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ABSTRACT

GRAPH NEURAL NETWORKS AS SURROGATE MODELS FOR
STRUCTURAL ANALYSIS: A STUDY ON BUCKLING BEHAVIOR

Kurt, Ömer
M.S., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Ulaş Yaman

January 2025, 127 pages

This thesis presents a novel approach to structural analysis using Graph Neural Net-

works (GNNs) as surrogate models, specifically focusing on predicting buckling be-

havior of thin-walled structures with and without stiffeners. The research addresses

the computational challenges in traditional finite element analysis by developing an

efficient machine learning framework that maintains accuracy while achieving com-

putational speeds faster than conventional methods. To create a well balanced dataset,

a comprehensive data generation pipeline is introduced, creating diverse structural

geometries using Bezier curves and implementing systematic load case generation

procedures. The study developed an enhanced graph representation system that effec-

tively captures both local and global structural behaviors through innovative features

such as super-nodes and virtual edges, while ensuring rotational and translational in-

variance through principal component analysis-based coordinate transformation. The

framework demonstrates remarkable accuracy in buckling prediction across both non-

stiffened and stiffened structures, with performance validated against finite element

analysis results using multiple test datasets, including scaled geometries and complex

loading scenarios. The framework reduces analysis time and enables rapid evaluation
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of multiple design variants. This reduction in computational time, combined with

maintained prediction accuracy, demonstrates the potential of the framework to trans-

form preliminary design processes. The research contributes to the growing field of

machine learning in structural analysis by providing a robust methodology for cre-

ating efficient surrogate models and by demonstrating effectiveness of GNNs on a

global property prediction like buckling.

Keywords: Graph Neural Networks, Surrogate Model, Machine Learning, Buckling,

Structural Analysis.
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ÖZ

YAPISAL ANALİZ İÇİN VEKİL MODELLER OLARAK GRAFİK SİNİR
AĞLARI: BURKULMA DAVRANIŞI ÜZERİNE BİR ÇALIŞMA

Kurt, Ömer
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ulaş Yaman

Ocak 2025 , 127 sayfa

Bu tez, Grafik Sinir Ağlarını (GSA) vekil modeller olarak kullanarak yapısal ana-

lize yönelik yeni bir yaklaşım sunmaktadır. Çalışma özellikle takviyeli ve takviyesiz

ince cidarlı yapıların burkulma davranışlarının tahminini ele almaktadır. Araştırma,

geleneksel yöntemlere kıyasla daha hızlı hesaplama süreleri elde ederken doğruluğu

koruyan etkili bir makine öğrenimi modeli geliştirerek, geleneksel sonlu elemanlar

analizindeki hesaplama zorluklarının çözümünü amaçlamaktadır. Dengeli bir veri seti

oluşturmak için, Bezier eğrilerini kullanarak çeşitli yapısal geometriler oluşturan ve

sistematik yük durumu üretme prosedürlerini uygulayan kapsamlı bir veri üretim hattı

sunulmuştur. Çalışma, süper düğümler ve sanal kenarlar gibi yenilikçi özellikler ara-

cılığıyla hem yerel hem de global yapısal davranışları etkili bir şekilde yakalayan ve

temel bileşen analizi tabanlı koordinat dönüşümü yoluyla dönme ve öteleme değiş-

mezliğini sağlayan gelişmiş bir grafik temsil sistemi geliştirmiştir. Geliştirilen mo-

del burkulma tahmininde hem takviyesiz hem de takviyeli yapılar için kayda değer

bir doğruluk göstermekte olup, performansı ölçeklendirilmiş geometriler ve karmaşık

yükleme senaryoları dahil olmak üzere çoklu test veri setleri kullanılarak sonlu ele-
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manlar analizi sonuçlarına göre doğrulanmıştır. Model analiz süresini azaltmakta ve

birden fazla tasarım varyantının hızlı değerlendirilmesini sağlamaktadır. Hesaplama

süresindeki bu azalma ve korunan tahmin doğruluğu, modelin ön tasarım süreçlerini

dönüştürme potansiyelini göstermektedir. Bu araştırma, verimli vekil modeller oluş-

turmak için etkili bir metodoloji sağlayarak ve Grafik Sinir Ağlarının burkulma gibi

global bir özellik tahminindeki etkinliğini göstererek yapısal analizdeki büyüyen ma-

kine öğrenimi alanına katkıda bulunmaktadır.

Anahtar Kelimeler: Grafik Sinir Ağları, Vekil Model, Makine Öğrenmesi, Burkulma,

Yapısal Analiz.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Structural analysis is a critical component in designing efficient and safe engineering

structures, particularly in aerospace applications where the balance between structural

integrity and weight efficiency directly impacts operational performance and costs. In

these applications, thin-walled structures are extensively used due to their excellent

strength-to-weight ratios. However, these structures are susceptible to buckling fail-

ure - a phenomenon where a structure suddenly loses its stability under compressive

loads, often at stress levels well below the material’s yield strength [1].

The significance of buckling analysis in aerospace design cannot be overstated. Stud-

ies have shown that buckling-related failure modes account for approximately 50% of

an aircraft’s structural weight as shown in Table 1.1 [2]. This dominance of buckling

in structural design creates a pressing need for accurate and efficient analysis meth-

ods. However, current industry-standard approaches, primarily based on hand cal-

culations and finite element analysis (FEA) [3, 4], present significant computational

challenges. A typical aerospace component might require analysis under thousands

of different loading conditions, with each analysis taking considerable computational

time [5]. This computational burden becomes particularly acute during preliminary

design phases, where rapid evaluation of multiple design variants is crucial for opti-

mization.

The challenge is further complicated when structures incorporate stiffening elements

- a common practice in aerospace design to enhance buckling resistance [6]. While

stiffeners effectively improve structural performance, they significantly increase the
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Failure Mode
% Structural Weight

Airplane 1 Airplane 2

Tensile Strength 30.1 18.6

Compressive Strength 0.0 3.5

Crippling[1] 14.3 19.5

Compression Surface Column Buckling[1] 8.1 9.7

Shear or Compression Buckling[1] 19.7 18.1

Aeroelastic Stiffness 14.1 11.6

Durability & Damage Tolerance 13.7 19.0

Total: 100.0 100.0

Table 1.1: Aircraft Structural Weight Breakdown by Failure Mode with [1] Denoting

Buckling Failure Modes

complexity of analysis, adding to the computational overhead. Traditional FEA ap-

proaches, while accurate, can require hours or even days to analyze complex stiffened

structures under multiple load cases, creating a bottleneck in the design process.

This computational burden presents a clear problem: how can we maintain the accu-

racy necessary for critical aerospace applications while dramatically reducing anal-

ysis time? The need for a solution becomes particularly urgent when considering

modern design practices that emphasize rapid iteration and optimization. Engineers

need tools that can provide quick, reliable predictions of structural behavior, espe-

cially buckling performance, without sacrificing the accuracy that safety-critical ap-

plications demand.

This challenge motivates our research into developing efficient surrogate models for

structural analysis. The potential impact of such models is significant - reducing

analysis time from hours to minutes could transform the design process, enabling

more comprehensive exploration of design spaces and ultimately leading to more

optimized structures. The development of such tools would not only accelerate the

design process but could also enable new approaches to structural optimization that

are currently impractical due to computational constraints.
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Researchers have explored various surrogate modeling techniques that could poten-

tially replace or complement traditional FEA [7]. Popular machine learning archi-

tectures like Convolutional Neural Networks or Recurrent Neural Networks are in-

herently unsuitable for these tasks due to the complex nature of mesh-based struc-

tural simulation. The irregular connectivity and varying node counts in finite el-

ement meshes make it impossible to directly apply these traditional deep learning

approaches. While various surrogate modeling approaches have been explored to ad-

dress these challenges, Graph Neural Networks (GNNs) offer a particularly promising

direction due to their natural alignment with mesh-based analysis methods. The finite

element mesh used in structural analysis can be directly interpreted as a graph, where

nodes represent mesh vertices and edges represent element connectivity. This natural

correspondence enables GNNs to learn directly from the mesh structure while pre-

serving important geometric and physical relationships. Unlike traditional machine

learning approaches that often struggle with irregular mesh structures and varying ge-

ometries, GNNs can handle any meshed geometry, making them especially suitable

for developing versatile surrogate models for structural analysis that can generalize

across different shapes and configurations[8, 9, 10, 11, 12].

Traditional machine learning approaches in structural analysis have largely focused

on parametric studies, where models are trained on simplified parameter sets repre-

senting specific geometric configurations. These approaches, while useful for their

intended parameter spaces, cannot generalize to arbitrary geometries outside their

training domain. The structural engineering field needs more versatile surrogate mod-

els that can analyze any shape regardless of its geometry without requiring explicit

parametrization. Generating a general purpose surrogate model with GNNs is another

motivation of this work.

A notable gap exists in the prediction of global structural properties like buckling

behavior using machine learning approaches. While local properties like stress and

displacement fields have been extensively studied [11, 12], the prediction of global

instability phenomena remains largely unexplored. This research was motivated by

the opportunity to demonstrate how GNNs, enhanced with specialized architectures

like virtual edges and super nodes, can effectively capture and predict such global

behavioral properties. These architectural innovations enable better information flow
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across the structure, making it possible to predict phenomena that depend on the entire

structural response rather than just local interactions. This advancement in global

property prediction represents a significant step forward in developing comprehensive

surrogate models for structural analysis.

Figure 1.1: Overview of the study

1.2 Aim of the Study

This thesis aims to develop a robust Graph Neural Network-based framework for

structural analysis that can effectively predict both local and global structural behav-

iors, with particular emphasis on buckling analysis. Our primary goal is to create a

surrogate model that combines the speed advantages of machine learning with the ac-

curacy requirements of engineering applications, focusing specifically on addressing

the challenges of time-independent structural analysis problems.

The first fundamental objective is the development of a comprehensive data genera-

tion and preparation pipeline. This involves:

• Creating a sophisticated shape generation system using Bezier curves that pro-

duces diverse yet physically meaningful structural geometries

• Implementing systematic load case generation procedures that ensure compre-

hensive coverage of realistic loading scenarios
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• Developing automated mesh generation and validation processes that maintain

high-quality finite element discretizations

• Establishing rigorous data filtering and balancing methodologies to ensure ef-

fective model training

The second major objective is to advance the state-of-the-art in GNN architectures

for structural analysis through several key innovations:

• Development of a novel coordinate transformation approach based on principal

component analysis to ensure rotational and translational invariance

• Implementation of enhanced information flow mechanisms through virtual edges

and super nodes to capture both local and global structural behaviors

• Design of specialized pooling strategies optimized for different prediction tasks,

particularly focusing on global properties like buckling eigenvalues

• Creation of robust feature engineering approaches for both node and edge at-

tributes that effectively capture structural characteristics

A crucial research objective is to demonstrate the framework’s effectiveness in pre-

dicting buckling behavior, a complex global structural property that requires under-

standing the entire structure’s response. This includes:

• Achieving accurate predictions of critical buckling loads for both non-stiffened

and stiffened structures

• Demonstrating the model’s ability to generalize across different geometric scales

and configurations

• Validating the framework’s performance against traditional finite element anal-

ysis results

• Establishing the computational advantages of our approach compared to con-

ventional methods
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Additionally, this research aims to contribute to the broader field of scientific machine

learning by:

• Providing insights into effective graph representations for physics-based prob-

lems

• Developing methodologies for handling both local and global physical behav-

iors in graph neural networks

• Creating publicly available datasets and implementation guidelines to facilitate

further research

• Establishing best practices for balancing computational efficiency with predic-

tion accuracy in surrogate modeling

Through these objectives, we seek to demonstrate that Graph Neural Networks can

serve as reliable and efficient surrogate models for structural analysis, capable of

handling complex geometries and loading conditions while maintaining engineering-

grade accuracy. The successful achievement of these aims would represent a signif-

icant advancement in the application of machine learning to structural engineering

problems, potentially transforming how preliminary design and optimization tasks

are performed and providing engineers with a tool that maintains high accuracy while

significantly reducing computational time.

1.3 Scope of the Study

The scope of this study is carefully defined to enable a focused investigation of GNN-

based surrogate models for structural analysis, with particular emphasis on buckling

prediction. This scope is outlined across five key aspects.

1.3.1 Geometric Scope

This study focuses on 2D thin-walled structures that can be effectively represented

using shell elements. The geometric complexity ranges from simple shapes to more
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complex configurations containing cutouts and stiffeners. To maintain consistency in

the training dataset and ensure meaningful comparisons, all structures are constrained

within specific size ranges from 700mm to 1000mm. The scope explicitly excludes

3D structures and complex assemblies to maintain tractability of the problem and

focus on fundamental structural behaviors.

1.3.2 Analysis Types

Two primary types of structural analysis are considered in this study. The first is

linear static analysis, which focuses on predicting displacement fields. The second

is linear buckling analysis, which aims to predict critical buckling load (eigenvalue)

of the first buckling mode. The study explicitly excludes more complex analysis

types such as non-linear analysis, dynamic analysis, higher-order buckling modes,

and post-buckling behavior, as these would significantly increase the complexity of

the problem and computational requirements.

1.3.3 Material and Property Considerations

The material scope is limited to isotropic, linear elastic materials, specifically fo-

cusing on general purpose aluminum alloy with standard properties (Young’s mod-

ulus: 76 GPa, Poisson’s ratio: 0.3 [13]). Shell elements are modeled with constant

thickness throughout the structure. This simplified material model excludes more

complex considerations such as composite materials, non-linear material behavior,

temperature-dependent properties, and variable thickness distributions, allowing the

research to focus on fundamental structural behavior patterns.

1.3.4 Loading and Boundary Conditions

The study encompasses a range of loading conditions including in-plane compression

and tension loads, shear loads, and various combinations thereof. Boundary condi-

tions are limited to fixed constraints applied at specified locations. A systematic load

case generation procedure is implemented within defined parameter ranges to ensure
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comprehensive coverage of realistic loading scenarios. The scope excludes out-of-

plane loads, thermal loads, dynamic loads, pressure loads, and complex boundary

conditions that would require contact analysis, maintaining focus on primary struc-

tural responses.

This clearly defined scope allows for a thorough investigation of the research objec-

tives while maintaining feasibility and focusing on the most relevant aspects of the

problem. The boundaries established here ensure that the research remains focused

and manageable while still providing meaningful contributions to the field of struc-

tural analysis and machine learning.

1.4 Contributions and Novelties

This thesis makes several significant contributions to the fields of structural analysis

and machine learning, particularly in developing Graph Neural Networks as surrogate

models for structural analysis. The key contributions can be summarized in three

main areas.

1.4.1 Data Generation and Processing Framework

The first major contribution is the development of a comprehensive data generation

and processing pipeline for structural analysis problems. We introduce a novel shape

generation system using Bezier curves that creates diverse yet physically meaningful

structural geometries, including features like cutouts and stiffeners. A key innovation

is our approach to stiffener layout generation and representation, which enables the

study of stiffener effects on structural behavior, particularly buckling. The pipeline

includes sophisticated load case generation and filtering mechanisms that ensure the

dataset captures a wide range of structural behaviors while maintaining physical rel-

evance.

Furthermore, our commitment to making these datasets publicly available, along

with comprehensive documentation of generation parameters and preprocessing pro-

cedures, represents a significant contribution to the research community. This will
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enable other researchers to develop and validate their approaches using high-quality,

well-characterized data.

1.4.2 Enhanced Graph Representation System

The second major contribution lies in our novel approach to representing structural

analysis problems as graphs. We develop multiple strategies for virtual edge cre-

ation, including a super node concept that enhances the model’s ability to capture

global structural behavior. A significant innovation is our method for representing

1D stiffener elements within the graph structure, enabling the model to learn complex

interactions between stiffeners and the base structure. We implement a PCA-based

coordinate transformation system that ensures rotational and translational invariance,

crucial for structural analysis applications. This representation system effectively

bridges the gap between traditional finite element analysis and modern graph neural

networks.

Our investigation of different information flow mechanisms, particularly the com-

parison between random virtual edge and super node approaches, provides valuable

insights into the architectural requirements for capturing global structural behavior.

Through extensive experimentation and analysis, we demonstrate the superior perfor-

mance of the super node approach for buckling eigenvalue prediction, establishing

design principles for future graph-based structural analysis models.

1.4.3 Applications and Practical Impact

The third major contribution is the demonstration of practical applications and poten-

tial impact of our approach. Most significantly, we show how our GNN-based surro-

gate model can revolutionize the stiffener layout optimization process, a traditionally

challenging problem with high computational costs. Our model enables rapid evalu-

ation of different stiffener configurations, providing a pathway to explore vast design

spaces efficiently. The framework’s ability to simultaneously predict both static and

buckling behavior, with validated accuracy against FEA results, makes it a valuable

tool for preliminary design and optimization studies. The significantly reduced com-
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putational time compared to traditional FEA, while maintaining acceptable accuracy,

enables new possibilities in structural optimization and design exploration.

These contributions not only advance the theoretical understanding of GNN appli-

cations in structural analysis but also provide practical tools for engineering design

workflows. The framework developed in this thesis lays the groundwork for future

research in structural optimization, particularly in the challenging area of stiffener

layout design, while offering immediate practical benefits for engineering applica-

tions.

1.5 The Outline of the Thesis

This thesis is organized into six chapters that systematically present the development,

implementation, and validation of Graph Neural Networks as surrogate models for

structural analysis, with a particular focus on buckling prediction. The structure and

content of each chapter are as follows:

Chapter 1 introduces the research motivation, problem definition, and objectives. It

presents the fundamental challenges in traditional structural analysis approaches, par-

ticularly the computational burden of finite element analysis for design iteration and

optimization. The chapter establishes the potential of Graph Neural Networks as

surrogate models and outlines the scope of the study, focusing on 2D thin-walled

structures and linear analysis types. The chapter concludes by presenting the key

contributions of the research.

Chapter 2 provides the theoretical foundation necessary for understanding both tra-

ditional structural analysis methods and modern machine learning approaches. It

begins with a review of the finite element method. The chapter then presents the evo-

lution and fundamental concepts of Graph Neural Networks, including their message

passing mechanisms and recent applications in scientific computing. The literature

review systematically covers the progression from traditional surrogate modeling ap-

proaches to current state-of-the-art GNN applications in structural analysis, identify-

ing research gaps and opportunities.
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Chapter 3 details the comprehensive dataset generation and preprocessing method-

ology. It begins with the sophisticated shape generation system using Bezier curves,

explaining the control point generation and geometric validation processes. The chap-

ter then describes the finite element mesh generation procedures and the approach to

load case generation. A significant portion focuses on the dataset balancing method-

ology, explaining how the initial datasets having hunders of thousands cases were

refined to create balanced datasets (40,000 and 80,000 cases respectively) with uni-

form eigenvalue distributions. The chapter concludes with detailed discussions of

the data preprocessing steps, including coordinate frame normalization and feature

scaling.

