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ABSTRACT

ANALYSIS AND DEVELOPMENT OF STATISTICAL PROPERTIES OF
PERIODIC AUTOREGRESSIVE MOVING AVERAGE PROCESSES

SMADI, Abdullah Ahmed
Ph.D. in Statistics
Supervisor: 15rof. Dr. Taylan ULA
January, 1994, 124 pages

In this thesis, several features of the class of periodic auto-
regressive moving average (PARMA) processes are investigated. Firstly, the
periodic stationarity and also the invertibility conditions of any PARMA
process are reduced through its lumped-vector representation to an eigen-
value problem. It is also shown through a counterexample that for a PARMA
process, stationarity of the aggregated process does not imply periodic

stationarity.

For the identification of orders of PARMA processes, it is shown
that this cannot be carried out by obtaining the orders of their marginal
series. On the other hand, it is shown that the Box-Jenkins approach for
identification of univariate ARMA processes can be generalized to univari-
ate PARMA processes, following a seasonwise identification routine. For
this, the seasonal autocorrelation function (ACF) and seasonal partial
autocorrelation function (PACF), which play the same role as their ARMA
counterparts, are employed. Approximated versions of the first and second
order moments of the sample seasonal ACF are developed. Utilizing also
some available results concerning both functions, confidence bands for the
assessment of cut-off properties of these functions are developed. For the
non-periodic case, these bands reduce to their well-known ARMA counter-

parts. The applicability of these bands are then illustrated through some

iii



simulations.

The last part of the study is devoted to estimation of PARMA
processes. It is shown that, as in ARMA processes, the method of moment
estimation in PARMA processes containing a moving average (MA) part is
technically difficult and also does not give satisfactory results. On the
other hand, it is shown that this method is straightforward and satisfac-
tory for univariate or multivariate periodic autoregressive (PAR) proces-
ses. For PAR processes, the conditional least-squares (LS), conditional
maximum likelihood (ML) and exact ML estimation methods are also studied
for. univariate: and: multivariate cases. It is shown that the first two
methods give the same estimates of AR parameters for Gaussian processes.
It is also shown that conditional .LS estimates can be obtained in a sea-
son-wise manner, and regression methods can be employed directly both for
univariate and multivariate cases. Detailed examples are given for some
simple PAR processes. Estimates of error variances based on the same
methods are also studied and compared. Simulation results indicate that
conditional ML estimates are often superior in terms of MSE criterion. It
is also shown that for PARMA processes contatining a MA part, the condi-
tional LS and conditional ML estimates are difficult to obtain and also
they are not equivalent. It is known that the exact likelihcod function of
any PARMA process is complicated. This is illustrated for two simple PAR

and PMA processes.

Keywords: Periodically Correlated Process, PARMA Process, Periodic Sta-
tionarity, Lumped Process, Aggregation, Identification, Autocor-
relation Function, Estimation, Method of Moments, Least Squares,

Maximum Likelihood.

Science Code: 406.02.01
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PERIYODIK OTOREGRESIF HAREKETLI ORTALAMALAR SUREGCLERININ
ISTATISTIKSEL OZELLIKLERININ ANALiZi VE GELISTIRILMESI

SMADI, Abdullah Ahmed
Doktora Tezi, Istatistik Anabilim Dali
Tez Yoneticisi: Prof. Dr. Taylan ULA

Ocak, 1994, 124 Sayfa

Bu tezde, periyodik otoregresif hareketli ortalamalar (PARMA)
stiregleri simifinmin  gesitli  Szellikleri arastirilmaktadir. flk  olarak,
PARMA siireglerinde duraganlilik ve . gevrilebilirlik sartlari, bilegik-
vektSr gosterimiyle Ozdefer problemine indirgenmistir. PARMA siireci igin,
agrege siirecin durafanlihfinin periyodik durafanlhilifi gerektirmedifi de

kars1 bir drnekle gbésterilmistir.

PARMA silireglerinin marjinal serilerinin derecelerinin elde edil-
mesi ile PARMA siireglerinin derecelerinin teshis edilemeyecegi g8steril-
mistir. Diger yandan, tek degiskenli ARMA siireclerinin teshisi icin kul-
lamlan Box-Jenkins yaklasiminin, mevsimsel teshis rutiniyle, tek degig-
kenli PARMA siiregleri igin genellestirilebilecegi gosterilmistir. Bunun
igin, ARMA daki karsiliklariyla aym rolii oynayan mevsimsel otokorelasyon
fonksiyonu (ACF)} ve mevsimsel kismi otokorelasyon fonksiyonu (PACF)
kullanilmigtir. Ornek mevsimsel ACF’nin ilk ve ikinci derece momentlerinin
yaklasik formiilleri gelistirilmistir. Eldeki bazi sonuglar da kullam-
larak, bu fonksiyonlarin kesilme &zelliklerinin tesbiti igin giliven sinir-
lar gelistirilmigtir. Periyodik olmayan durumlar igin, bu sinirlar bun~
larin  ARMA’daki bilinen karsiliklarina doniismektedir. Bu smrlarn

uygulanabilirligi bazi simiilasyonlarla gosterilmistir.



Cahismanin son kismi PARMA siireglerinin tahminine ayrilmistir.
Hareketli ortalamalar (MA) igeren PARMA siireglerinde, moment metodunun,
ARMA siireglerinde de oldufu gibi, teknik olarak zor oldugu ve tatmin edici
sonuglar vermedigi gosterilmistir. Difer yandan, bu metodun tek ve ¢ok
defiskenli periyodik otoregresif (PAR) sliregleri igin kolay ve tatmin
edici olduBu gbsterilmistir. PAR siiregleri igin, kosullu en kiicik kare
(LS), kosullu en gok olabilirlik (ML), ve kesin ML tahmin metotlart da tek
ve ¢ok defiskenli durumlar igin incelenmistir. Ilk iki metodun Gauss
slireglerinde AR parametreleri igin aym1 sonuglar: verdigi gosterilmistir.
Kosullu LS tahminlerinin, mevsimsel bigimde elde edilebilecegi ve regres-
yon metotlarimn tek ve gok degiskenli durumlar igin direk olarak kullami-
labilecegi de gbsterilmistir. Bazi1 basit PAR sliregleri igin detayli
drnekler verilmistir. Ayni metotlarla, hata varyansi1 tahminleri de ince-
lenmis ve karsgilastirilmigtir. Simiilasyon neticeleri kosullu ML tahminler-
inin ortalama kare yanilgi (MSE) kriteri y8niinden daha {stiln olduklarini
gostermistir. Hareketli ortalamalar igeren PARMA siiregleri igin, kosullu
LS ve kosullu ML tahminlerinin elde edilmelerinin zor olduklar1 ve esdeger
de olmadiklar: gbdsterilmistir. Her PARMA silireci igin kesin en c¢ok ola-
bilirlik fonksiyonunun karmasik oldugu bilinmektedir. Bu, iki basit PAR ve
PMA siireci igin gGsterilmistir.

Anahtar Kelimeler: Periyodik Olarak Bagimli Siirecler, PARMA Stiireci, Peri-
yodik Duraganlilik, Bilegik Siireg, Agregasyon, Teshis,
Otokorelasyon Fonksiyonu, Tahmin, Moment Metodu, En

Kiiglk Kare, En Cok Olabilirlik.

Bilim Dali Sayisal Kodu: 406.02.01
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CHAPTER 1

INTRODUCTION

1.1 Preliminaries.

A time series {Xt; t € J) can be defined as a collection of
random variables which are ordered in time, where J denotes an index time

points set.

In most statistical problems, we are concerned with estimating
the properties of a population from a sample. In time series analysis,
however, it is often impossible to have more than one observation at a
given time, and the observed time series can be thought of as one realiza-
tion of the parent time series. Thus, as there is a notional population,
time series analysis is essentially concerned with evaluating the prop-
erties of the probability model which generated the observed time series.
In the literature of time series analysis, modeling of stationary time
series and transforming a non-stationary time series into a stationary one
have taken a wide interest. An important class of models that are useful
in fitting stationary time series is the widely known autoregressive mov-
ing average (ARMA) models (Box and Jenkins, 1976). In the next section,

this class will be briefly discussed.

A time series is called second order stationary (or, covariance
stationary) if its mean is constant and its second order moments are func-
tions of time lag only. This type of stationarity is the most common ver-
sion of stationarity and is often sufficient in practice. However, many
seasonal time series cannot be filtered or standardized to achieve second
order stationarity because the correlation structure of the time series

may depend on the season. However, if it is assumed that the correlation



structure depends on the season but not on the absolute time, then the
time series is a periodically correlated proceés. A class of models useful
in such situations is periodic autoregressive moving average (PARMA)
models (Cleveland and Tiao, 1979; Tiao and Grupe, 1980}, which are exten-
sions of ARMA models that allow parameters to be periodic functions of
time. This dissertation deals with the time domain analysis of PARMA pro-
cesses. The definition and a review of literature for these models will be

given in Section 1.3.

In the last section of this chapter, a brief summary of the suc-

ceeding chapters will: be given.

