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ABSTRACT

A DYNAMIC THEORY FOR POLARIZABLE AND MAGNETIZABLE
MAGNETO~ELECTRO THERMO- VISCOELASTIC ANISOTROPIC SOLIDS
" WITH THERMAL AND ELECTRICAL CONDUCTION

ERSOY, Yagar

Ph.D. in E.S.

Supervisor: Assoc,Prof,Dr,Erhan Kiral
Semptember,1976;f178 pages |

A dynamic theory for polarizable and magnetizable magneto-
electro thermo-viscoelastic anisotropic solids with thermal
~and electricalwoondﬁction is developed for time—dependeht
electromagnetic fields., The first part of this thesis is
concerﬁéd with the several formulations of Maxwell's equa-
tions, and tﬁe interactions between the electromagnetic
fields and the deformable continua. Using the balance laws of
‘nonrelativistic classical continuum mechanics, the balance
yeq&ations and the boundary conditions have been formulated,‘-
and the constitutive equations for 1inear anisotropic materin:
_als having magnetic symmetry have been derived. ”
| Since the governing equations are%highly nonliﬁeér andv
very complicated, they have been iinearized in ﬁhatseoondW' |
ipart Thus, the governing equations are deéomposed into two -
'groups. The first group is the same as that of rigid body
'electrodynamios, and the second group is the one accounting
'for 'the interactions of the electromagnetic fields with
thermo-viscoelastic continuum through linearized equations.
_Further, the theory developed for a general anisotropy is

applied to speoial cases.q :
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In the last part of the present research, an applica-
tion is given for a special case of the linearized theory,
Propagation of magneto-mechanical waves in magneto-visco-
elastic, electrically conductive, isotropic solids in an ex-
ternally uniform primary magnetic field is investigated. The
phase velocities and the attenuations per wavelenght have
been obtained, both analytically and numerically. Some inter-
esting behavior of the phase velocities and the attenuations
of these waves are numerically detected for certain frequen-
cies and strong magnetic field.

Key words: anisotropy, attenuation, conduction, deformation,
magnetizable material, magneto-electro thermo-
dynamics, polarizable material, phase velocity,

viscoelasticity.
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OZET
POLARIZE VE MAGNETIZE OLAN, ISI VE ELEKTRIGI
ILETEN MAGNETO-ELECTRO TERMO~-VIZKOELASTIK ANIZOTROP
KATI cisMIN DINAMIK TEORIsSI

ERS0Y, Yagar

Doktora Tezi, Miih,Bil,Boliimil

Tez Yoneticisi: Ddg;Dr.Erhan Kiral
Eyliil,1976; 178 sayfa

Bu tezde, 1s1 ve elektrifi ileten, polarize ve magnetize
6lan magneto?elektro termo-vizkoelastik anizotrop kati cismin
zamana bagll elektromagnetik alan icerisindeki dinamik
teorisi geligtirilmistir. Bu aragtirmanin ilk kaisma, Maxwell
denklemlerinin gegitli formiilasyonlari, elektromagnetik
alanlaran gekil degigtiren ortamla olan kargilikli etkileg-
meleriyle ilgilidir. Relativistik olmayan kl&sik sfirekli
ortam mekaniginin denge denklemleri kullanilarak, kargilik-
11 etkilesmelerle ilgild deﬁge denklemleri, sinir kosullari
ve magnetik simetriye sahip, lineer anizotrop cisimlerin‘ |
blinye denklemleri tiretilmigtir. o o
', »Etkilesmeyi.yﬁnetenwdenk%emler nonlineer ve g¢ok karlglkf
olduéundan aragtmrmanzn"ikiﬁei klsmlnda, blitin denkleﬁier #
1ineer1egtirilmistir, Bayleaag denklemler iki gruba ayr1§— w
vtlrllmlg olup, ilk gruptakilar rijit cisimlerin elektro-

’adinamigindekinin aynlsl, ikinciler,ise elektromagn@tik
‘alanin termo~vizkoélaatik oftamla'kargll;kll etkilegmesini
‘bélirliyen lineerf&enklemléidir. Daha sonra, géenel anizgtfdp‘
!cfSimlerle ilgili»teori bazm(dzel durumlara uygulaﬁmlgtir. ’ﬂ

[
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Bu tezin son kismi lineer teorinin ©zel bir durumm-
nun uygulanigi ile ilgilidir. Uniform magnetik alanin ice-
risinde, elektrigi ileten izotrop kati cismin igerisinde
yayilan magneto-mekanik dalgalar incelenmigtir. Yayilan
dalgalarln faz hizlari ve birim dalga boyundaki zayifla-
malarz: analitik ve de saylsal olarak elde edilmigtir. Bii-
yik magnetik alan igerisinde yayilan belirli frekanstaki
dalgalarin faz hizlarinda ve zayiflamalarinda ilging dav-

raniglar sayisal olarak saptanmigtar.

Anahtar sodzclikler: anizotropi, faz hizi, iletken, magnetize
olan cisim, magneto~elektro termodinamik,
polarize olan cisim, gekil degistirme,
vizkoelastisite, zayiflama,
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CHAPTER 1

INTRODUCTION

The goal of this thesis is the formulation of nomrelati-
vistic, macroscopic governing equations characteriging the
dynamic response of viscoelestic anisotropic solids to the
simultaneous actions of mechanical, eleotramagnetic and ther-
mal effects.

Special effects produced by the interactions of electro-
magnetic and thermal fields on the deformable continua have
had a revival of interest in the last two decades, so that the
literature is quite extensive. However, praperly inveriant,
magroseopic and microscopic nonlinear thaeriea of electroeﬂa@-
ticity (elastic dielectrics), magnetoelasticity, electromagaeto-
thermoelasticity and electrodynamics of deformable continue
are still evolving research topics.

The strict mathematical description of the nonlinear
theory of elastic dielectrics given by Toupin /17 is applie-
able only to static cases, This theory makes ﬁae of the con~-
cept of & free enemgy which depends on palarizatian and defor-
mation gradient, and by means of a variaxional principle, the
form of constitutive relations is determined. Exingen's and
Grindlay's works /2, 2], which are concernmed with the static
theory of elastic dielectrics undergeing finlta defarmationa.
depend upon the prineiple of virtual work, and the eonstitu-”
tive relatione are also obtalned therg{q:ﬂr; !

Later, the dynamic theory of elastic dielectrics present~
ed by Toupin [4/, which is based on the balance equations, is
adequate to prediet numerious experimental etfeota, guch as
piezoelectricity, photoelasticity and the Faraday effect., The
dielectrics is assumed, however, to be a parf&et inaunlator
and no thermal effects are considered. R

~Parallel to Toupin's work [1/, Plersten /57 considered
the macroseopio behavior of a magnatically saturated insulator

undergoing large deformation. His equations are derived by
means of systematic and comsistent application of the laws of

1



continuum physics to a well defined model motivated by micros-
copic consideration. He also verifies his formulation by a var-
iational prineciple /6/. The phenomenological macroscopic theory
of magnetoelasticity presented by Brown /7/ 1s successful in
accounting for many experimental results. In [6,27 magnetiza-
tion gradient is included in addition to deformation gradient

- and magnetigzation as a constitutive variable since they are
particularly interested in various ferrits under the saturated
state.

Further, Midlin /8/ and Suhubi /9/ present variational
principles for the deécription of the nonlinear behavior of
elastic dielectrics in static equilibrium when polarization
gradient is a supplemantary constitutive variable. The inelu-
sion of polarization gradient in the comstitutive relations is
needed to explain the surface energy phenomenon.

The static nonlinear theory of both polarizable and mag-
netizable thermo-elastic solids conducting both electricity eud
heat is presented by Jordan and Eringen /10/. An electrically
polarizable, finitely deformable heat conducting continuum is
considered, using different approach, by Tiersten /11/ and
Tiersten and Tsai /12/. Afterwards, Pao and Yeh [13/ give a
macroscopic, linear static theory of magnetoelastic interactions
and Hutter end Pao /14/ investigate a macroscopic dynamic the-
ery of a magnetizable elastic s0lid with thermal and electrical
conduction by means of the balance laws of classical continuum
mechanics.

On the other hand, Grot and Eringen /157, Bragg /16/, and
Boulanger and Mayne /17,18/ present relativistic approaches to
the interacting continuum. The results in the first two works
reduce, in the nonrelativistic approximation, to Toupin's work
of elastic dielectrics /4/. It is not, however, clear as to
whether Grot and Eringen's theory agrees relativistically with
Bragg's and Boulanger and Mayne's results.

Penfield and Haus's monograph /19/, which is a very comp-
ressive treatment of the several formulations of electromagne-
tism, deals with the Maxwell : equations, body forces, body
couples and the energy supplies of electromagnetie origin from
both the relativistic and nonrelativistic points of wiew, leav-
ing out the constitutive equations, therefore, the equations
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" presented in /19/ are not complete.

The anisotropic materials considered in, e.g., /1-19/ are
the elassical crystala which are assumed to be centrosymmetwic,
However, there are theoretical and experimental evidences that
the magnetic symmetry of the crystals must be taken into account
to make clear certain physical phenomena, such as magneto-elec-
tricity, piezomagnetism and pyromagnetism /20-25/, and non-
centrosymmetric materials are also to be censidered in dealing
with piezoelectricity, pyroelectiricity, etc. Therefore, the
present theory, besides being dynamic, through its governing
equations contributes the following to these of the existing
theories: i) The material is both polarizable and magnetizable
- with thermal and electrical conduction, 1i) the material pos-
sesses magnetic symmetry instead of classical symmetry, and
1i1) the material is mechanically dissipative (EKelvin-Voigt.
type viscoelastic)., Polarization and magnetization gradients
and their time rates are not taken to be comstitutive variables
since the exchange and electromagnetic hysteretic effects ave
assumed to be negligible.

As for the applications given in the relevant research
works, the theories have been applied to various situations
of electroelasticity, magnetoelasticity and magneto-thermo-
elasticity. For example, the resulting equations of isotropic
dielectrics in [2] are applied to the unitorm extension of

mmmmmm

tions of Toupin /4] are used to investigate plane wave preb-
lems in elaatic dielectrics. The special cases of the decompes-
ed equations of Pao amd Yeh's /13/, and Hutter and Pac's works
[14/ sre, respectively, employed in the buakling of an elastic

plate in a uniform magnetic field and the propagatian of magneto-

mechanical waves in soft ferromagnetic isotropic materials [26].
Phere is a considersble number of research works studying.
in particular, the propagation of electromagnetic, magneto-
mechanical and magneto-thermomechanical wavee through rigid
or ‘deformable isotropic or anisotropic materials [26-40,54,55/.
To mention & few, Mckenszie /27/ and Potekin: '[28] present the
propagation of electromagnetic waves in moving isotropic and
stationary anisotropic rigid materials, respectively. Birss
and Shrubsall [29/ and Fuch /307 deal with the propagation
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of eleétromagnetic plane waves in magneto-electric crystals,
and Smith and Rivlin /31/, and Ersoy and Kiral /32/ discuss
the propagation of electromagnetic waves in deformable an-
isotropic materials due to deformation.

In these investigations there are no external electric
or magnetic field affecting the propagation of electromagnetic
and mechanical waves. In this view, Knopoff /33/ studies the
effect of the earth magnetic field on elastic waves in the
éonducting core of the earth. The effect of the angle between
the uniform magnetic field and the direction of propagation
on the coupled plane waves is investigated by Chadwick /34/.
In view of the Minkowski formulation of Maxwell's equations,
Dunkin and Eringen /35/ discuss the coupling of electromagnetic
and elastic waves in a moving medium. Kaliski /36/, Paria /37/
and Parkus /38/, while initiating the study of magneto-~thermo-
elastic plane waves, investigate the interactions between elect-
romagnetic and thermoelastic fields. Later, Wilsom /39/ and
Parushothama /407 reinvestigate the problem of plane waves in
the presence of uniform thermal and magnetic fields in different
orientations. More recently, Tokuoka and Kobayashi /547, and
Saito and Tokuoka /55/ present the propagation of mechanico-
electromagnetic waves in isotropic and anisotropic elastic di-
electric crystals in a uniform magnetic field, respectively.

None of these previous works contains the propagation of
the electro-magnetomechanical waves in mechanically dispersive
media under an external primary magnetic or electric field.
Besides, numerical results are not presented with the exeeption
of Hutter's work'léﬁ], where the phase velocities and the atten~
uations of the magneto-elastic waves through electrically con-
ductive unbounded solids are given. Together with electrical
conductivity, intermnal friction also affeets the propagation
of waves in a rather significant manner. Dispersioun due to
electrical conductivity and viscosity of the solids is an in-
portant phenomenon because it governs the change of the shape

of a pulse as it propagates through a medium,
In .the last part of this dissertation, the propagation of

magneto-meéhanical waves in electrically conductive magnetiz-
able viscoelastic solids is investigated boyh enalytically
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and numerically..

OQur treatment of electrodynamics and the interactions of
electromagnetic and thermal fielde with deformable continua is
nonrelativistic. However, the relativistie formulation of elec~
tromagnetiem is given in Appendix A, First, electrodynamice is
treated in its general form (Lorents invariant), but a later
stage, all the terms compared with the’lineazfterms and contain~
ing (v4)* are neglectéd. The balance laws of classical contimuum
mechanics are Galilean invariant.and those of electrodynamics
are Lorentz invariant. Since the first tw& terms are retained
in the transformations of the electromagnetic field variables
under the Lorentz group, the formulation is regarded as a lin~
sar approximation of the relativistic theory of electromagnetism.
Consequently, our combined set of equations is mneither Lorents
nor Galileam invariant. |

This thesis consists of three parts. The first part (Chap-
ters 2-5) is a fairly general investigation of the governing
equations of the interacting continua having magnetic symmetry.
The second part (Chapters 6-7) is devoted to lineariszation of
the derived equations and the discussion of special cases. In
the third part (Chapter 8), the propagation of magneto-mechani-
cal waves in an unbounded dispersive medium is dis&usaed both
analytiecally and numerically.

More specifically, the basic comcepis and the general bal-
ance equations of continuum phyaics in glabal and local forms
are summarized in Chapter 2.

The subject of the electrodynamics of moving media has al-
ways been a contraversial one /19,41-43/. Apart from the Min-

kowski formulation of Maxwell's equations, there exists a variety _ @

of other forms which are motivated by some particular models
for polarization and magnetigation. In Chapter 3, several ver-
sions of Maxwell's equations for moving media with the assoeci-
ated boundary conditions have been obtained from ome set of the
global Maxwell's equatione without introducing any model. This
procedure to set up several formulations of Maxwell's equations
is different from those given in [19,43/. The electromegnetic
body forces, body couples and the Maxwell's stress tensor sre
introduced in terms of the Chu variables of electrodynamica,
The Chu formulation is adopted since a polarisable material,
in a nenrelativistic motion, is dietinguished from a magnetiz-
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able one. This is not the case in the Minkowski formulation.

In Chapter 4, the basic equations of the interacting
continua are established from the balance laws. of continuum
physica. The pertinent principles are the conservation of mass,
charge and energy, the balance of momen tum and moment of momen-
tum, the Maxwell equations and the entropy inequality. In the
balance of moment of momentum, the body couples are taken into
account although the surface couples are assumed to be absent.
As a consequence, the actual stress tenmsor is asymmetric. These
balance equations are inadequate in number to determine the un-
knowns. i '

Chapter 5 is devoted to the nonlinear constitutive theory
of both polarizable and magnetizable magneto-electro thermo-
viscoelastic anisotropic solids possessing magnetic symmetry
with thermal and electrical conduction. It has been shown that
there exists a thermodynamic potential from which one can deter-
mine the nondissipative part of the stress temsor, the electric
and magnetic fields and the entropy by means of differential
operations. The dissipative part of the stess temsor, the heat
flux and conduction current vectors are not derivable from a
potential, but they are restricted by the inequality. In deriv-
ing the comnstitutive equations explicitly, it is assumed thet
the material is linesar.

The governing equations for the considered linear interac-
tion phenomena are still nonlinear and complicated. To illusirate
the physical implications of the theory there may be two alter~
natives: One is to try a numerical technique of solutions of the
nonlinear partial differential equations and the other is to lin-
earize the equations on the basis of a sequence of consistent
approximation. The latter is followed in Chapter 6. Following
mainly the linearization process of Hutter and Pac /147, all
the governing equations are decomposed into two groups: The first
group is associated with the rigid body motions of both polariz-
able and magnetizable material within the electromagnetic and
thermal fields and the second group encompasses the perturbed
quantities from the rigid body state due to infinitesimal de-
formations. Thus, the motion of the body is viewed as the super-
position of the infinitesimal deformation on the global rigid
body motiomns. This decomposition is differemt from that employ-
ed by Toupin /4/ and Tiersten /5/ where the infinitesimal
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deformation is superimposed on the finite static deformationm.

Chapter 7 deals with special cases, such as the materials
constrained from rigid body motions, the materials which are
thermally and electrically nonconductive, ete. An alternative
linearization process is also proposed.

The resulting equations of Chapter 7 can be ‘solved for
certain problems. The simplest onme is the propagation of electro-
magneto thermo-mechanicel waves in am unbounded medium. The es~
tablishment of relations between the physical properties of the
material and the acoustic wave propagation has numerious appli-
cations in engineering, for example: eatablishing the degree of
fatigue of a material, testing the crystal structure of metals,
‘and especially, alloys, detecting trace impurities in ultra-
pure materials and producting materials with exactly determined
mechanical or electro-magneto mechanical parameters.

Chapter 8 deals with the propagation of magneto-mechanical
waves through magnetizable, viscoelastic isotropic solids with
electrical conduction in a primary, uniform magnetic field in
an arbitrary direction. The influences of the primary magnetic
field on the phase velocities and the atienuations are discussed
both analytieally and numerically. All the modes of the propa-
al conductivity and the viscosity of the medium. The ceupled
modes of magneto-mechanical waves depend upon the direction of
the primary magnetic field. The properties of all sorts of wave s
for the variation of frequency, applied magnetxé‘field and the
magneto~-mechanical parameters have been studied Buch that the
phase velocities and the attenuations are plotted °

Chapter 9 is devoted to the canalueiens of the thesis.

In the dissertation all the symbols are dqtinag vhere first
used, and the considered physical quantities are to be measured
in SI units. Many of the other symbols mey be quickly identified
from the 1list in the nomenclature. Similarly, the figures may
also be recognized from the 1list of figures. |

A computer program written in FORTRAN IV language (IBM 370/
145) with double precision complex algedbra is developed for the
determination of the roots of the secular equation.
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PART: I

GENERAL FORMULATION



CHAPTER 2

DEFORMATION AND MOTION

This chapter is a review of the basia ccmcepts of
classical continuum mechanics, and the general balance laws
of continuous media. The review is not cmaamaﬂ with the
theory of polar and nonlocal continua. ch such meﬁia, see

Eringen [44,45].

2.1. Coordinates, Motion, Deformation and Strain Measures

Within the scope of continuum phyéiéé ?b:odives ‘are con-
sidered to be composed of particles with mass and charge
having translational and rotational motions and stretch.
Thus all the physical. phenomena are regarded ‘as. the result
of the motion of these particles under a variety o:E exter-
nal effects, -

We consider a body Z which is a smooth *maﬁif,old of
material particles denoted by P. At time #=o, the body 8
occupies the region % +7/c  in the Euclidean space Es,
where vV, 4is the volume of this configuré.‘bian’ ‘and o i
its boundary. This configuration denoted as B, is called S
the "initial configuration”. At time t, (& may be equal
to zera), the body occupies the region ’7@9#’ in the same |
space and this configuration abbreviated a8 33,4 ia called
the “reference configuration". : :

The coordinates of the material point P in 5@& are
Xk K=l,2,3) and are called "material" (or Iaagran@ia.n)
coardinates, Fig.(2.1). A particle p oecupies the' s patial
place % at time ¢2¢, , and the coordina‘tas g (k= 1,2, 3)
are called the "spatial" (or Eulerian) cocrdinates. The con-
figuration & is called the "present configuration”.

The motion of the body is characterized by the time
evolution of the position of every material point. Mathe-
matically, the motion of the body is the continucus mapp-
ing



o~

=2 (X, 4) 5 =% (X t) . (2.1)

with (2.1), the region ViV is mapped 'into the region 2541y .

Fig. 2.1 Motion of a Material Point.

Impenetrability of the matter requires that (2.1) have a non-
vanishing Jacobian, except perhaps at some singular points,
lines or surfaces. Moreover, the unique inverse of (2.1) exists
in the neighborhood of the spatial point % :

X = X (2t) (2.2)

at time ¢ . The quantities referred to the spatial coordinates

will be denoted by small Latin kernel letters and their compo-

nents by small Latin indices. Since Cartesian coordinate gys-

tems are used in this study, there is no difference between

the covariant, contravariant, and mixed components of tensors.
A differential vector element oX at P and «x at p

are expressed as

p/~‘.ﬁ-—9§/§; dXe = Lx oAk (2.3)
K
and o% -
e = Zp
S = A= A (2.4)

where Jx and (4 are unit base vectors along the coordinate
axes Xx and =4 respectively. Upon the repeated indices the
summation is understood.

G (X)= L+ Lo and  gus ()= Lo Lot (2.5)



are in general "metric temnsors" in the material and spatial
frames of reference respectively. Since a common Cartesian
coordinate system is used as the reference frame, the meiric
tensors are simply equal to the Kroneker deltas, i.e.,
Gur = OKL » S4¢= Sp¢ o The symbol See=1 if 4=4 and =0
if £#4 . Also, ,5'1‘.;[,(:&/( is known as the "shifter" and used
to shift the components of a vector from a material frame of
reference to the spatial frame of reference or vice versa.
In continuum mechanics, deformation gradients play a
central role. These are defined by |
ZE 5 Xees = (2.6)
or sometimes dyatic notation £ and ,E‘J is used for the
tensors corresponding to (2.6)1 and (2.6)2, respectively, e.g.

NLL K=

X,
F=Vz or  fik=Sxe (2.7)

~

I

where a comma denotes partial differentiation. The usual
vector operators of differentiation with respect to the spa-
tial coordinates are expressed as (.),z , (.)4. and 631(.)@/
and the corresponding operators with respect to the material
coordinates are (.), , (.Jkx and éEy¢ (.)gr respectively.
€k and &,7x are the alternating tensors in the spatial
and material configurations respectively. g,4 (or €« )
is zero if any two indices are the same, +1 if the indices
are an evenﬂpe:mutation of 123 and -1 if the indices are an
odd permutation of 123.

The deformation gradients (2.6) satisfy the nine linear
equations

b, X 4 = ey, y e, Ao g = okl ’ (2.8)

The solution of one of (2.8) gives one set of deformation
gradient (2.6) interms of the other, e.g.

X&é_::: f‘ T Exent €bm 24,0 Xm,M (2.9)

J= L ExunM Evbm MK X4 L. mm"/gwxé"‘( (2.10)
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and 7 Dbeing Jacobian. / may be assumed to be positive
without loss of generality.

The squares of the arc length, (As)* in B¢ and S)*
in Bp. , are given by

(0/5)7‘: St g é/’x,g : (c/S)z: det C/Xc ax. . (2.11)

3
Whenever (ds)"-.—_—_(d—q) for all material points, then the body
undergoes a “rigid body" motion.
‘Green” and 'Cauchy”de‘formation tensors are, respectively,

Coo (Xt )= et Zpx 4,1

and (2.12)

Cut (at) = Ok Xed Xi o

and they can be used as measures for the local deformation in
a neighborhood of points P and p. Both of these quantities
are symmetric, and positive definite.

E g 8nd -€i¢ are, respectively, the "Lagrangian" and
“"Bulerian" strain tensors defined by

and (2.13)
il =€y = 4 (Sut— CLelat)) :

therefore Lx. and €4/ may also be used as a measure of
local deformation, If they vanish, the deformation is locally
rigid. ‘

The displacement vector 4« is defined as a vector that
extends from a material point P in Be to the same material
point p in the deformed body B¢ , Fig.2.1 . The ‘deformation

tensors in terms of the displacement vector &«  are

Ck,.z~AkL-f<25%L.==JgL*'a%ﬂ~+£Qﬂ<ﬁ'uwﬂ<b“9F

2.14
Cu:': JM——- 22, = Jé‘[‘aéé"%k -+ Um, bk am/‘e * ( )
¥ 2

Yhe displacement gradients and the deformation tensors
are relater Dby

2 A
My = Rer Cix = Ree € .44
‘ £ g -4 -4z
Xe, 4 = Rep Cee = Ry Cre (2.15)
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where Z is a finite rotation tensor, and Z?"i represents
the inverse rotation tensor. In matrix notation, any invert-
ible linear transformation F has two multiplicative decom-
positions

£=R4 = VR (2.16)

where /R is orthogonal, i.e., ng_-_.. R¢R= I ana W
and WV are symmetric and positive definite matrices. In this
expression and the following the superscript ¢ denotes the
transpose of the quantity. The following relations hold

U= f*f ;s Vo= £F° (2.17)

Vo=

S

P

w®e

g!@t V= Rut R . (2.18)

-~ ~ P~

When we identify £ by K, then 8 is the rotation
tensor %, /and // and W are identified as U = C;:;{z
and V= ¢y , and they are sometimes called "right" and
"left" stretch tensors respectively.

The elements of area can be represenied by an axial vec-
tor. The element of area oAx in Be and oy in Bt is

related by
day = J Kt AAk . (2.19)

Similarly, the c;ha.nge of volume is calculated from

dv= JdV . : (2.20)

2.2. Kinematics, Time Rates of Tensors o

Materlial time rate of a vector é(mf) (or tensor) is

___;é_{zﬁ) aﬁ-;-@g -{
ﬁ""‘at"

and is called the "material derivative" of fk_ + The dot over
a symbol denotes the material time derivative, whether the
description is material or spatial, because of

é[’l(,’!,%),f] = ié(,)‘(/f) . (2.22)
12
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The first term at the right hand side of (2.21) is called the
"local" or "nonstationary rate" and the second term is the
"convective time rate',.

The velocity is the time rate of the position vector and

given by ( )
XL (Xt)
v= S Ak . (2.23)

The acceleration vector 4 is the material time rate of
the velocity vector

Y 2 .
amt)= %—‘-‘ék (ap= —;,%7‘ +U, e W ) . (2.24)

The material derivative of the displacement gradients and
the differential element are, respectively,

o ,
22/:/%():%2 XU &Z(_‘(Xk,éj-‘-“-"‘%k Xg/@ (2.25)

and

Z‘Z—f;_(&/xé) = U ¢ Az ‘ (2.26)

To describe the local motion of a deformable body the
gradient of the velocity field jnznik’ is introduced. the
velocity gradient can further be separated into a symmetric
part o and a skew symmetric part w as

where
ded = 5 ( Yo+Yeu) = Ygy)
(2.28)
el =Z (Vge-Veu) = U ’

Parantheses are used to denote the symmetric part of the in-
dexed quantities and brackets are used to denote the anti-
symmetric part. »

The rates of the lLagrangian and the Eulerian strains are,
respectively, given by

Exw = 3 Cre = “ll ™4 L

N

(2.29)
but = -2 bt =cleo—Ent VIl —Ent il
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2.3. Balance Laws of Continuum Physics

The material derivative of any field ¢ over a mate-
rial volume /) enclosed by a surface gV  is given by

/45 ”(/”W" /9//"5&‘)6,,, //>¢V¢/a . (2.30)

In continuum physics discontinuities sweeping a material
manifold are of common occurrence, for,exaﬁf&g shock and ac-
celeration waves and electromagnetic fielda [lé]. The case of
a material volume 7/ enclosed by a surface 27V and intersect-
ed by a discontinuity surface 0 (¢) moving with velocity Y*
is expressed in Fig. 2.2.

Fig.2.2 Discontinuity Surface.

§ Applying (2.30) to the two volumes 7' and V"~ bounded by
av*t, r* and 9V 40~ respectively, and adding the resulting
two equations while ¢* and 0  approach (&4 , one obtains

//MV*/;; (1) + [ PP 41 e //[fff‘“"?/“’“ +(2.31)
-7
In Eq.(2.31) N 1is a unit normal vector to the surface and a
bold face bracket indicates the jump of the enclosed gquantity
across the discontinuity surface g¢) , i.e.

o))l = )= () (2.32)

Here (.)" and (.)" are the values of (.) from the positive
and negative sides of 0 of Ut .
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By means of the ureen-vauss theorem , i.e.

?ﬁfé?f da = /%ngc/t/v* //[553/ 0 da (2.33)

7t

the second integral on the right hand side of (2.31) may be
converted to a volume integral. Thus

/¢JV /[7 (pf) + e (pFy ) ]dv
+ //[f¢ (v-v*)J|-0 da C (2.34)

A similar argument can be extended to material surface
¥ enclosed by the line ?¥ and intersected by a discontin-
uity line () which is moving with velocity v¥ PFig.2.3.

Pig.2.3 Discontinuity Line

In Eq.(2.30) if & 1is identified as a vector ¢ and dV
as a area element 4 , then it follows that ‘

ﬁ/j.p@ /(—i .fvaéwy)a’a-f/ xy )k s (2.35)
1t) : t)

JH)

to the surfaces F7 and ¥~ , adding the resulting two equa-

tions while J* and ¢~  approach (1t) and using Stokes!
theorem, il.e.

b Pk = /("W’Zi‘s)””/“*//[é]/ s (2.36)

~

eI A S ()

in the second integral on the right hand side of (2.35), one
obtains
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5/(_’ ZQ =/[ -/-M(f_’xg).,. )(aéw'j ],f’ A
ﬂr’ £ (2.37)

o J UL ex(y-x* )]k Ao
zr/%)
Now, the balance laws of continuum physics are expressed

in the following forms:

A | .na/a::ﬁf'éé{ff /f-!?dﬂ—‘ ,
V/wo/V: Z N 5/5(_-7'-/ (2.39)
-G V-r

' where § y D % and + are vector fields and ¢, Z; and j are
tensor fields.

By means of (2 37) and (2,31), one can convert (2.38) and
(2.39) into :

/["'é?— + cerk (gxY )+,\(W2-W7~P].Q A

+/ﬁﬁ”vvﬂ—ﬁ]é%}@ (2.40)
) -
and ¢ dur r_ 2 oA
4/[9 A Yy )~ ir - G Jde
“ +//[Wx-~/’) A yade =0 - (e
7tt) !

2.4. Master Laws for Local Balance

Assuming Eq.(2.40) to be valid for every area and line
elements, one obtains

2L sl (gay) sy gl o gy £r (e
Lgsty-x)-b T =0 Can 0te) (a. )

Similarly, if Bq.(2.41) is assumed to be valid for every
volume and surface elements, one obtains

—ﬁg+a&w‘/<ﬂ,) e E - 7 = o in VO (2.44)
and [[/(J(—!*)-é\ Jr =0 ~on Tt - (2.45)
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CHAPTER 3

FUNDAMERTALS OF ELECTROMAGNETISM

This chapter deals with the different approaches to the
- theory of eléctramagnetism and the several formulations of
Maxwell's equatiens. Alse the electromagnetic body forces,
body forces, body couples and Maxwell's stress temsor are in-
troduced.

