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Abstract
Random numbers play a crucial role in cryptography since the security of cryptographic pro-
tocols relies on the assumption of the availability of uniformly distributed and unpredictable
random numbers to generate secret keys, nonce, salt, etc. However, real-world random num-
ber generators sometimes fail and produce outputs with low entropy, leading to security
vulnerabilities. TheNIST Special Publication (SP) 800-90 series provides guidelines and rec-
ommendations for generating random numbers for cryptographic applications and describes
10 black-box entropy estimation methods. This paper evaluates the effectiveness and limita-
tions of the SP 800-90methods by exploring the accuracy of these estimators using simulated
random numbers with known entropy, investigating the correlation between entropy esti-
mates, and studying the impacts of deterministic transformations on the estimators.
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1 Introduction

Random numbers are widely used in cryptographic protocols to generate secret keys, initial-
ization vectors, nonces, salts, etc. The security of these protocols relies on the assumption that
these numbers are generated uniformly at random and are unpredictable. However, real-world
random number generators sometimes fail and produce outputs with low entropy, leading to
security vulnerabilities [1, 2].

A variety of organizations have developed standards and guidelines on generating random
numbers that are suitable for cryptographic applications, such as the National Institute of
Standards of Technology (NIST) [3–6], the International Organization for Standardization
(ISO) [7–10], and Bundesamt für Sicherheit in der Informationstechnik (BSI) [11–13].

Cryptographic randomnumber generators are typically composedofmultiple components,
including (i) a noise source that extracts randomness from physical phenomena (e.g., thermal
noise, mouse movements, radioactive decay, free-running oscillator) to generate a seed and
(ii) a pseudorandom number generator (PRNG) (also known as a deterministic random bit
generator) that extends the seed to generate a long random-looking sequence. Since PRNGs
are deterministic, the entropy is solely provided by the noise source, and it is important to
measure the unpredictability of the noise source outputs.

Designing random number generators for cryptographic use has many challenges, includ-
ing finding a robust noise source to extract randomness and the difficulty of determining how
unpredictable the outputs are (i.e., estimating its entropy).

Various statistical randomness tests can be applied to measure the quality of the ran-
dom numbers. The most commonly used statistical randomness suites are TestU01 [14],
DIEHARD [15], DIEHARDER [16], and NIST Special Publication (SP) 800-22 Rev.1 [17].
These tests may not be suitable for assessing noise source outputs, as they typically have
strong biases and would fail these tests.

The unpredictability of noise source outputs ismeasured using entropy, and two commonly
used measures of entropy are Shannon entropy and min-entropy. Min-entropy is a more
conservative measure, which is based on the probability of guessing the most likely output
of a randomness source.

Estimating the entropy of noise source outputs is challenging because the distribution of
the output values is generally unknown. The BSI standards require stochastic modeling of
the noise source to specify a family of probability distributions to estimate entropy. Since
stochastic modeling may not be possible or practical due to the diversity and complexity of
the random number generators, NIST standards allow using black-box statistical methods
for entropy estimation.

SP 800-90B [4] describes ten entropy estimators: most common value, collision, Markov,
compression, t-tuple, longest repeated substring (LRS), multi most common in window
prediction, lag prediction, multiple Markov Model with Counting (multiMMC) prediction,
and LZ78Y. The minimum of these ten estimates is used to estimate the min-entropy of the
noise source outputs.

Related work Zhu et al. [18] showed that the collision and compression estimates pro-
vide significant underestimates and proposed a new estimator that achieves better accuracy
for min-entropy. Kim et al. [19] also showed that the compression estimate underestimates
min-entropy and proposed two kinds of min-entropy estimators to improve computational
complexity and estimation accuracy by leveraging two variations of Maurer’s test. Hill [20]
demonstrated that the collision and compression estimators incorrectly use the central limit
theorem. Hill [20] also claimed that the Markov estimator should not be directly compared
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to other estimators since it does not use confidence intervals during estimation. Additionally,
Turan et al. [21] provided a correlation and sensitivity analysis of statistical randomness tests.

Contributions This paper evaluates the accuracy, effectiveness, and limitations of the SP
800-90B estimators using simulated random numbers with known entropy, investigates the
correlation between entropy estimates, and studies the impacts of deterministic transforma-
tions on the estimators.

Our study indicates that both compression and collision estimates tend to underestimate
entropy for both uniform and biased distributions, aligning with earlier results. On the other
hand, LRS and lag prediction overestimate entropy for biased distributions.

Our experiments reveal a strong correlation between the Markov and MCV tests for uni-
form distributions. For biased datasets that meet the IID assumption, we observe increased
correlations among several estimators, particularly MultiMCW, MultiMMC, and LZ78Y.
MCV also shows high correlation with multiple estimators, including Markov, Compres-
sion, MultiMCW, and MultiMMC. Conversely, for biased datasets that do not meet the IID
assumption, only moderate correlations are noted between pairs such as (Markov, MCV) and
(LZ78Y, Markov).

Lastly, studies on the impacts of deterministic transformations show that binary derivation
significantly affects entropy estimates, particularly for prediction-based estimators.

Organization Section 2 provides preliminaries on SP 800-90B entropy estimation and
overviews of two correlation metrics. Section 3 describes the paper’s methodology. Section
4 presents experimental results and Section 5 provides discussion. The appendix 5 contains
various statistical data and graphs related to the experimental results.

