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ABSTRACT

ENHANCING MULTIMODAL DRUG-TARGET INTERACTION
PREDICTION WITH DOMAIN ADAPTATION

YILMAZ, ARDAN
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Halit Oğuztüzün

Co-Supervisor: Prof. Dr. Mehmet Volkan Atalay

February 2025, 96 pages

Drug-target interaction (DTI) prediction remains challenging due to the scarcity of

annotated data in a vast input space. We treat DTI prediction as a binary classifica-

tion problem with two inputs (drugs and proteins) and employ a state-of-the-art cross-

attention mechanism to fuse these modalities. However, the data distribution typically

differs between training and inference settings, making standard random splits overly

optimistic. To simulate realistic conditions, we use dissimilar drug-protein pairs in

training and test sets, introducing a domain shift. We then apply domain adaptation

to learn a domain-invariant feature extractor, aligning source and target distributions

alongside a primary classifier. In particular, we leverage advanced methods, includ-

ing Maximum Mean Discrepancy (MMD) Loss—which, to the best of our knowl-

edge, has not been used previously for DTI prediction—and adversarial training for

robust feature extraction. Our multimodal learning with domain adaptation achieves

performance on par with the state of the art on the widely used BindingDB dataset,

demonstrating the effectiveness of our approach even under domain shifts.

v



Keywords: Drug-Target Interaction Prediction, Multimodal Learning, Domain Adap-

tation, Transfer Learning

vi



ÖZ

ALAN ADAPTASYONU İLE ÇOK KİPLİ İLAÇ-HEDEF ETKİLEŞİM
TAHMİNİNİN İYİLEŞTİRİLMESİ

YILMAZ, ARDAN
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Halit Oğuztüzün

Ortak Tez Yöneticisi: Prof. Dr. Mehmet Volkan Atalay

Şubat 2025 , 96 sayfa

İlaç–hedef etkileşimi tahmini, geniş genomik ve moleküler veri uzayında etiket eksik-

liği nedeniyle biyoenformatik ve kimyasal-enformatik alanlarında zorlu bir problem

olarak karşımıza çıkar. Bu problem, ilaç ve protein olmak üzere iki girdiyi kullanarak

ikili sınıflandırma biçiminde modellenebilir ve çok kipli öğrenme yaklaşımıyla ele

alınabilir. Farklı kiplerden gelen özelliklerin etkileşimini doğrudan incelemek için en

yeni algoritmalardan olan çapraz dikkat (cross-attention) mekanizmasını kullanıyo-

ruz. Ancak eğitim ve test aşamalarında verinin dağılımı genellikle farklılık gösterdi-

ğinden, rastgele eğitim/test bölünmeleri gerçekçi olmayan ve iyimser sonuçlara yol

açmaktadır. Daha gerçekçi bir senaryo için, eğitim ve test kümelerinde istatistiksel

olarak farklı ilaç–protein çiftleri kullanarak bir alan kayması (domain shift) oluştu-

ruyoruz. Bu kaymayı gidermek amacıyla, asıl sınıflayıcının yanı sıra alan uyarlama

yöntemlerini kullanarak, kaynak ve hedef dağılımları aynı alana hizalayabilen alan-

bağımsız bir nitelik çıkarıcı eğitiyoruz. Bunun için, çekişmeli (adversarial) eğitim ve

(bildiğimiz kadarıyla DTI tahmini bağlamında daha önce kullanılmamış olan) Maksi-
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mum Ortalama Farklılık (MMD) Kayıp Fonksiyonu gibi ileri düzey yöntemlerden ya-

rarlanıyoruz. Çok kipli öğrenme ve alan uyarlamasını bir araya getiren yaklaşımımız,

yaygın olarak kullanılan BindingDB veri kümesinde literatürdeki en iyi yöntemlerle

karşılaştırıldığında çeşitli metriklerde üstün veya benzer performans sergilemekte ve

alan kayması durumunda dahi etkinliğini kanıtlamaktadır.

Anahtar Kelimeler: İlaç-Hedef Etkileşimi Tahmini, Çok Kipli Öğrenme, Alan Uyar-

lama, Öğrenme Aktarımı
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

1.1.1 Context and Motivation

Drug-Target Interaction (DTI) prediction is a critical task in drug discovery and per-

sonalized medicine. This remains a crucial challenge in bioinformatics and chem-

informatics due to the vastness of genomic and molecular input space with limited

annotated data [2]. Traditional wet lab experiments are highly resource-intensive,

costly, time-consuming, and laborious. Accurately identifying which small molecules

will bind to which macromolecular structures (proteins) can significantly streamline

and reduce the cost of early-stage drug development. This is where computational

methods come in handy for narrowing down the set of candidate compounds, aiming

at a target protein, before experimental validation.

1.1.2 Challenges Addressed in This Study

Drug-Target Interaction prediction can be formulated as a binary classification task:

given a drug-protein pair, the objective is to predict whether they will interact. This

setting is suitable for multimodal learning, where the protein and drug are input into

the system, and their feature vectors need fusion before being fed to the interaction

classifier.

Furthermore, the limited availability of annotated data in the huge input space leads to

distributional shifts between training and inference data. As a consequence, models

1



that perform well during training may fail to generalize to novel instances at inference

time. This problem can be regarded as a domain shift. To address this challenge, we

incorporate domain adaptation techniques. This approach aims to learn a domain-

invariant feature extractor and an interaction classifier with robustness across different

domains, thereby improving its ability to generalize to unseen data.

1.1.3 Limitations of Conventional Approaches and the Need for Domain Adap-

tation

Despite promising results reported in DTI prediction literature, employing standard

random train-test splits has been shown to lead to over-optimistic evaluations [2].

Such data splits assume that the training and evaluation distributions are similar, an

assumption that does not hold in real-world DTI settings. The training data cov-

ers only a small portion of the entire chemical and genomic input space, due to the

vastness of the input space and the lack of annotations. At inference time, novel com-

pounds or protein instances exhibit different distributional properties than those seen

during training. Thus, the learned models cannot generalize well to the unseen data

at inference time.

1.2 Approaches to Feature Extraction

Computational models require conversion of raw input data (e.g., protein sequences

and molecular structures) into numerical representations suitable to feed machine

learning algorithms.

The protein representation is typically handled as a Natural Language Processing

(NLP) problem over the language defined by the amino acids. Commonly found

amino acids in nature compose a 20-letter alphabet that defines a language for pro-

teins. There are multiple methods to convert these sequences into real-valued feature

vectors that use both statistical methods and advanced deep learning approaches.

For small-molecule drugs, on the other hand, the SMILES notation is typically used

to represent their chemical structures textually. Similar to protein modeling, drug

2



molecules can be featurized using traditional methods and sophisticated transformer-

based models that learn detailed chemical properties from these notations.

1.3 Domain-Invariant Representation Learning for DTI:

To address similar domain shift problems outlined in Section 1.1.3, particularly within

the field of computer vision, researchers have devised strategies for domain adapta-

tion aimed at domain-invariant feature learning. An illustrative example is the use of

training datasets for autonomous vehicles. Consider a system trained exclusively on

images of pedestrians during sunny conditions. The system must recognize pedes-

trians across all weather conditions, with a significant domain shift from the training

to the application environment. This exemplifies a domain shift where the same task

is undertaken across similar, yet distinctively different datasets. To bridge this gap

between the training and inference datasets, domain adaptation techniques have been

explored. These methods focus on developing features that remain robust across do-

mains.

To simulate the domain shifts between training and evaluation data in DTI, researchers

have proposed creating source and target domains by clustering the data [2]. In par-

ticular, Hierarchical Agglomerative Clustering (HAC) is proposed to construct source

and target datasets composed of dissimilar subsets of proteins and drugs. By the prin-

ciple of separation of clusters, this method results in target and source datasets that

pose different statistical distributions, introducing a domain shift. This process, over-

all, establishes a setting suitable for domain adaptation. Training models on source

data and subsequently evaluating them on target data reflects a more realistic scenario

for DTI prediction, accounting for the distributional shift likely to be encountered in

the inference data.

Although domain adaptation techniques have been applied in the DTI literature, there

is still a substantial need for further research. To this end, we explore two widely

adopted strategies in the literature: the Maximum Mean Discrepancy (MMD) loss [3]

and adversarial training approaches, such as Domain-Adversarial Neural Network

(DDAN) [4] and Conditional Adversarial Domain Adaptation (CDAN) [5]. Using
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these domain adaptation methods, we aim at learning a domain-invariant feature ex-

tractor and an interaction classifier that, although trained exclusively on source data,

can effectively generalize to the target data in a zero-shot setting.

1.4 Contributions and Novelties

Our primary contributions are:

• Thorough analysis of the effect of fusion strategies in multi-modal learning

frameworks for DTI prediction.

• The first-time use of Maximum Mean Discrepancy (MMD) loss for cross-

domain alignment in DTI research, exploring its potential benefits.

• A novel strategy to schedule the contribution of domain adaptation throughout

training, rather than treating it as a fixed hyperparameter.

1.5 The Outline of the Thesis

Chapter 2 offers background information and a review of existing literature on pro-

tein and drug modeling, strategies for multi-modal input fusion and learning, transfer

learning, domain adaptation. Building on this foundation, Chapter 3 describes the

research methodology, detailing the data sources, feature extraction processes, and

input fusion strategies employed in the experiments. It introduces the training and

evaluation pipelines for in-domain and cross-domain tasks, with separate consider-

ation for MMD- and adversarial-based adaptation techniques. The initial findings,

including the performance change and feature alignment on the validation set during

training are presented in this section. The chapter further explains the hyperparameter

tuning procedures and data loading mechanisms. Finally, Chapter 4 provides a com-

prehensive account of the results from these experiments, benchmarks them against

state-of-the-art methods, and covers both in-domain and cross-domain settings. In

addition, it presents our reflections and insights regarding our experimental results.

4



CHAPTER 2

BACKGROUND INFORMATION & RELATED WORK

Drug-target interaction prediction problem, being an interdisciplinary subject, re-

quires a deep understanding of a wide array of topics, including molecular biology,

bioinformatics, cheminformatics, and advanced computational techniques. In this

chapter, we survey comprehensive relevant background information and prior work

for our study.

For this, we begin by presenting approaches to protein language modeling, which em-

beds the amino acid sequences into learned feature representations. Next, we explore

various methods for learning drug (small-molecule) representations. We then discuss

multi-modal fusion strategies to combine protein and drug embeddings for predictive

tasks. This is followed with a review of the key concepts in transfer learning and

domain adaptation. Then, we conclude with an overview of DTI prediction.

2.1 Protein Language Modeling (PLM)

Amino acids that are commonly found in nature compose a 20-letter alphabet over

which proteins are formed. This makes an intuitive setup analogous to natural lan-

guage processing (NLP) tasks. Being one of the most popular topics, NLP techniques

are extensively studied and offer a very promising set of tools for representation learn-

ing.

Early studies employ statistical methods based on comparing new sequences to the

known ones, employing alignment-based algorithms. For instance, BLAST [6] searches

against a protein database to identify regions of similarity, while HMMER [7] uses a
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probabilistic profile hidden Markov model to capture conserved motifs. PFAM [8],

on the other hand, further extends these ideas by offering a comprehensive database

of protein families, each represented by multiple sequence alignments.

Subsequent advances introduced machine/deep learning-based methods, by learning

embeddings as continuous vector representations of protein sequences. ProtVec [9]

was among the first to adopt word2vec-inspired embeddings for biological sequences,

using k-mer statistics to preserve local contexts.

More recently, with the advancements in NLP and transformer-based architectures,

methods with higher capacity in learning representations have been proposed. For

example, the MSA-Transformer [10] processes multiple sequence alignments to infer

deep evolutionary relationships. ProtBERT and ProtT5-XL [11, 12] leverage self-

supervised objectives (inspired by BERT [13] and T5 [14]) to learn rich bidirectional

or encoder–decoder representations, capturing both local residue context and long-

range dependencies. Similarly, ESM-2 [15] refines large-scale protein language mod-

eling for harder tasks like structure prediction, while ESM-3 [16] extends these by

employing evolutionary information at large sequence scales.

Beyond these transformer models, new approaches continue to explore multi-modal

or structure-informed representations. ProstT5 [17] proposes a “bilingual” architec-

ture that jointly models sequence and structural information. In a similar attempt to

explore multimodal approaches, SaProt [18] integrates sequence data with structure-

aware vocabulary tokens, thereby improving contextual embeddings for proteins with

limited labeled data.

Altogether, these modern PLM methods provide robust representations that are com-

monly used for a wide array of protein-related predictive tasks, including function,

structure, and drug–protein interaction prediction.

2.2 Drug Representation Learning

A typical approach to represent drugs is through the Simplified Molecular Input Line

Entry System (SMILES) [19]. This linear string notation effectively encodes the
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molecular graph structure. Early methods to featurize these string representations of

drugs often transform them into binary vectors, where each bit represents the presence

of specific chemical substructures within defined neighborhoods. A notable example

is the Extended-Connectivity Fingerprints (ECFP4) [20], which determines the pres-

ence of substructures through iterative expansion of atom neighborhoods up to four

bonds away.

The advent of deep learning methods has enabled richer embeddings of drug molecules,

employing transformer and BERT-based architectures. Compelling examples include

ChemBERTa [21] and SELFormer [22] that pretrain networks for drug representation

learning.

Moreover, an intuitive way to represent molecules is the use of graphs. Accord-

ingly, attempts at capturing deeper relations regarding molecules employ graph and

hyper-graph-based learning methods. Wang et al.[23] provides a review on the use

of graph neural networks for molecular representation. Also, hyper-graph-based ap-

proaches, such as HyperGCN [24] effectively capture the complex connectivity and

interactions within molecules, potentially leading to improved predictive power for

molecular properties.

2.3 Multi-modal Input Fusion

Our approach takes both protein and drug representations as inputs, which must be

fused before classification to predict their potential interaction. In general, multi-

modal fusion refers to the process of integrating data from multiple modalities to

leverage complementary information performance [25]. A crucial design decision lies

in determining how and when to fuse these modalities within a learning architecture.

2.3.1 Early vs. Late Fusion

Fusion strategies are commonly classified as early or late. Early fusion (also re-

ferred to as "feature-level fusion") combines raw embedding vectors near the input

layer [25]. Simple concatenation of the feature vectors is a compelling example of
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this.

Late fusion (or “decision-level fusion”) processes each modality independently, of-

ten with separate neural networks, and then merges the resulting predictions at the

final layer [26]. While this preserves modality-specific pipelines, it can overlook nu-

anced relationships in between modalities (e.g., a particular binding site in the protein

aligning with a functional substructure of the drug).

2.3.2 Concatenation-based Fusion

One straightforward method for this is simple concatenation. Though does not pro-

vide an explicit mechanism to capture intricate cross-modal interactions, this appears

to be a simple yet effective strategy in the literature [25]. Suppose p ∈ Rdp de-

notes a learned protein embedding and d ∈ Rdd a drug embedding. Then, the fused

representation is constructed as

z = [p;d] ∈ Rdp+dd .

This vector z is fed to the main classifier network to predict interaction scores and

labels.

To increase modeling capacity, self-attention [27] can be applied immediately af-

ter concatenation. In this setup, the concatenated embeddings are passed into self-

attention layers, enabling the network to compute the attention scores for both intra-

modal (protein–protein) and inter-modal (drug–protein) relations.

2.3.3 Cross-Attention for Fusion

While self-attention jointly processes a single combined sequence, cross-attention

explicitly learns to attend from one modality to another [27, 28]. Like standard at-

tention, cross-attention relies on the concepts of Query (Q), Key (K), and Value (V)

matrices, which are typically derived via learned linear projections of the input em-

beddings. Formally, the attention mechanism computes

Attention(Q,K,V) = softmax
(QK⊤
√
dk

)
V,
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where dk is a scaling factor (the dimension of K).

In standard self-attention, all Query (Q), Key (K), and Value (V) matrices are de-

rived from the same modality, where the attention formula above allows the network

to capture the relations within that modality. To accommodate for the multi-modal

setting (i.e., to compute the attention scores across different modalities), the K and

V matrices for one modality are calculated using the other modality, while using the

same modality to calculate the Q matrix [29].

This setup focuses the attention mechanism on inter-modal relationships: each protein

“queries” the drug embeddings to find relevant substructures, and vice versa. This

query is basically measured as a dot product between items from each matrix, referred

to as attention. As a result, cross-attention can learn explicit interactions between

specific amino acid regions in the protein and groups in the drug.

