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architecture, sub-optimal training methods, dataset bias, the 
discrepancy between the training and test sets, and statisti-
cal insufficiency of data can cause the models to build upon 
wrong reasonings [4, 5]. Thus, it is required to evaluate the 
crucial properties of the models such as fairness, reliability, 
trustworthiness, usefulness, comprehensibility, and safety 
[6–8]. Explainability methods can help to evaluate some of 
the above factors [9, 10]. Hence, there is considerable inter-
est in explaining the internal structure of the models after 
their training.

In the last decade, the work in this area focused on two 
main streams. The feature attribution methods [4, 11–21] 
show the importance of image pixels in the form of seg-
mented images, sensitivity or pixel attribution heatmaps. 
However, these methods are vulnerable to the noise embed-
ded in the image [5, 22–24]. The feature visualization meth-
ods aim to recognize the features learned within hidden 

1 Introduction

Deep networks are considered as black boxes, between the 
low abstraction level input and high abstraction level out-
put. Various implicit and explicit factors, such as model 
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Abstract
Although Convolutional Neural Networks (CNN) outperform the classical models in a wide range of Machine Vision 
applications, their restricted interpretability and their lack of comprehensibility in reasoning, generate many problems 
such as security, reliability, and safety. Consequently, there is a growing need for research to improve explainability and 
address their limitations. In this paper, we propose a concept-based method, called Concept-Aware Explainability (CAE) to 
provide a verbal explanation for the predictions of pre-trained CNN models. A new measure, called detection score mean, 
is introduced to quantify the relationship between the filters of the model and a set of pre-defined concepts. Based on the 
detection score mean values, we define sorted lists of Concept-Aware Filters (CAF) and Filter-Activating Concepts (FAC). 
These lists are used to generate explainability reports, where we can explain, analyze, and compare models in terms of 
the concepts embedded in the image. The proposed explainability method is compared to the state-of-the-art methods to 
explain Resnet18 and VGG16 models, pre-trained on ImageNet and Places365-Standard datasets. Two popular metrics, 
namely, the number of unique detectors and the number of detecting filters, are used to make a quantitative comparison. 
Superior performances are observed for the suggested CAE, when compared to Network Dissection (NetDis) (Bau et al., 
in: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 2017), Net2Vec (Fong and 
Vedaldi, in: Paper presented at IEEE conference on computer vision and pattern recognition (CVPR), 2018), and CLIP-
Dissect (CLIP-Dis) (Oikarinen and Weng, in: The 11th international conference on learning representations (ICLR), 2023) 
methods.
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units and attempt to reconstruct the input image from the 
feature maps [11, 25, 26]. Some of these methods visualize 
the patterns that maximize the activations [27, 28]. Unfortu-
nately, optimization algorithms suggested in these methods 
are expensive, result in fragments of mixtures, and are vul-
nerable to adversarial attacks [29].

Recently, a third stream focusing on concept-based anal-
ysis gains momentum. These methods rely on the human 
way of explaining the model decision by describing it with 
concepts such as actions, objects, and properties. In [1, 
2], human-interpretable concepts are assigned to each fil-
ter using thresholding and Intersection over Union (IoU). 
Meanwhile, [30] decomposes output classes into multiple 
concepts and measures their contribution to the model 
decision. In [31], a metric is proposed for measuring the 
relational significance of each concept. In [5], concept acti-
vation vectors are defined for distinguishing layer-wise acti-
vations against images with and without the concepts. These 
activation vectors are used in [32] for concept definition, 
extracted from the segmentation maps of the input images. 
In [33], the model is trained to represent an object part by 
preparing templates for each feature map and using them 
as masks to filter out noisy activations. In [34], batch nor-
malization is replaced with Concept Whitening to visualize 
how different concepts are learned. In [35, 36], a human-in-
the-loop method is suggested by setting concept prediction 
as an intermediary step and allowing intervention to mod-
ify predicted concepts. Several approaches have favored 
leveraging the CLIP encoder model [37], which generates 
embeddings for both text and images and links concepts to 
images. In [3], a concept-activation matrix is introduced. It 
is constructed through the inner products of these embed-
dings to identify the most similar concept for each unit. 
In [38], CLIP is paired with heatmap masks to detect and 
eliminate spurious concepts from explanations. In [39], the 
explanation output of concept discovery using CLIP embed-
dings is further refined by producing a class heatmap with 
Shapley values and another that contrasts class-wise and 
sample-specific maps.

While the above explainability methods show promise, 
they also present some limitations. Relying on secondary 
neural networks introduces additional concerns regarding 
their interpretability. Methods tailored to a specific model 
during training may not generalize well to other models. 
Also, layer-wide responses can dilute if only a few filters 
exhibit strong activation. Post-hoc approaches that associ-
ate each unit with a concept may identify multiple concepts, 
but due to disentangled representations, only one concept 
is typically considered. Furthermore, they apply threshold-
ing on activation values and perform IoU, which causes 
two crucial problems: i) High quantile thresholds introduce 
error by filtering out most of the activated parts, and ii) IoU 

calculation requires annotated segmentation maps of the 
image at inference time, which is not available, in practice.

In this study, we present a novel concept-based method 
called Concept-Aware Explainability (CAE) to elucidate 
the reasoning behind CNN model predictions. The sug-
gested CAE model can be summarized as follows:

 ● First, we define a random variable called detection score 
to introduce a probabilistic model for the activation 
maps obtained at the output of the final convolutional 
layer of a pre-trained CNN. Based upon this random 
variable, we propose a new measure, called detection 
score mean to quantify the association between a set of 
concepts and filters.

 ● Next, we define two sorted lists of lists using the de-
tection score mean values. The first is called the list of 
Concept-Aware Filters (CAF) and is a sorted list for 
each concept concerning the filters. The second one is 
called the list of Filter-Activating Concepts (FAC) and 
is a sorted list for each filter concerning the concepts.

 ● Finally, we use the CAF and FAC lists to generate ex-
plainability reports, which explore the predictions of the 
model by associating its filter activations and the pre-
defined concepts.