3.1, Approaches to Theory of Electromagnetism

The concepts of electric field £ , magnetie field 4 (or
magnetic induction B ), free electric curremt density % and
free charge density ¢/ each has a clear distict meaning if
these fields are not time varying. In the cese of time varying
fields, £ and 4 are no longer independent, but are tied
together by Maxwell's equationa and their meanings come even
more blurred if material is in motion.

The approaches are classified as

a) historical or logical sequence,

b) macroscopic or microscopic formulation,

¢) relativistic or nonrelativistic treatment.

35.1.a) Higtorical or Logical Sequence:

In historical sequence of the theory of electromagnetiam,‘
cne first considers eleatrostaties, magnetostatics, slowly
’varying direct currents, alternating currents and electromag-
netic waves. Consequently, the subjects of electrostatics and
magnetostatics are distinguished from each other and from ths
whole subject of electromagnetic theory by the following re-
guirementas:

i) ‘A1l guantities do not vary with time,

i1) There is no motion of charges for electrostatics, and
there is constant current present for magnetostatics.

Hence, under these conditions, Maxwell's eguatiens, which
are used in the logical sequence, split into two groups of
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independent equations, one of which contains terms relating
to the electric field omly, and the other terms relating to -
the magnetic field only. In this way, there are similarities
between the fundamental problems of electrostatics and mag-
netostatics. In logical sequence, one directly starts with
Maxwell’s equations to cover the theory of elsctromagnetism.

3.1.0b) ﬁacrohcopic or Mieroscopic Formulation:

A wide range of electromagnetic phenomena may be account-
ed for without introducing the microscopic nature of matter
and the discrete nature of electric charges. In this approach,
known as the phenomenclogical theory of electromagnetiam,
electric and magnetic properties of a substamce are described
by the material property tensors, permitivity é s permeabi-
1ity A , snd electrical conductivity g*“. Charges and cur~
rents are assumed to be distributed continuously in space and
are described by charge and current densities.

On the other hand, the microscopic formulation ie baseéd
on the discrete nature of the electric charge. The microscopic
equations predict, in detail, the behavior of the particles
and their fields, but the macroscopic equations predict the
average behavior of the same particles and fields.

fhe first attempt is ascribed to Lorentz who used an av-
eraging procedure to obtain the macroscopic equations from the
- microscopic equations of the electron theory [41] Subsequentlm
there have been many attempts to derive the macroscOpic equar~
tions by some kind of averaging process. Depending upon the T
degree of approximation, different sets of electromagnetic
equations are derived, all having the name of Mexwell's equa-
tions /19,41-43]. For .instance, De Groot and Suttorp [48/ de-
rived Maxwell's equations from the microscopic equationa for
the electromagnetic fielde in the presence of point cherges
using the principles of statistical mechanics.

3,1l.¢) Relativistic or Nonrelativistic Treatment:

Let x and ¢ be the spatial and time coordinates mea-
sured by an observer in the frame S, and x' and ¢’ be the
spatial and time coordinates measured by snother observer in
the reference frame S' which moves with uniform veloelity v

relative to S.
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According to the eoncepts of absolute space and absolute
time, the coordinates are related by

g-‘: X— Vf ,& t‘,—- ° (301)

The pair of transformation (3.1) is called the Galilean trans-
formation under which the laws of classical mechenics are in-

variant.
According to the theory of relativity, the coordinates

are related by / see, Eq.(A.5)/
Xim x— O Vtrl=1) XYy
o~ -~ v
= r(t- A Y
ca
where

g

(3.2)

4
Vi-viga
and ¢ is the speed of light in vacuum. The pair of trans-
formation under which the laws of electrodynamies are in-
variant¥, The electromagnetic field variables of the Minkows-
ki formulation in the frames S and S' are related by [see,
139,'@?‘:.2?,.)*‘]” .

r= (3.3)

£ = J(E+YxB)4 (1-1) £:£
ve ™
§ ‘-ﬂB-—Ei;_yxE),a(/ v) 8-¥
VZ.
= T(2r g vnn) +(mr) 21
=V (H-vxd )y (r-7) LY t/ v
#
5.7 -"::;].6() a,'\{lf’é(}'f‘ (’J//) ]éﬁ)
et Ly
.“aecordingﬂid the Lorenté groufdéf tranaformétinné;'khere 2

is the electric displacement. It should be noted that the
Galilean transformation (3.1) is found by taking the speed

(3.4)

?ﬁ i<

b

Y

¥Pour dimensinnal formulatiom of mechanics and electro-
dynamics are appropriate in the mathematical formulation,; but
some of the physical insight may be lost [4Y/.
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of light c to be equal to infinity in (3.2).

The particles considered in modern physics have a speed
comparable to the speed of light in vacuum, but the bulk mate-
rial used in engineering never reach this speed. For this rea-
son the nonrelativistic theory.of electromagnetism may be used
in the solutions of problems of bulk materials. Hence, in this
thesis, we will make use of the macroscopiec, nonrelativistic
theory of electromagnetism following the logical sequence,
That is, equations of mechanical origin are taken to be Gali~
lean invariant and those of electromagnetic origin are appréx-
imated as the linear terms with respect to (gﬁ)z in expansion
of (3.4). Thus the combined set of equations of electrodynanmics
and mechanics are neither Galilean nor Lorentz invariant.

-3.2. Several Formulations of Maxwell's Egquations for Moving

Materials

There are disagreements concerning the formulations of
electromagnetism in the literature., Definitioms, names and
number of electromagnetic field vectors needed to desecribe the
electromagnetic phenomena ere different. However, all of them
give the same results in free space (vacuum) where the macros-
copic fields are measured, in the presence of charged particles.
Therefore, the well established theory of electromagnetism is
that of free space. M

The electromagnetic phenomena occuring in a material are
‘described by the following set of vectors and a scalars £ (z,t),

Blx,t)s D(n,t) » Hizt), f/z;f) Ptat)y, Mizt) and f’(’”(ﬂff)
The last two vectors are called electric and magnetic polariza-
tions per unit volume respectively or, simply, polarization
and magnetigation., In the formulations of Maxwell's eguations,
one vector from electricity ( 2or 2 or £ ) and one from
magnetism (4 or 2 or 4 ) are éxcluded and known as aux-
ilary electromagnetic fields. This choice depends upon certain
formulations of electrodynamics. The apparent forms of the
governing equations of the electrodynamics and the meaning
of the electromagnetic fields are different even if the same
name and symbol are used. Furthermore, the recognition of
this difference is important since the polarization and mag-
netization will affect other dynamical quantities, such as
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body forces, body couples and electromagnetic enexgy suppiies,

In this section, the governing equations of apparently
different formulations and the relationships between them are
discussed.

3,2.,a) Maxwell's BEquations for Moving Media

There has been a revival of interest in the formulatioms
of governing equations of electrodynamics in the presence of
moving materials in the last two decades / 19,41-437.

There are apparently different approaches to formulate
Maxwell's equations in the presence of moving materials. The
first one is given correctly in the famous work of Minkowski
which is based on the special theory of relativity /49/. In
this formulation, the Maxwell's equations are covariant under
the Lorents group of transformations and they are used for
moving and deformable bodies. However, the ecnatitutive equa~
tions are different in two frames of reference which are mov-
- ing at constant velocity relative to each other. Later on
0'Dell /507 and Post /51 formed the linear comstitutive
equations for anisotropic rigid materials which are now co-
variant under the Lorentz group of transformationsv[éeay.Eq(A.

The second type of the formulations depends upon the
models chosen for polarization and magnetization, In 1953,
Chu /41 and later Boffi [42/ developed new formulations
with significant nonrelativistic differences inutke,éleotro~
 magnetic force expressionms. The Chu formulation. is based on
two generalized charge densities and eurrent densities while
the Boffi formulation is the relativiatic modification of the
Amperiaun model of magnetisation of materials. The model for
polarigation is the dipole model of aleetrie charges ‘which is X
the same for these three formulations. The model of magneti-
zation for the Chu formulation is again the dipole model of
magnetic charges however, for others the circuit-current
model is used. In fact these two models for ﬁagnetization are
different from each other. Meanwhile, Corsteiu /56/ establish-.
ed that the magnetic current and the existence of magnetic
charge depend essentially on the rotation of material and
spatial variation of magnetic permeability respectively. In
all these formulations, electromagnetic bhody forces, body
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couples and energy supplies are expressed in terms of their
own fields and they appear different in form. Experiments
have not been successful in resolving this contraversy, be-
cause hany of the differences invelve small relativistic
effects and, moreover, the associated quantitiea are not
accessible to direct measurements.

Later on, Tai /43/, and Penfield and Haus /19/ compared
extensively the various formulations. The latter authors; in
view of the special theory of relativity, modified the in-
complete electromagnetic forces in these formulations so that
they become equivalent.

Maxwell's equations are given below in the integral form
without taking any model and assumed to be valid for any arbi-
trary moving frame.

Faraday's law:

_/ El ds , & //w(gww‘ﬁ/a —" (3.5)
ar v ~ T dt Gy ‘ ~
Ampére’s law (modified by Maxwell):

4 3.6
// %5~ / at+#ﬁ%x“/J%@* 5@4:0 ( :
e "7— Ly v
Gauss® law:

= 9] -
/(éatz-f-/:’)a/d—-//o JV«/@O 0. da = O (3.7)
V=1 e
Conservation of magnetic flux:

/,M(ﬁl-/-y)‘/g:.—o (5.8)
T |
where

£y # QT%': effective values of £, £ and 77 nea-
sﬁ}ed on a moving frame relative velocity of which is v ,

k” sfree surface current density,

w? ifree surface charge density per unit area,
&),/%:permitivity and permeability of vacuum respectively.
In addition to these laws, one has the conservation of elec-
tric charge

w
/aécjdv+ /\7 a/a =0 » .
p{{‘ /0_ W (3.9)
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The forms of Egs.(3.5,6) and (3.7-9) are similar to those
of (2.39) and (2.40) respectively. The local balance laws and
the boundary conditions of the electromagnetic fields are
obtained by assuming the integrals in (3.5-9) to be valid for
every part of the material. Following the derivations of local
equations introduced in Chapter 2, local forms of the equations
of electrodynamics and the associated béundary conditions are
obtained. they are

/a,;%(f/-/«g)-f awé[é}ao (H+M)xy ]':O

in V)

592_ (£o~5+~/3)+¢d¢/'(€o§ +B)X—- W["-"/‘(@é‘-%f)xv] '3.10]
s :/’C’,:o ] (5.10)
W(&§+,P)~f5‘J:o ;e (Ham) —
¢ in V2 g
Vs ,
‘gé +W(/’{’L’y+g’5" J=o0
and ) ( . ,
HrM)x (V=Y E ] &=
Az )+ E J k=0 on  ((+)
Hi«+L)x (x-y*) ~ ' £ J) k=0 (3.11)

£ ./?-‘406{).:.'-’ 3 N=0
/[éo,_+f]/~ > )/m[é/+4/]/0 Olon Ti) -

VM- ) s TP =0

Asguming that the discontinuity surface is a material
interface, 1.¢., Vv=v*, one obtains

/[Z;—/J/ézr o /Z:,/f//?‘* Kfjﬁf =0 on &t)
) (3.12)
/[J/]/‘I} =0 on U(t) .

For a stationary surface, Y=0O :

/[/_m(,/f"%-’l")"?«/‘*g,]‘g =0 ; /Zzﬁgﬂ?)"x/*ﬂ/—ﬁf"‘f]/g:—o on J)
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/[FWV + TP Hn=o0 on &) . (3.13)

3.2.b) Several Formulations of Maxwell's Eguations

Several formulations of Maxwell's equations and boundary
conditions, namely, Minkowski, Ampére, Boffi, Chu and other
formulations are obtained by introducing new field variables.
For the specification of field quantities in different formu-
lations, a superscript will be used. In this section, the su-
perscripts ~, 4 , B , C denote the associated quantity im
the Minkowski, Ampére, Boffi and Chu formulations respectively.

i) The Minkowski formulation:

The oldest and most well known formulation of electromagne-
tic theory was given by Minkowski /49/. Redefining new electro-
magnetic variables as

BM:-“':- (__/:/-v‘-:‘f) J _@E“&§+P

- r- (3.14)
ld A~ ’ “
E7= £ 8%y ; HE - Dxv ; ijffg_;_;f(gWMD,,x

—~

and substituting these into (3.10) and (3.11), one obteins

curl §H+ ._.a_.:.B' =0 ek HL Q_‘_@_H: <.7({} in Y r
>t SToE TR
(3.15)
dir D= p¥ s B¥= 0
¢ in Vg
f?;— o+ i T e
and
FE BN Jll=0 5 M40 g _ |
- ~ =0 on g/
AD" Yo -wP= 0 . WBfr=o0 (3.16)
on U 4)

ULo¥-pPyr0=0°

respectively.Eqs.(3.15), and (3.15), are mot completely independ -
ent of each other, because of the mathematical identity
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OQU‘Chxljﬁ;O for any vector QS'. Therefore (3. 15) exists
as an auxilary condition in the solution of (3. 15)1. Neither
(3. 15) nor (3. 15)3 is completely independent, because of
(3. 15)5.
If one assumes vy = v*, the boundary conditions (3.16)1’2,5

e

beconme
LE Bt =0 ;d#%D"%y Y10 on 1)
(3.17)
AZiQTW—7009)/~}Vzﬁ =0 on (t)

and the remaining equations are the same. How, if the velocity
vector is continuous on 0@ and J%) and its normal component
and the surface charge density vanish; then one has

Le'J k=0 s [#-k"F k=0 o ”(*3/18)

[J({)]'f)fo on U(t)

and the remaining equations are the same. These boundery condi-
tions are the same as that of the field variables in stationary
media. Otherwise, the boundary conditione of electromagnetic
fields would be different in stationary and moving media.
| The field vectors £, p%, O, #”and ¥ are related
through constitutive equations. In most general cases, each of
the constitutive relations must also depend upon the set of in-
dependent thermo-mechanical variables associated with the thermo-
mechanical behavior of the system. These dependencies have the
general functional form

=@({r},{x} ) | (3.19)

where {r} {X} represent the set of independent electromagp
netlc and thermo-mechanical variables respactivelye A similar
functional form is valid for ¢4 and J¥, The constitutive
equations for magneto-electro thermo-viscoelastic anisotroplie
materials will be handled in Chapter 5. The comnstitutive equa-
tions for linear anisotropic meagneto-electric material is
given in Appendix A [/ see, Eqs,(4.25-31)/.
For the free space, the constitutive equations are
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=" 4= = 8”7 - (3.20)
Despite the fact that the constitutive equations in the Min-
kowski formulation change when the material is im motion, (3.20)
is the same if the velocity of the material is small compared
to the speed of light. :

When (3.20) is substituted into (3. 15)2 , then the
Maxwell . equations can be solved simultaneesly to datermin@
£” and A% if the sources J7’ and /D(’t are prescribed.

ii) Amperian and Boffi formulations:

The Amperian formulation of Maxwell's equations depends
upon the dipole model for polarization and the electric cir-
cuit model for magnetization. Following Ampére's original idea,
Lorentz formulated the Maxwell - equations for moving media.

By adding to the Lorentz formulation the correction imtroduced
by the relativistic treatment of the cireuit model, one may
derive the equations in the Amperian formulation.
| The Boffi formulation is the extension of the Amperian
formulation of electrodynamics for mofing media /42,19/. The
models chosen for polarization and magnetization of materials
‘'are the same in both fermulations, but in the Amperian formu-
lation an equivalent polarization charga occurs when the current
laop moves in a-direction normal to its area veetor. The equi~ "
valent polarization is in a direction perpendiaular to both ”
‘the velocity and the magnetizatigzation vector, being equal to
-4 Mxy ., Therefore, both formulations are identical when
L‘the material is not in motion, i.e., ¥=0.

Amperian formulations
Introducing
Brm el fatl) 5 H = Hlco Exy
El= E e (H pp) 1Y
and subtituting £- #x¢.  instead of P in (3.10), and
neglecting the terms of order (Y, )*in the resulting equa-
' tions, one obitains

(3.21)

_2?? A—-;L-M:'E_A:.:—O in ﬂf
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ot ~ (3.22)
o odir £4 = PP S L B O i Vi

where A
] /O(N::._pl&tr(ff_ E:_@x}!)

/\()

:? ’ —&Eg‘ (~—pA— E/{ LVXA_ )*W (Z)Axy ) (3-23)
and v

\j'h') = cud M*

and are called polarization charge density, polarization and
magnetization current densities respectively.
The boundary conditions now become

UL E- B> k=0 n 0
L4 8% 4 Plxy + GELP" - k"I & =0 (3.24)

T ggiil’l/ﬁ-wé‘éo ; AB Fo=p0 .on T&)

When the velocity of discontinuity linme /%) is equal to
‘the velocity of the material, or if the velocity vector ¥ is
continuous on ¢ () and %) end its normal componemt vanish-
es, then simpler boundary conditions follow, Obviously, the
boundary conditions in the stationary and moving mgdia are aif-
ferent from each other.

Bofff formulation:

The Boffi formulation of electrodynamics is similar to
the Amperiem one, in that both use £ and & as the field
variebles and P~ end M as the material varia.bles. The
definations of A , 4/ and £ are the same as in (3.21)
with superaaript B instead of A , but there is mno equiv-
alent polarization. Beffi interprets the term — PAs i A""'

as the polariszation by the eleciric and maguetioc ﬁ.el&a, and
the term M* +P*xy  as magnetization. Thus, the Maxwell' .
equations and the boundary conditions in the Boffi formulation

are tpe follewing

A
28 —/-W@é
ot aes JK(N (=) ' in  Ar
L cend BB e ZE ¥ o '
= e (3.25)
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in V=7
and ;_,g_-égxy,«] £ = 0O }an I4)
[;i: 85 Mo (e E% P8 vt K] k=0 (3.26)
where
pl=-irp® ; I'= “a%?g ;"= auens (3.27)

and are called the polarigzation charge density, polarizatien
and magnetization current densities respectively. If the ve-
locity of the discentinuity line Y#) im equal to the mater-
ial velocity, then v* is replaced by V im (3.26). It
should be noted that the equations in the Baffi formulation
coincide with those im Amperian, whem V=0 in the latter.
FPinally, it can be shown that the field equatioms im .» both
the Boffi and "+ Minkowski formulationas reduce to the same
set of equations in the quasistatic approximations.

1ii) Chu formulation:

In the Chu formulation of electrodynamiea [41] the f@l“w
lawing quantities are assumed to deseribe the electromagneticg
state of a material completely: : -

a) The free charge distribution is repr¢sented by the
~volume and surface charge densities, ‘ ,

b) The free current distribution is represented by the
velume and surfage current demsities,

¢) The electric polarization is repreeented by the dipole
moment density, : ;

d) The magnetigzation is represented by the magnetie
dipole moment density.

The model for polarization is the same as the Amperian
and Boffi formulations. However, the model for magnetization
is quite different. In the Chu formulation, it is assumed
that the magnetic charges may exist in pairs.

Introducing
Ef= E'ppafixy ; 4= H-aExY (3.28)

o~
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inte (3.10,11), one then obtains

- ot in %£¢
Gat #¢-e 252 7, ¥ (3.29)
& olir £ Y4 p P 5 _pa i 1= P in
and
€, e MRV stea (WG U )™ . R =0 |
o .+/¢w xg/cw( + ) _}7 w
A H#e— Py + (6 £ 4P )xv*— k¥l =0 (3.30)
Maity Pegn-wP=0, clfGpl2=0 on 7Ttt)
where :

TP= 22% cue (Pouy)

]

5.31
J ™ = Af‘i—gafc+ cordl (potd xy ) -3

/O/p);—__‘_",,p&af”pc' J F/M)E’—nyc
and are called the polarization and magnetization current
densities, and the polarization and magnetization charge

densities respectively.
If one assumes that Vi y , then (3.30)1’2 now become

/[5C7woﬂcx’\(v]/-£ =
/1'/,?~C'+e,§c‘x;y..’/~<w]]._£:0

resxsactivély.ﬂhenemr the normal component of the velocity
and the surface charge density vanish, then the boundary
‘conditions are the same as that of the stationary media. It
should be noted that the Chu and Amperian formulatiom agree -
if M=o0. r

¥ on _.a"(-z‘) (3.32)

1
|

iv) Other formulations:

In addition to the previous formulations, one may ex-
press Maxwell's equations in terms of the variables 2 , 4
p,y and y-,0r D, 8 + P s+ M and y with-
out giving any physical interpretations to the space and
time derivatives of these quantities. For example, if one
introduces ‘
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(
2° = e & 4P (3.33)
/710;_: //l— /)&L/

then Maxwell's equations end the boundary conditions now be-
conme

Gt D°, 4 oK ° MO o
N
‘ ' in 14 &
Cenl #°.. 22° Z
' =57 =Y (3.34)

W a—* ﬁ(f) ’ Wﬂidﬂ/fuoﬁ'/oza in ’\/:~0—

A2~ eP™ 2 (454 )y* P b =0

on )
LH+D° vt -7 £ =o *

1 O (3.35)
o / o ; ©
| L0 7 o-wh=o J/w/[/i%f]/g:o on T .

There are, of course, other possibilities to introduce
new electromagnetic fields and obtain the ansooiated Maxwall'a~
equations,

3.2.c) Relationahips Between the Electromagnetic Fields in
Ditferent Farmulationa. i ‘

whe relationahipe can be obtained by comparing the fields

in two different sets of the Maxwell's equationa. ’ 5

Comparing Eq.(3.15) with (3.22) one finde the relation—‘“‘

" ships between the Minkowski and Amperian variables:
| E£Y = g4 . BM= g

Qﬂi Goé”m: ’ﬂDA"c“i A/Aw ; /*zf; (3.36).

where the terms of oxder (y )2 are neglected.

‘g‘i ﬁﬂw t/i’ﬂﬁx}é

Comparing Eq.(3.15) with (3.25) the relationships between

the Minkowski and Boffi variables are obtained similarly.
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Similarly, the Amperian and Boffi variables are related by

Pl PA_ 1 oy

c2
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xY ;MO MAL PAxy © (3.38)

and the other two variables are the same.

Comparing Eq.(3.29) with (3.15) and (3.29) with (3.25)
one gets the relationships between the Chu and Minkowski
variables, and the Chu and Boffi variables respectively:

EM-: ,_Ec.f/uo/:/cxv 5 i‘/M:—: {‘/C.'_l)c'xz

- 3.39
.DM =M PC_ Mcx\/ LM oyt c c ( )
and
A be
£ = £ -+ MC’X |74 0 /38___ (//C.
= ~ ~ S o= G pME)
Z 7 4 (%.40)

; M= My Pexy .

In a similar manner, one can express the Chu variables in terms
. of the Amperian variables, or the Boffi and Minkowskl variables
in terms of the Chu wvariables.

3.2.d) Comments on the Different Formulations:

Although different sets of electromagnetic variables are
used and different sets of Maxwell .. equations are obtained
in the above formulations, there are certain similarities amd
differences between them.,

Similarites:

i) In free space (L=« £ , Bz« in the Minkowski
formulation, P=0 and M =0 in the other formulations), all
the formulations reduce essentially to the same form.

ii) In the presence of moving and/or deforming continuum,
all of them involve four electromagnetic variables and the
same J¥ and /. Eventhough they recognigze the same 7% and
inside moving and/or deforming media, the force which is exert-
ed on current inside the material is different, but the over-
all forces on the material are the same in all formulations
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provided that compatible constitutive equations are used.

11i) A1l the formulations have four Maxwell's equations
(two vectors and two scalars) which contain the same informa-
tion, alihough they are different in form, and require two
constitutive equations to describe nonaonduotoré.

iv) All of them possess total eﬁergy—mementum tensor
[see, Eq.(A.38)/, but they are apparently different.

v) The Maxwell - equations obtained are net suffici@nt in

number to determine the unknowns. ‘

Differences:

i) The wvariables used to describe electromagnetic fields
inside materials are, in fact, different eventhough the same
names and symbols are used. 7

11) The forms of the Maxwell-} y equations, comstitutive
equations and the transformations of electromagnetie fields
" under the Lorents group are different.

iii) The boundary conditions for the eleetromagnetic fields

are not similar.

iv) The form of ponderomotive Loremts forces, body couples
and energy supplies (or the energy-momentum tensors in four
dim. formulatien) inside the material and their interpretations
are different. ‘ N .

The models associated with the Chu, Amperian and Boffi
formulations allow one to use physical reasoning, Therefore i
one can. 1nterpret the polarization and magnetisation charges , = i
and currents, body ferces, body couples etec,, bui these inter-
;pretations can not be mada in the Minkowski formulationq The
Chu model for magnetization is easinr to intexprct, because
the magnetic charge is the dual of the electric char@e in the
sense that it is acted upon by a magnetic field rather than an
electric field; and it recleves a force at right angles to its
motion in an electric field rather than a magnetic field. R

The magnetic dipole model used in the Chu formulation is S
a suitable representation for magnetism in materials with a R
' domain structure, It has also been applied succesafully to S
interpret the complex gyromagnetic effect (see, for example [77 E
Sec.7.8 and /197, Sec.4.9). On the other hand, the Chu model
is not adequate to describe the microscopic nature of the mate-
rial, because it is intended to interpret the macroscopic
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behavior.

The Mexwell . equations in the Minkowski, Amperian and
Boffi formulations are expressed in terms of a scalar and a
vector potentials /50,57/. Hutter amnd Pac (/14/, p.93) state
that this is not possible for the Chu formulation. Introducing
twoe scalar and two vector potentials, we are able to express
them. Although the introduction of two additional potentials
in the Chu formulation seems to be a disadvantage, fortunately
they satisfy the same type of differential equations.

4.3, The Chu Formulation of Maxwell -~ Equaticns in terms of
Potentials

One can express the Maxwell:' . equations (3.29) in terms
of two scalar and two vector potentials. If one introduces

='-;W4“Zj£uv QV“w) L cnl A

€o

(3.41)

and . (ml
L AP giocl O 94
the Maxwell®s equations can then be written as
) ‘ # @y (] )
ag? = - A+ ) 1795 _ /0(’” .

A" = (T 7% ) 5 047 =-a T™

where the scalar potentials 55m)and gBh”, and the vector po-~
tentials A” and A satisfy the Lorentz condition

e AP o _ Lir A ™ )
L A +é3;£~o ; AT L %{—:o o« (3.43)

In Bq.(3.42), the operator // is called the D'Alembert oper-
ator defined by
g = v: % 2] (3.44)
—_— ce C)-ll_-?— 4 Ll g
It should be noted that all the potentials satisfy the
same type of differential equations with different source terms.

5.4. The Body Forces, Body Couples and the Maxwell - Stress
Tensor

A dynamic theory of electromagnetism of moving medias re-
quires the specifications of body forces, body couples and

s
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energy supplies of electromagnetic origin. There are apparently
different expressions for these quantities 8ince there exist |
several formulations of electrodynamics. The body forces and
the body couples emerge from the basic assumptions which ave
motivated from the models of polarization and magnetiZation.

‘The body forcea, body couples and the Maxwell . siress
tensors are expressed below in view of the Chu models for pos.
larization and magnetization.

3.4.a) The Body Forces and the Body Oouplea

When a charged particle g moves with - veloeity v in
vacuum in which both an electric field £ and a magnetic
field # (or B ) exist, the expression

FUl 7 (E+ vyt Jmg (£+ yxp ) (3.45)

" is called the Coulomb-Lorentz (or simply theiharsntz) force
. acting on the charged particle. This expression is unique end’
used' in the definitions of the electric field £ and mag-
netic field /4 (or /2 ), and all the formulations L
S . of electrodynamics are in agreement with this express-
ion. J )

. Now, various expressions for the ponderamotive Lorents
force, which gives surface foree at the bounding surface of
the material as well as velume force within the material
“have been proposed. These expresainna fall into tpme& cate-
- gories: : : S

i) Staetic or quasi static electric (magnétic) fialda (Bae,3wl
e.g. [7,10,13,58-637), i
In electrostatics (magnetoataxics), tha force acting on L5y
electric (magnetic)’ charge (or currcﬁt) in an electrie (magne-
tic) field can be expressed in terms of volnme or surface ' i
integrals of the electric (magnetic) field.’ For ‘example, Birss.  ‘°‘
/58] obtained the macroscopic total electrie (magnetic) ponder-?
‘emotive force and torque expressions from the Lorente force . i
expression in terms of surface integrals. Brorn 1] gives ,}““ﬂ
ponderomotive forece and torque expressions in terms of volume -
and surface integrals and trangforms them into seweral forms
by means of vector identities. U
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ii) Nonrelativistic motion of polarizable and/or magneiiz-
able rigid ar deformable materials (see,e.g. /12-14,19,41,64/).
The body forces and the body couples contain the terms
associated with the motion of material besides the guantities

in the static case. These forces and couples depend upon the
models for polarization and magnetization. The Chu model is
the simplest one and has certain physical significance sven if
a magnetic monopole has not been observed yet (/57]Sec.6-12 )
and [65-67/.

iii) Relativistic motion of the material from the micros-
copic and macroscopic points of view (see, e.g. [15-19,68,69/).
In the relativistic theory, energy and momentum is a

second order temsor in four-dim. Minkowski space /see,Eq.
(A.38)/. Force is an expression as the three entries in the
same row or column of the énergyemomentum tensor.

Assuming each dipole as a doublet of monopoles upon
each of which the Lorentz force acts, the body force and body
couple are then evaluated. A similar calculation can be made
vhen magnetization is modeled by a current loop model.

In addition to the force acting on a free charge density
p%’and current demsity J7 , Chu /41 suggested that there
are electric and magnetic Lerentz forces per unit volume due
to the polarization and magnetization currents respectively.

ﬁf('o) — P{P)f‘:’f' },7‘{’)7"/“’0_\/{/
» N . (3.46)
/f ” = /9 >AA1 ’lf_/ - :_7 % €o£

where £ and /4 are the Chu variables.
If one now considers an electric dipole, then he can as-
sume that the electric Lorentz force acts upon each monopole
(positive or negative bound charge) of the dipole. Assuming
that the center of mass of the dipole has the coordinate
and the distance between the monopoles is 1 , then the po-
sitive and negative charges are supposed to be displaced re-
lative to each other due to some external agencies (electric
field, magnetic field, deformation, ete. ). The poaitions of

the polarized charges + z”” and -1‘” are, respectively,
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= X+ +2+1 , x= x4 . (3.47)
Since the positions of the positive and negative charges are
different from each other, thg‘electric and magnetic fields
at these points are different. If the Taylor series expan-
sions are used and the first two terms are comsidered, then
summing over all dipoles in unit volume gives the body force
due to electiric (and/or magnetic ) dipoles. Similarly the
body couple is determined by evaluating the total torque
which 1s the sum of the torques exerted by the positive and
negative charges about the center of mass of the particle in
a unit volume.