2 Preliminaries

2.1 Min-Entropy

In information theory, entropy is a measure of uncertainty associated with the outcomes
of a random variable. There are different measures of entropy, and NIST SP 800-90B [4]
uses min-entropy, which is a conservative entropy measurement based on the probability of
guessing the most likely output of a randomness source.

Definition 1 Let X be a random variable that takes values from the set A = {x1, x2, . . . , xn}
with probabilities Pr(X = xi ) = pi for i = 1, 2, . . . , n. The min-entropy of the random
variable X is defined as

H∞ = min
1≤i≤n

(− log2 pi )

= − log2( max
1≤i≤n

pi ).

The random variable X is said to have min-entropy h if the probability of observing any
particular value for X is at most 2−h . When the random variable has a uniform probability
distribution (i.e., p1 = p2 = · · · = pn = 1/n), the variable has the maximum possible value
for the min-entropy, which is log2 n.

In this paper, the term entropy specifically refers to min-entropy.
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2.2 Entropy estimation based on SP 800-90B

SP 800-90B [4] describes an entropy sourcemodel, composed of a noise source, health tests,
and an optional conditioning function. The standard also provides guidelines for generating
random numbers using entropy sources and specifies entropy estimation techniques to ensure
the randomness and unpredictability of the outputs. These black-box techniques are applied
to noise source outputs and are independent of the internals of the noise source.

SP 800-90B [4] defines two tracks to estimate the min-entropy of an entropy source:
independent and identically distributed (IID) and non-IID. To determine which track to use,
several statistical tests are applied to an output sequence generated by the entropy source to
check the IID assumption. If the output sequence passes these tests, the source is assumed
to generate IID outputs, and only the most common value method is used to estimate the
entropy. Otherwise, the source is assumed to generate non-IID outputs, and the minimum of
the 10 SP 800-90B estimators is used to estimate the entropy of the source. Table 1 lists the
estimators and corresponding metrics provided in the standard. Except for collision, Markov,
and compression, the estimators provide support for non-binary noise source outputs.

The estimators take noise source outputs S = (s1, s2, . . . , sL ), where si ∈ A =
{x1, x2, . . . , xn} and return an min-entropy estimate between 0 and log2 n. Some of the esti-
mators, namely collision, Markov and compression, are only defined for binary inputs (i.e.,
n = 2). Note that to establish the final entropy estimate, the standard additionally considers
the entropy estimate from the designers and the impact of the conditioning components, etc.
This study focuses on the black-box estimators, and the additional considerations, including
IID testing, are outside the scope of this study.

Table 1 Entropy estimators of NIST SP 800-90B

Estimator Metric Support for n > 2?

E1:Most Common Value Proportion of the most common
value in the input data set

�

E2: Collision Probability of the most-likely out-
put, depending on the number of
collisions

×

E3:Markov Dependencies between consecu-
tive values

×

E4: Compression Compression amount of the input
dataset

×

E5: t-Tuple Frequency of t-tuples �
E6: Longest Repeated Substring
(LRS)

Number of repeated substrings �

E7:Multi Most Common in Win-
dow Prediction

Number of correct predictions
based on the most common value

�

E8: Lag Prediction Number of correct predictions
based on periodicity

�

E9:MultiMMC Prediction Number of correct predictions
based on multiple Markov models

�

E10: LZ78Y Prediction Number of correct predictions
based on a dictionary constructed
using observed tuples

�
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The estimators take noise source outputs S = (s1, s2, . . . , sL ), where si ∈ A =
{x1, x2, . . . , xn}, and return a min-entropy estimate between 0 and log2 n. The collision,
Markov, and compression estimators are only defined for binary inputs (i.e., n = 2). To
establish the final entropy estimate, the standard considers the entropy estimate from the
designers and the impact of the conditioning components. This study focuses on the black-
box estimators, and the additional considerations — including IID testing — are outside of
the scope of this study.

2.3 Correlation analysis

The Pearson [22] and Spearman [23] correlation coefficients are commonly used metrics
to measure the correlation between two random variables. The correlation coefficients take
values between −1 and 1. A value close to 1 or −1 shows a strong positive or negative
association between variables, whereas a value close to 0 shows a weak association. The
Pearson correlation [22] measures the strength of a linear relationship between two random
variables, assuming that the variables are distributed normally, whereas the Spearman corre-
lation [23] describes the monotonic relationship between variables without the assumption
that the variables have a normal distribution. See Table 2 for the interpretation of the Pearson
r and Spearman correlation coefficients ρ.

Definition 2 LetX andY be random variables. ThePearson correlation coefficient r between
a given paired dataset {(x1, y1), (x2, y2), . . . , (xn, yn)} is defined as

r =
∑n

i=1(xi − x̄)(yi − ȳ)
√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
,

where n is the sample size, xi and yi are sample points, x̄ is the sample mean of X , and ȳ is
the sample mean of Y .

Definition 3 Let X and Y be random variables. The Spearman correlation coefficient ρ

between a given paired dataset {(x1, y1), (x2, y2), . . . , (xn, yn)} is defined as

ρ = 1 − 6
∑n

i=1 d
2
i

n(n2 − 1)
,

where n is the sample size, and di is the difference between the rank of the paired samples.

