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ABSTRACT

MULTI-AGENT REINFORCEMENT LEARNING USING ROLES

Cilden, Erkin
M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Faruk Polat

September 2001, 71 pages

Reinforcement learning (RL) is known to be an promising machine learning tech-
nique and is extensively used in agent theory. Multi-agent reinforcement learning
(MARL) deals with how to scale up RL to multi-agent domains. Coordination
among agents can be achieved without explicit information sharing. Decomposi-
tion of task may be necessary to realize learning in some problems. In this thesis,
roles are defined for an agent as an alternative approach to task decomposition
for problems made up of sequential sub-tasks. The approach is experimented and

discussed on two domains of different characteristics.

Keywords: Reinforcement learning, multi-agent learning, multi-agent coordina-

tion, agent roles
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OZ

ROLLER KULLANARAK GCOKLU-ETMEN TAKVIYE OGRENME

Cilden, Erkin
Yiiksek Lisans, Bilgisayar Miihendisligi Bolimii

Tez Yoneticisi: Dog. Dr. Faruk Polat

Eyliil 2001, 71 sayfa

Takviye 0grenme, onemi artan bir makine 6grenme teknigi olarak bilinmekte-
dir ve etmen teorisinde yaygin olarak kullanilmaktadir. Coklu-etmen takviye
Ogrenme ise takviye 6grenme tekniklerinin ¢oklu-etmen ortamlara genigletilerek
uyarlanmas: ile ilgilenir. Etmenler arasi koordinasyon agikga bilgi paylagimi
olmadan edinilebilir. Kimi problemlerde G6grenmenin gergeklegsmesi igin gorev
boliimlendirmesi gerekebilir. Bu tezde gorev boliimlendirmesine alternatif bir
yaklagim olarak, alt gérevlerinden olugan problemlerin ¢6ziimii i¢in etmen rolleri

tanimlanmigtir. Yaklagum farkh 6zellikteki iki ortamda denenmis ve tartigilmigtir.

Anahtar Kelimeler: Takviye 6grenme, ¢oklu-etmen 6grenme, goklu-etmen koor-

dinasyon, etmen rolleri
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CHAPTER 1

INTRODUCTION

For the last few decades, problem solving using autonomous software entities,
called agents, has become very attractive for artificial intelligence (AI) researchers.
In AT point of view, the idea behind agent technology is the existence (execution)
of a computer program, possibly running a robot, within a model of the problem,
trying to optimize some environmental or internal parameters, for the solution of
all or a part of the problem. This can either be done by an external supervision,
or by only calculations built on an initial knowledge. In either case, interaction

with the problem environment is a must and adaptation is a consequence.

Since the emergence of the idea, adaptation of an agent to its environment
has become one of the main problems to be solved. Many known techniques for
improving automatically with experience, called machine learning, has been ap-
plied and enhanced [Mitchell 97], and new techniques are proposed for the agent
technology specifically after then. A philosophical aspect of learning machines
had also been discussed since the early times of computing machinery [Turing 50).
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Like adaptive agency, social agency might be a very effective method leading
us to the solution. Imitating the idea of collective behavior for a certain task,
as many living creatures always perform throughout their lives, gives rise to a
different perspective in agent theory, multi-agent systems. When this behavior is
learned using machine learning techniques, we say that the agents perform multi-
agent learning. In this paradigm, the key idea is that by individual learning
efforts, a collective learning on a common aim can be realized.

Most of the time, agent learning requires an on-line adaptive learning agent
architecture. In many real applications, like robotics, distributed computing, In-
ternet software, this property comes up to be a necessity. Reinforcement learning
techniques are model-free learning methods suitable for this purpose. Reinforce-
ment learning methods are effective in solving temporal credit assignment prob-
lem, which can be summarized to be the late consequences of actions performed.
Moreover, these methods can easily be scaled up to multi-agent learning [Tan 93].

Many problems can be modeled in such a way that when they are split into
sub-problems, solution of the problem by learning is simplified. In agent learning,
these kind of problems have been attractive for the last few years. A trivial
approach is to assign each of these sub-problems to agents in a predefined manner.
This approach is called task decomposition, and is excessively used in multi-agent
systems also.

In this thesis, we propose that, role decomposition, decomposing state and
action sets of agents, can also lead to effective multi-agent learning in some multi-
task domains. In many cases, this decomposition is inevitable by definition of
the problem, or by sensing and acting capabilities of agent, in others, it is a
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design issue. In either case, different than separately learning sub-tasks of a
problem and then combining them to be used as a solution to overall task, with
role decomposition, agent might learn the task as a whole, and through a single
learning effort.

We experimented two multi-agent learning tasks using roles: Adversarial
carry-track domain as a grid-world problem and 2 vs. 1 man passing problem
in simulated soccer domain. Both problems are suitable to be solved using task
decomposition and learning of sub-tasks independently. We attacked these two
problems using role decomposition as an alternative approach, expecting a coor-
dination among the agents for a common goal. An observation on soccer domain
characteristics lead us to experiment the task decomposition based approach on
man passing problem. We implemented and comparatively discussed the results.

In most of our experiments, we used a popular reinforcement learning method
that makes effective use of temporal differences, named Q(X) learning, in order
to show that role decomposition can be effective. The results of experimentations
and the effectiveness of role decomposition in multi-agent reinforcement learning

is discussed.

Organization of thesis

Chapter 1 introduces the agent learning concepts and is a brief summary on
attacked problem. Chapter 2 is a step-by-step introductory material for multi-
agent reinforcement learning. Chapter 3 presents simulated soccer domain, with
emphasis on its properties used in this thesis. Chapter 4 includes the necessary
definitions of rule-decomposition, description of two problem domains and in-
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volves the experiments done on these domains. In chapter 5, a discussion on the

work done is made, and some open problems are indicated.



CHAPTER 11

MULTI-AGENT REINFORCEMENT

LEARNING

Recently, a powerful trend has emerged in problem solving in computing systems
which is based on modularity, adaptivity, and autonomy. This approach depends
on the idea that whenever the software entity starts to live (possibly with an initial
knowledge), its motivation is just to adapt to its environment through interactions
if necessary, and take action decisions in order to maximize an internal success
measure. This form of software is called agent. An agent, in most general sense,

is anything that perceives and acts in an environment [Russell and Norvig 95].

Autonomy of an agent usually refers to the freedom an agent has while exe-
cuting in an environment. Of course, an agent is autonomous in this sense up to

the level specified by its design.

A typical domain where autonomy is important is distributed computing sys-
tems. In this area, agent theory has gained more importance recently, since mobile
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software is the most suitable solution for many tasks. When we talk about mo-
bility of a program, autonomy is necessary. After the agent leaves the system it
is created in, all its action decisions need to be made by itself.

In real life, on the other hand, autonomy is a must, but still not enough. The
agent is surrounded by many distracting or unnecessary information. Thus, the
agent must develop an adaptation strategy. For example, a mobile robot trying
to find a path to the door must learn that an obstacle on the way to door is
something bad for its purpose, and in order to save power, it should drive not
directly to the obstacle, but around.

In many problem domains, more than one agent helps each other for achieve-
ment of a goal. This may be just to speed up the solution, or a necessity for
the nature of the problem. In either way, the resulting system is said to be

multi-agent.

II.1 Multi-Agent Systems

If more than one agent is involved in solution of a problem task, we talk about
a multi-agent system (MAS). The nature of a MAS is designated by the agent
architecture, goal to be achieved and the need for coordination among the agents.
MASs are known to be effective in areas like open, dynamic, and complex sys-
tems, and widely used in the industry (process control, air traffic control), in
commercial applications (information management, electronic commerce) and in
entertainment (games, simulations).

In many problem domains, an agent capable of doing everything for the solu-
tion is not a realistic approach. There are many constraints like space required
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to hold perceptual information, memory and decision parameters; limited time to
solve the problem, huge amount of environmental data to be explored etc. A very
straightforward solution is to divide the overall task into subtasks, assign each
subtask to an agent, and design a coordination among agents, such that a prob-
ably better solution is reached faster, using tolerable amount of computational
space. This is the key idea behind MASs.

Agents in a MAS may be identical in terms of their design. If similar agents
try to achieve a common goal, the system is homogeneous. On the other hand,
in heterogeneous systems, each agent or group of agents is donated with different
capabilities and has a local sub-goal.

By the nature of MASs, the observed world is not stationary in at least one
agent’s point of view. Moreover, agent’s perception mechanisms are usually not
sufficient to have a complete information about its environment, which is known
as partial observability. Although there are MASs in which a superior being (like
human or a global controller) helps the agents to overcome this difficulty, this is
not a desirable property, since it is a violation of autonomy property of an agent.
‘Thus, many Al techniques are used to make the agent adaptive.

The problem has gained importance recently, so that a new Al research direc-
tion, distributed artificial intelligence (DAI) has emerged. DAI is a relatively new
and hot topic of Al that aims to provide models of agent operation and interaction
in complex, dynamic and unpredictable environments for problem solving. In the
context of DAI, almost all known Al techniques are extended to the multi-agent
case, and new methods are being developed.