Thus, the force acting on the electric dipole per unit
volunme is

PF = 09%L pad £409" vx (L gradnt) 03" # (5.48)

where N 1s the number of particles per unit volume. Using
the conservation of mass and (2.21) one can show that

Dot A (25 1_ 3 12390 ) dirteng®3.49)
" At &7‘2‘_( ?n )_5{“ (0271 )+ derlyng® )(3.49)

Defining polarization per unit volume P by
== av
£ = {;’Z 77 (3.50)

and introducing this into (3.49) and the resulting equation
in (%.48), one obtains

pFo= P;wdﬁ' + v (P gradpetl)
+[a; vdir (voP)]smt .

Finally, if one introduces polarization per unit mass 5%:13
then follows

(%.51)

AL _ L aF
ﬂfj’*‘*ﬁdf( = ,O/EZF"P

:.? .*%W—(V@/D)

(3.52)
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Substituting this into (3.51), one obtaims
(» Y
ff = 2 prad £ 4 v (B/woﬁwﬂ)—rfz’gywﬁ (3.53)

as the ponderomotive Lorentz force due to polarization.

Of course, in the Chu model for magnetization there is
no essential difference in the derivation of the body force
due to magnetization. It is found to be

PI” = o M. practl + Y (/‘“ﬁ"-f“""”g)*f/“"g‘&g (3.54)

where m v y
H=Ln g s M= . (3.55)

The total body foree per unit volume is then

PF = e TGt e pf T (36)
These expressions are cbtained in a different manner by
Penfield and Haus /19/. They are in agreement with (3.53) and
(3.54) if the relativistic effecis are 1gnored.

If one restricts himself to the quasi static electric or
magnetic field system, BEqs.(3.53,54) reduce respectively to

pfP= P padaf  pf Tl padtl . (3.57)

In an analogous manner the body couples are détermined.
‘§incs the position of the particle coincides with the centre
' of mass of the electric (magnetic) dipole, the couple acting
. upon the paftiele can be determined by evaluating the torgue
- exerted on the positive and negative chaxrges about the cenime
of mass of the dipoles.

The electric couples on the positive and nsgativa charges
are, regpectively, L

/Jg-*(/:) 14_ ’ ,,7/*0“-2“" 7 [?“’g(x.,_, {.).,.szf”/v-*i-dz)}w (x+§,+ﬂ~
7t -:zi‘féxff"w £ 2x[-9%50c-£ ,4) - 4" lx- FE ) pebe-£,497

Multiplying Eq.(3.58) by #~(2,¢) and adding the couples and
using the defination of 2 , one obtains
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PLY — Px (£ +Yrue b)) - (3.58)
Simijarly, the couple per unit volume due to the magneti-
zation is found to be ‘
PL™ = pu phx (4~ ¥ =& E) - (3.60)
Then, the total body couple per unit volume ig‘the sum of these

two couples, i.e., o
/0/ /9/0)) + /”"'ﬂ(m . (3.61)

Using the transformations of the Chu variahles in the non-
relativistic approximation (A.52), the total bcdy cauple is re-
written as

pL = PxE + o U ¢ 75 - (3.62)

| where
P=pr , U=Y | .
‘ - (3.63)

E £+ Vsl %{i—’-ﬂ-—,}!xﬁg °

Pl

I

3.4.b) The Maxwell - Stress Tensor i
A second order tensor defined by

. © cm) S , ,
Z}/ = 53/ * 3:// il (3.64) L
wvhere : YA — |
‘ T = g5 G tpe Wé*aﬂ . (3.65)
and ; ' ' ! : .65)
‘ ?Sjm' — 73% o o Ul T, o A

is known as the Maxwell ' stress temnsor in the Ohu‘formulaxian;
In Bg.(3.65), T.° and 23”” are, respectivaly, the Maxwell
stress tensors in free space and in the material, and W is
the electromagnetic energy density per unit velume defined by

W= £ (& EL & 4/ *h P ) . (3.66)

In free space, i.e., 7D-o and (/=0 the Maxwell . siress

temsar is simply equal to T, . Thus, the Maxwell . stress
tensor also exisis outaide the material media. Moreover, since
z%f is symmetric, the antisymmetric part of (3.64) is
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_— Z(‘”‘) .
ZZ!;] L] (3.67)

That is, the antisymmetric part of the Maxwell - stress temnsor
T, 18 equal to the total body couple derived in (3.62).

Taking the divergence of (3.64) and using (3.29)3‘4 , one
’ d
obtains

Sy =" Ei+§ g 5ty 2 € (Rt st n )

-+ (El;_/—EJ'.L)Ga‘g . (//"ﬁ/"‘/!};i/ko/j' .

Multiplying Eq.(3.29); by & £ and (3.29)2 by tol vectorially
and adding the resulting equations, one has

éo (‘EQ/ - EJIL' )6 77“ (#' J;t) ;

A ;
+ éy..k)fjw 4, 7,__94/“,//&__6_41 %%4, £, - (3.69)
+ (P -,,,ym//é-~("42m"'/’l),m5¢}
where ‘
= £ &4 2 (&
Fi T o T (5 %) {3.70)

and is known as the electromagnetic field momentum.
Substituting (3.69) into (3.68) and after rearranging

)
Q/ /ﬂarﬁ? -+ Ejk 47/p¢ﬁ2~+ R £ £y; o 1 Q/

«—-

——;’/«:He +(-// Zm';m/?*?// C‘-%%E
(3.71)

= Eé' ('UJ if" )/m ‘E/c]‘* é/ém 724; (e/«w //m(/ Em, )

is obtained. Comparing Eq.(3.71) with (3.56), one arrives at
tem
P ) __ & Ty - % . (3.72)
The body forces, body couples and the Mexwell  stress
tensors in the other formulations can be obiained using the rela-
tionships between the Chu varisbles and the others given in
Section 3.2.c. '
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CHAPTER 4

BALANCE EQUATIONS AND BOUNDARY CONDITIONS
OF INTERACTING CONTINUA

The present chapter is devoted to the formulations of
the global balance laws and entropy inequality of the inter-
acting continua and their locel forms with the associated
Jump conditions on any discontinuity surface swe@ping the
body. ‘

4,1, Interactions of Electromagnetic Fields and Deformable
Continua ‘

It is well known that the eleéctric and magnetic fields . .
are coupled even if the material is not deformable. We first
summarize the means through which these interactions occur
in rigid materials.

4.1.a) Interactions of Electric andvmagnetig Fields:

The electric and magnetic fields are coupled to each
other because of the following reasons:

1) Conduction current

In an electrically conducting medium, even if the fields
are assumed to be independent of time, the electric field
‘g&nerates the conduction current, then thia current becomes ‘,
' the source of the magnetic field # (i.e., J=¢£ and sl J).'
Therefore the source of the magnetio field dependa on the
electric field, but the source of the electﬂio fiald is seen
to be independent of the magnetic field. : '

ii) Time dependent electric and magnetic fields

If the electric and magnetic fields vary with time, ‘
then the Maxwell's equations must be solved aimultaneously.
Hence the time dependence of the fields makes the - eleetric
and magnetic fields coupled.

1i1) Motion of the material

If a polarizable or a magnetizable material is in mo~
tion, the distinction between the concepts of electric and
magnetic fields become blurred. An electric field (or mag-
netic field) in one frame of reference S may not correspond.
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to an electric field (or magnetic field) in another frame
of reference S' which is in relative motion with respect
to 8. The electric (magnetic) field may transform into a
combination of the electric (magnetic) and magnetic (elect-
ric) fields, see Eq.(3.4).
iv) The magneto-electric material

Referring to (A.27) or (A.28) a material becomes polar-
‘izable (magnetizable) in the magnetic (electric) field even .-
if in the rest frame, because of the constitutive nature of -
the material. ‘ '

4.1.b) Interaction of Electromagnetic Fields with Deformable
Continua: '
4 A number of author have developed theories for the in- .
teractions of electromagnetic fields with deformable continua,
such as electroelasticity (elastic dielelectrics), magneto- |
elasticity and electrodynamlcs of deformable media. Broadly
speaking, the theories may be classified according to o
i) linear versus nonlinear,

ii) static versus dynamic,

iii) quasi static electric field versus quasi static mag-
netic field (polarizable or magnetizable material),

iv) thermally and electrically nonconductor versus
conductor, |

v) relativistic versus nonrelativistic,

vi) macroscopic versus ‘microscopic or’ sami microscopic,
vii) polar versus nonpolar, |
viii) local versus nonlocal,
ix) elassical crystals versus magnetio crystala.

The equations governing the interaction for the cases
stated in the above ‘categories are usually abtained either
using variational principles or the balance laws of continuum?
physics.

The theory presented in this thesis is nonlinear, non-
polar, local, dynamic and macroscopic theory; and the mater-
ial is assumed to be both polarizable and magnetizable with
thermal and electrical conduction, and the material possess-.
'es magnetic symmetry. Moreover, the theory is not concerned
with the relativistic effects. ‘
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4,2. Global Balance Laws

In continuum physics the following balance laws are pos-
tulated to be wvalid, irrespective of material constitution
and geometry: 1) Conservation of mass, ii) Balance of momentum,
iii) Balance of moment of momentum, iv) Conservation of ener -
gy, Vv) Entropy inequality, vi) Conservation of charge, vii) |
Faraday's law, viii) Ampére's law and ix) Gauss' law for
electric and magnetic charges. »

We have already discussed the last four laws in Chapter
3, Electromagnetic and thermal fields interacting with defox-
mable continua are to be incorporated with the balance laws
(ii-v). In the presence of clectromagnetic fields, electro-
magnetic body forces, body couples and energy supplies must
be considered in addition to meéhanical and thermodyneamical
ones.

i) Conservation of mass:

The global equation of conservation of mass 1s expressed

by the form ,
. 4 ] ;
o&/V: dv or -f-- / /0&/1/::0 (4,1)
17-4/0 %/o“f o e |

where /4 and p are the mass densities in the reference
and present configurations respectively.

ii) Balance of momentum:

The global balance law of the momentum is given by

% /A’WZ"W== /ti'(m dar [p(f"e £ Jaw (4.2)
= V- V-7

where %, is the velocity of the particle, ¢, ,, the actual

stress vector associated with the outward normal 2  to the

surface HVo¢ which encloses the volume 7-¢. Furthermore,

/Q{m"'and /y{M)are the electromagnetic and mechanical body

forces per unit volume respectively.

If an infinitesimal tetrahedron with three sides paral-
lel to coordinate surfaces is considered, and the balance of
momentum (4.2) is invoked, it follows that the stress vector
¢,y depends linearly on the unit normal 7 , i.e.,
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ék == -é‘t:kﬂ‘_‘ 0 (4.3)

Upon substituting (4.3) into (4.2) and using (3.72), one
obtains

d/f’i‘;o/l/-—- /'f Ny da + /(Z fha) d

“ = -9. + v

dt e =T bk = F ff/ /

and after rearranging, (4.2) reduces to

- (m) .
Fo oy L7 n, v/(ﬁ( oo )a (4.4)
ﬂ(é% ?V/ﬂ_é e a—f—ﬂ' L ;1,)
where we introduce

‘é::) = fk; + Gu (4.5)

which is called the total stress tensor to be the sum of the
actual stress and the Maxwell . stress tensor.

(1)

iii) Balance of moment of momentum:

Taking the moment of (4.4) about a fixed point (origin
of the reference frame), the global balance of moment of mo-
mentum becomes

;ﬁéd/;@kzﬁjQiA¢Jv==4}éb% ?7 é2)7%¢”& *:/é§1?7'0?/mjcjt)”&(4 6)
Ver =T el
In deriving (4.6), surface couples of both mechanical and
electromagnetic origins are excluded since the material
is assumed -to be apolar and the exchange effects are re-

garded to be small,
Note that the same result is obtained alternatively

with the aid of ( /47, Eq.(2. 3) ).

iv) Conservation of energy:

The global energy balance law of the interacting con-
tinua is ‘

/[)p/ "&"i-rg)‘*wjde /( (T)*f*ifé’j"k )%y Ny dler
?’V"
/({L'f‘gk )7746/6‘ —fl,ﬁ [’?[i + 9)44/

or-r
where L ;% and & are the kinetic and internal

energy per unit mass respectively. The first integral at
the right hand side of (4.7) is the time rate of work done

(4.7)
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by the total stress vector, and the electromagnetic momentum
flow. f' and 2 are, respectively, the true heat flux

vector and the extra energy flux of unspecific nature which has
to be determined by a constitutive equation. Thus 7= j}-g is
the energy flux throughtout the moving gurface QV;TF o Mo;eover,
the first term in the argument of the last integral is the power
exerted by'ﬁng and /15 is the energy supply per unit volume due
toc the sources other than electromagnetic and mechanical origins.

v) Entropy inequality:

The time rate of change of the total entropy is never
less than the sum of the flux J° of entropy through the
moving surface 79/-¢ of the body and the entropy supplied
by tie body sources

2}% / f?Zp/V 2 _/\S/i,_ /)/éc/a-f//’? v . (4.8)
Vg T Voo
This postulate is assumed to be true for all independent

processes, and the specific form of (4.8) depends on the
process. In a simple thermodynamic process, g,= Ze/p  and

- 4%. can be written, where & is the absclute tem-
perature.The entropy ineguality (4.8) thus reads
/ ' o [
;??//7“” %-’/%nk/a#/%dv . (4.9)
V-7 - “r

Hence, the processes described by the conservations of
mass and energy, the balance laws of momentum and moment
of momentum, and the Maxwell : equations are subject to
this so called Clausius-Duhem ineQuality. This inequalitvy
imposes restrictions upon the constitutive equations to
be derived in the next chapter.

4.%. Local Balance Laws and Boundary Conditions

Since the balance laws (4.1,4,6,7,9) have the form
(2.9), the integral theorem (2.44,45) forms the basis for
the derivation of ipcal bhalance laws are assumed To be va-
1id for every element of the body, the local balance laws
together with the assoclated boundary conditions are ob-

tained as follows.



i) Conservation of mass:

Comparing (4.1)2 with (2.39) one identifies ¢=p ,
T =0 j_—_—o- The local form of (4.1), according to (z.44)
and (2.45) is given by ‘

2 +(piL),, = o in L7 (4.10)
(A=t ) Ju = 0 o va) )
where 2% 1is the velocity of the dirscvonti,nuity surface
g(t). Thus #-%* is the relative velocity of ¢(¢) with res-
pect to the particle. If x=3*, i.e., the particle veloc-
ity is equal to that of ¢(t), (4.11) vanishes,

ii) Balance of momentum:
Now comparing (4.4) with (2.39) one identifies ¢ pz,

Fo ¢, ..—.=~#-f-/:7(m) . Therefore, the local form of (4.4)

according to (2.44) and (2.45) is given by

ﬁ&x‘(:):: {k")k + (Zéék ..;b.),././‘/t:(ﬂ) in 1/‘:0‘ (4‘312)
o ° . (7) . .

Upon using (4.10) and (3.72), Eq.(4.12) is written alter-
natively as
(em)

pi = tun+f (e + £7) in . (4.14)

If z=2" is assumed, (4.13) becomes

£ 4 Fn=o

111) Balance of moment of momentums

From (4.6) and (2.39) it is clear that ¥=zapd ,
F=xst” s j=m(.; _,,f/“"). The local form of (4.,6) becomes

on ). (4.15)

em} (v
"]i' )J:ég-& ‘é"zj in oo

ik [ L prp ) Loy -p (K 3
| (4.16)

il % 2% (ig-if )~ L Wop=0  on @) (427)

Imposing the restrictions coming from (4.10) and (4.14)
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onto (4.16), one obtains

é‘l).k. 5’2 =0 or 'é(/é] = ZE/‘J in /V;a_ « (4.18)
This means that the total stress tensor is symmetric, but
the actual stress tensor is not. From (4.17) it is clear

that
b Ly (i0-33) - W Jyz0 on 7tt)  (4.19)

and if =x=x* is substituted, the equation reduces to

-~

é,/,ay [féz)]//’?/ =0 on U&). (4.20)

This is nothing but the boundary condition obtained in
the balance of momentum.

iv) Conservation of energy:

The form of (4.7) is similar to that of (2.39). First,
adding and substracting the term 2t %é& to (4.7) and
using (4.10), one now obtains the local form of the conser-
vation of energy and the boundary condition as

ik[/ié“féé,‘;~(zlu )f/{w]-;-fé §"_‘£_ + Wz ),

o . . o
fté zé"‘ (ZL' %A jé. ))‘: ..Zé %%é— o1 -[4 . fﬁ,‘ w/P

=0

o

in  VZg(4.21)

(7)

/[ (4 2Z+pE +W (B 22 ) = (& + A9 )2 ot gy ) Jlng =0

on  Tlt).(4,22)
Upon substituting (4.12) into (4.21), one arrives at

. . r . . Wz
PE+ gt‘—" # W) o = e Ry - (g T Do = g%/""

in ')"3-(7 ° (4723)

"f -7 f&,(. f &=

Next, multiplying (3.29), and (3.29), by ¢ and £ res-

pectively and using the vector identity (vra ).8-WxB) A=v(4:8)
and (3.68,72) there follows
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cji (Em)i=-2% FP _p 2 £ prod

ot |
. . (4.24)
- (2‘: E- )Jk EL‘ - {WMQ )/&_ /'/L.‘ ®
Now making use of (3.67), Eq.(4.24) reduces to
oW __ (m) ) ) ' - )
_éT_-(CU ’y'-— %’L E‘; HQ )IL — 77- u (4025)

where

0‘/ .
7=F % -;-/075.,.%‘0(/4/%+7‘1(3#;L/M%//2&) e
Introducing (4.25) into (4.23) and neglecting the terms of
order (.Z)2 , one finds

Ff-t‘azz + e Pl - Te £%, = o CAn ey (4.27)

In viev of (4.26) and (3.72) and using the vector identity
A-BxC = B.cxA =C. AxB one is now ready to write
(4.27) as y |

€ =tk iy 1T ap B E 1 ppllHe-gosph An 1(4.28)

This result is in agreement with the one given by Hutter

and Pao (/147, p.92) stated without derivation. |
' Neglecting’ ‘the terms of order (.5.) 1:1 (4 22), one
writes

/[(é/’%%ﬁoé‘ -fW)(%—% ) ffa)‘%ﬁf?‘ ]/’7—aan (4. 29)

i }‘ :

an& it z = & is aasumed the 1ast equation reduces tn.‘ﬁ‘
u. _ o on. ¢(+) (4.30)
[ / o— 2‘: kﬁng )]/,)‘: - D ; ‘

v) Entropy iﬂeguaiitx
Substituting ¢-py , C=-f ¢ and j—f’ in (2.39)
and meking use of (4, 10), one obtains -

LT3 % + & Pl in VL0 (4.31)

an ‘ » . : ‘ B
W (-3 ) +4+ 9% W% o
;Z'ﬁ? | | ) +9 ? ]/ on - 67'{'(') - (4"-32)‘ ‘



If one assumes that % - *, this reduces to

d+#g, I >0 on TH) . (4.33)

If /Wg is eliminated between (4.28) and (4.31), one
obtains

p(E-07) wtis s o TG pR ]
4 : in 1/:0'-(4.34)
pppolly Ae - 960 2 ©

_ For the thermally conductive material, it is advan-
tageous to define Helmholtz free energy demsity by means
of Legendré transformation

Y =¢&-07 N o (4.35)
The inequality (4.34) now takes the form

_p( 276 )+ by, T &, +f7£-v€¢
* prold A, - 49 8¢ >0

i

These basic balance equations and boundary conditions
are to be supplemented by constitutive equations. ‘
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CHAPTER 5

CONSTITUTIVE EQUATIONS FOR POLARIZABLE AND MAGNETIZABLE
MAGNETO-ELECTRO THERMO-VISCOELASTIC ANISOTROPIC SOLIDS
HAVING MAGNETIC SYMMETRY
WITH
PHERMAL AND ELECTRICAL CONDUCTION

The basic equations considered in the?two previous chap-
ters are valid for all types of media irrespective of their
internal cemstitutions. The number of equatioms is inadequate
for the determination of the unknowns except for some trivial
situations. To them equations characterizing the material prop-
erties must be added. o _

Our objective in this chapter is to derive the basic con-
stitutive relations of a relatively simple“theary of magneto-~
electro thermo-viscoelastic anisotropic solids with thermal
and electrical conduction undergoing finite deformation.

5.1. Resumé of the Fundamental Equations

The local form of the balance laws is listed below.
Conservation of mass: '
)

:g?-fgoﬁﬂa),k = 0 S
‘Balance of ligeaf'mbmentum:
CpRe-tuk -Pf =©

Balance of moment of momentum:

o ]

(ri

Ei/k 'é(y =0

Balance of energy:

f’g;:’ ‘il *«,;*-Z({g-: +f?? £ -ff/"‘“m;?fo (5.1)
—plpe)-gu + I > in T
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Entropy ineguality:

ri+ (5 & Li~4+pP% >0

Maxwell‘s equations::

. o #> () . (om)
6.’ 'EL,L /a +/o‘ ,/M, ﬁ{;l" :.:‘/-'J J
. I __; Jom) B )
é« 'y Ek./ -f/"“" SE T T
06 _ 7#  rm 1 2T (5.2)
Er |
where
/002:__‘ué ) ‘/Qwu s M ﬁ (5.3)

R
28 .
7% B+ St €unn (B 50 |
() Qo Yy € ).
T = 25 + € Cumn fuollp Fn) ‘

The charge and current densities in (5.3,4) satisfy the follow-
ing continuity equations which are not 1ndependent of the
| Maxwell | equatione (5.1)¢ 4 and (5,2)
¥ ' i .
% : o(p) ) (m)  _fml
af WP 5 ~§§-+ sZ;";’;—o 5, ff?af Z; =0 - (5.5)
. For the latter use, assuming that the velocities of the dis-
" continuity ‘surfaces and lines are equal to the velocity of the
' material’ particle and that the surface charge and the surfacs
o current densities vanish, one rewritea the boundary conditianﬂ}
(3. 30) and (4.13,22,32) as .1 L |

3 [T ]/n;,_»s-..—‘(o /[f‘k i - /2L+g¢)’j/?'7£=0

(5.4)

L ‘ éﬁé‘ f?_]V/% 20 ‘ - f»onvaw7(5.6)5
| Afki51-+f3j?7%‘==o ; //ZoAZ:%%fAQfZ%Quwcy

andy
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/Z—EL _ﬁ/é =0 3 A{;Z j/é;::o on (). (5.7)

Given mechanical force 7{ )9 Egs.(5.1-5) constitute 15
independent equations and one inequality for the determination
of 35 unlmowns: £, % , Ly, g4 Zb oo M B s Mo T

¥, ¢, 6 end 7 . Thus, the problem is grossly underdeter-
mined. Twenty additionel equations must be provided to make
the problem determinate.

5.2, Constitutive Relations for Mogneto-electro Thermo-visco-
elastic Solids with Thermal and Electrical Conduction

In this thesis, it is assumed that the constitutive equa-
tions for stwess, electric and magnetic flelds, entropy, elect-
ric current amd energy flux vectors to be functions of deforma-
tion gradient, time rate of deformetion gradient, polarization
and magnetization per unit mass, temperaiture and tempsrature
gradient. Instead of polariszation and magnetization per unit
volume, which varies due to deformation, those of per unit
mass are taken as the comstitutive -.ariables. To these argie
ments, polarization and magnetization gradlents can be added as
is done partially in the works of Tiersten /5/, Brown /[7/,
Mindlin /8/ and Suhubi /9/. Moreover, if one is interested in
the hysteretiec eff@étﬁg time rates of polarization and magneti-
zation must be included (see, e.g. Coleman [7Qf, Toupin and
Rivlin /717 ). The gradients and the time rates of polarize-
tion and magnetization are not taken into account since the
exchange emd hysterstic effects are excluded from the present
research.

According to the axiom of equipresence, at the outset, all
the constitutive responses are to be comsidered to depend on
the same list of comstitutive variables until the contrary is
deduced. Thus, one has

by lat) =Ly (omp > Zmpe + P by, 0, 9, X, )
& (xt) = é@( ] . ; . e )
) (2 t) = A (v § W ., (58]
PN S
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U (2t) = fAé ("‘m,/c s Xmc s jéy‘wb‘zm,ﬁ, Qs Xic )
"'Z (‘%,'f‘) = 7l " 17 n i noon 4 )

?(73"/{) ( “ " " " u noooa )'

In Eq.(5.8) f is tensor valued and 5: J% QT . Q, are
vector valued and ,7 E’ are scalar valued functions of

their arguments. Eq.(5. 8) can also be written as

-

g
Y

i

jf(},f)—- £

~

‘Z{/.z,-l-)——

Jzt) =
g (zt) =

/7(31{) ~ Z ( " " “ 7 u n
S.Z/(Z"/{)" f[/ ( 1 noon 1 ; ; a )

where 4? is the material time derivative of /4 defined by
(2.7)., These constitutive functionals are assumed to be differ-

entiable with respect to their arguments. |

i According to the axiom of objectivity, the constitutive

- functiona (5.8) or (5.9) must be form invariant under the orth-

Ogdnal group of transformations. Therefore, amn admissible proc-

ess must remain sdmissible after a change of the frame of refer-

ence of the form

XX, %) =0M/) x (% 0 sl (5.10)

F, £, AP, e |
Flose . 6,x)

/ 2l / a n " )

] y 1' i n n

I /] & " 7] /)

( f
(
A
(
(.

>\“°)'<ﬂ>’§ﬂ>

)
) 5.9
)
)

where ép(f) is a proper orthogonal transformationm, b)) is a
translation and +# 4is obtained from + by a constant shift
of time:

\
-

g~4?f:_'r Qf.ép il ..".:.Z- H 9@%@ = 4 3 'é:;: fea (5’011)

P

where "a % is a scalar constant.
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The scalars @ , and ¢ are unaffected by a change
frame, but the other guantities transform as follows:

of

£f= QL P=q? (5.12)
=0 5 g - 04
e gtat  £'-Qf ;UL ox
J'= ®T 5 9= 09 (5.13)
Thus, the axiom of objectivity is satisfied if
GLE(E, B P i, 8,9)0¢= £ (£ f Bl 2, 5°)
BE( e ) = By
620 0 sy = A (e e e )
QF (v o vy = S (5
OF (vu v w v )= 7 (0 o w0 o)
B Crw wmn )= Cuonow o)
G (v ownr o w y=@ (0 W w w

In writing Eq.(5.14), the material is assumed to be homeogen-

eous. Restrictions imposed by (5.14) yield

wa:: _:é/a_ (,(; s é 9 Zf»/‘oz,’? IQJ g)/\//(,é XZ,Z

Ee=Ec (0w u oo ) Ak
;%%_=-%?K ( y 7 Vi i " ”.)A}wk (5315)
: g]i = j/tf ( 1 4 /" ” o " . ))(t'l{

7= ?A K o oo ))(/s e

i



where Z?

Cu= Eome 5 = e %k (5.16)

and Ik = S w3 F = FE

—

Chr = 2k by 3 Crr= 2d¢s %44 2yq,

Tle = A xt

v (5'17)
Kk 3 M= U %p 5 Ge= Je K

The expressions in (5.17) are objective.
A more convenient form of (5.15) is obtained if one intro-
duces quantities underlined by tilde as
-y N ‘-_tz\ .
T = Zuaw Cue Cur s k=T &, Cix

- . '
%?k'=‘~7‘éﬁQ‘Clk: 5 e

(5.18)
o= G s D= J'fﬂ.cik

where J is the inverse of Jacobian J defined'earlier (2.10).

Upon aubstitutins (5.18) into (5.15), one obtains

2{4&2:‘7 {KL.(C C 77—/..,7779 G)Zék')‘/,/_

ék.z~]u§% (IL‘M n “ n H )ZLK

?zé = jlix ( o ooon “ooom /’)%é/K

ST 77 ’ / ’ & '
§L= jl ?K ( + ; 1t " |7 T ) 'xe//(

? = "z ( " 7 " " " ll)

p = @ ( t N 7 i y ,,) .

The axiom of admissibility requires that (5.19) must be
consistent with the principles of the conaervation of mass and
energy, the balance of momentum and the moment of momentum,
the Clasius-Duhem inequality and the Maxwell s equations.,

Upan substituting Bq.(5.19) into (4. 36), one has
EALRE LA F I J O IR
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(continued)

/0’7 9 +. —‘[fKL lL Ve é *ﬁ ,é/(\jz. XK v‘/”@K(”;/Q,w (5.20)
(T doe) g Bel T et Pt ) g, T

Next, using (2.8) and (2.12)1, one obtains

,‘Sk xb, = ECK )fz,a C ik c, (5.21)

By inserting Eq.(5.21) into (5.20), and using (2.28) there
fallows |

/pQQ;C ___/,9P C:SL_ QQP f—zf

dCkt Cel. / 97]/2 K /2 ,,K' /03777/<77?
o2 A A ‘
r L “undl T 2L 6 p77 6 - ;9—5—( e E T

(5.22)
N2 o AA 2 A e “
ALV ED G = LAE T B Tl Wt

A

L 2/(6

o~

Now making use of (2.31),, Eq.(s.zz).is rearranged as

( #“7 ) #70 (; )02-7p(ii§z;ff ;@fﬁK)ZﬁK

-~

e 2 ay. 5.23
fide S /agz%cﬁ—;f(ﬁ:a%—j et 43

LT e Ze Ve ) Ko e Yo+ £) 6
“?(@:)0 .

f\‘i)

,31

The actual stress tensor can now be split into two paris:

,Zf kL = D) (9% ‘7‘(0)sz (5.24)

where
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(ﬂo)),v/a. = (Nb)-éKL (¢, T, A&, 8) (5.25)
and A .

(aféKL. = (@é,zz_ (¢, L, Z]:/“OZ}Z/ 0, Q) . (5.26)
These are called the nondissipative (‘revejrsible) and dissipative
(irreversible) parts of the actual stress tensor reSpectively.

As a result of (5.24), Bq.(5.23) is rewritten in an equi-
valent form |

p (27 ) */"{“577;*75) "‘/"(57%({%)77'&
of

- Gr - Cop + L /
/096/< K /o “e + (2/ ;TCQ (,,,,}Z:.KL (5.27)
"/75 T X, XH ,m ﬂwg{ % X m m )C oy
£ I A -
_’L/oo (a)é :<A.“7'44K Zf//__. Yee 'f*/;f é“( j‘,_'c;u_ 5.5’- VA's G/(f);o .