A positive correlation in either method indicates that as one variable increases, the other
also increases, with Pearson requiring proportionality (linear growth) and Spearman only
requiring consistent growth (rank-based). Conversely, a negative correlation means that as
one variable increases, the other decreases, with Pearson emphasizing linearity and Spearman

Table 2 Interpretation of Pearson
r and Spearman ρ correlation
coefficients

Interval Interpretation

0 < |r |, |ρ| ≤ 0.20 Negligible correlation

0.2 < |r |, |ρ| ≤ 0.40 Weak correlation

0.4 < |r |, |ρ| ≤ 0.60 Moderate correlation

0.6 < |r |, |ρ| ≤ 0.80 High correlation

0.8 < |r |, |ρ| ≤ 1 Strong correlation
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focusing on consistent decline. Pearson is sensitive to outliers, while Spearman ismore robust
and suitable for non-linear butmonotonic trends.Considering the absolute value of correlation
coefficients is meaningful when the focus is on the strength of the relationship, regardless of
direction.

For necessary cases, to control the false discovery rate, theBenjamini-Hochberg procedure
[24]was applied to interpret the results.Wehadmultiple hypotheses regarding the correlations
between the tests. Therefore, we adjusted the P-values using Benjamini-Hochberg procedure
in order to reduce the false positive outcomes.

3 Methodology

The goal of this study is to answer the following questions regarding the entropy estimators
introduced in SP 800-90B [4]:

1. How closely do the entropy estimators match the true entropy of the source?
2. How correlated are the entropy estimators?
3. How do different deterministic transformations impact the entropy estimate?

3.1 Entropy estimation using known distributions

One approach to understanding the accuracy of the entropy estimators is to simulate various
sequences with known probability distributions (hence, known entropy) and check the dif-
ference between the estimated entropy and the true entropy. In cases where certain entropy
estimators consistently yield outlier results compared to others, it is essential to investigate
the underlying reasons for such discrepancies. This could involve examining the specific
characteristics of the input data, inherent biases in the estimation techniques, or the impacts
of using different input lengths and sample sizes.

3.2 Correlation of the entropy estimators

Understanding the correlation between different entropy estimators can provide insights into
the reliability, robustness, and limitations of the estimators for cryptographic applications.
One aspect to consider is the agreement between different entropy estimation methods by
assessing whether they tend to produce similar entropy estimates for the same set of input
sequences. This study employed correlation analysis to quantify the relationship between
pairs of entropy estimates, using the Pearson and Spearman correlation coefficients.

3.3 Impact of deterministic transformations

The noise source outputs are typically processed using deterministic conditioning functions to
reduce their statistical bias and improve their entropy rate (i.e., entropy per bit). The impacts
of several deterministic transformations applied to the output sequence are of interest here.

Let S = (s1, s2, . . . , sL) be a noise source output with length L , and let S′ =
(s′

1, s
′
2, . . . , s

′
L ) be generated from S via a deterministic transformation. This study uses

the following transformations:

• Reverse: This transformation generates a new sequence by changing the order of the
sequence. The generated sequence S′ = (sL , sL−1, . . . , s2, s1) is constructed with
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s′
i = sL−i+1 for each i = 1, 2, . . . , L . For example, the reversed sequence of
S = (10110001110010) is S′ = (01001110001101).

• Binary Derivative: This transformation generates a new sequence by XORing (i.e.,
modulo 2 addition) the consecutive bits of the sequence. The generated sequence S′ =
(s′

1, s
′
2, . . . , s

′
L) is constructed with

s′
i =

{
si ⊕ si+1, i = 1, 2, . . . , L − 1,

s1, i = L.

For example, the binary derivative of S = (10110001110010) is S′ = (1101001001
0111).

• t-Rotation: This transformation applies a t-bit rotation to the input sequence, i.e., t-
bit rotation of S = (s1, s2, . . . , sL) is S′ = (st+1, st+2, . . . , sL , s1, s2, . . . , st ), where
t = 16, 64, 128, or 1024. For example, 2-bit rotation of S = (101100011100 10) is
S′ = (11000111001010).

4 Experimental results

4.1 Accuracy of entropy estimators

The following datasets with known entropy were simulated for the experiments:

1. Uniform distribution with full entropy. The datasets are generated using the Cipher
Block Chaining (CBC) mode of the block cipher Advanced Encryption Standard (AES)
[25]. Sequences are generated for three different sample sizes (i.e., the size of the noise
source output): binary, 4-bit, and 8-bit. For each sample size, 1000 sequences of length
1 000 000 were generated. In these sequences, all outputs are assumed to have an equal
probability of occurring and are independent. Hence, the outputs have full entropy.

2. Biased binary distribution with entropy=0.5. The dataset follows a biased binary dis-
tribution, where the probability of observing a 0 is 0.7, and the probability of observing
a 1 is 0.3. For each sample size, 1000 sequences of length 1 000 000 were generated. In
these sequences, the expected entropy of a sequence is 0.5 per bit. This data is generated
using the random number generator Mersenne Twister (MT19937) in C++.