The proposed Concept-Aware Explainability (CAE) model 
differs from other explainability methods in several key 
ways:

Firstly, it is model-agnostic, which can be applied to any 
CNN model without requiring changes to the model archi-
tecture, assistance from external neural networks, or spe-
cialized data preparation specific to the model.

Secondly, it avoids information loss, caused by the 
quantile thresholds. Unlike the methods that apply quan-
tile thresholds, CAE preserves information about the con-
cepts by exploring the potential of each unit without such 
constraints.

Thirdly, it has the capability of multiple concept asso-
ciations to the filters. Instead of limiting each filter to a 
single concept, CAE allows multiple concept associations 
per filter. This approach leads to richer and more compre-
hensive explanations compared to methods that force disen-
tangled representations.

Finally, CAE does not require a segmented map of the 
test image during inference. It uses previously learned 
concept-filter associations to generate explanation reports, 
making it more efficient and versatile.

In summary, CAE provides a more flexible, detailed, 
and model-independent approach to explaining CNN 
predictions.
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2 A concept-aware explainability method 
for CNNs

The suggested method has three major modules (see Fig. 1); 

1. Learning the associations between the concepts and 
filters by introducing a new measure called detection 
score mean.

2. Identifying the sorted list of concept-aware filters 
(CAF) concerning the concepts and the sorted list of 
filter-activating concepts (FAC) concerning the filters.

Fig. 1 Proposed Architecture. Learning Concept-Filter Associations: 
Detection score mean computation for each concept-filter pair to quan-
tify their relationship. Ranking CAF and FAC: Identification of CAF 
and FAC lists ranked by detection score mean values. The output is 
two lists of sorted lists, C with the most activating concepts per filter, 

and F with the most aware filters per concept. Truncating CAF and 
FAC: Create more compact C and F lists by limiting the number of 
filters per concept and number of concepts per filter. Explainability by 
CAF - FAC: Explain the prediction with the most confident concepts. 
Confidence of each concept is measured using C and F lists
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The resulting masked feature map, Mcf (xi), gives the fea-
ture activation of image xi at the output of the filter f for the 
concept c.

2.1.2 Detection score mean estimation between the 
concept-filter pairs

In this section, we introduce a new measure for quantifying 
the concept-filter associations based on the masked activa-
tion maps Mcf (xi) obtained for each image xi, using the 
datasets X =

∪
∀c Xc.

Definition 1 (Detection Score Mean and Detection Score 
Variance) Consider the activation map Mcf (xi) of image 
xi, masked by region Rc at the output of filter f, where each 
pixel at coordinate (m, n) has the activation value a(m, n). 
We define the random variable called detection score, 
dcf (xi), as the average activation value obtained at the out-
put of the filter f, for concept region Rc of image xi. Math-
ematically, dcf (xi) is defined as,

dcf (xi) = 1
Nc

∑
∀(m,n)∈Mcf

a(m, n), (2)

where Nc is the number of pixels in the region Rc. We 
assume that the associated probability density function of 
dcf (xi) over all the images xi ∈ Xc is a unimodal Gaussian 
density function P (dcf ) = N(µcf , σcf ).
The detection score mean is the mean value of P (dcf ) over 
all images in the training dataset, which belong to the same 
category c obtained at the output of the filter f. It is estimated 
by the maximum likelihood method, as follows;

µcf ≈ 1
NXc

∑
∀xi∈Xc

dcf (xi), (3)

where NXc  is the number of images in the dataset, Xc, with 
a set of images containing regions Rc for concept c. Simi-
larly, the detection score variance of P (dcf ) can be esti-
mated by

3. Generating explainability reports using the CAF and 
FAC lists.In the following subsections, we describe the 
modules mentioned above.

2.1 Learning the concept-filter associations

In this module, we aim to learn the amount of associa-
tions between each concept-filter pair of a pre-trained CNN 
model.

2.1.1 DataSet generation with the labeled concepts

First, we generate a learning set of images Xc, each contain-
ing labeled region(s) of concept c for c = 1, ..., C, where 
C is the total number of concepts in an image dataset. This 
task is achieved by a semantic segmentation algorithm, 
where we obtain the segmentation map of labeled regions. 
Mathematically, the segmentation map SM(xi), of each 
image xi ∈ Xc is defined as,

SM(xi) =
∪

∀c∈xi

Rc, (1)

where Rc’s are the regions of image xi with the label of 
concept c. We assume the segmentation map SM(xi) can 
have one or multiple concept regions.
Next, we obtain the feature activation maps for each image 
xi ∈ Xc at the output of the final convolution layer of a pre-
trained CNN (Fig. 2).

To measure the response of each filter f to a concept c, we 
need to determine the activation of the feature map corre-
sponding to the region Rc of the segmentation map SM(xi)
. For this purpose, the feature maps are up-sampled to match 
SM(xi) in size, and it is masked by the region Rc (Fig. 3). 

Fig. 3 Semantic Segmentation: 
Segmenting the image and labeling 
each pixel after a concept. Mask-
ing: Masking the feature map to 
focus on activation values of the 
concept region (color figure online)

 

Fig. 2 A pre-trained CNN model with the activation maps of each filter 
at the final layer of convolution blocks
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Definition 3 (Concept-Aware Filters (CAF) List) Given a 
detection score mean matrix Dµ, define the row vector for 
concept c, as a list,

µc = {µcf }F
f=1 (7)

where f is the filter index of each entry of the list. Then, we 
can define the Filter Sort function Sc(f) as,

Sc : f −→ f ′ (8)

which sorts the µc list of detection score mean values in 
descending order and defines the new filter index f ′ for each 
entry in the sorted list,

µc,sorted = {µcf ′}. (9)

The new index f ′ shows the filter index in the sorted list 
from the most activated filter to the least activated filter 
for concept c. This sorted list is called the list of Concept-
Aware Filters (CAF] and is shown as,

Fc = {f : f = S−1
c (f ′) }. (10)

Repeating the above sorting procedure for all the concepts 
in the dictionary yields the list of CAF lists, F, comprising 
a sorted list of filters,

F = {Fc}C
c=1. (11)

The list F consists of filter indices f, sorted concerning 
the detection score mean values of the CAF lists for the 
concepts.