1.2 ARMA Models

A time series {Xt} is said to be a (mixed) autoregressive moving
average process of order (p,q), denoted by ARMA(p,q), if it satisfies an

equation of the form

X, - $X -.-$X =a -8a -..-8 (LD

1t p t-p t 1241 qat—q’
for all integers t. Here {at} is a purely random (white noise) process.
More precisely, {at} is a sequence of uncorrelated and identically dis-
tributed random variables with zero mean and finite variance o';, which are
usually assumed to be normally distributed, especially for inferential
purposes. The real constants (¢1,...,¢P} and (91,...,6q} are the autore-
gressive (AR) and moving average (MA) parameters, respectively. Further-
more, it is assumed in (1.1) without loss of generality that E(Xt) = 0,

for all t. Nevertheless, if E(Xt) = u # 0, then we replace Xt by X‘L - K.

Equation (1.1) may be written more compactly as

<I>(B)Xt = B(B)at, (1.2)

where ®(B) = 1 - ¢B - ... - ¢po, eB) =1 - 6B . - qu“, in which
B, the backwardshift operator, is defined as B’xt =X , j=1 2
Following (1.2), an ARMA(p,q) process is covariance stationary if and only

if (iff) the roots of ®(B) = O, with respect to B, lie outside the unit



circle. It is also called invertible if it can be written as an infinite
order AR process, which is satisfied iff the roots of 6(B) = 0 lie outside
the unit circle (Box and Jenkins, 1976: 74).

An important extension of (1.1) is the multivariate ARMA(p,q)
model. It is essentially obtained by replacing the scalar quantities in
the univariate model by vector or matrix quantities. Employing the back-
wardshift operator, as in (1.2), an m-variate ARMA(p, q) model can be

written as

th(B)Xt = B(B)at. (1.3)

- T
Here, X, = (X ....X ), «B) = 1.- @B - ... - @pB", BB) =1 - 6B -

- quq and (01,...,¢p,61,...,6q} are mxm real matrices, where "T"
stands for the transpose operator. The m-variate white noise process (at=

(at ,...,at’m)T) is a sequence of uncorrelated and identically distrib-

1
uted random vectors with E(at) = 0, E(atar) = Ea and E(ata:) =0 for all t

# S.

Following (1.3), an m-variate ARMA(p,q) process is covariance
stationary iff all the roots of the determinantal polynomial |a(B)] = O
lie outside the unit circle, or equivalently iff all the roots A of the

determinantal equation
1AL - AP0 - .. - ®1=0 (1.4)

are less than one in modulus (Fuller, 1976: 72), such that the modulus is
defined for the complex number c + czi, as (cf + c;)uz. A similar condi-

tion in terms of ©'s composes the invertibility conditions of the process.

Although the mixed ARMA model, including the multivariate ver-
sion, involves only a finite number of parameters, it nevertheless posses-
ses a remarkably wide range of applicability, and most stationary proces-
ses which arise in practice can usually be fitted by a model of this kind
with suitably chosen values of p and q. Those models have been extensively
studied in literature, and well-built methodologies for identification and
estimation, especially for the univariate case, were developed and imple-

mented in most statistical computer packages. For a more expository ac-



count, see, for example, Box and Jenkins (1976) for the univariate case,
Hannan (1970) for the multivariate case, and Fuller (1976), Priestley
(1981) and Wei (1990) for both.

1.3 PARMA Models

Time series which exhibit periodicity often arise in reality, for
example, in economic and geophysical time series; see Bhuiya (1971}, Salas
(1974a, b) and Troutman (1978) for examples of the latter. A class of
models which .has been used widely in recent years for modeling univariate
seasonal time series is that of multiplicative seasonal autoregressive
integrated moving average (ARIMA) models (Box and Jenkins, 1976), which in
turn is a nonstationary extension of ARMA models that can be transformed
into stationary ARMA models through some appropriate differencing. A
multiplicative seasonal ARIMA model, ARIMA(p,d,q)x(P.D,Q)w, is written as
(Box and Jenkins, 1976: 305)

W d,. WD _ W
¢P(B)¢P(B )(1-B) (1-B™) Xt = Gq(B)Go(B )at,

where w is the seasonal period, ¢p(B) and Bq(B) are the regular autore-
gressive and moving average polynomials, and @P(Bw) and © Q(Bw) are the
seasonal autoregressive and moving average polynomials, respectively,
which are defined as @ (B) = 1 - 98 - 0. B* - ... - ¢ B" and @ (B“) =
1- 988" - 88 - .. - ©,B%. Also here (1-B)' and (1 - B”)® are the
regular and seasonal differencing operators, respectively. The quantities
p, d and q are the ordinary autoregressive, differencing and moving
average orders, and P, D and Q are their seasonal counterparts, respect-

ively.

While ARIMA models have proved useful in practice, implicit in
such models is the assumption of homogeneity, which means that the dif-
ferenced series, (l—B)d(l-Bw)D Xt, is stationary. However, in the analysis
of series exhibiting a strong seasonal behavior, such a homogeneity as-
sumption is sometimes clearly inappropriate (Tiao et al., 1975; Tiao et
al.,, 1976). In such a situation, a possible substitute is the use of peri-
odic time series models (Monin, 1963; Jones and Brelsford, 1967; Pagano,
1978; Cleveland and Tiao, 1979).



Prior to the discussion of the PARMA model, it is worth mention-
ing that the seasonal ARIMA model is completely different from the PARMA
model in the following two senses: firstly, an appropriate differencing of
the time series represented by a seasonal ARIMA model makes it stationary,
while this is not true for a PARMA model where the differenced series is
again of the PARMA type, and secondly, the seasonal ARIMA model does not

allow for periodic parameters.

From a mathematical point of view, a function f(t) with domain J
is said to be periodic if there exists a positive number w, the period,
such . that,’ for -all t; t+w belongs to 7, and f(t+w) = f(t) (Fuller, 1976:
12).

In time series terminology, an m-variate time series (Xt), t
belonging to the set of all integers, is said to be periodic stationary in

the strict sense if the joint probability density function (pdf) of Xt s
1
for any n

» sevy

o, Xt is the same as the joint pdf of Xt
n
time points (tx’”"tn)’ any integer k, and some positive integer ®, named

X
+kW t +kd
1 n
as the period. In the wide sense, assuming that the second order moments
of (Xt) exist, (Xt} is called a periodic covariance stationaby process of
period w, if the elements of the mean vector and autocovariance matrix of
Xt are finite an;i. periodic with period w, i.e. E(Xt) =B =R and
E([Xs— us][Xt~ ut]) = R(s,t) = R(s+kw,t+kw), for all integers s, t and k.
In the remaining part of this thesis, the terms covariance stationarity
and periodic covariance stationarity are abbreviated to stationarity and

periodic stationarity, respectively.

Now we define the m-variate w-period PARMA model of varying or-

ders (p(1),q(1);p(2),q(2);...;p(w),q{w)), denoted by PARMAw(p(v), q{v)),

form=1,2, .., 0=2,3, .., v=1, ..., v, and for all integers k as
X = (4% o+ (v)
kW+V 1 kW+V-1 p(V) kW+V-p(V)
v) v)
+ - - e - .
akww 91 akwﬂ)-l 9q(la')ak(ah-l)—q(v) (1.5)
where {a } is an m-variate white noise process with E(a ) = 0,
k+V T Ko+
p—1 = * . H .
E(aka»vaku»v) Za(v) and E(atas) O for all t s. It is also assumed in



this model, for all k and v, that E(ka+v) = 0. If, however, E(X
# 0, then without loss of generality ka+v is replaced by X

kw+v) = uv

- u.. The
kWw+V 1 24

w) (v) v e(v)
R Y4 % M U 1§
assumed to be periodic with period w. For m = 1 in (1.5), we have the

parameters, U , ® and Za(v), are also
univariate case, and w = 1 gives the ARMA(p,q) model. If p(1) = ... = p(w)
= p and q(1) = ... = q(w) = q, the resulting PARMA model is said to have
constant orders and, thence, will be denoted by PARMAw(p,q). If, in addi-
tion, p(1} = ... = plw) = 0 [q(1) = ... = q(w) = 0], then the resulting
model is said to be a pure periodic autoregressive [moving averagel model
with period w and denoted by PARw(p(v)) [PMAw(q(v))]. Furthermore, if the
white' noise terms are independent and normally distributed, then the re-

sulting PARMA process is a Gaussian PARMA process.

Note that in (1.5) the time index is written as ko + v rather
than t to show that it obeys modulo-w arithmetic, so that for monthly
data, say, k + 1 represents the year and v represents the season, v = 1,
.., 12, so that, for example, the time point of 23 refers to year 2 and
season 11 and that of 36 refers to the last season of year three. In the
subscripts of X and a in (1.5), the terms v - ¢ £ =1, 2, ..., also re-
present different seasons which again must be between 1 and w. Therefore,
if -w < v - & = 0, say, then the subscript kw + v - £ can be rewritten as
(k-1)o + o + v - ¢ so that this time point belongs to season w + v - ¢,
which is between 1 and w, but in the previous, say, year. This, for
example, means that if v - £ = 0, then this time point belongs to season
w, and v - £ = -1 correponds to season w - 1, etc.Also, it is to be under-
stood from (1.5) that for the k-th, say, year, the model is essentially
represented by w equations, such that v-th equation corresponds to season

p.