2.4 Transfer Learning and Domain Adaptation

Transfer learning (TL) addresses the challenge of leveraging knowledge extracted

from one task (the source) to improve learning or performance in another, potentially

different but related, setting (the target) [30, 31]. It is particularly useful in scenarios

where sufficient labeled data exist for one task, but there is limited labeled data for

a related task. Rather than training a new model from scratch for the domain with

limited annotated data, TL allows us pre-train a model on a sufficiently large dataset

(of related task) and then adapt or reuse the learned features for the target task.

Several strategies for TL are widely employed, depending on the similarity of the

source and target tasks as well as the amount of available target data [32, 33]:

• Full Fine-Tuning: A model is pre-trained on the source task and then all its

(learnable) parameters are updated (fine-tuned) using the limited labeled data

of the target task [30].

• Gradual (Layer-wise) Fine-Tuning: The model’s layers are incrementally un-

frozen. The standard approach is to first tune the layers close to the output layer,

while the others remain frozen. Subsequently, earlier layers are unfrozen and
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tuned in a stage-by-stage manner [34].

• Fine-Tuning Final Layers Only: The lower layers, generally attributed to the

task of feature extraction, are frozen, and only the task-specific final layers (e.g.,

classification layers) are fine-tuned [32].

• Feature Extraction + Shallow Classifier: The pre-trained network is treated

purely as a feature extractor to yield expressive embeddings from the input

data. For the output layer, a shallow machine learning model (e.g., logistic

regression, SVM, or random forest) is attached to be trained on the target data

with limited data. Thus, we learn a feature extactor on large datasets and further

specify a shallow model for the target-specific task. [31].

Beyond these general adaptation approaches, TL also encompasses scenarios in which

distributions differ significantly across domains (Ds ̸= Dt) or the predictive tasks dif-

fer (Ts ̸= Tt). When the source and target tasks remain the same but the underlying

data distributions differ, the problem is commonly referred to as domain adaptation

(DA) [30]. Domain adaptation can therefore be viewed as a sub-field of TL, focusing

on the challenge of aligning or bridging the distributional shift between source and

target domains.

The remainder of this section focuses on domain adaptation methods. In particular,

we will focus on zero-shot adaptation scenario, assuming zero supervision from the

target domain during training.

2.4.1 Transfer Learning Settings

Inductive Transfer Learning (ITL). In inductive TL, both the source and target

domains have labeled data, possibly with different quantities of samples, for slightly

different but related tasks [30]. The main objective is to leverage knowledge gained

from the labeled source domain to improve performance on the labeled target task. An

example is fine-tuning a large pre-trained model (trained on a labeled source dataset)

to perform a different but related labeled task with limited training data in the target

domain.
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Transductive Transfer Learning (TTL). In transductive TL, the source domain has

labeled data, but the target domain may have very limited labeled data or, in many

cases, no labeled data at all [30]. Here, the label space is typically assumed to be

identical (or heavily overlapping) between source and target, but the data distribu-

tions differ. Many domain adaptation (DA) methods fall under transductive TL, es-

pecially unsupervised domain adaptation, where no target labels are used at all. In

this scenario, the algorithm exploits unlabeled target data to align source and target

distributions, ensuring that the model trained on the labeled source can generalize

effectively to the target domain.

2.4.2 Domain Adaptation

Domain adaptation is often regarded as a sub-problem within transductive TL, where

the main difference between source and target lies in the data distributions rather than

the tasks. Under the classical DA assumption, the label (or task) space remains iden-

tical (Ts = Tt) or nearly the same between source and target [30]. For instance, we

might have the same classification task (e.g., object recognition) in both source and

target, but the images or features in the target domain follow a distinct distribution.

Figure 2.1: An example of domain shift in the computer vision domain. This figure

is adapted from [1].

Figure 2.1, adapted from [1], illustrates a compelling example of domain shift in the

vision domain. Imagine an object detection task where the same scene is captured

under different lighting conditions. Although the objects present in both images are

identical, the differences in luminance and color distributions introduce a domain

shift. If the training set predominantly contains images similar to the left-hand side
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of the figure, a robust model is required to generalize effectively to images like those

on the right-hand side that were not seen during training.

2.4.2.1 Domain Adaptation for DTI

A similar concept applies to Drug-Target Interaction (DTI) prediction. In the context

of DTI, while the task remains the same—determining whether a drug and a protein

interact—the structural properties of the molecules can vary significantly. For exam-

ple, two molecules with distinct structural features can be said to exhibit the same

functional properties when interacting with a specific protein. This is analogous to

the computer vision scenario where different lighting conditions do not change the

identity of the objects. In DTI, even if the structural representations of drugs vary

(similar to different lighting conditions in images), a robust model should still rec-

ognize that their functional interactions with the protein are equivalent. Thus, by

employing domain adaptation techniques, we aim to learn a domain-invariant fea-

ture extractor that ensures robust interaction prediction regardless of the variability in

molecular representations.

2.4.2.2 Supervised, Semi-Supervised, and Unsupervised DA

Domain adaptation methods also differ in how they use labeled data in the target

domain:

Supervised DA. In this case, a small amount of labeled target data is available. Mod-

els typically leverage this limited labeled set alongside the more abundant labeled

source data to calibrate or fine-tune predictions in the target domain.

Semi-Supervised DA. Here, a small set of labeled target samples and a larger set of

unlabeled target samples are available. Methods combine the ideas of semi-supervised

learning and domain adaptation, guiding the model using both labeled and unlabeled

target data.

Unsupervised DA. No labeled data exist in the target domain; the algorithm relies

solely on unlabeled target samples. This is the most challenging and widely studied
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setting [35, 36, 5], pushing the model to learn domain-invariant features without any

label guidance from the target.

Zero-Shot DA. In some scenarios, although the target labels are available, they are

not used for supervision to simulate a zero-shot evaluation in the target domain. Our

work adopts this perspective, ensuring that no target supervision is used for the clas-

sification.

2.4.3 Distribution Alignment Approaches

A foundational component of domain adaptation is to align the feature distributions

across source and target data. By enforcing distribution similarity, a model learns

representations that are domain-invariant. Two prominent strategies are:

Marginal Distribution Alignment seeks to match global (marginal) distributions

without explicit consideration of class or label information. A common technique for

this is the Maximum Mean Discrepancy (MMD), which compares the mean embed-

dings of distributions in a reproducing kernel Hilbert space [3].

Class-Conditional Distribution Alignment leverages label or pseudo-label informa-

tion to align distributions within each class. This approach typically produces stronger

results when reliable class-conditional structure can be identified. Conditional Adver-

sarial Domain Adaptation (CDAN) [5] exemplifies this idea by conditioning a domain

discriminator on both feature representations and predicted labels, promoting align-

ment at a finer granularity.

2.4.4 Adversarial Domain Adaptation

Adversarial learning techniques formulate domain adaptation as a minimax game be-

tween a feature extractor and a domain discriminator:

Domain-Adversarial Neural Network (DANN) [36] introduces a gradient reversal

layer to encourage the feature extractor to produce representations that fool a do-

main discriminator. By optimizing this objective alongside a task-specific loss (e.g.,
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classification or regression in the source domain), the model learns domain-invariant

features.

Conditional Adversarial Domain Adaptation (CDAN) [5] builds on DANN by in-

corporating label information (or predicted labels) into the adversarial objective. This

addition performs class-conditional alignment, improving adaptation performance es-

pecially when different classes exhibit markedly different distributions across do-

mains.

These adversarial methods are particularly relevant in an unsupervised setting, where

the model relies on distributional cues and source supervision to bridge the source-

target gap. They are widely applied in computer vision and natural language pro-

cessing, and have recently shown promise in biomedical tasks, such as drug-target

interaction prediction, by enabling robust cross-dataset or cross-species generaliza-

tion.

2.5 Drug–Target Interaction (DTI) Prediction

Drug–Target Interaction (DTI) prediction is a key step in computer-aided drug discov-

ery, aiming to identify potential relationships between chemical compounds (drugs)

and biological targets (often proteins). As summarized by Chen et al. [37], early

DTI studies frequently employed classical machine learning methods alongside engi-

neered molecular descriptors, but these approaches often struggled with capturing the

intricate structural and functional diversity of molecules and proteins. More recently,

deep learning architectures have emerged as powerful tools for end-to-end represen-

tation learning, achieving impressive results in many prediction tasks.

However, the huge molecular and genomic space, coupled with the scarcity of anno-

tated data, remains a significant challenge for DTI prediction. One major issue is that

limited annotated data in specific domains can make deep model training exception-

ally difficult. Furthermore, many real-world DTI scenarios involve distribution shifts

between training and inference data, complicating model deployment.

In an effort to address the challenge of limited annotated data, transfer learning has
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emerged as a promising approach. Cai et al. [38] provide a comprehensive survey of

transfer learning techniques applied to DTI prediction. One compelling example is

the work by Dalkıran et al. [39], which illustrates how pre-trained models on large-

scale drug or protein datasets can be repurposed or fine-tuned for new tasks with

minimal additional supervision. This style of deep transfer learning holds particular

promise when labeled data for specific targets or compound classes are limited.

The issue of distributional shift between training and inference data has been noted by

Bai et al. [2]. They show that standard random train–test splits (assuming similar dis-

tributions in training and inference data) yields overoptimistic performance estimates,

as per the distributional shift posed by novel input at inference time. To address these

discrepancies, researchers have turned to domain adaptation, a specialized subfield of

transfer learning that focuses on aligning source and target data distributions.

One popular domain adaptation framework is the conditional domain adversarial net-

work (CDAN) [5], which aligns feature representations with an adversarial objective.

DrugBAN [40] and CAT-DTI [41] both employ the adversarial objective for domain

adaptation.

• DrugBAN employs a bilinear attention mechanism to model local drug–protein

interactions and integrates adversarial alignment to mitigate distribution shifts

across diverse datasets.

• CAT-DTI combines convolutional neural networks and Transformer-based en-

coders with a cross-attention module, capturing intricate drug–target relation-

ships. A conditional adversarial component further refines alignment, enhanc-

ing predictive performance on out-of-distribution data.
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CHAPTER 3

METHODS

This section details the methods we employ to address the DTI prediction problem

and how we tackle the challenges of multimodal input fusion and domain adaptation.

At its core, our research handles a binary classification problem where we determine

whether a given drug-protein pair interacts. This involves a multimodal approach,

requiring a fusion of protein and drug features before being fed to the interaction

classifier. The overall framework for this is depicted in Figure 3.1.

Figure 3.1: In-domain interaction classification setup, illustrating the fusion of protein

and drug modalities.

Though existing methods report high predictive performance on test sets crafted via

random train-test splits, these results are often not transferable to data at inference

17



time. In particular, a substantial performance drop is frequently observed when the

trained classifier is applied to data from a different distribution (‘target domain’ com-

pared to the training data, or ‘source domain’). We verify this phenomenon in our ex-

periments (See Section 3.4.2), confirming the domain shift problem noted by previous

researchers [2]. To mitigate this issue, we incorporate domain adaptation techniques

that encourage the learned feature representations to be domain-invariant, allowing

the classifier to perform effectively across both domains.

Figure 3.2 conceptually illustrates how alignment methods match the feature distri-

butions from different domains. Specifically, the left panel illustrates marginal align-

ment, which matches feature distributions regardless of class labels, whereas the right

panel demonstrates conditional alignment, taking class labels into account and align-

ing distributions with respect to their class labels.

In an attempt to mitigate the issue of domain shift, we aim to train a robust feature

extractor that generalizes well to unseen target data. For this, we train a domain-

invariant feature extractor to align source and target features in a common latent

space, similar to the process in Figure 3.2. To this end, we employ various strate-

gies for domain adaptation, detailed in Section 3.5.2 and Section 3.5.1.

Figure 3.2: In-domain interaction classification setup, illustrating the fusion of protein

and drug modalities. Adapted from [42].
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3.1 Data

We utilize a low-bias version of the binary BindingDB dataset [?] for model training

and evaluation. This dataset contains chemical compounds (represented as SMILES

strings), proteins (represented by their amino acid sequences), and binary interaction

labels indicating whether each drug–protein pair interacts. Following the IC50 thresh-

old protocol described by Gao et al. [43], a drug–target pair is labeled as positive if its

IC50 is less than 100 nM and negative if its IC50 is greater than 10,000 nM, ensuring

a 100-fold difference between the two classes.

3.1.1 Dataset for In-Domain Setting

For the in-domain experiments, the dataset is randomly split into training, validation,

and test sets. The key characteristics are as follows:

• Training Set:

– Size: 34,439 instances

– Columns: SMILES, Protein, and binary label Y

– Unique Entries: 13,887 unique SMILES (drugs) and 2,347 unique pro-

teins

– Duplicates: 20,552 duplicate SMILES entries and 32,092 duplicate pro-

tein entries (no duplicate (SMILES, Protein) pairs)

– Label Distribution: 19,856 negatives and 14,583 positives

• Validation Set:

– Size: 4,920 instances

– Unique Entries: 4,050 unique SMILES and 1,083 unique proteins

– Label Distribution: 2,903 negatives and 2,017 positives

• Test Set:

– Size: 9,840 instances
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– Unique Entries: 6,951 unique SMILES and 1,441 unique proteins

– Label Distribution: 5,766 negatives and 4,074 positives

Combined, the full dataset (training + validation + test) contains 49,199 instances,

with 14,643 unique SMILES strings and 2,623 unique proteins. The overall label

distribution is 28,525 negatives and 20,674 positives.

3.1.2 Data Representation

We need to represent drugs and proteins in real-valued vector formats for processing.

For protein representation, we employ NLP-based methods detailed in Section 2.1.

Specifically, we use k-mer (k = 2) counting and ProtT5-XL [12]. For drug repre-

sentation, on the other hand, we employ ECFP4 fingerprints [20] and an advanced

transformer-based model ChemBERTa [21] (detailed in Section 2.2).

For the in-domain tasks, where we tried to identify the optimal input fusion strat-

egy, we only utilized the simpler representation methods: k-mer (k = 2) for pro-

teins and ECFP4 for drugs. However, they did not provide promising results during

our preliminary analysis of the cross-domain tasks. Consequently, for all subsequent

cross-domain experiments, we opted for the more advanced representation methods

(ProtT5-XL for proteins and ChemBERTa for drugs).

Different levels of representation for input significantly affect the overall learning

process, impacting both predictive and computational performance. The complexity

level is crucial for the remainder of the deep models in the pipeline. That is, the meth-

ods later employed for domain alignment need to be on par in terms of their statistical

representation power. A similar phenomenon is observed in generative adversarial

networks (GANs), where the discriminator’s complexity must be comparable to that

of the feature extractor to prevent issues such as mode collapse [44]. Our approach,

employing a very similar mechanism, is also susceptible to these problems. There-

fore, we require that the remainder of the networks in our pipeline possess sufficient

statistical complexity to capture the intricacies identified by the featurization method

opted for.
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3.2 Input Fusion Strategies

The feature representations of proteins and drugs need to be fused to form a joint

representation for the interaction classification task, as illustrated in Figure 3.1. For

this, we explore several fusion strategies, ranging from simple concatenation to more

complex attention-based mechanisms.

3.2.1 Concatenation

The simplest method is direct concatenation of the protein and drug feature vectors

(Fprotein and Fdrug):

F = [Fprotein;Fdrug]

This fused vector F is then passed to the binary interaction classifier, as illustrated

in Figure 3.3. Although this approach does not explicitly model direct interactions

between the modalities, it serves as a simple yet effective baseline.

Figure 3.3: Using direct concatenation for input fusion.

3.2.2 Concatenation + Self-Attention

To better capture interactions between the protein and drug feature sets, we incorpo-

rate a more sophisticated approach, self-attention [27], after concatenation, as illus-

trated in Figure 3.4.
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Figure 3.4: Using concatenation and self attention for input fusion.

Let F ∈ RL×d denote the concatenated features (where L is the combined sequence

length and d is the embedding dimension). As in a standard attention setting, we

require query (Q), key (K), and value (V) matrices. These are calculated as linear

transformations applied on top of the feature vectors of drugs and proteins, computed

as follows:

Q = FWQ, K = FWK , V = FWV

The self-attention mechanism computes attention weights as:

Attention(Q,K,V) = Softmax
(
QKT

√
d

)
V

Here, WQ,WK ,WV ∈ Rd×d are learnable projection matrices. The dot product QKT

measures the similarity of each feature vector with every other feature vector. This

approach allows the model to calculate how much each feature we use to represent a

modality interacts with all the features from both modalities.