This inequality implies that

n 55
a% o . 75 = 0O (5028)
26k © ’ IdC kL. i
"____2_@_ . __£ 30 s_rpof
’Z BREL s &k 4 9T ? /““7‘,.4:”/;;37,7&_- (5.29)
o L= f" + (e Ty 4o e My ))w Yo N
() f/:z. 7 «Q % ¢ +/5ﬁ é;c 7, C. --—~ fc‘sk (5 30)

 From (5.28), it is easily seen that pgfﬁ(g,‘]ﬁjf&&),
that 18, (J does not depent on the rate of deformation and
temperature gradient,

Now making use of (5.19) and (5.25), Eq (5.29) reduces
to

| ; - 3@ . mﬁﬁ . ’ a/\
?-a; =5 Y 54 aﬁ;«. k' a/tﬂ-og( = 5—2}}% e, I

(5.31)
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where (2.1‘5)1 has been used. The entropy, electric and magnetic
fields and the nondissipative part of the actual stress are ex-
pressed once the Helmholtz free emergy ¢ 1is specified,

From (5.31) n it follows that

(Nb)fl‘ké’j =p = 5z _W ’7(—[&/( A3, + SZL ?%] ‘l"/th/[é W7 (5.32)

and the first term at the right hand side of (5.32) vanishes
since £ =€,.. Imposing the restrictions coming from (4.28)
together with (3.67) into (5.32) and (5.24), one finds

@fﬂw = (5.33)

that is, ,, ¢ 1is a symmetric tensor. Henceforth, one has

/ . A *
(_/))-éKL Y, AL Yk (A)z:én 5> (Yr+pa )léj,éawjﬁbzf cr Eyp £534)

~

Using (5.34) and (2.15)1, the inequality (5.30) now becomes

~

L@E(@éu. EKL + ff Xt,é (—?EKA +£<A),:7/:‘g;/'2c6/(>/0 . (5.35)

To proceed further, one needs the Helmholtz energy explic-
itly.

' 5.3. Polymomial Approximation of the Free Energy

Letting the free energy ¢ be an analytic function of the
components Fxr, ik 7 and the scalar ¢  and expand-
ing @= .‘zﬁ(fu. , /7;:,/th,9) at the point of natural state
into the Taylor series, one obtains the constitutive equations
(5.32) explicitly. In the natural state of the body, it is as-
sumed that £, =0, /= 0O , /cwﬁ?tso and # =0, Thus, one
has

W)= Sl G 20T S 3

Dle) ®w - >-(m) y
+El—é— ZK’LMA/ Eer Eun '*2_/2 7% “ﬂin e Ve



(continued)

Pl

2 (5) 2 (ep) em)
-/‘-Z'Z Z E/(/_ // ZKLM Lo ;72.

KLM

e (Pm) — (P#)__ me)
-fZ(&) EKL9+/)-P 7"2 //(97“2{9

"Lé}j if:wp@ s Emn &, py T+t o fz_),\, /7—7/-

v 5’(‘,21’ e 7, 77? + = ‘3§ (&}‘93‘/‘ A;Zizvp £ @js/*;/;%)
§,§i;, Ea Tl + Seooms G bon My

* AK(Z;,)V Lo My %v + ’Zij,v Exr Eaw 8+ ZZWEKLQ :

S T, 3 emm, - 3 s

. "f(fs«)//;gz_f sz)}? 77? 4 4 Bg(m&)%(ga

* K(::/j Exe M M1y & A:,:) Er Ty 8

2 (eme)

£in AZLWMG’)“%,L 7 6+ ..

where

Y=¥100,0,00) ; ("__( ) . (P) )

(m) o) (e J

3 — (2¥ . ’ 9%7/

2 9777&) z (a9 o I C?@L%M
2.(p) aasp | . & () 92@ |

KL, /0 97[(’97_ L] rz_:"—/'o: 3777/&’)7/2/- >0 (5.57)
~ /oL azg/ . - (ep) ,\,e,,,,) 5 zf
Z - 20% % ? Z(LN (*\5“9]7' E (W ;;'}//h )
Z’\_(ea) N, 92,20“ ) . Z(,cm) o az.g

Ko \9Eq 26 7, ? ke T 5 (87723/7/4 )o

58



and

X ZA (ma)___ (a?—@
3 =
)

OMedb ‘o

Ak) 93 ’ e
= 2P 93(.1.;
KLMNPY /? &, 3 =
§ S e aEMNaL:—D@ ? ?K‘/‘” (GTKQE,Q% )o
§(m) _ 33&73 o (6) ( 53,_@
w = \Gmamam, > 3 = LA
2 (ep) B ( 23 @ Alep) ( 93@
Eaie Oy 6y Tp )o oKL 35«_977;97/;)0
§(e9) _ ( 33@ 2 (es) ("’53@ ) .
‘ /(L(MN - 3% It /, ’ % ke ™ 3q 96* o
}(P"L ( a3y ) A (mp) 93_@ :
K 27T .My /, i sken = (Tl om, )
é(m) ( 33@ g(m) 93@ (5038)
A= oo 98/ SRR )
?"”’)“ | Y . ) §(m) ( 93@
e Yomeomadb /s P 3K T \amado
2 tem) 3P ) L Qem g g
szz.Mvp = 98y IEWIN Y "4"’"’ - 954_97/&,97%2”
& (epm) ( 22¢ | . %(qo&)“ ( 93
§K¢_M = o5 a/g,a%,v)o P Sken ™ o o)
2 (ems) 23 ) 2 (pme) 23
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In Eq.(5.38), the symbol (.)_, denotes the derivative evaluated
at the point £y = Tx= wo Hlt=0=0. The material property tensors
5 ana £¢) have certain intrinsic symmetries to be dis-

cussed later. ,

In view of (5.38) and (5.31), one obtains anisotropic, .
nonlinear constitutive equations for electric and magnetic
fields, entropy and the nondissipative part of the stress. The
. linearized constitutive equations are obtained if the terms.
of order up to and including two in the emergy expansion (5.36)
are retained, Moreover, it is assumed that in the natural state,
the free energy (/  vanishes. Thus, the free energy now be-

comes
A le)

(m / O e
‘I/()zz t/q_-/‘z f )}77/(+Z(9)9+-Z{)ML7(L::

Kem
2 (m) '
* 2 35 ZKL e/l + Zi/f’zm. 777 (5.39)

2M6) 5 > (ep) =(em)

e 2 (me)
+Z‘mau9+/’7( 777/_7‘ Zﬂg/7't9-,« 2 &/7/,@9

KL K

where the material property tensors have the following intrin-
sic symmetries:

A ‘ A { “ L :
. . — = = L-MNK. R
‘ . * L kinm L

Sle) oles)

A : & () 2 (m) | ‘
) t» D=2, 2 = 2.e (5.40)

= K L kLT K=
- 2 (ep) 2 (em) S (em)
PO =T i =L

Prom Eq.(5.31), if in the natural state of the body the
‘1nitial electric field, magnetic field, entropy and the initial
atreas vanish, then the material property tenaore are taken to

be .
A(p) fn) “te) e, ,
Z,: = f( = Z Y= 2 =0 (5.41)

1
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in the energy expression (5.39). Thus, the free emergy is further
simplified to be

te) N lm
.l.w - ZKLMA/ tKL MN T zfz ._../a ZKL)MK%L

/o
(9) (pm).__ .42)
'/“21_‘ —/—ZKLEKLQ‘/'/ KL//Km (5.42)

(ep) lem) (ps) L (me)
+ng fg[_ -/—Zm Exr M'?Lj 9’/‘2 i 6

of which different coefficients are often named as the "elastic",
"electric anisotropy", ‘magnetic anisotropy", “thermal®, “thermo-
elastic®, "magneto-electric®, "piezoelectric®, ¥piezomagnetic,
‘pyroelectric" amd "pyromagnetic®” constants. There are theoretic-
&l and experimental evidences supporting the interaection phenoc-
mena due to these material property tensors, e.g., Landau and
ILifshits /72/, Dazyaloshinskii [22/, Astrov /23], 0'Dell /217,
Bhagavantam /20/ and Rye /[737.
The magneto-electric effect which is due to the term
A%&fz&,%l occours in magnetic crystals only. The possibility
of the occurence of this effect has already been suggested by
Landau and Lifshitz /72/. Later, Dzyaloshinskii [22/ proposed
'a potential for isothermal rigid magneto-electric materials
which is the special case of (5.42). The magneto-electric ef-
fect has also been confirmed experimentally by Astrov [23],
Al*shin and Astrov [24] and 0'Dell [21] oy’
The piezomagnetic effect which is due to the term 2, ,&,

~ally been discovered and experimentally measured by Borovik- .
'Romenov /2%/ in Gan and MnF2 crystals. S
{ The pyromagnetio effect is concerned with the changes in:
the magnetic moment in a magnetic erystal cauaed by the intro-
duction of a temperature change. This effect is taken into at-
count through the term 3 < 77k f . Thirty one of the 90 magnetic
crystal classes are potentially capable of exhibiting this affect

and its converse, magneto—caloric effect /20/.

These three interaction phenomena, namely magneto-electri«
city, piezomagnetism and pyromagnetism are characterizged by
time-antisymmetric tensors (or c-temsors) since magnetic moment.
is time-antisymmetric. However, the material property tensors
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A p) ~ A ~

Z{ZMN' f;_ ’ Z:Z) ’ Z(S), Z(z)_ ’ i{ef) and Z(m} are
i~-tensors since the variables, excepﬁ_magggtizatimg 7” .« are
time~symmetrie. One arrives at this concluai@g‘aceerding to the
"product rule" which is analogous to the rule (Z).(Z) = (+)
and (— ).(+#) = (—). That is, in a physically correct expres-
sion or a comstitutive equation if both field tensors are i-ten-
sors or c-tensors, the material property tensor is an i-tensor;
and if one of the temsors is an i-tensor and the other a c-ten-
sor, the material property tensor is a ewtensor.

The energy term jf Eq Ty in (5.42) is associated with
the piezoelectric effect. That is, when a stress is applied to-
certain‘eryatals, an electric polarization is developed, or wvice
versa. ‘
The pyroelectric effect is taken into account if one con-
siders the energy term ﬁ”ﬁz) e & in (5.42). Certain crystals
‘have the property of developing an electric field when their
temperature is changed. |

The physical phenomena associated with the first five
energy terms in (5.42) are well known in 1iterature, since ahey
exist in isotroPic materials as well as anisotropic ones. There -
fore, we do not need any discussion. |

 In addition to the assumption (5.41), there may be two ad-
ditional assumptions: i) the materials belong to the 32 out of
the 90 cryatallographic magnetic point groups, ii) the materials
beleng to those of the 32 crystallographic conventional point
groups which contain the inversion aperator.' w ,
Because of assumption (i), the maierial property tensors

" in (5.42) are
(zm) & (pm) Z/em)

K “""" & L KLrd - 0 : i ‘ , (5 43)

Since 7?7 is an axial c-tensor and the Helmhaltz free energy
is a true (polar) i-tensor, these material property tensors
have nonzero components if and only if the conventional symmetry
_elements S° 6{5} are in combination with the time-inversicn
element R (R : t»-T ), l.e., RSi=3‘€ {772 . Where

{}5} ~and -{7%} are, respectively, conventional and magnetic
point groups. Hence, the 90 crystallographic magnetic point
groups are denoted as {7/} ={5}e{M | where iM'  is
the 58 additional groups.There are theoretical and experimental
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A {em)

evidences that the material tensors :ZU”W, jiiz) and 2 _,
have nonzero components for the materials the symmetry elements
of which belong to {7&/} ; for example, ferromagnetics, ferri-
magnetics and certain antiferromagnetics /20,74/7.

Because of assumption (ii), the material property tensors
of odd orders, and c-tensors of odd end even orders in (5.42)

are zero, 1. e., ims) & (em) A ()
/\lee m “@m . )
Zx = L kLM —~_Zf< = ZKLM = IK&- =0 (5.44)

Tiersten /5/, Midlin /8/, Pao and Yeh /13/, and Hutter and Pao
[14] have been assumed that (5.44) is satisfied. This assumption
is valid for the materials whose crystallographic point groups
belong to {5} . Therefore, the constitutive equations based on
the conventional 32 crystallographie point groups and those
having the inversion operator (centrosymmetric crystals) do not
comprise the general anisotropic matgriais.

5.4. Linear Constitutive E uation isot ic Solids
Having Magnetic.Symmetry

The linear constitutive equations for magneto-elsctro thermo-
viscoelastic anisotropic s80lids are obtained through (5.%1) and
(5.42). Taking the associated partial derivatives of (5.42) end
éubstituting the resulting expressions into (5,3%1), one obtains

A ) (9) &i(me)
7(1/'{)""—2,9 cg_ KL. /0 (Z('Dp%zj'f' :9' /c)?’éz&’

2 (pm) ep)
Celat) = [ﬁ (S8 B+ 5y ) mgut Do Eune2 a](s 45)
WﬁK
,uo?/ (n{-} [/g (Z /(/f—l-z(m)//” )'Z/zL'Y’ZM(::) m/-rf'jgéj’%&“

and - A te) tep) n (em) |
(N[)) fef/?,‘é) = Z‘/‘éﬁ ZKZJ'{A/ EM/\/+ (?KLM /g-f' youy L/;/m)xﬂ),/‘{

+Z(W 9_]%& xg, + é’x«,p—f/éwj//c.“'ffé

In writing (5.45), Eqs.(5.17)5 4 are used.
Next, substituting (3. 67)3 4 into Bq.(5.45) and solving
the resulting equations simultaneously for £, and 4, the
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equivalent forms of (5.45)2,3 are obtained as
o < (p) (Pm) &)
£‘é (va) = f/-s- {[(z Ki /? )%/(/C" ZMMC

Q)
-+ K 6 ZAJK“ ék/ﬂ") —m (z- K/_M€) 2/61_7""1(}

D (em)

émn% (ZMNK EM/("/‘Z

me)

):4’71/(

putotet)= ZALS T B S0 M, ) m 0 5200

MNK MN

(5.46)

(ms) . = 0p) 2 pm)
—f-,f,( 6 | X + E%_éﬁmﬂxm (Z P +2 ki /‘{{)%L%x}
(p5)
ébnn”‘m(ZMNK N"’_"Z )ZJ’K )

Upon aubstituting (5.45), into (5.35) and introducing
(5. 1?)3 4» One obtains

99‘”'(“)15 KL ":'KL+[P (3 cp) 777M)+ ZMM( Eum
+Z"’°’9J(25¢+a’g_)¢,_ L 96k Yo

The minimum value of (5.47) is egual to zero and “this is possi—
ble if all the independent.variables vamish i. e..

@m/h = O | ' (5.48) ~

(5.47)

! if " ; . i i
[ ’ - . ; : = 6-::" C- . ' } ‘y:
£=E=T SRWTITESO 0 G

e

Minimizing Eq.(5. 47), one can obtain information about the form o
of constitutive equations for ,@)me, J} and f% . @ is

minimum if the following equations

9D | _ o8 2D 28 | _ 28
aé’! aE/"”aF 8777/ ”'9"/ /0(55‘”
are satisfied.In Eq (5.50), _Qﬁé ] is the partial deriva~ -

tive evaluated at point (5.49). oc) 3
Taking the partial derivatives and using the condition

(5.47,49), one writes

e



QEKL ket = b géKL
9P l ZA‘P) A 2D & (pm) o
— | = ] / = 0 5 —— |= Z ]:0
, LK XL LK XL
U I | (5.51)
9D | _ P 2 _ P 1_ . 3
9&! ZK'JK(I) ’ aeK"ejKO/:O

Eq.(5.52) is satisfied if and only if

Tk (0,0,0,0,0,0) =9, (00,0,0,0,0 )=, (0,00,0904(5.52)

since the material property tensors are, in general, nonzero.
Thus, constitutive equations for ,Z,,, (7 and ¢, should
have the form ~ ‘

é Ale)
(2 Lxt= “&ern

Al8)
+ C ;L -+ CKL.I"/
. (P) — N (m)
= K” Eim me E o+ /”Kl«- f Kee 7 (5.53)

A(e) 7 (3)
+ Kf 6

C’l\(") : é\(ﬁ — Sim)
EMN -+ KLMN EMI\/ 'f'ﬂ KiM //"7' +/f CKZM

+ Kk ©
A ) S0m)
2‘(_‘, (e} ELM+GKLH CU-/ ‘f'/ 7"me /7/4
£ le) (3)
Yo+ 6
. whef;e the material property tensors in (5.53) ha*#e the follow-
. ing intrinsic symmetry ‘
o Ao Ale) v} ‘C’\‘*{v) ij‘(v) ‘
(j\ “@ = Cm = Lo 3 Camm= Cuxaw= Crons
KLMN ~(8) Als)
' : A Alm) ‘
ADNP) Alp) . C(m) = CL.KM 3 CKJ..= CU‘(
- b = KM :
kM = KM (5.54) |
Ate) A tv) 7 tv)
A ) /?(e) - K . K= KKHL
. = kemt! 3 KM
[\(L/“, CLKM 3 KLM N )
. -~ (e) A(V) é\ {v,
) - = O kme
G irs KMe: 2
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The constitutive equations (5.53)2 and (5.53)3 are nothing, but
the generalized Ohm - law of electric conduction and Fourier -
law of heat conduction for the interacting continua for which
the magnetic symmetry are taken into account,

Now making use of (5. 19)1 4,5 end (5.17) in (5.53), and
the result (5. 45)4 together with (5.24), one obtains

Cuplet)= { ZC:L)MA/ w1 KZZMN Eun + :Z)-f/{f,ii) )8
C?K(Z, A+ me /T 5 CKLM Jm ]7"":/‘4}7‘@,(?4{;4_
+Eh -f/&oj/ké%é’
Y () = [;.f (Ko Een v K AK(fM Epy + k”e) (5.55)
(KB Km_/%—/-/ K¢ L9 )y, e
J(2t) = [ (Beiw En+ G G },,.,pé’”a)

(Aw B+ Z_) M+ 7 / KLjf)%jz_.j"éK

where
/\

_CMLZ WL é P £ vy ; )Z@’fﬁf(m’. (5.56)

For the materials belonging to the 32 out of the 90 crys-
tallographic point groups, the material property tensors are
(m) 7 (m) Almi
. — = O .
aw K. =6 (5.57)
since 2?? is an axial c-tensor, and @)fég ’ J and J. are
true i-tensors. Moreover, if the material is centrosymmetiric,

then all the i-tensors of odd order describing the properties
of the materials belonging to {5} also venish, That is,

C(n C’»"W A8l /%/e) - ) /2/5/

LM T MM T KL K
Ale) ~ () ANTY, (5.58)
= 'ém.»—/ = 6;&_,«4" 6‘ = O

in addition to (5.57). Therefore, the comstitutive equations
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for the classical crystals now become
(6) 2 (ed ) _

2im)

4“—‘ ﬁ? (f,::)_ /9 24k ~Emn % ke Mt %o,k )?éf,L

A

_ Syt 1 x (P)
o Hy TP (ZKI_ My %+ 55 G Fm 2 2 )

_ Py A AN
{U—' 7 (Q(LM/\/ EMA/ + [)KLMN Zyn ) (5.59)
2 (es) 5%
+ (2o, + P{' ( )5} X4 ¥e +Co Gy lly
2 (p) 8
L/é.':..-— (/(KL./'? '*ﬁ"oz”a /(/fz. ?{)Z&KX/@L

2(p)

Afg)
T = (5«/‘3 -+ /—ﬁ 5i¢j,g)%@z’%¢. .

The constitutive equations derived by Tiersten 57, Mindlin
/87, Wong and Grindlay /787, Pao and Yeh [13/, and Hutter and
Pao [14] are the special cases of (5.59), except the terms
~associated with the polarization or maghetization gradient there-

later, we will further reduce the constitutive equations

to the case of 1sotrqpioﬁmaterials. 

Thus, the equations obtained from thawbas;c principles and
the constitutive equations presented in this chapter together.

. with the boundary conditions must be solved simultaneously for

. prescribed initial conditions. For aaparticula: maferial, first
the nonvanishing components of the material property tensors qf
the interacting phenomena are to be determined,
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~uration to the present.one is assumed to be a state of infini-
tesimal fields superimposed on a rigid body moction. Electro~ |

CHAPTER 6

DECOMPOSITION OF THE GOVERNING EQUATIONS

The dynamic eQuaxiens of the magnetowelsctfo thermo-
viscoelastic solids as given in the previous two chapters are

‘highly nonlinear and complicated. Apart from the usual nonlin-

earities due to finite deformation, there emerge difficulties
coming from the Maxwell -~ equations. Another difficulty con-
cerns the boundary conditions that are expressed in deformed
configuration which is not known a priori, o

To render the equations amenable to analyaia, the case of

" infinitesimal strains is,cgnsidered in this chapter.

6.1. Fundamental Assumgtions

The total deformation of the body from its initial config-

magnetic and thermal fields are not aasumed to be small in the
course of this rigiad body motion, but. their corrections due to
the strains and the tima rate of strains are assumed to be

small. In other words, the rigid,body motion, if any, 13 assumed

o to have a dominant effect on the. magnitndas of the electromagv‘
! jnetic and thermal fields. T | ‘ "”)
- “Let the particlea of the body in its 1nit1al configuratiOny
B,  be ldentified by the coordinates ,X , Pig.6.1. Through
' a rigld body motion, the body occupies an 1ntermediate confis~‘~}
uration B, with coerdinates X v Finally, the body is de-

. formed and occupies the present eonfiguration Be ' with coor-A‘
VL dinates % . Thus the body is brought to the reference oonfig-~

Wyuration from the initial configuration through a rigid body

motian

XH) = Xe (%{,‘-‘é) E Xe mz o | (6.1)

where ‘?C:EE is the region occupied by the body in Be .

Further the body is brought to the present configuration from =



the reference configuration through an infinitesimal motion

2= (X)), xe VT (6.2)

where V_-( is the region occupied by the body in B .

.I;”'//d[ ‘

Fig.6.1 Initial, Rigid Body (Reference) and Present Configura-
tion of Interacting Continua.

There are physical situations which do suggest a natural
definition of the rigid body position of the deformed body. If,
for example, the total displacements remain small in the course
of motion, then the fields may be decomposed such that electro-
magnetic quantities are evaluated in a process of vanishing;/‘
displacements plus corrections which are determined by a linear
theory of deformations. This is the case for @ polarizable and
magnetizable body being supported such that it is in static
equilibrium and stable. ' |

Another situation occurs when large displacements are al-
lowed, the major part of which is composed of a rigid body
translation and rotation. In this case a displaced rigid body
- position may be suitably defined at least asymptotically in
time. | R

Through the motions (6.1) and (6.2), the total displace-
ment &  of the particle is

,{2—"37‘*5‘ = (4-X ) »u« (6.3)

where 4  1is being the displacement vector of the rigid body
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motion. At this stage we are only interested in relative dis-
placement &« from the rigid body state to the present config;
uration as defined by

U (2,4)= % G- Xk 5 4 ot)= 4 X Sug . (6.4)
Assumption-1: Displacement gradtents are small, i.e;, |

norm (%—I—% ) = norm (U, ) << 1 (6.5)
where the norm introduced may conveniently be defined as

2- - ‘
(narm(u,elﬁ(f))) = ?{/énf Swp Ut (B) Ugy(T) .

This assumption does not suffice to furnish a theory lin-
ear in the displacement, Smallness of the‘diﬁplacement grad-
ients of « does not guarantee smallneas of its material
time derivative.

Assumption-2:The velocities of the particles are assumed to be
small compared to a characteristic wave speed ¢ in the
strained body, i.e., |

D/Z{ _ P .' . ‘ %
Gf norm [d-{-L 3 -5:/?0/*/)’) (Gxt)) << & . (6.6)

Next, all the field variables in the present configura-
tion are decomposed into two groups:

= Bk+f 3 M= s mi
o= 0+0" 'y Fe=Fchkree (o)
'.‘/k:"‘"" /{K&K-ﬁb@‘

"“‘1:

head bar and those in +the second group by either a prime or
lowqr case letter. The first group is 1dent1fied with the fields
of the body in its rigid body configuration and is called the
"rigid body state". The second group stands for the "perturban
tion state® and is the correctioms to account‘for the effect of
deformation. :

Assumption~3 The independent and dependent variables, their
space and time derivatives in the perturbation state are small
in magnitude when compared with those in the rigid body state,
i.e,, ' : :

7:—: f7-+7[ i‘é‘éé{a ”Z;A f/g_—;‘ékf , J

. '
' . L :1 LY PR vt
i Lo i I 4

“where the elementa ih the first group are 1ndiaated by an over~



norm (%) , 00/‘/)7(%) 3 Oorm(E—-_%f' ),....,4(1;“ : .(6.‘8)
Hence, all the terms of the products of the two quantities in
the perturbation state compared to the terms in the rigid bvody:
state will be neglected.

All derivatives with respeect to the present configuration
can be expressed in terms of those of the reference configura-
tion. The following differentiable functiom (- ) show this
obviously. |

_@.{.'_)—_?_i’_l__a_{(f: '._QMK al- ) 6
27“: BXK '37(1, (J;/( '“‘—axd )-—a-—)‘-’—; ( 09)

where (6.4) is used. For example, if (. )= (, , it follows
from (6.4) and (6.9) that

Ug,. = JL'-/_ Uil = (f[,,__ Uk, L. (6.10)
A4+ UnNn,N '
where quadratic and bigher terms of displacement gradients are
assumed to be small compared to unity. Substituting (6.10) into
(6.9) one writes

20 ) ~ . - Uk al-) (6.11)
Sl (bex - dr XL A Xk -

From (6.4), the velocity and the acceleraxion of a parti~
cal are, respectively, -

e i
’},2 = %L XKJ‘Q/( -"'“k = /(T gé/( + ot + Y XK (6.»12)‘

4

v and : 2%
N a= A _ 2 | ok 2k, Xe Kty + (66 #5) e
‘ At gt at
‘ | | (6.13)
. e Xk ”
where Xg = at = ot

For infinitesimal strains, the solution of (4.10) is
given by |

/:f* (12~ Uek ) (6.14)

where /£ 1is the mass density in the rigid body state or in
the initial configuration.

11



The deformation gradient in terms of the disvlacement
field is

iy,
aXk

Xty = Slr,/( + = 5742,( +F UL - (6,15)

Prom (6.5) and (6.15), it is clear that
Kbty = Jék &’z_ 7‘dj%K ey + 05’2_ Utk - (6.16)
Thus, the finite strain tensor reduces to

EKLz C’ZK/_ = i“ (at/L ﬂ"'u[.,/( ) (6017)

where €., i® called the infinitesimal strain tensor.
Using (6.14) and (6.11), Bqg.(4.14) takes the form

P‘ ;{:Z‘ — fKJ_)K "‘/0]{2‘ + fLI,K [’{L,K = O (6"18)

where vy 1is given by (6.12). The term figx Ue, ik will be
retained until the constitutive eguations are explieitly known.

6.2. Decompositions of the Energy BEquations and the Entropy

Inequality

The energy eguation (4.28) and the entropy inequality (4.31)
or their combination (4.3%6) are decomposed using the assumptiionsa
given in the previous section. Let % and Jx be the entropy
and the energy flux associated with the rigid body state of the
body at temperature 7 . The body is initially at an ambient
temperature 7. After it has been polarized, magnetized and
heated by the current and other sources, it changes from 7 %o

7. The actual change of temperature, including polarization,
magnetization and deformation effects, is 7~ 7 , where 7
is the temperature in the present configuration, i.s.,

~

T T = (T )r(r 7) cx  0=0+0"  (6.19)

and
7‘_:/;7_ << 4 3 T >0 . (6.20)

By means of (4.35) and (5.31), the energy equation (4.28)
. can be expressed as
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PO = ol Ay + Cutie + 2 &spathle Ze) s foé 746:21)
&
where (5.24) and (2.27) are used.
Boting that (w)f[ég - /‘De —-/w Mé ;2/(] =0 and Ly =-4p
(6.21) reduces to |

pE7 =ote Y- & - 7% - | (6.22)

According to Killing®s theorem, the necessary and sufficient con-
dition for the rigid motion is d/¢y =0. If this holds “through
a region of the body, (6.22) becomes

97 Z:K +P 5 . : (6.23)

By neans of (6‘.12),‘0113 cen express di¢ 8s
et = 5 [(%%%L il K Vo + (\%%""‘ * L e X‘ Ve ] -(6:24)

Substituting (6.24) into (6.22) and using the symmetry of the
dissipative part of the stress, there follows

1

-

7 Lo 9%/()72 +89 ]= @fﬂ_ (3L + i X ) -
/ (6,25)
%'¢4'5F JQWF - ch-—“@é ?ba ﬂva / uwk a) o

‘" where (A){A’A- is the value of (w"ffl in the rigid body state. |

Similarly, from (4 31), one decamposes 'bhe entropy inequal—

;wity as j - ‘ o i ‘
ﬁ?’g’)—%y ?/c),,(#;’—/?/;’" C (6.26)

" in the rigid body state,

/p(’z “LK"Z ); ( ),m '*{ ?K);/("‘“"/L(——— )ﬁk |
o+ F - [g U (4———)]

in tPe perturbation state.

(6.27)



6.3. Decomposition of the Maxwell = Egquations

The Maxwell equafions stated in the present configuration’
are now transformed to the reference configuration., Substituting

(6.11) into Eqs.(5.2-4), the Maxwell equations in the rigid
body state are obtained as '

—

— 8// 3= (m)
E L= .
€KL “ LK "'/“" o¢ v
- 3£, =6 FLp) - '
Erne M- = = I+ : ' (6.28)

where /5 - . —
\];m - -%?& s /,:%/_ X, - a‘- K
T= 25 e Ao K el (6.29)

The Maxwell .. equations in terms of potentials are similarly
decomposed. Upon substituting

P 5(»)_/_44?(») ;P 5:;; ) gptm)

_ (6.30)
A0 _ g(”:_*;g(») . A= 6('?'§),+(2/n1
" into (3.41-44), there follows
= zw 94% = (m)
.EKFT-" sk = - gj‘ Ekrn Aﬂm o
5?: Z, ( (6.31)
7o , P m) Alml ‘
”K=/‘;; Exrtry Anw "‘?m - %—-g
and = T (p) = (f) - T (m) =
= #r) . Lo miml
OfT=-zG%pr) s D772 p
(6.32)

o wfle) # 52(p) 75 owim) \ ';"(m)
A = Tie J7) y DAY <~ &J]
where the potentials satisfy the Lorentz condition
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J (p) / _3_? @) —(m) __é

and the operator /7 1is the D'Alembert operator evaluated in
the rigid body state, i.e.,
— 22 2 He X

=97 Toxgs T 2~ i

In view of (B.5) and (B.11), the boundary conditions
(5.6)4 5 and (5.7) now become
’

e+ BN =0 sl et G =0 on Stt)
(6.35)

L& JPhr= 0 [ 7 Wer=0 . on It

where
EZ. = EIVQ é‘IKLXK/qL ; ZI: /‘é—-@éld‘ XK‘ EL‘ (6-36)

Phe Maxwell . stress tensor (3.64) and the electromagnetic
body force (3.56) in the rigid body state are now

Cy= & By pu e A Wiy + RE s, (6.3T)
and )
( 7] :
/0;3 T Trn -2 Ere = (EH)
F# = = . o
| = FWE +/“ €L g Hot R Erx + fa Ml HEk
K & jomnd
b Sy (R P & B (BB -0, ]
where

In vacuum, B =0 and Myx= O, therefore (6.37) becomes the
Maxwell . stress tensor
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that is, the first part of decomposed ¢° defined by (3.65).
From (3.67), it is clear that '

——

7% R & 1q Ao U }[L'.I | (6.41)

Eqs.(6.28,31,32,35,37,38) are in agreement with those of
the rigid body electrodynamics, e.g. (/41/, Ch.9). These equa-
tions governing the rigid body state are still nonlinear, but
simpler in the form compared to the original equations. However,
if the rigid body body motion is prescribed they become linear,
which would not be the case if the decompesition had not been
made,

In Eq.(6.28), the velocity at any point X can be express-
ed in terms of the veloecity of the centre of mass X and the
angular velocity -2 of the rigid body. These two kinematical
quantities are govermed by the Euler equations given in the
next section.