Al has many solution candidates, such as artificial neural networks, deci-
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sion trees, genetic algorithms, reinforcement learning etc. An observation of the
need for adaptivity, non-stationary nature of the domain and observability limits
of multi-agent environments force us to eliminate those techniques that require
complete knowledge of environment, need for a supervisor’s help, and static en-
vironmental rules. Among the remaining learning algorithms, artificial neural
networks and reinforcement learning techniques dominate. However, reinforce-
ment learning seems to be the most suitable candidate for agent design for a
MAS, since it is based on the interaction between agent and its environment,
and can easily be implemented to perform on-line. Note that since other agents
are also part of the environment in one of the agent’s point of view, the method

scales the effort up to a multi-agent learning solution.

I1.2 Reinforcement Learning

Reinforcement learning (RL) stands for a family of machine learning methods
that originates from dynamic programming (DP). DP is a field of mathematics
that deals with solution of optimization and control problems. On the other hand,
RL has a different aspect of background based on psychology of animal learning
by trial-and-error [Sutton and Barto 99].

RL is based on learning a behavior through trial-and-error interactions with
the environment (Figure I1.1). More precisely, it is a technique to estimate the
utility of taking actions in states of the world, where learner (agent) is supposed
to adapt to [Kaelbling et al. 96].

In RL approaches, the learner (agent) takes actions in the environment, and
for some actions taken in certain states of the world, it receives “punishment”

8
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Figure I1.1: Agent-environment interaction in RL.

or “reward” signals, called reinforcement signals. Usually, learning is an episodic
task in RL domains, meaning that certain state(s) of the world has (have) no
possible next state, so that when one of these states is reached, a new learning

episode is started.

I1.2.1 Markov Decision Processes
RL is defined on environments that can be modeled as Markov Decision Process

(MDP). Formally, a MDP is a tuple (S, A, 7, R, 7o) such that

e S is the set of states in the environment,

e A is the set of possible actions (some actions might be unavailable in some

states),

e 7:8 x A — 8§ is the probability distribution function by which the tran-
sition from state s to state s’ occurs when action a € A is taken. This is

denoted by 7(s'|s, a), and called transition probability,

e R:8 x A — R is the real valued reward function received when action

9



a € A if performed which causes the transition from s to s’, and
e 79 is the starting state distribution.

Given a MDP, a policy, 7, is defined to be a function of the form 7= : § — A.
A RL algorithm seeks for the answer to the question “how good is taking an
action for a given state?” for all states of the environment. This can be achieved

in two ways:

e Learning state-value function for policy m: Value of state s under a policy
7, denoted V™(s) is the expected return when starting in s and following 7

thereafter. For MDPs, V™ (s) is defined as

o0
V7(s) = Ey {retio|st = s} = Ey {Z Yors i pr1|s: = s} (IL1)
k=0

e Learning action-value function for policy m: Value of action a in state s
under a policy 7, denoted Q" (s, a), is the expected return starting from s,

taking the action a, and thereafter following policy w. Q7 (s) is defined as

o
Q" (s,a) = E, {retic|ss = s,0; = a} = E; {Z 7krt+k+1|st =3s,a; = a}
k=0

(1L.2)

For the equations II.1 and I1.2, E,{} denotes the expected value given that
the agent follows the policy 7, v is the discount rate, r; is the reward received at
time step . The aim of both approaches is to maximize the expected discounted

return reti,, where

rety = Tepr+ Vere + Vs + o+ 7 Torin (1L.3)
oo

Telie = Tir1 + Yoo + 72Tt+3 + .= Z ’)’th_|.]¢+1 (II4)
k=0
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The discount rate determines how “farsighted” the learning is; in other words,
is v = 0, only immediate rewards are to be maximized, if 0 < v < 1, a reward to
be taken in the future has a certain limited (depending on whether - is near 0 or
1) influence to expected return compared to its immediate application, if y = 1,

future rewards are equally taken into calculation [Sutton and Barto 99].

I1.2.2 Dynamic Programming

From the equation II.1, one can derive the following sequence of equations

V™(s) = E; {rtfy Z Terkt2|St = s}

k=0
= (el S r615.0) [R615,0) 9P { P resneals |

a " k=0
= > m(sla) Z 7(s'|s, a) [R(5|s, a) + vV (s")] (IL.5)
= R(s'|s,w(s)) + 'yz: 7(s'|s, m(s))V"™(s') (IL.6)

where the equation II.5 is known as the Bellman equation [Bellman 57|, which
gives possibility to solution of V™ values via DP. The equation I1.6 is a simple
rearrangement of I1.5, and is also a Bellman equation.

Simply re-writing equation II.6 in terms of action-value function, we obtain
Q"(s,a) = R(s'|s,a) + 7> _7(s'|s,a)Q" (s, 7(s)) (11.7)

The existence and uniqueness of V™ is guaranteed as long as either v < 1
or eventual termination is guaranteed from all states under the policy w. If
the environment’s dynamics are completely known, then IL5 is a system of |S|
simultaneous linear equations in |S| unknowns (the V7(s),s € S). Iterative
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solution methods are suitable for this task. Consider the rearranged form of II.1:

Vit1(8) = Ex {re41 + YVi(s41) |8 = s} (IL8)

Given an arbitrary initial approximation V; other than the terminal state,
each successive approximation of V™ can be calculated iteratively using equa-
tion IL.8. The sequence {V;} can be shown in general to converge to V7 as i — oo
under the same conditions that guarantee the existence of V. Computation of

V7™ for an arbitrary policy  is called policy evaluation [Sutton and Barto 99].

Finding Optimal Policies
An optimal state-value function V* is the value function that simultaneously
maximizes the expected cumulative reward in all states s € S, and called Bellman

optimality equation:
V*(s) = maz, |R(s'|s,a) + 7Y 7(s'|s, ) V*(s) (I1.9)

Like optimal state-value function, an optimal action-value function is denoted

Q*(s, a) and satisfies the equation
Q*(s,a) = R(s'[s,a) + Zlf(s'ls, a) max Q" (s',m(s)) (11.10)
A policy 7 is called greedy and denoted 7* iff
R(s|s,m(s)) + v >_7(|s, m(s))V () = R(s'|s,a) + v > 7(s|s,a)V(s') (11.11)

for Vs € § and Va € A.
Following the inequality I1.11, given the optimal value function V*, optimal

policy 7* can be found by
7*(s) = arg maz.ca{R(s'|s,a) + v 7(s'|s, a)V*(s)} (11.12)

12



In terms of action-value function,
7*(8) = arg maz,Q(s,a) (I1.13)

Once the value function is approximated for a given policy, the next task is
to find the best policy (or policies) among all possibilities. This is called policy
improvement.

Policy improvement can be achieved in two ways:

e Policy iteration: After each policy evaluation, an improvement step is exe-

cuted on the current policy, until the best policy is found.

e Value iteration: Similar to policy iteration, but without waiting for policy
evaluation convergence, the evaluation is truncated in several ways without

losing the power of policy iteration.

Note that in either way, value estimate for current state is calculated based

on successor states’ value estimates. This is called bootstrapping in DP literature.

I1.2.3 Monte Carlo Methods

DP methods can effectively approximate the value function given the complete
knowledge of the environment. However, in many problem domains, full envi-
ronmental information is not available, or there is no model of the environment.
For such a case, environment must be observed through ezperience. Monte Carlo
(MC) methods provide some means of making this possible. All MC methods
assume the learning task is episodic.

In order to estimate V™(s), the value of state s under policy , given a set
of episodes obtained by following 7 and passing through s, we first define each

13



1. Initialize

2 7 4 policy to be evaluated

3 V < an arbitrary state-value function

4 Returns(s) + an empty list, forall s € S

5. Repeat forever:

6. (a) Generate an episode using 7

7 (b) For each state s appearing in the episode:

8 R + return following the first occurence of s
9. Append R to Returns(s)

10. V(s) «+ average(Returns(s))

Figure I1.2: First-visit MC method for estimating V.

occurrence of state s in an episode to be a visit to s. Then, every-visit MC method
estimates V" (s) as the average of the returns following all the visits to s in a set of
episodes. Another approach, called first-visit MC method (Figure 11.2) averages
just the returns following first visits to s. Both first-visit MC and every-visit MC
converge to V7(s) as the number of visits (or first-visits) to s goes to infinity

[Sutton and Barto 99].

If there is no model available, using action-values is better since simple one
step look-aheads might not give sufficient information about the best next state.
However, using action-values to estimate Q™ (s, a), some of the action-values might
never be visited, since following a deterministic policy 7 may cause observation
of just one action outcome per state. The solution is to specify starting state of
each episode by a state-action pair, so every state-action pair will be visited in
infinite number of episodes. This approach is called ezploring starts. Another

solution to this problem is always using stochastic policies to select actions.
After calculating the estimation of V™ or Q", following a policy improvement
technique similar to that of DP, optimal policy can be found by iterative appli-

14



cation of this cycle forever.