3.2.3 Cross-Attention

In an attempt to capture the relations between modalities more explicitly, we employ

a cross-attention mechanism. The goal is to model how features from one modality

can directly attend to features from the other.
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Figure 3.5: Using cross attention for input fusion

This process, demonstrated in Figure 3.5, involves the following steps:

1. Separate Feature Representations: We start with separate feature representa-

tions for proteins and drugs:

Fp ∈ RLp×d, Fd ∈ RLd×d.

Here, Lp and Ld denote the sequence lengths for proteins and drugs respec-

tively, and d is the embedding dimension.

2. Cross-Attention Setup: Unlike standard self-attention where queries, keys,

and values for modality are derived from the embedding of the same modality,

cross-attention computes queries from one modality and keys/values from the

other. Specifically:

• Drug-to-Protein Attention: The drug features are used to compute the

query matrix, whereas linear transformations to protein features provide

the keys and value matrices for Drug-to-Protein Attention.
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• Protein-to-Drug Attention: Similar approach to computing the Drug-to-

Protein Attention. Specifically, the protein features are used to compute

the query matrix, whereas linear transformations to drug features provide

the keys and value matrices for Protein-to-Drug Attention.

This setup ensures computing how much each feature from one modality at-

tends to those in the other, accounting for the cross-attention setting.

Formally, for drug-to-protein direction:

Qd = FdW
d
Q, Kp = FpW

p
K , Vp = FpW

p
V ,

and for protein-to-drug direction:

Qp = FpW
p
Q, Kd = FdW

d
K , Vd = FdW

d
V .

Here, W d
Q, W p

K , W p
V , W p

Q, W d
K , and W d

V are learnable projection matrices.

3. Computing Cross-Attention Outputs: The cross-attention operation for the

drug-to-protein direction is computed as:

Zd = Softmax

(
QdK

T
p√

d

)
Vp.

Similarly, for the protein-to-drug direction:

Zp = Softmax
(
QpK

T
d√

d

)
Vd.

The dot product between Q and KT measures similarity between feature vec-

tors of one modality to those of the other. This setting accounts for a cross-

modal attention calculation.

4. Combining Cross-Attended Features: After obtaining the cross-attention rep-

resentations Zd and Zp, we combine them with the original embeddings, via

residual layers. Then, the final joint representation is concatenated.

Z = [Zp;Zd].

5. Classification: The combined representation Z is then passed through a classi-

fication layer to predict the interaction label.

Being able to explicitly model how one modality attends to the other cross-attention

stands out as a more expressive approach.
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3.3 Overall Framework for In-Domain Tasks

For in-domain tasks, the model is trained and evaluated using data that share similar

distributional characteristics. This can be achieved by employing standard random

traintest splits. Our overall approach for in-domain experiments can be seen in Fig-

ure 3.1.

In this part of our work, we primarily focus on evaluating fusion strategies, rather than

tuning models on an extensive hyperparameter set, exploring different featurization

strategies, or employing advanced representation learning techniques to boost predic-

tive performance. That’s why we have opted for using straightforward and common

feature representations. For proteins, we employ K-mer counting with k = 2 , result-

ing in a frequency vector of length 202, where each entry indicates the existence of

a possible amino acid pair. For drugs, we use ECFP4 fingerprints, which produce a

1024-dimensional binary vector, whose each bit indicates the presence of a particular

chemical substructure.

3.3.1 Training for In-Domain Setting

We train the interaction classifier for each of the fusion methods detailed in earlier

sections:

1. Concatenation (Section 3.2.1)

2. Concatenation followed with Self-attention (Section 3.2.2)

3. Cross-Attention (Section 3.2.3)

For each method, the classifier is trained using a set of standard procedures for binary

classification tasks.

As in a typical binary classification setting, we employ Sigmoid activation function

at the output layer, producing probabilistic distribution across classes. Instead of

setting the threshold to a score of > 0.5 for binarization of the predictions, we opt

for a strategy to find the threshold to optimize the trade-off between True Positive
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Rate (tpr) and the False Positive Rate (fpr). Specifically, we set the threshold to

max(tpr − fpr) on the ROC curve based on the validation set.

To assess model performance, we consider the standard array of evaluation metrics

for classification, including accuracy, precision, recall, F1-score, and the area under

the ROC curve (AUROC).

3.4 Switching from In-Domain to Cross-Domain Setting

As previously noted, the standard random train-test splits assume distributional sim-

ilarity between training and inference data, leading to over-optimistic evaluations.

To verify the performance drop attributed to domain shifts, as discussed by previous

researchers [2], we conducted experiments detailed in Section 3.4.2. This section

details the methodology employed for introducing distributional shifts between do-

mains and the drop in the model’s performance on the target domain—data it has

never encountered before.

3.4.1 Dataset for Cross-Domain Setting

To better reflect real-world scenarios where test data distribution deviates from that of

training data, previous studies have employed hierarchical clustering-based methods

to create distinct source and target domains [2].

Below steps outline the process of crafting these datasets:

1. Feature Extraction for Clustering: For molecules, ECFP4 fingerprints [20]

are computed, and Jaccard distance is used to measure their similarity based

on proportion of shared chemical substructures between pairs of molecules.

For proteins, Position-Specific Counts (PSC) are utilized along with cosine

similarity-based distances.

2. Hierarchical Clustering: Standard hierarchical agglomerative clustering have

been applied separately for proteins and drugs, where the most similar cluster

pairs (measured via single-linkage method, setting the most similar data points
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between clusters as the inter-cluster distance) are merged gradually. This pro-

cess inherently results in an increase in the inter-cluster distance at each step

of merging. The merging is pruned when the inter-cluster distance reaches a

pre-defined threshold, marking the point where clusters are separate enough to

craft source and target datasets.

3. Source-Target Split: After clustering, 60% of the protein and drug clusters

are selected as the source domain. While the pairs from these source clusters

constitute the source dataset, the remaining clusters form the target. The source

dataset is used for training, while the target dataset is split so that 80% can be

used as additional training data for the feature extraction, and 20% serve as a

held-out test set.

This clustering-based approach yields approximately 2,800 drug clusters and 1,700

protein clusters, with dissimilar instances by the principle of separation. This con-

stitutes a suitable setting for a domain adaptation scenario, with source and target

datasets.

To further investigate the data distribution across domains, we performed a prelimi-

nary analysis. Key findings include:

• Distinct Domains: There are no common proteins, drugs, or (SMILES, Pro-

tein) pairs between the source and target datasets.

• Within-Domain Overlap: While overlaps are observed between training and

validation splits within each domain (as expected in a random split), no such

overlap exists across domains.

To visualize the discrepancy between domains, we employed t-SNE on the fused

features of drugs and proteins. For input featurization, we utilized k-mer counts with

k = 2 for proteins and ECFP4 fingerprints for drugs. And, for input fusion, we used

cross attention. The visualizations were generated using embeddings from the first

epoch, before any domain alignment is introduced. We chose to display the domains

on a per-class basis to enhance interpretability. Specifically, Figure 3.6a illustrates the

interacting pairs, with blue points representing source data and red points representing

27



(a) Interacting (b) Non-interacting

Figure 3.6: Comparison of interacting and non-interacting classes over epochs.

target data. Figure 3.6b depicts the non-interacting pairs, where green points denote

source data and yellow points correspond to target data. These figures effectively

highlight the distributional discrepancies between domains for both classes. To be

able to monitor the alignment process better, we have visualized the extracted features

at certain epochs during training too (Presented in Section 3.5.11;).

3.4.2 Cross-Domain Performance without Domain Adaptation

To evaluate the baseline performance in a cross-domain scenario without any do-

main adaptation techniques, we train models exclusively on the source domain data

and then test them on the target domain. This allows us to quantify the degree of

performance degradation when the model encounters data from a distinctly different

distribution than that of the training set.

In this setup, the dataset configuration is as follows:

• Training & Validation Data: Source domain is randomly split to training/val-

idation (90/10 %). This results in 13440 and 1504 data instances for training

and validation, respectively.

• Test Data: Target domain data, held out and not used during training, contains

8896 data points.
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This does not yield an optimal validation strategy, as our validation data does not ex-

hibit similar statistical characteristics to those of the test data. In effect, it enables us

to highlight the discrepancy between validation performance and the actual perfor-

mance on the target test set.

We employ the same hyperparameter configuration that produced the best results in

the in-domain setting for training the models. Figure 3.7 illustrates the training and

validation curves on the source domain. The left panel shows the loss values over

epochs, while the right panel depicts various metrics (e.g., accuracy, precision, recall,

F1-score, AUROC) on the validation set. These curves suggest stable training and

decent validation performance with the source data.

Figure 3.7: Training and validation performance on the source domain (no domain

adaptation).

Though Figure 3.7 exhibits very promising learning curves, the trained model’s per-

formance on the test set is far from ideal. In fact, its performance is at random, as

illustrated in Table 3.1. Here, the performance of the same model in the in-domain

setting and the cross-domain setting is compared:

Table 3.1: Performance Metrics Across Different Settings

Setting Accuracy Precision Recall F1 AUROC

In-Domain 0.86 0.83 0.83 0.84 0.94

Cross-Domain 0.54 0.51 0.68 0.58 0.58
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There is a dramatic drop in performance when switching from in-domain to cross-

domain tasks. While in-domain performance appears impressive, cross-domain per-

formance is no better than random. This underscores the impact of domain discrep-

ancies on model performance and the need for robust domain adaptation.

Notably, the drop in precision is more pronounced than in recall, indicating a tendency

for models to classify instances as positive, despite there being no class imbalance

between positive and negative samples.

3.5 Framework for Cross-Domain Setting

This section outlines the domain adaptation approaches employed. Initially, we dis-

cuss the distributions targeted for alignment, followed by a high-level overview of the

methods used for domain alignment, specifically MMD Loss and Adversarial Train-

ing. Subsequently, we describe the data loading pipeline. These are followed with

the detailed explanations of our approaches. Then, we conclude with hyperparam-

eter tuning, presenting the intermediate performance results, including loss curves,

metrics on the validation set, and distributional alignment.

3.5.1 Aligning Marginal vs. Conditional Distributions

A key design choice in domain adaptation is whether to align marginal distributions

or conditional distributions. Marginal alignment attempts to match the overall feature

distributions P (Xsource) and P (Xtarget) without considering the labels. In contrast,

conditional alignment attempts to align distributions conditioned on the interaction

label, i.e., P (X|Y = 0) and P (X|Y = 1) across domains.

In this work, we implement both strategies to compare their effectiveness.

For marginal alignment, we attempted to minimize the distributional discrepancy be-

tween the source and target data regardless of their class label.

For conditional alignment, we use class labels to align data from different domains,

focusing separately on interacting (Y = 1) and non-interacting (Y = 0) pairs.
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Specifically, for non-interacting pairs, we aim to minimize the divergence between

P (Xsource|Y = 0) and P (Xtarget|Y = 0). Similarly, for interacting pairs, our methods

target minimizing the divergence between P (Xsource|Y = 1) and P (Xtarget|Y = 1).

3.5.2 Maximum Mean Discrepancy (MMD Loss)

One method employed in the literature for feature alignment is using an auxiliary

loss function to minimize the distributional discrepancy between domains. For this,

Maximum Mean Discrepancy (MMD) Loss is commonly used, providing a statis-

tical measure of the discrepancy between source and target distributions P (Xsource)

and P (Xtarget) by leveraging embeddings in a Reproducing Kernel Hilbert Space

(RKHS).1 By minimizing MMD, we aim to reduce the domain shift and learn more

domain-invariant representations.

The core concept of MMD is to embed source and target samples into a Reproducing

Kernel Hilbert Space (RKHS) via a kernel function, such as the Gaussian or poly-

nomial kernel, and then compare the mean embeddings of these distributions. By

minimizing the distance between these mean embeddings, MMD effectively drives

the model to learn domain-invariant features. In contrast to many other approaches,

MMD does not assume a specific parametric form of the distributions (such as when

using the KL divergence) and the kernel trick allows it to capture complex, high-

dimensional relationships without explicitly computing the mapping into a large fea-

ture space.

An RKHS is a type of function space that simplifies data point comparisons using a

kernel function k(·, ·). Instead of dealing with a large or infinite-dimensional feature

space, we compute pairwise similarities k(x, x′) between points in the original input

space. This indirect mapping offers a practical method to compare and align probabil-

ity distributions. In MMD, these kernel-based similarities help measure the closeness

of source and target distributions without directly managing high-dimensional feature

embeddings.

1 RKHS is primarily favored because it allows for a flexible, kernel-based measurement of distributional
differences without the need to assume any specific parametric form.
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3.5.2.1 MMD Loss Function for Marginal Alignment

Let {xi
s}ns

i=1 be samples from the source domain and {xj
t}nt

j=1 be samples from the

target domain. We consider a kernel function k(·, ·) defined on the input feature

space. The MMD between P (Xsource) and P (Xtarget) is computed as

MMD2(P,Q) =
1

n2
s

ns∑
i=1

ns∑
i′=1

k(xi
s, x

i′

s )+
1

n2
t

nt∑
j=1

nt∑
j′=1

k(xj
t , x

j′

t )−
2

nsnt

ns∑
i=1

nt∑
j=1

k(xi
s, x

j
t).

The first two terms in the equation calculate the average intra-domain similarity, while

the last one calculates that for inter-domain. The overall loss calculates the difference

between intra- and inter-domain distances. Minimizing this quantity encourages the

distributions of different domains to become similar.

3.5.2.2 MMD Loss Function for Conditional Alignment

To incorporate label information, MMD loss can be computed separately for each

class and then averaged over all classes. This method is formalized as follows:

MMDcond =
1

|C|
∑
c∈C

MMD2
(
P (Xc

s), Q(Xc
t )
)
.

where P (Xc
s) and Q(Xc

t ) represent the probability distributions of the source and

target domain data for class c, respectively.

3.5.2.3 Using MMD as an Auxiliary Regularizer Loss

The MMD loss is added to the classification loss with a weight given by a hyperpa-

rameter λ for training. This way, MMD Loss acts as a regularizer term in the overall

loss function, which is given by:

L = Lclassification + λ · LMMD,

where:
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• L: Total loss.

• Lclassification: the classification loss, measured based on the classification perfor-

mance of the model.

• LMMD: the Maximum Mean Discrepancy loss, measured by the discrepancy

between feature distributions of domains.

By tuning λ and the kernel parameters, we can control both the strength and nature of

the domain alignment.

3.5.3 Adversarial Domain Adaptation

Figure 3.8: Adversarial Model Architecture for Cross-Domain Settings. The feature

extractor receives input from both domains and passes fused representations to both

the interaction classifier and the domain discriminator. The gradient reversal layer

inverts gradients from the domain discriminator, enforcing domain-invariant feature

learning.

In addition to MMD-based alignment, a common approach is to utilize an adversar-

ial objective, adopting an auxiliary discriminator network to determine whether the

extracted features originate from the source or target domain. The adversarial objec-
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tive is characterized by a min-max game, where the domain discriminator attempts to

classify the domain of the features, while the feature extractor is trained to produce

features that are indistinguishable for the discriminator, as depicted in Figure 3.8. The

objective here is very similar to Generative Adversarial Networks (GANs).

The aim is to learn a domain-invariant feature extractor using an adversarial setup.

Concurrently, we train the primary interaction classifier exclusively on source data,

which will later be evaluated on the target dataset to assess zero-shot performance in

an unsupervised domain adaptation context.

Although this setup is similar to GANs, instead of using a typical GAN loss, we

employ a Gradient Reversal Layer (GRL). In this setup, the extracted features are

forwarded to both the interaction classifier and the domain discriminator. Here, the

Gradient Reversal Layer acts as an identity function during the forward pass. In the

backward pass, however, it flips the calculated gradients in the opposite direction,

setting an environment for adversarial training. That is, during backpropagation, the

reversed gradients will cause updates to the feature extractor in a manner that makes

its output harder to distinguish for the domain discriminator.

This way we learn a domain-invariant feature extractor that is still useful for the in-

teraction classifier.