Suppose that {kav} is an m-variate periodic process. Gladyshev
(1961) proved that this process is periodically stationary iff the

mw-variate vector process

(1.6)

is stationary. Hereinafter, {Yk) is referred to as the lumped-vector pro-

cess. Tiao and Grupe (1980) proved that the lumped-vector process corre-



sponding to the univariate PARMAw(p(v),q(v)) process follows an w-variate
ARMA(p*.q’) model with p’ and q' as given by

*

p

max {[{p(v)-v)/w] + 1}

. a.n
max {l{q(v)-v)/w] + 1}

q

where [c] denotes the integral part of the real number c. This result is
also valid for the m-variate PARMA process, in which case the lumped-
vector process follows an mw-variate ARMA(p’,q‘) model. Vecchia (1985b)
elaborated on the work of Tiao and Grupe (1980). He obtained the lumped-
vector representation for the univariate varying orders PARMA model, and
expressed its periodic stationarity conditions in terms of this represen-
tation. This result is generalized to the multivariate case in the next
chapter, which is devoted to the discussion of periodic stationarity of
univariate and multivariate PARMA processes. Obeysekera and Salas (1986)
also obtained the periodic stationarity conditions of univariate PARw(l)
and PARMAw(l,l) processes from the stationarity conditions of the lumped-
vector process. Latter on, their result was generalized to the multivari-
ate case by Ula (1990).

An important implication of the periodic stationarity of an
m-variate PARMA process, (wa), is that it can be represented in the

general linear form

w0

= z ¥Wa (1.8)

kW+V v-y
v LTy Tk

where z:o I\II;V’I < o, for all v and k. The absclute summability of the
mxm matrices {\Il;w) here is component-wise. This representation is valid
in the mean square sense (Fuller, 1976: 72; Anderson and Vecchia, 1993).
It is found helpful for forecasting PARMA processes (Ula, 1993), but may

not provide much help for identification or estimation purposes.

Another approach for studying the PARMA model has been through
its corresponding aggregated process. For an m-variate periodic process

(kaw)’ we define the corresponding aggregated process, {Wk}, as

W
Wk = z kaﬂ)’ (1.9)
V=1 )



for all integers k. It follows from Vecchia et al. (1983) that for uni-
variate PARw(l) and PARMAw(l,l) models, stationarity of the aggregated
process implies periodic stationarity of the periodic process, and vice
versa. Again, this result was generalized to the multivariate case by Ula
(1990). He also proved that periodic stationarity of any periodic process
implies stationarity of its corresponding aggregated process. Till then
the reverse was proved to be true only for univariate and multivariate
PARw(l) and PARMAw(I,l) processes. However, in the next chapter, we show
that the reverse is not always true. That is, stationarity of the aggre-
gated process does not always imply periodic stationarity of the periodic

process.

Although PARMA models are not as popular as ARMA or ARIMA models,
they, nevertheless, proved to be useful in practice. For instance, they
have found applications in modeling hydrological time series (Delleur et
al.,, 1976; Salas et al., 1980; Vecchia, 1985b) and in signal processing
(Sakai, 1982). Besides, the PARMA model provides a more natural mechanism

to fit the periodic structure of a seasonal time series.

An inspection of the literature of PARMA models, especially the
multivariate case, reveals the fact that it is much less than that of
unijvariate and multivariate ARMA models. In an early paper, Jones and
Brelsford (1967) considered moment estimation and prediction of periodic
autoregressive models. Salas (1972) and Salas and Pegram (1979) obtained
the moment equations for univariate and multivariate PARw(p) models, re-
spectively, and expressed covariance and correlation functions (matrices
in the multivariate case) in terms of parameters of these models. Sakai
(1982) studied partial autocorrelations of PAR processes. Pagano (1978)
investigated statistical properties of moment estimators in univariate PAR
models. For the same models, Troutman (1979) investigated their covariance
properties, and represented a PAR model as an infinite order AR process.
The results in the previous two papers were developed based on the lumped-
vector representation. Salas et al. (1982) investigated correlation prop-
erties and moment estimation of univariate PMAw(l), PARMAU(I.I) and
PARMAw(Z,l) models. Vecchia (1985a, b) developed an algorithm for maximum

likelihood estimation for wunivariate PARMA processes. Bartolini et al.



(1988) discussed moment estimation and aggregation in multivariate
PARMAw(l,l) model. Vecchia and Ballerini (1991) proposed some statistical
procedures to detect the existence of periodicity in the autocorrelation
function of a general periodic process. Recently, Anderson and Vecchia
(1993) developed some asymptotic results for the sample seasonal autocor-
relation function of univariate PARMA processes. Ula (1993) investigated

forecasting in multivariate PARMA models.

1.4 Aims and Scope of the Study

The aim of this study is to contribute to the theory and analysis
of PARMA processes in various ways. Some contributions were already men-
tioned in the previous sections and more are mentioned below as we give a
scope of the study. A detailed summary of contributions and results is

given in Chapter V.

Since PARMA models are relatively new, many questions about them
still have to be answered. An important problem is the determination of
periodic stationarity conditions of PARMA processes, which is a prerequi-
site to their analysis. This is the subject of Chapter II. There, we ob-
tain the lumped-vector representation of multivariate PARMA models by
which we relate the parameters of the periodic process to the parameters
of its corresponding lumped-vector process. Then, based on this represen-
tation, we simplify the periodic stationarity conditions to an eigenvalue
problem. In the same chapter, as we have mentioned earlier, we show that
stationarity of the aggregated process corresponding to a PARMA process
does not imply that the later is periodic -stationarity. The relations
between periodic stationarity of PARMA processes and their covariance

structure are also investigated.

In Chapter III, we discuss identification of PARMA models. It is
shown, by analogy to ARMA models, that seasonal autocorrelation function
(ACF) and partial autocorrelation function (PACF) play a primary role for
the identification of PARMA models similar to the ACF and PACF in the
context of ARMA models identification. In addition, by analogy to the
cut-of f properties of ACF and PACF in the case of pure MA and AR proces-



ses, respectively, similar cut-off properties of their seasonal counter-
parts are utilized. Approximate formulas for the first and second order
moments of the sample seasonal ACF are developed, and similar available
results for the sample seasonal PACF are utilized, and some asymptotic
bands are developed for the assessment of such cut-off situations from the
sample counterparts of these seasonal functions. Finally, the appli-

cability of these results are investigated through simulation.

In Chapter IV, we consider estimation of PARMA models. It is
shown there that in the context of PARMA models with a MA part, the method
of moments . is. technically diffjcult and may give unsatisfactory results.
Then this method together with conditional least squares (LS) method are
studied for PAR models. Besides, we gain some insight into the likelihood
function of PARMA model. Both the exact and conditional likelihcod func-
tions are obtained for PAR w(l) and PMAZ(I) models. In view of these cases,
the relations between the conditional maximum likelihood (ML) approach and
the previous two approaches are also investigated. Furthermore, a compari-
son between these methods is carried out through simulation for univariate
and bivariate PAR models. In this thesis, methods for solving non-linear

equations or optimization techniques are not considered.

At the end, in Chapter V we summarize our findings and suggest

some problems that deserve further research and investigation.
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CHAPTER 1II

PERIODIC STATIONARITY OF PARMA PROCESSES

2.1 Intreduction .

In the previous chapter, we defined univariate and multivariate
PARMA processes. We also pointed out that investigating periodic station-

arity of these processes must precede their analysis.

In- fact, the assumption of periodic stationarity imposes a set of
conditions upon the autoregressive parameters. These conditions, however,
are not easily stated in terms of the PARMA model as expressed by (1.5),
and it is necessary to consider other approaches to obtain them. In
Chapter I, we cited two approaches, namely the lumped-vector and the ag-
gregated process approaches. In the following section, we will deduce
periodic stationarity conditions for any m-variate PARMA process through
the former approach and then simplify them to an eigenvalue problem. On
the other hand, latter in this chapter, it will be shown that the aggre-

gated process approach is not acceptable for this purpose.

Furthermore, we will consider the problem of imposing some con-
straints on the seasonal autocovariance matrices and the resulting con~
straints on the parameters of PAR processes in the sense of periodic sta-
tionarity. In this context, an available result of Troutman (1979) for the

univariate PARw(l) model is generalized to the multivariate case.

2.2 Lumped-Vector Representation of PARMA Processes

Consider the univariate PARMAw(p(v),q,(v)) model defined by (1.5)



for m = 1. Then the w-variate lumped-vector process (Y} defined by (1.6)

follows a w-variate ARMA(p »q ) model, written as

q‘
- ZZ Up¥, = e - ) Vie, 2.1
=1 £=1

where p‘ and q‘ are as defined by (1.7), L is wxw with

—

.
pte
I

Vv A
[ 259

and U, is wxw with (U) = ¢ for i, j =1, ... v, and A and V

[/ j 'y Lwai-j ¢
have the same form as L and Uﬂ’ respectively, but with @ replacing ¢, and
e = (a  ,...,a )T
K, kt+1 klo+L)

9J = 0, for all j > q(v), are assumed . The representation in (2.1) was

given by Vecchia (1985b) and originally developed by Tiao and Grupe
(1980).