Observing the restrictions coming from (6.5,6) and using
(6.11), the Maxwell equations, boundary conditions, Maxwell
streass tensor and the body foree in the perturbation state are
obtained. From (3.29), omitting the intermediate caleulations,
one writes

;(m) s
€rrk KJ“DM‘*"'”” /z+ Uk, €E zomw Emk

et

Errk Pry -6 :2‘_3{1‘— °/, 4 J * e Ero Hosk (6.42)

1) ’(p) i =
éo‘-ﬁg/K -‘;/QF -+ /p v & Uk, ELJK

,/Q‘ aK/Z.. /744'/K

tm)

Mo hg, k= F

where
‘P 5 = . = ,
d_[z_z af- ‘*?.Z‘,(‘/Y/( /DLLX.{. (@u&“’%“I)gK

+ i, (2 .Z“";.)Z‘KXL) : )
6.4%

—

'(Iﬂ) » . . A - . ®
/r = %g?{”f*f/“? M,k Kk S0 M, Kp 2o (Mrtic =M gtz ), ¢

+ ‘/‘f;l-/"‘o (’:Z'-,K Xp — Mrx Xz_)

“wp)

f)

- _
= Pk UL R 5 PR cmempk e Ui MLk
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with

- _ 9“[ _ X . ’ 6.4
T = _a'—i'—*u"‘*’( K R (6.44)

The perturbed electromagnetic fields 1n termsaf potentials
are obtained as Co

(e) _2_41(”) o L = fm)
r=-tf= S - 2t G AL ton D~ enrtux AL

e (6. 45)
re) L/(m _ gam Fom) ©

/7_[ —/';:oe..ZKL 'é?_—' -+ 6((,1’ K "‘/“;‘ é-IKL (/N‘ AL’N

When Eq.(6.45) is substituted into (6.42), the Maxwell's equa-
tions now bhecome

= fple) f(f) r(,o) >
U@ “"‘”"{/o )+ ‘2¢KL L

| ! KL Fooomh
i : [j(P('Ml ; P Y- T (m) ‘ ‘
3 | == /ao + @(L‘,‘ 2y KL
3 ‘ (t‘} i A
() (p) e)
05? :-::/LW(J /1_ )-/'-2(2/(L AIKL. .
6.
(m) *(m) e Z (m) ( 47%)
| 0 = -—v‘éa‘ /.Z’ xa 'ZZK'L I KL ‘
- where “bhe potantiala aatiafy ths L@renta eonditian
e _‘_L»GC/’”ﬁ A(e)4 | | Lt
m: + cz 9{. = Acz. z_,/< } r oA
(//‘M/ L | (6Q48) !
P a KJ C‘L af )L -

The boundary eonditions in the perturbation state are

L 66 (f i NN..&E 5 u I, =0
w‘: - /[ s+ B+ (®EL+ B ) a NNy — 6 Eg =, A:} xdj/zonv(ﬂw 19)

[/)[fﬂ?z '1"(”1 +MI) Z/(L/)IK/V - ([./( +M/()u.z/,< ]/NI#D

“l-

/['5:* 5: é?w /QKN*.
/[}[ ;7{ E, Kiku *W”Lr]/fr'*a

< L ‘  foos T ;

42.']//(1:“‘0 } on (6. 50)



€1 +t0 Ex5x Uﬂré& ‘*',é'}'j" Hy )

e,
—

(6.51)
Ar — & Ezyx CX Ec + ‘715& )

The Maxwell's stress tensor and the bedy force are, res-
pectively,

T = (&Ez" E )ej; +/a(/§.+@)ﬁj + € eI*P)E}

(6 52)
-r/uo (hr +my )// ~W;IJ“1/‘° J/(L{XK

L.

+H P& (Mre +E, mx)J+4K(§/?;»'éo%f)}

and

/(em

o — o5 p

z /55’1‘7‘/0 f 'C/“GUK[J AK-;-J K*dLL(/D/‘/x;
_éo@ E/C):]“a" e-Z}K >

x *+ & EI,K +/««>(/71,/c My + g @3/&:)
+ M €17k {XJ (’Z/)v /wa + By ﬁm«).. € X

(M e =
N K;N"f'mﬁfKﬂ)

af
5/‘¢Z

_om
ot Kf JEK) XN(P;N#K—#AK ]/V)
“"éa)(/{(

v Ex + &(/%w )+ by (He B J‘N*EK/%N)}
-~ U {/9

Frp tho W AL s [((B ) 48)d
TG e
+Ea((/v,,+m,¢)xj+u /l/,‘/)g?ﬁ(l:._7A (('

v L ‘?‘“J'L)XN-;/-.{{N}?_L f';;’
+ o B )i + & Az + Mo )3, 40
where -

Mpr+thy, i, )E ]} o

W= & £xex + b by . | (6.54)
In vacuum, P -0y P=0 x‘? 0 and M= are .'sub,stituded
in (6. 52), from which one obtains
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G,y = & (E; Cr +E€; E})vwa"’; 5f*”3;@)— W'JH-(G.SE’)”

The advantage of decompositioﬁ‘ is that the equations gov-
erning the perturbed quantities are now 1inaar, provided that
the rigid body variables are known, ; ‘

6.4. Kinetic Equations for the Rigid Body Motion

Our aim now is to give only a brief account of the basic
concepts of rigid body mechanies when the body is in the electro-
magnetic fields, 2

To describe the motion of a rigid body under extemal
forces and torques, two systems of coordinates are used: a
“fixed" system X X,X; , and a ™noving" system Y Y,); which
is supposed to be rigidly fixed in the bedy Fig.S 2, The origin
o;t‘ the moving system may mnveniently be taken to coinecide .

. with the centre of mass of the body G. The pasition of the

’.,

Fig.é 2 Rigid ~Body Motion,

body with respeot to the systen X,}(,, X is xegmpletely deter~ ;,
mined 1f the position of the mav:l.ng syatem :La speciried. Let‘kmg

| the origin G of the moving system have the radius vector X
the orientation of the axes of that system relative to the :f.‘ix- |

ad aystem is given by three independent a.nglea which together
with the three components of the vector X make six coordi-— ;‘
nates. Thus a rigid body is a mechanical system with six de~
grees of freedom. ‘



|
!

1
iy

"the centre of mass is obtained throngh

Let Y ©be the radius vector of an arbitrary point P in
the moving system and ‘X the radius vector of the same point
in the fixed system, Fig.6.2. Then the infinitesimal displace-
ment oX of P contains a displacement /X , equal to that of
the centre of'mass, and a displacement d@ﬁx Y relative to
the centre of mass resulting from a rotaxion through an infini-
tesimal angle ol;b , L.e.,

»

Thus, the velocity 25 of any point in the rigid body relative
to the fixed system is obtained from (6.56) as

Xe = Xg + €wem =2 Y (6.57)
where X is the velocity of the centre of mass of the body,

‘gometimes called the "tramslational velocity" and the vector

2. is the "angular velocity" Naturally, both the magnitude
and the direction of /2 may vary with time. ‘

Ead

The number of equations of motion must be six. They are ob-

‘tained from the principles of linear and angular momentums.

The total mass is defined by

; ) = / Aoy | (6.58)

concentrated at G.
The linear moment\m of a system of particlea is equal to !

the momentum of a particle of mass equal to 772 moving with

velocity X' . So that the equation of translational motion of

i

/0 X O/V = 7; Z(.ZK a/a + (e/n) . (6.59) ,;} | ’
At 7’/2‘ ors T f / ‘
Upon using (6.38), (6 58) and the Green-Gauss theorem, one ob-

tains ‘

' Iy / '—(7) ‘ ; - -
= (M) = % bog M = [t eren 2 A
or W-Z 1/?-2

. e

ﬁ/ﬁﬂ Z % (6.60)



where =y f(ﬁ
¢ = % N da = %ZK Ny dd.
. : -z =2

»7; = ézkl. /gz.(f //L)Q[\/

In Bq.(6.61), the surface integration isg gerformed on a material
surface just inside the boundary of the body and the boundary
Veonditibn (4.15) is used. L

The angular momentum of the particle about the fixed owi-
gin is as follows: | |

(6.61)

{m}

__Q_ﬁ__/éIJK)(JfXKJV—' ézr/c fz./(/‘/z-é/dv‘ﬁ”(éﬂ)&?[ (6.62).

| d‘{' Z 2’ O/Z 'f"Z_Z‘ )dv o
Substituting (6.38) into (6.62) and using
% G = % Zr ) o = Co (6.63)
.there follows )
| . z# gV 7 &
c#‘/éfff)g/ x oV = agﬂ—faé.-ﬁ VZ_Z’ (6.64)
ez , :
where _ o)
égf? = j%/édvk A ti« AZ‘“Q‘“\}é 677K'Z%K‘AZ‘&L
/ /éIJK ExLM J’?(f #N )G/V Z"‘/ﬁ’/ C:szuz) /V
ﬁ Vs , Tz

.“Eq (6. 65) is called the intrinsic toriue acting on the body,
and %Pa to Eqs. (3. 62 66) and (6 41) it is easily seen that

Hd L .
In order to establish the angular momentum about G, one

substitutes X= Y  and X=A£2xY into (6. 64) and (6. 65)
Thus, the left hand side of (6.64) is

Q//éff:( /$€/CLM "‘Qj, y/b/ V” //F(yf()/( Iy~ yr)f;-) $4~w7/v'
gz 4L
= H(EY)

(6.66)



so that the equation of rotational motion becomes
¥ s
o 7 7
= (Lk R4 ) = OZL +Z. (6.67)

wvhere

V L= [P L) =5 i 05) R

Bgs.(6.60) and (6.67) are the well known Euler's equations
of motions. These equations are the same, in form, as those of
Hutter and Pac's ( /14/,p.103), eventhough different formula—
tions of electrcdynamics have been used. However, tgfz in the
Chu formulation vanishes that of the Amperian formulation does
not. | |

The Maxwell equations (6 28) and the Euler  equations
of motions (6.64,67) are to be solved simultaneously. However,
the number of egquations is not sufficient; therefore, the cons-
titutive equations associated with the rigid body electrodynam-
ics are needed, '

6.5, Decompositions of the Constitutive Equations

f The constitutive equations for emtropy, eleetric and mag-
netic fields, stress, electric current and heat flux vectors
‘for linear anisotropic materiala have been obtained in Chapter
’ 5. Eventhough at most" second order terms are retained in the
f-polynomial approximation, the constitntive equations still con~ .
' tain kinematic nonlinearity. : |
In this section, the eonstitutive equations are aeparated
‘into two groups, namely ‘the constitutive equations in the rigid
bady state and those in the perturbation atate. :
Upon using (6.14,15), one decomposes Eq. (5. 45), as

- (p5) (mg) __
_5"s - # (5% B + 57 i o (6.69)
and . f8) “res) o, ' 2D(pp) ~ _—
= $ 5 e, __[_51. [58/(a+Eu B vui B )

2(mp) ~ — vi
L5 (g n B ek )]

Taking into account (6.14,15) in Eq.(5.46),, one obtains
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2¢p) 5
Ee=24 P

(P”’) — 1/>6’) -
* Z K g

(6.71)

(pm) — 20m) 2 (mB) .
- fKuA/XH (ZI_N 7+ NL ML"'ZN )
and
(P) (pm) (M) 6 & (m)
lep) {em ‘
{Z e ) tp} ~ o
(,%) (6.72)
-+ Ess j (,om)
MY NP )jp + mppy"‘ gKLNX (JW Wb
’\(ou
(P&
& ] ownp J ), + (Z Iep ~ € X, 2 & bon )3 J
2 (p8) hw
* Upg -r(Z = €y x,,Z ’)9/
| S pm) 5 2 ¢ } 7 2(ms) -
where | | |
-—’}(/?) _ "’(P) = (p) =) - !
___\,@p,,“‘ K P/v * jxp —/-Z/w "’CDCP ‘

@Np
i
L= Mo =

B
-~ kapm T

- (m)

| ——‘ GMIP.

& (pm) (pm) /’P/’U (pmj ;
R Z@ ~»+Z S+ 2oy g

L= 4w~p

i
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“ug Inp T aw dx’w

|

2(/’01} ‘ //‘m) /pm) ]
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(m) A Im) fm)‘ _
2 S 23 0;,4.,2,,@
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M ,vp ’7" g d;,,,

In @ similar manner, from (5.46)2, one obtains
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y Lop) Dpm) —  Z(pp) (6.74)
7"5!1- éKNA/XM( W P+ 2 L My +2 ‘9)

and |
(prm) P) A {m
/uo/)/(—-(z,__&, -f-—“CmN MZ )P—f( ”
‘1' - € Ketw X lem} )/}’) + {if%) )i 2 (ep)

PAK ’*‘C’Z LN

“(pm) 2 (p) 2 0p) -
* :(cvmv oz Ew/X (1 +<l’%az )]'94
- 6.7

G’M’VP PMNP (6.75)
= (pm) (pm)
[ xgp 7 C Een ks ( omwp T eés Z@MNP )]MM
) ("‘9) , . (r6)
P g I s
(m&) °, (P@}
where -+ Z (Pm “ Z(PM )
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2.4p) 2 (p) (P (P)
j@wp-’ am N/”‘Z o +2. wot %2
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Using (6.14,15) in Eq.(5.55)l, one gets
_ CLP) g ()f Lm) —_ _
=(¢ «dor ) Bt ( Ly 2o e o )y (6.77)

(») ‘__ "/j) —~
+ [ KLM ’9)/‘/

and
; 2 p) A . (m)
g = (ka + Ex by )B,+(C,<w +/4w Kgm)/n,v+e P
~, o /d) AV A(?) —
—f/éco/')KML+[_KLp47 +5 KLPY at *JKLQNP//?
()
| ,9, atgy  (6.78)
) !
KLON P N + (J@pr "XD@ ) d+ (qu,,pK
(}) "/D‘} ) o
- Curm ‘YD@ ) H]“P{P “fck/_ ‘9/7‘ 5:5:/ 9»/
tEonn by (o B L B g )
where
Alp) (p) A (p) o
‘3 P
Y kLaNp = CKL@ ~Np -t C/({DN JLP + —C-QLN ‘5;/3
3(”” = ™ 5 P ) (6.79)
Mheanp T ZKkLg CMp T “ron A;p + C@w cfgp o
ﬁ!e} "/9) C\/a) B
VoLkp = opL_ KP + (SL,O
j.{gl P C’é/
Y @rupr = Yaum PA’ * K‘M

:and?

Ay .

EX = e tho € Ko hm 3 fe= he-Coruy X €y - (6.80)

One can similarly decompose the constitutive equations for, et

for the conduction current and the heat flux vectors. From
(5. 55)2 it follows that

' ~ A A - Nlo)

- LW & (ml = KW@+KW@<

JK== Kew 2 + K, M+ kL YL

ki (6.81)

and
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(6.83)
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7 (1) _ L@ D
_/_(ML JKN = /(m JKN ""’/(/\2 éw
From (5.55)3,‘ one writes
) ( ) S (9) _ 6.8
5. =GN B 60 695,685
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. a2 (p) 2w /e) ) 3
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| 2 () A f/’J
6 ’ 5@/ = 5 agw + 0Q»/
n) 2m)
gm_ A/KA/ = ML 5{/\/ -+ [KH 51./\/ L SR
(6) ) L (6.86)
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L) 2 eg)
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Eqs.(6.81) and (6.84) stand for Ohm's law of electric con-
duction and Fourier's law of heat conduction in rigid body state.
The Maxwell's equations (6.28), the Euler equations of
motions (6.64,67) together with the constitutive equations (6.81,
84) are sufficient for the solutions of the variables in the
rigid body state. |

6.6, Constitutive Equations for Special Symmetries

In the previous section, the constitutive equations have
been decomposed into two groups without considering the symmetry
of the materials. For these materials if either (5.43) and (5.57)
or (5.44) and (5.58) are satisfied and/or the materials are
isotropic, then the constitutive equations become simpler and
the certain interaction phenomena disappear.

Imposing the restrictions coming from (5.43,44) and (5.57,

- 58) onto (6.69-86), one obtains the decomposed constitutive eque-
. tions for the centirosymmetric materials without ‘magnetic symmetry.
The constitutive equations are

_ 8)
72‘2/\ ‘9 (m)

- < w B v
: ::ZKL /:1?." éKMNXHZ’""" ML

K
Lo = WL
=2 M+ G Eqan X 2t N
- = - ~E - | (6.87)
KL= <7 ‘V“’ﬂﬂ’MI—’f”Qﬁg | |
gl ) ‘-r‘ A/;} .
Ji = /KLIQ.’f /(KL B,
A o PAN -
— P 2/
?ku: é;KL ﬁi'* é;KL QL.
in the rigid body state, and
j(p} p A/eﬁ) é\_
KL- KL
y (r S (m) 5 (p) B A
C‘?K;: KLP — ExMN XMZNL M+ Z/w/w — G Al 4,

N (m  Lim) —
-+ Cz.ss GHNP )MM] u/’é? - é/(LA/ Uy Lypy Mu
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(P)
/ao/)(—— -—’Z EXMN XH Z KL /72/_ + [cg_ éfazv;( ( Q,Wp

= (p) ofm)
+ &s ZQMA/P )9/ + Skopar Mﬂf .7”135?

. Z(p)
-+ -—-,% Enrn e ZN»/ 7

A(V) P Ale) ‘,Mv
[f:pqv‘ KLPY JF (szucp I{L:gp& )5)“/3@

(6.88)
A 1)

— ~y —_
+ Lkl 9 et 8,< Z +/D,AK ML
+ Exrnt U w/??«/i*c—;:f—"m% )
| Qe = oW o= 2
j/(:’ A L 2+ ( L D+ ,/i(:m_ VQ)L)L{KJM -+ A/ kL Bi.

r;)

/(- 6/?2 A+ (GML L 5 ,1_ )UKH‘*é'

in the perturbation state. These constitutive equations are in
agreement partially with those of Hutter and Pao's /14/. Thus,

| some of the 1nteractions, such as piezoelectricity, pyroelectri~-

| _city. piezomagnetism; etc. disappear in (6.87) and (6.88). e
‘ Now, making use. o:f:‘ the result that all’ the even order mate-—
“rial property tengors are expressed in- terms o;f the Kronekar i

) "deltas, the constitutive equationa above are ﬁu"thal‘ Simplified

,[75]. Thus, one has

b .

A(e)

CKLMA/ =4 J:(LJMA/* /Jm&/fd’k/vjw)’*c/éwjm Sen dut )
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KLM
& (9) p (e&) A . oo (6. 89)
) = ; ) Z éz 5/(4, s K = ,:P D(A:’Z..
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From (6.89) and (6.87,88), there follows that

" (6.50)

in the rigid body state, and
’ A / A e
?—::C;B-f%e«

b
st
4

g(-_—_—c; [ A+ (é’:/»/a(;“z.v‘i"?}:_)/{ ]
- CA; ExLN {XL Ly + (S "E*'(‘/ # 28y ) Py _7 s

eohk= o [me+ (Ewm bk +28k )i, ]
A Y, ~ ~ -, e t—
+ 4 éKM{XL ['/.i/ + (Eep 5;/,4_/ -:‘Zalvu)e,,]'ﬁ“z_’?\/
¢ | T (6.91)
e s Ay - Y e b
b= Ex B ppo e+ G B pha N ML
N A : ~~ "’\ sy 8 ~
(G +65) Cun b + 2 (6+E 5 )
+ & (8 S +B UL )+ Ecrn U (o = 35 Exyrl)
dh = C} (PK*«ZaxL /5;_ ) + f_'q (5:/( 7 UKL é;cm- gz.z. 9:-()
- / oy “~
?‘{( = c’;o (Fe+ 2aeL B )+ Sn ( Bk » Ui by ~ €rs Bk )
in the perturbation state. Using (6.90)2’3 and (6.91)293 in

(6.90)4»and (6;91)4, one obtains
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ba=0B 5 4 &k + 8 F b

and
/ = = ~ P —
th G (RA+A R+ G BB +28m R )

+ G (Fey + Pk M+ Loy FeH +2 Z ey Pl 7, )
~ o 57 1 (6.92)
4 6 /9’J}L-f-26uz_9)—55'9 €um kL :
‘4
+(C/7"C/ i.)ZM*/ ;A’L -fz(c.z'fg )@KL .

It should be noted that 'é[k1]==0, but ﬁ;n]fQJ. Moreover,
from (6.91), even infinitesimal deformation causes anisotropy
eventhough the material is initially isotropic.

The special cases of the present governing equations are
‘discussed in the next chapter.
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CHAPIER 7

SPECIAL CASES

Chaptera 2-5 have provided a dynamié:theo:y for‘magneto~
electro thermo-viscoelastic solids having thermal and electric-
al conductivity. It has been observed that the governing equa-
tions are highly nonlinear and very complicated. Later, in
Chapter 6, we proposed a linearization process by decomposing
the governing equations into two groups which are simpler than
the original ones, but they still contain kinematic nonlinearity,
On the other hand, in a specific¢ problem, some of the consider-
ed Variables'may not occur, or they may have certain properties.
~In the following special cases, the governing equations can fur-
ther be simplified° :

i) Deformable material constrained from rigid body motions

( X=o0 ),
ii) Thermally and electrically nonconductive materials (JZ
g2=0),

T111) Omitting certain terms due to deformations (Certain
terms in the perturbation state, such as ﬁk'u@L , MUk, L
are negligible compared to A , Mk respectively), o
iv) Quasi static electric field system ( M=0, ﬁﬂzsxj Yy
v) Quasi static magnetic field system ( P~ s‘r%¥;=%>)é
vi) Pure thermo-viscoelasticity ( AP=0, M=0 ). |
In this chapter, the cases (1—vi) are discussed and an alterna-
tive deeomposition is proposed

7.1. Material Constrained from Rigid Body Motions

If the material is constrained from the rigid‘body motions,
one obtains the associated governing equations by substituting
X =0 . From Egs.(6,12) and (6.13), there follows

. oUk
Vp == Up = oF -
QU Yy
and o 2% v = 2 ' (7.1)
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The energy equation. in the rigid body state and the emtropy
inequality remain unchanged; however, the former changes in the
perturbation state. From (6.26), one obtains

>
f?[?@-—gt%gx‘)? +é97 _7 = L‘QWL + ék

#1
+ “7&7( — UL G +L% .

(7.2)

It follows from (6.29) and (6. 32-35) that there is no ap-
parent change in the form of the Maxwell & equations, but the
current source terms in (6.30)1 o NOW become

. ?

(P _ 52 = (m)} Bue Mic :
T = s = S : (7.3)

The boundary conditions (6.36) is the same, but (6.37) turns
into | ‘

AZ~£§I;ZCK3‘== o 3 42-22%_chr== C)" . ! (7.4)‘

From Egs. (6 39,40), the Maxwell - stress tensor and the electro—
magnetic body force now change to

ZK/.."‘ (GDEK"*PK)EL-*/“"(#K*MK)// WJ(L (7.5)
-and o _ y
| M FHE s B ExL ¢ ’VL""K,L o
/Df “ 4 - (7.6)
+/ao Ecm [_(J}_-;f(’ )//,/ @c J‘ ;gﬁj
‘respectively. : o Y o

, It is now observed that the form of the Haxwell equatians TT":
: in 'the perturbation state (6 44) and (6.47- 50) do not changa,‘_

but' the current source terms (6 45)1 2 reduce to

-w { 9P : aa ‘ | ’ | : A :
oo QAK‘ prwed K nf-(/z L-—”P aﬂ() [ LR e '
anda 9t ot~ LE He BRI

: U, QUL
S = %f;-— -»y‘w (MK 9 2 -, 5 ):1..
It can be seen 1mmediate1y that (6. 50) is satisfied if

a/

5i¢ == e&’ﬁb/“’éhyK 4;/4K

and . —-
N, <&
| Hy = /Zz*eﬂ Errk 4r Ck .

(7.8)



FProm Eqs.(6.52) and (6.53)

Cie = (e Ex 2 f Jew 4y (Fes )b+ Gt )R (4

-+/lo (/’(‘f'mk)/jz_"‘ W(JKL-

#) =

/0]{;__/0 e +/ £,4(-/7“0 GKLH[JW/)H#'J

—

+ll,.,,),u(P //M - é;MLE,,, )]-/- QKL R +R E.z,
o Arot My 4po Ml H L + M0 ExLy La, (B Auw
- &M, EM,A/)‘,de (/'/I, B, - E,, o n ) (7.10) -

Z oL 34, 8”9(_
a/7+9//—-€o( ey 2t £M)_7

= UL,n {'Z?I EK,L + Mo My i/(,;_ '1"/4(0 éKJ‘H [LZJ(/?:/ 'ZL,L

+éo/‘/ EM,L)-a‘- [UN L“"MNL J)//,«/ -rEa(HNM]L-/-U,vL J‘)‘EM}

I : ; o
i 4 : ; ‘ e

are found easily. : T
o Provided that X 0, the constitutive equations for the R
eleotric and magnetic fields and ‘the: stress tenaor become muqh M
Y" more simpler, hawever* those for the entrapy, the electric and” 5 ok

heat flux vectors do not alter. In this case, the constltutive 1_
‘ equations for' £, 4 Z ' in the rigia body and pertur- o

| bation atates are the. following.x L . R ]
~ Prom Egs. (6. 71,74,71) and (6.72, ‘75 78), one obtains PR

i | ) --« 2, ) L SN
| ‘ K - Z- (P -+ Z P 1..... 2(/’0) | | . ' 1‘: | i}

zz;w_* (CW s £ 51.»4) 6031 w#/(d’w)% (7;11)“,-;,

200) = AP é-
+ Lk 9 LM ToM
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and A A ~
(p) pm) ep) P —- {pm)
ZK_ZKL At Lxe MLt (ZPQK +dipem /2 ]
L

(p8)
+Zp &P ‘9)“3@ +ZP9)5 Cauni, (Z(PZ

L m) — 2(ms) g
M/v -/-Z ) :
(/:m) (m) D lem) S lm)
b= Z k B +2L ke ML+ (2 PoK -+ —Zp;(p}', %
& tm) 2 (ms) (”’9) | '
Jmpu "‘Z &p ‘9}”/’4’ "‘Z , R

"'E"‘ é,((_,\/al_ (Z(P) /Z); . Z(P”’)-- Z(N)g)

.

2 (p) (m} , ‘ —~
KL""( + Exdin )R, + (G w"‘“ﬂﬂ)”’w@&

: Afy) : A (m)
Ae) é’ = )

+/‘°/7KML_ +[ Ku:@ +VkPe 52T H R !.”P g/+~xL¢é;VPMN

(j(:) JKP KW“(P@) 8+ (‘J@m A;DK (}j [Pl?)é:»/]“:e

’*Cm.é‘f xu-/ 9:»1."“6"7‘4/‘/“”(/“’“4"/2‘5;_5»/”’1.) . T‘

The constitutive equations (7 13.) ,2 are equivalent to
those given by Dzyalashinskii [22] 1if the temperature change :i.s

. ignored,

one obtains WU Lo

= (P = et S
= R e = 4L ol }‘ o
! £K"" fKL. 'L.‘ ‘5} /‘G v» K 2’-::&. L- doel (7.13) o
v = Ex R -+ Ho Fic L"f".(.;mg iy |

Moreov“er, for the 32 out of the 90 magnetic crystals, the )
,  ' conﬁtitutive equations a.re further simplified. From (6 87 88)2_4 ,
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2 re) &l :7m)
iﬂ_ == eK +/‘¢0 hK ML + C,(/_pq + &’LPQ 'a__t.' "f"( QLKP

A16)
- sz_ OFPQ)B.]UP,@ * KL ‘9 + Expan Ay, (o By R L5z £4P)

and the remainings of (6.87,88) are the same.,
Some of the interactions disappear if the material is ’
isotropic. By inserting x‘=:CD into (6.90, 91)2 5 one obtains"

‘E/q = 6’4 ‘K H ’./“HK: C‘_,,- MK | (7. 15)

= & LA+ (Bwba » 220 ) |- cf. iy
| (7.16) o
/@/)( L [’W-f (eﬂn/ X(L + 'ZZKL )ML)-» = exmu z, C

 ‘and the remainings of (6 90 g1) are the same. Although the an-
| isotropy due to the rigid body motions in (7. 15} disappears,
", that due to the infinitelimal deformation and motion is retained.

7.2, Thermally and Electrically Noncondgg ive Materials b JF

fi . P
| If the material is thermally and electrically noneondue~lir ‘
tive, then the energy is dissipated only due to the viscosity = |

‘ ‘of the elastic material. Once it is assumed that =0 and =
'j 2 Eq,(5 35) reduces to . i e B

r P S . L
it Ly 1 A ! P ' : 4’ k

R w(»)fm EKL ‘} o I L

lv‘ I,

from which one . obtqiqs (5 53)1. Thus, the ccnstitutive equations f\;‘ﬁf}
 for the diaaipative part of the stress tensor does not change' - ‘
13 whether the material conducts electrigity and heaw or not.~\~"“\lW ; \ﬂ
| Subs*hituting Zx=0 and Je=0, and Ao into Eqs. (6,23,
26 28, 38) the energy, entropy inequality, Maxwell . equations “¢ihﬂ§
f and the eleetromaenetic body force in the rigid body state are ‘y:f;‘ }p
obtained. , i

" stmilarly, substituting ?x = _T,of"" o in the associated
. equations in the perturbation state, one obtains the governing 3
equations. The terms containing these. quantities in (6.25,27), Lo,
(6. 42)2 |30 (6 46)1 3 .and (6 53) are zero and the remaining B

|
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equations in the rigid body and 'perturbation states are the same.