Definition 4 (Filter-Activating Concepts (FAC) List) Given 
a detection score mean matrix Dµ, define the column vector 
for filter f, as a list,

µf = {µcf }C
c=1, (12)

Then, we can define a new function Concept SortSf (c), a 
dual form of Filter SortSc(f), as follows;

Sf (c) −→ c′ (13)

which sorts the µf  list in descending order and define the 
new concept index c′ for each entry in the sorted list,

µf,sorted = {µc′f }. (14)

Then, the concept indices c′ can be referred to determine the 
list of best-fitting concepts for the filter f,

σ2
cf ≈ 1

NXc

∑
∀xi∈Xc

(dcf (xi) − µcf )2. (4)

The detection score mean measures the mean activation 
value of a region representing a concept over all the images 
in the dataset Xc. As the mean activation value gets high, the 
filter response for that particular concept has a high mean 
value, which shows that the filter is highly associated with 
the underlying concept. As it gets low, we assume that the 
filter does not care about that particular concept. Similarly, 
a low variance value indicates certainty about the learned 
activation of a filter for a concept, and high variances show 
that the filter acts randomly in learning that concept.

Based upon the detection score mean values between 
each filter-concept pair, we define the detection score mean 
matrixDµ and detection score variance matrixDσ, in the 
following definition:

Definition 2 (Detection Score Mean Matrix and Detection 
Score Variance Matrix) Detection score mean matrix and 
detection score variance matrix are defined as follows,

Dµ = [µcf ] (5)

Dσ =
[
σ2

cf

]
, (6)

respectively. The above matrices are of size C × F , where 
C is the number of concepts in the concept dictionary and F 
is the number of filters in the convolution layer.
Note that the entries of the Dµ show the amount of associa-
tion between each filter concept pair. Similarly, the entries 
of the Dσ show the degree of uncertainty about these 
associations.

2.2 Ranking the filters and concepts for generating 
the CAF and FAC lists

Each row of the detection score mean matrix Dµ shows 
the activation values of a concept obtained at the output of 
each filter. Hence, sorting the detection score mean values 
at each row provides a list from the most activated to the 
least activated filter. Similarly, each column of Dµ shows 
the amount of the activation of a filter for each concept, and 
sorting them yields a list for each filter from the most to 
the least activating concepts. These sorted lists are called 
Concept-Aware Filters (CAF) list and Filter-Activating 
Concepts (FAC) list, which are defined below.
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Af =
M∑
m

N∑
n

a(m, n), (19)

where a(m, n) is the activation of the pixel of the test image 
at the coordinates (m,n). Then, the list of activations of all 
the filters is defined as,

A = {Af }F
f=1, (20)

and the filter with maximum total activation fmax can be 
identified as,

Afmax ≥ Af , ∀f f = 1, ..., F  (21)

Once the filter fmax is selected, we retrieve the concepts 
assigned to fmax from Ctrunc, which can be defined as 
Cfmax,trunc. Then, for each concept c in Cfmax,trunc, we 
check the truncated CAF list, Ftrunc to identify the filters 
assigned to each concept in Fc,trunc and if fmax is one of 
them. If positive, the confidence score of the concept, conc, 
is incremented (see Algorithm 1)

conc = conc + 1.

We remove Afmax  from A and iterate the above operation 
to determine the next filter fmax, which has the maximum 
total activation. Since iterating over all the filters counts for 
even the slightest activation, we stop the iterations at an 
empirically determined N  number, which depends on the 
size of the convolution layer.

Cf = {c : c = S−1
f (c′) } (15)

and the FAC list, C, can be obtained by applying Concept 
Sort function for all filters,

C = {Cf }F
f=1. (16)

2.3 Truncating the CAF - FAC lists

The CAF and FAC sorted lists consist of all concept-filter 
pairs. However, it is well-known that a limited number of 
concepts activates each filter, and each concept activates a 
limited number of filters. Hence, we truncate the total num-
ber of concepts and filters to create more compact and mean-
ingful CAF and FAC lists. We empirically define Y < F  as 
the number of filters that are activated by concept c and keep 
only the first Y entries of the Fc. Likewise, we define Z < C 
as the number of concepts assigned to filter f and keep the 
first Z entries of Cf . This truncation generates two compact 
lists called Ftrunc of size C × Y , and Ctrunc of size F × Z:

F
truncate(Y )−−−−−−−−→ Ftrunc  (17)

C
truncate(Z)−−−−−−−−→ Ctrunc. (18)

The parameters Y and Z are configurable hyper-parameters 
and may depend on multiple factors, such as filter charac-
teristics, the size of the convolution layer, and the size of the 
concept dictionary. Their optimization is a crucial design 
issue. Setting them low may eliminate some useful filters 
or concepts and thus cause a loss of knowledge, whereas 
opting for a high value may include irrelevant filters or con-
cepts in the analysis and introduce noise into explanation 
reports.

2.4 Filter selection and concept confidence scoring

The proposed CAE method attempts to explain the rationale 
of the prediction of the model for a test image by estimating 
the concept(s) embedded in the test image detected by the 
filters (Fig. 1). The process starts by feeding an image from 
the test set, xi ∈ Xte, to the model and retrieving the feature 
activation maps obtained at the output of the filters of the 
final convolution layer. The prediction is also stored for the 
final report. Then, assuming that the high activation values 
have a large impact on the prediction, we select the filters 
that output the highest total activation for the test image. 
Mathematically, given a test image xi ∈ Xte, let us define 
the total activation of a feature map of size M × N  for filter 
f as,
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 ● Model explanation The relevance of the concepts in the 
reported list to the predicted class explains the reason 
behind the correct and wrong predictions. The report 
can also shed light on faulty explanation attempts such 
as the impact of concept similarities and potential bias 
in the learning dataset.