II.2.4 Temporal Difference Learning

Temporal Difference (TD) learning [Sutton 88] is a combination of MC and DP
methods. In other words, TD methods learn through experience even if no model
is available, using bootstrapping.

For the every-visit MC method, the incremental implementation of value up-

date rule is

V(s) < V(st) + afreto; — V(s:)] (I1.14)

where « is the step-size parameter.

The following subsections will be introducing some well known TD techniques.

I1.2.4.1 TD(0) Learning

Using the rule I1.14, one waits until the end of the episode to determine the
V (s;) increment, because value of ret; is available only at the end of the episode.

However, TD methods use a slightly different increment rule:

V(st) ¢ V(se) + ofregr + 7V (se41) — V(sy)] (11.15)

The rule I1.15, known as TD(0) update rule, performs the V(s;) increment using
the immediate observed reward r;.; and existing V(s;y1) estimate, thus, this
method does not require waiting for the end of episode [Sutton and Barto 99).
Bootstrapping is used since the update is based on an existing estimation, and
the rule is model-free since it is derived from an existing MC update.

15



1. Initialize V'(s) arbitrarily, 7 to the policy to be evaluated
2. Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
a < action given by 7 for s
Take action a; observe reward, r, and next state, s’
V(s) <« V(s)+afr +yV(s'") — V(s)]
s+ ¢;
until s is terminal

© 00N Oe W

Figure I1.3: TD(0) algorithm for V™ estimation.

The complete TD(0) algorithm is given in Figure I1I1.3. TD(0) is proven to

converge for small o values.

I1.2.4.2 Q-Learning

[Watkins 92] developed a TD algorithm based on TD(0), but performing updates
on action-values rather than state-values. Different than TD(0), this algorithm
converges to the optimal action-value function independent of the policy followed.

The algorithm, called @-learning, uses the following modified TD(0) update rule:

Q(st,as) + Q(81, 1) + a[req1 + ymaz,Q(s141,0) — Q(s¢, ar)] (I1.16)

Under the usual assumption of update requirement for all state-action pairs,
and some stochastic approximation conditions on the step-size parameters, Q); is
proved to converge with probability 1 to @*. Procedural form of Q-learning is
shown in Figure I1.4.

In RL literature, Q-learning has a significant importance in the sense that it
provides a way to learning of optimal policy through approximation of optimal
action-value instead of policy iteration. This approach is called off-policy learning,.
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1. Initialize Q(s, a) arbitrarily
2. Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @ (e.g. e-greedy)
Take action a, observe r, s’
Q(5,) + Q(s,0) +alr +7 maz,Q(s', @) ~ Q(s, )]
s+ §';
until s is terminal

© 0 NO U w

Figure I1.4: One step Q-learning.

In this point of view, Q-learning is an off-policy T'D control algorithm.
On-policy version of Q-learning, named SARSA ! in short, was explored by

[Rummery and Niranjan 94]. The update rule of SARSA is

Q(st, @) + Q(st, ar) + e [regs +vQ(se41, Get1) — Q545 a2)) (I1.17)

The main difference of SARSA from Q-learning is this update rule. Unlike

Q-learning, SARSA seeks for an estimate of Q™ (s, a), for a given policy 7.

11.2.4.3 Using Eligibility Traces

Both MC and TD methods have their own advantages and disadvantages. There
is a way of combining MC value-backup strategy with almost all TD learning algo-
rithms, resulting in a family of algorithms that converge faster and can be applied
on a broader range of domains, including those that satisfy MDP characteristics
only partially.

Rule II.14 requires the discounted return be available for each step of incre-

mental update of V(s;). In rule I1.15, single-step reward mechanism is sufficient.

1 The name SARSA was introduced by Sutton in 1996, as an acronym for State-Action-
Reward-State-Action. The name used by Rummery was modified Q-learning.
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In the combined approach, the discounted return is backed-up to an intermediate
point, say n* value after current, and evaluated. This approach is called n-step
backup, and TD methods where temporal difference extends over n steps instead
of 1 are called n-step TD methods. Evaluation of n-step return for a TD algorithm
can be realized by holding an associated memory variable for each state s, called

eligibility trace, and denoted by e;(s), defined by

es(s) = Meals) i s # s (I1.18)

yAer—1(s) + 1, if s = s
for all s € S, where « is the discount rate and A(0 < X\ < 1) is the trace decay
parameter. The traces are said to indicate the degree to which each state is
“eligible” for undergoing learning changes, should a reinforcing event occur. A
reinforcing event at time ¢, d;, is the one-step TD error which was also used in

TD(0):

0 = o1 + YVi(Se41) — Vi(se) (IL.19)

[Sutton and Barto 99)

The complete algorithm is shown in figure I1.5, and is called TD(A). It can
easily be observed that when A = 0 or A = 1, algorithm in figure II.5 becomes
one-step TD learning and MC learning, respectively.

As one might expect, the version of the eligibility trace approach using action-
values is available. However, the application of eligibility traces to Q-learning or
SARSA is not trivial, since TD-errors are not added up correctly unless greedy
action is taken always (which means, in fact, application of current policy).
[Watkins 89] was the first to observe that, in order to apply eligibility traces
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1. Initialize V'(s) arbitrarily, for all s € S
2. Repeat(for each episode):

3.
4
5
6.
7
8

9

10.
11.
12.
14.
15.
16.

Initialize e(s) = 0, for all s
Initialize s
Repeat (for each step of episode):
a ¢ action given by 7 for s
Take action a, observe r, and next state s’
Choose a' from s' using policy derived from @ (e.g. e-greedy)
S r+yQ(s") - V(s)
e(s) «e(s) +1
For all s:
V(s) « V(s) + ade(s)
e(s,a) < yAe(s)
s+ ¢
until s is terminal

Figure IL5: TD()) algorithm.

1. Initialize Q(s,a) arbitrarily, for all s, a
2. Repeat(for each episode):

3.
4
5
6.
7
8

9

10.
11.
12.
13.
14.
15.
16.

Initialize e(s,a) =0, for all s, a
Initialize s, a
Repeat (for each step of episode):
Take action a, observe r, s’
Choose o' from s’ using policy derived from @ (e.g. e-greedy)
a* < arg mazy, Q(s',b) (if @' ties for the max, then a* + a')
6+ r+7Q(s,a) - Q(s,a)
e(s,a) < e(s,a)+1
For all s, a:
Q(s,a) + Q(s,a) + avye(s,a)
If o’ = a*, then e(s,a) < vXe(s, a)
else e(s,a) < 0
s« sia+d
until s is terminal

Figure I1.6: Watkin’s Q()) algorithm.
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to Q-learning, all eligibility values should be reset unless a greedy action is se-
lected. This version of algorithm 2, denoted by Q()), is shown in Figure I1.6
SARSA()N), on-policy version of Q(A) was explored as a control method by
[Rummery and Niranjan 94].

Holding eligibility traces is effective especially when
e reward is delayed [Watkins 89)
e environment has non-Markovian characteristics [Peng and Williams 96]

There are several convergence proofs for TD methods with eligibility traces,
however, although there are many experimentally good results, convergence of

Q(X) and SARSA()) has not been proved for 0 < A < 1.

I1.3 Multi-Agent Reinforcement Learning

From the perspective of a single agent, existance of other agents in the environ-
ment makes no significant difference in terms of individual motivation on benefit
maximization. In a broader sense, however, the group of agents acting together,
each trying to maximize its expected reward, may perform a series of indepen-
dent actions resulting in a collective behavior better than that in a single agent
case. The field of DAI that deals with scaling up RL to MASs this way is called
multi-agent reinforcement learning (MARL).

Although coordination among agents to achieve a goal more efficiently can be

realized by cooperation through information sharing [Tan 93], much work relies

? In RL literature, there are two frequently used Q(\) algorithms. Omne of them is due to
[Watkins 89], and the other is due to [Peng and Williams 96].In this thesis, Watkins’ algorithm
is meant whenever Q() is referred.
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on an carefully designed mechanism only. For example, a good distribution of
rewards among agents is an important factor.

In their study, [Claus and Boutilier 98] argued the conditions under which
RL can be usefully applied to MASs directly. They discussed dynamics of RL in
MASs, in terms of learning joint actions, convergence settings and system struc-
ture, by focusing on the influence of partial action observability and exploration
strategies.

[Sen et al.] discussed how RL can be used by multiple agents to learn coordina-
tion strategies without having to rely on shared information. They experimented
block-pushing problem with two agents. In their work, each agent was inde-
pendently optimizing its own environmental reward, but a global coordination
behavoiur emerged. The learning system, thus, is robust and general-purpose.

[Abul 99] experimented MARL without explicit cooperation on an adversarial
grid-world domain. He tested various RL algorithms together with function ap-
proximation techniques for generalization of large state-space, in order to achieve
coordination among agents.

Because of the dynamic nature of MASs, direct MARL applications are usually
limited or heuristic by nature. There are studies where RL methods are equipped
with methods that improve multi-agent learning.