Chapter 4 presents the development of the graph representation system and the neural

network architecture. It begins by detailing the feature engineering process for both

nodes and edges, including the novel approach to representing stiffener elements. The

chapter then explores two key mechanisms for enhancing information flow: random

virtual edges and the super node architecture. The neural network architecture sec-

tion presents both the GraphSAGE and CustomGNN implementations, detailing the

message passing mechanisms, pooling strategies, and decoder architectures. Special

attention is given to the design decisions that enable effective prediction of both local

and global structural properties.

Chapter 5 presents the experimental results and analysis of the developed framework.

It begins with the training methodology, including hyperparameter optimization re-

sults for the non-stiffened case and their application to stiffened structures. The chap-

ter provides comprehensive performance analysis for buckling prediction, comparing

different architectural choices (particularly super node versus random virtual edges)

and analyzing their effectiveness. The results section includes detailed analysis of

model performance on various test cases, including scaled geometries and multiple

boundary condition scenarios. The chapter also discusses the challenges encountered

in static displacement prediction.

Chapter 6 concludes the thesis by synthesizing the key findings and contributions. It

discusses the implications of the research for practical engineering applications, par-

ticularly in the context of preliminary design and optimization of stiffened structures.
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The chapter reflects on both the achievements and limitations of the current approach,

providing insights for future research directions in the application of geometric deep

learning to structural analysis problems.

This structure ensures a logical progression from theoretical foundations through im-

plementation to results and validation, while maintaining focus on the primary re-

search objective of developing effective surrogate models for structural analysis
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CHAPTER 2

BACKGROUND

The development of surrogate models for structural analysis using Graph Neural Net-

works requires a solid understanding of both traditional engineering methods and

modern machine learning approaches. This chapter provides the theoretical founda-

tion necessary to comprehend the intersection of these fields and their application in

this research. We begin by examining the fundamental principles of finite element

analysis, particularly focusing on linear static and linear buckling analysis, which

form the basis of our target predictions. Following this, we explore Graph Neural Net-

works, including their architecture, message passing mechanisms and their suitability

for processing mesh-based structural data. The chapter concludes with a comprehen-

sive review of relevant literature, examining both traditional approaches to structural

analysis and recent advances in machine learning applications within this domain.

The integration of these fields - structural mechanics, finite element analysis, and

geometric deep learning - represents a novel approach to structural analysis. Under-

standing each component’s theoretical basis is crucial for appreciating how they can

be effectively combined to create efficient and accurate surrogate models. This chap-

ter aims to provide this foundational knowledge while establishing the context for the

methodological innovations presented in subsequent chapters.

2.1 Finite Element Method

The Finite Element Method (FEM) is a well-established numerical technique for solv-

ing complex engineering problems. In structural mechanics, it involves discretizing

a continuous domain into a finite number of elements, solving governing equations
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for each element, and assembling these solutions to obtain the global response. For

this research, we focus on two specific types of finite element analysis: linear static

analysis and linear buckling analysis, as they form the basis of our prediction targets

for the Graph Neural Network models.

2.1.1 Linear Static Analysis

Linear static analysis assumes a linear relationship between applied forces and result-

ing displacements, with small deformation theory and linear elastic material behavior.

The fundamental equation governing this analysis is:

[K]{u} = {F} (2.1)

where [K] is the global stiffness matrix, {u} is the displacement vector, and {F} is

the applied force vector. In our implementation, we utilize this analysis to acquire

nodal displacements and stresses under various loading conditions. The stress tensor

components are computed from the displacement field using strain-displacement and

stress-strain relationships.

2.1.2 Linear Buckling Analysis

Linear buckling analysis, also known as eigenvalue buckling analysis, predicts the

critical loads at which a structure becomes unstable. The analysis basically solves the

eigenvalue problem:

([K] + λ[KG]){ϕ} = {0} (2.2)

where [KG] is the geometric stiffness matrix, λ is the eigenvalue representing the

buckling load factor, and {ϕ} is the eigenvector representing the buckling mode

shape. This analysis is particularly important for thin-walled structures where sta-

bility often governs the design.

λ =
σcr

σapplied

(2.3)
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Linear buckling analysis with FEM is only possible after linear static analysis is con-

ducted because geometric stiffness matrix is computed using displacement output of

linear static analysis. So a linear static analysis prequels linear buckling analysis

because of the geometric stiffness matrix dependence to the output of linear static

analysis.

Our research focuses on predicting the first (lowest) eigenvalue, as it represents the

critical buckling load factor that typically determines the structure’s stability limit.

This choice aligns with common engineering practice where the primary buckling

mode usually drives the design decisions.

For detailed theoretical foundations of the finite element method and its applications

in structural analysis, readers are referred to the pivotal works of Zienkiewicz and

Taylor [4], Bathe [3], and Cook et al. [14].

2.2 Graph Neural Networks

The emergence of Graph Neural Networks (GNNs) represents a fundamental paradigm

shift in computational learning, rooted in the mathematical theory of graph represen-

tations and neural information processing. The conceptual foundations can be traced

back to early graph theory and network science, with pivotal work by Scarselli et

al. [15] introducing the first formal graph neural network model in 2008.

Mathematically, a graph neural network can be formally defined as a function fθ :

G → Y , where G represents the input graph with node features X ∈ RN×d and

adjacency matrix A, and Y represents the output space. The core challenge lies in

developing a neural network architecture capable of processing graph-structured data

while preserving critical topological properties.

2.2.1 Fundamentals of Graph Representation

Graph representations provide a natural framework for describing relationships and

interactions between entities in a system. Formally, a graph G = (V,E) consists

of a set of vertices (nodes) V and a set of edges E ⊆ V × V that connect pairs of
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vertices. An example graph is given in Figure 2.1, where dark blue dots are vertices

and light blue lines are edges. In the context of structural analysis, these vertices often

represent discretization points or finite elements, while edges capture their physical

connectivity and interactions [16].

Figure 2.1: An example of graph representation [17]

Each vertex vi ∈ V can be associated with a feature vector hi ∈ Rd, where d is the di-

mension of the feature space. These features encode relevant properties of the vertex,

such as spatial coordinates, boundary conditions, or local physical quantities. Simi-

larly, each edge (i, j) ∈ E connecting vertices i and j can carry its own feature vector

eij ∈ Rk, representing properties of the connection such as geometric relationships

or physical interactions between the vertices.

The connectivity structure of the graph is typically represented through an adjacency

matrix A ∈ R|V |×|V |, where Aij = 1 if vertices i and j are connected by an edge and

Aij = 0 otherwise. For weighted graphs, the entries of A can take values other than

binary, representing edge weights or strength of connections. The adjacency matrix

plays a crucial role in defining how information propagates through the graph during

neural message passing operations [8].

In many practical applications, graphs exhibit additional structural properties that can

be exploited for more effective learning. For instance, in mesh-based representations,

the graph inherits the geometric structure of the underlying physical system. This can

be captured through relative positional encodings in edge features, as demonstrated

by Pfaff et al. [9], who showed that such geometric information is crucial for learning

physical dynamics on meshes.
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The degree matrix D = diag(d1, ..., d|V |), where di =
∑

j Aij represents the degree

of vertex i, is often used in conjunction with the adjacency matrix to define the graph

Laplacian L = D − A. The Laplacian matrix has important spectral properties that

relate to the graph’s connectivity and can be used to define convolution operations in

the spectral domain [18].

An important consideration in graph representation is the handling of different types

of relationships between vertices. In structural analysis, this might involve distin-

guishing between mesh connectivity edges and additional virtual edges introduced to

capture long-range interactions. This can be achieved through edge typing or through

the use of multiple adjacency matrices, each representing a different class of relation-

ships [9].

The flexibility of graph representations allows for adaptive refinement of the under-

lying structure. In the context of structural analysis, this might involve adding or

removing edges based on physical criteria, or introducing special nodes (such as

super-nodes) that can aggregate global information. Such adaptivity is particularly

valuable when dealing with complex geometries or when different levels of detail are

required in different regions of the structure.

(a) Structural Mesh (b) Graph

Figure 2.2: Graph representation of a structural mesh

In context of structural engineering, graphs offers natural representation of the mesh

data. Figure 2.2 illustrates meshes can be converted directly to graphs, vertexes rep-

resent nodes of the shell and edges represent shell element edges.
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2.2.2 Evolution of Graph Neural Networks

Figure 2.3: Evolution of graph neural network architectures

The development of Graph Neural Networks represents a significant advancement

in extending deep learning capabilities to irregular data structures. The timeline is

illustrated in Figure 2.3. The foundational work by Scarselli et al. [15] introduced the

first Graph Neural Network model, which operated through a recursive neighborhood

aggregation scheme until reaching a stable fixed point. While groundbreaking, this

early approach faced practical limitations due to its iterative nature and computational

demands in achieving convergence. In addition, the inherent complexity of graph-

structured data presents significant computational challenges. Unlike regular grid-like

data (images, sequences), graphs can have variable connectivity, making traditional

deep learning approaches ineffective.

A pivotal advancement came with the introduction of Graph Convolutional Networks

(GCNs) by Kipf and Welling [19], who reformulated graph convolutions using a first-

order approximation of localized spectral filters. This simplification made training

more efficient while maintaining model expressiveness, marking a crucial step toward

practical applications. Their work built upon earlier spectral approaches introduced

by Bruna et al. [18], who had established the theoretical foundations for extending

convolution operations to graph-structured data.

The field further evolved with the development of spatial-domain approaches, which

directly operate on graph neighborhoods rather than in the spectral domain. A signif-

icant contribution in this direction came from Hamilton et al. [20] with the introduc-

tion of GraphSAGE, which enabled inductive learning on previously unseen nodes

through learned aggregation functions. This advancement was particularly important
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for applications where the graph structure could change or where generalization to

new graphs was required.

The introduction of attention mechanisms to graph neural networks by Veličković et

al. [21] marked another significant milestone. Graph Attention Networks (GATs)

enabled the model to assign different importance to different neighbors during the

aggregation process, leading to more flexible and powerful architectures. This de-

velopment aligned with the broader trend of attention mechanisms in deep learning,

adapting their benefits to graph-structured data.

A unifying theoretical framework emerged with Message Passing Neural Networks

(MPNNs) [22]. This framework generalized many previous approaches and pro-

vided a clear theoretical foundation for understanding how information propagates

through graph-structured networks. The MPNN framework has become the standard

paradigm for designing new graph neural network architectures, offering a clear con-

ceptual model for how these networks learn representations of graph-structured data.

Recent theoretical work [23] has focused on understanding the expressive power of

different GNN architectures, establishing connections between graph neural networks

and the Weisfeiler-Lehman graph isomorphism test. This work has provided crucial

insights into the theoretical limitations of current architectures and has guided the

development of more powerful variants.

The evolution of Graph Neural Networks continues to be driven by the needs of var-

ious applications, particularly in scientific computing and physical simulation. Mod-

ern architectures increasingly incorporate domain-specific inductive biases, such as

physical constraints or geometric information, leading to more specialized and ef-

fective models for particular problem domains. This trend is particularly evident in

recent work on mesh-based physical simulations, where graph neural networks have

shown remarkable success in learning complex physical dynamics while respecting

underlying physical principles.
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2.2.3 Message Passing Framework

The message passing framework has emerged as a powerful paradigm for designing

GNNs. The core operation in modern GNNs is mostly this message-passing frame-

work. In this framework, each node iteratively updates its representation by aggre-

gating information from its neighbors. This process can be formalized through the

Message Passing Neural Network (MPNN) framework [22], which consists of two

main phases:

1. Message Computation: Each node receives messages from its neighbors, com-

puted as a function of the source and target node features and their edge fea-

tures.

2. Node Update: Each node updates its representation based on its current fea-

tures and the aggregated messages from its neighbors.

This process can be formally expressed as:

Message Phase:

m
(t+1)
i =

∑
j∈N (i)

M(x
(t)
i ,x

(t)
j , eij) (2.4)

Update (Aggregation) Phase:

x
(t+1)
i = U(x

(t)
i ,m

(t+1)
i ) (2.5)

where N (i) represents the neighbors of node i, M is the message function, and U

is the update function.Both M and U are typically implemented as neural networks.

Edge attributes are denoted as eij and computed message at the layer t is denoted as

m
(t+1)
i . x(t+1)

i and x
(t)
i are updated node and current node attributes respectively.

Message and aggregation phases construct one layer of the GNN network. An illus-

tration of this message passing and aggregation scheme is given in Figure 2.4.
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Figure 2.4: Overview of the message passing algorithm. Vertex A was selected and

two GNN layers of this vertex were illustrated [16]

2.2.4 Graph Sampling and Aggregation (GraphSAGE)

In this study, we employ the GraphSAGE architecture [20], which is particularly ef-

fective for inductive learning tasks where the model needs to generalize to previously

unseen graph structures. GraphSAGE operates by learning how to aggregate neigh-

bor information through a series of learned aggregator functions which illustrated in

Figure 2.5. The key operation in GraphSAGE can be expressed as:

xk
v = σ(Wk · AGGREGATEk(x

k−1
u ,∀u ∈ N (v))) (2.6)

where xk
v is the hidden state of node v at layer k, σ is a nonlinear activation function,

Wk is a learnable weight matrix and AGGREGATEk is an aggregation function that

could be mean, sum or max pooling. In our implementation for structural analysis, we

utilize the add aggregator as it has shown superior performance in capturing physical

relationships.

xk
v = σ(Wk · (

∑
u∈N (v)

xk−1
u )) (2.7)
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Figure 2.5: Visual illustration of aggregate approach used in GraphSAGE [20]

2.2.5 Applications in Scientific Computing

Graph Neural Networks have emerged as a powerful paradigm in scientific comput-

ing, particularly in domains where physical systems exhibit inherent graph-like struc-

tures. The ability of GNNs to capture complex relationships while respecting physical

constraints has led to significant advances across multiple scientific disciplines. In the

field of physics simulation, Sanchez-Gonzalez et al. [8] demonstrated that GNNs can

effectively learn to simulate complex physical systems by encoding physical states as

nodes and their interactions as edges. Their work showed that GNNs could maintain

physical invariances and conservation laws while providing accurate predictions of

system dynamics.

A particularly significant advancement in scientific applications came with the de-

velopment of MeshGraphNets by Pfaff et al. [9]. Their work showed how GNNs

could be adapted to operate directly on discretized domains common in engineering

and physics simulations. By treating mesh elements as nodes and their connections

as edges, they demonstrated that GNNs could learn to predict fluid dynamics, cloth

dynamics, and various other physical phenomena with remarkable accuracy. This ap-

proach has proven especially valuable in computational fluid dynamics and structural

analysis, where mesh-based representations are standard.

In the realm of molecular dynamics and quantum chemistry, the SchNet architecture

introduced by Schütt et al. [24] showed how GNNs could model complex quantum

interactions at the molecular level. Their approach demonstrated that GNNs could
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capture both short-range and long-range molecular interactions, leading to accurate

predictions of molecular properties and chemical reactions. This success has inspired

numerous adaptations in materials science and drug discovery applications.

The effectiveness of GNNs in scientific computing can be attributed to several key

properties that align well with physical systems. First, their inherent permutation in-

variance matches the physical reality that the ordering of elements in a system should

not affect its behavior. Second, the message-passing framework naturally captures

the locality principle common in many physical systems, where interactions primar-

ily occur between nearby elements but can propagate to create global effects. Finally,

GNNs exhibit strong geometric generalization capabilities, allowing them to operate

effectively across different scales and discretizations - a crucial feature for scientific

applications where problem domains may vary significantly in size and resolution.

Recent work [25] has also shown how GNNs can be enhanced with physics-informed

constraints, leading to solutions that better respect underlying physical principles.

These physics-informed GNNs combine the flexibility of neural networks with the

rigorous constraints of physical laws, resulting in more reliable and interpretable pre-

dictions for scientific applications. This synthesis of data-driven learning with phys-

ical principles represents a promising direction for future development in scientific

computing.

2.2.6 Key Advantages for Scientific Applications

Graph Neural Networks possess several fundamental properties that make them par-

ticularly advantageous for scientific applications [16]. The first key advantage lies in

their inherent permutation invariance, a property that aligns naturally with physical

systems . This invariance ensures that the predictions remain consistent regardless

of how the nodes in the graph are ordered or numbered, reflecting the fundamental

nature of physical systems where the ordering of elements should not affect the un-

derlying physics. A second crucial advantage is found in the networks’ ability to cap-

ture both local and compositional behavior through their message passing framework.

This architectural feature mirrors the hierarchical nature of many physical phenom-

ena, where complex global behaviors emerge from local interactions. In structural
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analysis, for instance, local deformations and stress distributions combine to produce

overall structural responses. The message passing mechanism allows the network to

learn these multi-scale relationships, propagating information from local neighbor-

hoods to capture increasingly larger-scale phenomena with each layer of the network.

The geometric generalization capabilities of GNNs represent another significant ad-

vantage for scientific applications. Unlike traditional neural network architectures

that often struggle with varying input sizes or geometries, GNNs can naturally han-

dle different mesh resolutions and geometric configurations. This flexibility is par-

ticularly valuable in engineering applications where analyses must be performed on

structures of varying sizes and complexities. The ability to generalize across different

geometric scales and configurations means that a single trained model can be applied

to a range of problem sizes without requiring retraining.

Furthermore, GNNs offer the ability to incorporate physical symmetries and conser-

vation laws directly into their architecture. This can be achieved through appropriate

choice of message passing functions and update rules, ensuring that the network’s

predictions respect fundamental physical principles. The ability to embed such phys-

ical constraints into the network architecture helps to ensure that predictions remain

physically meaningful, even when the network encounters scenarios outside its train-

ing distribution.

Finally, the interpretability of GNN architectures provides an additional advantage

in scientific applications. The message passing operations and node updates can

often be related to physical processes, making it easier to understand and validate

the network’s behavior from a scientific perspective. This interpretability is crucial

in scientific and engineering applications where understanding the reasoning behind

predictions is often as important as the predictions themselves.