 ● Model comparison It helps to compare models and their 
training datasets, using the capability for capturing a 
particular concept or the success of the models for dis-
entangling the concepts embedded in an image.

3 Experimental setup

In the following subsections, we describe the concept dic-
tionary used to generate the explainability reports and the 
selected CNN models together with their training datasets. 
Finally, we provide an empirical method for truncating the 
CAF and FAC lists.

3.1 Concept dictionary

Detection score mean estimation and the CAF and FAC 
lists form the backbone of our concept-aware explainability 
method. Therefore, the generation of the concept dictionary 
is an important task. In this study, we use the concept dic-
tionary of the Broden dataset [1], which was also used in the 
previous explainability studies [1, 2, 5].

Broden is a densely labeled segmentation dataset with 
more than 60,000 samples representing 1197 concepts in 6 
categories: objects, scenes, parts, textures, materials, and 
colors. For a controllable analysis, our concept dictionary is 
reduced only to objects category. In each segmented image 
of size 112 × 112, the concepts with a region smaller than 
50 pixels are considered negligible. Furthermore, concepts 
with less than 100 samples are ineligible due to insufficient 
representation. Following these eliminations, our dataset 
X =

∪C
c=1 Xc reduces to 32,313 images, where the number 

of concepts is C = 200. Note that even if each concept c has 
its dataset Xc ∈ X , the images comprise multiple concepts 
and thus can be part of many Xc.

3.2 CNN models

In our experiments, we use ResNet18 and VGG16 models, 
each of which is trained with Places365-Standard [40] and 
ImageNet [41], as summarized in Table 1.

Places365-Standard dataset is for the scene recognition 
task. It contains 1.8 million training images for 365 output 
classes. Our concepts in the Broden dataset are also from 
scenery images. Hence, they can be used in explaining the 

Algorithm 1 Explainability by CAF and FAC Lists 

2.5 Generating explanation report

Algorithm 1 outputs a sorted list of concepts for a test image. 
The final explanation report keeps the most confident con-
cepts and their associated filters. Concepts with zero confi-
dence score and filters that are not activated by any concept 
are discarded. The generated explainability report can be 
used for

Table 1 Pre-trained CNN Models used in experiments and their train-
ing datasets
Dataset Places365-

Standard
ImageNet

Model
ResNet18 ResNet18-

Places365
ResNet18-
ImageNet

VGG16 VGG16-
Places365

VGG16-
ImageNet
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the image xi. This sorted list of filter indices can be defined 
as,

Lc = {f : f = S−1
c (f∗) }. (24)

At this point, we have two lists of filters: Lc sorted by their 
activations for the given image xi and Fc sorted by their 
detection score mean values on concept c. In the next step, 
we truncate both lists by Y and compare the total activations 
of the filters in the corresponding lists, represented as

ALc,trunc =
∑

∀f∈Lc,trunc

Af , (25)

and

AFc,trunc =
∑

∀f∈Fc,trunc

Af . (26)

Figure 4 shows the examples with the best representa-
tion among the 100 samples for each concept. The x-axis 
in the graphs refers to varying values of Y, whereas the 
y-axis shows the total activation of the filters in the list. 
The ALc,trunc  is depicted as the red curve, whereas the blue 
curve illustrates AFc,trunc . Even in the best representations, 
the AFc,trunc  converges around 30 filters, and considering 
both ResNet18 and VGG16 models have the same size in 
the final convolution layer, we set Y = Z = 30. It should 
be noted that other samples may converge for the smaller 
values of Y.

predictions of the models trained with the Places36Standard 
dataset.

ImageNet dataset is for object recognition/localization 
tasks. It contains 1000 object classes, wherein only 580 
of them match or are related to one of our concepts. The 
samples of remaining classes can still be used while evalu-
ating the learning ability of the model on the background 
concepts.

3.3 Truncating the CAF and FAC lists

As highlighted in Sect. 2.3, finding the hyperparameters Y 
and Z, for truncating the size of the sorted list of filters F 
and sorted list of concepts C is crucial. For this purpose, we 
adopted an empirical approach, and as a reference model, 
we used the ResNet18-Places365 model.

First, we identify the first 100 images xi ∈ Xc, for each 
concept c, with the largest total activation of the feature 
maps to get A = {Af }F

f=1 as given in Eq. (20). Then, we 
repurpose the Filter Sort function in Eq. (8) as,

Sc : f −→ f∗ (22)

to sort the activation values A in descending order and define 
the new filter index f∗ for each entry in the sorted list,

Asorted = {Af∗}. (23)

The new index f∗ shows the filter index in the sorted list 
from the most activated filter to the least activated filter for 

Fig. 4 For the given concept, samples with the best representation 
among 100 samples with the largest representation. Reference Model: 
Resnet18-Places365. The range for the number of filters is 1-30. (red) 

List of filters sorted by their activation, ALc,trunc , (blue) List of filters 
sorted by their detection score mean values, AFc,trunc  (color figure 
online)
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concept-filter associations. This list is then used at inference 
time for explanations. Consequently, the size of the actual 
concept dictionary is determined by these unique detectors. 
In other words, if an explainability method fails to associate 
any concept with a filter during training, that concept will 
not be available for explanation during inference.

The data in Table 2 shows that the NetDis and Net-
2Vec methods can only map a small portion of the concept 
dictionary to filters, which limits their ability to provide 
comprehensive explanations. This improves slightly with 
CLIP-Dis, running on the ViT-B/32 transformer-based CLIP 
encoder using cosine similarity. However, despite its limited 
scope, even our Dis-CAE model remains competitive and 
outperforms its counterpart in the VGG architecture. While 
CLIP-Dis using the softwpmi similarity function identi-
fies more concepts than the other models, approximately 
30-40% of these concepts are linked to just one filter. This 
suggests weak representation on a convolutional layer with 
512 units. In contrast, the CAE method associates nearly 
all concepts with multiple filters, allowing for stronger rep-
resentation and full utilization of the concept dictionary to 
generate explanations.