3. 4-bit near-uniform with entropy=0.5. This dataset follows a 4-bit near-uniform distri-
bution, where the probability of observing the template 0000 is 0.25, and the probability
of observing other 4-bit templates is 0.05. For each sample size, 1000 sequences of length
1 000 000 (bit) were generated. In these sequences, the expected entropy of a sequence
is 0.5 per bit. This data is generated using the random number generator in C++.

4. 8-bit near-uniform with entropy=0.5. This dataset follows an 8-bit near-uniform dis-
tribution, where the probability of observing the template 00000000 is 0.06, and the
probability of observing other 8-bit templates is 0.003686. For each sample size, 1000
sequences of length 1 000 000 (bit) were generated. In these sequences, the expected
entropy of a sequence is 0.5 per bit. This data is generated using the random number
generator in C++.

5. First-order Markov sequences with transition matrix P =
[
0.7 0.3
0.3 0.7

]

. This dataset

consists of binary sequences generated using a Markov process with the given transition
matrix P . The sequences are constructed such that the transition probabilities between
states are governed by P(0 → 0) = 0.7, P(0 → 1) = 0.3, P(1 → 0) = 0.3, and P(1 →
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1) = 0.7. 1000 sequences of length 1 000 000 bits were generated. These sequences
exhibit dependencies dictated by the transition matrix. The expected minimum entropy
of a sequence is determined by the stationary distribution and transition probabilities, and
it is computed as approximately 0.5155. The data is generated using a Markov process
implemented in C++.

Table 3 compares the actual and estimated entropy values for binary, 4-bit, and 8-bit
uniformly distributed datawith full entropy. It shows that compression and collision estimates
produce the smallest estimates for binary data, which is consistent with the findings of Zhu
et al. [18] and Kim et al. [19]. Figure 1 in Appendix shows the distribution of the entropy
estimation, and compression, and LRS estimators seem to show high variation compared to
other estimators.

The same experiments were repeated for biased binary distribution, 4-bit near-uniform
distribution, and 8-bit near-uniform distribution, and the results are summarized in Table 4.
Similar to a uniform distribution, the compression estimate underestimates entropy for biased

Table 3 Mean and standard deviation of entropy estimators for binary, 4-bit, and 8-bit sources with full entropy

1-bit 4-bit 8-bit
Mean Std. D. Mean Mean/bit Std. D. Mean Mean/bit Std. D.

E1 0.9951 0.0009 3.9514 0.9879 0.0056 7.6736 0.9592 0.0222

E2 0.9141 0.0194 * * * * * *

E3 0.9982 0.0011 * * * * * *

E4 0.8535 0.0287 * * * * * *

E5 0.9294 0.0104 3.7799 0.9450 0.0149 7.6736 0.9592 0.0222

E6 0.9785 0.0262 3.8928 0.9732 0.1131 7.7468 0.9683 0.1878

E7 0.9954 0.0114 3.9635 0.9909 0.0662 7.8169 0.9771 0.1315

E8 0.9957 0.0072 3.9677 0.9919 0.0416 7.8116 0.9764 0.1679

E9 0.9951 0.0129 3.9616 0.9904 0.0778 7.8197 0.9775 0.1302

E10 0.9956 0.0096 3.9616 0.9904 0.0778 7.8198 0.9775 0.1302

Table 4 Mean and standard deviation of entropy estimators of datasets for biased binary, 4-bit near-uniform,
and 8-bit near-uniform distributions

Biased Binary 4-bit Near-uniform 8-bit Near-uniform

Mean Std. D. Mean Mean/bit Std. D. Mean Mean/bit Std. D.

E1 0.5122 0.0009 1.9872 0.4968 0.0050 4.0169 0.5021 0.0160

E2 0.5095 0.0020 * * * * * *

E3 0.5146 0.0011 * * * * * *

E4 0.3224 0.0009 * * * * * *

E5 0.5031 0.0116 1.9710 0.4928 0.0197 3.9993 0.4999 0.0380

E6 0.7692 0.0205 3.2364 0.8091 0.0954 6.9466 0.8683 0.1884

E7 0.5121 0.0055 1.9860 0.4965 0.0200 4.0063 0.5008 0.0738

E8 0.7756 0.0263 3.2812 0.8203 0.0923 6.9558 0.8695 0.2984

E9 0.5118 0.0055 1.9861 0.4965 0.0200 4.1557 0.5195 0.1028

E10 0.5118 0.0055 1.9860 0.4965 0.0200 4.1556 0.5194 0.1027
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Table 5 Mean and standard deviation of entropy estimators of datasets for first-order Markov sequences

Estimator Mean Std. Dev.

Most Common Value 0.5397 0.0002

Collision 0.2726 0.0007

Markov 0.4601 0.0004

Compression 0.0976 0.0000

t-Tuple 0.0759 0.0026

Longest Repeated Substring (LRS) 0.1052 0.0036

Multi Most Common in Window Prediction 0.5397 0.0002

Lag Prediction 0.0549 0.0001

MultiMMC Prediction 0.0549 0.0001

LZ78Y Prediction 0.5397 0.0004

distributions. However, LRS and lag prediction overestimate the entropy by approximately
50%.

The (LRS) estimator calculates the collision entropy rather than the min-entropy by iden-
tifying the frequency of repeated substrings. As collision entropy serves as an upper limit
for min-entropy, the LRS estimator naturally produces overestimated results, the results are
consistent with the findings of [26]. Similar results were obtained for 4-bit and 8-bit samples.