3.5.3.1 Marginal Alignment using a Domain Discriminator

A typical approach, inspired by Domain-Adversarial Neural Networks (DANN) [36],

focuses on marginal alignment by directly aligning P (Xsource) and P (Xtarget). The

domain discriminator receives raw features and tries to distinguish source from tar-

get, while the reversed gradients encourage the feature extractor to produce domain-

invariant representations.

3.5.3.2 Conditional Alignment using CDAN

Conditional Domain Adversarial Networks (CDAN) [5] enhance adversarial align-

ment by leveraging label information. Instead of passing raw features directly to the
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domain discriminator, CDAN combines features with class predictions to form a joint

representation. The joint representation, which captures both feature information and

label structure, is then passed through the Gradient Reversal Layer before reaching

the domain discriminator. This process enforces alignment of conditional distribu-

tions P (Xsource | Y = c) and P (Xtarget | Y = c) for each class c, rather than merely

matching marginal distributions.

3.5.4 Data Loading Pipeline with Multiple Domains

3.5.4.1 Multi-Domain Data Pipeline and Loading Modes

We randomly partition 20% of both the source and target training datasets to serve

as validation sets, allowing us to monitor the model’s performance in each domain

during training. This approach establishes training and validation data loaders for

each domain, in addition to a test data loader for the target domain. To facilitate

cross-domain training, we employ a custom MultiDataLoader class capable of

iterating over batches from both domains concurrently within an epoch.

Using a multi-dataloader in domain adaptation often reintroduces the challenge of

class imbalance, particularly when one domain has substantially more data than the

other. In our case, the source dataset contains about 15,000 data instances, whereas

the target has approximately 7,000. Consequently, one domain’s data runs out before

the other’s within an epoch. To address this, we define multiple loading modes:

• same_size: Truncates the larger dataset to match the number of batches in

the smaller one, ensuring balanced exposure to source and target data during

training. Although easy to implement, it wastes a portion of the annotated data.

• cycle_smaller: Cycles through the smaller dataset repeatedly until the larger

dataset is fully consumed within an epoch. This prevents underrepresentation

of the smaller domain but risks overfitting to the target data if it is much smaller.

• sample_larger: At each iteration, randomly samples a subset from the larger

dataset to match the smaller dataset’s size. This allows usage of all annotated
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data without a strict truncation while avoiding imbalance. But, this comes at a

cost of instability in training.

In practice, each loading mode is a trade-off. Hence, we treat the choice of mode as

another hyperparameter, comparing their effects in an array of experiments.

Sequential vs. Random Ordering of Batches. Most existing domain adaptation

methods utilize pipelines that process batches from source and target domains se-

quentially. This method ensures a consistent order and size of data from each domain

within an epoch. While this approach simplifies batch-wise operations (e.g., batch

normalization, loss computation), it may bias the model toward a particular ordering

or a fixed sample distribution per domain.

As an alternative, randomly interleaving source and target batches could reduce po-

tential biases associated with fixed ordering. However, since losses for the target and

source batches need to be calculated separately to maintain the a zero-shot scenario

in unsupervised domain adaptation, this method complicates data-loading logistics

and interrupts standard batch processing routines. Given that sequential processing

is the standard method in existing literature, we adhere to this convention. Yet, we

acknowledge the potential benefits of exploring a random mixing strategy in future

research.

High-Level Data Pipeline Description. Below is an outline of the steps we follow

when preparing and loading data:

1. Load Source and Target Datasets: We use either classical embeddings (e.g.,

ECFP4, k-mer) or advanced pretrained model embeddings (e.g., ChemBERTa,

ProtT5XL), with the option to fine-tune them.

2. Split Data into Train/Validation/Test: Both source and target datasets are

divided into training and validation subsets to monitor domain-specific perfor-

mance. The target data are used only to train the feature extractor, accommo-

dating a 0-shot performance evaluation setting on the target domain.
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3. (Optional) Compute Global Statistics for Normalization: If normalization

is needed (especially for pretrained embeddings), we combine the source and

target training subsets to compute global means and standard deviations.

4. (Optional) Normalize Datasets: Apply computed statistics across all data

splits if normalization is enabled.

5. Assemble MultiDomain Loaders: Build combined train and validation load-

ers via the MultiDataLoader, specifying how batches from the two do-

mains are drawn (based on one of the modes above).

3.5.4.2 Data Normalization

We do not apply normalization to classical embeddings such as ECFP4 because each

bit in these vectors indicates the presence or absence of a chemical substructure, and

z-score scaling would compromise interpretability.

For embeddings derived from pretrained models (e.g., ChemBERTa [21] or ProtT5XL

[12]), we treat normalization as a hyperparameter. To avoid data leakage, if normal-

ization is enabled, we compute the mean and standard deviation exclusively from the

combined source and target training subsets; we then apply these statistics to all data

splits for consistent scaling.
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3.5.5 Framework for Domain Adaptation in DTI utilizing MMD Loss

Figure 3.9: Overall cross-domain framework utilizing MMD Loss.

We incorporate MMD loss as a regularization term in the training objective, alongside

the primary interaction task, as depicted in Figure 3.9. For the interaction classifica-

tion task, we employ Binary Cross Entropy (BCE) Loss, as in any typical standard

binary classification settings. Concurrently, MMD Loss is calculated on the features

extracted from the source and target data to facilitate domain alignment. Both MMD

and BCE Losses are utilized to update the feature extractor, aiming at a domain-

invariant feature extractor. For the interaction classifier, however, we only use the

error signal from the interaction prediction on the target data.

As explained above, two approaches to alignment are possible: marginal and con-

ditional alignment. The final loss function is based on the choice of conditional or

marginal alignment, as shown below:

1. Loss Function for Marginal Alignment:

L = Linteraction(Xsource, Ysource) + λ · LMMD(F (Xsource), F (Xtarget))

2. Loss Function For Conditional Alignment:

L = Linteraction(Xsource, Ysource) + λ · LMMD(F (Xsource|Y ), F (Xtarget|Y ))
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where Linteraction is the binary cross-entropy loss measured on the source domain’s

labeled pairs, and LMMD measures the distributional discrepancy between source and

target features. The parameter λ controls the strength of the MMD alignment relative

to the interaction task.

3.5.5.1 MMD Training Steps

1. Feature Extraction: Given a batch of source and target samples, we pass them

through the feature extractor to obtain source features F (Xsource) and target

features F (Xtarget).

2. Interaction Loss Computation: We feed only the source features to the in-

teraction classifier, computing the loss in terms of binary cross entropy. The

interaction predictions for the target data, on the other hand, are used only

for performance-monitoring purposes (i.e., no gradient flows from target la-

bels to the interaction classifier). This setting accounts for a strictly zero-shot

paradigm for target-domain interaction classification.

3. MMD Loss Computation: The MMD Loss is calculated based on the choice

of domain alignment. If marginal alignment is targeted, we measure the dis-

tance between F (Xsource) and F (Xtarget). If conditional MMD is employed, we

compute the loss class-wise, i.e., aligning P
(
F (X)

∣∣Y = 0
)

and P
(
F (X)

∣∣Y =

1
)

across the source and target domains.

4. Backpropagation and λ-Scheduling: First, the source interaction loss is back-

propagated, updating both the feature extractor and the interaction classifier.

Subsequently, the MMD loss is backpropagated only to the feature extractor,

ensuring that the classifier receives no gradient from the target data.

This setting comes with another hyperparameter λ to balance the influence of

domain alignment relative to classification. Instead of directly treating λ as

another hyperparameter to tune, we employ a scheduling algorithm. Given

the feature extractor and interaction classifier networks are being trained from

scratch, we chose to introduce a warm-up stage to let the models focus on the

main task. After the warmup period ends, we gradually increase λ to strengthen

domain alignment. Here, we hold that the feature extractor will generate better
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embeddings for the interaction classifier to classify and introducing a gradual

complexity for domain alignment seem logical.

p(epoch, epochs) =
epoch
epochs

,

λ(epoch, epochs) = max

(
2

1 + e−10·p(epoch,epochs) , 0.01

)
,

This scheduling helps keep alignment pressure low initially, then steadily in-

creases it as the model stabilizes.

5. Optimization and Early Stopping: We use an early-stopping criterion based

on validation metrics, monitoring performance on both source and target data

to avoid overfitting and ensure a stable alignment process. The final model is

selected from the epoch yielding the best classification performance on target-

domain performance in terms of MCC.

3.5.6 Framework for Domain Adaptation in DTI utilizing Adversarial Setup

Figure 3.8, above, provides an overview of the adversarial training framework in the

cross-domain setting. In this architecture, drug-protein pairs from both source and

target domains are fed into the feature extractor concurrently. The feature extrac-

tor can utilize classical statistical representations (e.g., k-mer frequencies for pro-

teins, ECFP4 fingerprints for drugs) or more advanced embeddings (utilizing pre-

trained models, such as ChemBERTa and ProtT5XL). After extracting features for

both modalities, we fuse them using one of the previously described fusion methods:

simple concatenation, self-attention on concatenated features, or cross-attention.

The fused representation is then passed to two separate components:

1. Interaction Classifier: A binary classifier that predicts whether the drug-protein

pair interacts.

2. Domain Discriminator: A binary classifier that predicts which domain (source

or target) the input pair is from.
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Both the interaction classifier and domain discriminator produce binary outputs and

hence are trained with Binary Cross-Entropy (BCE) losses. Consequently, we end up

with four losses, outlined below:

• Source Interaction Loss: Computed from source domain to train the interac-

tion classifier.

• Target Interaction Loss: Computed from target domain examples for monitor-

ing the performance on the target, but not backpropagated to avoid supervision

from target interaction to test 0-shot performance of the classifier on the target

domain.

• Source Domain Loss: Domain classification loss for source samples.

• Target Domain Loss: Domain classification loss for target samples.

In practice, we only backpropagate the source interaction loss, alongside the domain

losses. The target interaction loss is recorded merely for evaluation and tracking

progress.

The gradient flow through the network is structured as follows:

1. Interaction Loss Backpropagation: Calculated solely on source data and used

for supervision to the interaction classifier and domain discriminator, serving

for the primary DTI prediction task.

2. Domain Loss Backpropagation: The discriminator is updated based on the

domain discriminator loss, ensuring better discrimination in the next epoch.

However, these are passed through the gradient reversal layer (GRL), before

arriving at the feature extractor. In the GRL, the calculated gradients are flipped

in the opposite direction in an attempt to fool the discriminator in the next

iteration of training. That is, such reversed updated will result in an embedding

that will be actually harder for the discriminator to distinguish. In short, the

reversed gradients work for the adversarial objective in that the feature extractor

is guided to fool the discriminator, by aligning the distributions of source and

target data.
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This joint training setup guides the feature extractor to learn embeddings that are

indistinguishable across domains, but still useful for the main interaction task.

3.5.7 Training with DDAN vs CDAN

For the adversarial domain adaptation approach, we employ both Domain-Adversarial

Neural Networks (DANN)[36] and Conditional Domain Adversarial Networks (CDAN)

[5]. The training procedure is outlined below:

Key steps in the CDAN training loop:

1. Feature Extraction: Extract the features of both domains, F (Xsource) and

F (Xtarget), using the featurization method and one of the fusion methods dis-

cussed.

2. Get the Source Interaction Prediction & Compute Interaction Loss: Get

the interaction predictions and losses for both domains in terms of Binary Cross

Entropy. Those for the target domain is merely calculated for performance-

monitoring purposes and not backpropagated.

3. Input for the Discriminator: Based on the alignment opted for (i.e., aligning

marginal or conditional distributions), the input for the domain discriminator

is constructed. In particular, if marginal alignment is targeted, the constructed

features are directly forwarded to the domain discriminator. In contrast, if we

are aiming for a conditional alignment, we employ the outer product to create

a joint representation of feature embeddings and class probabilities. The outer

product between the feature embedding vector and the class probability vec-

tor results in a matrix that captures the correlations between each feature and

each potential class outcome. This matrix representation enriches the input to

the discriminator with class-specific contextual information, encouraging con-

ditional alignment (i.e., aligning P (X|Y = c) across domains) rather than just

marginal alignment.

4. Domain Discrimination and Gradient Reversal: The obtained representation

(either direct embeddings or combined with class predictions for conditioning)
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is then forwarded to the domain discriminator, passing through the gradient re-

versal layer (GRL). In the forward pass, the GRL acts as an identity function.

The domain discriminator predicts the domains (either as source or target), re-

sulting in a loss measured in terms of binary cross-entropy. The domain dis-

criminator’s parameters are updated based on the gradients calculated from this

loss, ensuring better predictions in the next epoch. The gradients, upon passing

through the gradient reversal layer, are flipped in the opposite direction when

flowing back to the feature extractor. This causes the parameters of the feature

extractor to be updated in an opposite manner, i.e., producing embeddings that

will be harder for the domain discriminator to distinguish. This setup accounts

for the adversarial training and the learning of a domain-invariant feature ex-

tractor.

5. Loss Functions: The CDAN/DDAN training optimizes two main losses:

• Interaction Loss (source only): Measures the error on the primary task

of interaction classification in terms of binary cross entropy. Though cal-

culated for both domains for performance monitoring purposes, only the

supervision from the source data is used for updating the model’s (inter-

action classifier’s) parameters.

• Domain Loss (source + target): Measures the domain classifier’s per-

formance in terms of binary cross entropy. The gradient reversal layer,

flipping the calculated gradients based on this loss, ensures an adversar-

ial training objective, encouraging the feature extractor to become more

domain-invariant.

6. Warm-up and Scheduling: Since all networks are trained from scratch, we

introduce a warm-up stage where only the feature extractor and interaction

classifier are trained, while the domain discriminator is temporarily frozen.

This stage allows the model to focus on the main task, developing an initial

understanding of which features are most relevant for interaction prediction.

The adversarial stage introduces another hyperparameter α that determines the

magnitude of the reversed gradient vectors, thereby controlling the power of

the adversarial objective. To determine this value, we experimented with both

constant α values and different scheduling strategies. Specifically, our trials
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included using a constant value and logarithmic scheduling, and exponential

scheduling. Though we did not perform an extensive evaluation of these strate-

gies to determine the value of α, based on the observed performance of both

the discriminator and the source/target classifiers on the preliminary trials, ex-

ponential scheduling proved to be superior. This approach gradually increases

α as training progresses. Such a strategy is viable because, as training pro-

ceeds, both the feature extractor and domain discriminator become stronger

and, consequently, require a progressively stronger regularization (in the form

of reversed gradients) to effectively align the domains.

3.5.8 Evaluation and Hyperparameter Tuning for Cross-Domain Settings

3.5.9 Choosing Between Marginal and Conditional Alignment

As discussed earlier, a key decision in a domain adaptation setup is whether to align

the marginal or the conditional distributions. Although our initial premise favored

conditional alignment—since aligning features across interacting and non-interacting

classes seemed counterintuitive—we explored both approaches for completeness.

In this preliminary phase, we did not carry out an extensive hyperparameter search.

Instead, we performed a series of experiments to prune the search space and exclude

the suboptimal alignment type (i.e., conditional or marginal). We trained several mod-

els with different hyperparameter configurations, using both adversarial and MMD

losses for marginal alignment. We present our findings employing marginal align-

ment in the following paragraphs.

Using MMD Loss for Marginal Alignment: Figure 3.10 illustrates the training

loss curves employing marginal alignment with Maximum Mean Discrepancy (MMD)

Loss [3]. Specifically, Figure 3.10a shows the evolution of interaction performance

(in terms of source and target interaction losses for both training and validation sets)

over the course of training, while Figure 3.10b tracks the changes in the MMD loss

across both training and validation datasets. Notably, the MMD loss consistently

decreases during training for both training and validation datasets. However, while
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interaction prediction performance converges for the source data, no similar improve-

ment is observed in the target data, as indicated by increasing loss curves (depicted in

red and green). This suggests that despite the visible convergence of marginal distri-

bution alignment (evidenced by the decreasing MMD loss), it does not translate into

improved interaction prediction performance on the target data.

(a) Interaction loss curves over epochs, show-

ing Train Source Interaction Loss (blue), Vali-

dation Source Interaction Loss (orange), Train

Target Interaction Loss (green), and Valida-

tion Target Interaction Loss (red).

(b) MMD loss curves for training (blue) and

validation (orange) sets over epochs.

Figure 3.10: Change in performance in terms of losses during training under marginal

alignment with MMD.