The conventions ¢;w = 0, for all j > p(v), and

The result above generalizes to the m-variate PARMA (p(v) q(v))
model such that {Y} is an mw-variate ARMA(p »q ") process written as (2.1)
with p and q again as defined by (1.7). But L is mwxmw with

m ’ i = J
[L]lJ = 0m , 1< (2.2)
-Qii; y 1> ]
and UE is also mwxmw with
(i)
[yl = By (2.3)

for i, j = 1, ..., w, where [A]U denotes the (i, j)th mxm sub-matrix of A,
Im is the mxm identity matrix, and 0 is the mxm null matrix. Further, A
and VE have the same f orm as L and UZ’ respectively, but in terms of ®’s,

and the conventions 0 = Om, for all j > p(v) and GJ = Om, for all j >

T T T
q(v), are also adopted. Also, g = (akwu’“”akmw .
We illustrate the lumped-vector representation of multivariate

PARMA models through the following example.
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EXAMPLE 2.1. Consider an m-variate PARMAQ(Z,O;Z,I;I,Z) model, which is
defined, following (1.5), as

n (1

= + +
x3k+l °l XS(k-l)+3 2 3(k-1)+2 aSk+l
x  =e@x 4+ e va -y
3k+2 1 3k+1 2 3(k-1)+3 3k+2 1 3k+1
3
X =89% +a -g@ O
3k+3 1 3k+2 3k+3 1 3k+2 2  3k+1

for all integers k.

., It follows from (1.7) that p‘ = 1 and q' = 0, then, by (2.1), Yk
T T T o
- (x3k+1’xak+z?x3k+3

vy = Aek, where, by (2.2) and (2.3),

)T follows a 3m-variate AR(1) model, written as LYk -

1 k-1
I o o 0 ot otV I o o
m m m m 2 1 m m m
L=|-8? o Lu=lo o & a=]e?1 o0 |
1 m m 1 m m 2 1 m m
o -2 1 o o o 8'® o'
m 1 m m m m 2 1 m
T T T T . . cps
and € = (a_ ,a ,a ) This representation can also be verified
k 3k+1" 3k+2 3k+3

from the three equations given at the beginning of the example. ]

Therefore, having any m-variate PARMA model in hand, it is not
difficult to obtain its lumped-vector representation, (2.1). In the next
section, this representation will be utilized to obtain the periodic sta-

tionarity conditions of any PARMA process.

2.3 Periodic Stationarity of Multivariate PARMA Processes

As an Eigenvalue Problem

In this section and the next one, we refer to some results from
matrix theory which we summarize in the next lemma. The proofs of these
results can be found in most standard books on matrix theory as, for
example, Graybill (1983).

LEMMA 2.1. Let A and B be any two mxm matrices, then

(i) if A is symmetric and for all non-zero mxl vectors C, CTAC > 0, then A

13



is positive definite (p.d.), and if, for all C, C’AC = 0 with strict
equality for at least one non-zero vector C, then A is positive semi-defi-
nite (p.s.d.).

(ii) If A is triangular, then its eigenvalues are its diagonal elements,
and if these elements are all non-zero, then A is non-singular.

(iii) If A is p.d., then there exists a matrix B such that A = Bz, and B
is also p.d.

(iv) If A is p.d. and B is non-singular, then both BAB' and BAB™ are p.d.

and the eigenvalues of BAB™ are the same as those of A.

. The matrix L, defined by (2.2), is a lower triangular matrix and
its diagonal elements are all equal to one. Thus, by part (ii) of Lemma
2.1, it is a non-singular matrix. Hence, multiplying (2.1) by L? we

obtain

p* 9*
-1 - * »
Y, -ZZIL UY, , =€ -ezlveek_e, (2.4)

*

where € = L e and V. = L"veA"L.
k k 2

Now, comparing (2.4) with (1.3), equation (1.4) implies that {Yk}
is stationary iff all the roots of the determinantal equation

WPIT-2"L - . -t =0 (2.5)
1 p*

are less than one in modulus. These conditions in turn are the periodic
stationarity conditions of the periodic process {kaw} due to Gladyshev
(1961), as mentioned in Chapter 1. In particular, if p = 1, these condi-
tions are functions of the eigenvalues of L—lUl, that is, these eigen-

values must be less than one in modulus.

If p’ > 1, the problem of checking whether a specific PARMA model
is periodic stationary or not involves obtaining the roots of a compli-
cated determinantal equation, (2.5). We can, however, overcome this pro-
blem by making use of the next lemma. It is noted that the statement of
this lemma is found, for example, in Barone (1987), and proved for p. = 2
(Fuller, 1976: 50), but no general proof was provided. Therefore, we give

a general proof of it for sake of completeness.
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LEMMA 2.2. The condition that all the roots of (1.4} are less than one in
modulus is equivalent to the condition that all the eigenvalues of the

matrix M defined by

[ @ h
1
&2
_ (p-1)m
Mmp - ¢
p-1
] 0
P mx(p-l)m_j
are less: than .one in modulus.
PROOF. It is sufficient to show that
Al -Ml =21 -2 - ...-2a0 -al|.
mp m 1 p-1 P

For this, note that the mpxmp matrix Mmp - M, which we denote by A, is

given by
ALl - -1 0 o ]
m 1 m m m
-3 Al -1 0
2 m m m
~d 0 Al 0
A= 3 m m m
-d 0 (0] -1
p-1 m m m
-9 0 0 Al
B P m m m |

If A = 0, it can be easily shown that |A] = (-1)2(p—l)m|-<bpl = I—Opl
which, in this case, is the same as the right hand side of the above
determinantal equation. For non-zero A, we partition A as
Au A12
A= »

A A
21 22

where Au = Mm - <I>l, and the other submatrices are defined accordingly.
Then

15



T i L L. aa)PT ]
m m m
0 A1 ... WP
m m m
Al=1| o 0 NN (V7% Land SR B
22 m m m
0 0 ... {(1/A)1
L m m m _
-1 _ 2 p-1 = (p-1)m
A12A22A21 = (1/7&)02 + (1/7A) ¢3 + ... + )y Qp, an-(i |A22| A .
Then utilizing the fact that |A] = lAzz' IA11 - A12A22A21| leads to the

desired result. -

1

Note that the above lemma expresses the stationarity conditions
of m-variate AR(p) process as an eigenvalue problem. Thus comparing (2.4)

with (1.3) and utilizing Lemma 2.2 result in the following proposition.

PROPOSITION 2.1. An m-variate PARMAw(p(v),q(v)) process is periodic sta-

tionary iff all the eigenvalues of the matrix

— -1
Ly, 1
L'u
z I
mep‘ = (p*-1)mw {2.6)
_lU
p*-1
L'u )
| p* mWwX(p*-1) mW a

are less than one in modulus, where p‘, L and UZ’ L =1 .., p', are as
defined by (1.7), (2.2) and (2.3), respectively.

The main conclusion that can be drawn from Proposition 2.1 is
that periodic stationarity conditions of any PARMA model are expressible
as an eigenvalue problem, which, for instance, is easy to solve via
computer. In fact, this idea is implemented in the computer program in
Appendix A which computes the eigenvalues of the matrix R in (2.6) for any

input m-variate PARMA model.

As an application of Proposition 2.1, we consider the following

example.
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EXAMPLE 2.2. Consider an m-variate PARMAw(I,l) model, written as

) )
= + - . .
kWw+V °l th)-ﬂ)—l akh)+V 61 akw«bv—l (2 7

Then, by (1.7), p' =1 and q' = ], and following (2.2) and (2.3), we have

FIm 0 ... 0 omj
(2) _ _
-Ql Im ... Om 0m 0:1)
o 2 ..0 o
m 1 m m 0
L = . , U = m
1 0
mWwXm{Ww-1)
0 0 1 0 -
m m m m 0m _J
o o '@ -
| m m 1 m |

It can be shown that

0'? I ... 0 o©
1 m m m
a4 4’(3)@(2) ¢(3) .. 0 0
L = 1 1 1 m ml.
2'9) 2@ '@ g @
_l 1 1 1 1 n_l-

Note that, in general, the elements of L™ may be obtained recursively by

utilizing L7L = I and the fact that L is lower triangular.

It then follows that

0
1 mWXm(Ww-1)

°((a))é((«l)— 1) .. .é(l)
— 1 1 1 -

which is an upper triangular partitioned form whose eigenvalues are those

of Q(w)‘p(w-l)."q’(l)
1 1 1

PARMAw(l,l) model is periodic stationary iff all the eigenvalues of the

(Ula, 1990). Hence, by Proposition 2.1, an m-variate
. (w) (1) . .
matrix @1 ...@1 are less than one in modulus. This result was also
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obtained through an explicit derivation of the lumped-vector representa-
tion by Ula (1990). n

Another important application of Proposition 2.1 is to investi-
gate invertibility conditions of PARMA models. In fact, by analogy to ARMA
models, invertibility conditions of any PARMA model are functions of its
MA parameters only. Moreover, keeping in mind that in (2.1) A and Ve have,
in terms of ©’s, the same form as L and UZ‘ respectively, an m-variate
PARMAw(p(v),q(v)) process is invertible iff all the eigenvalues of the
matrix C are less than one in modulus, where C is the same as R, which is
defined. by (2.6), but: with A and Ve in place of L and Ut’ respectively. As
an illustration, reconsider Example. 2.2. Note that A and Vl are identical
with L and Ux’ respectively, but with ©® in place of ¢. Thus, the m-variate
PARMAw(l,l) process is invertible iff all the eigenvalues of 6;“”...9:1)
are less than one in modulus. On this basis, the program listed in Appen-
dix A can also be used to check whether a specific PARMA process is in-

vertible or not.