The expected entropy value for Markov sequences is 0.5155. It is observed that most of
the estimates presented in Table 5 are significantly lower than the expected value. These
results reveal that most of the estimators tend to produce substantially underestimated values
for Markov sources. These findings are consistent with the results reported by [27].

4.2 Correlations of estimators

The Pearson and Spearman coefficientswere used tomeasure the correlation between entropy
estimators. To analyze correlation of the estimators mainly three different datasets are used
in experiments:

1. IID sequences with full entropy. The datasets are generated using the Cipher Block
Chaining (CBC) mode of the block cipher Advanced Encryption Standard (AES) [25].
The dataset contains 200 binary sequences of length 1 000 000 were generated. In these
sequences, all outputs are assumed to have an equal probability of occurring and are
independent. Hence, the outputs satisfy the IID assumption and have full entropy.

2. IID sequenceswith entropy=0.5.The dataset follows a biased binary distribution, where
the probability of observing a 1 is 0.7, and the probability of observing a 0 is 0.3. For this
dataset, 200 binary sequences of length 1 000 000 were generated. In these sequences,
the expected entropy of a sequence is 0.5 per bit, and all terms are generated identically
and independently, so sequences satisfy the IID assumption. This data is generated using
the random number generator Mersenne Twister (MT19937) in C++.

3. Non-IID sequences with entropy=0.875. The dataset follows a biased binary dis-
tribution, where the elements of each sequence are generated as follows. Let S =
(s1, s2, s3, · · · ) be a sequence of length 1 000 000, all terms of the sequence are gen-
erated by the random number generator Mersenne Twister (MT19937) in C++, however
for each k, s8k = ∑7

i=1 s8k−i mod 2; that is, 8kth element of the sequence is sum of pre-
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vious seven elements in mod 2. This modification reduces the entropy of the sequence
in ratio 1

8 . The sequences in this dataset do not satisfy the IID-assumption. This dataset
contains 200 binary sequences of length 1 000 000.

4.2.1 Correlation analysis with dataset 1: IID sequences with full entropy

The Pearson and Spearman coefficientswere used tomeasure the correlation between entropy
estimators. Using 200 binary sequences of length 1 000 000, Table 6 and Table 7 show the
Pearson and Spearman correlations among different estimators, respectively. According to
Table 6, a strong or moderate correlation was observed for the (MCV,Markov), (MultiMCW,
MultiMMC) (MultiMMC, LZ78Y), and (MultiMCW, LZ78Y) estimators using Pearson’s
metric. When the same experiments were conducted using Spearman’s metric, a correlation
was still observed between (MCV, Markov). However, (MultiMMC, LZ78Y) and (Mul-
tiMCW, LZ78Y) correlations were no longer as strong. Additionally, the correlation between
(Markov, LZ78Y) was observed to be strong for Spearman’s metric.

Table 6 Pearson correlation among different estimators for IID sequences with full entropy

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E1 1.000 -0.053 0.534 -0.117 0.056 -0.051 0.054 -0.075 0.217 0.261

E2 1.000 0.132 -0.009 0.016 0.056 0.007 -0.028 -0.029 -0.086

E3 1.000 0.035 0.082 -0.016 0.026 -0.058 0.177 0.228

E4 1.000 -0.042 0.028 0.028 -0.001 0.109 0.076

E5 1.000 0.039 0.044 0.058 0.076 0.077

E6 1.000 -0.045 0.006 -0.056 -0.051

E7 1.000 -0.006 0.470 0.806

E8 1.000 -0.036 -0.028

E9 1.000 0.469

E10 1.000

The bold entries in tables highlight correlations that are not negligible

Table 7 Spearman correlation among different estimators for IID sequences with full entropy

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E1 1.000 -0.043 0.541 -0.101 0.064 -0.032 -0.060 0.031 0.183 0.499

E2 1.000 0.122 0.028 0.025 0.004 0.014 0.001 0.002 -0.121

E3 1.000 0.049 0.095 -0.022 -0.045 0.051 0.178 0.642

E4 1.000 0.014 0.101 0.020 0.020 0.171 0.114

E5 1.000 0.071 -0.010 -0.079 0.032 0.058

E6 1.000 0.040 -0.064 0.019 0.001

E7 1.000 -0.059 0.078 -0.103

E8 1.000 0.018 0.139

E9 1.000 0.198

E10 1.000

The bold entries in tables highlight correlations that are not negligible
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4.2.2 Correlation analysis with dataset 2: IID sequences with entropy 0.5

Experiments were repeated with the biased dataset to observe the relations of the estimators
when sequences have not full entropy.Similarly, Pearson and Spearman coefficients were
used to measure the correlation between entropy estimators. However, the number of highly
correlated estimators is seen as the result of experiments. To make accurate observations
Benjamini-Hochberg correction [24] applied to the P-values, p < 0.01 is assumed to be
significant. Tables 14 and 15 in Appendix show p-values for correlation results.

When we interpret Pearson correlation results of estimators for biased binary sequences,
we observe a strong correlation for (Markov,MCV), (Compression,MCV), and (Markov,
Collision). There was a moderate correlation between the pairs (Collision, MCV) and (Com-
pression, Markov).