[Schmidhuber 96] added a stack-based backtracking procedure to RL called
“environment-independent reinforcement acceleration” (EIRA), by which each
agent holds a history of significant performance accelerations, using an acceler-
ation criterion. This way, agents are enforced to learn cooperation in situations
where all agents try to speed up the same reinforcement signals, but no agent can
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speed up reinforcement intake immediately by itself.

[WeiB 93] described two algorithms for learning of appropriate sequences of
action sets in MASs with RL, which he called ACE and AGE (standing for “AC-
tion Estimation” and “Action Group Estimation” respectively). Both algorithms
are based on learning an estimation of goal relevance for actions, using coordi-
nation. To do so, he introduced a bidding procedure among agents where each
agent competes for the right to take an action and he tested his algorithms on

block world domain.
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CHAPTER III

SIMULATED SOCCER DOMAIN

II1.1 Overview

Soccer game is one of the most challenging domains for Al studies, due to its
extremely dynamic and complex nature. Any close-to-real soccer match is a multi-
agent system, where each agent has only a partial view of its surrounding (hidden
state) and must decide its action immediately according to its current belief,
using the limited information it gathers from the environment (real-time decision).
Teammates must cooperate to defeat their opponents, because the soccer domain
is adversarial. Moreover, each agent must cope with a huge continuous state and

action space.

The frequently used grid world domain is not suitable to reflect the main
characteristics of soccer domain. [Uther and Veloso 97] modified the traditional
grid world to be composed of hexagonal grids, in order to achieve a closer imitation
of soccer game, and also to make effective comparisons among learning algorithms
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giving results best for grid worlds. However, the new grid domain was far from
being similar to a soccer domain, in the sense that continuous state and action
space was still missing.

In their study, [Slustowicz et al. 97] used a soccer simulator of their own de-
sign, as a test-bed for evolving soccer strategies. The enhancement was the ex-
istence of continuous 2-dimensional Cartesian soccer field, and continuous action
space resulted in a much better soccer simulation. However, capturing the ball
was done by occupying a neighborhood of the ball, even if it were already captured
by another player. By this assumption, behavior of ball becomes unrealistic.

In the meantime, proposal of the robotic soccer cup, named RoboCup, was
made by [Kitano et al. 97], in order to provide a common soccer platform to
compare the performance of systems developed by many researchers and robotic
soccer hobbiests. Following a preRoboCup in 1996, the first official RoboCup
event occurred in 1997, Since then, the competition is held once every year.

RoboCup consists of 3 sections of games [Noda 95]:
e a real-robot section

e a simulation section

e a special-skill section

For competitions in the simulation section, simulated Soccer Server was an-
nounced to be the official simulation tool [Kitano et al. 97]. The server was
based on the previous work of Itsuki Noda et. al., in September of 1993. While

Noda’s system was built as a library module for demonstration of a Prolog-like

! http://www.robocup.org
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programming language, the first version was written in LISP, before its official
announcement. Beginning from its first official version, it has been developed in
C++ [Noda et al. 99].

Since it is first used in preRoboCup’96, the soccer server system is being

updated frequently for bug-fixes, and rarely for additional features.

III.2 RoboCup Soccer Server

This section paraphrases a similar section in the soccer server user manual

[Noda et al. 99].

II1.2.1 General Description

RoboCup Soccer Server is a 2-dimensional soccer simulator, written in C++. It
enables autonomous agents consisting of programs written in various languages
to play a match of soccer against each other. It provides a virtual platform
to which each agent program is connected via UDP/IP socket connection, each
representing a soccer player; therefore any system having UDP/IP support can
be thought of as a potential soccer agent development platform.

Official RoboCup Soccer Server consists of two programs. The actual server
is soccerserver. It is a program that simulates ball and player movements in a
virtual soccer field, communicates with player client programs (agents), simulates
some environmental noise (wind factor, player stamina etc.) in order to make the
simulation more realistic. soccerserver also has a built-in referee to control the
rules of the match. The other program, soccermonitor is a graphical front-end
for soccerserver which uses X window graphical system [Noda et al. 99].
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soccerserver has an internal clock, and changes in status of server occur by
a new clock tick, which is called a simulation step. Using the UDP/IP connection,
an agent program sends action commands to soccerserver. These commands are
interpreted by the soccerserver and the response is the corresponding change
in state of the virtual environment according to the action taken. The action
model is discrete, in other words, all action requests within one time step occurs
at the end of the step. soccerserver keeps track of sensory status of each player
and sends the current sensory information to each agent in certain time intervals
(possibly a different step size than simulation step). Whenever an agent needs
this information, it simply listens to the soccerserver socket port connection.
Following a historical convention, information is passed among soccerserver

and the agents using strings containing S-ezpressions.

I11.2.2 Simulation of Soccer Field

The game field of soccerserver is a 2-dimensional continuous coordinate system
in which center of field is accepted to be the (0, 0) point, and all stable objects
are indicated with flags and lines, and located accordingly.

The possible moving objects are the ball and the players. Maximum number
of agents that can be connected to the server for one team is 11, which adds up
to a total of 22 players. Additionally, a coach agent can be connected, but is not

represented as a moving entity in the field.

“The players and the ball are treated as circles. Front side of a player
is represented by unshading the half-circle of corresponding direction.
All distances and angles used are to the centers of the circles.

In each simulation step, movement of each object is calculated as:

(ubt', ulth) = (v},v}) + (al,af) : accelerate (I11.1)

26



B2 = (phopt) + (P ut™) : move

x My z
B4ty t+1 41y .
(v;™,v,7") = decay X (u; ", u,"") : decay speed
(a7t apt') = (0,0) : reset acceleration

where, (p},p}), and (v,v}) are respectively position and velocity of
the object in timestep ¢. decay is a decay parameter specified by
ball_decay or player_decay. (a},al) is acceleration of object, which
is derived from Power parameter in dash (in the case the object is
a player) or kick (in the case of a ball) commands in the following
manner:
(a,al) = Power x power_rate x (cos(6"), sin(6"))

where 6° is the direction of the object in timestep t and power_rate is
dash_power_rate or is calculated from kick_power_rate. In the case
of a player, this is just the direction the player is facing. In the case
of a ball, its direction is given by the following manner:

6., = 6. ...+ Direction

where 6}, and 6%, ... are directions of ball and kicking player respec-
tively, and Direction is the second parameter of a kick command.

If at the end of the simulation step, two objects overlap, then the
objects are moved back until they do not overlap. Then the velocities
are multiplied by -0.1. It is possible for the ball to go through a player
as long they do not overlap at the end of cycle.

In order to reflect unexpected movements of objects in real world,
soccerserver adds noise to the movement of objects and parameters
of commands.

Concerned with movements, noise is added into Equation III.1 as
follows:

(ufl,‘+17 ugt/+1) = (U:J’ 'U;) + (ai’ a’fj) + (F"'ma,:c ’ ,Frma,:u)

where 7,__. is a random number whose distribution is uniform over
the range [—7Tmaz, Tmaz]- Tmae 1S @ parameter that depends on amount

of velocity of the object as follows:
Tmae = rand-|(v:,vt)]

T T

where rand is a parameter specified by player_rand or ball_rand.

Noise is added also into the Power and Moment arguments of a
command as follows:

argument = (1+ Franq) - argument

[Noda et al. 99)”
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Figure III.1: A snapshot from soccer server

II1.2.3 Player Simulation

I11.2.3.1 Commands to Server

An agent program can send eight types of commands to soccerserver. These
commands are turn, dash, kick, turn-neck, move, catch, say, change._view.
First half of the commands are basic action commands. In this thesis, first three

basic action commands and the move command are used:

e (turn Moment)
Change the direction of the player according to Moment. Moment should
be between minmoment and maxmoment (default is [-180, 180]). The actual
change of direction is reduced when the player is moving quickly. Specifi-
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cally, the actual angle the player is turned is as follows:

actual_angle = moment/(1.0 + inertia_moment x player_speed)

[Noda et al. 99]

(dash Power)

Increases the velocity of the player in the direction it is facing by Power x
dash_power_rate. Power should be between minpower and maxpower (de-
fault: [-30, 100]). If power is negative, then the player is effectively dashing

backwards. [Noda et al. 99]

(kick Power Direction)

Kick the ball with Power in Direction if the ball is near enough (the
distance to the ball is less than kickable_area (which is equal to the
kickable_margin + ball_size + player_size.). Power should be between
minpower and maxpower (default is [-30, 100]). Direction should be between
minmoment and maxmoment (default is [-180, 180]). Most powerful kick can
be done when the ball is directly in front of the player and very close to

him, and drops off as both distance and angle increase. [Noda et al. 99]

(move X V)

Move the player to the position (X Y). The origin is the center mark, and
the X-axis and Y-axis are toward the opponent’s goal and the right touch-
line respectively. Thus, X is usually negative to locate a player in its own
side of the field. This command is available only in the before_kick_off
mode, and for the goalie immediately after catching the ball (catch com-
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mand). [Noda et al. 99]