These advantages collectively make GNNs a powerful tool for scientific computing

applications, particularly in domains where physical systems can be naturally rep-

resented as graphs and where the preservation of physical principles is crucial for

meaningful results.
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2.3 Literature Review

The intersection of structural analysis and machine learning, particularly in the con-

text of Graph Neural Networks, represents a rapidly evolving field that draws from

multiple disciplines. This literature review examines the progression from traditional

analytical methods for stiffened structures to modern machine learning approaches,

with a particular focus on surrogate modeling techniques. We begin by exploring

the fundamental research in stiffened metallic structures and their structural analysis

methods, then examine the evolution of surrogate modeling techniques in structural

engineering. Finally, we review recent developments in GNN-based approaches for

structural analysis, highlighting current capabilities and limitations. This comprehen-

sive review establishes the context for our research and identifies the gaps in current

knowledge that our work aims to address.

2.3.1 Stiffened Metallic Structures and Their Structural Analyses

Stiffened metallic structures are composite structural elements consisting of a thin

metal plate or shell reinforced by an array of stiffeners. These stiffeners, which can

be oriented in one or multiple directions, are typically welded or riveted to the base

plate and serve to enhance the structure’s load-carrying capacity and stability without

significantly increasing its weight. This design approach is particularly prevalent in

weight-critical applications such as aircraft fuselages, ship hulls, and bridge decks,

where the need to minimize material usage while maintaining structural integrity is

paramount [26]. The base plate in stiffened structures primarily resists in-plane and

lateral loads through membrane action, while the stiffeners increase the structure’s

overall bending stiffness and resistance to buckling. Stiffeners can take various cross-

sectional forms, with T-sections, L-sections, and Z-sections being the most common

configurations in practice [27, 6]. The choice of stiffener geometry significantly in-

fluences both the structure’s performance and its manufacturing complexity.

Traditional hand calculation methods for analyzing stiffened panels typically employ

simplified approaches based on beam-column theory and plate theory. For buckling

analysis, these methods often treat the structure as a combination of plate elements
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between stiffeners and the stiffeners themselves as beam-columns. The classical ap-

proach, developed by von Karman and later refined by Timoshenko [1], involves

Equation (2.8) and (2.9).

Calculation of the critical buckling stress for the plate between stiffeners:

σcr = k
ηπ2E

12(1− ν2)

(
t

b

)2

(2.8)

where k is the buckling coefficient depending on boundary conditions, E is Young’s

modulus, ν is Poisson’s ratio, t is plate thickness, and b is the width between stiffeners.

Analysis of stiffener buckling considering both local and global modes:

Pcr =
π2EI

(KL)2
(2.9)

where I is the moment of inertia of the stiffener (including effective width of the

plate), L is the stiffener length, and K is the effective length factor.

The development of finite element methods revolutionized the analysis of stiffened

structures by enabling more accurate representation of complex geometries and load-

ing conditions. Modern FEM approaches typically employ shell elements for the

plate and either shell or beam elements for the stiffeners [4]. The critical aspects of

FEM modeling for stiffened structures include:

• Element Selection and Mesh Refinement: The plate is typically modeled us-

ing quadrilateral shell elements with both membrane and bending capabilities.

Mesh density must be sufficient to capture local buckling modes, typically re-

quiring 4-8 elements between stiffeners. NASTRAN’s user guide [28] and a

work in the area [29] recommends a minimum of five grid points per half sine

wave (buckled shape).

• Stiffener Modelling: 2D shell elements can be used for detailed analysis of

local behavior and 1D beam elements can be used for cases where local stiffener

deformation is less critical.

• Boundary Condition Modeling: Appropriate representation of support condi-

tions at panel edges, which can be tricky and difficult to estimate because it

changes with type and stiffness of stiffeners.
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• Load Application: Careful consideration of load introduction methods to avoid

artificial stress concentrations and proper representation of distributed and con-

centrated loads needed.

For buckling analysis, the finite element approach typically involves solving the eigen-

value problem:

([K] + λ[KG])ϕ = 0 (2.10)

where [K] is the linear stiffness matrix, [KG] is the geometric stiffness matrix, λ is the

eigenvalue (buckling load factor), and ϕ is the eigenvector representing the buckling

mode shape.

The development of computational methods has also enabled more sophisticated anal-

ysis approaches, such as the Equivalent Single Layer (ESL) method proposed by Avi

et al. [30]. This method transforms the stiffened panel into an equivalent homo-

geneous plate with appropriately modified stiffness properties, significantly reduc-

ing computational requirements while maintaining acceptable accuracy for global re-

sponse predictions.

2.3.2 Verification of Linear Buckling Analysis for Thin Walled Slender Struc-

tures

While nonlinear analysis methods can provide more accurate results for buckling be-

havior, especially post-buckling, linear buckling analysis using finite element meth-

ods (FEM) has been shown to be suitable for predicting initial buckling loads of

thin-walled slender structures under certain conditions. Several studies have verified

the applicability of linear buckling FEM for very slender plates and panels through

comparisons with experimental results.

Muameleci [29] conducted an extensive study comparing linear buckling FEM results

to experimental data for thin steel plates under various loading conditions. For plates

with slenderness ratios (width to thickness) greater than 100, he found that linear

buckling analysis predicted initial buckling loads within 5% of experimental values.

This correlates with other studies [31, 32] on the same topic. Specifically, for 1m x

1m steel plates with thicknesses of 1.5mm and 2mm, the linear FEM results matched
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experimental buckling loads to within 3%. Similarly, Sun et al. [33] demonstrated

even higher accuracy for hat-stiffened composite panels, achieving FEA predictions

within 0.5% of experimental strain gauge measurements, with excellent correlation

between predicted and observed buckling modes. These studies collectively demon-

strate that for very slender plates and panels, with thickness-to-width ratios less than

about 1/80, linear buckling analysis can provide reasonably accurate predictions of

initial buckling loads and modes. The success of linear methods for such structures

is attributed to buckling occurring well within the linear elastic range of the material,

before any significant geometric nonlinearity develops. In summary, linear buckling

analysis is accurate for slender plates where buckling occurs clearly before the yield

limit of the material.

However, it should be noted that linear analysis cannot capture post-buckling behav-

ior or ultimate failure loads. For thicker structures or those expected to experience

significant post-buckling strength, nonlinear analysis methods are still recommended.

Additionally, imperfections and residual stresses may cause real structures to buckle

at lower loads than predicted by linear analysis of perfect geometries.

Figure 2.6: Verification FEA model with both end simply supported and 100N force

applied. Constrained DoFs of loaded edge are 1 and 3 whereas other edge’s con-

trained DoFs are 1,2 and 3
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To verify linear buckling analysis with the theory, the panel given in Figure 2.6 with

1.5mm thickness and 1m x 1m size was modeled and analyzed. Both ends of the

panel were simply supported and applied load was 100N. The material was selected

as aluminum with 76GPa elastic modulus and 0.3 Poisson ratio [13].

Linear buckling analysis provided an eigenvalue of 2.21. We can convert this value

into critical stress using the formula:

σfea
cr =

λFapplied

A
(2.11)

where A is the area (1.5mm∗1000mm = 1500mm2), λ is resulted eigenvalue of FEA

and σfea
cr is critical buckling stress result using FEA. We calculated σfea

cr = 0.147.

Then we can calculate theoretical critical buckling stress by:

σtheory
cr = k

ηπ2E

12(1− ν2)

(
t

b

)2

(2.12)

where k is 0.93 which is buckling coefficient taken from the reference [34], η is the

plasticity factor which is 1 for this problem because part is slender, ν, t and b are given

as 0.3, 1.5mm and 1000mm respectively. Using all of these parameters, we calculated

the σtheory
cr = 0.144. The error between σfea

cr and σtheory
cr is only 2.8%. This verifies

the linear buckling analysis result and also shows correlation with the literature.

In summary, for the very slender 1.5mm thick, 1m x 1m panels considered in this

thesis, linear buckling FEM is justified based on previous experimental verifications

of the method for similar thin-walled structures and theoretical calculations. The lin-

ear approach provides a computationally efficient means of predicting initial buckling

behavior for parametric studies and optimization, while acknowledging its limitations

in capturing full structural response.

2.3.3 Surrogate Models for Structural Analysis

The development of surrogate models, also known as metamodels or reduced-order

models, represents a significant advancement in structural analysis, particularly in

scenarios requiring numerous evaluations such as optimization or uncertainty quan-

tification. These models aim to approximate the input-output relationship of complex

structural analyses while significantly reducing computational costs [5].
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2.3.3.1 Traditional Surrogate Modeling Approaches

Traditional surrogate modeling approaches in structural analysis have primarily relied

on polynomial response surfaces and interpolation-based methods. Response Surface

Methodology (RSM), introduced by Box and Wilson, has been widely applied in

structural engineering due to its simplicity and interpretability [35]. However, RSM’s

effectiveness is limited to problems with relatively few design variables and smooth

response surfaces.

More sophisticated interpolation methods emerged to address these limitations. Krig-

ing, also known as Gaussian Process regression, gained popularity in structural analy-

sis due to its ability to provide both predictions and uncertainty estimates [36]. Radial

Basis Functions (RBF) offered another powerful approach, particularly effective for

highly nonlinear responses [37]. These methods can be expressed mathematically as:

ŷ(x) =
n∑

i=1

wiϕ(|x− xi|) (2.13)

where ŷ(x) is the predicted response, wi are the weights, and ϕ(·) is the basis function.

2.3.3.2 Emergence of Machine Learning Techniques

The emergence of machine learning techniques has led to more advanced surrogate

modeling approaches. Artificial Neural Networks (ANNs) have demonstrated partic-

ular success in capturing complex nonlinear relationships in structural analysis. Early

applications by Papadrakakis et al. [7] showed that neural networks could effectively

approximate structural responses for optimization purposes.

Recent developments have focused on physics-informed machine learning approaches,

where physical constraints and domain knowledge are incorporated into the surrogate

model architecture. Raissi et al. [38] demonstrated how physics-informed neural net-

works (PINNs) could solve partial differential equations while respecting underlying

physical principles. Their approach minimizes a combined loss function:

L = Ldata + λLphysics (2.14)

where Ldata represents the data-fitting term and Lphysics enforces physical constraints.
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For stiffened panel analysis specifically, surrogate models have been developed to pre-

dict various responses including displacement and stress fields under various loading

conditions, critical buckling loads and post-buckling behavior.

Another advancement in surrogate modeling has been the development of multi-

fidelity approaches, particularly valuable for stiffened panel analysis. Tian et al. [39]

introduced a variable-fidelity surrogate model for predicting shell buckling behav-

ior. Their approach combines high-fidelity finite element results with lower-fidelity

analytical solutions, expressed mathematically as:

fh(x) ≈ ρ(x)fl(x) + δ(x) (2.15)

where fh and fl are high and low-fidelity models respectively, ρ(x) is a scaling factor,

and δ(x) is a discrepancy function. This approach has shown particular effectiveness

in predicting buckling loads while reducing computational cost by up to 80%.

Limbachiya et al. [40] developed a neural network architecture specifically for pre-

dicting shear resistance in cellular steel beams. Their model incorporated both ge-

ometric and material nonlinearities, achieving prediction accuracies within 5% of

detailed finite element results.

Sun et al. [33] developed two artificial neural network architectures to predict the

compression buckling behavior of composite hat-stiffened panels. Their approach

used a combination of finite element simulation and experimental verification to gen-

erate training data. The neural networks were designed to predict both buckling loads

and buckling modes based on four key mechanical parameters: the in-plane tensional

stiffness ratio (A11/A22), the orthotropic ratio of the stiffened panel (D1/D2), the

tensional stiffness ratio of the stiffener to the skin ((EA)s/(EA)p), and the torsion and

bending stiffness ratio (D3/D2). Using an architecture of 4-8-6-2-1 nodes for buck-

ling load prediction and 4-7-2 nodes for buckling mode classification, their models

achieved maximum prediction errors of 7.16% for buckling loads and an accuracy of

98.48% for buckling mode prediction on the test dataset. The approach demonstrated

robust accuracy compared to traditional engineering calculation methods while main-

taining computational efficiency.

Effective feature representations for stiffened panel analysis is of crucial importance
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and researchers paid particular attention to several key factors that significantly im-

pact model performance. Geometric parameters such as panel aspect ratio, slender-

ness, stiffener spacing and dimensions, as well as cross-sectional properties are cru-

cial in shaping the behavior of stiffened panels. Additionally, initial imperfection

patterns are important for capturing real-world deviations. In terms of loading pa-

rameters, factors like load eccentricity, load distribution, and the effects of combined

loading play a pivotal role in accurately predicting panel responses. Boundary con-

ditions, including edge restraint coefficients, rotational stiffness parameters, and con-

nection characteristics, further influence the panel’s structural performance. These

features together form the basis for enhancing the predictive capabilities of stiffened

panel models.

2.3.4 State-of-the-Art in GNN-Based Structural Analysis

The application of Graph Neural Networks to structural analysis represents a signif-

icant advancement in computational mechanics, particularly addressing the limita-

tions of traditional numerical methods. Early work in this domain focused primarily

on simple truss structures, where the graph representation naturally aligned with the

physical structure. Nourian et al. [41] demonstrated the effectiveness of GNNs in

truss optimization, employing a graph convolutional network approach that directly

operated on the structural topology. Their work showed that GNNs could effectively

capture both local and global structural behavior, leading to accurate predictions of

structural responses while maintaining computational efficiency.

The incorporation of attention mechanisms has further enhanced the capability of

GNNs in structural analysis. Veličković et al. [21] demonstrated that attention-based

approaches can effectively weight the importance of different structural connections,

leading to more accurate predictions particularly in regions of high stress concentra-

tion or geometric discontinuity.

The prediction of stress fields and displacement distributions represents a particularly

challenging aspect of GNN-based structural analysis. The field prediction capability

of GNNs has been demonstrated in various contexts, with Gao et al. [42] introduc-

ing a hypergraph message passing approach that showed promising results for fluid
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dynamics simulations. Their work highlighted the importance of proper feature en-

gineering and message passing mechanisms for field predictions. Also, Barwey et al.

[43] proposed a multiscale graph neural network autoencoder that effectively captures

field variable distributions across different scales.

Recent developments have shown promising results in various aspects of structural

analysis using GNNs. For instance, Chou et al. [10] proposed StructGNN, an efficient

framework for static structural analysis that incorporates pseudo nodes as rigid di-

aphragms in each story. This approach demonstrated remarkable accuracy, achieving

over 99% accuracy in predicting displacements, bending moments and shear forces

while also showing strong generalization capabilities for taller, previously unseen

structures.

A significant advancement in GNN-based structural analysis has been the develop-

ment of physics-informed approaches that incorporate mechanical principles directly

into the neural network architecture. In a recent work [44], it is demonstrated that by

integrating fundamental mechanical formulations into the learning process, GNNs

can perform accurate structural analysis without requiring labeled data. This ap-

proach not only addresses the challenge of limited training data availability but also

ensures theoretical correctness of the predictions, a crucial consideration in structural

engineering applications. In addition, Shao et al. [25] have focused on incorporating

physical constraints and domain knowledge into GNN architectures. They developed

a physics-informed GNN framework that explicitly enforced conservation laws and

boundary conditions through the network architecture. Their approach combined the

flexibility of neural networks with physical constraints, leading to more reliable and

interpretable predictions. The mathematical formulation of their physics-informed

loss function can be expressed as:

Ltotal = Ldata + λ1Lphysics + λ2Lboundary (2.16)

where λ1 and λ2 are weighting parameters for the physics and boundary condition

constraints respectively.

A breakthrough in applying GNNs to continuous structures came with the develop-

ment of MeshGraphNets by Pfaff et al. [9]. Their work established a framework for
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converting meshes into graph representations, enabling the application of GNNs to a

broader range of structural analysis problems. The framework introduced the concept

of world edges, which are additional graph connections beyond the physical mesh

connectivity, to capture long-range interactions within the structure. The original

work included only a demonstration of dynamic analysis. But the same architecture

was used as base model for structural static analysis in later studies [11]. Pegolotti

et al. [45] demonstrated the effectiveness of using virtual edges to connect boundary

nodes with internal nodes, enabling more effective propagation of boundary condi-

tion information throughout the structure. Their approach showed particular success

in problems involving complex mixed boundary conditions.

The development of multi-scale approaches in GNN-based structural analysis has

enhanced the capability to handle complex systems. Fortunato et al. [46] introduced

Multiscale MeshGraphNets, which effectively capture both local and global structural

behavior through a hierarchical graph representation. Their architecture employs a

series of graph pooling and unpooling operations, similar to the U-Net architecture

commonly used in image processing, but adapted for irregular graph structures. This

approach has proven particularly effective for problems where structural responses

occur at multiple scales, such as buckling analysis where both local and global modes

need to be considered simultaneously.

Recent advances in the field have also focused on improving the interpretability of

GNN predictions for structural analysis. Deshpande et al. [47] introduced MAG-

NET, a graph U-Net architecture specifically designed for mesh-based simulations.

Their work demonstrated that the intermediate representations learned by the network

could be interpreted in terms of physical quantities, providing insights into how the

network makes its predictions. This interpretability is particularly valuable in engi-

neering applications where understanding the reasoning behind predictions is crucial

for safety-critical decisions.

The integration of uncertainty quantification into GNN predictions represents another

advancement in the field. Black and Najafi [48] developed a multi-fidelity GNN

framework that not only provides predictions of structural responses but also quan-

tifies the uncertainty associated with these predictions. Their approach combines
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probabilistic graph neural networks with traditional error estimation techniques from

finite element analysis, providing a more complete picture of prediction reliability.

The representation of structural systems as graphs has emerged as a critical aspect

of GNN implementations. The conventional approach of representing each finite

element as a vertex in the graph, while intuitive, can lead to computational ineffi-

ciencies as demonstrated by Cai and Jelovica [12]. They introduced an innovative

graph embedding approach for 3D stiffened panels that significantly reduces com-

putational requirements while maintaining high prediction accuracy. Their method

achieved approximately 96% reduction in training time and 98% reduction in GPU

memory usage compared to conventional finite element-vertex embeddings, demon-

strating the importance of efficient graph representations in practical applications.

Their work showed that for a stiffened panel analysis, the computational complexity

of GNN training scales linearly with the number of vertices, making the conven-

tional element-vertex representation computationally expensive for fine meshes. This

observation aligns with the findings of Deshpande et al. [47], who noted that the com-

putational burden of message passing increases significantly with mesh refinement.

The ability of GNNs to handle geometric variations and complex boundary conditions

has been demonstrated across multiple studies. Research has shown that GNN-based

models can effectively predict structural responses under various loading conditions,

material behaviors, and geometric configurations [11, 47, 12]. This versatility repre-

sents a significant advantage over traditional neural network approaches, which often

struggle with geometric variations and require retraining for different structural con-

figurations.