Using Domain-Adversarial Neural Networks (DDAN) with Marginal Alignment:

Figure 3.11 shows how the performance (accuracy, precision, recall, F1 score, and

area under the curve) changes on the source (blue) and target (orange) validation sets

over epochs when an adversarial objective with marginal alignment is employed with

DDAN[36].
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Figure 3.11: Performance over epochs on the source (blue) and target (orange) vali-

dation sets in terms of accuracy, precision, recall, F1 score, and AUC.

All these plots reveal a discrepancy between the source and target performance across

all metrics, indicating that the model overfits to the source data.

We also monitored the validation domain loss to assess the performance of the dis-

criminator. Its value remains close to that of a random classifier (BCE ≈ 0.65)2 ,

which is the desired behavior for adversarial domain discrimination. However, the

interaction classification performance on target data is far from ideal.

To gain additional insights, we monitored the discriminator’s performance, which

we ideally expect to converge at that of a random predictor (i.e., 0.5 accuracy).

Figure 3.12 shows the domain discriminator’s performance in terms of F1 Score,

MCC, and Accuracy. We do not observe a clear convergence to random performance.

Around the 40th epoch, the discriminator’s performance is closest to random, but this

does not correspond to any improvement in interaction prediction (see Figure 3.11).

2 A BCE value of around 0.65 indicates near-random classifier performance. Using the formula BCE =
−y log(p)− (1− y) log(1− p) with p = 0.5, we find BCE = log(2) ≈ 0.693.
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Figure 3.12: Domain discriminator performance over epochs in terms of F1 Score,

MCC, and Accuracy. The red dotted line indicates where the warm-up period ends,

and the green curve indicates the α value.

In a further attempt gain insight regarding the domain discriminator’s performance,

we tracked the number of instances classified as source or target over training. Fig-

ure 3.13 plots these counts: the left subplot shows the number of instances labeled as

source, and the right one shows those labeled as target. In both, the red dotted line in-

dicates the end of the warm-up period, while the green curve depicts the change in the

parameter α (which controls the gradient reversal scale). We observe a pronounced

bias toward classifying instances as source, even from the beginning.
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Figure 3.13: Evolution of the domain discriminator’s predictions over training for

DANN with marginal alignment. (Left) Number of instances predicted as source.

(Right) Number of instances predicted as target. The red dotted line marks the end

of the warm-up period, and the green curve shows the α scheduling. A strong bias

toward predicting source is clearly visible.

Despite efforts such as hyperparameter tuning, class weighting, and other mitigation

strategies, we were unable to correct these learning curves or improve target classifi-

cation performance under marginal alignment. Consequently, we decided to adopt

conditional alignment for the remainder of this work, consistent with our initial

premise.

3.5.10 Hyperparameter Tuning Methodology

In this section, we describe our strategy for exploring various hyperparameters and

design choices for both CDAN- and CMMD (Conditional MMD)-based domain adap-

tation. We focus on two main factors: loader modes and decision threshold calibra-

tion, which we treat as hyperparameters alongside the network-specific parameters.

Due to resource constraints, we do not conduct an exhaustive grid search; instead, we

rely on a randomized selection of hyperparameter configurations within reasonable

ranges.
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3.5.10.1 Loader Modes

As explained in Section 3.5.4, we employ a custom MultiDataLoader to handle

batches from both source and target domains within one training loop. However,

the source dataset (approximately 15,000 samples) is more than twice the size of

the target dataset (about 7,000 samples), leading to class imbalance or under-/over-

sampling issues depending on how we iterate over data (within one epoch).

To address this, we define three loading modes, each with its pros and cons (See

Section 3.5.4):

• same_size: Truncate the larger dataset to match the batch count of the smaller

one.

• cycle_smaller: Repeatedly cycle through the smaller dataset until the larger

dataset is fully consumed in an epoch.

• sample_larger: Randomly sample subsets from the larger dataset to match the

size of the smaller dataset in each iteration.

As we believed the loading mode might have a substantial effect on the overall model

performance, we experimented all these modes with each hyperparameter configura-

tion.

3.5.10.2 Hyperparameter Tuning for Conditional MMD-Based Training

We define the following search space for hyperparameter optimization for MMD-

based DTI Prediction:

param_space = {

’batch_size’: [32, 64, 128, 256],

’normalize’: [True, False],

’lr_fe’: [1.0e-4, 1.0e-5, 1.0e-6],

’lr_cls’: [1.0e-3, 1.0e-4, 1.0e-5],

’warmup_epochs’: [0, 5],
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’bigger_classifier’: [True, False],

’classifier_dropout’: [0.3, 0.5],

’classifier_hidden_dim’: [128, 256],

’kernel_type’: [’rbf’, ’laplacian’, ’linear’, ’polynomial’]

}

Key Parameters

• Kernel Choice: We experiment with four kernel types: RBF, Laplacian, Lin-

ear, and Polynomial.

• Separate Optimizers & Learning Rate: Only feature extractor and classifier

networks are trained, each with its optimizer and learning rate.

We again rely on random sampling. The selected configurations are trained and eval-

uated with each of the loader modes, and results are saved to identify overall trends.

3.5.10.3 Hyperparameter Tuning for CDAN-Based Training

CDAN introduces adversarial domain alignment through a domain discriminator, fea-

ture extractor, and an interaction classifier that are jointly trained. We define the fol-

lowing hyperparameter search space for this setting:

param_space = {

’batch_size’: [32, 64, 128, 256],

’normalize’: [True, False],

’lr_fe’: [1.0e-4, 1.0e-5, 1.0e-6],

’lr_cls’: [1.0e-3, 1.0e-4, 1.0e-5],

’lr_disc’: [1.0e-3, 1.0e-4, 1.0e-5],

’warmup_epochs’: [0, 5, 20],

’bigger_discrim’: [True, False],

’bigger_classifier’: [True, False],

’classifier_dropout’: [0.3, 0.5],
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’classifier_hidden_dim’: [128, 256],

}

Calibration of the Decision Threshold: In binary interaction classification, a thresh-

old is required to convert predicted probabilities into 0, 1 labels. Rather than setting

this threshold directly at 0.5, we employ a calibration strategy that sets it to the point

maximizing the tpr − fpr metric, which optimizes the trade-off between true and

false positive rates using the validation set.

Key Components.

• Learning Rates: Separate optimizers for the feature extractor, interaction clas-

sifier, and domain discriminator, each with its own learning rate (lr_fe, lr_cls,

lr_disc).

• Warmup Epochs: During warmup, we disable the domain alignment loss to

let the network focus on the primary interaction-classification objective. We

test {0, 5, 20} warmup epochs. (We include no warmup strategy into our ex-

periments).

• Classifier and Discriminator Capacity: The complexities of networks, espe-

cially those of the discriminator and feature extractor, have a significant impact

on overall performance in such adversarial settings.

Given the large number of possible combinations, we employ random sampling of

25 configurations from the above space. For each configuration, we train the model

under all three modes(Section 3.5.10.1) to assess the direct effect of the data-loading

strategy. This leads to 100 model evaluations.

The model performance results (employing CDAN) on validation sets are presented

under Section 4.2.
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3.5.11 Feature Alignment Visualization

We visually inspected how well the learned feature representations are aligned be-

tween the source and target domains using t-SNE projection of the extracted features.

Specifically, we periodically record intermediate feature embeddings from our model

(e.g., at epoch 1, epoch 10, and epoch 20), apply t-SNE to reduce the dimensionality

to two components, and then plot source and target samples.

Figures 3.14 and 3.15 illustrate the resulting 2D projections for interacting and non-

interacting pairs, respectively. Examining these plots over epochs, we observe that

although the feature distributions are initially clustered in a domain-specific manner,

the source and target samples become increasingly intertwined as training progresses,

indicating improved domain alignment.

For this, we used the ECFP4 fingerprints for drugs and k-mer representations of pro-

teins, as they provide easier embeddings, with characteristics easier to capture via

dimensionality reduction methods.

Implementation Details. We implement a custom Visualizer class that (1) col-

lects feature embeddings and label information for both domains, (2) uses t-SNE

(with n_components=2 and a fixed random seed for reproducibility) to project

these embeddings, and (3) plots the resulting 2D points. Separate plots are generated

to distinguish interacting pairs from non-interacting pairs, and to differentiate source

vs. target data. As shown in Figures 3.14 and 3.15, comparing the t-SNE projections

at different epochs allows us to visually confirm whether the source and target data

clusters become more closely aligned over time.
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(a) Epoch 1 (b) Epoch 10 (c) Epoch 20

Figure 3.14: t-SNE projections of interacting source and target samples at different

epochs. Notice how source and target clusters become more aligned over time. Blue

dots represent source and red ones are the target data.

(a) Epoch 1 (b) Epoch 10 (c) Epoch 20

Figure 3.15: t-SNE projections of non-interacting source and target samples at differ-

ent epochs. As with the interacting samples, source and target data for non-interacting

pairs also become more intertwined as training proceeds. Green dots represent source

and orange ones are the target data.
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CHAPTER 4

RESULTS

In this chapter, we present and analyze our experimental findings for both in-domain

and cross-domain drug–target interaction (DTI) prediction. Our work investigates

two key aspects: (1) the effectiveness of various input fusion strategies, and (2) the

role of domain adaptation techniques in enhancing cross-domain performance.

We begin by evaluating three fusion methods in an in-domain setting:

1. Simple concatenation,

2. Concatenation followed by self-attention, and

3. Cross-attention.

For these experiments, we report training and validation loss curves (Figure 4.1) and

monitor the evolution of key performance metrics such as accuracy, precision, recall,

F1 score, and Area Under the Receiver Operating Characteristic curve (AUROC)

(Figure 4.2). We conclude the in-domain evaluation with test set performance metrics

summarized in Table 4.1.

Next, we extend our analysis to the cross-domain setting using two domain adaptation

(DA) methods:

1. Conditional Adversarial Domain Adaptation (CDAN), and

2. Maximum Mean Discrepancy (MMD) Loss-based Domain Adaptation.

For each DA approach, we evaluate models on both the validation and test sets us-

ing a comprehensive array of metrics (accuracy, precision, recall, F1, AUROC, and
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Matthews correlation coefficient (MCC)). The results reported in Tables 4.2 and 4.3

correspond to the models that achieved the highest MCC during training on the target

validation set. In addition, we monitor intermediate performance indicators—such as

loss curves and domain alignment trends—to gain deeper insights into the training

dynamics of these methods.

Rather than detailing all 200 model configurations, we focus on four promising con-

figurations:

• Two configurations from CDAN (Configs 3 and 16), and

• Two configurations from MMD (Config 19, evaluated under two different data

loading modes).

To obtain these configurations, we randomly sampled possible hyperparameter sets

defined in Sections 3.5.10.3 (for CDAN) and 3.5.10.2 (for MMD), rather than per-

forming an exhaustive grid search. Finally, in Section 4.8, we provide insights into

the runtimes of representative configurations and the hardware setup used throughout

our experiments.

To offer a full picture of the broader hyperparameter space, we include the complete

validation and test performance results for all 25 configurations in Appendix A.

The structure of this chapter is as follows:

• Section 4.1 presents the performance evaluation in the in-domain setting.

• Section 4.2 reports the validation performance of CDAN-based models.

• Section 4.3 discusses the intermediate training dynamics for CDAN.

• Section 4.4 details the validation performance of MMD-based alignment.

• Section 4.5 reflects on the training dynamics observed with MMD-based do-

main alignment.

• Section 4.6 presents the test set performance and benchmarking results against

state-of-the-art baselines.
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• Section 4.7 provides further discussion and concluding remarks on the bench-

marking outcomes.

• Section 4.8 details the runtime and hardware information for representative

experiments.

4.1 Evaluation & Hyperparameter Tuning for In-Domain Setting

We have avoided extensive hyperparameter tuning for in-domain setting and selected

parameters that provided stable training and acceptable baseline performance based

on preliminary trials to assess the effectiveness of fusion strategies.

In these baseline in-domain experiments, we utilized a straightforward classifier net-

work with 2 layers, alongside a batch size of 256 and a learning rate of 1.0 × 10−6,

along with a binary cross-entropy loss function.

Upon training, we employed a typical early stopping mechanism to avoid overfitting

automatically, where the training is stopped if validation performance (measured by

loss) does not improve for a certain number of epochs (patience).

Figure 4.1 demonstrates training and validation loss curves for different fusion meth-

ods. Here, the Figure 4.1a corresponds to simple concatenation with a multi-layer per-

ceptron (MLP), Figure 4.1b to concatenation plus self-attention, and the Figure 4.1c.

The blue curves represent training losses and the orange ones represent validation

losses.
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(a) Concatenation with MLP (b) Concatenation with self-attention

(c) Cross-attention

Figure 4.1: Training and validation losses for in-domain experiments across different

fusion strategies.

The plots in Figure 4.1 illustrate the learning processes of networks that have not

yet converged (the learning is halted based on the maximum number of epochs we

set), particularly the first two methods (concatenation and self-attention). Though all

these fusion methods seem to pose promising learning curves, cross-attention appears

to converge more rapidly. This faster convergence can be attributed to its explicit

capability in assessing the inter-modal interactions.

In addition, Figure 4.2 shows performance metrics measured on the validation set over

epochs, where Figure4.2a corresponds to simple concatenation, Figure4.2b to self-

attention, and Figure4.2c to cross-attention. The metrics displayed include accuracy

(green), precision (orange), recall (green), F1-score (red), and AUROC (purple). All

these align with the learning curves above, i.e., they appear promising.
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(a) Performance of Concatenation (b) Performance of Self-Attention

(c) Performance of Cross-Attention

Figure 4.2: Validation performance metrics over epochs for different in-domain mod-

els.

The performance of various fusion methods on the test set is detailed in Table 4.1,

with cross-attention significantly outperforming the other methods. The first two

methods show nearly identical results across all metrics. In contrast, cross-attention

not only leads in overall performance but also shows a particularly strong advantage

in precision. It is hard to attribute this observation to anything specific, however, the

other methods apparently pose an imbalance in the precision-recall trade-off, favoring

recall. That is, they clearly have a general tendency to classify instances as positive.
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Table 4.1: Performance Metrics for Different Input Fusion Methods

Input Fusion Accuracy Precision Recall F1 AUC

Concat + MLP 0.74 0.66 0.78 0.71 0.84

Concat + SA + MLP 0.74 0.66 0.78 0.71 0.83

Cross Attention 0.86 0.83 0.83 0.84 0.94

Still, provided that the networks are sufficiently complex, the other fusion methods

theoretically can match the learning capabilities of cross-attention, as suggested by

the Universal Approximation Theorem. This is evident from the learning curves,

which indicate that these models are still underfit and have the potential to achieve

performance on par with that of cross-attention. Still, cross-attention’s more explicit

representation ability allows it to converge more rapidly. That’s why we have decided

to use cross attention for input fusion for the remainder of our work.

4.2 Performance Results on the Validation Set for CDAN

In this section, we focus on the most promising configurations among the 100 exper-

iments conducted using CDAN for domain alignment. Table 4.2 presents the vali-

dation performance in terms of accuracy, precision, recall, F1 score, Area Under the

Receiver Operating Characteristic curve (AUROC), and Matthews correlation coeffi-

cient (MCC).

Table 4.2: Validation performance of selected configurations using CDAN.

Config Load Mode Accuracy Precision Recall F1 AUROC MCC

3 same_size 0.60 0.54 0.93 0.68 0.65 0.30

16 cycle_smaller 0.63 0.60 0.63 0.62 0.68 0.27

Alongside these final metrics on the validation set, we also provide intermediate train-

ing details for a deeper understanding of the learning process, depicted in Figure 4.3

and Figure 4.4:
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• Interaction Classification Metrics: Plots the change in accuracy, precision,

recall, F1 score, AUROC, and MCC for both the source (in orange) and the

target (in blue) validation sets in the course of training. The vertical red dotted

line marks the end of the warmup period, and the green curve represents the

changing α value (determining the magnitude of adversarial objective) over

training. (Depicted in Figure 4.3c and Figure 4.4c.)

• Loss Curves: Presented in Figure 4.3b and Figure 4.4b

1. Training source interaction loss (blue with circles),

2. Training target interaction loss (orange with triangles),

3. Training domain loss (green with triangles),

4. Validation source interaction loss (red with crosses),

5. Validation target interaction loss (purple with triangles),

6. Validation domain loss (brown with triangles).

The same red dotted line indicates the end of the warmup period.