A low number of detecting filters implies that many fil-
ters are deemed unhelpful for explanation purposes. This 
can lead to information loss during inference, as the activa-
tions of these filters will be entirely disregarded. As shown 
in Table 3, the NetDis and Net2Vec methods struggle to 
associate concepts with certain filters, resulting in a lim-
ited perspective on the model’s activations for a given test 
image. In contrast, other models, including Dis-CAE and 
CAE, successfully associate concepts with every filter, pro-
viding a comprehensive view of filter activations when gen-
erating explanation reports.

4 Experimental analysis and results

In the following subsections, we compare our explainability 
method with similar methods. Then, we conduct a thorough 
analysis of our CAE method to explain and compare the 
models in Table 1.

4.1 Comparison with existing explainability 
methods

Our approach identifies the best set of filters per concept and 
the best set of concepts per filter. This aspect is similar to the 
Network Dissection (NetDis) [1], Net2Vec [2], and CLIP-
Dissect (CLIP-Dis) [3] which link all the filters within a 
particular layer to concepts. These studies only estimate 
concept-filter associations to explain the training process of 
the model. Therefore, a valid comparison can be done using 
CAF and FAC lists of our method. The following two met-
rics, proposed in [1], are used for comparison:

 ● Number of Unique Detectors Given a model and a con-
cept dictionary, the number of unique detectors corre-
sponds to the number of concepts identified by at least 
one filter. Higher values show the model’s capability to 
recognize more concepts and thus its diversity.

 ● Number of Detecting Filters Given a model and a con-
cept dictionary, the number of detecting filters corre-
sponds to the number of filters that can detect at least 
one concept. Higher values indicate that the model uses 
more filters for representation.The concept-filter asso-
ciation in NetDis has a limitation of assigning only one 
concept to each filter. We apply this limitation to our 
approach and define a new mode, called Disentangled 
CAE (Dis-CAE) for a fair comparison.

The number of unique detectors is related to the detection 
capability of the model. On the other hand, the explainabil-
ity methods that analyze the model provide the list of final 

Table 2 Comparison of CAE with existing studies based on Number of 
Unique Detectors: Each cell shows the number of concepts identified 
by at least one filter in the final convolution layer of each model

ResNet18-
Places365

VGG16-
Places365

ResNet18-
ImageNet

VGG16-
ImageNet

NetDis [1] 29 25 28 24
Net2Vec [2] 41 54 57 46
CLIP-Dis (cos) 
[3]

111 105 102 92

CLIP-Dis 
(swpmi) [3]

169 162 170 159

Dis-CAE 108 140 80 109
CAE 200 200 199 200
The numbers for both the disentangled and normal modes of our 
approach are given in bold

Table 3 Comparison of CAE with existing studies based on Number 
of Detecting Filters: Each cell shows the number of filters in the final 
convolution layer of each model that can detect at least one concept

ResNet18-
Places365

VGG16-
Places365

ResNet18-
ImageNet

VGG16-
ImageNet

NetDis [1] 481 484 395 442
Net2Vec [2] 191 341 512 339
CLIP-Dis (cos) 
[3]

512 512 512 512

CLIP-Dis 
(swpmi) [3]

512 512 512 512

Dis-CAE 512 512 512 512
CAE 512 512 512 512
The numbers for both the disentangled and normal modes of our 
approach are given in bold
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 ● Test Set 1 (T S1): 365 images from Places365-Standard 
test set. We select one random sample for each output 
class.

 ● Test Set 2 (T S2): 898 images from ImageNet test set. 
We select one random sample for each output class, 
except for some not covered in our concept dictionary, 
such as insects or fish.

During our experiments, we use the TS1 and TS2 on 
Places365 and ImageNet-based models, respectively. Also, 
the number of iterations N  for filter selection and confidence 
scoring is selected as 20, based on the reports in [42] where 
20 filters are proven to be sufficient for the final convolu-
tion layer of the VGG16 network trained on the Places365 
dataset to represent the model’s decision path and maintain 
an acceptable prediction accuracy.

4.3.1 Explanation of correct predictions

Figure 5 shows examples of accurate predictions. For the 
sake of simplicity, only three of the most confident concepts 
are listed in the explanation report. The confidence scores of 
these concepts are given in Table 6.

Upon examining the results, we can confirm that the 
reported concepts match well in articulating the character-
istics of the target class. Furthermore, the confidence scores 
are usually good, with the ResNet18-based models exhib-
iting higher rates. Therefore, it can be concluded that the 
models are identifying correct concepts while making their 
decisions.

4.3.2 Explanation of wrong predictions

Throughout our experiments, we observed mispredictions 
occasionally. Some of these samples are given in Fig. 6 and 

4.2 Concept-focused learning and concept 
similarities

We can use the CAF and FAC lists to analyze the learning 
tendencies of the models in terms of highly activated filters 
or favored concepts. Table 4 lists the five concepts that acti-
vate the highest number of filters for each model. All models 
can identify the concepts characterized by distinct shapes 
consistently. Models trained with ImageNet focus more on 
animals, whereas others are more diverse.

The CAF list F can also yield valuable insight into the 
model’s perception of similarity between concepts. Let us 
define Similarity Score as,

SS(g, h) = card( Fg ∩ Fh )
Y

, (27)

where Fg and Fh are the list of filters assigned to concepts 
g and h and Y is the size of the lists. This score can help to 
identify;

 ● Redundancy in the learning dictionary. Similar concepts 
can be set as synonyms. Then, one of them can be re-
moved from the dictionary.

 ● Implicit bias in the training dataset (if all dogs are black 
in the training images, black and dog concepts may be 
similar).

 ● Similarities, when the objects complement each 
other.Table 5 lists the concepts with the highest similar-
ity scores of concept pairs for each model. For instance, 
in a scene image featuring a door, the presence of a door 
frame is a natural assumption. Likewise, if a blind is 
depicted in the image, it is probably positioned on a 
window. In some cases, the models associate the objects 
with resembling shapes as similar, like traffic light vs. 
streetlight or sofa vs. ottoman.