The equations obtained in this section are further simpli-
fied when the material is constrained from the rigid body mo-
tions and/or it has certain special symmetries.,

? e Omitt.tng Certain Terms due to Deformation

So far, in writing the governing equationa one group of.
terms like /?< UL » Mg Uk o+ Exdxe , ete, are consistently‘
retained. Supposing that these terms are negligible compared to
the perturbed quantities like px , M« ', e« , ete. respec-
tively, the governing equations in the rigid body state remain
the same, although those in the perturbat’ion'state change con-
siderably. The equations of motion (6.17) now become |

p Uk = ik, . +/74< ) (7.18)

The energy equation (6.25) and the entropy inequality (6.27),
respectively, reduce to ‘

plEG+67%")= S &+ FOek -t 4P (7.19)
iand , .
P 2 /_gﬁ)’ i (5 7K)’/< +*/a (5" %‘" ) (7.20)
From Eq.(6.42), the Maxwell - equations are
€27k Cog e %—;’5 =t B o
€17k /M:J & “—z[ Jr(ﬁ LA (1.21)
€ €x,k “_/a";[/ /'60) ii /“’/7‘3 "/0’(’”) o |
wheré o |
| a/l,'(") —3—1;— -+ /:},x XK -/Z,L Xz + @KJ“K /< —‘9—%"

3&(;— '

£= %‘?*/‘” M X o Mun K g o S Sy EAN

rtm)

(P . e th M 4
f = =Pk 3 P = £ :



From (6.45), there follows

ce) oa @ (m)
er=-%z - o€ " ?Z Erct Fi,

(7.23)
7 (e) o Fat™
Az==/;;' Erkt e - Y7 - -52?
and if these are substituted into the Maxwell?@ equatiomns, one
obtains ’
=ple) # o 1 = /(M) ‘tm)
aY¥ _—_-.—é{-//"+/’ ) 5 0P :—-Lf’»"' |
(7.24)
() '
Daf = (14 j7) s Gar=-& /&
where the potentials satisfy the Lorentz condition
ce) ot ] (m) () ‘ ;

" Thus, the apparent inconsistency between the Maxwell's equations
in the rigid body state and those in the perturbation state dis-
appears.

Working through Eqs.(6.70,72,75,78,82,85), one now finds

() A fed) ay J
7/ Z" 8, :L eKL __ﬁ___ (Z(,;ZQ)K " Z,(:a mk)
"(N - ( ) A (m)
€x= ( 6’(/‘4"/ 4 )L_'f' ( (PI”) éKHA/X Z,w_ )m.é
(eo) . ( ) ne)y .
+(ZP£K_6<MXL “ )up,w(Z“eW 5l o

- e b (550 ZALZ’ Ay 2378
{ .
,Aob(-‘-‘-: (ZPI:)-;‘-J- GKMNX (P))L../_(Z(m)

| (pm) tem) . Qe
é(uy MZ " ) My + (Zpe:,(”f‘ ‘*';; EKWXLfZ) )an

2 ns) & (p8) _
+(Z 9+—"~ 6&44’ XLZ )6+ €xew (Zm 3

A‘pm) — » (?;26)
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‘f;‘ special cases of the, gﬁverning equaxions have been obtained- by

2P

Zz (ZTKLM * )/v-+ (Z:ZZM 4,Ao;?laébv )ﬁQq + @ R

Ate) A (v (6
,thk“”2_+'(zjkuwv -+ N JE ‘)é%wy 1,679 6’

/\[})

/ . = o
L tn + Cow i o P —% EuHL )

- Ate) ~tv) "
J(; (’)ﬁ_ +KKL mA-f(KK/,/M'/'KK/\/Mo%)QNM
A (e} 4
+ K/( , /el(l. ﬁ

{m)

2 (p) @) ‘ﬁd
?K""G ‘+5(Lml--+( M‘f"f'

KM‘{ 0;—[-) PNM

[./9) _/..6()9 )

When the special cases stated earlier are introduced into

' these expressions further simplifications are achieved. ol
2 The governing equations for the quasi 5tati¢ electric field G
e system are obtained by’ aubatituting M= p , an& ‘25 =0 inte y“fw
‘;_the assoeiaxed equatians in Chapter 6, The derivations and the ‘\ Vﬂl

/| Ersoy [7@7 v P - o ‘f“?
i [ IR
- In a similar mapner, the governing equatians for the quaai et e
static magnetic field system are obtained if P=0 | :and-w§f=oxf"jl

are substituted into the equations in Chapter 6, If the material\,”% .
considered does not possess the magnetic symmetry and the matarn“,uwF
ial ia mechanically nondiasipative (elastic, «EKL:C)), then the §
governing equations ara in agreement with thoae of Hutter and J;;
Pac [147. | o FET

. Morveover, if Fx =0 is substituted into the governing S
equations of the quasi static field system and the material is
asaumed to be isotropic, then the equations of magneto—thermp—
'hydro dynamics follow. ‘
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If P=o , /=0 , hence, £=0 , # =0 are substitut-
ed into the equations in the previous chapter, then the govern-
ing equations for pure thermo-viscoelasticity.are obtained and
these equations are in agreement with those of the Kelvin-Voigt
type thermo-viscoelastic solids /46, Ch.9/.

T.4. An Alternative Decomposition

the infinitesimal dynamic deformation has been superimposed on
the finite rigid body motions. In the decomposition all the rel-
evant terms have been retained and the special cases of these '
equations have been explained in the previous sections. The pro-
posed decomposition is appropriate for the effective rigid body
métions and the infinitesimal deformations of the interacting
continua. However, the linearization process, which'is an 1nfin~
itesimal dynamic deformation superimposed on.static finite de-
 formation, is appropriate for another class of problems and it
has been consistenly applied by Toupin [4/ and Tiersten /%7 to
their own theories. The aims of these two decompositions are
different from each other.
| We now assume that the body is constrained from the rigid
hody motions, £ = o , and all the quantities in the present
configuration are in the form

L P=L ) BUt) ) e Blge) R
R o (7.27)

"E =E )+ EQR) 5 H=Hix)+ b t)
= X+ d5t) » ete, |
and -
1‘ o norm (“:‘}é"‘" ) 3 /70/’/7? (;“’;‘/"‘) , nOfM(—f-f—)’,,‘,,.(<l,(7.28)‘

.

That is, the quantities with subseript zero at left are the pri#
- mary fields and the quantities with overhead tilde are the per=-
~ turbed fields. Thus, the product of the two perturbed fields ia
. assumed to be negligible.
Upon substituting (7.27) into Egs.(5.1-7) and using (7.28)
and ‘
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) . |
= (b - 6. 9(4’< ) ig(i( ;'/’:.‘f (1- “&K ) (1. 28]
one obtains '
oza:?K:= 5 €kur fﬁv =
¥ y PTI |
Ty e ~dRK 1 =05 G e g £ 20 (g 50
Can Emp =0 3 Ceun Fus =T ‘
] é},K"— é‘_f" /’/ ﬁ‘of(f‘,) :; a#(/k 5;}0 (m) , ‘T:'El
s | o
[aZ‘m ]/A/,( =0 [ Z&’ ‘7//\/,( =0 /[g ﬁ;]//l/,(}a o
| o & i
/[ & E’V 7ok ]/ ’Vfr 0 [ ﬂ(*o/‘fx]ﬂ/fzo , (7.31)
: [éfk ]/'(7( = o /"//r(’-]//(/( =0 on /7&%)
where | % E

If the body is conatrained from the rigid body motions, then the
%ime-—independent primary fields in the referenoe configuration

w_ prlfer ‘
pf =-- Pex 3 /z;ua"'//o/« ('z 32)

must satisfy (7. 50) With the associated cor,tstitutive equations. Lt

.mgw..,

e:d in terms of the potentiala. From Egs. (3 4:1-43), tl}ere follows Ty

$ofg

il

The Maxwell § equationa (7. ‘50)3 6 are equivalantly express-

(ﬁ) . (m} . R G ¢ . ? #
Loy AT ek
’K & KMN” N’H ' ‘L‘J L Woen ' (7"33)‘ w it J!;;:
72 (mi o e
OHK _-/Im éKW A”"M ‘.—'aé/‘* ‘ i . } i * f
¢ - (f) (’} | . (M) ; (m) ?}ﬁ, ‘ “; l" i ‘
éé%KK = ‘éf’(f "'o'/g /2 1KK "‘/a 7” (1 34,)‘
(e) ‘ 6(} : (m) ‘ i 4 ;f: .
e ALKK ‘ 2:7“'9 T ’4 L kK = O



and ) o
» . A _
A o 3 Mg = O 00 (7.35)

The Maxwell . stress tensor (3.64) and the electromagnetic
body force (3.56) reduce, respectively, to

Cir = & K1k F o Sy W g7+ S Ey He My Sy
and (7.36)
AAE ;Zkzﬁ’==7peoir 7 # 0 ErkL w7 aq + olge ELK Feo Mo Py
where '

W= 5 (éwfmfx oS Mo ) . (7.37)

Making use of the above assumptions, one obtains the cons-
titutive equations. Prom (5.45); and (5.46,55), there follows

?—’ f(ﬂ) , (pa) +Z—(m9)MK)

(») (Pm) S (pe)
= ;L"Pz_‘f“ZkL’ML‘/‘ x &
(pm) (mj (me)
o, :Z ZK/— M 2208 (7.38)
3(p) 2(m)
ZZA’L "”/Ck'w o5, «' h + (CKLM * Mo e )ﬂu

2 /8) //
+ Uxe o0+ Jziwﬁw/ A ,
J] om 2
Te= RE P RS M+ K B+ K

and tm) “au A(3)
i pr»::' {P)P 6’2 0// + /(‘,ﬁ'f'g;o@é_

The governing equations for the perturbed fields follow
from the decomposed equations. From (5.1),, one obtains the

equations of motion as
(em)

0/?&" = K'J'/( ""'/gé - LIK HL:K . (7.39)
In 2 similar manner, one obtains the energy equation and the

entropy inequality.
From (5.2) and (5.1)7 gs there follows the Maxwell . equa-
i

tions in terms of the perturbed quantities

101



~ o5
6&7&’ Q( s ———’Z-:—"_. Tmy o
T T ot T + Uk € TN 0£N,/(

, 7 cgé‘_’ T ey o
Exrx /7/0] - & I = /1 + — + Uer Enn HMuk
) o . (7.40)
& g(/,( ::/oéf_/_ /0 P"* & a(/L "éz-:/('
Mo /)(,K /al”’)_w HUep T,k
where .
A= 2k, (p 2 p 3%
32‘ Iz 7 'K af 2 K
"‘(m) /;z_ /(’/ éW
/ r&— + ko0 (o ‘ /«/K-,&z‘)

0 . (7.41)
/0*“*/DKK“"“KLU/O/< |

P o Tk 1 Fer i -
The perturbed electric and magnetic fields in terms of the

potentials are expressed as
on)

~fe) 957 (e) m) o~ é u A
e_z.___ - 20 - L 5.«1‘7 + Uit B - Z EFAL TNk S
ot & UK (7.42)

‘ ~(e) g (m) @
/71- €rxL AL, k- 9”1 + 55+ ez, f e :;;"fm DA iom

and the potentials satisfy the following equations

H?’(e):' "'é‘ (/a ~ (F) ~(p))+ 2@ /{L. é(e)
[7.?7(”'2-: ey " -2_@?(4.. ém ,
e ekl (7.43)

— -~ -() [ovad (3)‘
GEE = (f7 '+ f )+ 2 Gew Lzre

~ “{m) ~ h)
‘0 (MJ ‘ __.59/2. N I, kL

in which the potentials satisfy the Lorentz condition

~ (e) g /e) ~ 4 €) , tm) 9 m! (m)
Of course, Eqs.(7.42-44) are equivalent to (7.40). For given
time-independent primary fields, the above equations are linear;

i

102



however, the electromagnetic fields, displacement gradient and
the velocity are coupled,

It should be noted that in the decomposition of the govern-
ing equations, the term Jg, agL-é%g is retained in (7.29), be-
cause of the interactions of the displacement field with the
electromagnetic ones. However, Suhubi [71] neglects such a
differential term as is done in a state of pure elasticity. If
this is the case, then the last terms at the right hand sides
of (7.39,40,43-44) and the last two terms in (7.42) drop out so
that the balance,équations become much simplef.

The boundary conditions (5}6,7) now have forms similar to
(6.49,50), if (6.51) is replaced by

~

o s ~/__ 7 73 (7*4‘5)
Er= € + po EZTKHET A 07/:*“/’1‘6‘6@(%%f« SR

The Maxwell  stress tensor (3.64) and the body force (3.56),
in terms of the perturbed wvariables, now become

—~

Z’IJ ==-‘(€o.,£z-/- )ﬁ’;f +ho (St My )/7 ""(G" +2) LT (1. 46)
Ez__)

(em) G .. &
/0/ / 6’1'*/” t: /"06.2‘.]‘&’[] /7( o o p +§m,f.(@>ﬂk \

U
EY

,,EK)]-;‘* ezgap‘ 'D EZ,K 7"/‘0 bI,KﬂK

rf-/u mK "'&/IK "f'/‘“ éJJK’ [ (0'?/ °H/<'/~N - éﬂoMN aEK/N)
9P j ;JZZ | p |
671‘ u/‘/K--éO *““"’705&’ &N ("HKD%/"(‘_QE ‘7’\/)]<7 47)

- ML;‘N' [a E.Z' L -+//‘(v pMN o”l‘ L —7"// GJJKWT ﬂK’,

+e§»—-7t_ MﬂaEKL +(-7 ZL 7 au’“"' 'D)vﬂk

o, A :
t& (S Mg+ S )E]
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respectively, where
W= — (€ Ex Ex o A b ) . (7.48)

Moreover, from (5.'45)1, (5.46,55) and (7.27,28), one estab-
lishes the constitutive equations for the perturbed fields as

2.08) . S les) a(p) o ~
- 4 ‘2—&4. =y "/"/‘[ZK (B< + Aoy ol *“LK’P"- )

~3
I

-f-Z»’:,ma)'(/}‘?’( - EL/L MK + “L/K °ML )

A A
- * ~ (pm) _ ( 2 (ep) w 5 (pm)
dK - ZKL /Z_ T+ KL m[— + ZP@K * K@M DM_/' —Z’@PMO

(pﬂ) ~ : /PB} g { P
,om) /m)
+f@ ,(,0.9) Upg +EK 7- € (Maf # L rg 1 »ﬂ'zmﬁ

MNO

~ = (pm) __ 2 (m) (em) A a
/(,w/)/(:ZLK }Z . Z‘KL ML - (Z em [Pm) im)

Pek T g o ol i ont bt

fmo) ims)
S b )iy s DTk s (2 5

_ (/7 s
% Gy +Lx ben )2 ’“"’"/‘W%o@»/)/ﬁ,, (7.49)

[ (e) /v/ j(P) -
+ ~ m).
KLPP /.Ptf 214 7 Yoy JYP o/,DV?‘ jKLCP J/V,D/%f

: 4) 2 (8)  , - ;'1
7 (j‘ deo - Le J"@/) b+ (jcrw %k-ézg: o@zp),ﬁu 7
2 | %

A

Q /2 C) éj;_ + é(ﬁ’?_ 7‘/‘(0/750/’44_

aém

# Exom S (o Hy o -4 Eany )
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and N ~ v 2P
(») (m) et 2 te) P
Z( = 5 /5‘ + é’ KL 6,(%/"/ LR s v + ( ML 0

A14) . Aty ~
6’{? M+ 7,.,/?9 + g/vf B,y )J(A/J“A/,Mv‘ 9+€é_9’¢

The governing equations in this alternative decomposition
can be directly obtained from the equations in Section 7.1 if
one assumes that the quantities in the-riéid body state are
statimnary. Thus, the decomposition presented in this section
is a special case of our decomposition process proposed in
Chapter 6.

Considering the special material symmetries and the special
cases taken into account in this chapter, the much simpler forms
of the governing equations in this altermative decomposition are
also obtained.

If one now assumes that the primary fields 223 s £ 0 M s
etc. in (7.27) are uniform, then the derivatives with respect to
, Spatial coordinates and time vanish. In this case, Eq.(7.30) is
automatically satisfied. The governing equations of the inter-
acting continua become the following and from (3.39,40), one
obtains

ahz | :
Egr Cag 5T - " : (7.50)

8&r T ;»
E‘m(./’m* =& S5 =Jr+ /e

= (m)

é:€?g¢4=/?¢2+/50» i/#wzkr =~

where , -
/ (’) Q'ID *’P aﬁfﬂwop 3 LK
oF T SF TR ToE
T Julir e ol |
aér = A{é?_ éﬁ&'"_“‘ ~e k'**JZ (7.51)
/?"(”)_—___:__,/B;_‘ ; ﬁ(mj“-‘—"“-"/ﬂ /’ﬁmk ]

From Eqs.(7.42-44), one obtains the equivalent form of (7.50)
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in terms of the potentials. From (7.42), there follows

~ € oa® cm)
é; =- - L oGy d, .
Z 4{1. oF g f- U (7.52)
= (e) 7 (m) 94 ‘ :
b&’zi):? Ezxr i -

o

and the potentials satisfy

BG9=-4 P F)
- /y,, | e
(7.53)

ﬁ = /‘o (/ (P))“‘ 3 [7&} "-—--6/ ¢m) S "

and the Lorentz condition

—— .

g Y= o g %0 0

e
,@f i s o em fwé,c f/" g

| 4+ s |
’!H‘:‘ | 5t ‘;v(hgoﬁ/ -rw , °£K}]+€JK4 W/)IKﬂK
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+/«o é.mc( -6 9’" 7 £ ) %,;/‘ 7 “( z‘/ﬂ@{;&:}

b8

W . ‘q"h‘, "

The boundary conditions and the Maxwell L stresa tensor are S

. the same as those in the alternative decomposition, however, the RO
5 eleotromagnetio body force (1. 47) becomes" B

(7. 55)

From (7 49).‘ one optains the constitutive equa’c;i.ons |
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" For the materials ﬁith certain special"’ symmetries, the N e“gd'ﬂ

| constitutive equations (7 57) are simplified.ﬁ L S
. Considering isotropic materials, in particular, these equa~ |

tions are used partially in applications [13,26 34=39/. In the f.

w"f next chaptar, the interactions between a magnetic field and

‘ viacoelastic ‘solids will be. discussed in a particular prcblem.»
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PART: III

APPLICATION



CHAPTER 8

PLANE WAVES IN ELECTRICALLY CONDUCTING
AND MAGNETIZABLE VISCOELASTIC ISOTROPIC SOLIDS

SUBJECTED PO UNIFORM MAGNETIC FIELD

In the present chapter, the propagation of magneto-mechan-
ical plahe waves of small amplitudes in an initially isotropic,
électrically conducting, soft ferromagnetic viscoelastic solid
subjected to a uniform; primary magnetic field is studied both
analytically and numerically. The secular equation for the
~plane waves propagating in an arbitrary direction is derived.
The phase velocities and the attenuations per wavelength are
obtained for given frequencies and an applied magnetic field in
various directions. Furthermore, some interesting behavior: are
numerically detected for certain frequencies and strong wagnetic
fields.,

8.1, Résumé of the Governing Equations

~ The theories of magneto-elasticity and magneto-viscoelasti-
city are concerned with the interacting effects of an externally

" applied magnetic field on the deformation of elastic and/or’

;f viscoelastic solids and with the inverse effects. While the
‘“:"electo-optical" and "magneto-optical® effects have played an
'essential part in ‘the development of the . electromagnetia theory
of light in the beginning of the 20 th century, the subjects
of electroelastie and magnetoelastic interactions have been
rapidly developed in the last two decades [/13,26,33-40,54,557.
In this aection the governing equationa of electrically
conducting, magnetizable viscoelastic solids are presented. The
medium is assumed to be magnetizable only, for which the magne ~
tic hysteretic effect together with polarization charge and :
current are neglected. Furthermora, the material is assumed to.
be homogeneous and isotropic in its natural state. ihe starting
point is the set of equations (7.50-56) which are going to be
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modified, assuming that the magnetic field is composed of a
large static field plus a flactuating field, while the electric
field and the displacement consist solely of small flactuating
quantities, Thus, the equations present the excecitation of visco-
elasti¢c waves in conducting, magnetizable solids arising from
magneto-mechanicai interactions.

If an electrically conducting viscoelastic solid is sub-
jeéted~to a mechanical load while immersed in a varying magnetic
field, the laws of Cauchy and Maxwell will still determine the
‘mechanical and the electromagnetic fields. In the present case,
the mechanical traction and body forces are assumed to be absent
while the electromagnetic traction and the ponderomotive Lorentz
force are taken into account.

From Eq.(7.50)2_5, with the assumptions stated above the
Maxwell- equations now become

rs > ()
Sk Cay e g =~
- (8.1)
it by e 28 _ ]
v 52 ¢
_ ~ m~{m}
€ €, = O ;/,uohé,-e =
where ~m) Dy My Jdéé ad
/e ‘“'/a 2 e e L N@
. N (8.2)
ﬁ :.:"..7(4& Mélé g
i From Eq.(v.so)l, the equatibn of motion now become
~(em)
piy = tes pA (8-3)
where (em) ~
~lem Ay 7 >
s = oo €'k (».Z,’ he + 4 )7;/« Deyi My (8.4)

is the ponderomotive Lorentz force.

Substituting (6.89) into Eqa.(?,BB,SG) end neglecting the
anisotropy due to the deformation and using the assumptions in
this specific problem, one obtains
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Aol = G M s gz Aty o = o (8.5)
and
> — & 5 _ - iy >~
( + [~ €Ly, —a?f/,, ;/ue /7(,_-_—; G Ay
-~ ” ot g ~ | . (8"6)
L =fo Ly 7Y+ i by M R
/Ao A /Lw éaf*f&r"f—//ﬁ)@mm&i
+2(€2_+€2/5%)§4[
e =& Z
respectively.

As it was obtained in Chapters 4,5, the electromagnetic
fields influence the mechanical field through the ponderomotive
;Lorentz force and the actual stress tensor, while the mechanie~
al field in turn affects the electromagnetic field by modifying
Ohm's law of electric conduction and the Maxwell . equations.
The existence of a strain field may change the initial isotropy
of the constitutive equations for electromagnetic fields. This
effect, called dynamoptical effect which constitutes the basis
for the photoelastic analysis of the medium, is neglected in the
present study. This effect is studied in /31,%2,53/.

If one introduces new material constants as

ﬁ_-: /"._.o 5 ﬂ-—?;& L & a& i
Z AT ’
F “ & (8.7)
. A ¢ -
/l =-‘-‘-2/ H 4}::2// /[3: 6‘2_‘ ,'/,’(\-; C';,
‘the constitutive equations (8.5,6) take the form
\ ol
K)Mé_ z 2/ o//k
~ v/ . iy
Bo= X8 + cut, - A
¢ St ) (8.8)
T & (& - de
je = €+ udn o f )
€t =4 AR+ By ) (823 2)8, B2t

+-2é3 f/QF}%,)éfaz .
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In (8.8),_s, ¥ . X and & are called the magnetic and elect~
ric eusceptibilities and the electric conductivity. In (8. 8)4,
'/u and A ,’/g are the elastic and viscous Lamé constants
respectively. Egs.(8.1,3) and (8.8)1_4 form the basis of the
magneto-viscoelasticity and are to be solved prescribed initial
and boundary‘cdnditions. .

We would like to emphasize the differences between the pre-
sent treatment and the others /33-40,54,55/. Pirst of all, it is
'usually considered that the electromagnetic‘bedy force is the
Lorentz force, and the stress tensor is the Cauchy stress tensor
in the equations of motion. However, Pao and Yeh /13/ and Hutter
and Pao /147 and Hutter /267 take into account the ponderomotive
Lorentz force which is similar to ours in the Amperian formula-
~tion of the Maxwell = equations. Secondly, body is assumed to be
elastic, i.e., mechanically nondissipative. Thirdly, Hutter [26/
expresses the Maxwell®s eguations in terms of pqtentials in order
to decrease the number of electromagnetic equéxions, but we di-
rectly deal with the electromagnetic fields, not the potentials.
Also, our formulation is in terms of the Chu variables, but that
of Hutter /267 is in terms of the Ampéré variables and considers
the waves of assigned wavelengths in elastic solids.

By inserting (8.8) into (8.1) and (8.3), with the aid of
(8.2) and (8.4), one obtains

»

| é//& eéJ 77“0{/+/T) 966

w7 2l 24,

+A(A, 3E b‘”e"/k‘;?“‘ )=0

14.4{/‘* (G‘+gbﬂ_‘4)e, j/a:d’&, A’%qﬁ:;a
o (8,9)

../ €k o) /L‘f/»o ,4/5,4,,_(,),*_,35’?’_)%&%@.

*M +/§£; ) (dgcl + Ai, bk )‘/M?“o{\éﬂ Eumt oM f; 5%%

227,
"'/9 Cj‘tef - *

Thia?coupled system of nine linear partial differential equations
form the basis of the theory of electromagnetic and viscoelastic
disturbances. This system is fo be solved with the initial and

bdundary conditions which are to be modified for the assumptions

11»'
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stated above, These conditions are not written down here explic-
itly since wave propagation in an unbounded medium is considered
in the remaining sections.

8,2, Plane Waves in an Unbounded Medium

There are many mechanical wave phenomena in solids that can
be adequately described within pure mechanics, or at least within
mechanics and thermodynamics. However, some of the most interest-
ing and fruitful +things about mechanical waves are the nonmecha-
nical effects that accompany them.

Thus, the propagation of plane, steady state magneto-mechanic-
al waves through a primary, uniform magnetic field are now inves-
tigated. Solutions to Eq.(8.9) will be sought which have the
character of plane waves traveling in the pqsitive x-direction.
Since the solutions are being sought in a form of steady harmonic
waves in the x -direction, Z Z; and % must all be func~
tions of = and T only. Thus one has

e-l

e
i = (B exp [ kox -t )] (8.10)
q j y*

where g+ , h* and y* are the comstant, complex amplitudes.

o~

In these expressions, which represent harmonic waves, /é and w

are known as wave vector and angular frequency respectively. These

two qua.ntities are, in general, complex, so that the wavelength

and the period are given by .,zx//ge /k/ and -W"/,Qe,w ) respec~

tively. It is usual practice, however, to regard either /£ or

«w as a real constant so that waves of given wavelength or af;

a specified i‘requency may be studied, ‘ '
By inserting (8. 10) into Eq.(8,9), one obtains finally

Ejk /é- €' e (1+% ) w if:L-",_"lg;cw‘Xw (A Iy u -/, Ryt ) =0

PO * N “~ . &
(F-leow)er~ €jully p + G T LSy U =0 (8.11)
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, write

Sl €L, € waiueX s by [Pt (s ) oy ey ]
__{[AA-;-/: —lw (2'//3 ) ]/é,, I, +7o‘<00"\¢0 Ejk ej’mnﬂgﬁ;}u,ﬂ':o '

These nine equations have the following general form
; o~ nooA A .
/\‘:Q (Lk'/ w) at/j 2\}‘0‘) Aw)%%)%.*z (@] ’é , (8.12)

‘ . ' ' . ti=1.-.9) :
where /l;, is the coefficient matrix of order 9x9 and QLL/,*‘ is
a 9x1 colum vector, Y = //eb-“ . b U;//f | :

For a wave to exist, the amplitude 5_0"‘ must not be a null
vector. Thus, one has the propagation condition

First we note that (8 13) may be simplified in the case

- when the planes of constant phase (wave front) are also pla.nes
‘of constant amplitude, i.e., '

/k.X =constent : (8.14)

Now the planes of constant phase and the planes of constant
‘amplitudes are, respectively,

/,é X = constant - //z z = constant (8. 15)

' since /é /é +L /é,, < When these two planes calncide one can .

//é /é ‘. o ‘ ‘1 o (8. 16)

' [ where wal .ts a unit vector in the; direction of the normal to

it
L

the wave front

Since one has a free choic§ of coordinate axes in an infinite L
medium, no 1088 of generality is involved in taking the  x -di-

rection to coincide with the direction of mormal vector g ,
i. a., o= Sy . We can then associate the displaeement compo.,.“ *

- nent u with longitudinal (primary, P) waves and the transverse '

components £, , Z, with shear (secondary, S) waves. A primary,

uniform magﬂetic field is assumed to exist in the form

‘Oi‘/"“’(c'ﬁ‘ll;ﬂ.z.lo) ,
see Fig.8.1. The choice of a zero x, acomppneiit of the magnetic

o
Lk
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field is no restriction on the problem since the selected o
has components both parallel and perpendicular to the direction
of wave motion, i.e.,. /Aé /é N, = ko -

'Fig.8.1 Primary Magnetic Field and Direction of Wave Travel,

The applied primary magnetic field may be expressed in the

i form J‘;"t 4

//MD/L/(LJCO'S(/ ’7‘4‘3/&25"‘:‘((7) Y (817)

’ where . (y is an a.ngle between the magnetic field a.nd the normal

vector © 4 which is the. direction of propagation.

o A5 & result of (8 16) and (8.17). Eq.(B 11) become in matrix |
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where
Gy= Gy =Lty = o (147)
az = —/éco)?aﬁ/ S ly
Gp= dyg = hcwl A cosp

Sy = e by = ey =g =C M

L)
/~‘/52*5{63—7—c°6°w '

Ay = — ‘ iy a
45’_9::"6(6}: -%wé\"ﬁ’@eﬂéﬁ
Gy = s s G st
A @é =2%X/é0”@49 o 4 v | 3 v
a?f""d -—--—"'l;‘ Zw&ﬂz&m.?.
Ve = gy =g ‘ s Y
\4;;-’ ‘ a)z [/T 24 (oa)(/T A 2y A 2 .2 B
= pPu * LU ~ '+§5)]/é+/‘/{ozw7aﬂw¢ ’
2 ' . n 2 a C o [ e
G = W *'(/?"‘%)/é F LTl A costy
49v-/u»0‘aé’¢ku 7 [ i
439 "/40—— V’«‘ )/k +/«b *w G /9 Y bt

i ,
V 1~

;Eq (8 18) can, be rea:crangad so that the detetrminant of the .
coefficient matrix will be deduced easily. After making some =
'lengthy elementary row operations, (8,18) is trangformed into
~@ diagonal form exce;gt the last row o s [t
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where, thefelementé A ;4 @are given in term;s of original ones
Ay as |

Ay = ; Nop=-dygay 5 Noy= Ay dyy- Doy Ty,

#

= 4y U, A \ '
/\_,4 TRy g s /‘32'7‘-."41 Aog — g Yy

b“

Hl

33

Mo ==y 5 Ny= -z

43 = sz Ay — Gy ".92. 3 /‘44« = 57% ‘;’(93,""‘«4’3‘:9373«5

N

5= .425* oy /‘56 = 2y “'é?y = Gy Ay

Ao =G 3 A, ‘( 3'

Asy = ' «
57 =27 “kf’ AT e 3 = oy

é7 5?67 2 /\68 - aédg o /\?6 wa?-? ;A?g’;’ A :

Sy = 5 Ny = Gz s Ny = ep= Ay
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| isotrapic, conducting, ,magnetizable solid in the uniform mag~

For a possible wave motion, the propagation condition
(8.13) is expected to yield a nontrivial solution for the ampli-

tudes gf, /" and y* with a real nonvanishing speed of prop-

agation. This leads to a polynomisl equation with complex coef-
fients for the determinations of the phase velocity and atten-
uation constant, if they exist.