2.4 Periodic Stationarity of PAR Processes and Their

Autocovariance Function

We have seen in the previous section that periodic stationarity
of any PARMA process imposes a set of constraints, summarized in
Proposition 2.1, on its AR parameters only. This result, in fact, is in
complete analogy with stationarity of ARMA processes. In the literature of
ARMA processes, the relation between stationarity of these processes and
their autocovariance (or autocorrelation) function is an important ques-
tion. In this section, this problem is investigated in the context of
PARMA models.

Let (kaw) be a periodic time series which follows a PARMA model
and let

22(1:) = Cov(ka+ » X

v kw+v-2) (2.8)

denote the autocovariance matrix for season v at backward lag ¢, for all v

= 1, ..., w and non-negative integers ¢, which is periodic with period w,
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that is, Ee(v) = Zz(v + rw) for all integers r. Constraints on those auto-
covariance matrices are of particular interest. Troutman (1979) investi-
gated such constraints for the univariate PARw(l) model. In this case, the

iw) < 1, which is the

univariate version of the result in Example 2.2. Letting 70(1)) and o:(v)

periodic stationarity condition is that a.bs(ﬂ‘l'j_1 ¢

denote the variances of kaw and R respectively, he proved, under
the assumption o‘;(v) > 0 for all v, that imposing the condition 70(1) =
= 70(0)) = 1 results in additional constraints on the ¢’s, namely

abs(¢;w) <1 for all v.

' Now -we generalize Troutman’s result to the multivariate case for
equal, but not necessarily identity, autocovariance matrices. The follow-

ing lemma is needed for this generalization.

LEMMA 2.3. Let A be any mxm square matrix having, in general, complex

eigenvalues A = A_ =< ... s A , then
1 2 m

(i) If 0 = 7? < 72 s .. s 72 are the eigenvalues of AAT, then arf < Alil =
2 K .

7m foralli=1, ..., m

(ii) If the matrix E =1 - AAT is p.d., then mod(A ) < 1 for all i.

(iii) If C is any p.d. matrix and the matrix F = (C - ACAT) is p.d., then

mod(?\l) <1 for all i.

Here il and mod(hl) denote the complex conjugate and modulus of the

complex number 7\1, respectively.

PROOF.

(i) For this, see (Householder, 1953: 146).

(ii) Let O < 61 = 62 < .. = 6m be the eigenvalues of E. Since |E - Sllml

= IAAT - (1-8) |, we have, for all i =1, ..., m, 8 =1 - 72 . Also,
i m i m+1-

as AAT is p.s.d., 7? =z O for all i, and by assumption, 61 > 0. Thus, O =
7? < 1 for all i, which, by part (i) and utilizing the fact that Ali‘ =
(mod(?tl))z, gives the desired result.

(iii) Let D = C“% which, by part (iii) of Lemma 2.1, is p.d. Then, by
assumption, F = D(Im - (07'AD)D'AD)")D s p.d. Also, let W = DAD, and
R =1- WW, then F = DRD. This implies that R = D'F(DY)". Hence, by
part (iv) of Lemma 2.1, R is p.d. Note that R satisfies the conditions of

part (ii), so that, the eigenvalues of W are less than one in meodulus.
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But, since W = DAD, then, by part (iv) of Lemma 2.1, the eigenvalues of

A are the same as those of W and the result is proved. [

In the following theorem, the result of Troutman (1979), previous-

ly explained, is generalized to the multivariate PARw(l) model:

)
Xko»v - Qx kaw-l A (2.9)

PROPOSITION 2.2. If an m-variate PAR (1) process is periodic stationary,
and if E(l) = ,. = Z(w) = 2 and Zo and 2(v) v =1, ..., w are

» are less than one in modu-

p.d., then, for all v, the eigenvalues of @
lus, where Z (v) is as defined by (2. 8) and 2 (v) is the variance-
covariance matmx of akww'

PROOF. Making use of the periodic stationarity assumption, and post-

multiplying (2.9) by ka . and szv_l, and then taking expectations,
give, respectively, Zo(v) = “”): v) + Z (v), and z(v) = oWz {v-1).
These equations imply that Ea(v) = Zo(v) - <I> Vig (v 1)(0(”) , Wwhich,

together with the assumptions of the theorem and part (iii) of Lemma 2.3

give the desired result. |

We have seen in Example 2.2 that an m-variate PAR (1) model is
periodic stationary iff the eigenvalues of the matrix ‘b:w’;..tbil) are all
less than one in modulus. In Proposition 2.2, we impose further conditions
on this model, which in turn impose more constraints on the &’s, namely

the eigenvalues of each in must be less than one in modulus.

It can be noted that if all the ®'s are diagonal (which includes
the univariate case) or triangular (but all of same type, i.e. either
lower or upper triangular), then these additional constraints imply the
original condition that all the eigenvalues of ¢iw)...0il) are less than
one in modulus. This is due to the fact that if all the ®’s are lower
triangular, say, then their product is also lower triangular with diagonal
elements (which are the same as eigenvalues) as the product of the corre-
sponding diagonal elements (eigenvalues) of the individual ®’s. However,
in the general case, this is not necessarily true. For this, consider a

bivariate PARz(l) model with
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oW [0S L | gm_jos 0|
0 o5 1 05

The eigenvalues of each <I>m and @‘2), (0.5, 0.5), are less than one in

modulus, whereas those of 0?”0;”, (1.457, 0.043), are not.

In practice, the assumptions of Proposition 2.2 may apply, for
instance, if we perform a seasonal standardization on the model, that is,
if E(Xﬁ%v) =K, and Var‘(kaw) = Zo(v), then kaw is standardized as
[Zo(v)] (Xka»v - uv], which has a zero mean vector and an identity
variance-covariance matrix.

Now we turn to another related problem. It is known in the con-
text of multivariate ARMA models that stationarity of any vector ARMA

process implies positive definiteness of the matrix

r_ ' o
o 1 N-1
T
rl I‘o rn—z
—rn-x I‘M_2 o o l"o B
where I‘z is the autocovariance matrix for lag ¢ and N = 1, 2,

(Fuller, 1976: 15). This result can be easily extended to PARMA processes
by utilizing the lumped-vector approach, discussed in Section 2.2. More

precisely, we have seen that corresponding to an m-variate periodic sta-

tionary PARMA process, {kav), the lumped~vector process, {Yk), defined
by (1.6), is a stationary mw-variate ARMA process. Thus, with I‘e =
Cov(Yk,Yk -8)’ the above matrix is p.d. for all N = 1, 2, ... This, for

example, implies that Var(Yk) = I‘o, which is given by

20(1) 21(2) Ce Zw_iw)
T
21(2) 20(2) ... Zw_gw) ’
_Zw_gw) Zw_gw) ... Zo(w) a

is p.d. This fact may be utilized for a crude check of periodic station-

arity on an observed realization of a periodic time series in the sense
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that if the observed time series is periodic stationary, then the esti-

mate of l‘o above for this realization should be p.d.

2.5 Stationarity of the Aggregated Process

In Chapter I, we defined the concept of aggregation of periodic
processes. In fact, the essence of this concept comes from the requirement
that the models specified at various levels of aggregation (daily, month~
ly, etc.) must be compatible with each other. Then the model selected for
a given ,periodic. time series (say, monthly) determines the model for the

corresponding series of a higher level of aggregation (say, annual).

We have pointed out in Chapter I that Ula (1990) proved that
periodic stationarity of any PARMA process implies stationarity of its
corresponding aggregated process. The converse, however, was only shown to
be true for PARw(l) and PARMAw(l,l) processes by Vecchia et al. (1983) and
Ula (1990), for univariate and multivariate cases, respectively. Ula
(1990) posed the question whether this is true for all PARMA processes or
not. In the following example, we answer this question, and sho§v that ‘it

is not necessarily true for all PARMA processes.

EXAMPLE 2.3. Consider the following univariate PARZ(Z) model

X2k+1 = 2X2(k-1)+2 + (I/Z)Xz(k—l)-a»l + azxm’

X
2k+2

(—3_/2)X2(k—1)+2 T Bz

The lumped-vector representation of this model is given by

X 172 2 X ] [a
2k+1 _ 2(k~-1)+1 + 2k+1

X2k+2 0 ~3/2 Xz(k- 1)+2

a ]
2k+2
which is a bivariate AR(1) process with parameter matrix having eigen-
values (1/2, -3/2), which are not all less than one in modulus so that it

is not stationary. Hence, our periodic process is not periodic stationary.