One of the main problem in GNN applications is that long range dependencies cannot

be captured in several steps (convolutions) if two vertices are too far apart, many hops

away. If convolution number increased to let message propagate to further distances,

vanishing gradient problem might happen. Excessive use of GNN layers have this ad-

verse effect on the gradients. To address these computational challenges, several in-

novative graph representation strategies have emerged. For instance, Lino et al. [49]

proposed a multi-scale graph representation that reduces computational complexity

while maintaining prediction accuracy. Their approach involves hierarchical graph
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coarsening, which allows the network to capture both local and global structural be-

haviors efficiently. Similarly, a recent work [11] introduced an edge-augmented GNN

architecture that enhances information flow across the computational domain through

strategically placed virtual edges, demonstrating significant improvements in predic-

tion accuracy for time-independent problems. Also residual connections are shown

to be reducing the vanishing gradients problem.

Ross and Hambleton [50] introduced an approach to predict mechanical responses of

3D lattice structures using graph neural networks (GNNs). The researchers developed

a method to approximate the compressive behavior of lattice geometries by training

a graph neural network on a dataset of lattices sampled continuously from the space

of all possible lattice configurations. Their key innovation lies in the ability to pre-

dict material properties directly from lattice geometry, offering potential for real-time

structural feedback during the design stage. By using an encoder-processor-decoder

architecture and exploring different data representations, they achieved up to 93%

accuracy in predicting lattice compression, demonstrating the potential of machine

learning to rapidly assess structural performance across various geometric variations.

Taghizadeh et al. [51] proposed a multifidelity graph neural network (MFGNN) ap-

proach for solving partial differential equations (PDEs) in mesh-based simulations.

The research addresses the computational challenges of high-resolution structural

analyses by developing a hierarchical learning strategy that combines low-fidelity

and high-fidelity data. Their framework includes two innovative approaches: a hier-

archical multifidelity architecture and a curriculum learning-based training method.

Validated across multiple experiments, including 2D stress distribution and com-

plex 3D vehicle aerodynamics simulations, the MFGNN consistently outperformed

single-fidelity graph neural networks. The method significantly reduces computa-

tional demands while maintaining high accuracy, demonstrating the potential of ma-

chine learning to provide efficient and accurate surrogate modeling for complex struc-

tural and fluid dynamics problems.

The challenge of ensuring translation and rotation invariance in GNN predictions has

been addressed through various approaches. Liu et al. [52] proposed the Invariant

Neural Operator (INO) framework that embeds these invariances directly into the
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network architecture. This approach bears similarities to the coordinate transforma-

tion technique employed in [11], where principal component analysis is used to create

a normalized coordinate system for all structural analyses.

Recent work has also focused on improving the prediction of global structural re-

sponses through enhanced graph connectivity. The super-node concept, as imple-

mented in our research, represents a novel approach to this challenge. This method

bears some similarities to the global attention mechanisms proposed by Wu et al.

[53], but offers a more computationally efficient solution by creating a single node

that connects to all other nodes in the graph. This approach is highly probable to

be particularly effective for buckling analysis, where the prediction target is a global

property of the structure rather than a local field quantity.

Another advancement in applying GNNs to time-independent problems came with

the work of Gladstone et al. [11]. They identified and addressed fundamental chal-

lenges in static mechanics problems. They noted that solution at any point depends

on points that are farther away in the domain, as solutions can be expressed as in-

tegrals over the entire domain. This necessitated efficient message propagation be-

tween distant points. In adddition, they observed that conventional mesh-based GNN

approaches typically fail at capturing the physics accurately due to the requirement

of a large number of message passing steps for information exchange between distant

nodes. To address these challenges, they introduced two novel architectures: the Edge

Augmented Graph Neural Network (EA-GNN) and the Multi-Graph Neural Network

(M-GNN). The EA-GNN introduces "virtual" edges to yield faster information prop-

agation, significantly improving computational efficiency. The M-GNN pursues a

multi-resolution approach inspired by the multi-grid method, based on the Graph

U-Net architecture. Their work also introduced a novel coordinate transformation

technique that enables rotation and translation invariance, facilitating the treatment of

variable domains.
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2.4 Closure

As aforementioned, current state-of-the-art GNN-Based structural analysis still has

several limitations and unexplored areas. While significant progress has been made in

static stress analysis and displacement predictions, there remains a notable gap in the

literature regarding buckling analysis and the incorporation of 1D stiffener elements

in graph-based structural analysis. The prediction of buckling eigenvalues presents

unique challenges as it requires the model to capture both local and global structural

behavior simultaneously. Furthermore, the effective representation of 1D stiffener

elements within the graph structure, while maintaining their physical significance and

influence on the overall structural behavior, remains an open challenge.

In conclusion, the application of Graph Neural Networks to structural analysis rep-

resents a rapidly evolving field with significant recent advances but also great chal-

lenges. The work presented in this thesis, particularly the development of efficient

graph representations and the successful prediction of buckling behavior, contributes

to this growing body of knowledge. While challenges remain, the demonstrated

success in plate buckling analysis and the computational efficiency gains achieved

through novel graph representations suggest promising directions for future research.
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CHAPTER 3

DATASET GENERATION AND PRE-PROCESSING

3.1 Introduction

This chapter provides information on shape, mesh and load case generation. Details

of the shape dataset are given, the procedure for rotation and translation invariance

and virtual edge creation is explained and the final setup for pre-processed graph

datasets to be used in the experiments is mentioned. Figure 3.1 shows the flowchart

of the dataset generation process, which consists of six main stages: shape generation,

mesh generation, load case generation, finite element analysis, dataset regularization,

and dataset split. Figure 3.2 illustrates the detailed process of dataset regularization

and processing, showing how the initial dataset was expanded, balanced, and split

into training, validation, and various test sets. The following sections detail each of

these stages, their implementation, and their significance in the overall process.

3.2 Shape Generation

The shape generation process is a crucial aspect of this study, as it enables the cre-

ation of a diverse and representative dataset to train the graph neural network model.

We developed a generative system that produces structural shapes through a sophisti-

cated combination of Bezier curves and control points, allowing for the generation of

both simple geometries and more complex shapes with cutouts. The system operates

within defined geometric constraints to ensure all generated shapes maintain practical

relevance for structural analysis.

The initial dataset generation phase produced 1,000 shapes with cutouts and 3,000
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Figure 3.1: Flowchart for dataset generation

shapes without cutouts. This dataset was used to train static analysis prediction

and buckling analysis prediction models. Second dataset generation phase produced

10,000 shapes with cutouts and 10,000 shapes without cutouts. This dataset was used

to generate diverse examples for trainings with stiffeners. Shape generation method-

ology presented in upcoming sections can be summarized as illustrated in Figure 3.3

3.2.1 Base Shape Generation

The shape generation algorithm employs a systematic approach to create organic-

asymmetric shapes using Bezier curves. The process begins with the generation of
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Figure 3.2: Flowchart for dataset regularization and processing

boundary points, where the number of points is randomly selected between 4 and 12

points, providing sufficient variability while maintaining reasonable geometric com-

plexity. These boundary points are distributed around a base radius that ranges from

350 mm to 450 mm, with controlled variations to create natural, asymmetric forms.

The algorithm incorporates several layers of controlled randomization to ensure geo-

metric diversity:

• Angle Variation: Each boundary point’s angular position includes a random

variation of ±0.15 radians from its nominal position, creating natural irregular-

ities in the shape outline.

• Radius Variation: The radius for each point varies between -50% to +40% from

the base radius, with an additional sinusoidal variation (frequency multiplier of

3 and magnitude of 0.3) to create more complex contours.

• Inward Curves: With a 20% probability for each point, the algorithm applies

an inward scaling factor between 0.4 and 0.7, creating concave regions in the

shape.
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Figure 3.3: Shape generation process illustration

To ensure smooth transitions between boundary points, the algorithm employs a so-

phisticated control point generation system for Bezier curves. The control points are

calculated using a minimum radius factor of 0.2 relative to the segment length, with

up to 30% variation in control point length. This approach ensures both smoothness

and variability in the resulting curves.

3.2.2 Shape Scaling and Validation

After the initial shape generation, a scaling process is applied to ensure all shapes

fall within the specified dimensional constraints while maintaining their proportional

characteristics. The scaling algorithm enforces the following criteria:

The scaling process involves; (1) calculating current bounds of the shape, (2) de-

termining the maximum dimension, (3) computing the appropriate scale factor to fit
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Table 3.1: Shape Generation Parameters

Parameter Minimum Value Maximum Value

Overall Size 700 mm 1000 mm

Number of Boundary Points 4 12

Angular Position Variation -0.15 rad +0.15 rad

Aspect Ratio 0.5 2.0

Base Radius 350 mm 450 mm

Radius Variation from Base -50% +40%

Inward Curve Probability 20% 20%

Inward Scaling Factor 0.4 0.7

within the target size range (700mm to 1000mm), (4) applying the scale factor while

maintaining aspect ratio and (5) centering the shape at the origin.

Each generated shape undergoes validation to ensure it meets aspect ratio require-

ments (between 0.5 and 2.0) and maintains minimum feature sizes necessary for prac-

tical analysis.

3.2.3 Cutout Generation

For shapes designated to include cutouts, a sophisticated cutout generation system

was implemented. The system can create both circular and elliptical cutouts, with the

selection between these types governed by a probability parameter of 0.5. The cutout

placement and sizing follow specific rules to ensure structural validity.

Table 3.2: Cutout Generation Parameters

Parameter Minimum Value Maximum Value

Cutout Size 60 mm 240 mm

Ellipse Aspect Ratio 0.5 1.5

Minimum Distance Factor 1.5 -

Maximum Cutouts per Shape - 1
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The cutout placement algorithm calculates safe interior regions using a minimum dis-

tance criterion from boundaries. Minimum spacing between cutouts and boundaries

are selected to be 1.5 times the cutout diameter. For elliptical cutouts, the aspect ratio

varies between 0.5 and 1.5, providing additional geometric diversity while maintain-

ing manufacturability considerations.

Figure 3.4 visualize several generated shape examples according to explained shape

generation algorithm. While left column of the figure present base shapes, right col-

umn provides example of shapes with cutout.

3.3 Finite Element Mesh Generation

To accurately capture the structural behavior best practices of meshing should be fol-

lowed when creating the mesh. In the automobile, aerospace and many other indus-

tries where thin walled structures are commonly used, these structures are modelled

with 2D shell elements because of their relatively small thickness. 2D shell elements

represent the geometry of the structure very well for this kind of problems and also

more efficient in terms of computational burden when compared to 3D elements.

Therefore, for the base structure, we utilize 2D shell elements, specifically NAS-

TRAN’s CQUAD4 elements, with a quad-dominant meshing strategy. This choice

aligns with established practices in thin-walled structural analysis, where the thick-

ness dimension is significantly smaller than other geometric dimensions. Shell ele-

ments effectively capture both membrane and bending behaviors while maintaining

computational efficiency compared to full 3D element formulations.

The meshing process is conducted using the commercial software HYPERMESH

BATCHMESHER , which is a widely used tool for generating mesh in many indus-

tries. The meshing process involves the following steps:

1. Importing the generated shapes into HYPERMESH

2. Automatically meshing the shapes using the quad-dominant meshing strategy

3. Refining the mesh to ensure consistent element size and quality
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Figure 3.4: Examples of generated shapes
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4. Exporting the mesh data in BDF format that can be used for the finite element

analysis in NASTRAN

HYPERMESH uses a user defined quality criteria such as element aspect ratio, skew

angle and jacobian to ensure the generated mesh meets the required quality standards.

Applied quality criteria when creating the meshes is given in the Table 3.3.

Table 3.3: Mesh Generation Quality Criteria

Criterion Wt Ideal Good Warn Fail

Min Length 2.0 22.00 16.00 12.00 8.00

Max Length 1.5 22.00 28.00 34.00 38.50

Aspect Ratio 1.0 1.00 2.00 4.00 5.00

Warpage 2.0 0.00 3.75 11.25 15.00

Max Angle Quad 1.0 90.00 110.00 140.00 150.00

Min Angle Quad 1.0 90.00 70.00 40.00 30.00

Max Angle Tria 1.0 60.00 80.00 120.00 130.00

Min Angle Tria 1.0 60.00 50.00 30.00 20.00

Skew 1.5 0.00 10.00 50.00 60.00

Jacobian 2.0 1.00 0.90 0.60 0.50

Chordal Dev 0.0 0.00 0.30 0.80 1.00

% of Trias 2.0 0.00 1.50 2.25 3.00

Taper 1.0 0.00 0.20 0.50 0.60

Penalty Value - 0.00 0.00 1.00 2.00

Each mesh undergoes automated quality checking against the criteria defined in Table

3.3. Elements failing these criteria trigger automated mesh refinement and optimiza-

tion procedures.

In regions containing cutouts, special attention is paid to mesh refinement and element

transitions. The mesh density is not locally increased around cutout boundaries but

washer meshing is implemented to accurately capture stress concentrations and po-

tential local buckling modes. High element quality is achieved around cutout regions

to minimize element based numerical artifacts.

The mesh generation process incorporates industry standard validation steps to en-

sure consistency across the entire dataset. This systematic approach to discretization
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provides the foundation for reliable finite element analysis and subsequent training of

the graph neural network model.

Figure 3.5 illustrates results of mesh generation process for shapes given in Figure

3.4. Right column is belong to shapes with cutout that visualizes mesh refinement

around cutouts. Left column of the figure provides base shape mesh generation.

Figure 3.6: Ground stiffener network generation on a mesh
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Figure 3.5: Examples of generated meshes
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3.3.1 Stiffener Generation Strategy

For stiffened structures, we implement a systematic approach to stiffener placement

and activation that balances structural effectiveness with computational feasibility.

The generation process involves two key steps: first creating a network of potential

stiffener locations which we name this "ground stiffener network" with dummy prop-

erties as shown in Figure 3.6, then selectively activating groups of these stiffeners to

create meaningful structural configurations.

All potential stiffener locations are initially modeled using NASTRAN’s CBAR ele-

ments, with two distinct property definitions: active stiffeners (PID=900) and inactive

stiffeners (PID=999). The material properties for both use an aluminum alloy with

Young’s modulus E=76 GPa and Poisson’s ratio ν=0.3 [13]. The active stiffeners

with 2 mm thickness and 80 mm height are defined with the following cross-sectional

properties.

• Area: 160 mm2 (2.0 × 80.0 mm)

• Moment of inertia I1: 85,333.33 mm4 (2.0 × 80.03/12)

• Torsional constant J: 213.33 mm4 (0.333 × 80.0 × 2.03)

Inactive stiffeners are assigned negligible property values (0.0001 for all parame-

ters) to maintain mesh connectivity while minimizing their structural influence. This

approach enables us to switch stiffeners between active and inactive states without

modifying the underlying mesh topology. The stiffener activation process follows

specific rules given in Table 3.4 to ensure realistic structural configurations.

Table 3.4: Stiffener Generation Parameters

Parameter Minimum Value Maximum Value

Active stiffeners 10 100

Consecutive stiffeners 5 25

Direction tolerance 0 deg 30 deg
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The activation algorithm employs a group-based approach where stiffeners are acti-

vated in connected sequences. For each group:

1. A random starting edge is selected

2. Connected edges within the direction tolerance are identified

3. The group is grown bidirectionally until reaching either the maximum consec-

utive limit or finding no valid connections

4. The process repeats until reaching the target number of active stiffeners

This approach ensures structural continuity in stiffener patterns while maintaining

sufficient variability in the dataset. The direction tolerance of 30 degrees ensures

that activated stiffener groups follow reasonably straight paths, mimicking typical

aerospace structural design practices.

1D stiffener layout example is given in Figure 3.7. In this figure red lines represent

1D stiffeners. All other transparent lines represent our ground stiffeners with dummy

properties.

Figure 3.7: 1D stiffener generation process

This stiffener generation strategy was applied to create our enhanced dataset of stiff-

ened structures, which ultimately comprised 714,704 unique configurations before

the eigenvalue-based filtering process.
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3.4 Load Case Generation

The generation of load cases represents a critical aspect of our methodology, as it

directly influences the quality and diversity of the training dataset. We developed a

systematic approach to create physically meaningful loading scenarios that challenge

the structure in various ways while maintaining practical relevance.

3.4.1 Load Case Generation Strategy

Our approach to load case generation balances both the need for diverse loading con-

ditions and the requirement for physically meaningful scenarios. Each shape receives

multiple distinct load cases, with specific constraints on both the boundary conditions

(BC) and applied forces.

The boundary conditions are limited to a maximum of 1 BC line per shape, where

each line consists of 25 to 35 connected nodes along the structure’s boundary. These

nodes are constrained in all six degrees of freedom (three translations and three ro-

tations) using NASTRAN’s SPC1 card with a ’123456’ specification. This approach

ensures proper structural support while avoiding over-constraint.

Table 3.5: Load Case Generation Parameters

Parameter Minimum Maximum

BC Line Node Count 25 35

Force Line Node Count 10 20

Force Magnitude (per node) 10 N 1000 N

Load Cases per Shape 10 10

BC Lines per Shape 1 1

Force Lines per Load Case 1 1

For force application, the algorithm generates one load line per load case, with each

line containing 10 to 20 connected boundary nodes. The force magnitude on each

node ranges from 10N to 1000N, providing sufficient variation in loading intensity.
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The direction of the applied forces is determined through a random angle generation

process that ensures coverage of various loading scenarios - from pure compression

to combined compression-shear conditions.

Figure 3.8: A generated load case example

3.4.2 Load Case Filtering and Validation

Each generated load case undergoes a validation process to ensure its suitability for

training data. Load cases are checked to ensure that the maximum displacement re-

mains within physically reasonable bounds, filtering out cases that might violate small

displacement theory assumptions. Also buckling eigenvalue can be calculated nega-

tive even though positive eigenvalues request is explicitly defined in BDF files. These

solutions are filtered out.