According to Spearman’s metric, there was a strong correlation between MCV and the
estimatorsMarkov, Compression,MultiMCW,MultiMMC, and LZ78Y. Similarly, Compres-
sion is highly correlated with MultiMCW, MultiMMC, and LZ78Y. As a result, the mutual
correlations of MultiMCW, MultiMMC, and LZ78Y are very strong (Tables 8, 9, 10, and
11).

Table 8 Pearson correlation among different estimators for IID sequences with entropy=0.5

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E1 1.000 0.490 0.838 0.758 0.198 0.036 0.171 0.206 0.172 0.172

E2 1.000 0.717 0.284 0.162 0.043 0.060 0.156 0.061 0.061

E3 1.000 0.589 0.224 0.030 0.155 0.185 0.156 0.156

E4 1.000 0.156 0.049 0.140 0.128 0.140 0.140

E5 1.000 0.088 0.164 0.148 0.164 0.164

E6 1.000 0.324 -0.004 0.324 0.324

E7 1.000 0.011 1.000 1.000

E8 1.000 0.012 0.012

E9 1.000 1.000

E10 1.000

The bold entries in tables highlight correlations that are not negligible

Table 9 Spearman correlation among different estimators for IID sequences with entropy=0.5

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E1 1.000 0.451 0.821 0.738 0.280 0.164 0.948 0.523 0.948 0.948

E2 1.000 0.696 0.268 0.199 0.092 0.415 0.202 0.415 0.416

E3 1.000 0.573 0.332 0.135 0.779 0.404 0.779 0.780

E4 1.000 0.238 0.146 0.717 0.392 0.718 0.718

E5 1.000 0.129 0.313 0.160 0.313 0.313

E6 1.000 0.196 0.056 0.196 0.195

E7 1.000 0.489 0.999 0.999

E8 1.000 0.489 0.489

E9 1.000 0.999

E10 1.000

The bold entries in tables highlight correlations that are not negligible
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4.2.3 Correlation analysis with dataset 2: Non-IID sequences with entropy 0.875

Experiments were repeated with simulated biased datasets to measure the relations of the
estimators when sequences do not satisfy the IID assumption and do not have full entropy.
Pearson and Spearman coefficients were used to measure the correlation between entropy
estimators. To make accurate observations Benjamini-Hochberg correction [24] applied to
the P-values, p < 0.01 is assumed to be significant. Tables 16 and 17 in Appendix show
p-values for correlation results.

When we interpret Pearson correlation results of estimators for non-IID biased binary
sequences, we observe a moderate correlation for (Markov,MCV) and (Markov,Collision).

According to Spearman’s metric; similar to Pearson’s metric, there was a moderate corre-
lation for Markov and the MCV and Collision. Moreover, moderate correlations for the pairs
(LZ78Y,MCV) and (LZ78Y,Markov) were observed.

Table 10 Pearson correlation among different estimators for Non-IID sequences with entropy=0.875

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E1 1.000 0.130 0.572 0.013 -0.027 -0.073 -0.003 -0.042 0.039 0.091

E2 1.000 0.323 -0.071 -0.113 0.030 0.076 0.043 0.059 0.127

E3 1.000 -0.018 -0.096 -0.027 -0.057 -0.069 0.067 0.075

E4 1.000 0.112 0.040 0.103 -0.165 0.033 -0.253

E5 1.000 -0.066 0.060 0.092 -0.050 -0.060

E6 1.000 0.039 -0.004 0.055 -0.046

E7 1.000 -0.017 -0.014 0.107

E8 1.000 -0.005 0.064

E9 1.000 -0.017

E10 1.000

The bold entries in tables highlight correlations that are not negligible

Table 11 Spearman correlation among different estimators for Non-IID sequences with entropy=0.875

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E1 1.000 0.114 0.521 -0.043 -0.038 -0.070 -0.041 -0.013 0.105 0.473

E2 1.000 0.273 -0.045 -0.076 0.062 0.112 -0.037 0.066 0.063

E3 1.000 -0.047 -0.094 -0.035 -0.029 -0.059 0.046 0.687

E4 1.000 0.113 0.112 0.036 0.046 0.030 -0.012

E5 1.000 -0.000 0.093 0.053 0.058 -0.113

E6 1.000 -0.011 -0.024 0.053 -0.083

E7 1.000 -0.025 0.051 0.102

E8 1.000 0.004 -0.063

E9 1.000 0.025

E10 1.000

The bold entries in tables highlight correlations that are not negligible
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4.3 Impact of the transformations

For this experiment, 200 uniformly distributed sequences of length 1 000 000 with full
entropy were used. These sequences were transformed using a reversing, binary derivative
and t-rotation for t = 16, 64, 128, 1024. Entropy estimates for the original and transformed
sequences were compared, and their Pearson and Spearman correlation coefficients are listed
in Tables 12 and 13, respectively.

Effect of reversing and rotating the input sequences One of the results of these experiments
shows that, for certain entropy estimators including MCV, collision, Markov, t-tuple, and
LRS, reversing or rotating the input sequences did not lead to any changes in the estimated
entropy values. This result suggests that these estimators are insensitive to reversal, which
could be an indication of their robustness.