I11.2.3.2 Sensor Information

Three types of messages arrive from soccerserver to clients: visual, auditory,

physical (related to self condition). In this thesis, there is massive use of visual

information of agents. No passing of auditory or sensory type message is involved.
Visual Information

“Visual information arrives from the server in the following basic for-
mat:
(ObjName Distance Direction DistChng DirChng BodyDir HeadDir)

ObjName = (player Teamname UniformNumber)
|(goal [1r])
|(ball)
[(flag c)
|(flag [Lic|r] [t[b])
|(flag p [1]r] [t]c|b])
|(flag g [1]r] [t]b])
(flag [1]x|t|b] 0)
(flag [t|b] [L|r] [10]20]30]40|50])
(flag [1l|r] [t|v] [10]20|30])
(flag [1fr|t[b])

!
|
i
l

Distance, Direction, DistChng and DirChng are calculated in the fol-
lowing way:

Pre = DPaxt — Pxo
Pry = Pyt — Pyo

Urg = Vgt — Ugzo
Upy = Uy — Uyo
Distance = \[p2, + P2,
Direction = arctan p'ry/ Prz — Qg
€re = Pro/Distance
ey = Dry/Distance

Il

DistChng (Vrg * €pg) + (Upy * €ry)
DirChng = [(—(vrg * €ry) + (Vpy * €,5))/ Distance] x (180 /)
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where (py, pye) is the absolute position of the target object, (pz0, py0)
is the absolute position of the sensing player, (v, vy) is the absolute
velocity of the target object, (vgo,vy0) is the absolute velocity of the
sensing player, and ap is the absolute direction the sensing player is
facing. The absolute facing direction of a player is the sum of the
BodyDir and the HeadDir of that player. In addition to it, (prg, Pry)
and (v,q,vpy) are respectively the relative position and the relative
velocity of the target, and (e,,, €,,) is the unit vector that is parallel
to the vector of the relative position. BodyDwr and HeadDir are
only included if the observed object is a player, and is the body and
head directions of the observed player relative to the body and head
directions of the observing player. Thus, if both players have their
bodies turned in the same direction, then BodyDir would be 0. The
same goes lor HeadDir.

The (goal r) object is interpreted as the center of the right hand
side goalline. (flag c) is a virtual flag at the center of the field.
(flag 1 b) is the flag at the lower left of the field. (flag p 1 b)
is a virtual flag at the lower right corner of the penalty box on the
left side of the field. (flag g 1 b) is a virtual flag marking the right
goalpost on the left goal. The remaining types of flags are all located
5 meters outside the playing field. For example, (flag t 1 20) is 5
meters from the top sideline and 20 meters left from the center line.
In the same way, (flag r b 10) is 5 meters right of the right sideline
and 10 meters below the center of the right goal. Also, (flag b 0)
is b meters below the midpoint of the bottom sideline.

In the case of (1ine ...), Distance is the distance to the point where
the center line of the player’s view crosses the line, and Direction is
the direction of the line.

All the flags and lines are shown in Figure III1.2. [Noda et al. 99)”

Range of view of the player is limited and it depends on several factors.

The server parameters send._step and visible angle and player parameters
view_quality € {high,low}, viewwidth € {narrow,normal,wide}, and the
floating point number view_angle. Default values of view_quality, view_width
and view_angle are high,normal and visible_angle. In that case the agent
receives visual information every send_step milliseconds [Stone 98]. To calculate

the view_frequency and view_angle of the agent, the following equations are
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Figure I11.2: Flags and lines in soccer server

used:

view_frequency — sense_step * view_quality factor * view_width_factor
(I11.2)
where view.quality_factor is 1 iff view_quality is high and 0.5 iff
view_quality is low, view_width_factor is 2 iff view_width is narrow, 1 iff

view_width is normal, and 0.5 iff view_width is wide.

view.angle = visible_angle x view_width_factor (I1L.3)

where view_width_factor is 0.5 iff view_width is narrow, 1 iff view_width
is normal, and 2 iff view_width is wide [Noda et al. 99].

A player can directly adjust its view quality and and its frequency on-line by
modifying the player view parameters view_quality and view_width, together
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called view mode. However, there is a trade-off between frequent view information

versus high quality visual data by the calculations in equations I11.2 and II1.3.
Another parameter defining the view cone is visible distance:

“As illustrated in Figure II1.3, the amount of information describ-
ing a player varies with how far the player is. For nearby players,
both the team and the uniform number of the player are reported.
However, as distance increases, first the likelihood that the uniform
number is visible decreases, and then even the team name may not
be visible. It is assumed in the server that unum_far length <
unum_too_far_length < team_far_length < team_too_far_length.
Let the player’s distance be dist. Then

o If dist < unum_far_length, then both uniform number and team
name are visible.

o If unum_far length < dist < unum_too_far_legth, then the
team name is always visible, but the probability that the uniform
number is visible decreases linearly from 1 to 0 as dist increases.

o If dist > unum too_far length, then the uniform number is not
visible.

o If dist < team_far_length, then the team name is visible.

e [f team_far_length < dist < team_too_length, then the proba-
bility that the team name is visible decreases linearly from 1 to
0 as dist increases.

o If dist > team_too_far_length, then neither the team name nor

the uniform number is visible.

For example, in Figure I11.3, assume that all the labeled black circles
are players. Then player ¢ would be identified by both team name
and uniform number; player d by team name, and with about 50%
chance, uniform number; player e with about a 25% chance, just by
team name, otherwise with neither; and player f would be identified
simply as an anonymous player.

[Stone 98]”

If an object in the field is not in the view cone of the agent, there are two

possibilities:

e The object is not visible (for example, objects b and ¢ in Figure I11.3).
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e The object may be in visible_distance meters far, then it is visible inde-

1 ) e o 1 L /i 1 1. i : T TYT a)
pendent OI 1ace direction (Ior €xampie, object a 1n rigure 1il.o).

The information about objects seen becomes more unreliable if the object is

distant. As written in the manual:

“In the case that an object in sight is a ball or a player, the value of
distance to the object is quantized in the following manner:

d' = Quantize(exp(Quantize(log(d),0.1)),0.1) (I11.4)

where d and d' are the exact distance and quantized distance respec-
tively, and

Quantize(V, Q) = ceiling(V/Q) - Q (I11.5)
This means that players can not know exact positions of very far
objects. For example, when distance is about 100.0 the maximum

noise is about 10.0, while then distance is less than 10.0 the noise is
less than 1.0.

In the case of flags and lines, the distance value is quantized in the
following manner:

d' = Quantize(exp(Quantize(lod(d),0.01)),0.1) (I11.6)

[Noda et al. 99]”

Auditory Information

soccerserver does not provide a tool for direct agent-to-agent communica-
tion. Information sharing can only be done by (in a way) ”shouting” to the
counterpart. A player can hear only 1 message from each team during 2 simu-
lation cycles. An auditory information is passed to server by a (say Message)
command, where Message is a character string. An agent can transmit this in-
formation by seeking for (hear Time Direction Message) type of message from
the server. Communication range is limited to 50 meters from a player.
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@ Client whose vision perspective is being illustrated
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Figure IIL.3: Visible range of an agent in the soccer server.

Online coach and referee can also send auditory information to players and

have no range limitations. These broadcast messages mostly concerning the cur-

rent status of the match reach to all players.

Physical Information

soccerserver periodically (every sense step msec.) sends information to

each player about physical status of the player. The information consists of the

agent’s current

view mode pair,

e stamina, effort, and recovery values,

speed, head_angle values, and

count of dash, kick, turn, say and turn_neck actions.
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I111.2.4 The Coach Client

A special coach client can be connected to soccerserver. Coach client uses a
dedicated port and can rule the game just like a referee. Unlike players, it has
the full control over the game (changing play mode, moving players and objects
to different locations any time etc.) and full sight of the field. In this thesis,
there is effective use of coach client to arrange episodic training sessions, to place

players to certain field locations when necessary and to keep track of scores.
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CHAPTER IV

LEARNING ROLE DEPENDENT

BEHAVIORS

In real life, human-environment or human-human interactions heavily rely on an
implicit role mechanism. One is temporarily assigned a role until he performs
whatever is necessary for that role; after that, he turns back to his initial role or
is assigned a new role, and this loop continues. Each role is defined by the task

that is to be completed.

Consider the very simple task of carrying a remote object from one place to
another. First period of the task involves walking to the object and taking it.
This period can be seen as a “take object” task. The second period is walking
to the target, and upon reaching the correct place, leaving the object. This

procedure can be defined to be a “carry object to target” task.

Learning an obviously composite task is a difficult and open problem in AL A
very new and effective RL solution to this problem is hierarchical reinforcement
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learning [Dietterich 00], in which, given a value-function hierarchy, agent tries to
get and carry a passenger in a grid-world task, named “taxi domain”. This task is
composed of subtasks “get passenger”, “refuel”, and “leave passenger”; and each
subtask is composed of sub-subtasks etc. Given this value-function hierarchy, the
agent is donated with an initial clue on the optimal hierarchical policy. Learning
is said to occur when the order of execution of each subtask at the same level is
learned. Later, [Makar et al. 01] carried the hierarchical reinforcement learning
to multi-agent platform.