3.5 Finite Element Analysis

The finite element analysis phase of our study employs two distinct types of analyses:

linear static analysis and linear buckling analysis. These analyses are conducted us-

ing MSC NASTRAN, chosen for its robust solution algorithms and wide acceptance

in the engineering community. The analyses are performed sequentially, as the buck-

ling analysis requires the stress state from the static solution to form the geometric

stiffness matrix.
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3.5.1 Linear Static Finite Element Analysis

Linear static analysis forms the foundation of our structural assessment, providing the

stress state and deformation field under applied loads. The analysis assumes linear

elastic material behavior and small deformation theory. The governing equation for

this analysis is:

[K]u = F (3.1)

where [K] is the global stiffness matrix, u is the displacement vector, and F is the

applied force vector. For our implementation, we utilize NASTRAN’s Solution 101

[28] sequence with the following specifications:

• Material Properties: Aluminum alloy (E = 76 GPa, v = 0.3) [13]

• Element Formulation: CQUAD4 dominated elements for the base structure

• Output Requests: - DISPLACEMENT(PLOT) = ALL - STRESS(PLOT) =

ALL - GPSTRESS(PLOT) = ALL

The analysis explicitly accounts for grid point stress balance and calculates surface

stresses at grid points through the GPSTRESS command, which are crucial for our

subsequent graph neural network implementation. The grid point stress output pro-

vides a more continuous stress field representation compared to element-centered cor-

ner stress results [28].

3.5.2 Linear Buckling Finite Element Analysis

Following the static analysis, we perform a linear buckling analysis to determine

the critical buckling load and corresponding mode shape. As aforementioned, the

eigenvalue problem solved in this analysis is:

([K] + λ[KG])ϕ = 0 (3.2)

where [KG] is the geometric stiffness matrix derived from the static stress state, λ is

the eigenvalue representing the buckling load factor, and ϕ is the eigenvector repre-

senting the buckling mode shape. Our implementation employs NASTRAN’s Solu-

tion 105 [28] sequence with the following specifications:
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• Method: Lanczos eigenvalue extraction (EIGRL card)

• Number of Eigenvalues: Limited to first positive eigenvalue for efficiency

• Stress-Based Differential Stiffness [KG]: Automatically computed from Solu-

tion 101 results

• Output Requests: - DISPLACEMENT(PLOT) = ALL

The buckling analysis is set up to capture only the lowest eigenvalue, as this represents

the critical buckling load factor that typically governs design. The analysis parameters

are chosen to ensure computational efficiency considering large number of analyses

required for our dataset.

3.5.3 Output Processing and Validation

The analysis results undergo systematic processing and validation before being in-

corporated into the training dataset. Each analysis is checked for proper completion

status. No hidden node should remain in any input file (.bdf format). Results are

extracted from the output files (.op2 format) using specialized parsing routines that

capture (1) nodal displacements and rotations, (2) grid point stress components (σx,

σy, τxy), (3) buckling eigenvalue and mode shape. Results are validated against max-

imum displacement magnitude and eigenvalue positivity check. The maximum stress

is arranged so that the maximum stress in the model does not exceed 300MPa.

The finite element analysis phase provides the foundation for training our graph neu-

ral network model. The careful consideration of analysis parameters and validation

criteria ensures the reliability of our training data, while the comprehensive output

processing enables effective translation of finite element results into the graph-based

format required for machine learning implementation.

3.6 Dataset Regularization

The development of an effective surrogate model requires not only accurate data but

also a well-balanced dataset that avoids biases in the training process. Initial analysis
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(a) Generated load case (b) Buckling mode shape plot with 0.09

eigenvalue

(c) Displacement magnitude plot (d) Von Mises stress field plot

Figure 3.9: Examples of finite element analysis results of a shape without cutout

of our generated datasets revealed significant imbalances in the distribution of struc-

tural responses, particularly in buckling eigenvalues, which could potentially bias the

model training [54]. This section describes our systematic approach to dataset reg-

ularization, focusing on achieving a more uniform distribution of critical structural

responses while maintaining the physical validity of the data.

3.6.1 Dataset without Stiffeners

Our initial dataset without stiffeners, comprising 40,000 analysis cases (4,000 shapes

with 10 load cases each), exhibited a highly skewed distribution of buckling eigenval-
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(a) Generated load case (b) Buckling mode shape plot with 0.06

eigenvalue

(c) Displacement magnitude plot (d) Von Mises stress field plot

Figure 3.10: Examples of finite element analysis results of a shape with cutout

ues. As shown in Figure 3.11, the distribution followed an approximately logarithmic

pattern, with a dense concentration of cases at lower eigenvalues and a long tail ex-

tending toward higher values. This distribution pattern is inherent to the physics of

buckling behavior, where geometric variations and loading conditions tend to produce

more cases with lower critical loads.

3.6.1.1 Dataset Expansion and Under-sampling

To address this distributional bias, we implemented a two-phase approach. First, we

expanded the dataset by a factor of 5, generating approximately 200,000 analysis
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Figure 3.11: Initial distribution of buckling eigenvalues for non-stiffened dataset

cases. This expansion maintained the same geometric and loading parameters but

provided a larger pool for selective sampling. The expanded dataset provided more

data in regions with higher eigenvalues, allowing us to achieve better representation

across the entire eigenvalue range. Second, we applied selective sampling to achieve a

more uniform distribution. The eigenvalue range was divided into bins of equal width

of 0.05, and a target count was established for each bin based on the desired uniform

distribution. Cases were selectively sampled from each bin to achieve the target dis-

tribution, with bins exceeding the target count being subsampled, while maintaining

diversity in geometric and loading conditions.

The regularization process resulted in a final dataset of 40,000 cases with approxi-

mately uniform distribution of buckling eigenvalues across the retained range. The

initial distribution and the final distribution are illustrated in Figure 3.12. This bal-

anced dataset forms the foundation for training our graph neural network model, en-

suring that the model receives sufficient examples across the entire range of buckling

behaviors. With using final distribution shown in Figure 3.12, eigenvalue imbalance

is handled as each eigenvalue range is represented in training.
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Figure 3.12: Dataset regularization process for non-stiffened dataset

3.6.2 Enhanced Dataset with Stiffeners

The regularization process for the stiffened structure dataset followed a similar method-

ology but with a larger initial dataset owing to the increased complexity of stiffened

configurations. Starting with 714,704 analysis cases, we first removed cases exhibit-

ing numerically unstable or physically unrealistic behaviors, resulting in 678,968

valid cases. This filtering step was crucial for ensuring the quality of our training

data.

After the initial filtering, we applied a similar binning and selective sampling ap-

proach as used for the non-stiffened dataset. However, the larger initial dataset al-

lowed us to maintain a higher number of samples per bin while still achieving a rel-

atively uniform distribution. The final regulated dataset consisted of 80,000 cases,

representing approximately 11.8% of the initial valid cases. Figure 3.13 illustrates

this dramatic transformation from the highly skewed initial distribution to a more

balanced final distribution.
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Figure 3.13: Comparison of initial and final eigenvalue distributions for stiffened

dataset

The regularization process for the stiffened dataset presented additional challenges

due to the complex interactions between stiffeners and the base structure. These in-

teractions resulted in a wider range of eigenvalues and more intricate patterns in their

distribution. Despite these challenges, our approach successfully achieved a rela-

tively uniform distribution while preserving the diversity of structural configurations

and loading conditions.

3.6.3 Impact on Static Displacement Dataset

In contrast to the buckling analysis datasets, we did not apply similar regularization

procedures to the static displacement dataset. This decision was primarily driven

by two factors. First, displacement fields represent local structural responses rather

than global properties like buckling eigenvalues, making their distribution patterns

fundamentally different. Second, our focus on buckling prediction as the primary

objective led us to prioritize the quality and balance of buckling-related data.

The lack of regularization for the static displacement dataset likely contributed to the

reduced performance we observed in displacement field predictions compared to the

results reported by Gladstone et al. [11] in their EA-GNN implementation. As identi-

fied by Yang et al. [54], regression tasks can suffer from data imbalance where certain

value ranges are underrepresented, leading to biased models. This phenomenon likely
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Figure 3.14: Dataset regularization process for stiffened dataset

explains the performance gap between our work and Gladstone’s results.

3.7 Dataset Split

The effective partitioning of data into training, validation, and test sets represents

an important step in developing robust machine learning models. Our approach to

dataset splitting emphasizes not only the statistical distribution of target values but

also the preservation of geometric and loading diversity across all sets. This section

details our comprehensive splitting methodology and the creation of specialized test

datasets for evaluating model generalization.

3.7.1 Training and Validation Split Strategy

For both non-stiffened and stiffened datasets, we implemented a splitting strategy

to maintain balanced representation across different structural behaviors. The non-
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stiffened dataset of 40,000 cases and the stiffened dataset of 80,000 cases were split

using a 90-10 ratio for training and validation sets respectively. The splitting pro-

cess was designed to preserve the balanced eigenvalue distribution achieved through

our regularization process in both sets, ensuring reliable model evaluation across the

entire spectrum of structural responses.

Figure 3.15: Distribution analysis of training and validation sets for non-stiffened

dataset

As illustrated in Figure 3.15 and 3.16, both training and validation sets maintain sim-

ilar distribution patterns, with each eigenvalue bin represented proportionally. This

balanced representation is crucial for reliable model evaluation, as it ensures that vali-

dation performance metrics reflect the model’s capabilities across the entire spectrum

of structural behaviors.
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Figure 3.16: Distribution analysis of training and validation sets for stiffened dataset

3.7.2 Test Dataset Generation

To comprehensively evaluate model generalization, we developed multiple special-

ized test datasets for both non-stiffened and stiffened configurations. These test sets

were designed to assess different aspects of model performance and robustness.

3.7.2.1 Non-Stiffened Test Datasets

The base test dataset for non-stiffened structures consists of 4,000 analysis cases de-

rived from 400 unique shapes not used in training or validation. While these shapes

were generated using the same parameters as the training dataset, they represent en-

tirely new geometries, ensuring a true test of the model’s ability to generalize to un-

seen node configurations.

To evaluate the model’s ability to handle geometric scaling, we created additional

test datasets by scaling these 400 base test shapes. Additionally, we created test
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cases with modified loading configurations, incorporating multiple line loading and

multiple SPC lines to assess the model’s robustness to variations in loading patterns.

3.7.2.2 Stiffened Test Datasets

For stiffened structures, we developed a similar test dataset using the same 400 base

shapes. The test configuration was modified to explore a broader range of stiffener

layouts. 4 load cases per shape were selected and different stiffener layouts were

generated per load case. This resulted in 8,000 total test cases (400 shapes × 4 load

cases × 5 layouts). The test set represents approximately 10% of the stiffened training

dataset size.

This configuration allows us to evaluate the model’s performance across various stiff-

ener patterns while maintaining consistent base geometry and loading conditions. The

multiple stiffener layouts per load case enable assessment of the model’s sensitivity

to changes in stiffener configuration.

Table 3.6: Test Dataset Characteristics

Test Dataset Shapes Cases/Shape Layouts/Case Total Cases

Non-Stiffened Base 400 10 1 4,000

Non-Stiffened 0.5× Scale 400 10 1 4,000

Non-Stiffened 2.0× Scale 400 10 1 4,000

Non-Stiffened Multiple Loading 400 10 1 4,000

Stiffened Base 400 4 5 8,000

Stiffened 0.5× Scale 400 4 5 8,000

Stiffened 2.0× Scale 400 4 5 8,000

Stiffened Multiple Loading 400 4 5 8,000

The comprehensive nature of these test datasets enables thorough evaluation of model

performance across different scenarios. This systematic approach to dataset splitting

and test set generation provides a robust framework for evaluating model performance

and generalization capabilities. Consideration of various geometric configurations,

loading conditions, and stiffener patterns in our test datasets enables thorough assess-
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ment of the model’s practical applicability.
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CHAPTER 4

GRAPH CREATION AND GNN MODEL ARCHITECTURE

4.1 Introduction

This chapter presents the comprehensive architecture and implementation details of

our Graph Neural Network (GNN) framework for structural analysis. The develop-

ment of this framework required careful consideration of several key aspects: the

representation of structural data as graphs, enhancement of information flow between

nodes, coordinate frame normalization for improved generalization and the design of

specialized neural network architectures for different prediction tasks.

Our framework employs GraphSAGE as the primary architecture, chosen for its proven

effectiveness in inductive learning tasks and its ability to generate node embeddings

through localized neighbor sampling and aggregation [20]. This choice was moti-

vated by GraphSAGE’s demonstrated capability to learn on previously unseen graph

structures, a crucial requirement for our structural analysis applications where each

new geometry presents a unique graph topology. The framework incorporates sev-

eral architectural innovations to address the specific challenges of structural analysis.

First, we introduce enhanced information flow mechanisms through random virtual

edges and a super node architecture, designed to facilitate both local and global infor-

mation propagation across the structure. Second, we implement a coordinate frame

normalization strategy based on Principal Component Analysis (PCA) to ensure rota-

tional and translational invariance of our predictions. Finally, we develop specialized

pooling strategies optimized for different prediction tasks, particularly focusing on

the global nature of buckling eigenvalue prediction.

Our implementation leverages the PyTorch framework with PyTorch Geometric ex-
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tensions, enabling efficient processing of graph-structured data while maintaining

flexibility for custom architectural components. The framework is designed to handle

both simple plate structures and more complex configurations with stiffeners.

The following sections provide detailed descriptions of each component, including

mathematical formulations, implementation details and design rationales. Particular

attention is paid to the architectural choices that enable effective learning of both local

and global structural behaviors, which is crucial for accurate prediction of buckling

eigenvalues and displacement fields.

4.2 Graph Representation of Structural Data

The transformation of structural analysis data into graph representations forms the

foundation of our framework. This section details our comprehensive approach to

encoding both geometric and physical properties of structures into a graph format

suitable for neural network processing.

4.2.1 Node Feature Engineering

Node features in our framework are designed to capture both geometric and physical

properties of the structural system. The feature vector for each node comprises sev-

eral key components, engineered specifically for different prediction tasks. Demon-

stration of node feature engineering is illustrated in Figure 4.1.

For static analysis prediction types (like displacements and stresses), nodes incorpo-

rate the following geometric features:

xstatic = [p, b, f , o, s] (4.1)

where:

• p ∈ R2 represents spatial coordinates [x, y]

• b ∈ 0, 1 is the fixed boundary condition flag, if node is constrained, this value

is set to 1
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• f ∈ R2 represents external force components [Fx, Fy]

• o ∈ 0, 1 encodes boundary information, if node is at the boundary of the struc-

ture then this value is set to 1

• s ∈ R4 stiffener information

Figure 4.1: Demonstration of node feature engineering

For structures with stiffeners, the stiffener contribution at a particular node is quanti-

fied using directional bins:

s = [s0/180, s45/225, s90/270, s135/315] (4.2)

where each bin sθ represents the normalized stiffener contribution in the correspond-

ing direction range. These bins are calculated based on the geometric configuration of

connected stiffener elements, with values normalized to the range [0, 1] by dividing

by 3.0 as specified in our implementation. For example, if there is a node connecting

two 1D stiffener elements which both lie on 0° direction then this particular node’s

s0/180 value is 2/3 = 0.666.

For buckling analysis, the node feature vector is extended to include:

xbuckling = [xstatic,u,σ] (4.3)

where:

• u ∈ R2 represents static displacements (ux, uy)
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• σ ∈ R3 represents stress components (σx, σy, τxy)

When employing the super node architecture, we append an additional binary in-

dicator to distinguish between regular nodes and the super node. According to the

prediction type that we use, final node features becomes:

xfinal_static = [xstatic, ntype] (4.4)

xfinal_buckling = [xbuckling, ntype] (4.5)

where ntype is 0 for regular nodes and 1 for the super node.

4.2.2 Edge Feature Engineering

Edge features in our framework are designed to capture both topological connectivity

and geometric relationships between nodes. We define three distinct types of edges:

mesh edges, stiffener edges and virtual edges, each carrying specific attribute infor-

mation. The process is visualised in Figure 4.2. For edges representing the finite

element mesh connectivity, we encode both geometric and physical properties in a

feature vector:

emesh = [t, lnorm,d, v] (4.6)

where:

• t ∈ 0, 1 is stiffener flag, if there is a 1D stiffener on an edge then it is 1 for that

particular edge

• lnorm is the normalized edge length (divided by 1000 for numerical stability)

• d ∈ R2 is the normalized direction vector [dx,dy]

• v ∈ 0, 1 is the virtual edge flag, if edge is virtual then it is 1 for that particular

edge

For stiffener elements, the first component (1.0) distinguishes stiffener edges from

shell mesh edges. The increased magnitude of this component (1.0 vs 0.0) reflects
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the enhanced stiffness contribution of stiffener elements compared to regular mesh

connections.

The virtual edge indicator (v = 1) explicitly marks virtual edges as non-physical

connections. These edges are created according to the algorithm described in Section

4.3.1, with their number limited to 20.0% of the original edge count to maintain

computational efficiency while ensuring enhanced information flow.

Figure 4.2: Demonstration of edge feature engineering

4.2.3 Feature Normalization

Our framework employs a comprehensive normalization strategy to ensure stable

training and effective learning. Different feature types undergo specific normaliza-

tion procedures. Edge features are already normalized when they are extracted. Initial

node features are given in 4.7 and 4.8.

xdisplacement = [p, b, f , o, s, ntype] (4.7)

xbuckling = [p, b, f , o, s,u,σ, ntype] (4.8)

Spatial coordinates are normalized using the global maximum extent of the structure,

pnorm =
p

max(|pmax|, |pmin|)
(4.9)
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where pmax and pmin represent the maximum and minimum dimensions across all co-

ordinates.

External forces are normalized based on the global force statistics,

fnorm =
f

max(|fmax|, |fmin|)
(4.10)

where fmax and fmin represent the maximum and minimum forces in x and y direction.

For displacements and stresses we employ robust scaling, specifically ScikitLearn’s

RobustScaler [55].

θscaled =
θ − µ

ω
(4.11)

where µ and ω are computed using the RobustScaler implementation. The center

of data is denoted as µ, the size factor is denoted as ω. RobustScaler makes the

normalization resistant to outliers. We maintain separate scalers for different feature

types and ensure consistent normalization across training and inference.

4.3 Enhanced Information Flow Mechanisms

A key challenge in applying GNNs to structural analysis is ensuring effective informa-

tion propagation across the entire structure. This is particularly crucial for predicting

global behaviors such as buckling modes, where local deformations can significantly

influence the overall structural response. To address this challenge, we implement

two complementary mechanisms: random virtual edge creation and a super node ar-

chitecture.

4.3.1 Random Virtual Edge Creation

Random virtual edges are additional connections in the graph that supplement the

physical mesh connectivity, enabling more direct information flow between distant

regions of the structure. Figure 4.3 illustrates virtual edges drawn with red-dotted

lines in Figure 4.3b. Figure 4.3a shows base graph without any virtual edge connec-

tion. The percentage of virtual edges (20%) was determined through empirical testing

to balance enhanced connectivity with computational efficiency by Gladstone et al.
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[11]. Random virtual edge creation process follows a controlled approach given in

Algorithm 1.