Effect of binary derivation The binary derivation transformation, which involves XORing
consecutive bits to generate a new sequence, effectively impacts local dependencies between
adjacent bits. The experimental results show that, for all estimators, the entropy estimates
changed after applying this transformation. This can be due to the fact that taking binary

Table 12 Pearson Correlation according to the estimation results of transformed sequences

Original Reversed Bin. Drv. 16-r. 64-r. 128-r. 1024-r.

MCV 1.0000 1.0000 -0.0289 1.0000 1.0000 1.0000 1.0000

Collision 1.0000 1.0000 -0.0160 1.0000 1.0000 1.0000 1.0000

Markov 1.0000 1.0000 0.4586 1.0000 1.0000 1.0000 1.0000

Compress. 1.0000 0.3334 0.4887 0.3379 0.3374 0.3927 0.3368

t-Tuple 1.0000 1.0000 0.1144 1.0000 1.0000 1.0000 1.0000

LRS 1.0000 1.0000 0.7013 1.0000 1.0000 1.0000 1.0000

MultiMCW 1.0000 0.1301 0.8455 0.9999 0.9998 0.9997 0.9994

Lag Pre. 1.0000 0.1492 0.0037 0.9983 0.9971 0.9962 0.9915

MultiMMC 1.0000 0.0564 -0.0189 0.9977 0.9962 0.9962 0.8329

LZ78Y 1.0000 0.0598 0.1510 0.9961 0.9927 0.9918 0.9738

Table 13 Spearman Correlation according to the estimation results of transformed sequences

Original Reversed Bin. Drv. 16-r. 64-r. 128-r. 1024-r.

MCV 1.0000 1.0000 -0.0432 1.0000 1.0000 1.0000 1.0000

Collision 1.0000 1.0000 0.0565 1.0000 1.0000 1.0000 1.0000

Markov 1.0000 1.0000 0.4030 1.0000 1.0000 1.0000 1.0000

Compress. 1.0000 0.3090 0.5283 0.3053 0.3053 0.3685 0.3094

t-Tuple 1.0000 1.0000 0.0964 1.0000 1.0000 1.0000 1.0000

LRS 1.0000 1.0000 0.5425 1.0000 1.0000 1.0000 1.0000

MultiMCW 1.0000 0.8795 0.0170 0.9975 0.9954 0.9947 0.9869

Lag Pre. 1.0000 0.3607 -0.0282 0.9822 0.9717 0.9603 0.9219

MultiMMC 1.0000 0.3762 0.2872 0.9162 0.8772 0.8770 0.6943

LZ78Y 1.0000 0.6069 0.3580 0.9941 0.9884 0.9867 0.9530
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derivation may increase entropy for sequences with periodic or structured patterns, as it
introduces more randomness. Conversely, for highly random sequences, the transformation
can introduce some structure, possibly leading to a decrease in entropy. Our results highlight
that applying binary derivation as a conditioning component can significantly impact the
entropy estimates, emphasizing the importance of considering such transformations when
designing random number generators.

5 Discussion and future directions

In this paper, we examined the black-box entropy estimators outlined in NIST SP 800-90B.
We observed that compression and collision estimates tend to underestimate the entropy for
uniform and biased distributions, which is consistent with the findings of Zhu et al. [18] and
Kim et al. [19]. When focusing on the accuracy of compression estimates, various insights
can be drawn. Entropy is inherently a global property of a probability distribution, whereas
compression algorithms typically operate on specific sequences, focusing on local patterns.
This distinction might be critical, as it suggests that the inherent differences between global
and local approaches can significantly impact entropy estimation. Future research could
investigate whether the underestimation of entropy by compression algorithms represents a
potential vulnerability that could be exploited in predicting or attacking sequences. Alter-
natively, studies could focus on compression estimate to determine whether it should be
reconsidered entirely, emphasizing that accurate entropy estimation might only be achieved
through global approaches.

It is also important to note that prediction-based estimators, such as multi-most common
in window, lag, or multiMMCmethods, are specifically designed to detect weaknesses when
the estimation is low.

We observed that the remaining estimates are close to the true entropy for the uniform
distribution. However, LRS and lag prediction overestimate entropy for binary, 4-bit, and
8-bit sequences for biased distributions. For prediction-based estimates, overestimations are
expected when the underlying model does not fit the distribution of the sequence.

Our experiments also reveal a strong correlation between Markov and MCV tests for
uniform distributions. When analyzing correlations in biased datasets that satisfy the IID
assumption, we observed an increase in the number of correlated estimators, particularly
betweenMultiMCW,MultiMMC, andLZ78Yare very strong.Additionally,MCVwas highly
correlated with the estimators includingMarkov, compression, MultiMCW,MultiMMC, and
LZ78Y. Themost significant negative correlation foundwas betweenMCV and compression,
indicating that these methods employ fundamentally different approaches for estimating
entropy. Compression, which focuses on local patterns, differs from the other estimators,
while MCV provides accurate estimates for IID sequences. This difference explains the
observed negative correlation for IID sequences.

On the other hand, when analyzing estimtors for biased datasets that do not satisfy the
IID assumption, our experiments show that moderate correlation between (Markov, MCV),
(Markov, collision), (LZ78Y,MCV) and (LZ78Y,Markov) estimators.