In task decomposition, the overall task is divided into subtasks, and whenever
one subtask ends, another starts; so the distinction among subtasks is realized
by the nature of the problem. Unlike task decomposition, role distribution fo-
cuses on the agent’s state and action sets. From agent theory point of view,
our critical observation is that task decomposition may be a consequence of role
decomposition in many cases, especially in multi-agent platforms.

With a more careful observation on the object carrying task defined above,
we can see that the overall task is performed based on two distinct roles of the

agent respectively: “without object” and “with object”.

IV.1 Roles and Coordination

We define a role to be a tuple (Syore;;, Arote; ), Where Spore, and Ao, are state
and action sets respectively for role;. The current role of the agent is determined
internally by being in a role discriminating state or not. This discrimination may
also be realized by taking a special action within a role that takes the agent in
or out of the discriminating state.
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The subscript role; ensures the uniqueness of the state and action sets for the
" role. In other words, even if the state set of a role roie; and another role roie,
are identical out of the role context, by the role definitions, they become disjoint.
Therefore, we can easily integrate the role concept to MDPs.

If a number of roles are observed within a problem domain that can be defined

as a MDP, then

S = Srote; (Iv.1)

A = Arole, (IV.2)

where S and A are as defined in section I1.2.1, assures that the domain is still
Markovian.

Moreover, given the existence of role discriminating states and provided that
actions that carry the agent from or to those states exist, the state transition
function 7 (see section I1.2.1) includes necessary transitions among state set of
roles, so that every state in S is a potential next state of another state. In other
words, every state in S is reachable. This property is a promise for the most
important requirement of RL algorithms: need to visit all states infinitely many
times.

There are problem domains, in which role definitions are not only obvious,
but inevitable as well. A very striking observation is that, in the object carrying
task example given at the beginning of this chapter, existence of object location
dimension in state space when “without object” role is active is obvious; however,
when “with object” role is active, this dimension is useless, because there is no
alternative in this role other than carrying the object.
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Suppose, more interestingly, that object to be carried is a tool that increases
visual sensing capabilities. For instance, when “with object” role is active, the
agent’s visual depth increases. Obviously, a generic state space description ignor-
ing such a distinction will give unsatisfactory results.

In the multi-agent case, role distinction becomes more meaningful than single
agent case. Many problems are, by nature, best solved using complementary role
distributions among agents. What we mean by a complementary role is a role
that helps the other agent(s) perform its task. Usually, when one agent dedicates
itself to a role, the best thing that the other agent(s) can do is to select a -possibly
complementary- role that maximizes the overall success.

Coordination of agents in a homogeneous multi-agent system through role
distinction can be achieved by a careful design of role state descriptions and
reward functions. In many cases, reward is delayed, because after many trials,
one of the roles take the reward winning action some time, and this reward is
usually distributed among agents.

In this thesis, learning through roles is implemented using Q(A) (Figure 11.6).
We chose Q) because of the need for eligibility traces to reduce the non-
Markovian effects in the environments. Moreover, the rewards are delayed. A
reward is usually received after a long exploration by switching the roles.

For an agent, implementation of roles using look-up table approach in Q-
learning requires existence of more than one Q-table, one for each role. This
way, the distinction between two same sensory mappings of different roles is
achieved. The learning procedure triggers among the tables as the role changes.
However, there is no difference between table of one role and the other, as far
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as Q-learning is concerned; learning occurs as if there is a single Q-table. In our
experiments, we follow this convention, where each agent is equipped with two
Q-tables representing two roles.

In general, role distinction is obviously a good solution candidate for multi-

agent tasks that deal with “carrying something to somewhere” type of problems.

IV.2 Adversarial Carry-track Domain

We define an adversarial grid-world domain, named carry-track world. In this
10 x 10 grid-world, there is an object located at one of the sides. The aim of the
game is to carry this object to the opposite side. There are two agents that try

to carry the object and an enemy that tries to prevent them to achieve this goal.

Figure IV.1: A sample initial setting in carry-track world.

Learning agents denoted by a and A as in Figure IV.1, or ¢ and C as in
Figure IV.2. The object is denoted by a & and the enemy by E. The general
rules of the game are as follows:
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Figure IV.2: A possible losing state (left) and one of the winning states (right).

e more than one object in the world may occupy the same grid:

— if an agent occupies the same grid as the object, it becomes the carrying
agent, provided that it did not perform a leave action in previous step
(see below); and is denoted by C; if both agents occupy the same grid
as the object, one of them is randomly assigned to be the carrying
agent, unless one of them is already the carrying agent, in which case

the configuration does not change.

~ if the enemy occupies the same grid as an agent and if the agent is the

carrying agent, the episode ends: enemy wins (Figure IV.2, left).
— if the object, being carried by C, occupies one of grids on the target
line, the episode ends: agents win (Figure IV.2, right).

e time is discrete, and actions are taken simultaneously for each time step:

— possible moves for non-carrying agent(s) are {north, south, east, west};
agent takes one grid further per time step for each move. A move to
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a non-existing grid (on the edges) causes the agent stay still.

— possible moves for enemy are {north, south, east, west, jump} where
first four moves are as in the non-carrying agent case. The special
jump move causes the enemy jump to the grid the agent A or C
occupies in the next time step, provided that they are near by a certain

Manhattan length (2 in our case).

— possible moves for a carrying agent are {north, south, east, west, leave}
where first four moves are as in the non-carrying agent case. The spe-
cial move leave causes the carrying agent leave the object in place. In
other words, leave action results in a C' to A transformation. In order
for the agent to grasp the object again, it must leave the object’s grid,

and re-enter.

— when an agent becomes a carrying agent, the object is attached to it,

until it performs a leave action.

e cach agent has the capability of sensing whether it is the agent who last

touched the object; such an agent is denoted by a capital letter (C or A).

e enemy has the capability of sensing which agent last touched the object.

e the only donation of enemy is the necessary policy to attack to an agent
denoted by a C or an A, and try to occupy the same cell with it. Note
that whenever it occupies the same cell with a C' agent, it wins the episode.
Moreover, if the enemy catches an agent, it keeps track of it after then,
until other agent touches the object.
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Figure IV.3: Distances sensed by agent located at center. x is the same location
with agent while n indicates near. Any other location is sensed as far.

Apparently, there are two roles in this task, which are “with-object” and
“without-object”. We denote these two roles as role, and role,, respectively.

The definitions of these roles are;

roley = (Srolew, {N0Tth, south, east, west, leave}) (IV.3)

rolewso = (Srole,,, \NOTth, south, east, west}) (IV.4)

Srole,, ad Srole,, ,, are state descriptions defined for that role.
An agent’s state description depends on sensation of the surrounding objects

by their

e distance : an object can be far from, near to or at the same location with
the sensing agent, in terms of Manhattan distance. In our settings, far limit

is 3 steps (Figure IV.3).

e direction : an object can be at four different directions (Figure IV .4).

An agent can fully observe the environment by its distance and direction sensors.
Given the two parameters for state description, each object other than agent
itself, defines a state dimension. In other words, an object can be in one of the
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Figure IV .4: Directions sensed by agent located at the grid. An object is sensed
to be in one of those four directions.

states in {n, f,z} x {east — north, north — west, west — south, south — east}.
So, cardinality of resulting state definition of an agent in terms of the number of

objects sensed in the environment is
ISobj] — (3 > 4)number of objects sensed (IVB)

We define S/, in terms of 3 objects in the environment (other agent, enemy,
object), and a boolean flag for sensing whether the agent itself is the last who

touched the object. Thus,
|Sw/ol =2 x (3 % 4)®

To define S, since object is already carried by the agent, we ignore object
and boolean flag dimensions in state definition. Moreover, since the motivation
of this role is more related to avoiding the object from the enemy, we ignore the

other agent dimension also. Thus,
|Sw| =3 x4

Using these definitions of roles, we implemented Q(A) in order for agents to
learn a coordination against the enemy. In our settings, we used @ = 0.2, v = 0.95,
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A = 0.9. As the action selection strategy, Boltzmann exploration function is used:

eQ(saai)/T

Yica eQ(s:a3)/T (IV.6)

P(ails) =

where P(a;|s) is the probability of choosing action a; when agent is in state s,
T is a positive parameter called the temperature. High temperatures cause the
action selection to be nearly equiprobable, wherever as T — 0, action selection
becomes greedy. We used 7" = 1.

Agents are implemented to be identical. Obviously, two distinct tables are
needed for each agent to hold Q-values of two different roles. If the enemy wins
the episode, agents are punished by each receiving -1 as reward. In case agents
win the episode, a positive reward of 10 is given to each agent. Moreover, C, the
agent carrying the object, receives a reward of 1 for each action toward the target
line. All other situations cause a 0 reward.

After execution of 10000 episodes, we observed that in 8998 of the episodes,
agents succeeded in carrying the object to the target edge without being caught
by enemy.