8. 3. Dispersion Relations, Phase Velocities and Attenuations

It can be seen immediatly from the first ‘row of (8 20)
that the flactuating magnetic field fz has no component along
the « -direction.The general propagation condition is

/‘39 péf///fy(” //;(zf ///]é;)//.:_.o ‘ | (‘aJ ’1})?93\'3 k=1, . ’4) (8'22)
which is the secular equation for the waves' in an unbounded

netiec field.‘ In Eq.(8.22), p[ety/l(”// and W,%Z// are, given by

%t/ N = N (N5 /\,,[, Ay A, ) ;
(8.23)

* /L?a (Neg Ny - /"Jz qu} + lug (/\‘,3 Nig= i /\qz‘) o
and Y o i

éz’éf///\ w/ /Lg- //344 mzz N -Nez /‘w )-r /\57 M?f /\fg Ny /}fd,) |
;,; . | | L ‘ i '}1 L:v;

o twne A
L (s, 24) |

"'f Aéf[;‘jg(A—?J’ 47“,? /];; /\ff ).f Aj’; (/’;4 Afé’ /]}JAJ‘;)] 'i ‘ ’

o # 5 f Lo
w DR R

For this degree of generality maintained up to now, the ,
order of the polynomial equationa in /&  is rather high, a.nd i "1;}
in consequence all of its roots may not possibly be determineda. R
In the' remainder of this chapter, we shall confine our attention . !
to tha study of waves for the syeoial direction of the applied J
primary magnetic field, ‘ -
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8.3.a) Propagation through conducting, magnetizable visoelastic
solids when primary magnetic field is absent ( .,/ =0):

For the purpose of comparison, it is appropriate to consid-
er the case of solids for which the applied primary magnetic
field is zero, i.e., aﬁ’~ofi © . Then some of the entries of
the coefficient matrix (8.20) vanish and the others become
simpler. Thus, from Eq.(8.19) one obtains

%y = thg =y =Gy = b =gy = Gy =, =y,

::J(jz' —_ 4’?4 =Qjé _—_Q_?f :_—_dg}:__aj/ =

R . (8.25)
ary = = [3 232 =f0 (Ae23 ) T I
=y = [ (R0 ) K
which impllies that
M= Mg = Aia= Nyy=ly= Ay =/,
"‘"‘/\?4:/\?&? ?‘:/\J’é =\ :/\3;2:‘0
o | (8.26)

Na= %2 og ,/»\.24? Gidyy 5 o= 4y 4,

Ags, = 92 A5 A44= dee o9 5 Nes = G5 Sy

and the remaining ., and A, ere the same as in (8.19)
and (8.21) respectively.

Upon substituting Eq. (8.26) into (8.22) and using (8.25),
one obtains the dispersion relation which is equivalent to

A N . 1% | S y 2’2.
(-cao) [Oh= e+ S ) ] [l G2 )Vt T
[("”;ﬁ;)jﬁa/’éi w j =0
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where

where o ‘ ‘ 53_ ' Sy

Vo Eip— ? (»Z = /7 > /VD-: -—Z‘v‘i&
[ % /7 . £ (8.28)
A 2+2R

In (8.28), V[ , 1V, and 1, are the speed of light in
the medium of magnetic susceptibility Y , speeds of elastic
S and P waves respectively. The new parameters Q@ and w,

are in the dimension of frequency. Bq.(8.27) implies that, the
relations between /& and «w are

2 2 2. ° O :
VAZ 0l 2) =0 5 (/—‘w)‘fsl/é.fﬂwz-’ ©  (8.29)

(1-Cw ) BEH*- 0* = O

e = o ( ) ; * &« My ) (8.30)»

" The - quantities in (8. 30) are dimensionless,. It should be noted

that if the primary magnetic field is absent, the electromag—

netic and mechanical waves propagate without coupling. ‘
'Supposing first that w 4is a real constant, that is, a’«

fixgd frequency is assigned 4o the waves, from (8 29) it is seen

' that the medium is dispersive due to the " electrical conductivity
lf?together with the viscosity of the med;um . Thus the phase veloc~’
T ity is not. the same for each frequency of thelwave. C@nsequently,
édifferent eomponents of the wave travel with different speeds i

and tend to change phase with Trespect %o one snother. However,‘

%}‘since the Maxwell's equations in vacuum are nondisperaive, )
',there is no difficulty in defining the velécity with which

fj‘energy is transmitted through the medium by the wave motion.

This velocity ia simply equal to the phase veloqity. When, hOW-

- ever, the tranamitting medium is dispersive, the definition of
energy velocity requires special attention and is knoyn to differ

from phase velocity.

* 14 is also possible to regard /2 as a real constant,

“that is, (8.29) describes wayes of an assigned wavelength.

P
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To allow for the possibility of dispersion, either /% or
w 1is viewed as the function of the other. Since the diSpersive
properties can not depend on whether the wave travels to the left
or to the right in an unbounded medium, a) must be an even func-
tion of 4 , w(k)=co(/k). This implies that the ‘seeular equa-
tion is a polynomial 'in the even order of Aé + For ‘most fre-
quencies (or wavelengths) y/d (or w. ) is a smocthly varying '

- function of w (or Aé ). Howeveg at certain frequen01es (or waveq

lengths) there exist regions of so called “anomalcus disPersion"
where 4 (or (w ) varies rapidly over a narrow interval of
frequency (or wavelength). Supposing, for the present, k is
complex, i.e., & = ,& 7»53%5' dissipative effects at assigned

- frequencies are permitted. '

Through Eq. (8 29), one obtains the roots as

o )4é(8 .31)

/éq-:;ﬁ-:%( ‘//-7‘7/ ) L --  /é'—‘; v‘;/_ ( 4-*4‘

T, e ‘ 1
T A /é'z = 7 (#/ew ) "5 52)

' @
Kl

and

' where Aéw ¢ ﬂah b)'stands for the real (imagigary) part of

' the n~-th root. For A& and /4, | to be real, the positive

sign in front of the square roots of (8.31-33) must be taken.
| Thus, the phase velocities and the attenuations per waveleng%h

for the electromagnetic and viacoelastic waves are, respective-«i‘

Ly

&~ V. /) 2 N P o
[ D e S0 s ol = " . ® L
Tey s Hmy vRem R e

Co 1200

/é ;/“a‘}[ ({:F /f'%gz ) Z. 5 /43“‘*"’""( i/_— ~-/)4/z' (8 33)



+3, 52 12 (8.35)
-VE -_.\_/.: = F 2- ', X = 22X ?3— 4 ‘
- 1{3 %7“§3 ‘ - / 33+4 (8.36)

S=Vlt y f= ed s 3= ewr . (83D

Here the phase velocity 1V is defined by V= and
is the attenuation per wavelength defined by cx-—(;m/%))ﬁ in.
which Al is the wavelength defined by A =21 Vi o

' From Eqs (8.34-36) it is seen that both of the electromag—-‘
;netic and mechanical waves are dispersive and#dissipative. The .

damping is coming from the electrical conductivitj and the

viscosity of the medium, Then the solutions for electromagnetic

fields and displacement are

g [¢] ay
Gl _ &y pfiwz T o iy
hﬁ‘ L"?;; . . : :

i ,:_;."a,‘ e"/)[rv y§3~1mcw(f @a)]p |
* | g ‘ o (8. 39)

1) (4 .-éxf[ 2 ‘/;Mm[f'. 3 )j
th by |

which represent prpgressive electromagnetic, viacoelastic P ,
and S waves travelling along the ?:~axis respectively. Accord-

ing to (8.38), the electromagnetic wave is transverse, i.e., it i

has no components along the X, -axis, @ 7

There is no difficulty in defining the group: velocity V?
( V7‘7= oy ) as long as the medium is purely dispersive, .
but if absorption also occurs, /3 becomes complex or imagin~
ary and the group velocity ceases to have a clear physical
meaning. So far if one assumes that the coefflieient of
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absorption in the material is zero, then V/7_-V™ (velocity
of the propagated energy).

We now determine the magnitude of the group velocity by
means of (8.31-33). Using the definition of V¢ in (8.31-33),
one now obtains

= 7 /20t 5) . Vo z /2(45 )

N T
+3 - %}/2§1 i "3~ %3,

(8.40)

/2//+§3)
/'7*53 — 5}72—?3 :

? = F

—

For the comparison of the phase velocities and the attenua-
tions of the waves in an applied primary magnetic field, the
phase- velocities and the attenuations of the uncoupled waves,

 “BEq.(8.34-36) are plotted as functions of frequency by paramet-
- rizing the conductivity, & for the electromagnetic waves, o,

and %y for the viscoelastic waves.

= L ™1

Fig.8.2 a) Phase Ve’iocity 7 and b) Attenuation & of Un- |
coupled Electromagnetic Wave as Function of Frequency w,
Parametrized for Conductivity 7 .

Fig. 8.2 gives plots of the nondimensio#al ‘phase velocity‘
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?‘ and attenuation & for the uncoupled electromagnetic waves
for different electrical conductivities. The plots in Fig.8.3
are the phase velocity and the attenuation of the uncoupled
electromagnetic waves as function of conductivity & for
certain frequencies.

2 1 —- I

gV

s
3 T Y

o

{ % o= ]

2 . 4 o - L

Log & o) ® ° log 7 (o 7) >

Fig.8.3 a) Phase Velocity }  and b) Attenuation & of Un-
coupled Electromagnetic Wave as Function of Conductivity

o~

G for Several Selected Values of Frequency « .

It is*sgen from both these graphs that there are two lim-
iting cases for the electromagnetic waves. One is the case of
the nonconductor, i.e., {—»p . For very small T , the elect~
romagnetic wave is nondispersive and the attenuation per wave-
length approaéhes zero beyond a certain frequency. It can also
be seen immediately from (8.40)l that the group velocity is
simply phase velocity. Another limiting case is that of super-
conductivity, i.e., £_, o . For this case, the phase velocity
and the group velocity approach zero very rapidly. Thus the
waves immediately die out and the attenuation per wavelength
approaches 24X,

Fig. 8.4 displays the phase velocity 7V and the attenua-
tion & of the uncoupled viscoelastic S wave as the function
of frequemcy «w for different values of d;:iéi. Fig.8.5
gives the plots of ¥ and & as the function of &, for
several selected values of frequency «v . The graphs in Figs.
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8.4 and 8.5 are also used as the plots of the phase velocity
Y and the attenuation & of the uncoupled viscoelastic P

—

wave as the function of w (or @, ) for several selected values

of w, (or w ). ,

& [ ' T T
é
4
2
o

1 L P —L A

2 4 6 2 4 6

® Log 5 (42) ® Loy o8}
Fig.8.4 a) Phase Velocity Y and b) Attenuation & of Un-

coupled Viscoelastic S Wave as Function of Frequency <«
Parametrized for i, .

8 T T T
&1
6—
4l
2
" N o-.
‘ | - | . i 1 N N ‘ T
2 0 A 4 - ) 2
@ Gaymw @ 2 am

Fig.8.5 a) Phase Velocity ¥V and b) Attenuation & of Un-
coupled Viscoelastic S Wave as Function of 4, , for
Several Selected Values of Frequency .



For the mechanical waves there are two limiting cases. One
is the case of very small viscous Lamé constants, i.e., 2 — O
/g‘*, o « For this case, S and P waves are both nondispersive
and the group velocities are simply phase velocities. The atten-
uations approach zero. Another limiting case is the one of highly
viscous media, i.e., _E_ﬂ.ca, /g -~ 0o o+ Then, it can be shown
that V' (or V ) is proportional to the square root of &
(or w ). The attenuations per wavelength for both waves approch ——
24 and they are indicated in Figs.8.4 b and 8.5 b.

It is to be noted that the imaginary part of /4 appears

as the coefficient measuring attenuation of the electromagnetic
and mechanical waves in space. It is called the "spatial absorp-
tion coefficient". /4 is a commonly used coefficient in ordi-
nary progressive wave propagation. However, it is equally possi-~
ble to set

o) = a),-,«aw{; (8.41)

into (8.29) and obtain the electromagnetic fields and the dis-
placement in the form

el le )
?} =L B L exp (..a),;-f ). €X/J [o(w #- //éz,)—j . (8.42)
i | |

Here w,; gives the coefficient which measures attenuation in
time. It is then called the "temporal absorption coefficient®.
It applies appropriately to the temporal decay of a wave train
or standing wave in a medium. When (8.29) is solved for complex
«4) at a given wavelength, the result obtained for the electro-
magnetic wave is the same as that given by Hutter (/26/,p.1073)
although a different formulation of Maxwell's equations is
employed in there.

In cohcluding this section, it is said that if the applied
primary magnetic field is absent, there are uncoupled modes of
dispersive and dissipative electromagnetic and mechanical
waves. The phase velocities and the attenuations of these
modes are smoothly varying functions of frequency and the con-
sidered parameters, such as conductivity F , and the viscous
parameters £5,, and 20, . Thus, there is no anomalous disper-
sion over an interval of frequency or those of the considered
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parameters,

8.3.b) Propagation of waves under the applied longitudinal
primary magnetic field ( A A0y JH =0 ):

For the general form of the characteristic equation,
AetiN//=0 is complicated and little analytic insight is gained by
writing it down in full generality. Special ecases, for example
oy =0 Or 4 =0, can be treated analytically with reasonable
effort. ‘

Wave propagation along the applied magnetic field is ob-
tained by substituting (o0 , i.e., Sucff=0 in (8.19) and
the resulting equations into (8.21). Thus one has

4.2? - ”4-_9 -—-“'—Taé;, =4}3 :d;a) =da°} ____,agi = O

aZJ’:: 6{35::."&602/0# 3 0432‘4“ =~§q¢w6\'°ﬁ/

dJ’j’ — .-032 .-__—-/Q,, V‘a/q 5 %4 -'7-’436: 29‘“2@.;//
%y = pw [/)A+93 ~Ew (d+24 ) Jh*

2 A o - 2 v 2 -~ 2
ﬂﬁ:~gj’9=/w_(/a—(%]/é+é/% w T M

Ngo = O . A

(8.43)

it

and for the remaining ., and /4 , see Egs.(8.19) and
(8.21) respectively. The determinant (8,22) assumes the form

(1=C57~) 4,4, 4, 8, =0 (8.44)
with ,
Ad,=(=Cw) PR w? (8.45)
D= (=05 )V R (e ) w? (8.46)

Ay = (1-CD)EE (208) [1~ 5 ) 2740 ]
--L//+,T)2{_V,/ % 1-[/—; 2% +C0-8)8 ]3_’_‘_’. (8 47)
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A/+: (r- f&;)/é"__ {i +La- @) (1+CY )‘/‘ "O’Z/ lé](i;{)z}x

w2 k% w4
+ 14+ (4% )Y
/A [ h% 7 A (8.48)

X

where new dimensionless quantities are introduced as

y _ S AT and = Lo (8.49)
” /’CZ /0 V
Since - /y #0 , two obvious solutions of (8.44) are

A, =0 and 4@1_.0 . The first one represents the dispersive

and dissipative uncoupled P wave and its behavior has been dis-
cussed in Section 8.3.a, i.e., (8.29)_ . This means that this
mode of the mechanical wave propagates without being influenced
by the applied magnetic field if the direction of the external
magnetic field coincides with the direction of wave propagation,
" The second one is a dispersive and dissipative coupled mechanic-
al wave which is now affected by the applied primary magnetic
field. The phase velocity and the attenuation follow from (8.46)

2”/“2/',2(14-[&‘;") ’,‘ X = IT S+ is (8.50)
4= s $i- 8¢
where

., 9 _ L
:[‘(/*"‘w)//‘f'yczpﬂ )]L; S,=@ ¥Y¥, -4 . (8.51)

As seen explicitly from the solution (8.50), the primary longitu-
dinel . magnetic field (PLMF) influences the phase velocity and
the attenuation. If %, =0 (no magnetic field) or % =O (non-
conductor) is substituted into (8.51), Eq.(8.50) reduces to
(8.35).

The numerical solution of (8.50) is carried out for a
hypothetical test material, the electric conductivity of which
is = sxwMho 7', The phase velocity and the attenuation are
plotted as functions of one variable, keeping others constant.
Numerical calculations are performed for selected intervals of
independent variable and parameters.
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Fig.8.6 a) Phase Velocity V  and b) Attenuation & of Coupled
Mechanical Wave as Function of Frequency «w  for Differ-
ent Selected Values of Primary Longitudinal Magnetic
Field _,# and Parameter o, .

14

Fig.8.6 gives plots of the phase velocity ¥V , and the
attenuation & for the coupled mechanical wave at several select-
ed values of the parameter '/arlfg the applied primary longitudinal
magnetic field /-

In Fig.8.6,, it is shown that (47 and /y & are linear
functions of /yw for small values of @y and the applied
magnetic field in the considered range of frequency. In other
words, the phase velocity V and the attenuation per wavelegth

® are parabolic functions of the frequeney « for highly
vigscous solids i.e., w, <. . As long as the applied magnetic
field is small enough (1kAm™1) the phase velocity and the atten-
uation do not change with respect to the longitudinal magnetic
field ,However, when the primary magnetic field is of the order
1MAr ‘or greater, both /@17' and /gy & are nonlinear func-
tions of /yw in a certain range of «w , but beyond certain
values of w , they are again linear functions of /m«w . On
the other hand, there is an anocmalous dispersion at a certain
small interval of the frequency of the propagated mechanical
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wave depending wpon the value of the applied magnetic field.
Observations show that there are significant differences bet-

ween the plots in Pigs. 8.4 and 8.6

1.

Fig.8. 62 4 displays that the variations of Y and =
are similar with those of Fig.8. 61, but the anomalous dlsper—
sion occurs at different intervals of frequency depending up-
on the values of the viscosity of materials. The peak of the
anomalous dispertion occurs at a certain frequency and this
frequency becomes higher when the solid becomes more elastic
(i.e., <, 1s very large) in the same magnetic field.

Fig.8.7 gives the magnetic field dependence of the phase

velocity and the attenuation in a certain interval of ./

i.e.,

lkAi* 2 4 £ 10" MAw* at several frequencies keeping &, constant.

Fig.8. 71 displays, however, that V and =

of an ultra-~

sonic wave ‘in a very high viscous solid (i.e., iy <ed) are not
affected by the prlmary magnetic field of the order 1 MAm. If
the solid becomes more elastic,
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and Parameter 4, .
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the same magnetic field. In Fig.8.72, it is shown that, depend-
ing upon the frequency of the propagating mechanical wave, Y
an@ oo ©reach their maximum values at the specifie applied
magnetic field. Maximum values of 17 and &« associated with
/7 are not significant when the solids become very elastic.
This is shown in Fig.8.7,. Beyond a certain value of ,# , for
example ,4. , depending upon the frequency of the coupled
mechanical wave, the phase velocity changes very rapidly when

A > A + On the other hand, as it is illustrated in Fig.&.?;.

V 1is constant up to a certain value of .# and then /4p7
varies linearly with /%// and becomes very small. Physically
this means that when .~-»<° , the mechanical wave can not
-propagate. This curious behavior is only detected when a detail-
ed numerical investigation is performed.

One can easily see the difference between the plots in
Figs, 8.8 and 8.5, i.e., the difference between the coupled and
uncoupled S waves. The effect of the applied longitudinal mag-
netic field tends to disappear when the frequency of the propa-
gated wave becomes very high (very high ultrasonic wave,VHUW).
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(8.48), it is appropriate to introduce some new dimensionless

quantities such as
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Vo*: jﬁ_ . %__: /éo <

c ),

where 4, and @, are, respectively, reference wave number
and frequency. Then equating the polynomial expressions (8.47,
48) to zero, one obtains dimensionless'equations'in the form

(J—cw)/é v {J-f(i.,cc )[(/-cw) lé).,. 2%, -—c(f-/-/?)l/))//}

4 [1#22° 0y +0 ) )VJ(V'V‘/PZ) 2, (8.53)

and

(1"“‘))/'(’ — {i-f-[(i“w ) (24 )7«-LV Vi ]( } )/é“
[11‘4 (2+ % )2 ]

v

V"‘ -[‘AP&)2= 0 (8054)

respectively. These two equations lead to couped modes of elec-
tromagnetic and meehanical waves.,

In the absence of the primary magnetic field ( V, = o,
Y, = 0 ) the solutions of Egs.(8.53,54) reduce to (8.34,35)
which are the uncoupled electromagnetic and mechanical waves
discussed in Case (a).

If the material is assumed to be electrically nonconduc-
tive ( =0 ), Bq.(8.53) becomes

(1 -Co )™ _ [i—/-(l-“‘))(*}zx%/] ) k-

o (8.55)
v %

which is the coupled nondispersive électromagnetic‘and disper-
sive mechanical waves affected by the primary, longitudinal
maghetic field. However, (8.54) reduces to the uncoupled
electromagnetic wave which propagates at a,constaht speed with-
out an attenuation and to the uncoupled dispersive and dissi-
pativé,s wave.

Eqs.(8.53,54) are the quadratic expressions in w* with
complex coefficients. The solutions of (8.53) and (8.54) are,
respectively, |

..-:.O
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w2 U228 [ia (eagn )] (e.56)

2(/+wzj
and
/‘_—_z_ﬁ),_.{_(i*_f_‘f_)f 1 =7} 8T
k R 2(12@%) [ g ) :]}
where

/3:= 2 4 (4+CR )[_(1-60&5)( )_,. 2177 -L(.£+2’})/

/4;:.1+[(./.-—c40)(.1+¢lé)+¢ ](l@) (8.58)

| (4-B) 6, a2 _ Ty
§CH = ' /“\é‘) S Seu= (iﬁfzw) (%é, ﬁ(8-59)

In Eq.(8.59), 4§ and § are defined as

J:J--fz?ézz),/—fc"//—;g,);g and  JS= 1+ (143 )2 (8.60)

respectively. The solution of (8. 55) is obtained easily by sub-
stituting L7=¢> in (8. 58) and (8. 60)1, and the resulting ex-
pressions into (8.56) which indicates that the electromagnetic
and mechanical waves are still coupled.

Observation of Egs.(8.45-48) shows that in the absence of
the applied magnetic field, all the modes become uncoupled and
they are the usual modes of electromagnetic and mechanical
waves considered in Case (a).

Phase velocities and attenuations are obtained from the
real and imaginary parts of 4" in (8.56,57). As seen from
these equations, one can gain more insight from even an approx-
imate solution of actual equations (8.56,57).

For the test material for which the materia% cogstgpts .
g = 7.8;::1?3 kgri’, A = 8.1x1& Nwm?, J = 1.12x10" Ni* ,7 = 10°,

F = 5%10 Mhom are taken for the numerical solutions of (8.56,
57), and the ranges 10° Hi 4w 10°Hz, 10 Hz< &, ,w, 10 Hz
and 10 MAm™ £ AL 100 MAm, Lhe orders of the quantities <4 $4
and-4§b¢ are between 1672 16%, These are obviously small
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compared to 1. Therefore approximate solutions of (8.56,57)

can be obtained by usinéahinomial expansion retaining the first
order terms. From the approximate solution of (8.56) the phase
velocities and the attenuations are obtained as

SRy .
tv o5 s+ LT 1T
| (AT - e A% ) }/
LerGTTInE ST + 2+ 25

1{-# :/2‘{* {

(8.61)

0(’..

and
+~ke] ki *
- Lo fiofy 3 + Jr@*)] ,+yse’//3)}aj ;o (8.62)
{/(Ma)[u(/ﬁ) J-(+-55) }
//uwl)lh(/ff‘) ]+ 1- ﬁ—j
ﬁ: 442X Yy + (1420 K )(__\é:)z
/5_.2X Y+ (%- QJ( 18.63)
5==¢+2Z Ve s G=(+%)R a

X,

where

Observation shows that the phase velocities and the attenuations
in (8.61,62) are, respectively, associated with the predominant~
ly electromagnetic and mechanical waves. o

Similarly, from the approximate soludion of (8,57) the
phase veloeities and the attenuations are obtained as

_ RV {'325 [‘/+-(€%;) ‘ J}a&
z 4 /-/% L/l /@’:f ) ](2257)) (a6
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([ (BT 5] - (A 5) )"
([ ETIAET + 1e/B

= 2N

and

2/ 1o
thw)é; V/0+59&T6?}7’

\/J+w2)[4*€‘) ] - (1-4 %) "

/(z+w’)Zi+(£)] 41 5}

where

= 2t (PR 5 fm [ a2 JOE)T

(8.66)

Observation shows that (8.64) and (8.65) are, respectively,
the phase velocities and the attenuations of the predominantly
electromagnetic and mechanical waves.

Further insight conserning the behavior of phase velociti-
es and attenuations per wavelength with respect to the frequency
and the applied magnetic field is gained for the coupled modes,
(8.55-57), when numerical solutions are obtained. Por the test
material, the wave speeds 'V Il of uncoupled elastic waves
and that of the electromagnetic wave |, in a nonconductor
are obtained as follows:

'3 -t €.
%= 592694 x10°ms* o V=3 22252x10ms" V= 2. 99985 10mi(8, 67)

Again considering the same values for the constants of the test
material used for the approximation of (8.57), one can numer-
ically determine the phase velocities and the attenuations of
the coupled modes, The graphs of these modes are shown in

Figs. 8.9-~11.
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Fig.8.9 a) Phase Velocities V,”, Y* and b) Attenuations Xy,
o, of Coupled Modes of Electromagnetic and Mechanical
Waves as Functions of Primary Longitudinal Magnetic
Field .+ , for Certain Selected Values of Frequency «w
and Parameter Wy .

Fig.8;9 gives the phase velocities and the attenuations of
coupled electromagnetic and mechanical waves as the functions
of the applied primary, longitudinal magnetic field for differ-
ent values of frequency and the parameter 4, . The vertical
axes at the left and right of each figure are, respectively,
due to the predominantly electromagnetic and mechanical waves.
For example, it is seen in Fig.8.9 aq that the phase wvelocity

78 of;the predominantly electromagnetic wave reaches
1.7854x10 while the phase velocity 7[* of the predominantly
mechanical wave reaches 4.5650 at .~ = 10 MAm‘for « = 10Hz
and &, = 16’ Ha. |

Observation of Fig.8.9 indicates that the existing primary
magnetic field is less than 10 MA@, its influence on the phase
velocities and the attenuations of the coupled modes is neglig-
ible, However, if the existing primary magnetic field is suffi-
ciently strong, the effects on the propagated waves are signi-
ficant. If the order of ,#~. is beyond 10 MAm, while V* and
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%, increase, Kf and &, decrease very rapidly with respect
to the variation of _/4 . Physically, this means that enexrgy
might be transfered from the mechanical wave to the electro-~
magnetic wave beyond a certain value of the applied magnetic
field. Therefore, in a large interval of the appropriate mag-
netic field, it is sufficient to consider the predominantly
electromagnetie and mechanical waves prbpagating without the
influence of the longitudinal magnetic field.

Fig.8.10 displays the phase velocity V,“ and the attenua-
tion &, of the predominantly mechanical wave as the function
of frequency w at different selected values of the primary
magnetic field .4 for parametrized &), . Observation of
Fig. 8.10 and the data for the predominantly electromagnetic
wave show that both waves are dispersive and dissipative. An-
other common characteristies of this case is that the effect
of the primary magnetic field disappears if the wave is ultra-
sonic (US) or VHUS. Another significant feature of this result
~is that the dependence of 1{‘and 'K' on the frequency at

o :
® T
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Fig.8.10 a) Phase Velocity %' and b) Attenuation O of Pre-
dominantly Mechanical Wave as Function of Frequency «,
for Selected Values of Primary Longlitudinal Magnetic

Field ,# and Parameter o, .

specified ,# 1is related with the parameter , i.e,, the
viscosity of the solids,

As was mentioned in Case (a), there is no anomalous dis-
persion of the electromagnetic wave. This is not so if there
exists a uniform, longitudinal strong magnetic field. The
attenuation of the predominantly electromagnetic wave in a
strong magnetic field is seen in Fig.8.11. The attenuations
are seen to be sufficiently large so that they may be detected
experimentally if a strong enough magnetic field could be pro-
duced.

Figs.8,12-14 give the plots of the phase velocities 7V, ¥,
and the atienuations cx/, o, of the coupled modes of the
waves given by (8.55).
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The plots in Fig.8.12 indicate that ¥ and <, are
due to the predominantly nondispersive and nondissipative
electromagnetic wave and i& and «, are due to the predomi-.
nantly mechanical wave. The predominantly mechanical wave is
dispersi#e and dissipative and affected by the applied primary
1qngitudiﬁa1 magnetic field, while the predbminantly electro-
magnetic wave is‘not, when the material is highly viscous, as
it is observed in Fig.8.12,. If the material becomes more elas-
tic, the effect of the magnetic field disappears. Another com-
mon characteristic is that the effect of the strong magnetic
field on the mechanical wave tends to disappear if the frequén-
¢y of the propagated wave goes beyond a certain 1imit,

6+ ,d%w A nas”’ .

@ ® g0 (h2)
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Fig.8.11 Attenuation &, of Predominantly Electromagnetic
Wave as Function of Frequency « for Several Select-
ed Values of Primary Longitudinal Magnetic Field .~
and Parameter <,.

Fig.8.13 displays 7' and o of the coupled modes of
electromagnetic and mechanical waves as functions of the appli-
ed longitudinal magnetic field at different values of the
parameter ADV and the frequency co. As seen in Pig.8.13,
the phase velocities of both of the coupled waves are affected
by the strong primary magnetic field, excep when the frequency
of the propagated waves becomes very large., The dependence of
the attenuations of the coupled modes is also seen in the same
figure.
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Fig.8.14 depicits the behavior of the phase velocities
and the attenuations of the coupled modes of the propagated
waves with the parameter «, (i.e., viscosity parameter) at
several selected values of the frequency « under the applied
primary magnetic field .# . The plot indicates that 7 does
not vary with respect to the viscosity parameter &, while'z
does, The phase velocity 'E of the propagated predominantly
mechanical wave decreases very rapidly as the material becomes
more elastic (less viscous) and reaches a constant value. On
the other hand, the attenuation o, becomes zero as it is ex-
pected because the material is becoming more elastic. Thus, if
the s01id is electrically nonconductive and purely elastic
(nonviscous), there is no decay of the amplitude of the propa-
gated waves, |
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8".3.‘0:) Propagation of waves under the applied transverse
primary magnetic field ( .4 =0 , H4#0 )t

Substituting (. 7/ , i.e., <cosyg=0 in (8.19) and
the resulting equations into (8.21), one obtains
Gr= Gy = Dy = Gy = Ay =y, =dyy =,
6(27:-—'égo)'uﬂ s @3:-—467, .—.—-»(e@‘g:: /°q°c0(7"a/‘/.