If efficiency is a priority, selecting one of the highly correlated tests to obtain prediction
results is statistically meaningful. However, for detailed analysis or detecting unusual cases,
evaluating the results of all estimators is more reliable. Additionally, these moderate or high
correlations can be interpreted as an indication that the estimators are working consistently
with one another.
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Another significant contribution of this study is the emphasis on the role of conditioning
components, designed as deterministic transformations, in entropy estimation, particularly
when designing random number generators. For future work, it would be valuable to explore
the effects of additional deterministic transformations, particularly the ones used in real-
world designs. This could include, for example, lagged derivatives of the form si ⊕ si+L (in
addition to the special case of L = 1 in this paper) or the application of linear transformations
that can be represented as full-rank linear functions.

We anticipate that the insights provided by this paper will contribute to improving the
accuracy of NIST’s entropy estimation strategy and promote future studies that consider the
impacts of commonly used conditioning or post-processing functions.

Appendix - Supplementary Material

Fig. 1 Distribution of entropy estimates for full-entropy binary inputs
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Table 14 P-values of Pearson correlation among different estimators for IID sequences with entropy=0.5

P-values E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E1 0.000 0.000 0.000 0.000 0.001 0.057 0.002 0.000 0.002 0.002

E2 0.000 0.000 0.000 0.000 0.003 0.051 0.037 0.004 0.037 0.037

E3 0.000 0.000 0.000 0.000 0.000 0.063 0.003 0.001 0.003 0.003

E4 0.000 0.000 0.000 0.000 0.003 0.046 0.006 0.008 0.006 0.006

E5 0.001 0.003 0.000 0.003 0.000 0.016 0.003 0.004 0.003 0.003

E6 0.057 0.051 0.063 0.046 0.016 0.000 0.000 0.086 0.000 0.000

E7 0.002 0.037 0.003 0.006 0.003 0.000 0.000 0.089 0.000 0.000

E8 0.000 0.004 0.001 0.008 0.004 0.086 0.089 0.000 0.089 0.089

E9 0.002 0.037 0.003 0.006 0.003 0.000 0.000 0.089 0.000 0.000

E10 0.002 0.037 0.003 0.006 0.003 0.000 0.000 0.089 0.000 0.000

The bold entries in tables highlight correlations that are not negligible

Table 15 P-values of Spearman correlation among different estimators for IID sequences with entropy=0.5

P-values E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E1 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000

E2 0.000 0.000 0.000 0.000 0.000 0.020 0.000 0.001 0.000 0.000

E3 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000

E4 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000

E5 0.000 0.001 0.000 0.000 0.000 0.007 0.000 0.003 0.000 0.000

E6 0.002 0.020 0.006 0.004 0.007 0.000 0.001 0.042 0.001 0.001

E7 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

E8 0.000 0.001 0.000 0.000 0.003 0.042 0.000 0.000 0.000 0.000

E9 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

E10 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

The bold entries in tables highlight correlations that are not negligible

Table 16 P-values of Pearson correlation among different estimators for Non-IID sequences with
entropy=0.875

P-values E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E1 0.000 0.330 0.000 0.915 0.844 0.704 0.970 0.771 0.771 0.550

E2 0.330 0.000 0.000 0.704 0.438 0.840 0.704 0.771 0.704 0.332

E3 0.000 0.000 0.000 0.906 0.550 0.844 0.704 0.704 0.704 0.704

E4 0.915 0.704 0.906 0.000 0.438 0.771 0.496 0.111 0.831 0.002

E5 0.844 0.438 0.550 0.438 0.000 0.704 0.704 0.550 0.757 0.704

E6 0.704 0.840 0.844 0.771 0.704 0.000 0.771 0.970 0.715 0.771

E7 0.970 0.704 0.704 0.496 0.704 0.771 0.000 0.906 0.914 0.465

E8 0.771 0.771 0.704 0.111 0.550 0.970 0.906 0.000 0.970 0.704

E9 0.771 0.704 0.704 0.831 0.757 0.715 0.914 0.970 0.000 0.906

E10 0.550 0.332 0.704 0.001 0.704 0.771 0.465 0.704 0.906 0.000

The bold entries in tables highlight correlations that are not negligible
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Table 17 P-values of Spearman correlation among different estimators for Non-IID sequences with
entropy=0.875

P-values E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

E1 0.000 0.412 0.000 0.774 0.774 0.770 0.774 0.915 0.466 0.000

E2 0.412 0.000 0.000 0.770 0.709 0.770 0.412 0.774 0.770 0.770

E3 0.000 0.000 0.000 0.770 0.530 0.774 0.812 0.770 0.770 0.000

E4 0.774 0.770 0.770 0.000 0.412 0.412 0.774 0.770 0.812 0.915

E5 0.774 0.709 0.530 0.412 0.000 0.999 0.530 0.770 0.770 0.412

E6 0.770 0.770 0.774 0.412 0.999 0.000 0.915 0.821 0.770 0.634

E7 0.774 0.412 0.812 0.774 0.530 0.915 0.000 0.821 0.770 0.466

E8 0.915 0.774 0.770 0.770 0.770 0.821 0.821 0.000 0.979 0.770

E9 0.466 0.770 0.770 0.812 0.770 0.770 0.770 0.979 0.000 0.821

E10 0.000 0.770 0.000 0.914 0.412 0.634 0.466 0.770 0.821 0.000

The bold entries in tables highlight correlations that are not negligible
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