For role,, since cardinality of state space S, is small, and highest immediate
reward is gained during exploration, enemy avoidance is learned by each agent
quickly after start of training episodes, namely, approximately in 100 episodes
(see Figure IV.5).

A typical strategy learned by the agents is shown in Figure IV.6. While agent
a attacks to the object, the other agent A, occupying the same grid as enemy, tries
to take the enemy away from the object. This scenario occurred so frequently
and in so many different combinations, so that we believe it might be accepted
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Figure IV.5: Enemy avoidance of an agent by a leave action.

as a form of coordination using role learning.

IV.3 2 vs. 1 Man Passing in Simulated Soccer Domain

A typical problem in soccer is carrying the ball behind the opponent. A tactic
used in soccer games involves coordination of two (or more) players in order to

move the ball behind the opponent by using short passes among themselves.

We focus on the 2 vs. 1 man passing problem on simulated soccer domain
(chapter III) and discuss solution of the problem using RL techniques (chapter IT).
More specifically, the task is to develop necessary passing coordination by RL after
many trials in the environment, so that, given a randomly placed ball initially
put somewhere in front of the goal, an opponent goal-keeper and two randomly
placed learning agents, the agents perform the necessary actions the coordination
requires (Figure IV.7).
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Figure IV.6: A typical coordination strategy learned.

IV.3.1 Role Based Design

In the two player passing coordination problem, two different roles can be defined:
“being the passing player (with ball)”, “being the player to be passed (without
ball)”. Let us denote them by role,_p and roley /o

Since almost all necessary characteristics of a real world play exists in simu-
lated soccer domain, a number of generalizations have to be made in state and
action descriptions.

Visual information coming from the server are coarsely discretized. This dis-

cretization has two parameters:

o distance: Visible area is divided into 5 horizontal slices, with respect to the
agent’s view axis. Self position of agent being the starting point, first 4
portions 0, 1, 2, 3 are 5 meters long each and the farthest (5%*) slice has no
visual depth limit. Invisible area (out of view cone) is accepted as the 6%
slice.
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Figure IV.7: A sample passing instance.
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Figure IV.8: Partitioning of agent’s view cone by distance (small numbers) and
direction (big numbers).

e direction: Visible area is divided into 3 vertical slices with respect to the

agent’s view angle. Similarly, invisible area, forms the 4** slice.

Discretization is illustrated in Figure IV.8, with a combined view. Note that
invisible slices related to distance and direction together define a single invisible
slice and need not be taken into consideration otherwise. With this simplification,
combined view provides 3 x 5+ 1 = 16 entries for a dimension of state space
description, coarsely covering all possible locations of the seen object. State
space of an agent, in general, may have 3 dimensions: ball state, teammate state,
opponent state.
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Learning a high level behavior such as coordination directly from input sensor
data and primitive actions is intractable [Stone 98]. As an ¢

meta-level actions using primitive actions with parameters we experimentally

found appropriate:

e captureBall(n): turn to ball, and dash forward until ball is within kickable

area, or n dashes are done.

e runToOpen(n): go to a certain distance away from the ball to the goal,
keeping an approximate distance from the virtual line between ball and
goal. Direction of the move depends on whether the initial position of the

agent is above or below the line.

e pass(): turn to teammate, and kick to ball forward with such a power that

target of ball is experimentally found to be near the teammate.

e shoot(): turn to goal, and kick forward with a power such that a goal can

be scored if the goal is approximately 10 meters away.
e dribble(): turn to goal, and kick forward with a very low power, so that the
ball takes a few meters away.
Supporting our observations, the action definitions also imply the role defini-
tions as follows:
roley—t = (Srole,_s> {PASS, shoot, dribble}) (IV.7)
roley oy = <S7‘Ol€w/owb7 {captureBall, runToOpen}) (IV.8)
where we define S5, , by opponent state dimension only, and S,qe,, Jot by ball

state, teammate state and opponent state dimensions. Thus, cardinalities of state
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Figure IV.9: Initial positions of ball and goal-keeper.

spaces for the roles become

|Sw—b] = 16 (IvV.9)
|Sujo—b| = 16° (IV.10)

We developed two identical agents having the sensing and acting capabilities
as defined above, and a goal-keeper client. Goal-keeper attacks to capture the ball
whenever he detects the ball is closer than 4 meters. Additionally, we designed
a coach client to determine episode starts and ends. At the beginning of each
episode, coach client places the ball to a constant position as seen in Figure IV.9.
Goal-keeper takes its place just in front of the goal and begins keeping track of
the ball. Coach client assigns each agent a random position within 20 meters
of the ball. Coach also keeps track of position of the ball in the field. The test
play occurs within a 30m. x 40m. rectangular test field as shown in Figure IV.10.
After these initializations, the episode starts.

An episode is finished by the coach when
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Figure IV.10: Test field.

e ball is captured by the goal-keeper,

e a goal is scored,

e ball goes out of the test field.

We used Q(A) for the learning agents (Figure 11.6), with the settings o = 0.2,
v = 0.95 and A = 0.9. Action selection is done via Boltzmann exploration
(equation IV.6) with T' = 1.

Each agent has an internal reward mechanism. Because of this, rewards
strongly depend on current visual information of the agent. When goal is scored,
agents that observe the goal receive a reward of 10. If the goal-keeper catches the
ball, the observing agent receives a -1 as reward. Moreover, if an agent is very

53



close to ball, and the other agent is more than 10 meters away from the ball, an
agent who observes this situation takes a reward of 0.1. Any other situation is a
cause of 0 reward.

Note that if an agent takes the captureBall action, it is about to switch its
role from roley /oy t0 T0ley_p, if the action succeeds. On the other way, if an
agent has already captured the ball, any action it will perform will cause its role
to change from role,_s to role, ,—5. However, actions are not always successful,
because of the non-deterministic and noisy nature of the simulated soccer domain.

Assessment of the performance on soccer domain is not clear, and there is
no evident way of measurement in the literature. [Stone et al. 01] suggest to
compare best approximation of V™ with test sample return values. However, the
success is rated using time spent, due to the nature of the problem giving credit
to longer time measurements. In our case a rating strategy, such as number of
goals, does not seem to be reliable, since there are many continuous parameters
(noise in sensory input, wind factor etc.) that complicate even the very simple
task of scoring a goal by capturing the ball and shooting appropriately. In this
study, all of these parameters are empirically assigned constant values. Instead
of measurements we made observations on a number of sessions, testing whether
a coordination behavior is repeatedly invoked by agents or not.

We had performed many training sessions, each of which was more than 5000
episodes long. Although the agents effectively learned to take correct action when
ball is captured, if both are away from the ball, they could not get prepared for a
“passing coordination” by deciding which one of them is to capture the ball, and
which one is to get to open. In most of the cases, an agent had the tendency to
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attack the ball at the same time with the other agent, whatever its distance to the

ball is. A man passing situation rarely occurred compared to dribbling actions
and direct shoots to the goal, and seemed to be achieved by chance. Moreover,
when both agents attack to ball together, taking an action becomes more difficult,
since visual sensors and target locations of the ball are blocked by teammate in
an agent’s point of view. This causes an inconsistency in actions and latency in
achievement of reward.

In general, we were unable to observe an apparent learned coordination among

agents through role definitions.

IV.3.2 Task Based Design

In the role based design of the 2 vs. 1 man passing problem, when both agents are
dedicated to “without ball” role, a timing problem exists for switching of one of
them to the other role: if one agent passes the ball before the other agent reaches
to the correct receiving position, the pass becomes useless!

This observation suggests that the 2 vs. 1 man passing problem is more suit-
able to be solved by task decomposition rather than role assignment.

Two main subtasks can be pointed for an agent constructing the overall task:
“prepare for a potential pass” (task 1), “take action with ball” (task 2). Note
that, the first subtask necessarily results in a situation where ball is captured.

We implemented these two sequential subtasks. Actions sets are the same
as in the role based case. For the first subtask, the actions are {captureBall,
runToOpen}, for the second subtask, the actions are {passToTeammate, shoot,
dribble}.
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This time, state description with distance parameter is constructed using dis-
tances of objects to the ball. Upon seeing a flag in the field, an agent can deter-
mine its current coordinates approximately. Using this approximation, distance
and direction information relative to agent position and face direction as it senses
can be used to calculate the distances of any object in the field relative to any
other. In our new state description, the state entry for an object is calculated by

the observing agent as follows:

e if the object is self, turn to ball and use information from visual sensors to

grasp ball distance

e otherwise, do

1. calculate self coordinates using a field flag around

2. turn to object, calculate object coordinates using result of 1 and in-

formation from visual sensors

3. turn to ball, calculate ball coordinates using result of 1 and information

from visual sensors

4. calculate distance between ball and object using results of 2 and 3

Discretization of the distance is similar to the distance discretization defined
for the role based case. This time, however, we have experimentally found that
7 slices of equal length and 1 slice as an unseen entry provides sufficient general-
ization and resolution over the continuous state space (Figure IV.11).