• Domain Discriminator Metrics: Metrics for the domain discriminator, in-

cluding MCC, F1 score, and accuracy. These plots also highlight the end of

the warmup period and depict the changing α value. We expect these to be at

random performance (i.e., 0 for MCC, 0.5 for F1 score and accuracy). These

are shown in Figure 4.3a and Figure 4.4a.
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(a) Domain metrics for Configuration 3.

(b) Loss curves for Configuration 3.

(c) Classification metrics for Configuration 3.

Figure 4.3: Evaluation metrics for Configuration 3.
62



(a) Domain metrics for Configuration 16.

(b) Loss curves for Configuration 16.

(c) Classification metrics for Configuration 16.

Figure 4.4: Evaluation metrics for Configuration 16.
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4.3 Discussion on the Intermediate Performance Results Achieved Using CDAN

Reflection on the Final Performance of Config 3 on Validation Set Table 4.2

highlights the most promising validation performance on target set encountered dur-

ing training. Below, we compare these highlighted configurations:

• Config 3 has a higher MCC (0.30) but slightly lower AUROC compared to

Config 16. In terms of F1 score, Config 3 yields a considerably superior perfor-

mance to 16, which can be attributed to the imbalance between precision and

recall. In particular, Config 3 has a considerably high recall and low precision

values, indicating a positive bias, which might not be optimal.

• Config 16 achieves a better AUC (0.68) but a slightly lower MCC (0.27).

Though, it has a lower F1 score (0.62), it has a higher precision (0.60) and a

lower recall (0.63) compared to Config 3. This setting appears to have managed

a better trade-off in between precision and recall.

Reflection on the Performance of Config 3 Throughout Training Figure 4.3

depicts detailed performance curves, with domain discriminator performance (Fig-

ure 4.3a), various losses (Figure 4.3b), and how the classification performance evolves

(Figure 4.3c).

The domain metrics in Figure 4.3a hover near random performance, except for the

F1 score, which is slightly better than random. During training, both MCC (expected

to be 0) and Accuracy (expected to be 0.5) remain close to random levels, which

aligns with our adversarial training objective. Specifically, our aim is to learn a fea-

ture extractor that outputs embeddings which the discriminator cannot distinguish.

Achieving random discriminator performance indicates success in this aspect.

Figure 4.3b shows a substantial drop in the validation target interaction loss (pur-

ple curve) at the end of the warmup period (red dotted line), indicating the effect of

domain alignment introduced at that epoch. However, as training progresses, the val-

idation loss for the target (purple) begins to rise, suggesting overfitting to the source

data. Still, we do not observe a substantial drop in the source interaction loss (red)
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either, though its supervision is directly used for training the classifier. This shows the

adversarial method works, as the source interaction loss does not drop as expected.

However, this pattern underscores the challenges of the adversarial objective. The

persisting gap between source and target interaction losses may be attributed to our

scheduling of α (determining the strength of adversarial routine) or the complexity

disparity between the classifier and the discriminator. Specifically, while we achieve

the desired random performance in the domain discriminator, the classifier appears to

still focus on distinctive, non-transferrable features specific to the source, a common

issue in such adversarial settings.

Figure 4.3c shows good performance in terms of recall, which also boosts the F1

score, despite a notable decline in precision. Though there is an increasing trend

in MCC, overall, the training metrics show inconsistency, as each focuses on differ-

ent objectives for evaluation. In adversarial training scenarios, such fluctuations are

common, as training multiple networks with conflicting objectives is an inherently

challenging task.

Reflection on the Performance of Config 16 Throughout Training: Figure 4.4

depicts performance curves similar to those in Config 3 but shows a different trajec-

tory.

Figure 4.4a shows that the domain discriminator performs better than random, sug-

gesting the alignment is slightly less adversarially balanced than in Config 3.

The classifier metrics in Figure 4.4c show more consistency among each other, com-

pared to those in Config 3, despite fluctuations in precision, recall, and F1 score. This

time, we see an opposite trend in terms of precision-recall trade-off in that we see

higher precision than recall. It is hard to attribute these behavioral changes to any-

thing specific in the model configuration. However, we infer that a more consistent

behavior across all metrics suggest a more robust approach compared to Config 3.

The loss curves (Figure 4.4b) still reflect typical adversarial training behaviors, though

the validation target interaction loss (purple line) does not drop as sharply following

the warmup period, indicating that domain alignment may be less immediately effec-

tive for target data in this configuration.
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Remarks on Domain Alignment Using Adversarial Objective: Overall, these

discrepancies highlight the complexity of adversarial training. Factors such as hy-

perparameter tuning, length of warmup period, α scheduling, and the capacities of

the domain discriminator and classifier have a significant effect on performance. Ad-

ditionally, although we conducted experiments across all defined loading modes for

each model configuration, we did not observe any consistent advantages or disadvan-

tages associated with the choice of loading.

4.4 Performance Results on the Validation Set for CMMD

We next evaluate using MMD-based domain alignment. Table 4.3 shows two top-

performing configurations on the validation set, comparing accuracy, precision, re-

call, F1 score, AUC, and MCC.

Table 4.3: Validation performance of top configurations using MMD-based align-

ment.

Config Load Mode Accuracy Precision Recall F1 AUROC MCC

19 cycle_smaller 0.65 0.69 0.57 0.62 0.73 0.31

19 sample_larger 0.67 0.66 0.70 0.68 0.77 0.35

In addition to these final metrics, we also present intermediate training details for

deeper insight:

• MMD Loss Curves: We plot both training (blue) and validation (green) MMD

losses alongside the λ (MMD weight in the total loss) per epoch.

• Interaction Loss Curves:

1. Training source interaction loss (blue),

2. Validation source interaction loss (orange),

3. Training target interaction loss (green),

4. Validation target interaction loss (red),

5. MMD λ value (green line).
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(a) MMD Loss for config19 (sample_larger). (b) Interaction Loss for config19 (sam-

ple_larger).

Figure 4.5: MMD alignment (sample_larger). The left plot shows MMD losses, while

the right plot shows interaction losses.

(a) MMD Loss for config19 (cycle_smaller). (b) Interaction Loss for config19 (cy-

cle_smaller).

Figure 4.6: MMD alignment (cycle_smaller). The left plot shows MMD losses, while

the right plot shows interaction losses.

4.5 Discussion on the Intermediate Performance Results Achieved Using MMD

Similar to the results in Table 4.2, Table 4.3 shows the most promising validation met-

rics observed during MMD-based training. We again see trade-offs between precision

and recall, but these are notably less pronounced than those reported with CDAN.

Overall, the MMD-based approach yields higher AUROC and MCC values, suggest-
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ing more robust performance relative to the CDAN configurations.

Figures 4.5a and 4.6a both show a steady decline in MMD losses for training and val-

idation, indicating successful domain alignment over time. In addition, Figures 4.5b

and 4.6b illustrate broadly similar trends in source and target interaction losses, fur-

ther supporting our interpretation of successful domain alignment.

Nevertheless, in Figure 4.6b, we observe an increase in the target interaction loss

roughly after epoch 15, while the source interaction loss continues to decrease. This

indicates an overfitting to the source domain and triggers our early stopping mecha-

nism (with a defined patience window).

4.6 Performance Results on the Test Set & Benchmarking

Table 4.4 compares our models’ performance on the test set against two existing state-

of-the-art methods, DrugBAN [40] and CAT-DTI [41], for cross-domain DTI predic-

tion. Here, the performance metrics of the existing methods are presented in the first

two rows in terms of AUROC, F1 score, and Accuracy. Because these baselines do

not provide the trained models, codebases, or details for precision, recall, and MCC

metrics, we are limited to partial comparisons. Nonetheless, we include all metrics we

monitor (precision, recall, MCC) to give a more comprehensive view of each model’s

strengths and limitations.

In addition to our methods where we employ domain adapatation methods, we also

include a baseline configuration, Ours no DA, where the model is trained only on the

source dataset without any adaptation to the target domain. This serves as an ablation-

like study, showing how much the use of domain adaptation improves performance.

We report four main configurations of our approach with domain adaptation: two

using CDAN (Ours1 corresponds to Config 3, Ours2 to Config 16) and two using

MMD-based alignment (Ours3 corresponds to Config 19 with a “cycle_smaller” load-

ing mode, and Ours4 to the same config with a “sample_larger” loading mode).
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Table 4.4: Performance Metrics for Different Models on the Test Set

Model AUROC F1 Accuracy Precision Recall MCC

DrugBAN 0.61 0.69 0.55 - - -

CAT-DTI 0.68 0.69 0.57 - - -

Ours no DA 0.58 0.58 0.54 0.51 0.68 -

Ours1 (CDAN1) 0.64 0.68 0.60 0.54 0.93 0.30

Ours2 (CDAN2) 0.64 0.58 0.60 0.57 0.59 0.21

Ours3 (MMD1) 0.74 0.61 0.66 0.66 0.56 0.32

Ours4 (MMD2) 0.75 0.65 0.67 0.63 0.68 0.33

4.7 Discussion on Benchmarking Results

One notable concern with the reported results from the state-of-the-art models is that

their F1 scores are substantially higher than their accuracies. Mathematically, this

suggests an imbalance between precision and recall. Since the baselines do not pro-

vide these individual metrics, it is likely that their models achieve very high values

for one metric at the expense of the other.

Our baseline configuration, Ours no DA, demonstrates the performance we achieve

without any domain adaptation; it obtains an AUROC of 0.58 and an F1 of 0.58.

Compared to this ablation, the domain-adapted models show clear gains in AUROC,

accuracy, and in many cases recall and MCC, highlighting the overall benefits of our

DA strategies.

Our best MMD-based configuration (Ours4) outperforms the baselines in terms of

AUROC (0.75 vs. 0.61/0.68) and accuracy (0.67 vs. 0.55/0.57). However, it slightly

falls behind in terms of F1 compared to DrugBAN and CAT-DTI (0.65 vs. 0.69).

Because of the absence of recall and precision scores from both baselines, we are not

able to discuss and reflect further on the reasons why.

Moreover, Ours4 achieves a recall of 0.68 and an MCC of 0.33, reflecting a stronger
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correlation between predictions and labels. In contrast, our CDAN-based models

(Ours1, Ours2) yield higher recall in one instance (0.93 for Ours1), but suffer from

lower precision and AUROC, indicating a trade-off that favors true positives at the

cost of additional false positives.

These results suggest that MMD-based alignment, when used as a regularizing term,

can provide more stable and robust performance than adversarial training for do-

main adaptation tasks. It is challenging to attribute the advantages and disadvantages

of these deep learning-based approaches to specific conditions. However, the rela-

tively inferior performance of CDAN, despite having greater expressive power, can

be linked to the complexities it introduces, such as conflicting objectives of learning

networks (inherent to adversarial tasks), a larger hyperparameter space, and the need

for careful balancing.

In addition, our models achieve on par or superior performance in most classifica-

tion metrics, even though the baseline methods employ custom feature extractors for

proteins and drugs. While learning custom feature extractors can enhance represen-

tation quality specialized for the remainder of the networks in the DTI prediction and

domain alignment pipeline, it also requires training a large number of parameters.

Given the complexity of the feature extractors (with the use of transformer-based

architectures) and the limited size of our dataset (approximately 30K drug–protein

pairs), the potential benefits of end-to-end feature learning is likely constrained. In

fact, our models relying on pre-trained models (ChemBERTa and ProtT5XL) for fea-

ture extraction—even without fine-tuning—appear to offer comparable or superior

performance in this setting.

4.8 Runtimes and Hardware Setup

All experiments were conducted on a machine equipped with an Intel Xeon CPU

and an NVIDIA Quadro GV100 GPU with 32 GB of memory (Driver Version:

535.183.01, CUDA Version: 12.2). We primarily examine two methods of domain

alignment: MMD-based training (Section 3.5.10.2) and CDAN-based training (Sec-

tions 3.5.10.3). Rather than running an exhaustive grid search, we randomly sample
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from a predefined hyperparameter space and train a model under each sampled con-

figuration.

Below, we report the runtime for one representative configuration from each method.

Note that different hyperparameter settings (e.g., batch size, learning rates, and net-

work architectures) can lead to substantial variations in training time.

• Conditional MMD (CMMD): Using the following configuration:

{

"batch_size": 128,

"normalize": true,

"lr_fe": 1e-06,

"lr_cls": 0.0001,

"warmup_epochs": 5,

"bigger_classifier": false,

"classifier_dropout": 0.3,

"classifier_hidden_dim": 256,

"kernel_type": "laplacian",

"mode": "cycle_smaller"

}

the total training time was approximately 2465.59 seconds.

• CDAN: For the representative configuration shown below:

batch_size=256

normalize=False

mode="cycle_smaller"

fine_tune=False

lr_fe=1.0e-5

lr_cls=1.0e-4

lr_disc=1.0e-5

max_num_epochs=250
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warmup_epochs=10

patience=10

use_da=True

weight_interaction=0.5

weight_domain=1

the total training time was approximately 843.59 seconds.

The more pronounced runtime of the Conditional MMD approach (CMMD) can pri-

marily be attributed to the fact that kernel-based losses are less amenable to GPU

parallelization compared to adversarial training losses. Although GPUs generally ex-

cel at parallel processing, the kernel-trick computations in MMD-based alignment

can introduce additional overhead, thus prolonging training time.
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CHAPTER 5

CONCLUSION & FUTURE DIRECTIONS

In this thesis, we introduce a domain adaptation framework specifically tailored for

predicting drug–target interactions (DTI), aimed at addressing the distribution shift

commonly seen between training and inference data. We conceptualize DTI pre-

diction as a binary classification task utilizing multimodal inputs, namely drugs and

proteins. We evaluate various fusion methods, with cross-attention emerging as a par-

ticularly effective technique for integrating these modalities. To tackle domain shift,

we utilize both adversarial-based and Maximum Mean Discrepancy (MMD)-based

methods to align the source and target distributions. Notably, our work marks the

first reported use of MMD-based alignment in the DTI domain, to our knowledge.

Our findings suggest that MMD-based alignment provides a more consistent training

process compared to the more hyperparameter-sensitive adversarial methods.

Additionally, our research demonstrates that leveraging pretrained models (Chem-

BERTa for drug representations and ProtT5XL for protein representations) without

fine-tuning can achieve comparable or superior performance across key metrics. This

approach substantially reduces both the training complexity and computational costs

while maintaining robust model performance.

Future work could investigate the use of more advanced or multimodal featurizers,

such as SaProt [18] for protein representations or SELFormer [22] for drug repre-

sentations. Instead of relying solely on pretrained models for feature extraction, one

could also consider fine-tuning these models to capture more task-specific features.

Such enhancements have the potential to further refine performance. Additionally,

there is a vast hyperparameter space yet to be explored, offering opportunities for

even greater performance gains.
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Moreover, the dataset used for our cross-domain setting was constructed using hierar-

chical clustering-based splits on proteins and drugs separately, thereby ignoring any

existing drug–protein interaction relations in the splitting process. More sophisticated

approaches that consider network-based splits and capture the actual relationship be-

tween proteins and drugs have been proposed [45]. Such more challenging datasets

could be employed in future work to provide additional insights into the robustness

and real-world applicability of domain-adapted DTI models.

Ultimately, the stability of MMD-based domain adaptation, coupled with the effec-

tiveness of pretrained feature extraction, positions our work as a promising foundation

for continued research and real-world applications in DTI prediction.
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APPENDICES

A CDAN Performance with Different Hyperparamter Configurations

A.1 CDAN Configurations

Table 5.1: CDAN Configurations. This table lists the randomly chosen hyperparam-

eter configurations used for CDAN. Columns include: Conf: configuration number,

N: whether input features are normalized, lr_fe: learning rate for the feature extrac-

tor, lr_cls: learning rate for the classifier, lr_d: learning rate for the discriminator,

wp: number of warmup epochs, wi: weight assigned to the interaction classifica-

tion loss, wd: weight assigned to the domain discriminator loss, big_d: whether a

larger discriminator network is used, big_c: whether a larger classifier network is

used, dropout: dropout probability in the classifier, hid: hidden dimension of the

classifier.