Algorithm 1 Random Virtual Edge Generation

Calculate maximum allowed virtual edges: Nvirtual = 20.0%× Emesh

Initialize empty set Evirtual

while |Evirtual| < Nvirtual do

Select random nodes (ni, nj) where i ̸= j

if (ni, nj) /∈ Emesh ∪ Evirtual then

Add (ni, nj) to Evirtual

end if

end while

Virtual edges are assigned following the format,

ev = [0, dij/1000,uij, 1] (4.12)

where dij is the Euclidean distance between nodes i and j uij is the unit direction

vector and the last component (1) identifies the edge as virtual.

4.3.2 Super Node Architecture

The super node architecture introduces a special node that connects to all other nodes

in the graph, serving as a global information aggregator and distributor. The super

node is implemented with the node feature vector given in 4.13.

xs = [0, ...,0, 1] (4.13)

where the final component (1) identifies it as a super node. The super node connects

to all regular nodes through bidirectional edges.

Es = (vs, vi) ∪ (vi, vs)|∀vi ∈ V (4.14)

Finally, super node connections (edges) use the same feature format as virtual edges

but maintain their distinct role through the graph’s adjacency structure.
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(a) Base graph (b) Adding virtual edges

Figure 4.3: Virtual edge enhancement of graph connectivity

4.3.2.1 Information Flow Enhancement

The super node architecture provides several key benefits. Firstly, it reduces the max-

imum path length between any two nodes to 2, enabling faster information propaga-

tion.

dmax = 2∀vi, vj ∈ V (4.15)

Super node utilization enables each node to access global structural information through

the super node’s aggregated features. Super node also facilitates both local and global

feature processing through the dual-path information flow. Super node architecture

and information flow is illustrated in Figure 4.6.
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Figure 4.4: Random virtual edge generation example. Green lines show virtual edges

4.3.3 Coordinate Frame Normalization

One of the key challenges in analyzing structural shapes is ensuring consistent orien-

tation and positioning across different geometries. To address this, we implement a

robust coordinate frame normalization procedure using Principal Component Analy-

sis (PCA). This approach ensures that all structures are aligned in a consistent manner,

regardless of their original orientation, which is crucial for the neural network to learn

meaningful geometric patterns and structural behaviors.

The normalization process begins by computing the covariance matrix of the node

coordinates. For each structure with N nodes, we first calculate the centroid µ and

then construct the covariance matrix:

C =
1

N

N∑
i=1

(xi − µ)(xi − µ)T (4.16)
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Figure 4.5: Super node generation example. Green lines show virtual edges. Purple

dot represents super node. Super node features (all zero except for the super node

flag) are given in the left-hand side box

where xi represents the coordinates of the i-th node. This covariance matrix cap-

tures the primary directions of variation in the structure’s geometry. We then perform

eigendecomposition of this matrix:

Cvi = λivi (4.17)

The eigenvectors vi represent the principal axes of the structure, with the correspond-

ing eigenvalues λi indicating the variance along each axis. To ensure consistent ori-

entation across similar shapes, we analyze the third moment of the data projection

along the primary axis:

m3 =
N∑
i=1

(xT
i v1)

3 (4.18)

The sign of this moment determines whether the principal axis needs to be flipped to
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(a) Base graph (b) Adding super node with virtual edges con-

nected to all regular nodes

(c) Message aggregation to super node (d) Message distribution to regular nodes

Figure 4.6: Super node architecture and information flow

maintain consistent orientation:

v1 = −v1 if m3 < 0 (4.19)

After establishing the transformation axes, we apply a series of transformations to all
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relevant quantities. First, node coordinates are centered and rotated:

xtransformed = R(x− µ) (4.20)

where R is the rotation matrix formed by the aligned eigenvectors. Vector quantities

such as forces and displacements undergo similar transformation:

vtransformed = Rv (4.21)

Stress tensors require special handling due to their tensorial nature. We transform

them using Mohr’s transformation equations:

σ′
x =

σx + σy

2
+

σx − σy

2
cos(2θ) + τxy sin(2θ)

σ′
y =

σx + σy

2
− σx − σy

2
cos(2θ)− τxy sin(2θ)

τ ′xy = −σx − σy

2
sin(2θ) + τxy cos(2θ)

(4.22)

where θ represents the rotation angle derived from our PCA transformation. A crucial

aspect of our implementation is the handling of axis flipping. When PCA indicates

that coordinate axes should be flipped, we need to adjust the shear stress components

accordingly. Under axis flipping:

• If x-axis is flipped: σx remains unchanged, τxy changes sign

• If y-axis is flipped: σy remains unchanged, τxy changes sign

• If both axes are flipped: all components remain unchanged

This comprehensive transformation approach ensures that our Graph Neural Network

receives consistently oriented structural information, which is crucial for learning

meaningful patterns and making accurate predictions. The transformation informa-

tion is stored for each structure, allowing us to transform the network’s predictions

back to the original coordinate system when necessary.

The effectiveness of this normalization approach is proved in previous works [11],

where they observe consistent prediction accuracy regardless of the initial orientation

of the input structures and need for less data to train the network. This data size

reduction. This invariance to rotation and translation is particularly important for

our buckling analysis predictions, as it ensures that the critical loads are correctly

identified regardless of the structure’s original orientation and reduces data size.
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Figure 4.7: Coordinate frame normalization process and stress transformation

4.4 Model Architecture

Our neural network architecture is designed to effectively capture both local and

global structural behaviors through a sophisticated message passing framework. The

architecture consists of several key components: encoders that transform raw struc-

tural features into learnable representations, message passing layers that enable in-

formation flow across the structure and specialized pooling mechanisms for different

prediction tasks. This design allows the network to learn complex relationships be-

tween geometric features, loading conditions and structural responses. Arctitecture

layout is demonstrated in Figure 4.8

4.4.1 Node and Edge Encoders

The encoder networks serve as the foundation of our architecture, transforming raw

input features into higher-dimensional latent representations that capture meaningful

structural characteristics. We implement different encoder architectures based on the

target hidden dimension, optimizing the network’s capacity to handle varying levels

of feature complexity. For node features, when working with moderate-sized hidden

dimensions (h ≤ 128), we employ a streamlined single-hidden-layer Multi-Layer
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Figure 4.8: Model architecture layout

Perceptron (MLP):

ϕnode(x) = MLP64,h(x) (4.23)

MLP64,h =


Linear(16 → 64)

ReLU()

Linear(64 → h)

(4.24)

Here h denotes arbitrarily selected hidden dimension number. For larger hidden di-

mensions (h ≥ 256), we utilize a deeper two-hidden-layer architecture to enable more

sophisticated feature transformations:

ϕnode(x) = MLP64,128,h(x) (4.25)

The edge encoder follows a similar pattern, adapting its architecture based on the

hidden dimension. For moderate dimensions:

ϕedge(e) = MLP64,h(e) (4.26)

And for larger dimensions:

ϕedge(e) = MLP64,128,h(e) (4.27)

We used MLPs in these encoders because MLPs with ReLU activation functions are

universal approximators, capable of approximating any continuous function on com-

pact subsets of Rn with arbitrary precision given sufficient hidden units. While the
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original universal approximation theorem focused on bounded, continuous activation

functions [56], subsequent research has shown that ReLU networks also possess this

universal approximation property, often with advantages in training dynamics and

gradient propagation [57, 58]. These encoders are designed to maintain a balance

between expressive power and computational efficiency, with the architecture depth

scaling appropriately with the complexity of the feature space.

4.4.2 GraphSAGE Layer

At the heart of our architecture lies the GraphSAGE layer, which implements a so-

phisticated message passing mechanism through neighbor aggregation. We utilize an

additive aggregation variant, which has shown superior performance in our structural

analysis tasks. The core operation of each GraphSAGE layer is defined as given in

Equation 4.28.

x(k)
v = σ

(
Wk · AGG(x(k−1)

u ),∀u ∈ N (v)
)

(4.28)

where h
(k)
v represents the hidden state of node v at layer k, Wk is a learnable weight

matrix and N (v) denotes the neighborhood of node v. The additive aggregation func-

tion that we used in this work is specifically defined as in Equation 4.29.

AGG(xu) =
∑

u∈N (v)

xu (4.29)

To facilitate effective gradient flow and enable learning of both local and global struc-

tural features, we implement skip connections between consecutive layers.

x(k)
v = x(k)

v + x(k−1)
v for k > 1 (4.30)

The choice of additive aggregation, rather than mean or max pooling, was motivated

by its ability to better preserve magnitude information in the message passing process,

which is crucial for accurate prediction of structural responses. The skip connections,

connecting every other layer, help maintain access to both local and global structural

information throughout the network’s depth, preventing the over-smoothing problem

common in deep graph neural networks.
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4.4.3 CustomGNN Layer

Our custom Graph Neural Network layer, inspired by MeshGraphNets [9] and fur-

ther refined based on EA-GNN architecture [11], implements a sophisticated message

passing mechanism that explicitly incorporates edge attributes. This design is particu-

larly effective for structural analysis as it can directly process geometric relationships

encoded in edge features, such as element orientations and connectivity information.

This layer is referred as CustomGNN throughout the thesis.

4.4.3.1 Message Passing Operations

The layer operates through a sequence of three main operations that work together to

update both edge and node representations.

Edge Update Operation: The first step involves updating edge features by consider-

ing both the connected nodes and the edge’s current features.

e′ij = χ(xi,xj, eij) (4.31)

Here, xi and xj represent the features of nodes connected by edge (i, j) and eij rep-

resents the edge’s current features. The edge update function χ is implemented as a

single layer MLP.

χ = MLPh,h(xi,xj, eij) (4.32)

This operation allows edges to adapt their representations based on the states of their

incident nodes.

Message Computation and Aggregation: After updating edge features, the layer

computes messages between connected nodes.

mij = ϕ(xi,xj, e
′
ij) (4.33)

These messages are then aggregated for each node using a mean operation.

mi =
1

|N (i)|
∑

j∈N (i)

mij (4.34)
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The mean aggregation helps normalize the incoming information, preventing scaling

issues in nodes with different numbers of neighbors.

Node Update Operation: Finally, nodes update their features using two steps.

xi = γ(xi,mi)

x′
i = xi + β(xi)

(4.35)

The functions involved in these operations are implemented as MLPs with single

hidden layer.

ϕ = MLPh,h(xi,xj, e
′
ij) (4.36)

γ = MLPh,h(xi,mi) (4.37)

β = MLPh,h(xi) (4.38)

After node update is done, message propagation in the layer is completed.

4.4.3.2 Layer Architecture

The layer’s MLPs are carefully designed to maintain consistent feature dimensions

while enabling rich feature transformations.

Edge MLP (χ) processes concatenated node and edge features:

MLPedge =


Linear(3h → h)

ReLU()

Linear(h → h)

(4.39)

Message MLP (ϕ) handles message aggregation:

MLPnode =


Linear(2h → h)

ReLU()

Linear(h → h)

(4.40)

Node MLP (γ) handles concatenated node features and message information:

MLPnode =


Linear(2h → h)

ReLU()

Linear(h → h)

(4.41)
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Residual MLP (β) maintains feature dimensionality:

MLPresidual =


Linear(h → h)

ReLU()

Linear(h → h)

(4.42)

Skip connections are implemented for both nodes and edges to facilitate gradient flow

and preserve information across layers.

xk+1 = xk + xk+1 for nodes (4.43)

ek+1 = ek + ek+1 for edges (4.44)

Figure 4.9: CustomGNN layer architecture

This is the second architecture that we use in our thesis, where architectural design is

shown in Figure 4.9. This architecture’s explicit edge processing enables better rep-

resentation of structural connectivity and geometric relationships. GraphSAGE can

not utilize edge features whereas this GNN block can utilize this explicit knowledge.

4.4.4 Pooling Strategies

While there is no need for pooling layers for node level prediction implementations,

for graph level prediction task like predicting buckling eigenvalues, a pooling layer

is needed before the decoder to aggregate updated node information from the whole
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graph. Pooling mechanisms play a crucial role in our architecture for predicting buck-

ling eigenvalues. Through extensive experimentation, we developed and evaluated

several pooling strategies, each offering distinct advantages for buckling eigenvalue

prediction tasks. Our investigation led to three main approaches: super node only

pooling, hybrid pooling combining super node with mean aggregation and traditional

mean pooling.

Figure 4.10: Pooling strategies using different approaches

As it will be understand in the upcoming chapter, the super node only pooling strat-

egy emerged as the most effective approach for eigenvalue prediction. This success

can be attributed to the super node’s unique ability to learn and represent global struc-

tural characteristics. During message passing iterations, the super node accumulates

information from all nodes in the structure, effectively creating a comprehensive rep-

resentation of the structure’s overall stiffness and load distribution patterns.

The mathematical representation of this process is node update processes of each

framework. Equation 4.28 shows node feature update for GraphSAGE framework

and Equation 4.35 shows node feature update for custom GNN framework. After

node features updated and finalized, only final super node features are used to predict

buckling eigenvalue.

A key insight from our research was the importance of the super node’s initial state.

By initializing the super node with zero features except for its type indicator, we

allow it to learn purely from the structure’s characteristics without any predetermined

biases.

x(0)
s = [0, 0, ..., 0, 1] (4.45)

The final value (1) indicates the super node type. We also implemented a hybrid
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pooling mechanism that combines super node features with mean-pooled features

from regular nodes.

xhybrid = CONCAT(xs,
1

|V |
∑
i∈V

xi) (4.46)

While this approach provides redundancy in global information gathering, our exper-

imental results showed that it did not significantly improve prediction accuracy over

the simpler super node only approach. This pooling operation also requires double

sized hidden dimension for decoder because of concatenation of super node features

and global mean pooling values.

The traditional mean pooling strategy is selected to be only pooling layer option for

random virtual edge augmented models. These models do not contain any super node

instead they include random virtual edges. Because of that we cannot use previous

pooling layer options.

xmean =
1

|V |
∑
i∈V

xi (4.47)

These three pooling layers are used throughout this study for buckling eigenvalue

predictions.

4.4.5 Decoder Architecture

The decoder architecture in our framework serves as the final transformation stage,

converting learned graph representations into prediction outputs. The design of our

decoder networks reflects the fundamental difference between predicting global scalar

properties (like buckling eigenvalues) and local field quantities (like displacements).

This distinction led us to develop specialized decoder architectures for each prediction

task.

For buckling eigenvalue prediction, our decoder processes the highly concentrated in-

formation from the super node through a carefully designed multi-layer network. The

architecture’s depth and width were determined through extensive experimentation,

leading to different optimal configurations based on the model’s hidden dimension

size. For models with hidden dimensions up to 128, we employ a single hidden layer
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compact architecture.

ϕbd(x) = MLPh/2,1(x) (4.48)

ϕbd =


Linear(h → 64)

ReLU()

Linear(64 → 1)

(4.49)

This compact design proved sufficient for processing the concentrated information

from the super node. However, for larger models with hidden dimensions of 256 or

greater, we try to ensure gradually decrease by stepping down the feature dimension

in stages smoothly (e.g., 256 → 128 → 64 → 1), we allow the network to gradually

distill the complex structural information into a single predictive value while main-

taining important feature relationships.

ϕbd(x) = MLP128,64,1(x) (4.50)

ϕbd =



Linear(h → 128)

ReLU()

Linear(128 → 64)

ReLU()

Linear(64 → 1)

(4.51)

For displacement field prediction, the decoder takes on a different role. Instead of

concentrating information, it must transform node-wise features into local displace-

ment predictions while maintaining spatial relationships. Our implementation for this

task utilizes a shared MLP across all nodes.

di = ϕfd(xi) ∀i ∈ V (4.52)

where di represents the predicted displacement components at node i. The decoder

architecture for this task maintains the feature dimension longer in its processing

pipeline. Because dimension of the displacement field is 2, namely ux and uy, output

of the decoder is 2 representing [ux, uy].

ϕfd(x) = MLP64,ds(x) (4.53)
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ϕfd =


Linear(h → 64)

ReLU()

Linear(64 → 2)

(4.54)

One of the key point is the importance of the activation function placement in the

decoder. While ReLU activations were crucial for the intermediate layers adding

nonlinearity to the model, maintaining linearity in the final layer is essential for ac-

curate prediction of both positive and negative values in displacement components.

This design choice was particularly important for capturing the full range of structural

responses.

4.5 Loss Function Design

The design of appropriate loss functions proved to be crucial for achieving accu-

rate predictions in structural analysis tasks. Our research revealed that standard loss

functions sometimes fell short in capturing the unique characteristics of structural be-

havior, leading us to develop specialized loss functions for different prediction tasks.

4.5.1 Buckling Analysis Loss Functions

In buckling analysis, the accurate prediction of eigenvalues across different orders

of magnitude presented a particular challenge. Traditional mean squared error (MSE)

loss tended to prioritize larger eigenvalues while paying insufficient attention to smaller,

yet equally important, values. To address this, we utilized relative error loss function

that provides balanced training across the full range of eigenvalues.

Lrel =
1

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (4.55)

Ground truth buckling eigenvalues for a graph is represented by y and model’s pre-

dicted buckling eigenvalue for the same graph is represented by ŷ.
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4.5.2 Static Analysis Loss Functions

For static analysis, we developed a specialized graph-wise Mean Absolute Error

(MAE) loss function that accounts for the hierarchical nature of our graph-based pre-

dictions. In this context, y represents the ground truth displacement values at each

node, while ŷ represents the model’s predicted displacement values at those same

nodes. Unlike traditional MAE implementations that treat all nodes across the batch

uniformly, our approach preserves the graph structure by computing the error sepa-

rately for each graph before averaging, ensuring that graphs with different numbers

of nodes are weighted equally in the final loss calculation. The loss function is for-

mulated as follows:

Lstatic =
1

G

G∑
g=1

(
1

Ng

Ng∑
i=1

|ygi − ŷgi |

)
(4.56)

where G represents the total number of graphs in the batch, Ng is the number of nodes

in graph g, ygi is the true displacement at node i of graph g and ŷgi is the predicted

displacement at the same node. This formulation first computes the mean absolute

error for each graph independently, then averages these errors across all graphs in the

batch. This approach ensures that each graph contributes equally to the loss regardless

of its size, preventing larger graphs from dominating the training signal.

4.5.3 Loss Function Scheduler

To ensure efficient training, we implemented cosine annealing scheduler [59]. The

scheduler operates with specified base period, gradually reducing the learning rate

according to the cosine function.