4.3 Model explanation

The proposed CAE method reports a list of concepts embed-
ded in the image. However, its main objective is not to enu-
merate the concepts in the image but to show the model’s 
belief regarding their presence. Therefore, an incorrect con-
cept in the explanation report can be as insightful as a cor-
rect one while assessing the model’s reliability.

In this section, we present the explanation reports of our 
approach against various images and emphasize its assis-
tance in comprehending the reasoning behind both accurate 
and wrong predictions. For this purpose, we create the fol-
lowing two test sets.

Table 4 Most Detected Concepts: 5 concepts that activate the highest 
number of filters in each model

ResNet18-
Places365

VGG16-
Places365

ResNet18-
ImageNet

VGG16-
ImageNet

Most 
detected 
concepts

Pool table Gate Bird Dog
Train Boat Dog Bird
Bird Train Cow Sheep
Bridge Bridge Sheep Cow
Airplane Airplane Horse Horse

Table 5 Concept Similarities: The concept pair with the highest simi-
larity score for each model

ResNet18-
Places365

VGG16-
Places365

ResNet18-
ImageNet

VGG16-
ImageNet

Top
similarity
score

Windowpane
&
blind 93%

Street light
&
traffic light 
87%

Sofa
&
ottoman 
93%

Door
&
door frame 
90%
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may help explain the model’s rationale and thus can impact 
its reliability positively.

4.3.3 Concept similarity in explanation reports

As stated in Sect. 4.2, concepts sharing similar traits or com-
plementing each other may activate the same filters, leading 
to redundancy in the reports. Moreover, if the report size is 
small, similar concepts may dominate, resulting in a loss of 
valuable information.

The samples in Fig. 7 and their reports in Table 8 show 
examples of this issue. In the street image, the explanation 
report predicts multiple vehicular concepts although there 
only exists cars. A comparable outcome is observed in the 
moving van image. Considering the Similarity Score values 
among the car, van, and truck concepts are in the range of 

the confidence score of the most confident concepts in the 
reports are listed in Table 7.

The results show that in some cases we may reason with 
the wrong predictions. For instance, the image labeled as 
amusement arcade features its restaurant area. Therefore, it 
is reasonable that both models predict it as a food court. 
Likewise, the large concepts in the hen image such as grass 
and fence are correctly recognized, and the models associate 
these more with worm fence or turnstile. In other examples 
such as bathroom or sandbar, the reported concepts align 
well with the actual scene and the mispredictions are nota-
bly similar to correct labels. These could easily be labeled as 
shower or seashore by another human annotator.

In terms of statistics, these failed predictions reduce the 
accuracy of the models. However, our explanation approach 

Table 6 Most Confident Concepts in Explaining Correct Predictions in Fig. 5
(a)

Label: Beach Label: Hotel Room Label: Kitchen
ResNet18-
Places365

VGG16-
Places365

ResNet18-
Places365

VGG16-
Places365

ResNet18-
Places365

VGG16-
Places365

Most
Confident
Concepts

Sand 85% Sand 65% Pillow 90% Pillow 60% Oven 80% Stove 55%
Sea 70% Sea 45% Bed 80% Bed 50% Kitch. isl. 80% Kitch. isl. 45%
Water 65% Water 45% Lamp 75% Blanket 40% Exh. hood 70% Microwave 45%

(b)
Label: Boathouse Label: Desktop PC Label: Locomotive
ResNet18-
ImageNet

VGG16-
ImageNet

ResNet18-
ImageNet

VGG16-
ImageNet

ResNet18-
ImageNet

VGG16-
ImageNet

Most
Confident
Concepts

House 50% Hedge 45% Keyboard 50% Keyboard 55% Track 70% Train 55%
River 45% River 40% Computer 45% Computer 45% Train 60% Container 40%
Pier 40% House 35% Desk 40% TV mon. 40% Platform 60% Track 30%

 (a) Samples from T S1 (Places365)
 (b) Samples from T S2 (ImageNet)

Fig. 5 Explanation of Correct Predictions (by ResNet18). Output labels are at the top of the images. The prediction and the most confident concepts 
as explanations are at the bottom
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In essence, these findings highlight the significance of 
overseeing the learning dataset. It is advised to not only 
build a diverse dictionary but also select the samples to pre-
vent introducing bias. If modifying the learning dataset is 
not feasible, this risk can be mitigated by conducting a simi-
larity analysis given in Sect. 4.2 and refining the concept 
dictionary by defining synonyms.

4.3.4 Faulty explanations

The proposed explanation approach has some flaws as well. 
Figure 8 shows examples of failed attempts due to various 
reasons such as;

 ● Samples representing very few concepts In the ocean and 
goldfinch images, there are only a couple of concepts. If 

0.9 to 0.7, this result can be expected. Likewise, the cat-
egorical similarities between animals (i.e. SS (cow, animal) 
= 0.8) influence the report for the rodeo arena image. Simi-
lar patterns are evident for the badlands and screen images 
as well.

The structural resemblances can also factor in similar-
ity impact. For instance, bird and airplane concepts share 8 
out of 30 filters in the CAF list of the ResNet18-ImageNet 
model, for a similarity score of 0.27. However, in the black 
stork image the bird flying with its wings wide open has 
a shape similar to an airplane in the air. That’s probably 
why most of the 8 filters associated with both concepts are 
among the 20 highest activated filters of the model, which 
leads the CAE method to include both concepts in the expla-
nation report.