In contrast, defining the aggregated process Wk as W]!l = szl +

X , it is easy to see that it follows
2k+2



W =({1/2)W _+ (a +a_ ),
k k-1 2k+1 2Kk+2

which, by using the fact that (aam) and {a2k+2} are two uncorrelated

white noise processes, is a stationary univariate AR(1) process. ]

One conclusion that can be drawn from the above example is that
although we may be interested in annual data, say, it is important to
inspect the original seasonal data, say, monthly, if available, since a
big loss of information is expected if the annual data are only utilized.
A parallel comment was given by Vecchia et al. (1983). They pointed out
for the. univariate PARMAw(l,l) model that the estimates of the aggregated
process parameters based on seasonal data will often be better than those

based on the aggregated data only.

The achievement of compatibility between seasonal models in the
case of non-stationarity is a question which we pose for investigation.
However, as the aggregated process is not seasonal, standard transforma-
tions in the context of stationary processes, such as differencing, can be
used to make it stationary. Moreover, although Example 2.3 shows that
stationarity of the aggregated process does not necessarily imply that the
corresponding periodic process is periodic stationary, more general condi-
tions should be obtained for this relation to be true. This point is also

suggested for future research.



CHAPTER III

IDENTIFICATION OF PARMA PROCESSES

3.1 Introduection -

In time series analysis one of the most important steps is to
identify a model based on an available realization. In the literature of
PARMA models, however, no obvious methodologies for . identification are

available yet.

For ARMA models, the autocorrelation function (ACF) and partial
autocorrelation function (PACF) play a primary role in their identifica-
tion (Box and Jenkins, 1976). In this chapter, two analogous functions,
named seasonal autocorrelation and seasonal partial autocorrelation func-
tions, are utilized for the identification of the seasonal orders of PARMA
models. Some properties of these functions are studied and then illust-
rated through a simulated example. In the next section, we report a result
of Vecchia (1983) which discusses the relation between the orders of uni-
variate PARMA model and the orders of its marginal series counterpart.
Although this result may be used in a latter stage of identification, it
is, however, proved through a counterexample that this result does not
offer much help in the early stages of the identification of PARMA models.
The identification of the period w is not considered in this thesis, al-
though it deserves investigation. In practice, however, the period is

often determined according to the nature of problem.

3.2 Marginal Series of PARMA Processes

Let {kaw} be a periodic time series, with period w. Then, for



an arbitrary season v, v = 1, ..., w, the time series {..., X X

v-2’ Tv-u’
X, X , X , ...} is called the marginal series for season v. Vecchia
v Tvw’ Tveaw
(1983) proved that if {kaw) is a  univariate periodic stationary

PARMAw(p(v),q(v)) process, then its marginal series for season v follows a
stationary ARMA process. He also obtained upper bounds for the orders of
these ARMA models. In particular, if (kav) is a univariate PARMA w(p,q)
process, then the marginal series for v-th season follows an
ARMA(p’ (v),q’ (v)) model such that msx(p’(v)) < p and m%x(q’(v)) s p +
[(g-1)/w], where [c] stands for the integral part of the real number c.

One .drawback of studying (kaw} in terms of its marginal series
is that this approach does not take into account the inter-dependence of
these series, which has already been expressed by the PARMA model. Be-
sides, the following example shows that the relation between the orders of

the marginal series and those of the periodic process is not one-to-one.

EXAMPLE 3.1. Consider the univariate PARMAz(l,l) model, with ¢:V) = ¢v and

e(V) =9 :
1 1 %4

= + -
X ¢1X2(1<—1)+ 2 a2k+l elaZ(k—l)+2

X = ¢ X + a -8a .
2k+2 2 2k+1 2k+2 2 2k+l

It is easy to see that the two equations above give

= + - -
X2k+1 ¢1¢2X2(k—1) +1 a2k+1 (91 ¢1 )a2(k—1)+2

_¢9

a
1 2 2(k-1)+1°

Xz = 0%z B T 87000, T 008
Rose (1977) proved that the sum of two uncorrelated MA(1) pro-
cesses can uniquely be represented by an MA(1) process. Therefore, making
use of this result and noting that, for all integers Kk, {amm) and
{a2k+2} are two uncorrelated white noise processes, the above two equa-
tions reveal that each of the two marginal series, namely {sz’l) and
{szz)’ follows an ARMA(1,1) model.

In a similar manner, it is easy to show that the two marginal

series corresponding to the PARMAZ(I,Z) process also follow an ARMA(1,1)



model. =

In the previous example we proved that for two different PARMA
processes with w = 2, the corresponding marginal series follow an ARMA(l,
1) model. In fact, for larger w, it can be shown that more than two dif-
ferent PARMA processes will have marginal series of the same order. For
instance, it can be shown that each of the marginal series of the pro-
cesses PMA4(1). PMA4(2) and PMA4(3) will be a white noise process. The

following example illustrates this fact through a simulated example.

EXAMPLE 3.2. Two: different realizations, each of length 4x100, are simu-
lated from the following two PMA, models:

() PMA,(1) model, with e;” = 0.8, 9:2’ = -0.6, eis’ = 0.5, o:"" = 0.9,

2,y _ 2 _ 2 _ 2 _
o‘a(l) =1, o‘a(2) = 4, oa(3) = 16, O‘a(4) = 5,

(1)

(2) PMA (2) model, with eil) =08, 6, = 09, eiZ) (2)

2

-0.5, 8

0.7,

) (4

0¥ =05, 8 = 0.2, 8 = -0.7, 8! = 0.6, ¢Z(1) = 64,
1 2 1 2 a

2 - 2 r 2 r
o‘a(Z) = 4, o*a(3) = 16, o*a(4) =1,

such that the white noise processes (akww) are assumed to be independent-
ly and normally distributed with mean zero. Then, using the program listed
in Appendix B, each of the four marginal series is extracted from the
simulated time series and its sample ACF and PACF are obtained. Tables 3.1
and 3.2 summarize these functions for different marginal series and for
both models. For the simulation of uniform (0, 1) random numbers, the NAG
subroutine GOSCAF is utilized, based on which normal random deviates are
simulated through the NAG subroutine GOSEAF. The former subroutine is
based on the multiplicative congruential algorithm u= 1313qu mod 2°°.
These subroutines are also used in the computer programs listed in Appen-
dices C and D.
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Table 3.1. Sample ACF for Marginal Series of Two PMA4 Processes

Seasons of Model(l) Seasons of Model(2)

lag 1 2 3 4 1 2 3 4
1 -.056 . 069 .080 .055 .083 .122 .002 .024
2 -.002 .140 -.039 .057 .032 .009 -.003 -.027
3 -.148 .046 -.109 -.135 .040 .105 .060 -.019
4 .118 .125 -.176 -.065 .013 .085 .015 -.049
S .003 -.062 -.019 -.009 .182 .076 . 009 -.067
6 -.064 -.088 -.132 -.056 .050 .067 .030 -.043
7 -.108 -.011 .050 .000 .075 .151 .044 .062
8 .122 .022 .051 .084 -.129 -.087 -.064 -.006
9 .10 -,051 -.111 -.150 -.089 -.083 -.097 -.049
10 -.006 -.132 .001 .131 -.067 -.018 .037 .002
Q }|.8.116 7.521 8.668 7.931 8.095 8.159 2.198 1.716

Table 3.2. Sample PACF for Marginal Series of Two PMA4 Processes

Seasons of Model(l) Seasons of Model(2)

lag 1 2 3 4 1 2 3 4
1 -.056 .069 .080 .055 .083 .122 .002 .024
2 -.006 .136 -.046 .054 .025 -.005 -.003 -.028
3 -.149 .029 -~-.103 -.141 .036 .106 .060 -.018
4 .104 .104 -.164 -.054 .006 .061 .015 -.049
5 .012 -.088 -.003 .014 .180 .061 .010 -.066
6 -.085 -.116 -.162 -.069 .020 .044 . 027 -.044
7 -.085 .011 .035 -.010 .063 .130 .043 .059
8 .107 .043 -.001 .093 -.161 -.140 -.066 -.016
9 .096 ~-.029 -.153 -.184 -.077 -.077 -.101 -.054
10 -.011 -.124 -.023 .141 -.096 -.046 . 031 -.002

Following Box and Jenkins (1976), if a process is white noise,
then for large N, where N denotes the length of the observed realization,
each of the sample ACF and sample PACF is normally distributed with mean
zero and variance 1/N for all lags. Therefore, for N = 100, it is seen
that all the values in Tables 3.1 and 3.2 belong to the 95% interval,
(-0.196, 0.196), which agrees with the discussion preceding this example.
Another way of testing whether a process is white noise or not is through
the Portmanteau test (Cryer, 1986: 153), for which the Box-Pierce test
statistic (Q) is given in Table 3.1. If these Q values are compared with
the upper 0.05 points of chi-square distribution with d.f. = 10 (equal to
the maximum lag used), which is 18.3, it is seen that none of these values

is significant, which assures our claim. =
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Hence, from the above discussion, it is apparent that the rela-
tions between the orders of any PARMA model and its corresponding marginal
series orders is not one-to-one, so that the identification of the orders
of PARMA models through those of its marginal series is not an accurate

method. An alternative approach is proposed in the succeeding sections.