ηt = ηmin +
1

2
(ηmax − ηmin)(1 + cos(

tπ

T
)) (4.57)

where ηt is the learning rate at epoch t, ηmin and ηmax are the minimum and maximum

learning rates respectively and T is the total number of epochs.
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4.6 Implementation Details

Our software implementation builds upon PyTorch [60] and PyTorch Geometric (PyG)

[61], chosen for their combination of flexibility and performance. PyTorch’s dy-

namic computational graphs proved particularly valuable during development, al-

lowing rapid prototyping and easier debugging of complex graph operations. The

integration with PyG provided essential utilities for handling graph-structured data,

significantly reducing the complexity of implementing message-passing operations.

As for training infrastructure, our setup employed TESLA V100-SXM2 and TESLA

P100 GPUs with 16GB VRAM. Access to these resources was granted by TRUBA.

The batch size of 16 was chosen based on GPU memory constraints
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CHAPTER 5

MODEL TRAINING AND RESULTS

5.1 Introduction

This chapter presents a comprehensive analysis of our Graph Neural Network frame-

work’s training process and performance, with a particular focus on buckling eigen-

value prediction. Our investigation follows a systematic two-phase approach: first

optimizing the architecture and hyperparameters using a base dataset of non-stiffened

structures, then applying these optimized configurations to the more complex domain

of stiffened plates. Our implementation leverages architectural design detailed in

Chapter 4, where technical background is given in every detail.

This methodological progression from simpler to more complex structural configura-

tions serves multiple purposes. First, it enables thorough validation of our architec-

tural choices and training strategies in a more controlled setting. The base dataset,

comprising 40,000 selected samples from an initial pool of 200,000 analyses, pro-

vides a foundation for hyperparameter optimization and architectural comparisons.

This approach allows us to establish clear baseline performance metrics before tack-

ling the additional complexities introduced by stiffener elements. The subsequent

application to our expanded dataset of 80,000 stiffened structures, selected from over

700,000 analyses, demonstrates the framework’s scalability and adaptability to more

complex structural configurations.

While our framework was designed to handle multiple prediction tasks, including dis-

placement field prediction, our investigation revealed particularly promising results in

buckling eigenvalue prediction. The challenges encountered in the prediction of the

displacement field, where our implementation of the EA-GNN architecture [11] and
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the GraphSAGE architecture [20] showed limited success compared to published re-

sults, led us to investigate the underlying reasons.

Throughout this chapter, we present a detailed analysis of our training methodology,

results and insights gained from both phases of our investigation. We examine model

performance across selected geometric configurations and loading conditions provid-

ing an understanding of our framework’s capabilities and limitations. Special atten-

tion is paid to generalization ability, demonstrated through performance on modified

test cases including scaled geometries.

The structure of this chapter progresses from training framework implementation

to detailed results analysis. We begin by examining hyperparameter optimization

process, followed by comprehensive results from both non-stiffened and stiffened

datasets. The analysis concludes with a comparative analysis against traditional fi-

nite element methods, providing insights into the framework’s potential impact on

structural engineering practice.

5.2 Hyperparameter Optimization

The development of an effective Graph Neural Network architecture for structural

analysis requires careful tuning of multiple hyperparameters that significantly influ-

ence model performance. Our optimization strategy focused on four key architectural

aspects: model type selection, hidden dimension size, number of message passing

layers, and pooling strategy. We conducted a grid search across these parameters,

evaluating more than 220 different model configurations to identify the optimal ar-

chitecture for buckling prediction.

5.2.1 Grid Search Implementation

Our grid search methodology systematically explored the following hyperparameter

space:

• Model Architecture: GraphSAGE vs CustomGNN
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• Hidden Dimensions: [64, 128, 256, 512]

• Number of Layers: [2, 3, 4, 6]

• Pooling Strategies: [mean, supernode, hybrid]

To evaluate performance of the models, MAPE metric is used:

MAPE =
1

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (5.1)

Figure 5.1 shows the validation MAPE trajectories for all configurations tested dur-

ing our grid search process. The dense collection of curves, each representing a

unique combination of hyperparameters, demonstrates the extensive nature of our

optimization effort. This visualization reveals significant variation in model perfor-

mance across different configurations, with final validation MAPE values ranging

from approximately 8% to over 60%.

Figure 5.1: Validation MAPE trajectories for all hyperparameter configurations tested

during grid search optimization
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5.2.2 Model Architecture Selection

The first key decision in our optimization process was the choice between Graph-

SAGE and CustomGNN architectures. As shown in Figure 5.2, we compared these

architectures while maintaining consistent settings for other hyperparameters (hidden

dimension: 256, number of layers: 6, hybrid pooling).

Figure 5.2: Validation MAPE comparison between GraphSAGE and CustomGNN

architectures

GraphSAGE demonstrated consistently superior performance, achieving lower vali-

dation MAPE values throughout the training process. By epoch 250, GraphSAGE

achieved a validation MAPE of approximately 7.5% compared to CustomGNN’s 9%.

This performance advantage can be attributed to GraphSAGE’s efficient neighbor-

hood aggregation mechanism and its ability to learn node embeddings that effectively

capture both local and global structural characteristics.
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5.2.3 Hidden Dimension Analysis

We investigated the impact of hidden dimension size on model performance, testing

four different dimensions: 64, 128, 256, and 512. Figure 5.3 presents the validation

MAPE curves for each dimension setting.

Figure 5.3: Validation MAPE comparison across different hidden dimension sizes

The results reveal that while a hidden dimension of 64 consistently underperformed,

the differences between larger dimensions (128, 256 and 512) were less pronounced.

However, the 512-dimensional model showed marginally better performance, partic-

ularly in the later epochs. This suggests that while increased representational capacity

benefits model performance, the returns diminish beyond a certain point. The 512-

dimensional model’s superior performance justifies its selection despite its higher

computational cost.

5.2.4 Layer Depth Analysis

The number of message passing layers significantly influences the model’s ability to

capture multi-scale structural behaviors. We evaluated configurations with 2, 3, 4,
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and 6 layers, as shown in Figure 5.4.

Figure 5.4: Validation MAPE comparison for different numbers of message passing

layers

Interestingly, both the shallowest (2 layers) and deepest (6 layers) configurations

showed strong performance. The 6-layer model ultimately achieved the lowest val-

idation MAPE, suggesting that deeper architectures can better capture the complex

relationships in structural analysis. However, the strong performance of the 2-layer

model indicates that even relatively shallow networks can learn meaningful repre-

sentations for buckling prediction, particularly in non-stiffened structures where the

geometric complexity is lower.

5.2.5 Pooling Strategy Evaluation

The final aspect of our optimization focused on pooling strategies: mean pooling,

supernode pooling, and hybrid pooling. Figure 5.5 presents the comparative perfor-

mance of these approaches.

Both hybrid and supernode pooling outperformed mean pooling, with hybrid pooling
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Figure 5.5: Validation MAPE comparison for different pooling strategies

showing better results. The superior performance of supernode and hybrid approaches

demonstrates the importance of maintaining global structural information when pre-

dicting buckling behavior. Mean pooling’s relatively poor performance suggests that

simple averaging of node features loses crucial information about the structural sys-

tem’s global characteristics.

5.2.6 Optimal Configuration and Training Results for Base Dataset

Based on our comprehensive hyperparameter optimization study, we identified the

following optimal configuration.

• Architecture: GraphSAGE with additive aggregation

• Hidden Dimension: 512

• Number of Layers: 6

• Pooling Strategy: Hybrid

• Dropout Rate: 0.1
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This configuration demonstrated the best overall performance. This configuration will

be used to train both non-stiffened and stiffened dataset.

Using this configuration we achieved a final validation MAPE of 5.5% on the base

dataset. The success of this architecture can be attributed to its ability to effectively

balance local feature extraction through deep message passing with global informa-

tion preservation through hybrid pooling.

The relatively small gap between training and validation MAPE indicates that the

model successfully avoids overfitting while capturing the underlying physical rela-

tionships governing buckling behavior. This configuration was subsequently used as

the foundation for our investigations with stiffened structures, which we discuss in

the following section.

5.3 Model Training and Performance Analysis

The evaluation of our Graph Neural Network architecture spanned two distinct datasets:

a base dataset consisting of non-stiffened structures and an enhanced dataset incor-

porating stiffened structures. This section presents a analysis of model performance

across both scenarios.

5.3.1 Base Dataset Training Results

Training on the base dataset of non-stiffened structures served as our initial validation

of the model architecture. Using the optimal configuration identified through hyper-

parameter optimization, we achieved remarkable prediction accuracy for buckling

eigenvalues. Figure 5.6 illustrates the training progression over 450 epochs.

The model demonstrated strong learning characteristics on the base dataset, achieving

a final validation MAPE of 5.5%. Several key observations can be made from the

training curves. First, rapid initial convergence during the first 50 epochs indicates

efficient learning of fundamental structural patterns. Minimal gap between training

and validation curves suggests robust generalization. Model performance is stable,

minimal oscillation in later epochs.
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Figure 5.6: Training and validation MAPE curves for the base dataset showing con-

sistent convergence and minimal overfitting

The low validation MAPE of 5.5% represents excellent prediction accuracy for buck-

ling eigenvalues, particularly considering the diverse range of geometries and loading

conditions in the dataset. This performance level indicates that the model successfully

learned to capture the complex relationships between structural geometry, loading

conditions, and buckling behavior.

5.3.2 Stiffened Dataset Performance

Following the successful validation on the base dataset, we applied the same architec-

tural configuration to the more complex stiffened structures dataset. This represents

a significant increase in problem complexity, as the addition of stiffeners introduces

new geometric features and structural interactions. Figure 5.7 shows the training pro-

gression for the stiffened dataset.

The model achieved a validation MAPE of 12.5% on the stiffened dataset, with sev-

eral notable characteristics in the training process:
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Figure 5.7: Training and validation MAPE curves for the stiffened dataset demon-

strating reasonable learning despite increased structural complexity

• Higher initial MAPE values compared to the base dataset, reflecting increased

problem complexity

• More pronounced oscillations in validation error, indicating more challenging

optimization landscape

• Longer convergence period, suggesting more complex feature relationships re-

quiring extended learning

• Slightly larger gap between training and validation curves, though still within

acceptable bounds

The increase in validation MAPE from 5.5% to 12.5% when moving from base to

stiffened structures is reasonable given the substantial increase in problem complex-

ity. The addition of stiffeners introduces new geometric features, local-global interac-

tions, and more complex load paths that the model must learn to process. Despite this

increased complexity, the model maintains acceptable prediction accuracy, demon-

strating its robustness and scalability to more challenging structural configurations.
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The successful application of our architecture to both datasets validates its effective-

ness as a surrogate model for buckling analysis. The consistent performance across

different levels of structural complexity suggests that the fundamental architectural

choices - particularly the combination of GraphSAGE layers with super node and

hybrid pooling - provide a robust foundation for buckling analysis tasks.

5.4 Model Generalization and Robustness

The evaluation of our Graph Neural Network’s generalization capabilities involved

comprehensive testing across multiple scenarios, examining both non-stiffened and

stiffened structures under various conditions. Table 5.1 presents the complete test

results for our optimized GraphSAGE model with 512 hidden dimensions and 6 mes-

sage passing layers.

Table 5.1: Test Results for GraphSAGE Model

Structure Type Test Case MAPE (%) Min Error (%) Max Error (%)

Non-

Stiffened

Base 6.73 0.0004 78.03

0.5× Scale 16.71 0.025 35.55

2.0× Scale 29.97 0.006 181.63

Multiple Loading 13.46 0.002 296.73

Stiffened

Base 17.64 0.002 214.59

0.5× Scale 24.17 0.039 53.45

2.0× Scale 45.44 0.009 255.39

Multiple Loading 20.90 0.002 462.59

5.4.1 Base Performance Analysis

The model’s performance on the base test set provides our primary benchmark for

generalization capability. For non-stiffened structures, the achieved MAPE of 6.73%

represents excellent prediction accuracy, particularly when compared to the valida-

tion performance of 5.5% during training. This small difference between validation
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and test performance (approximately 1.2 percentage points) indicates robust gener-

alization to unseen geometries generated with the same parameters as the training

set.

For stiffened structures, the base test MAPE of 17.64% compared to the validation

MAPE of 12.5% shows a more pronounced generalization gap of about 5 percentage

points. This increased gap aligns with our expectations given the additional com-

plexity introduced by stiffener elements and their interactions with the base structure.

The higher maximum error (214.59% versus 78.03% for non-stiffened) suggests that

certain stiffener configurations produce more challenging prediction scenarios, par-

ticularly when combined with complex loading conditions.

5.4.2 Scale Invariance Analysis

Our scale invariance tests reveal systematic patterns in model performance across

different geometric scales. For non-stiffened structures, scaling to half size (0.5×)

results in a MAPE increase to 16.71%, while doubling the size (2.0×) leads to a

more substantial increase to 29.97%. Notably, the maximum error for 0.5× scaling

(35.55%) is lower than the base case (78.03%), suggesting that while overall accuracy

decreases, prediction stability actually improves for smaller scales.

The stiffened structures exhibit more pronounced scaling effects, with MAPE values

increasing to 24.17% and 45.44% for 0.5× and 2.0× scales respectively. This scale

sensitivity appears to be amplified by the presence of stiffeners, possibly due to the

changing relative significance of stiffener-plate interactions at different scales. The

maximum errors follow a similar pattern, though interestingly, the 0.5× scale shows

substantially lower maximum error (53.45%) compared to both base and 2.0× con-

figurations. These scaling effects can be attributed to several factors. The model’s

training on a specific size range (700mm to 1000mm) creates an implicit scale bias

despite our coordinate normalization strategy. The physical behavior of structures can

change with scale, particularly regarding the relative importance of different buckling

modes. The relationship between geometric features and buckling behavior may be-

come nonlinear at scales significantly different from the training range.
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5.4.3 Complex Loading Response Analysis

The introduction of multiple loading lines and boundary conditions provides insight

into the model’s robustness to loading complexity. For non-stiffened structures, the

MAPE of 13.46% represents a reasonable degradation from base performance, con-

sidering the substantially increased complexity of the loading scenarios. However,

the maximum error of 296.73% indicates potential stability issues in extreme cases.

Stiffened structures show similar sensitivity to loading complexity, with MAPE in-

creasing to 20.90% and maximum errors reaching 462.59%. This substantial increase

in maximum error suggests that the combination of stiffeners and complex loading

patterns can create particularly challenging prediction scenarios, possibly due to com-

plex load path interactions through the stiffener network.

5.4.4 Model Limitations

Analysis of error distributions across test configurations reveals important patterns

that help us understand both the capabilities and limitations of our Graph Neural

Network framework. The most striking pattern emerges in the relationship between

structural complexity and prediction accuracy. When stiffeners are introduced to the

structural system, we observe not only an increase in mean error but also a notably

higher variance in predictions. This effect becomes particularly pronounced in cases

where the geometric scale deviates significantly from the training dataset, reaching its

peak in the 2.0× scale configurations. The interaction between stiffeners and scale ap-

pears to create a compounding effect, suggesting that our model struggles to maintain

consistent accuracy when multiple complexity factors coincide.

The challenge of predicting buckling behavior becomes even more evident when ex-

amining structures under complex loading conditions. Our analysis shows that mul-

tiple loading configurations generate the broadest error distributions in our test cases,

with this effect being particularly pronounced in stiffened structures. This observa-

tion suggests that the complexity of loading patterns poses a more significant chal-

lenge to our model’s predictive capabilities than purely geometric variations. The

model appears to have greater difficulty capturing the intricate load paths and stress
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distributions that arise from multiple loading points, especially when these complex

loading patterns interact with stiffener elements.

Through our comprehensive testing program, we have identified clear boundaries

where our model’s reliability begins to diminish. A particularly clear limitation

emerges in the model’s handling of geometric scaling. Performance degradation be-

comes significant when structures deviate beyond twice their original size, effectively

establishing practical application limits between half and double the original scale

range. This scaling limitation likely stems from the model’s training distribution and

suggests that the coordinate normalization strategy, while effective within a certain

range, cannot fully compensate for large-scale geometric variations.

The model’s response to loading complexity represents another critical boundary

condition. The high maximum errors observed in multiple loading cases serve as

a warning sign, indicating that predictions for complex loading patterns should be

approached with particular caution. This caution becomes especially important when

dealing with stiffened structures, where the interaction between complex loading and

stiffener configurations can lead to prediction errors significantly larger than those

observed in simpler cases.

The presence of stiffeners introduces its own set of limitations. Our analysis reveals

that certain stiffener configurations produce notably higher error rates and broader

error distributions than others. This sensitivity to stiffener configuration becomes

particularly acute under non-standard loading conditions, suggesting that additional

validation measures may be necessary when applying the model to novel stiffener

arrangements or unusual loading scenarios.

These limitations carry significant implications for the practical application of our

framework. They suggest that successful implementation requires careful considera-

tion of the intended use case and its relationship to the model’s established reliability

boundaries. In addition, they point to the potential value of developing confidence

metrics that could help users identify when predictions approach these reliability

boundaries. Such metrics could prove particularly valuable in cases where multiple

complexity factors coincide, potentially amplifying prediction uncertainty.
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5.4.5 Static Analysis Performance

While our framework demonstrated strong performance in buckling prediction, the

results for static displacement field prediction were less competitive compared to

state-of-the-art implementations like EA-GNN [11]. Our implementation achieved

a relative validation error of 13.7% for displacement field prediction, notably higher

than average 5% errors reported by Gladstone et al. This performance gap can be

attributed to several factors.

First, our dataset generation and regularization efforts focused primarily on achieving

uniform distribution of buckling eigenvalues, potentially at the expense of displace-

ment field diversity. As identified by Yang et al. [54], regression tasks can suffer from

data imbalance where certain value ranges are underrepresented, leading to biased

models. While our regularization strategy proved effective for buckling prediction, a

different approach focusing on displacement field distribution might be necessary for

improved static analysis performance.

Second, the static displacement field represents a more complex prediction target

than buckling eigenvalues, requiring accurate point-wise predictions across the entire

domain rather than a single global value. The success of Gladstone et al.’s implemen-

tation suggests that their edge augmentation strategy may be particularly effective for

capturing local deformation patterns, an aspect where our implementation could be

improved.

These observations highlight the importance of tailored data preparation and archi-

tectural choices based on the specific prediction task. While our framework excels at

capturing global structural behavior for buckling analysis, further refinements would

be needed to match state-of-the-art performance in displacement field prediction.