Table 7 Most Confident Concepts in Explaining Wrong Predictions in Fig. 6
(a)

Label: Amusement Arcade Label: Cliff Label: Bathroom
ResNet18-
Places365

VGG16-
Places365

ResNet18-
Places365

VGG16-
Places365

ResNet18-
Places365

VGG16-
Places365

Most
Confident
Concepts

Chair 30% Stool 35% Hill 65% Mountain 30% Scr. door 75% Scr. door 55%
Bar 30% Bar 35% Rock 60% Rock 15% Bathtub 65% Door 50%
Buffet 30% Chair 30% Mountain 50% Hill 15% Towel 60% Curtain 40%

(b)
Label: Monitor Label: Hen Label: Sandbar
ResNet18-
ImageNet

VGG16-
ImageNet

ResNet18-
ImageNet

VGG16-
ImageNet

ResNet18-
ImageNet

VGG16-
ImageNet

Most
Confident
Concepts

Laptop 80% Computer 65% Grass 20% Grass 25% Sea 75% Sand 45%
Computer 75% TV mon. 60% Fence 20% Pipe 25% Sand 75% Road 40%
Keyboard 70% Laptop 55% Bannister 20% Bannister 25% Water 45% Sea 35%

(a) Samples from T S1 (Places365) 
(b) Samples from T S2 (ImageNet)

Fig. 6 Explanation of Wrong Predictions (by ResNet18). Output labels are given at the top of the images. The prediction (in red) and the most 
confident concepts as explanation are given at the bottom (color figure online)
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our dictionary and thus, the report focuses on potentially 
white-colored concepts for the alligator lizard image.

 ● Samples with high complexity In some images, differ-
entiating concepts may be very hard. For instance, the 
landfill image contains a lot of small concepts that can 
not be properly identified.Some of these issues are re-
lated to the quality of the concept dictionary and can 
be handled by its modification. In the case of very few 
concepts to identify, the report size can be set dynami-
cally. In short, the abovementioned issues and potential 
remedies can be planned as future work to enhance the 
results.

the number of reported concepts is more, a lot of con-
cepts are listed as wrongfully identified, although poten-
tially with lower confidence scores.

 ● Potential bias in the learning dataset Activation may 
spread to neighboring concepts due to the convolution 
effect. If the samples of a concept contain a second con-
cept quite often, the CAF lists may relate these two. For 
instance, farm animals like horse or cow are reported 
for the farm image. Likewise, bathtub, washer, or dish-
washer are listed in the report of the medicine chest 
image.

 ● Insufficient concept dictionary The concept dictionary is 
limited and, likely, some samples may not be explainable 
with these concepts. For example, reptile is unknown in 

Table 8 Domination of Similar Concepts in Explaining Images in Fig. 7
(a)

Label: Rodeo Arena  Label: Street Label: Badlands
ResNet18-
Places365

VGG16-
Places365

ResNet18-
Places365

VGG16-
Places365

ResNet18-
Places365

VGG16-
Places365

Most
Confident
Concepts

Horse 80% Horse 40% Truck 75% Truck 45% Sand 50% Sand 35%
Cow 60% Dog 40% Van 70% Van 40% Earth 45% Ground 30%
Animal 60% Cow 25% Car 60% Car 35% Field 45% Field 30%

(b)
Label: Black Stork Label: Moving Van Label: Screen
ResNet18-
ImageNet

VGG16-
ImageNet

ResNet18-
ImageNet

VGG16-
ImageNet

ResNet18-
ImageNet

VGG16-
ImageNet

Most
Confident
Concepts

Bird 50% Plane 20% Truck 50% Van 45% TV mon. 45% TV mon. 
40%

Airplane 40% Bird 15% Van 45% Bus 40% Computer 45% Computer 
35%

Plane 35% Airplane 15% Car 35% Truck 35% Television 25% Television 
30%

(a) Samples from T S1 (Places365)
(b) Samples from T S2 (ImageNet)

Fig. 7 Concept Similarity Impact in Explanations (by ResNet18). Output labels are given at the top of the images. The prediction and the most 
confident concepts as explanation are given at the bottom
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On the other hand, the models trained with and tested against 
Places365 report significantly more concepts accurately. 
However, we should note that ImageNet samples contain 
fewer concepts overall. Hence, utilizing the number of cor-
rect predictions in this fashion is not suitable for comparing 
the impact of training datasets.

At this point, we also assessed whether the convolution 
operation adversely affects our calculations by spreading 
the activation across neighboring concepts. To explore this, 
we implemented thresholding on feature maps, before iden-
tifying highly activated filters. However, we observed slight 
improvement and decided to proceed without thresholding.

4.4.2 Recall of concepts in explanation report

As stated in 4.4.1, the number of correct concepts in the 
explanation is insufficient for a meaningful comparison of 
training datasets. Consequently, we decided to use the recall 
value of the report. To be more specific, let us define I and 
E as the list of concepts in the image xi and the explanation 
report, respectively,

I = {ci} , E = {cr}. (28)

The Report Recall (RR) can be computed as;

RR = TP

TP + FN
 (29)

where

4.4 Model comparison

The proposed approach can also help to compare models 
and their training datasets through the examination of the 
explanation reports. To achieve this, we must establish a set 
of comparison criteria. In the subsequent sections, we define 
these criteria and analyze the results.

4.4.1 Correct concepts in explanation

The trust instilled in the model’s correct prediction increases 
if the list of concepts in the explanation report is close to 
the actual concepts. Hence, verification of how accurate 
the reports are is important. For this analysis, we use the 
samples of TS1 and TS2 created in Sect. 4.3. As they lack 
segmentation and labeling, we need human effort to detect 
matches between actual and reported concepts. The size of 
the report is limited to ten concepts with the highest confi-
dence score.

Table 9 provides the average number of correctly pre-
dicted concepts for each model. In Places365-Standard 
samples, the ResNet18 model is superior, while VGG16 
exhibits slightly better performance in ImageNet samples. 

