam optimizer. We

used the checkpoint with the lowest validation loss. Additionally, we set warm up

to 0.02, gradient accumulation to 4 and evaluated on validation set 10 times during

fine-tuning. We set the rank of matrices for LoRA adapters to 16, the scaling factor

(lora_alpha) to 16 and the dropout rate for the adapters to 0.05. Besides, 16-bit mixed

precision, bfloat16, was employed for memory efficiency and faster fine-tuning.
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