3.3 Seasonal Autocorrelation Function
3.3.1 Definition and Properties

Hereinafter the univariate PARMAw(p(v),q(v)) model is mainly
considered. Furthermore, the errors {aww) are assumed to be independent.
Besides, we will use 'Jz(v) instead of Ez(v), which was defined by (2.8),
to denote the univariate autocovariance function for season v at backward
lag £, or simply the seasonal autocovariance function. Therefore, for

univariate case (Vecchia, 1985b),

72(11) = C°V(ka+ , X ).

Vv Tkwep-€

In Section 1.2 we have seen that if {Xt) is a periodic stationary

PARMA process with period w, then the first two moments of this process

are finite and periodic with period w. Hence, we denote the periodic mean

and variance for the v-th season, v = 1, ..., w, by K, and 7°(v), respec-

tively. Then the ACF for season v at backward lag £ (the seasonal ACF),
denoted by pe(v), is defined as

X o My X -t~ Mg
P 8(V) =E 172 172
[y (V)] [y (v-2)]
o 0
72(12)
= E(kavzkww _2) = I £z0, (3.1)

['Jo(v)‘xo(v-l)]

which is also the seasonal autocovariance and ACF of the seasonally stan-
dardized time series, (kav). The terms B, and 70(1;-2) are well defined
by utilizing the facts, mentioned in the previous chapters, that B, and

7£(v) are periodic (in v) with period w.
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It is known that the ordinary ACF of a stationary time series,
denoted by Py is symmetric with respect to the time lag, that is, Py =
P_p for all integers £. However, this property does not apply for pa(v),
since the seasonal autocovariance function 72(") is not necessarily equal
to ¥ —Z(V)’ unless & is a multiple of the period w. This property can also
be observed if we note that moving ¢ steps ahead from season v and moving
£ steps back from season v do not imply that the resulting seasons are
identical. This is the reason for restricting the definition of pe(v) in
(3.1) for non-negative time lags only, although it is possible to waive
this restriction by noting that

pz(v) = E(zkwvzku»v ) = E(kaw _zzwv Y _2)) =p _e(v-Z). (3.2)

Another important property of the ordinary ACF of a stationary
time series is that it vanishes as the time lag gets larger, or more pre-
cisely, 81_11_1)1 ©
remaining part of this chapter, establishes a similar result for pz(v).

Py = 0. The following proposition, which is useful for the

PROPOSITION 3.1. Let (kaw} be a univariate periodic stationary PARMA

process. Then, for an arbitrary season v, elgr_)xw pz(v) = 0.

PROOF. An important implication of the periodic stationarity of (kav} is
that for each season v, the process can be represented in the general

linear process form, (1.8), which is written for the univariate case as

o0
T L,wm
ka+v _jzow" A -y (3.3)

| < ». Then utilizing this result and (3.1), we have

. 0 v
with ZJ=° ij

Cov(X X

kw+v-£)
172

kw+v’

pl(v) =
[70(1))70(1;-2)]

(2 4, ° (w-0)
¢ Cov Z 'l’j akwv—j’ Z wn akw+v—(£+n)
LJ=O n=0

(& o v, w-0
¢ Cov jZowj Hewsv-y llﬂwl—e Fewiv-t
L= =
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(v) w-4) 2
Z \bj ’ (v -j),

so that

lp,n)l = ¢ PR Z W’w"“;vib X l'I’(m w-e) l,

-1/2

where ¢ = lyo(v)aro(v—E)] and o° = mgx[a":(v)] < o, in which, for all v,

2 _ _ 2 -1/2 -1/2 . .
o'a(v) = Var(akwv), and c =0 ['xo(v)] mg::[wo(vl)] which is

finite due to the periodic stationarity assumption. Furthermore,
ZJ =0 (v) (v 2) is .an absolutely convergent series since it is a convolu-
tion of two absolutely convergent series (Fuller, 1976: 28). Hence,
ZJ 2 Inll(v’l/lw-bl — 0 as £ —> ®, by which and using the fact that
|P£(V)| a 0, the desired result is obtained. -

The result in Proposition 3.1 is also valid for the multivariate

case and the proof is much the same as the one above.

An important property of pe(v) is that if » is an arbitrary sea-
son with p(v) = O, then 72(1)) = 0 for all £ > q(v), and, therefore,

pE(V) =0, &> q). (3.4)

This result can easily be verified for both univariate and multivariate
cases by making use of (3.1) and the definition of PARMA model given by
(1.5). It is known that the ordinary ACF possesses a similar cut-off prop-
erty in ARMA models, namely it becomes zero for time lags larger than q if
the underlying model is pure MA(q). On this basis we propose the sample
seasonal ACF as a tool to check whether the v-th season equation is pure
MA or not. The next section is devoted to studying the sample seasonal ACF

and the assessment of the cut-off property explained above.

3.3.2 Sample Seasonal Autocorrelation Function

Let {kav) be a periodic stationary time series from which a

realization of size Nw (say, N years), denoted by (xl,xz,...,xm), is
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realization of size Nw (say, N years), denoted by {XI,XZ,...,XW), is
observed. Then the sample counterpart of pg(v) is defined, by analogy to

the ordinary sample ACF, as

92(11)

r‘e(v) = 73 £ =0, (3.5)

[90(1:)90(1)-2)]

where Qe(v) is the sample seasonal autocovariance function defined as

N-1
A _ 1 3 3
'J'e(V) = —T\I— k=o(ka+v Xv)(kav-e Xv—l)’ (3.6)
in which
N-1
S 1
X, = N Zkaw
k=0

is the sample mean for season v. Note that )-(v and 92(12) are also periodic
with period w, as K, and 72(12) are. In addition, the terms in (3.6) are
set to zero whenever kw + v - € < 1. If we denote the number of these
terms by ¢(v,f,w), then it can be shown that ¢(v,Lw) = [(L-v)/w] + 1,

where [c] stands for the integral part of c.

In (3.6), if {kaw} is Gaussian, i.e. if the white noise terms
are independent and normal, Pagano (1978) proved that, for all v and &,
98(1’) are consistent, converge almost surely and in mean square to 7!"’)’
and are asymptotically joint normal and unbiased. It is also known that Xv
is an unbiased estimator of ®, and it can be shown that it is also consis-

tent under the periodic stationarity assumption.

It can be seen that deriving the first and second order moments
of rz(v), which involves the sample seasonal means, variances and autoco-
variances, is a formidable task. In the simpler case of ARMA models, for
example, obtaining even the mean of the sample ACF is an extremely dif-
ficult job (see, Anderson, 1971). Therefore, we will try to obtain an
approximate solution for the first and second order moments of re(v) by
pretending that the sample means and variances, )—(v and 90(1:), in r'e(v),
are equal to their population counterpart, M, and 7°(v), respectively.

This assumption will obviously be well justified for large samples, i.e.
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for large N, due to the consistency property of these estimates mentioned
earlier.

kavzkww—l * 3.7

re(v) i

P, L, w)

where kav are the sample values of the seasonally standardized time
. R _ _ 172 . .
series, that is, kaw = (kaw uv) / ['a'o(v)] as defined in (3.1).

It follows from (3.2) and (3.7) that

N - ¢(v,8,w) pu(V).

E[re(v)l. = N 2

In addition, as ¢(v,,w) is a fixed quantity for fixed v and £, then this

implies that r, (v) is asymptotically unbiased.
L

Next, in order to investigate the covariance of r, (v) and r, »)
1 2
for two different time lags Zl and 22, which we denote by W) (v), we
1’

assume that {kaw) has finite fourth order moments. Then, for 22 = 21 z
0,

Z l’. (v) = E[r (v)r (v)] - E[r (v)]E[r‘ (v)]
2

We now apply a standard result from quadravariate distributions

(Priestley, 1981: 326) which states that (under the condition E(Zt) = 0),

E(zZz Z7Z ) = E(tht JE(Z Z ) + E(Z Z JE(Z Z )

t t4r 8 S4r+v +r 8 S+r+ t4r str+v

+ E(ZzZ JE(Z Z) + k (s-t,r,v),
t sir+v tir s 4

where x4(s-t,r,v) is the fourth joint cumulant of the distribution of

z.,z2 ,Z.,Z ]. It then follows by some manipulations that
t t«r 8 s4r+v

N-1 N-1
2 2 W) = —; ):a Z{ (j-k)w(V)p (j—k)a»llz-el(v-el)
p(J k)w+£ (v )p(J k)w_el(v-ll) + xq[(k-j)w,—tl,ll-lzl},

where a = go(v,!l,w) and b = go(v,tz.w). Pooling the two summations above,

by making the transformation m = j - k, it follows that
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N-1-b

1 n{m) + b
a, , (V) = — [1 - ———]{p (vlp (v-L)
21.82 N mza- (N-1) N mbw mmz-el 1
te_ MZ(V)pm w—ll(v_ex) + K 4(-mw,-£1,£l-£2)}, (3.8)
where

a-b-m, a-(N-1) s m < a-b
nlm) = { O, a-b=m=0

m, m > 0.