Conf bs N lr_fe lr_cls lr_d wp wi wd big_d big_c drop hid

1 256 T 1e-05 1e-05 0.001 5 0.5 1.2 T T 0.3 256

2 64 F 1e-05 1e-05 1e-05 5 0.5 1 F F 0.3 128

3 32 T 1e-06 0.0001 0.0001 5 0.5 0.7 F F 0.3 256

4 128 F 0.0001 1e-05 1e-05 0 0.5 0.3 F T 0.5 256

5 256 T 1e-05 1e-05 1e-05 0 0.5 1.5 T F 0.3 128

6 32 T 1e-06 1e-05 1e-05 5 0.5 0.3 T T 0.5 256

7 128 F 1e-06 0.0001 0.001 20 0.5 1.2 T T 0.3 128

8 32 T 1e-06 1e-05 0.001 20 0.5 1.5 F T 0.3 256

9 256 T 1e-06 0.0001 0.0001 0 0.5 1.5 F T 0.5 128

10 256 T 1e-06 0.001 0.0001 20 0.5 1 F T 0.5 256

11 64 T 1e-05 0.001 1e-05 0 0.5 0.7 F T 0.5 256

12 128 F 1e-06 1e-05 0.001 0 0.5 0.5 F T 0.5 256
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Table 5.1 – Continued from previous page

Conf bs N lr_fe lr_cls lr_d wp wı w_d big_d big_c drop hid

13 32 T 1e-05 0.001 0.001 20 0.5 0.5 T T 0.5 256

14 128 T 0.0001 0.0001 0.001 5 0.5 1.5 T F 0.5 256

15 64 F 0.0001 0.001 0.001 0 0.5 1.2 T T 0.3 128

16 128 F 1e-06 0.0001 0.001 5 0.5 1.2 T F 0.3 128

17 32 F 1e-05 0.001 0.0001 5 0.5 1.2 F T 0.3 256

18 32 F 1e-05 1e-05 0.0001 0 0.5 1.5 T F 0.5 128

19 32 T 1e-05 0.001 0.0001 5 0.5 1.5 F T 0.3 128

20 128 F 0.0001 1e-05 1e-05 0 0.5 1 T T 0.5 128

21 32 T 1e-06 0.001 1e-05 5 0.5 1.5 F T 0.3 128

22 256 F 1e-06 0.001 0.0001 0 0.5 0.5 T T 0.5 128

23 32 T 1e-06 1e-05 0.001 5 0.5 1.2 F T 0.5 128

24 128 F 1e-05 0.0001 1e-05 20 0.5 0.7 F F 0.5 256

25 64 F 0.0001 0.001 1e-05 5 0.5 0.5 F T 0.5 256

A.2 CDAN Performance on Validation Set with Different Hyperparameter Con-

figurations

Table 5.2: CDAN Validation Performance. Each row shows the validation metrics

(accuracy, precision, recall, F1 score, AUC, and MCC) for a given CDAN configura-

tion from Table 5.1 paired with a specified loader mode.

Config load_mode val_acc val_prec val_recall val_f1 val_auc val_mcc

config_1 cycle_smaller 0.59 0.54 0.93 0.68 0.64 0.27

config_1 sample_larger 0.57 0.52 0.79 0.63 0.62 0.18

config_1 same_size 0.60 0.60 0.50 0.54 0.63 0.19

config_2 cycle_smaller 0.56 0.55 0.50 0.52 0.55 0.11

config_2 sample_larger 0.61 0.57 0.74 0.65 0.65 0.23

config_2 same_size 0.60 0.61 0.53 0.57 0.63 0.19

config_3 cycle_smaller 0.57 0.53 0.85 0.65 0.59 0.18

config_3 sample_larger 0.57 0.53 0.89 0.67 0.58 0.20
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Table 5.2 – Continued from previous page

Config load_mode val_acc val_prec val_recall val_f1 val_auc val_mcc

config_3 same_size 0.60 0.54 0.93 0.68 0.65 0.30

config_4 cycle_smaller 0.59 0.54 0.93 0.69 0.58 0.26

config_4 sample_larger 0.54 0.51 0.59 0.54 0.55 0.09

config_4 same_size 0.56 0.53 0.76 0.63 0.55 0.13

config_5 cycle_smaller 0.59 0.57 0.69 0.62 0.59 0.19

config_5 sample_larger 0.57 0.53 0.86 0.66 0.60 0.21

config_5 same_size 0.59 0.53 0.89 0.66 0.64 0.26

config_6 cycle_smaller 0.60 0.57 0.66 0.61 0.64 0.21

config_6 sample_larger 0.60 0.59 0.54 0.56 0.63 0.19

config_6 same_size 0.61 0.58 0.73 0.64 0.66 0.24

config_7 cycle_smaller 0.56 0.52 0.84 0.64 0.61 0.20

config_7 sample_larger 0.63 0.58 0.75 0.65 0.67 0.27

config_7 same_size 0.59 0.53 0.81 0.64 0.64 0.22

config_8 cycle_smaller 0.57 0.54 0.85 0.66 0.60 0.19

config_8 sample_larger 0.61 0.56 0.77 0.65 0.66 0.25

config_8 same_size 0.61 0.56 0.80 0.66 0.67 0.26

config_9 cycle_smaller 0.57 0.52 0.88 0.65 0.63 0.22

config_9 sample_larger 0.61 0.58 0.60 0.59 0.66 0.22

config_9 same_size 0.57 0.55 0.54 0.54 0.59 0.14

config_10 cycle_smaller 0.59 0.55 0.78 0.64 0.63 0.22

config_10 sample_larger 0.59 0.58 0.52 0.55 0.58 0.17

config_10 same_size 0.61 0.59 0.60 0.59 0.64 0.21

config_11 cycle_smaller 0.54 0.51 0.96 0.66 0.54 0.18

config_11 sample_larger 0.56 0.54 0.51 0.52 0.57 0.11

config_11 same_size 0.59 0.56 0.69 0.62 0.60 0.20

config_12 cycle_smaller 0.55 0.54 0.48 0.51 0.56 0.10

config_12 sample_larger 0.52 0.51 0.53 0.52 0.51 0.04

config_12 same_size 0.52 0.49 0.61 0.54 0.51 0.06

config_13 cycle_smaller 0.58 0.54 0.91 0.68 0.58 0.23

config_13 sample_larger 0.51 0.48 0.67 0.56 0.49 0.04
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Table 5.2 – Continued from previous page

Config load_mode val_acc val_prec val_recall val_f1 val_auc val_mcc

config_13 same_size 0.59 0.56 0.63 0.59 0.59 0.19

config_14 cycle_smaller 0.60 0.56 0.73 0.63 0.64 0.23

config_14 sample_larger 0.56 0.53 0.90 0.67 0.58 0.20

config_14 same_size 0.63 0.60 0.74 0.66 0.63 0.27

config_15 cycle_smaller 0.55 0.52 0.93 0.67 0.53 0.18

config_15 sample_larger 0.55 0.53 0.53 0.53 0.57 0.10

config_15 same_size 0.60 0.57 0.59 0.58 0.63 0.20

config_16 cycle_smaller 0.63 0.60 0.63 0.62 0.68 0.27

config_16 sample_larger 0.60 0.63 0.41 0.50 0.63 0.20

config_16 same_size 0.62 0.58 0.65 0.61 0.65 0.24

config_17 cycle_smaller 0.56 0.53 0.84 0.65 0.58 0.16

config_17 sample_larger 0.58 0.55 0.70 0.61 0.61 0.17

config_17 same_size 0.57 0.53 0.70 0.60 0.58 0.15

config_18 cycle_smaller 0.59 0.58 0.46 0.52 0.61 0.18

config_18 sample_larger 0.61 0.58 0.71 0.64 0.63 0.22

config_18 same_size 0.54 0.51 0.92 0.65 0.58 0.17

config_19 cycle_smaller 0.60 0.56 0.68 0.61 0.62 0.21

config_19 sample_larger 0.53 0.50 0.90 0.64 0.57 0.15

config_19 same_size 0.58 0.56 0.61 0.59 0.57 0.15

config_20 cycle_smaller 0.50 0.49 1.00 0.66 0.48 0.09

config_20 sample_larger 0.56 0.55 0.56 0.55 0.57 0.12

config_20 same_size 0.59 0.53 0.83 0.65 0.61 0.23

config_21 cycle_smaller 0.52 0.51 0.70 0.59 0.53 0.07

config_21 sample_larger 0.54 0.51 0.70 0.59 0.56 0.11

config_21 same_size 0.63 0.61 0.61 0.61 0.67 0.25

config_22 cycle_smaller 0.58 0.52 0.84 0.64 0.62 0.23

config_22 sample_larger 0.59 0.55 0.86 0.67 0.64 0.22

config_22 same_size 0.60 0.56 0.61 0.58 0.64 0.20

config_23 cycle_smaller 0.61 0.55 0.92 0.69 0.67 0.30

config_23 sample_larger 0.61 0.61 0.52 0.56 0.64 0.22
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Table 5.2 – Continued from previous page

Config load_mode val_acc val_prec val_recall val_f1 val_auc val_mcc

config_23 same_size 0.57 0.53 0.96 0.68 0.61 0.25

config_24 cycle_smaller 0.59 0.58 0.67 0.62 0.61 0.17

config_24 sample_larger 0.64 0.71 0.36 0.48 0.67 0.27

config_24 same_size 0.61 0.62 0.50 0.56 0.65 0.22

config_25 cycle_smaller 0.55 0.53 0.91 0.67 0.56 0.14

config_25 sample_larger 0.54 0.52 0.90 0.66 0.55 0.13
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A.3 CDAN Performance on Test Set with Different Hyperparameter Configu-

rations

Table 5.3: CDAN Test Performance. Each row shows the test metrics (accuracy,

precision, recall, F1 score, AUC, and MCC) for a given CDAN configuration from

Table 5.1 paired with a specified loader mode.

Config load_mode test_acc test_prec test_recall test_f1 test_auc test_mcc

config_1 cycle_smaller 0.56 0.52 0.90 0.66 0.63 0.21

config_1 sample_larger 0.57 0.53 0.78 0.63 0.63 0.19

config_1 same_size 0.58 0.55 0.49 0.52 0.61 0.14

config_2 cycle_smaller 0.56 0.53 0.48 0.50 0.56 0.11

config_2 sample_larger 0.57 0.52 0.71 0.60 0.63 0.15

config_2 same_size 0.58 0.55 0.52 0.53 0.61 0.15

config_3 cycle_smaller 0.53 0.50 0.82 0.62 0.57 0.12

config_3 sample_larger 0.53 0.50 0.87 0.63 0.55 0.13

config_3 same_size 0.60 0.54 0.93 0.68 0.64 0.30

config_4 cycle_smaller 0.53 0.50 0.91 0.64 0.53 0.15

config_4 sample_larger 0.54 0.50 0.59 0.54 0.55 0.09

config_4 same_size 0.53 0.49 0.74 0.59 0.54 0.09

config_5 cycle_smaller 0.56 0.52 0.65 0.58 0.59 0.13

config_5 sample_larger 0.57 0.52 0.84 0.64 0.62 0.19

config_5 same_size 0.58 0.53 0.88 0.66 0.62 0.24

config_6 cycle_smaller 0.57 0.54 0.64 0.58 0.64 0.16

config_6 sample_larger 0.57 0.54 0.52 0.53 0.62 0.14

config_6 same_size 0.59 0.54 0.71 0.61 0.63 0.19

config_7 cycle_smaller 0.56 0.51 0.84 0.64 0.60 0.17

config_7 sample_larger 0.59 0.54 0.72 0.62 0.65 0.20

config_7 same_size 0.56 0.52 0.78 0.62 0.62 0.17

config_8 cycle_smaller 0.55 0.51 0.84 0.64 0.60 0.17

config_8 sample_larger 0.59 0.54 0.76 0.63 0.64 0.21

config_8 same_size 0.60 0.55 0.78 0.64 0.66 0.23

config_9 cycle_smaller 0.56 0.52 0.84 0.64 0.64 0.18
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Table 5.3 – Continued from previous page

Config load_mode test_acc test_prec test_recall test_f1 test_auc test_mcc

config_9 sample_larger 0.58 0.55 0.57 0.56 0.63 0.17

config_9 same_size 0.56 0.53 0.53 0.53 0.59 0.12

config_10 cycle_smaller 0.58 0.53 0.77 0.63 0.62 0.19

config_10 sample_larger 0.55 0.52 0.46 0.49 0.55 0.10

config_10 same_size 0.60 0.56 0.59 0.58 0.64 0.19

config_11 cycle_smaller 0.52 0.49 0.95 0.65 0.53 0.16

config_11 sample_larger 0.54 0.51 0.50 0.50 0.55 0.08

config_11 same_size 0.58 0.54 0.68 0.60 0.59 0.18

config_12 cycle_smaller 0.54 0.51 0.49 0.50 0.56 0.08

config_12 sample_larger 0.50 0.47 0.52 0.49 0.51 0.01

config_12 same_size 0.53 0.49 0.61 0.55 0.54 0.07

config_13 cycle_smaller 0.55 0.51 0.86 0.64 0.57 0.17

config_13 sample_larger 0.49 0.46 0.66 0.55 0.49 0.00

config_13 same_size 0.55 0.52 0.57 0.54 0.55 0.11

config_14 cycle_smaller 0.58 0.53 0.70 0.61 0.62 0.18

config_14 sample_larger 0.54 0.50 0.90 0.64 0.56 0.16

config_14 same_size 0.61 0.57 0.73 0.64 0.64 0.25

config_15 cycle_smaller 0.52 0.49 0.93 0.64 0.55 0.15

config_15 sample_larger 0.54 0.50 0.52 0.51 0.55 0.07

config_15 same_size 0.58 0.55 0.55 0.55 0.61 0.15

config_16 cycle_smaller 0.60 0.57 0.59 0.58 0.64 0.21

config_16 sample_larger 0.61 0.62 0.43 0.51 0.64 0.21

config_16 same_size 0.60 0.56 0.65 0.60 0.64 0.21

config_17 cycle_smaller 0.52 0.49 0.82 0.61 0.55 0.09

config_17 sample_larger 0.57 0.53 0.72 0.61 0.61 0.17

config_17 same_size 0.56 0.52 0.69 0.59 0.59 0.14

config_18 cycle_smaller 0.59 0.56 0.48 0.52 0.62 0.16

config_18 sample_larger 0.58 0.54 0.69 0.61 0.62 0.18

config_18 same_size 0.53 0.50 0.93 0.65 0.57 0.17

config_19 cycle_smaller 0.58 0.54 0.68 0.60 0.61 0.18
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Table 5.3 – Continued from previous page

Config load_mode test_acc test_prec test_recall test_f1 test_auc test_mcc

config_19 sample_larger 0.51 0.48 0.87 0.62 0.53 0.08

config_19 same_size 0.57 0.53 0.58 0.56 0.57 0.14

config_20 cycle_smaller 0.47 0.47 0.99 0.64 0.49 0.05

config_20 sample_larger 0.55 0.51 0.52 0.52 0.56 0.09

config_20 same_size 0.59 0.53 0.85 0.66 0.61 0.23

config_21 cycle_smaller 0.52 0.49 0.69 0.57 0.55 0.06

config_21 sample_larger 0.53 0.49 0.65 0.56 0.55 0.08

config_21 same_size 0.61 0.58 0.55 0.57 0.65 0.21

config_22 cycle_smaller 0.56 0.52 0.83 0.64 0.62 0.19

config_22 sample_larger 0.57 0.53 0.85 0.65 0.64 0.21

config_22 same_size 0.59 0.56 0.63 0.59 0.62 0.19

config_23 cycle_smaller 0.58 0.53 0.91 0.67 0.65 0.25

config_23 sample_larger 0.60 0.57 0.52 0.54 0.64 0.18

config_23 same_size 0.54 0.50 0.95 0.66 0.60 0.20

config_24 cycle_smaller 0.57 0.53 0.69 0.60 0.61 0.17

config_24 sample_larger 0.60 0.62 0.33 0.43 0.63 0.18

config_24 same_size 0.59 0.57 0.47 0.52 0.62 0.17

config_25 cycle_smaller 0.51 0.48 0.92 0.63 0.55 0.11

config_25 sample_larger 0.50 0.48 0.89 0.62 0.53 0.07
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B MMD Performance with Different Hyperparamter Configurations

B.1 MMD Configurations

Table 5.4: MMD Configurations. This table lists the randomly chosen hyperparam-

eter configurations used for MMD. Columns include: Conf: configuration number,

bs: batch size, N: whether input features are normalized, lr_fe: learning rate for

the feature extractor, lr_cls: learning rate for the classifier, wp: number of warmup

epochs, big_cls: whether a larger classifier network is used, cls_drp: dropout prob-

ability in the classifier network, cls_hid: hidden dimension of the classifier, kernel:

kernel function used for MMD (e.g., rbf, laplacian, or linear).