For task 1, we defined two state dimensions. One of them is over distance
of the observing agent itself to the ball, and the other is over distance of the

96



Y

Figure IV.11: Discretization of the calculated distance of object to ball.

other player

distance(other)

ball

'stance(self)\

observing
player

Figure IV.12: Distances to ball as observed by an agent for task 1.

teammate to the ball. A possible situation is shown in Figure IV.12. The resulting
state definition can be illustrated by two dimensional table as in Figure IV.13.

Thus, |Siesk, | = 64.

In the experimental setup for task 1, agents learn through Q(X). The constants
o, 7y, A are set to 0.2, 0.95 and 0.9 respectively. At the beginning of each episode,
the ball is set to its initial position by the coach client as shown in Figure IV.9.
Again, two agents are placed at random positions within 20 meters away from
the ball. Boltzmann exploration (equation IV.6) is used for action selection.
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Figure IV.13: Tabular view of state definition for task 1.

At the beginning of an episode, by checking initial position of the agents, the
agent near to ball is detected to be used later in reward mechanism during the
episode (Figure IV.14). An episode ends when an agent captures the ball.

Rewards are internally assigned. If an agent is the nearest agent to the ball
at the beginning of the episode, it is marked. Whenever it is near the ball
(distance(sel f) = 0) and the other agent is acceptably far from ball so that it is
ready to receive a pass (distance(other) > 2), then both agents receive a reward
of 10 (see Figure IV.15, left). If both agents are near the ball (distance(self) =
distance(other) = 0), then both agents receive a reward of —1 (see Figure IV.15,
right).

After running 1000 episodes, the agents mostly succeeded in taking positions
necessary for a passing coordination, getting ready for task 2. When both agents
observes different state entl-*ies (distance(self) # distance(other)) at the begin-
ning of the episode, the nearest agent captures the ball while the other gets to
open (Figure IV.16).
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Figure IV.14: An initial placement for task 1.

Figure IV.15: Examples of positions causing a positive (left) and a negative
(right) reward.

When both of the agents are close to ball at the beginning, they both tend to
get away from the ball (i.e., distance(self), distance(other) € {0,1}).

If both agents start the episode with state entries that are close to each
other (distance(self) ~ distance(other)) but not so far from the ball, then one
of the agents, as a learned policy, attacks to ball while the other gets to open
(Figure IV.18).

In general, agent which is closer to the ball (independent of initial position)
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Figure IV.16: Dominant strategies when initial positions are apparently different.

Figure IV.17: Dominant strategies when initial positions of both agents are near
the ball.

seems to attack to ball even if there is a conflicting similar position with the other
agent. However, an oscillating behavior occurs when agents are very near to ball,
because of the repelling effect of negative reward. After the episode ends, the ball
is captured, and the agents are ready for task 2.

We define the start of task 2 to be the time an agent captures the ball. When
an agent observes this situation (on itself or teammate), it decides that task 1 has

ended. Since task 1 and task 2 are sequential tasks, we discuss task 2 independent

of task 1.

60



Figure IV.18: Dominant strategies when initial positions of both agents are far
away from the ball.

Task 2 is a decision task for a single agent, and is similar to the “with ball” role
in the role based design. For a conformity in design with task 1, new state defini-
tions are introduced. This time, in addition to 2 distance based state descriptions,
a direction based state description is introduced with the same slicing strategy as
shown with large fonts in illustration in Figure IV.8. Goal-ball distance consti-
tutes one distance based state description while opponent-ball distance is calcu-
lated for the other (Figure IV.19). The direction based state is calculated using
the direction of opponent (goal-keeper). Note that, in task 2, since ball is very
close to agent, all distances and directions can be directly grasped from visual

sensory input.

The two distance based dimensions, like in task 1, build up a state table of 64
entries. Adding the opponent direction dimension, with cardinality 4, the state

space grows up to |Sigsk,| = 256.

In the experimental setup for task 2, we had one learning agent, a non-moving
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Figure IV.19: Distances to ball as observed by an agent for task 2.
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Figure IV.20: Tabular view of state definition based on distances for task 2.
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Figure IV.21: A possible initial position setting for task 2.

teammate, and the goal-keeper. For the learning agent, we invoked Q-learning
(Figure I1.4) where o = 0.2, v = 0.95 and action selection is done via Boltzmann
exploration strategy (equation IV.6); since the task requires action selection only,
and the reward is immediate. Note that Q-learning is a special form of Q()) where

A=0.

At the beginning of each episode, the coach client moves the ball at a random
point 10 to 20 meters far from the goal. The learning agent is moved just behind
the ball so that ball is within kickable area of the agent. The other agent is
located randomly at a position within 20 meters from the ball. Initial location of
the goal-keeper is the same as in Figure IV.9. A possible episode start is seen in

Figure IV.21.

The agent is assigned a reward of 10 if a goal is scored. It receives -1 as reward
if goal-keeper catches the ball. Any other situation causes the agent receive 1 as

reward.



After more than 5000 episodes, the learning agent seemed to adopt to the
reward mechanism of the task. For exampie, when goai-keeper is far from the
ball, a dribble action was the most preferred, and if goal-keeper is at left or right
slice of visible angle, a shoot or pass action was more likely to occur depending
on the distance to goal.

However, since each episode is a single step update task, the learning process
heavily relies on visiting each possible state by infinitely many random initializa-
tions. Thus, even around episode 5000, exploration continues.

Potentially, a recurring application of task 1 and task 2 makes up the overall

task of 2 vs. 1 man passing.
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CHAPTER V

CONCLUSION

If a problem is composed of sub-problems, reinforcement learning methods can
provide a solution usually assuming explicit knowledge of the sub-tasks, appli-
cation on each of them alone and then combining them. However, philosophy
behind agent theory encourages the designer of the agent to focus on adaptivity

and autonomy. A previous knowledge of tasks conflicts with autonomy.

We proposed that, as an approach to overcome this conflict, we can use role
definitions in agent design instead of providing the agent with more than one
learning task. 'This way, the learning process still remains modular and no extra
knowledge is necessary for the agent other than the state and action sets for each

role, and their activation requisites.

We focused on problems where the overall task is carrying an obstacle to its
initial location to somewhere else with two agents avoiding an enemy. Nature of
this kind of problems are suitable to be easily fragmented into two sub-tasks.

In all cases of our study, state space of an agent is coarsely coded using distance
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and direction partitions with respect to sensing capabilities of that agent. As a

XXT ]

reinforcement learning method, Watkins” Q(A) algorithm is used, to reduce the
negative effects of coarse coding and non-Markovian nature of one of the domains.
Moreover, RL methods using eligibility traces usually result in faster convergence
when lookup tables are used.

A hostile grid-world environment, named adversarial carry-track domain is
defined. Role definitions make learning in this two-task domain easier to design.
After learning, it is observed that the agents succeeded in learning this two-task
problem effectively, and good coordination instances are observed.

Using the existing platform RoboCup Soccer Server, a 2 vs. 1 man passing
problem is defined. Soccer environment is popular with its close-to-real charac-
teristics, and is known to be non-Markovian. We applied multi-agent learning
with roles on this problem and had poor results, in terms of coordination action
sequences.

There are some critical issues to be pointed out concerning the difference in

success of the method in these two domains:

e In grid world domain, states and actions are discrete while in soccer server
provides continuous state and action spaces. Obviously, this makes a sig-
nificant difference in learning since the definition of learning method used
requires a Markovian property while the soccer domain defines a typical

non-~-Markovian environment.

e State space in soccer domain is coarsely coded. Coarse coding is a trivial
method for discretization, however, obviously means loss of information by
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generalization.

In soccer domain, construction of meta-level actions using primitive actions
is a problem on its own. There is no generally accepted way of parameter
selection in action design, and there are infinitely many possibilities. In
robotic soccer and simulated soccer studies, much of the effort focuses on

learning of performing an action only.

In grid world domain, time is discrete, while soccer domain has almost
continuously passing time counter. In another sense, an agent takes a com-
posite action while a certain amount of time passes, and the amount of time

taken is not known in advance.

Soccer domain donates each agent with very a limited amount of infor-
mation related to the environment through its visual sensors, and causes
the emergence of hidden state problem. However, in grid world domain,

environment is fully observable.

We observed that 2 vs. 1 man passing problem has such a complex nature that

prevents coordination learning over long-term rewards as in carry-track domain,

and concluded that the problem can best be solved using task decomposition

rather than role decomposition. We tested the 2 vs. 1 man passing problem using

task decomposition in order for a justification of our conclusion. The results were

much better compared to the role based case.

In general, multi-agent reinforcement learning using roles seems to be a good

alternative for multi-task problems of simple nature, but extensions must be made
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for more complex problems. Function approximation methods may be effective
to improve learning in continuous state and action space domains.

Although we gave a general definition of role, we experimented the idea on
problems defined by two roles. Another future direction might be more solution
of more complex problems in terms of number of roles in the domain.

In our study, role definitions are initially available by agents. Decision of
relevant state dimensions, or elimination of unnecessary actions during training
may be seen as another learning problem. Thus, defining roles dynamically by on-

line changing of current role definitions in an adaptive manner may be valuable.
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