5.5 Real Life Examples and Buckling Model Results

To evaluate the practical applicability of our Graph Neural Network framework, we

conducted tests on two real-life stiffened panel configurations from aerospace appli-

cations. While our training dataset provided valuable insights into model behavior
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across various geometric configurations, testing on actual aerospace components of-

fers a more clear evaluation of the model’s generalization capabilities and practical

utility.

5.5.1 Aircraft Bulkhead Analysis

The first test case involved a fighter aircraft bulkhead featuring a large central cutout,

representing a significantly more complex geometry than our training examples. The

bulkhead size was scaled to the largest dimension of 1 meter, placing it at the upper

bound of our training dataset’s geometric range. Then, the bulkhead was modeled

with fixed boundary conditions at its central region, with a 3kN force applied in the

y-direction at the wing attachment region. Mesh size was kept 22mm, the same with

training dataset. Figure 5.8 illustrates both the physical structure and its finite element

representation.

Finite element analysis predicted a first buckling eigenvalue of 2.02, while our GNN-

based model predicted 3.21, resulting in a relative error of 58.7%. This substantial

deviation from FEA results highlights the challenges in generalizing to more com-

plex, realistic geometries that deviate significantly from the training distribution.

5.5.2 Aircraft Beam Analysis

The second test case examined an aircraft structural beam with a cutout, representing

another common aerospace component. The beam was analyzed with fixed boundary

conditions on one end and a 1.7kN force applied in the x-direction at the opposite

end. The beam size was also scaled to have the largest dimension of 1 meter. The

configuration is shown in Figure 5.9.

For this case, FEA predicted a buckling eigenvalue of 1.13, while our model predicted

1.43, representing a relative error of 26.9%. Better performance compared to the

bulkhead case suggests that the beam’s geometry and loading condition were more

closely aligned with the scenarios represented in our training dataset.
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(a) Physical structure [62]

(b) Finite element model

Figure 5.8: Fighter aircraft bulkhead analysis: (a) Physical structure [62] (b) Finite

element model with boundary conditions and loading

5.5.3 Analysis of Results

These real-world test cases reveal several important insights about our model’s current

capabilities and limitations.
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(a) Physical structure [62]

(b) Finite element model

Figure 5.9: Aircraft structural beam analysis: (a) Physical structure [62] (b) Finite

element model showing boundary conditions and loading

In terms of geometric complexity, both test cases featured more intricate geometries

than our training examples, particularly in terms of stiffener arrangements and cutout

configurations. The higher prediction errors suggest that our training dataset may not

adequately capture the geometric complexity encountered in actual aerospace com-

ponents.

As for scale effects, the physical dimensions of these components often fall outside

our training dataset’s range (700mm to 1000mm) and aspect ratio range (0.5 to 1),

potentially contributing to the reduced accuracy. This aligns with our earlier observa-

tions regarding the model’s sensitivity to geometric scaling.

When it comes to loading conditions, the real-world loading scenarios, particularly
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the interaction between loads and complex geometric features like different cutout

shapes, present challenges not fully represented in our training data. Also it should

be noted that the boundary conditions in practical applications often involve more

complex constraints than those used in training.

Finally, in terms of stiffener configurations, the actual arrangement and sizing of

stiffeners in these components reflect practical design considerations that may dif-

fer significantly from our generated training examples. This suggests a need for more

realistic stiffener patterns in our training dataset.

5.6 Comparative Analysis Between FEM and Surrogate Model

To evaluate the computational efficiency of our Graph Neural Network approach com-

pared to traditional Finite Element Analysis, we conducted timing studies on both

methods. The tests were performed on a workstation equipped with Intel Xeon 6148

2.40GHz CPU and NVIDIA Tesla V100 GPU. Each timing measurement represents

the average of 100 consecutive runs to ensure statistical reliability.

For consistent comparison, we used a representative test case with 726 nodes and

4800 bidirectional edges, representing a typical structural configuration from our

dataset. The GNN model employed was our optimized GraphSAGE architecture with

6 layers and a hidden dimension size of 512, configured for eigenvalue prediction. For

the FEM analysis, we utilized MSC Nastran with both single-core and parallel pro-

cessing modes, limiting CPU cores to 8 to maintain consistent comparison conditions.

Table 5.2: Performance Comparison Between GNN and FEM Analysis

Method Batch Size Inference Time (s)

GNN (CPU) 256 0.016

GNN (V100 GPU) 32 0.006

FEM (Single-core) 1 1.728

FEM (8-core Parallel) 1 0.522

The results demonstrate a significant performance advantage for the GNN-based ap-

107



proach. The CPU-accelerated GNN achieves an inference time of 16.1 milliseconds

for a batch of 256 structures, translating to approximately 62.13 structures per sec-

ond. In GPU-only operation, the GNN maintains impressive performance with 6.2

milliseconds per inference for a batch of 32 structures, processing about 160.45 struc-

tures per second.

In contrast, traditional FEM analysis using Nastran requires substantially more com-

putational time. Single-core execution takes approximately 1.73 seconds per struc-

ture, while parallel processing with 8 cores reduces this to 0.52 seconds per structure.

This translates to throughput rates of 0.58 and 1.92 structures per second respectively.

This performance comparison is not entirely fair because we could code FEM analysis

to be run on CUDA and use the hardware advantage like GNN model. We could say it

is more fairer to compare CPU-only performance of two model with 1 batch size. We

calculated single core performance of Nastran as 1.73 seconds per structure. Even in

this configuration, GNN model achieved 0.182 seconds per structure and showed its

efficiency over traditional FEM analysis.

The performance difference becomes particularly significant when considering batch

processing capabilities. While FEM analysis inherently processes one structure at a

time, our GNN approach can efficiently handle multiple structures simultaneously,

leading to dramatically higher throughput. This batch processing capability, com-

bined with the inherent parallelization advantages of neural networks, results in ap-

proximately two orders of magnitude improvement in processing speed compared to

traditional FEM methods.

These timing results highlight a key advantage of our GNN-based surrogate model

approach: its ability to provide rapid structural analysis results while maintaining

acceptable accuracy levels (as demonstrated in previous sections). This speed advan-

tage becomes particularly valuable in scenarios requiring multiple analyses, such as

design optimization or parametric studies, where the computational efficiency could

significantly accelerate the design process.

This computational advantage becomes particularly significant when considering real-

world aerospace applications. Consider the fuselage section shown in Figure 5.10,
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which consists of approximately 400 individual pocket panels of similar size to our

test mesh (726 nodes, 4800 bidirectional edges). When designing such structures,

engineers need to analyze multiple load cases - typically around 1000 different com-

binations of loads - to ensure structural integrity across all possible operating condi-

tions.

Figure 5.10: An aircraft fuselage section with multiple panels [63]

Let us quantify the computational requirements for analyzing this fuselage section.

With traditional FEM analysis using 8-core parallel processing (0.522 seconds per

analysis), analyzing all 400 panels under 1000 load cases would require:

TFEM = 400 panels × 1000 load cases × 0.522 seconds ≈ 58.0 hours (5.2)

In contrast, our GNN model, leveraging GPU acceleration and batch processing ca-

pabilities (0.006 seconds for 32 structures), can complete the same analysis in:

TGNN = 400 panels × 1000 load cases × 0.006 seconds ≈ 40.0 minutes (5.3)
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This dramatic reduction in computation time - from over two days to less than half

an hour - has profound implications for the aircraft design process. The design of

aerospace structures is inherently iterative, requiring multiple rounds of analysis and

optimization.

Each iteration traditionally requires a complete reanalysis of the structure under all

load cases, making the design process time-consuming and computationally expen-

sive. Our GNN-based surrogate model transforms this workflow by providing near-

instantaneous feedback on structural performance.

The ability to reduce analysis time from days to minutes while maintaining accept-

able accuracy levels (as demonstrated in previous sections) represents a paradigm

shift in aerospace structural design. This efficiency gain not only accelerates the

design process but also enables more thorough exploration of design alternatives, po-

tentially leading to more optimized and innovative structural solutions. These timing

improvements become even more significant when considering the entire aircraft de-

sign process, where multiple sections require similar analyses, and design changes in

one area often necessitate re-analysis of adjacent sections. The computational effi-

ciency of our GNN approach could potentially reduce the overall aircraft structural

design cycle from weeks to days, providing a substantial competitive advantage in

aerospace development programs.

5.7 Discussion and Analysis

The development and evaluation of our Graph Neural Network framework for struc-

tural analysis has provided valuable insights into both the capabilities and limitations

of deep learning approaches in this domain. Our systematic investigation, progress-

ing from simple non-stiffened structures to more complex stiffened configurations,

reveals several key findings that have important implications for the future of compu-

tational structural analysis.

The most striking result from our study is the remarkable prediction accuracy achieved

for buckling eigenvalues in non-stiffened structures, with validation MAPE of 5.5%

and test MAPE of 6.73%. This level of accuracy, achieved while maintaining com-
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putational speeds orders of magnitude faster than traditional FEM analysis, demon-

strates the viability of neural network-based surrogate models for practical structural

analysis tasks. The small gap between validation and test performance indicates ro-

bust generalization capabilities, suggesting that our approach successfully captures

fundamental relationships between geometric features, loading conditions, and buck-

ling behavior.

However, the transition to stiffened structures revealed both the strengths and limi-

tations of our approach. The increase in validation MAPE to 12.5% and test MAPE

to 17.64% for stiffened structures reflects the inherent complexity added by stiffener

elements. This performance degradation, while significant, remains within accept-

able bounds for many practical applications, particularly in preliminary design phases

where rapid analysis capabilities often outweigh the need for extreme precision. The

larger gap between validation and test performance in stiffened structures (approxi-

mately 5 percentage points versus 1.2 for non-stiffened) suggests that the model faces

greater challenges in generalizing learned patterns when stiffener-plate interactions

are present.

Our investigation of different architectural components yielded several significant in-

sights. The superior performance of GraphSAGE over CustomGNN architecture,

particularly in capturing global structural behavior, highlights the importance of ef-

fective neighborhood aggregation in structural analysis tasks. The success of the

super node approach, especially in buckling eigenvalue prediction, demonstrates the

value of maintaining global structural information throughout the message passing

process. This finding aligns with the physical nature of buckling phenomena, where

local geometric features must be synthesized to predict global structural behavior.

The scale invariance tests revealed both the capabilities and limitations of our co-

ordinate normalization strategy. While the model maintains reasonable performance

across a range of scales, the systematic increase in prediction errors with scaling mag-

nitude suggests that absolute size remains a relevant factor despite our normalization

efforts. This scale sensitivity appears to be amplified by the presence of stiffeners,

possibly due to the changing relative significance of stiffener-plate interactions at dif-

ferent scales. These findings suggest that future improvements in scale invariance
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might require more sophisticated normalization strategies or explicit incorporation of

scale information in the model architecture.

Perhaps the most challenging aspect revealed by our study is the model’s sensitivity

to complex loading patterns, particularly in stiffened structures. The high maximum

errors observed in multiple loading test cases (reaching 462.59% for stiffened struc-

tures) indicate potential stability issues in extreme scenarios. This sensitivity likely

stems from the complex load paths that can develop through stiffener networks, cre-

ating structural responses that may deviate significantly from the patterns observed in

the training data.

The contrast between our results in buckling prediction and the challenges encoun-

tered in displacement field prediction (where our implementation did not match the

performance reported by Gladstone et al. [11]) provides interesting insights into the

nature of different structural prediction tasks. The success in buckling prediction, de-

spite using a simpler architecture, suggests that global structural properties might be

more amenable to graph-based learning approaches than local field quantities. This

observation aligns with the theoretical strengths of graph neural networks in capturing

relationships across multiple scales.

Looking toward practical applications, our results suggest that this approach is partic-

ularly well-suited for preliminary design stages and optimization studies where rapid

analysis capabilities are crucial. The dramatic reduction in computational time - from

hours to minutes for typical aerospace structural components - could transform the

design process, enabling more comprehensive exploration of design spaces and more

thorough optimization studies. However, the identified limitations, particularly re-

garding scale invariance and complex loading conditions, indicate that these tools

should be used with appropriate understanding of their boundaries and limitations.

The performance characteristics observed across different test scenarios also suggest

potential directions for future improvement. The systematic patterns in prediction er-

rors, particularly their relationship with geometric scale and loading complexity, in-

dicate that more sophisticated feature engineering or architectural innovations might

further enhance model robustness. Additionally, the success of the super node ap-

proach in capturing global structural behavior suggests that similar strategies for
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maintaining multi-scale structural information might benefit other prediction tasks.

In conclusion, while our framework demonstrates significant promise for accelerating

structural analysis workflows, it also highlights the continuing challenges in creating

truly general-purpose surrogate models for structural analysis. The balance between

computational efficiency and prediction accuracy achieved in this work suggests that

neural network-based approaches might best serve as complementary tools to tradi-

tional analysis methods, particularly in early design stages where rapid iteration is

crucial. The insights gained from this study provide valuable direction for future re-

search in this rapidly evolving field, pointing toward architectural innovations that

might better capture the multi-scale nature of structural behavior.

113



114



CHAPTER 6

CONCLUSION

This research has advanced the application of Graph Neural Networks to structural

analysis, particularly focusing on buckling behavior prediction. Through the develop-

ment of a comprehensive framework encompassing data generation, graph represen-

tation and specialized neural network architectures, we have demonstrated both the

potential and current limitations of deep learning approaches in structural engineering

applications.

Our implementation achieved remarkable accuracy in buckling eigenvalue prediction

for non-stiffened structures, with validation MAPE of 5.5% and test MAPE of 6.73%.

This performance, combined with computational speeds approximately two orders of

magnitude faster than traditional FEM analysis, represents a significant advancement

in rapid structural analysis capabilities. For stiffened structures, while the accuracy

decreased (validation MAPE 12.5%, test MAPE 17.64%), the results remain within

acceptable bounds for many practical applications, particularly in preliminary design

phases.

The research contributions span several key areas. First, our data generation pipeline,

incorporating Bezier curve-based shape generation, mesh generation and system-

atic load case generation, provides a robust foundation for creating diverse, physi-

cally meaningful training datasets. The development of enhanced dataset balancing

methodologies addresses the inherent biases in structural response distributions, en-

suring more effective model training. Second, our investigation of different graph

representation strategies, particularly the comparison between random virtual edges

and super node architectures, provides valuable insights into effective information

flow mechanisms for structural analysis tasks. The superior performance of the super
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node approach in buckling prediction highlights the importance of maintaining global

structural information throughout the analysis process.

A particularly significant contribution lies in our comprehensive evaluation of model

generalization capabilities. The systematic testing across scaled geometries (0.5× to

2.0×) and complex loading conditions provides clear boundaries for practical appli-

cation. While the model maintains reasonable accuracy across various scales, the

observed performance degradation with increasing scale deviation suggests limita-

tions in our current approach to scale invariance. Similarly, the increased prediction

errors under complex loading conditions, particularly for stiffened structures, indicate

areas requiring further research attention.

From a practical perspective, our framework’s most immediate impact lies in its po-

tential to accelerate preliminary design processes. The ability to reduce analysis time

from hours to minutes for typical aerospace structural components could transform

design optimization workflows, enabling more comprehensive exploration of design

spaces. However, the identified limitations in scale invariance and complex loading

scenarios suggest that these tools should be viewed as complementary to traditional

analysis methods rather than replacements.

In conclusion, while our research demonstrates significant progress in developing

practical neural network-based surrogate models for structural analysis, it also high-

lights the continuing challenges in this field. The insights gained from this work,

particularly regarding the importance of global information flow and the challenges

of scale invariance, provide valuable direction for future research. As computational

capabilities continue to advance and architectural innovations emerge, the integration

of deep learning approaches with traditional structural analysis methods promises to

enhance engineering design workflows substantially

The success of this research in dramatically reducing computational time while main-

taining acceptable accuracy levels suggests that we are approaching a transformative

moment in structural engineering practice. However, the thoughtful application of

these tools, with clear understanding of their capabilities and limitations, will be cru-

cial for their effective integration into engineering workflows. The path forward lies

not in replacing traditional methods entirely, but in developing complementary ap-
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proaches that leverage the strengths of both neural network-based and classical anal-

ysis techniques.

6.1 Future Works

This research opens several promising avenues for advancing machine learning in

structural analysis and design optimization, focusing on both methodological en-

hancements and practical applications.

The development of more sophisticated scale invariance mechanisms could extend

the framework’s applicability across broader geometric ranges. Also, exploring ad-

vanced neural architectures, such as attention mechanisms or transformers, could bet-

ter capture complex structural relationships. Multi-head attention and specialized su-

per nodes focusing on distinct structural behaviors may enhance prediction accuracy

for both global and local responses.

Integrating the surrogate model into genetic algorithm-based optimization offers im-

mediate impact, significantly reducing computation times. Traditional optimization

workflows could be accelerated from weeks to hours, enabling more comprehensive

exploration of design spaces.

Beyond genetic algorithms, reinforcement learning frameworks could leverage our

surrogate model for rapid evaluation in simultaneous optimization of stiffener layouts

and panel geometries, unlocking vast design spaces and uncovering novel solutions.

This method especially valuable because reinforcement learning can learn effective

policies to increase buckling load capacity of structures using stiffeners. Trained

reinforcement learning agents can optimize stiffener layouts of the structures in a

short time.

Further improvements, such as scale-invariant normalization, physics-informed con-

straints, and uncertainty quantification, would enhance model stability and reliability,

particularly for optimization applications.

These directions promise transformative changes in structural engineering, enabling

faster, more informed decision-making and comprehensive design exploration. While
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requiring rigorous validation to ensure practical applicability, their potential to revo-

lutionize design workflows makes them highly worthwhile for future research.
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APPENDIX A

DATA AVAILABILITY

The complete implementation of the Graph Neural Network framework presented

in this thesis, including all source code, datasets, and supplementary materials, is

publicly available in an open-source repository. This repository contains:

• Source code for shape generation, data preprocessing, and model implementa-

tion

• Sample datasets for demonstration and validation

• Documentation and usage instructions

• Utility scripts for data processing and visualization

The repository can be accessed at:

https://github.com/omerkurt-okt/buck-gnn

All code is released under the MIT License, allowing for both academic and commer-

cial use. We encourage the research community to build upon this work and welcome

contributions for further improvements.

For any technical issues or questions regarding the implementation, users can sub-

mit inquiries through the repository’s issue tracking system. This approach to open-

source distribution aligns with principles of reproducible research and facilitates fu-

ture developments in the field of Graph Neural Networks for structural analysis.
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