= pu= [nzh - w (3028) TR o ip

2 A o ~ 2 ) , .
: dff = S~ &«_.zu)ﬂ)/é 5 vaﬂz/‘%roﬁ/

o owh [h e ) B et @ A |
@ﬂ“/w“V“"%) s (8.68)
Nz = Ny = Aq.z‘:‘ /[39: Aéa{? = Ny = /\fé:.— 4

/]_23 = 3,y 3 /\_z.(,:: Aop Ao ; /1

‘ /lw:,-_as-gajj 3 N = Gp 5 s = dpp

and the other coefficient remain the same. The determinant
(8.22) assumes the form. ‘

4., 4,, Azs Loy Loy =0 o (B89 -
with ‘ 2., B , o S
‘ AJ—/ :-:M/é - (4+CH )wz‘" k o (3‘70“)(;:-
o . S o - ) 2 2 '
| Bam G- VAE o



. o 2 /2 [ 2
Dog= (-8B )G (141 Jo .72

Doy = (1~%) (2400 V2R3 [10 (24 04 )2 ]9% (8.73)

AJS' = (1__;:0_‘9)&4._ {.’Z-}- [(i‘f"@ )(i _f(a%)_*(:,}é 'Z‘)f/)@/\/f)z}x

. w;L/éa+ [/+ e 1y )% ]Z%Z—)L ’ (8.74)
where ’ /‘/z
Yy = /‘;;/z (8.75)
P

which is another dimensionless number. Three obvious solutions
of Eqs.(8.70-72) are Lyy=0 4, =0 and 4,,=0,. Now,

A, =0 1is identical to (8.29)1 which is assumed with the
purely electromagnetic wave considered in Case (a). Also £\,=0
is the same as (8.29)2 which is associated with the purely .
mechanical S wave. This means that the two modes of electromag-
netic and mechanical waves propagate without being influenced
'by the magnetic field if the direction of the external magnetic
field is transverse to the direction of wave propagation. PFurth-
ermore, 4_235 4,2, hence no extra discussion is needed,

The closed form solution of 424,:0 is possible and it

leads to ~
) 2 f/z
— __[ 2 (1+ @ )l
=+ g
-+ V5, j, (8.76)

where -
(1+ 355 )@+ "/ ]’/2—
5 = T : 8.71
(2

This is & coupled predominantly mechanical wave.
If either magnetic field or the electric conductivity is.

zero, [, =0 ylelds the same result as that of 4,,=0.
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For 7 = leoé Mho xﬁf graphs of Eq.(8.,76) are plotted.
Fig.8.15 shows the phase velocity 7 and the attenuation &
as the function of frequency <« at several selected values
of the transverse magnetic field and the parameter <y .
Observation of the figure indicates that the applied primary
magnetic field in the interval 1kam’< 4 & 10°Mam™ has no
effect on ¥ and o« . The comparison of the curves in
Figs.8.4 and 8.15 indicates that the variation of V with
respect to w is the same, but the values of 7§/ at a

I
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specific value of «w in the two graphs are different because
of electrical conductivity of the medium,

Fig.8.16 displays the phase velocity 7} and the attenua-
tion X as the function of the applied magnetic field .~ |,
for parametrized @ ( w= %u ). Both V7 and & do not
depend upon the primary magnetic field -7 .+ Physically, the
wave is not influenced by the existing primary, transverse mag-~
netic field in the considered interval, but both V and &
vary with respect to <o .

- Now considering (8.74) which is associated with the coupled
modes of €lectromagnetic and mechanical waves, using the dimen-
sionless quantities given by (8.52) and #ntroducing a new dimen~
sionless quantity

5 : i ;" ) T T -
oY — ' 1’255109 & 168 w? T
o=
4} ig - 29,ﬂ¢
5r 7
?33107
3 = by 4 .
913:/; i
2 .. 3r
" — ’43:‘ ©0°
9‘0210" 2 o
4 - -
Y 5a % L'i 4€£aﬁﬂ ]
0 -
13.40% ° J s s 54
L 1 ,
® * bypaas) ® * o 1A

Fig,16 a) Phase Veloecity P and b) Attenuation = of Coupled
Predominantly Mechanical Wave as Function of Primary
Transverse Magnetlc Field _4 for Certain Values of

Parameter 4 . {

150



Vo l= Y /. , (8.78)

into Eq.(8.74), one obtains a quadratic expression in /& with
complex coefficients: |

(.1 Lw)/é {1-1.[(1‘(&0)(1-#(- )-/-c yﬁ]éﬁ) } )/é‘

+[.1+o{:t+bf4) ]( f);;’?&) = N (8 79)

The solution of Egq. (8 79) is given by

/-—-+ w? { (1-*6"59)% 1 F (.1..4§’ 7/1}4/&(8.80) |
/;QV 2({—;—{_«_)?—,) [ ‘ "_,_c:.’/-i ) | |

where

= 1+[(4, Cw ) (1400 )pc y p, j(\/*‘ z

(- ‘@ )8 /2 (8.81)
%C/./ = (—"ﬁ') s 9= 44 to(/—f&)]/c .

Thus, in the absence of the primary transverse magnetic field
(i.€0y 2y=0, =0 ), (8.80) furnishes the waves of the ‘
‘two uncoupled modes given previosly by (8,34) and (8.36).
the material is nonconductive, then taking ¥=0 in (8. 81),
the coupling between two different modes of waves and the ef- . |
fect of the applied field disappear, which has not been obser-
ved in the case of (8. 56). ' o
'As it was in Case (b), the phase velocitées and the atten—
uations of caupled modes of propagated waves in (8. 80) can not
be deduced explicitly unless an approximate analytic treatment'
is employed. For the test material with the same material con~
stante and the considered intervals of the variablea in Game .
(b), the order of quantity 4 §cm4 is between 10° = 10~
which 1s obviosly very small compared to 1. In a similar manner,
using?Binomial expansion, one obtains the phase velocities and
the attenuations as follows: |



2?/ [/-f (.jé%)l] 2

VERY
1+ _/éz S, + ﬁi+(éf)zj(1+ﬁz)
._/ "’
(8.82)
o LTI 0 g e
([ (B2 ] (124 + 1+ g 4
and
2/ A
.Z, zﬁl{)% //—l - }UA
(4-&_0)% + )/(;tbyz)[’v‘é‘;%z—) J (8.83)
y — 3’4 — p . 52 7S
x, = X \/(H” )Z/%Mﬁ——’)] (4« )fé? l/
(1+w2%) |1 (;éf * 1w 2
where V//* / i /@’) ] T (1) ?@

%_3/:: 1+(/+w)/){l\jf) 5 /Z‘;Z':Z—(i.f_z/ﬂ)/‘é-gj%e)z

(8.84)
(r+

Observation of these equations shows that (8.82) and (8.83)
are due to the phase velocities and the attenuations of predo-
minantly electromagnetic and mechanical waves respectively.

Numerical solution of Eq.(8.80) is carried out for the same
test material in certain ranges of the variables and the comput-
ed phase velocities and attenuations are plotted in Figs.8.17~19

The transverse magnetic field dependence of phase velocities
‘ ‘

v and attenuations o are plotted for several selected

values of frequency « and the parameter 4 in Fig. 8. 17

As
long as the applied magnetic field _/#

is less than 10 MAm,
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V' and x of both of the coupled modes are not changed with
respect to .4 . However, for _# > 10 MAGR® they change very
rapidly, such that }/* and o, of the predominantly electro-
magnetic wave increase while ¥ and o, ©0of the predominantly
mechanical wave decrease, Another common characteristic of these
curves is that the variations of V™ and o with respect to

./~ for different ¢’ and w, are the same, but their val-
ues at a specific o// are different. This is expected since =
both of the predominantly electromagnetic “end mechanical waves
are dispersive and dissipative. As was mentioned earlier in Case
(a) o, tends to become small when , increases i.e., the

viscous character diminishes.

Observation of Fig.8.18 leads one to conclude that both
waves are dispersive and dissipative and the phase velocity of
the predominantly'mechanicél wave 1s affected by the existing
strong magnetic field. However, the influence of the transverse
‘magnetic field,however strong it may be, on VHUS waves is not
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significiant As seen in Fig.8,18 b, while there is no anoma-
‘1lous dispersion of the mechanical wave, there arises anomalous -
dispersion of the electromagnetic wave in the case of strong
transverse magnetic fields. Another interesting result is that
the interval of frequency of the anomalous dispersion dependa‘
upon the viscosity of the medium, Of course these results may
provide some information about the mechanical and electromag-
netic properties of the solids.

Fig.8.19 displays the attenuations of voth waves as the
function of frequency « for specified values of .4~ eand Ly
Observation of the curves in Fig.8,19 indicates that the depend- :
ence of the attenuation o on /by 1is nonlinear up to a
certain frequency &)y but then the attenuatian is - constant
for the considered hagnetic field. S ‘
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CHAPTER 9

CONCLUSIONS

The primary ebjective of this dissertation has been to de-
velop a macroscopic nonrelativistic theory of polarizable and
magnetizable thermo-viscoelastic 80lids having thermal and eleec-
trical conduetivity. The basic equations and the associated
boundary conditions have been obtained by a systematic applica-
tion:zof the general balance laws of continuum physics.

When a fewer number of effects and special material sym-
metries are comsidered, the equations obtained in this thesis
reduce to those given in the previqus researchos. The resulting
equations are eoupléd and highly nonlinear; therefore,‘their_*'
solution 1is a very difficult task. f |

Even if the linear behavior ‘of the material is considered
in the derivation of the oonstitutive~equations, the reaulting
governing equations still remain nonlinear.

The decomposition process presented uncouples the original
governing equations as the equations associated with the rigid
body and perturbation states. The equations in the rigid body
state are in agreement with those of rigid body electrodynamicbf”
and the Buler‘q eqnations of rigid body motions. The set of .
_equations in the perturbation state becomes linear whilethat of ?
the rigid body state does not. However, when the body is const-
rained from the rigid body motions, the equations in the rigid
body state now beegme lineay, s

The aim of our decomposition is to consider sueh odreume. .
‘tances where the dynamic infinitesimal deformation is superim-
posed on the prescribed rigid body motions. The deeomposition;
- process employed in /4,5, 717 are not adequate to cover such af“
physical situation. :

As an application, the propagation of magneto~mechanicalz
waves in electrically conductive, magnetizable viscoelastic
~ materials in an applied uniform magnetic field is discussed.
Little physical insight is gained unless the numerical solu-
tions of the dispersion relations are obtained. The plots of =
the numerical solutions reveal some interesting behavior of the

i



Phase velocities and the attenuvations of certain modes,

It is observed that the waves, in general, coupled and
they are dispersive and dissipative due to the conduction and
the viscosity of the material.

Depending upon the direction of the applied magnetic field,
several modes of the waves arise such as coupled mechanical
and electromegnetic waves, and predominantly mechanical and
electromagnetlic waves. When the applied magnetic field is not
present, the modes of the waves are uncoupled and both the
phase velocities and the attenuations now vary smoothly with
frequency. The effect of the primary magnetic field is neglig-
able up to the order 1 Mﬁm"l, but when it is stronger, its ef-
fects become significant, depending upon the frequency of the
propagating waves and the viscosity of the material.
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APPENDIX A
MAXWELL'S EQUATIONS IN FOUR-DIMENSIONAL SPACE

,.in
A point¥a four-dimensional (Minkowski) space descrises an

event with coordinates =, ( «=1,2,3,4), where the first three
are the coordinates = in the inertial system, and 2y =Clet
This geometry is called the Minkowski geometry, generalizing

thé invariance of length of the Euclidean geometry to a four-

dimensional space-time continuum [49/.

A.1. Lorentz Group ofrTransformations

The group of’orthégOnal transformations of the four-dimen-
sional space, leaving the four-dimensional distance invariant,
is known as the group of Lorentz transformations, and the Max-
well's equations are invariant under such a group.

Lorentz transformations including proper and inproper
Lorentz transformations plus,translations are

7%2 = /\\a(/s 9(/3 - éog (A4.1)
where /\\“f‘ and bo are two constants and /,}\ satisfies
A o '/\\% = 5«/4- s olet N\ = 74 , (4.2)

wWhen two coordinate system coincide at time ¢ = o , the four-
veetor b« vanishes and this transformation is called the
"homogeneous" Lorentz transformation. If ofe? A =+4 the
transformation is called "proper", otherwise ( if ot l=-1),
the transformation is "inproper". ’

" The Lorents group of transformations is used to transform
the laws of physics from one inertial frame of reference to an-
other. Hence, the matrix of the coordinate transformation in
(A.1), in general, is given by

|
- I p(r1) XY X ,
vF be (4.3)
- //{“(!)// = |’ 2
y | m:kf§bzym-rfﬁ



where J:_ 4 «
/- V%2 o (A.4)

and yf
being the velocity ‘of primed coordinate system 8' (rest frame
of reference) with respect to the unprimed coordinate aystem 8
(1aboratory frame of reference). " . :

. Introducing (4.3) into (A.1), one obtains (with. b =0)

denotes the transpose of the colummn veector V , vy

-~

o

and | | (s
em rléo LB ) B

ce

! = 2 -Vt 4 (- L) Y- f’ Y
v+

The 1imit of (A.5) as (E\f)_; o (i.6., ¥=1 ) gives
a2 vt o ; t=t | o (A76) 

~

“

which is the homogeneous Galilean group of coordinate transfor—
-mations between inertial systems. ?herefore the Galilean group
is the 1limit of the Lorentz ‘group ‘when '.%% goes to zero, Tho
transformation matrix corresponding to (A,G),Ui.e.,

4 (o] o ‘:VI/C .

“ »V . ,‘»

1 ¢ | |
/gl = ° * ° | L, = L AT s
~ o o & Y% DR, T
el e e

is not orthogonal. A ! Lo
The Maxwell- - equations are not invariant under the '

Galilean group of transformations whereas the governing equan.“

tions of Newtonian mechanics are invariant under it, Thus, it 1s

only for velocities small compared to the. volooity of light

( W/ << 4 ) that the Galilean group is a good approximation of o

the Lorents group. - \ £ gk

A.2. Four-dimensional Minkowski Formulation of Maxwell'
Equations . W
Consider two antisymmetric field temsors 7, 7K” and

a four-vector J' defined by S D

~

165



O CBy -cB, =
...C83 O (,/31 ‘—('OE_Z,
1T = .
/'\ / - CBZ - Cgi O -(EB' (
AOS)
CE, CE, = © .
o Hy —ta -l
VI e
K = .
- Ho mH O ek (4.9)
L‘('— .b,, (°C D). e D3 O
+
(A.10)

- ( g('f) ) lOC-f;(/) )

/M denotes the quantities in the MinkQWSki
#H and £ are the

. #)
v
where superscript

formulation, and the fields £
guantities in the Minkowski formulation®,

Dual of the field tensors is defined by

£, B8,

el C_E«;{ = ’5_4" é«/&fﬁ/“ z,;g‘ (4.11)

Eanfr is a four-dim. alternating tensor being zero if

where
+4 if the indices are an even

any two indices are the same,
permutation of 1234, and -4 if they are an odd permutation of

1234,
The Maxwell's equations, in four-dim. representation for

any system of coordinates, are
. (£
J.M ‘3’3"’_—: ) L], .ZKH: :,] (a.12)
where '
— ° 2 &g
(T = (e, "é:a‘f') or gd:—:—:(;%ﬂ o (A.13)

is the four-dim. "del" operator. Abbreviating four-dim. diver-

gence as Div , (A.12) is equivalent to

*Antisymmetric tensors in four-dim. space are equivalent
to six vectors. Instead of (A.8) and (A.9) one might write
z”..___. (B ,-(E ) and A" = (4 ,~cD ) respectively.
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Div duel T" =0 mz« “”’ L as

The coﬁservation of the electric charge is given by }
) ,
/2 J/w or Div J“.—: o . , (A.15)

~The Maxwell y equations in any inertial system S‘ moving
with uniform velocity L% relative to the inertial system S
are easily obtained by means of the tensor transfcrmations.~
’Thus, one has . S -

e A AT

. 7 . : . L . g \
J/C(/_:y ‘.= /\\Oto( /\\/30" 7/{)'7 e o (A'lé)d
« = Ny Jo
and the primed quantities satisfy the same eqnations, (4. 12) or b‘“f;

(A.14), provided that the operator 0 1is replaced by Yo/
i.e., the Maxwell equations are invariant under the Lorentz

group of transformatioms.
One may introduce an auxilary pclarization tensor as

/7) / f"* K > - RO 17)‘ 'j

80 that ‘the components of ZD are given by

Coun ‘KO".ﬂQQ 4ﬁﬁ, C—Q

-tcP, *‘CE_ ""‘]3 o

“ép 18 an antisymmetric second order tensor.  '
The constitutive equatians of free spaca are very slmple

7/(7’ /Co‘ _ M L | Jj? ___,O ‘ (A 19)

= whera the free nharge is assumed to be zeru. It ahauld he notedy_
‘:that (A.19) is invariant,under a general Lemantz group of transwfi
V,formationa which 1mp11es thax the eleetromagnetic constitutive ﬂ;V




equations for free space are independent of the observer. This
is not true for electromagnetic materials.

In a material medium the left hand side of (A. 19)1 will
differ from the right hand side through a second rank tensor
/P defined in (A.17).

The constitutive equations of rigid bodies are assumed to
be in the form

P,= B (2"); =TT e

where superscript "hat" over ZD/ and Q77 denotes the
function of the arguments in the rest frame of reference.

'Restrictions on functions ZD and ‘jV can be imposed
through symmetry considerations andthrough the energy princi-
ples. We now consider a special case of the bonstitutive eQua-
tions -(A.20), appllcable to rigid isothermal noving materials.
In this case, éﬁ and JV are assumed to be linear functions
of the components ;Z" . Hence, the constitutive equations of
electrodynamics describing polarizable, magnetizable magneto- -
electric linear media reduce to

/P »/— %Amrz;} JvZ(,”-’;;’- (U/ﬁ _(A"?l)

where g Nb' is the generalized dimensionless susceptibility
tensor and §°V33 is the generalized conductivity tensor [BO
51/, Since both ZZ” and /P are antisymmetric, (A 21){
implies that

e

‘ A ~ : ‘ o
‘%«prs = %/suﬁ = ?p«fa{ ' - (a.22)

In addition to these intrinsic symmetries, one can expect the
. symmetry

%«/&»a‘f = %A’ag/; | (A.23)

which follows from the thermodynamic potential expression.
Similaerly, it i8 easily shown that

Suns == Sagp (FEP) ‘ CEZE
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A more conventional form of (A.21), is obtained by intro-
ducing (A.Zl)l into '(A.19)1. That is

074 //: (I di + £ ?%ﬁ )T (4.25)

where 5,( is four-dim, Kroneker delta, being equal to 1 if
.../3 ’ .and zero if oc#/% .

It is possible to introduce complex elements in (A. 21)1
in order to extend the conclusions to dispersive media. The
elements of the generalized susceptibility tenssr are. then the
function of frequency. The nondissipative behavior of the medium
is expressed by the Hermitian symmetry of the matrix associated
with the generalized susceptibility tensor, which means that

’@ s"‘/‘d” '?‘ jswfq/& 3 7§«/er“"' 7”’?”«/3 '(A.26)l’

It follows from the symmetry conditions (A.22,23) that the gen~
eral susceptibility tensor can be represented by a six by six -
symmetric matrix which has 21 independent components /51

Cpy . 41 42 43 23 3 2
BD«/A §‘7’ i £ £ Z3 c’y & -
N | A& s :
| (P R 11 T R
4 | CP,» ‘ 2 X3 | Kﬂ iz &
A A op Ay 1o D~
24 ch' XM 2_2;‘ 2 | Xﬁ-l ?3.'2. : QZ s I
3 | cB | RO x“" A;? P Ya T W (A2 0
) R R — - . O\(-\“) - 3 : o 1';;.[
’ + v fog El : L
23| My 1 Xm , 3‘.31 | (X“ ’x“z ' %‘3 1wtk
: I () () i s 7
L 3 N {w) RN Bk
31| Mo ’82 ?2; 6’/;; , )(2_‘ ’%u 2z SRR
. A e AR ~ (m) Afw) ‘ e
12 | M3 Tia 23 B . 7;41“, Kza Xas

- where the diagonal submatrices represent electric susce?t)ibility

}f ?  and the inverse of the magnetic susceptibility ;{ o -



Superscript "star" over the elements of the submatriceq denotes
the complex conjugate of a particular element. Thus m; and

%;' represent the material property tensor of magné%c~elect-
ric media. A material is called magneto-electric if it is polar~
ized in a magnetic field and similarly magnetized in an electric
field.

Introducing P=D.6£& and self=B_uy , one can write
(A.27) explicitly in three-dim. space in the rest frame of refer-
ences as :

e e (3 )E /2 8
/ Zadi A (4.28)

v/ A )

’ / ., é__.’ oo ATETY /
A =t b L+/;'_ @/‘4)(/ JB .

The constitutive equations (4.28) become simpler for
hemitropic (hemiheadral isotropic) and holotropic (holohedral
isotropic)matérials*. The constitutive equations are now

7 A A, 4
@M:&(/+X(P));/N+/'~6_a 7B
' s A , (4.29)
/M Bt Al /
HY = .+ 77°£ g (1=35 X7 )B"
if the material is hemitropic, and

DL a(r X" )E WL 2 (=2 F ™ )gk (4.30)

e

5
if the material is holotropic.

A similar type of reasoning can be applied to the compo-
nents of %@ﬁf'in (A.21)2. For hemitropic material one has

~

J'=cPem Lo B (4.31)
‘ o 2.(p)
and for holotropic material ™ vanishes. Thevconstants Q”P
and ™' can be called electric and magnetic conductivities

respectively.
Magneto-electric materials for a stationary, isotropic,

¥1f the material is hemihedral isotropic, then the
constitutive equations must be form-invariant under the proper
orthogonal group of transformations. The constitutive equations
for a holohedral isctropic material must be form-~invariant un-
der the central inversion transformation. :
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homogeneous linear medium were first proposed by Curigé /[527.
Later, the magneto-electric interactions are measured by Astrov
[237, Al'shin and Astrov [24] . The electromagnetic wave propa-
gation in an anisotropic rigid material is studied by Birss and.
Shrubsall /29/ and Puchs /3Q/, and in a finitely deformed.

- hemitropic magneto-electric materlal by Ersoy and Karal [517

‘}‘.gives

“From the transformation laws (A. 16), one- obtains the trans- .
formation of the electromagnetic quantities in the Minkowski (R

formulation as

E= T (E - .y B) pls=0) =

3—-—— I{B,Z-; vxe)+.u~.f)_~’;3).‘/;¥x)’
2’—‘—’ 7 /s;b.,p 4 vx A ) + (4~ r) o2 ;: |
A= A(f - yxP)+(1-0) ii..‘.’ Y W
P ey ) T 1
= - ﬂ’» ) ‘

" The tranaformation of the auxilary polarizamion tensor (A 17)

o p_ ..d fvx'»‘«ru .l ‘) ___f: v LU
g ( “ ) B e S ,‘(A‘.3,3)ﬁ* f
A«/_’___ zr(M-rxxP ) -/- (/-3’) Fe o

Aacording ta (A 33), the pnlarimed (magnetized) materia.l in tha

| rest frame of reference appears to be 'both polariza’ble a.nd mag-{' :

netizable in the moving frame of reference. = . L
N If the velocity of the bulk material is very small compared‘l‘

to the velocity of 1light, then Eqs.(A 32) and (A 33) reduce to |

E’:‘-’- E + XxB ; B’"'§~-L¥x5 : ;i
D’ = O+ HXxH 5 H o= po be (a3 :




and

~ z

p= L ‘LXW.,J M gy xR (35

'~‘neglecting the terms cuntainlng (%é; ZT’With respect to'fhe i

- first order terms. If Eq. (A.34) is substituted into (A 28-31)

r;jthe associated constitutive equations for the rigid body in the
'f‘laboratory frame of reference are obtained. i :

| The transformations of the gradient and the partial deriva—

tive with respect to time are obtained by means of (A,5) and o
“the chain rule of differentiation. Thus 2, =28 2 implies

“that - : 9% 2% a¥ L
| e _32 wv' 9 [ '. 2 e o
5%’:.—— 276 ‘7“(3( )—-—JV"' aJ "f‘z-z Vi 3¢ o
2 = f( 5? 4 iﬁ;iu )' Vt 0

a.f/

The material time derivative at the proper'frame'of refe;ff
rence is .

g 2) ;; _52 pl-+(9 ..

;Z"(?“" 9{-' ot / ,( ) E C(A3T)
Thus, the material derivative at the proPer frame of referenceoif i
. is equal to that at the laboratory frame of referenee if one L
neglects the terms eontaining CO&) »,_“ O R S

- The four«dim. energy-momentum tensor in the Mlnkowski for»ief§~
. mulation of electrodynamics 15 ‘;4 T o

.where

(A 39),_“?{




The divergence of Q;xy gives a four-vector the space part
of which is related to the electromagnetie body force,

A= (f -cch )= %iﬂf : (4.40)

Thus, one has the body force /Z/ﬂm)

SO L FE TxBE (VB -THB +VDEGED) (a.41)

Y T Tmae

and the energy supply /)/g”:- c’c7§ +J§‘ v
/P/EM:: (J“'&“«\./ )‘ (~5 “I",y)‘,@ )+f (‘H’Lé ".@"L}"" 'E:"‘—»E,!.S).(A042)
The antisymmetric part of Sy yields the body couple

P’v/ﬂ"—:,?*g .,L_@xi/ . : (4.43)

A.3. Four-dimensional Chu Formulation of the Maxwell-s Equa-
tions

In'four-dim. space one may define two antisymmetric second

rank tensors and three four-vectors as

A .
o A —Hy, e E,

—Hy o # ~lc& Ez

~ . /‘/2_ "’/7&( Q __'(ﬁ::eb Eg
Cce &, CewE, caf; O v A
‘ (A.44) -
i ~¢:9_ &, «-r’/g_/(m/!l, -
//7/(M// o é.; o ‘-(f; -—/c_/uoﬁ(z
-E, 54 o "(}Mﬂﬂ; |
: . ; | | |
é}l«@#] ﬂ}‘koﬁa ‘}‘”’43
J o . ot
qu = (J, cep )
Y v v t
VPV . 7
P ot (P+ L ,c,c,l??_)
- r ce—Vv "‘*""""""""C v
(A.45)

T



~ ro'T o vt ct V&
where
L o 4 . v
e ‘ . (A.46)
\//_ V2 ' ,

and v is the velocity of the material point with respect teo

.S, auperscript ¢ denotes the quantities in the Chu formulation
_of electromagnetism [19] Since both T © and 7/CC contain
E and A, _they ‘are interdependent.

o c
Adual T lce, K ; Mual K= -icre T (4 47)
The Mé.xwell 3 équations in four-dim. formulation are
o = Z e = N
D ATCHC )= IV ; O.(FKS 7 )=0 (a48)
where

—c i ¢ = pe o hc—- / €V ¢
Fe - \(x»/ﬁP —}”/;2 ; 7/%,37% (K’%'%’Mm)(ﬁu49)

%
In Eq.(A.49), V. 1is known as the four-velocity vector defined =
by ' - A
S 7 (v vilvi P o
VO“-‘:’-"‘ »—Y) "c' 3 \é‘val = -—C- S (A 50) :

) By mea.ns of the transformation 1aws, the transformations i
of £, e P and M (from an unprimed framed to a primed
frame at velocity) are obtained They are ' b

.,‘é,‘m E//—*d/ [5.L+V},uojj_)
H o= H + 0 (fe -

&£ ) o (a5y)
pim B TR -7 ;f~ g s

/ M +a/ M, & XX el P )
P A
where J is the velocity of the matarial in the unprlmed DT A
frame and ) is given by (A.4). The subscript.s Ao epd 4o

. . ' Lo ¥ i . . S
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in (A.51) denote the parallel and perpendicular components of
the associated variables to the velocity ¥ .

When the material velocity v is equal to the velocity -
of the primed frame Vv , and the terms which contain (V4 )2
-are neglected, the transformations (A.Bl) reduce to -

£ =E" = E syl AsHs //...VX&E
’ | : . s (A,52)

P=p=P L w=wm s #

Thus, in the nonrelativistic formulations of the Maxwell'. equa-

tions in terms of the Chu variables, the polarization and the

- magnetization at the rest and laboratory frames of reference are

- the same, however the electric and magnetic fields are not.

| Using the constitutive equations in the laboratory frame of

reference and the relations (3 39), the constitutive GQUdtiQnB

(4.29) are expressed in terms of the Chu variables.
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APPENDIX B

 DECOMPOSITIONS OF UNIT NORMAL AND TANGENT VECTORS

The surface of diseontinuity is assumed to be the bound»,‘:f‘
“ing of the deformable body. Our- goal is te exprass the unknown
unit normal and tangent veetors /1[ and £ in the present
configuration 2 in terms of unit vectors & and £ in ”;.f
the reference configuration 3B, . Let S’(Xx,f)J and - S(x,t)=0 be
the same surface of the body in Zr and Be respectively. It
is assumed that S (Xt) and  S(zt) are both class G’ in thei‘r
arguments. By. definition, one writes o : o

'(B.ki)‘” Y

A/(... J‘K/m : 5 nk= .54/ 5,45¢
Since o A | gy ‘, B
| sé@;f Jmslwinth e]=Stat) .« oy
one now expresses (B 1)2 as | . | | a ' f
nk = J’x Xx’,é /(SLSM XL ¢ XM, )”2 (B 3)

I

Replacing Kok by the digplacement gradient XKL“‘ J,ré le,é in
(B 3), one obtains T A & g -

‘/& T
ﬂkrs (5,(4 ake )5',< /[(Jq‘u,,e )(5,,4..41,,,4 ).S'L .S’M j R

| If the 11near terma :l.n. the displacement gradient a;r.'e retained._u
: and the deﬁnition of N (B 1)1 is used in the resulting equa—T '
tio:n, ‘one. can obtain : A e U

[(4 7"/\/ A/;_ @;w, )Jké —L{k,l— ‘il JNK

~ where em_ is the infiniteaimal strain teneor defined by (ﬁ 'z)é_.ﬁ

Thex'efpre, for a preacrihed &/, the unit vaqrtar o in Be oo
can be determined 1f the dianlaoement gradient is known. S
o . To find the transformation for the unit tangent vector let
S ~‘;| be a parameter which charaoterize ‘8 spac ;;'curve and t be




the timé, A material line of discontinuity is represented by

=X (At) 2z = % (At) o (3.6)

in 22@ and - B respectively. In view of the mappings
=R (Kt ) = =% L)t ]=%At) e

one now observea thax the parametrization in the two represent—_}
ations of the curve are the same. One has Lo :

X5 ‘ 2% /)

; by = e (B.8)
l/EWL L
92 A

T VEE

Using the chain rule of differentiation, (B 8)2 is written ag

£= i %(5/( ALy S Do ) = (2.9)

Introducing the'displagementtfield which is evaluated at the}
curve parametrized by A

Cx o= W) X Siz
into (B 9), one obtains

Z;:-U%r+&& /t( *%ﬂ*w“”WL“w)afé?Jz

2%y Jx - w,r (8.10)

: IR :

sR

QXK Xk ff“ff;f].ﬂ
BA %7\" \/ 4 +[§3"L 33\7‘ (”I-,M-,C-UH/A)J/(QX:: f’") ’

If the 1inear'terms are retained, one arrives at

Tt

Z{. = [(.'I-« K/.KM €M4_ )5'1' + LQ,I 5,;1_ JKI ‘ | (Bqll) o f‘;;:‘f

where the definition of Kr (B, 8)l is introduced. Thus é 'is o
.expressed in terns of the unit tangent vector aK and the dis«};
’placement gradient.{x‘ |
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