Conf bs N lr_fe lr_cls wp big_cls cls_drp cls_hid kernel

Config1 32 false 1e-06 1e-05 0 true 0.3 128 laplacian

Config2 128 false 1e-05 0.0001 0 false 0.5 256 laplacian

Config3 64 true 1e-06 1e-05 5 false 0.3 256 laplacian

Config4 256 false 1e-05 0.001 0 false 0.3 256 rbf

Config5 128 true 1e-06 0.0001 0 false 0.5 128 linear

Config6 64 false 1e-06 1e-05 5 true 0.5 256 rbf

Config7 256 false 1e-05 0.0001 0 true 0.5 256 linear

Config8 128 false 1e-06 0.0001 0 false 0.5 128 rbf

Config9 128 false 1e-06 1e-05 0 true 0.5 128 rbf

Config10 64 false 1e-06 1e-05 0 true 0.5 128 polynomial

Config11 256 true 0.0001 1e-05 5 false 0.3 128 polynomial

Config12 256 false 1e-06 0.001 5 false 0.3 128 polynomial

Config13 256 true 1e-05 0.001 0 false 0.5 256 linear

Config14 256 true 0.0001 1e-05 0 false 0.5 128 laplacian

Config15 32 true 0.0001 0.0001 5 false 0.3 128 polynomial

Config16 32 false 0.0001 0.001 0 false 0.3 256 polynomial

Config17 32 true 1e-06 0.001 5 true 0.5 128 rbf

Config18 32 true 1e-05 1e-05 0 false 0.3 256 rbf

Config19 256 true 0.0001 0.0001 0 false 0.5 256 linear

Config20 256 true 1e-06 0.001 0 true 0.3 256 polynomial
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Table 5.4 – Continued from previous page

Conf bs N lr_fe lr_cls wp big_cls cls_drp cls_hidd kernel

Config21 128 false 1e-05 0.0001 5 true 0.3 128 laplacian

Config22 128 false 1e-06 1e-05 5 false 0.5 128 laplacian

Config23 256 true 1e-06 0.0001 0 true 0.3 256 rbf

Config24 256 true 0.0001 1e-05 5 false 0.5 256 laplacian

Config25 64 false 1e-06 0.001 0 true 0.5 256 rbf
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B.2 MMD Performance on Validation Set with Different Hyperparameter Con-

figurations

Table 5.5: MMD Validation Performance. Each row shows the validation metrics

(accuracy, precision, recall, F1 score, AUC, and MCC) for a given MMD configura-

tion from Table 5.4 paired with a specified loader mode.

Config load_mode val_acc val_prec val_recall val_f1 val_auc val_mcc

config_1 cycle_smaller 0.62 0.62 0.49 0.55 0.66 0.23

config_1 sample_larger 0.57 0.57 0.36 0.44 0.60 0.13

config_1 same_size 0.54 0.54 0.31 0.40 0.56 0.07

config_2 cycle_smaller 0.63 0.62 0.57 0.60 0.69 0.25

config_2 sample_larger 0.62 0.63 0.51 0.56 0.65 0.24

config_2 same_size 0.62 0.64 0.43 0.52 0.68 0.24

config_3 cycle_smaller 0.62 0.59 0.60 0.60 0.68 0.23

config_3 sample_larger 0.62 0.61 0.53 0.57 0.67 0.24

config_3 same_size 0.56 0.56 0.62 0.59 0.58 0.12

config_4 cycle_smaller 0.57 0.54 0.57 0.55 0.60 0.14

config_4 sample_larger 0.60 0.59 0.55 0.57 0.63 0.19

config_4 same_size 0.59 0.60 0.48 0.53 0.63 0.18

config_5 cycle_smaller 0.60 0.60 0.50 0.54 0.67 0.20

config_5 sample_larger 0.59 0.57 0.53 0.55 0.66 0.18

config_5 same_size 0.54 0.50 0.52 0.51 0.57 0.07

config_6 cycle_smaller 0.58 0.58 0.43 0.50 0.61 0.15

config_6 sample_larger 0.53 0.53 0.27 0.36 0.53 0.06

config_6 same_size 0.53 0.53 0.27 0.36 0.56 0.06

config_7 cycle_smaller 0.58 0.56 0.60 0.58 0.64 0.16

config_7 sample_larger 0.59 0.58 0.52 0.55 0.65 0.18

config_7 same_size 0.60 0.61 0.49 0.54 0.63 0.20

config_8 cycle_smaller 0.59 0.58 0.47 0.52 0.64 0.18

config_8 sample_larger 0.54 0.53 0.43 0.48 0.57 0.07

config_8 same_size 0.58 0.57 0.42 0.48 0.60 0.15

config_9 cycle_smaller 0.55 0.54 0.45 0.49 0.58 0.10
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Table 5.5 – Continued from previous page

Config load_mode val_acc val_prec val_recall val_f1 val_auc val_mcc

config_9 sample_larger 0.53 0.51 0.29 0.37 0.52 0.04

config_9 same_size 0.51 0.48 0.26 0.34 0.52 0.00

config_10 cycle_smaller 0.53 0.51 0.23 0.32 0.52 0.04

config_10 sample_larger 0.55 0.53 0.26 0.35 0.56 0.07

config_10 same_size 0.54 0.53 0.29 0.37 0.54 0.07

config_11 cycle_smaller 0.58 0.56 0.58 0.57 0.60 0.17

config_11 sample_larger 0.58 0.54 0.63 0.58 0.61 0.16

config_11 same_size 0.57 0.59 0.48 0.53 0.60 0.14

config_12 cycle_smaller 0.62 0.60 0.50 0.54 0.66 0.23

config_12 sample_larger 0.61 0.59 0.52 0.55 0.65 0.20

config_12 same_size 0.57 0.52 0.57 0.54 0.60 0.13

config_13 cycle_smaller 0.63 0.62 0.57 0.59 0.67 0.25

config_13 sample_larger 0.64 0.64 0.52 0.57 0.71 0.27

config_13 same_size 0.51 0.49 0.58 0.53 0.56 0.03

config_14 cycle_smaller 0.60 0.58 0.60 0.59 0.69 0.20

config_14 sample_larger 0.63 0.63 0.59 0.61 0.69 0.25

config_14 same_size 0.58 0.56 0.59 0.57 0.61 0.16

config_15 cycle_smaller 0.52 0.49 0.54 0.51 0.54 0.04

config_15 sample_larger 0.55 0.53 0.52 0.52 0.58 0.09

config_15 same_size 0.60 0.56 0.68 0.61 0.64 0.21

config_16 cycle_smaller 0.63 0.60 0.61 0.61 0.67 0.25

config_16 sample_larger 0.61 0.57 0.64 0.60 0.66 0.22

config_16 same_size 0.59 0.55 0.51 0.53 0.62 0.17

config_17 cycle_smaller 0.59 0.58 0.54 0.56 0.65 0.18

config_17 sample_larger 0.58 0.57 0.45 0.50 0.62 0.15

config_17 same_size 0.58 0.55 0.60 0.57 0.64 0.16

config_18 cycle_smaller 0.59 0.60 0.55 0.57 0.64 0.19

config_18 sample_larger 0.63 0.65 0.54 0.59 0.68 0.27

config_18 same_size 0.57 0.57 0.41 0.47 0.57 0.13

config_19 cycle_smaller 0.65 0.69 0.57 0.62 0.73 0.31
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Table 5.5 – Continued from previous page

Config load_mode val_acc val_prec val_recall val_f1 val_auc val_mcc

config_19 sample_larger 0.67 0.66 0.70 0.68 0.77 0.35

config_19 same_size 0.55 0.53 0.45 0.49 0.54 0.09

config_20 cycle_smaller 0.54 0.53 0.45 0.49 0.58 0.08

config_20 sample_larger 0.52 0.50 0.47 0.48 0.56 0.04

config_20 same_size 0.59 0.55 0.63 0.58 0.64 0.18

config_21 cycle_smaller 0.58 0.53 0.57 0.55 0.63 0.15

config_21 sample_larger 0.61 0.62 0.52 0.56 0.66 0.22

config_21 same_size 0.59 0.57 0.55 0.56 0.64 0.18

config_22 cycle_smaller 0.52 0.49 0.31 0.38 0.54 0.01

config_22 sample_larger 0.55 0.54 0.29 0.38 0.58 0.07

config_22 same_size 0.51 0.45 0.18 0.26 0.49 -0.02

config_23 cycle_smaller 0.63 0.61 0.53 0.57 0.68 0.24

config_23 sample_larger 0.58 0.58 0.49 0.53 0.62 0.15

config_23 same_size 0.57 0.56 0.55 0.55 0.61 0.14

config_24 cycle_smaller 0.64 0.62 0.61 0.62 0.71 0.29

config_24 sample_larger 0.63 0.62 0.58 0.60 0.67 0.26

config_24 same_size 0.61 0.63 0.47 0.54 0.64 0.22

config_25 cycle_smaller 0.62 0.61 0.57 0.59 0.67 0.23

config_25 sample_larger 0.57 0.52 0.57 0.54 0.63 0.14

config_25 same_size 0.61 0.62 0.49 0.55 0.65 0.22
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B.3 MMD Performance on Test Set with Different Hyperparameter Configu-

rations

Table 5.6: MMD Test Performance. Each row shows the test metrics (accuracy,

precision, recall, F1 score, AUC, and MCC) for a given MMD configuration from

Table 5.4 paired with a specified loader mode.

Config load_mode test_acc test_prec test_recall test_f1 test_auc test_mcc

config_1 cycle_smaller 0.59 0.57 0.48 0.52 0.62 0.16

config_1 sample_larger 0.57 0.56 0.38 0.45 0.60 0.13

config_1 same_size 0.57 0.56 0.34 0.43 0.58 0.13

config_2 cycle_smaller 0.60 0.58 0.52 0.55 0.65 0.19

config_2 sample_larger 0.60 0.59 0.50 0.54 0.64 0.20

config_2 same_size 0.60 0.60 0.40 0.48 0.65 0.18

config_3 cycle_smaller 0.58 0.55 0.55 0.55 0.64 0.16

config_3 sample_larger 0.60 0.57 0.52 0.54 0.64 0.19

config_3 same_size 0.56 0.52 0.63 0.57 0.59 0.12

config_4 cycle_smaller 0.56 0.52 0.54 0.53 0.59 0.11

config_4 sample_larger 0.58 0.55 0.53 0.54 0.62 0.15

config_4 same_size 0.60 0.59 0.48 0.53 0.62 0.19

config_5 cycle_smaller 0.60 0.58 0.52 0.55 0.66 0.20

config_5 sample_larger 0.60 0.58 0.50 0.54 0.65 0.19

config_5 same_size 0.55 0.51 0.55 0.53 0.57 0.09

config_6 cycle_smaller 0.59 0.57 0.45 0.50 0.62 0.16

config_6 sample_larger 0.53 0.48 0.28 0.35 0.55 0.02

config_6 same_size 0.54 0.50 0.27 0.35 0.55 0.05

config_7 cycle_smaller 0.60 0.57 0.60 0.58 0.65 0.20

config_7 sample_larger 0.60 0.57 0.54 0.55 0.65 0.18

config_7 same_size 0.59 0.57 0.46 0.51 0.63 0.16

config_8 cycle_smaller 0.60 0.58 0.47 0.52 0.63 0.19

config_8 sample_larger 0.55 0.52 0.46 0.49 0.58 0.09

config_8 same_size 0.58 0.56 0.43 0.48 0.61 0.14

config_9 cycle_smaller 0.57 0.54 0.49 0.52 0.58 0.13
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Table 5.6 – Continued from previous page

Config load_mode test_acc test_prec test_recall test_f1 test_auc test_mcc

config_9 sample_larger 0.53 0.49 0.30 0.37 0.52 0.03

config_9 same_size 0.51 0.46 0.28 0.35 0.51 0.00

config_10 cycle_smaller 0.54 0.51 0.22 0.31 0.53 0.05

config_10 sample_larger 0.55 0.52 0.31 0.39 0.55 0.07

config_10 same_size 0.53 0.50 0.26 0.34 0.55 0.03

config_11 cycle_smaller 0.55 0.52 0.55 0.53 0.58 0.11

config_11 sample_larger 0.57 0.54 0.62 0.57 0.61 0.15

config_11 same_size 0.57 0.54 0.45 0.49 0.59 0.12

config_12 cycle_smaller 0.61 0.60 0.46 0.52 0.65 0.20

config_12 sample_larger 0.60 0.57 0.52 0.55 0.64 0.19

config_12 same_size 0.57 0.54 0.60 0.57 0.62 0.15

config_13 cycle_smaller 0.61 0.59 0.51 0.55 0.66 0.21

config_13 sample_larger 0.64 0.64 0.53 0.58 0.69 0.27

config_13 same_size 0.50 0.47 0.57 0.52 0.54 0.01

config_14 cycle_smaller 0.63 0.60 0.62 0.61 0.69 0.26

config_14 sample_larger 0.63 0.61 0.56 0.58 0.68 0.25

config_14 same_size 0.59 0.55 0.60 0.57 0.60 0.17

config_15 cycle_smaller 0.52 0.48 0.55 0.51 0.53 0.04

config_15 sample_larger 0.57 0.53 0.52 0.53 0.59 0.13

config_15 same_size 0.59 0.55 0.68 0.61 0.64 0.20

config_16 cycle_smaller 0.62 0.60 0.57 0.59 0.67 0.24

config_16 sample_larger 0.60 0.57 0.59 0.58 0.64 0.20

config_16 same_size 0.59 0.56 0.50 0.53 0.62 0.16

config_17 cycle_smaller 0.56 0.53 0.48 0.51 0.60 0.12

config_17 sample_larger 0.58 0.55 0.46 0.51 0.62 0.14

config_17 same_size 0.58 0.54 0.61 0.58 0.62 0.17

config_18 cycle_smaller 0.59 0.56 0.54 0.55 0.62 0.18

config_18 sample_larger 0.61 0.59 0.51 0.54 0.65 0.20

config_18 same_size 0.55 0.53 0.38 0.44 0.57 0.09

config_19 cycle_smaller 0.66 0.66 0.56 0.61 0.74 0.32
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Table 5.6 – Continued from previous page

Config load_mode test_acc test_prec test_recall test_f1 test_auc test_mcc

config_19 sample_larger 0.67 0.63 0.68 0.65 0.75 0.33

config_19 same_size 0.52 0.48 0.43 0.46 0.52 0.03

config_20 cycle_smaller 0.55 0.52 0.43 0.47 0.58 0.09

config_20 sample_larger 0.54 0.51 0.46 0.49 0.56 0.08

config_20 same_size 0.58 0.54 0.59 0.56 0.63 0.15

config_21 cycle_smaller 0.58 0.55 0.55 0.55 0.62 0.15

config_21 sample_larger 0.59 0.57 0.48 0.52 0.63 0.17

config_21 same_size 0.62 0.59 0.58 0.58 0.65 0.23

config_22 cycle_smaller 0.52 0.47 0.32 0.38 0.52 0.01

config_22 sample_larger 0.54 0.50 0.29 0.37 0.54 0.04

config_22 same_size 0.51 0.43 0.18 0.26 0.48 -0.03

config_23 cycle_smaller 0.61 0.60 0.50 0.54 0.63 0.21

config_23 sample_larger 0.58 0.56 0.47 0.51 0.60 0.15

config_23 same_size 0.58 0.54 0.56 0.55 0.61 0.15

config_24 cycle_smaller 0.63 0.61 0.59 0.60 0.68 0.26

config_24 sample_larger 0.61 0.58 0.56 0.57 0.66 0.22

config_24 same_size 0.61 0.60 0.50 0.54 0.63 0.22

config_25 cycle_smaller 0.62 0.59 0.56 0.58 0.65 0.23

config_25 sample_larger 0.58 0.55 0.61 0.57 0.63 0.17

config_25 same_size 0.59 0.57 0.46 0.51 0.63 0.17
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