Table 9 Average number of correctly predicted concepts in the expla-
nation report
Test Set 1 Test Set 2
ResNet18-
Places365

VGG16-
Places365

ResNet18-
ImageNet

VGG16-
ImageNet

3.6 3.16 1.5 1.56
T S1 and T S2 are derived from Places365-Standard and ImageNet 
datasets, respectively

Fig. 8 Faulty Explanations (by ResNet18). Output labels are given at the top of the images. The prediction and the most confident concepts as 
explanations are given at the bottom
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c →

{
TP if c ∈ I, c ∈ E
FP if c /∈ I, c ∈ E
FN if c ∈ I, c /∈ E

 (32)

The experiments are conducted for all the concepts in the 
concept dictionary, across all four models and test sets TS3 
and TS4. Table 11 gives the three concepts with the highest 
F1 scores for each model. Despite some concepts such as 
cat and food staying on top for ResNet18-ImageNet, or car 
having high scores in general, the results display substantial 
variations. Therefore, we can deduce that even though the 
models have the same training set, they show significant dif-
ferences in learning concepts and they can outperform each 
other in a specific class that aligns with these concepts.

5 Discussions and conclusion

This paper introduces a novel concept-based explanation 
method for pre-trained CNN models. The approach includes 
a learning phase, where a set of images segmented and 
densely labeled after a predefined list of concepts is pro-
cessed to quantify the relationship between each concept-
filter pair. This information is then used to create lists of the 
most aware filters per concept and the best-fitting concepts 
per filter. The explanation phase utilizes these lists to predict 
what the model detects in an image.

To demonstrate its efficacy, our approach undergoes vari-
ous experiments. The theoretical examination of concept-
filter relations shows that certain concepts may exhibit 
significant activation in feature map representations. Also, 
similarities can pose challenges in differentiating the con-
cepts, and filters might respond to certain objects more fre-
quently than others. The explanation reports are valuable 
not only in justifying successful predictions but also in high-
lighting the factors that confuse the model’s decision-making 
process in incorrect predictions. Moreover, the importance 
of selecting concepts and performing similarity analysis 
during dictionary formation is underlined through illustra-
tive examples. Additionally, experiments are carried out to 
demonstrate how the proposed method can be employed for 

∀c ∈ I, c →
{

TP if c ∈ E
FN otherwise.  (30)

For proper comparison, the test samples should ensure all 
the concepts in the concept dictionary are represented at 
least several times. Also, the list of concepts I should be 
known beforehand. Furthermore, the samples should exhibit 
sufficient complexity such that one or two concepts do not 
dominate. To meet these requirements, we create two new 
test sets TS3 and TS4, both sourced from the Broden data-
set. To be specific,

 ● Test Set 3 (T S3): 973 samples incorporating 7 concepts.
 ● Test Set 4 (T S4): 883 samples incorporating 10 

concepts.To compute RR, the size of the explanation re-
port is set to match the number of concepts in the image. 
The results are given in Table 10. Once more, the mod-
els trained with Places365 show better performance, al-
beit with a narrower margin. This may be caused by a 
couple of reasons such as potential dataset imbalance in 
ImageNet as the models are trained to focus on specific 
concepts for object recognition task or the inadequacy of 
the concept dictionary.

4.4.3 Per concept analysis

The RR can be regarded as a valuable metric for generaliza-
tion. However, in some cases, it becomes essential to assess 
the model behaviors against specific concepts. For instance, 
a model may completely ignore a particular concept and its 
absence can impact the overall results significantly.

In this section, we shift our focus to examine how models 
respond to specific concepts. Relying solely on recall value 
as a metric may be insufficient for this purpose because 
reporting a false positive concept can be as important as 
missing an actual concept. Hence, we decided to use F1 
Score as the comparison metric. By revisiting Eq. (28) to 
define the set of concepts in the report and the image, we can 
formulate the F1 Score as;

F1 Score = TP

TP + 1
2 (FP + FN)  (31)

where

Table 10 Report Recall values for all the models on T S3 and T S4

ResNet18-
Places365

VGG16-
Places365

ResNet18-
ImageNet

VGG16-
ImageNet

Test Set 3 25.4% 22.8% 17.3% 17.5%
Test Set 4 26% 26% 17.3% 20%

Table 11 Concepts with highest F1 Scores for each model on test sets 
T S3 and T S4

ResNet18-
Places365

VGG16-
Places365

ResNet18-
ImageNet

VGG16-
ImageNet

Test
Set 3

Car 60.3% House 62.5% Dog 63.5% Skyscraper 
55.6%

Food 59.3% Boat 58% Food 59% Boat 54.5%
Train 54.9% Car 54.7% Cat 55.9% Bicycle 53.3%

Test
Set 4

Car 65.3% Track 60% Cat 55.2% Dog 60.9%
Bed 60.9% Road 52.6% Food 54.8% Bicycle 47.4%
Sidewalk 
57.8%

Grass 51.4% Car 54.8% Windowpane 
46.6%
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comparing models in terms of their explainability. These 
involve the use of different metrics, like Report Recall or 
F1 score, to assess the models’ performances concerning all 
concepts in an image or specific concepts.

Despite promising results, there is still potential for 
improvement. The dictionary employed in the experiments 
comprises only 200 concepts and is proven to be insufficient 
for explaining many test samples. The list can be enhanced 
by incorporating not only more objects but also parts of 
objects, colors, textures, etc.

The reliability of the segmented images used as learn-
ing dataset raises concerns, as many of these images pri-
marily consist of very small patches representing concepts, 
and occasional labeling issues are present. Moreover, some 
concepts have significantly more samples compared to 
others. Furthermore, the scale of the experiments can be 
expanded by incorporating additional CNN models trained 
with a broader range of datasets. Therefore, repeating the 
experiments with a more robust, homogeneous, and efficient 
learning dataset on more models can lead to more compre-
hensive and insightful results.

Another potential improvement could be in the filter 
selection stage. Rather than examining filter-wide activa-
tions, an alternative option may involve segmenting the 
test images and comparing these segments with the CAF 
lists. However, it’s important to note that this is currently 
theoretical and would require extensive effort to validate its 
correctness.

In conclusion, the Concept-Aware Explainability 
method introduced in this paper can serve various pur-
poses such as providing insights into the model’s training 
process, identifying the concepts where a model excels or 
struggles, understanding what a model perceives during pre-
diction, and facilitating model comparisons. Nevertheless, 
it remains open to further refinement and merits additional 
efforts to enhance its outcomes.
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