Furthermore, it is known that if {kaw) is a Gaussian process,
then all the:fourth joint cumulants, tc4(ml,m2,m3), for all integers m, m,
and m,, are identically equal to zero (Anderson, 1971: 452). However,
Bartlett (1946) proves a more general result. He proved that nc4(ml,m2,m3)
will be also zero if the error terms are independent (rather than being
uncorrelated) and the process (wa} follows a general linear process
form (Priestley, 198l: 332), (3.3). These conditions are satisfied here
since we are assuming that {aka»v} are independent and the process is
periodic stationary. Thus, the term k 4(-mw,-£1,21-£2) will no longer ap-

pear in (3.8).

Setting 21 22 = { in (3.8) gives

1 Noi-2 Im] + a
-~ z [1 - —F ]{pmw(v)p )
m=a-{(N-1)

Var[r'e(v)]

Y P e(v)pm w_e(v—l)}.

Note that, in view of Proposition 3.1, for large m, the seasonal autocor-
relations in the above summation are negligible. Besides, for small m and

large N, the factor |1 - ﬂn_l_Ni-_a] is approximately one and the limits in
the summation can be replaced by -» and ». Then, for large N, the above

expression becomes

L
N
m

r~18

Var[re(v)] =

{pmw(v)pmw(v—l‘,) P M(v)pm M(v-l)}, (3.9)

-00

which, by utilizing (3.2) and the fact that pmw(v)pmw(v-e) + p E(V) X
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P (v-£)] is an even function of m, reduces to
mw-£

4]
Varlr,(»)] = _I{I_ [1 + [pe(v)lz + ngl{pmw(v)pmw(v-l)

+ pmN(v)pmw_e(v-Z)}], (3.10)

where the symbol "=", wherever appears, means that the statement is true

for large N.

The above equation and (3.8) also provide approximate expressions

for Var['xe(v)] and Cov[a'e (v),7£ ‘(v)], respectively, but with 7y in place

of p in those expressions and such that ';2(1;) is as defined by (3.6) but
with B, replacing Xv.

In the context of stationary processes, asymptotic formulas for
the first and second order moments of sample ACF, Ty as defined by (3.5)
with w = v = 1, have been derived by Bartlett (1946) under the assumption

of white noise terms being independent. For instance, Var(rz) is given by

1 2 2.2
Var(ry) = o } m{”m * PPt T PPt mepe}'

m=-

(Box and Jenkins, 1976: 35). Under the assumption of white noise terms
being independent and normal, this result was then generalized to periodic
stationary processes by Anderson and Vecchia (1993). Letting R

2
[re(w),re(l),...,re(w-l)]T, they have shown that the asymptotic variance-

covariance matrix of RZ is given by

o]

1 ) W) )
w Z {an"an’“ + Fmenlrm _err‘“ - F I+ T)F_F_ Jrr'“

IR

£~ N

m=-0
-8 ) 1 L 2 -£
- anerm _en’“ (I+ TF, + 5 FI+1 )FmHm(I + 10 )Fl},

where Fm = diag[pm(w),pm(l),...,pm(w-l)] and 1T is an orthogonal wxw cyclic

permutation matrix,
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01 0O . 0
0 01 O o
= ’
0 0 0O .1
|1 000 ...0

with II-£ = (IIT)e, ° being the wxw identity matrix, and

2. -2 .
Hdlag(cw,cl,....cw_l)ﬂ = dlag{cz,ceﬂ,...,ce -1)

where {ct) is any sequence of constants satisfying Cont = S for all k.
It was alsp .shown that 'Re; is asymptotically unbiased and jointly
multivariate normal. Although the above formula is fairly complicated, it
can be shown that the expression for Var[re(v)] in (3.9) is an approximate
version of their corresponding formula, which differs by terms which
include autocorrelations of third and higher orfders. which, by Proposition
3.1, are usually negligible. For example, for a two-period case, it can be
shown that their formulas for the first season, v = 1, reduce for odd lag

£ to

= 1 T
Varlr,(1)] = Tmz-w{pm(l)pm(z) + p, P, 42) - pylp_(2)
x p_ 1)+ p_(24mlp_ ()] + pj (1P, (1) + pim(z)]}, (3.11a)

and for even lag £ to

o1 v (2
Var[l‘e(l)] g Z m{pzm(l) + p2m+2(1)p2m-£(1) - 2pe(1)pzm(l)

m=-

x [pZm J(l) te,. -8(2)1 + 2p£(1)p£(2)p§m(l)}. (3.11b)

On the other hand, (3.9) reduces in this case to

o~ 1 S
Varlry()] & — ¥ {pmu)pmu-e) +p, e, 4u-e)},

m=-0

where 1 - £ = 1 for even € and 1 - & = 2 for odd £ which can easily be

shown to differ from (3.11) in terms of third and higher order autocor-
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relations. More importantly, it can be shown that the formulas of Anderson
and Vecchia (1993) and (3.9) are identical when p(v) = O and £ > q(v).
Therefore, for the assessment of cut-off in seasonal autocorrelations,
that is for checking whether season v is a MA(q(v)) or not, (3.10) is as

applicable as the formulas of Anderson and Vecchia.

In addition, setting w = v = 1 in (3.9) gives

1 © [ 2
Var(ry) & -~ ) m{Pm + Pm+zpm4}'

m=-~

which differs from the corresponding formula of Bartlett (1946), given
earlier in this section, by the tef'm - 4p£pmp1m ) + Zp;pz, which, for a
MA(q) process, is equal to zero for & > q, since in this case Py = 0.
Furthermore, assuming that the time lag € is large, a (large lag) formula
for Var[re(v)] is obtained from (3.9) by setting P M(V) to zero, by
Proposition 3.1, and is given by

[+ <]
Varlr,(»)] & —— Y o o (-0,

m=-0

This formula reduces, by setting w = v = 1, to the corresponding formula

in the context of stationary processes (Box and Jenkins, 1976: 35).

In the following proposition some properties of the variance of
PE(V)’ which follow from (3.10), are summarized which are needed for the
assessment of the cut-off property of the seasonal ACF for a season v

which follows a MA(q(v)) process.

PROPOSITION 3.2. Let (kaw) be a periodic stationary PARMAw(p(v),q(v))
process. If v is an arbitrary season with p(v) = O, then, for positive

integers £, we have the following results for Var[rz(v)]:

(i) If q(v) < w, then
% {l+[pe(v)lz}, £=q(v)

Var[r'e(v)] = (3.12)
1
—N— N Z)Q(V)
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(ii) If kv = q(v) < (k+l)w, k = 1, 2, ..., then,
(a) for 1 = £ < q(v) - ko,

k
Varlr,w)] = —;—,— [1 + Lpy)1* + ZmZI{pmw(v)pmw(v—l)

+ pmmztv)pm - e(v—l)}] ,

(b) for q(v) - (j+1)w < & = q(v) ~ jw, where j =1, ..., k - 1,

k
Varlr,)] & —— [1 + lp,)I® + 2 {m_lpmw(v)pmw(v-l)

lepmw+£(v)pmw-l(v-£)}] ’

(c) for q(v) - w < 2 = q(v),

K
o 1 2
Var[re(v)] g W [1 + [pz(v)] + 2 mzlpmw(v)pmw(v—l)].

(d) and for £ > q(v),

k
o l —
Varlr,(v)] = — [1 v 2 lepmw(v)pmw(v e)]. (3.13)

PROOF. Part (i) follows from (3.10) by utilizing (3.4). For part (ii),
first notice that in parts (a) through (c), £ = q(v), whereas in part (d),
£ > q(v). This explains, due to (3.4), the presence of the term [pz(v)]2
in parts (a) through (c) but not in (d). Also, since q(v) = ko, pmw(v) is
non-zero for m = k, and this explains the presence of the term Zn:1
w+£('))’ it can be

easily seen that in part (a), mw + £ = q(v) is true for m = 1, ..., k, in

pmw(v)pmw(v-l) in all parts. For the terms including P,

which case pmwe(v) is non-zero. In part (c), since q(v) - w < & s q(v),
no value of m satisfies mw + & = q(v). The same reasoning applies for part
(d). In part (b), notice that q(v) - (j+llw < & = qv) - jw, j = 1, ...,

k-1, which means that mw + & = q(v) is valid only for m = 1, ..., j. We

can denote j also as j = [(q(v)-8)/wl. =
Setting w = v = 1, it can be easily seen from Proposition 3.2
that, for & > q(v) = q, case (i) reduces to the white noise process with
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Var(re) = I/N, & =z 1, and case (ii) reduces to the MA(k) process, in which

case (3.13) becomes

Var(re)g—l%—— [1+2 ip:‘], ¢ > k.
m=1

These are the well-known formulas for the identification of white noise

and MA processes, respectively, in the context of stationary processes

{Box and Jenkins, 1976: 35). However, note that for ¢ = q(v) the formulas

for Var(re) in case (ii) of Proposition 3.2 are rather approximated as

they are based on (3.10).

For . the assessment of the cut-off property of seasonal autocor-
relations, we utilize the result 6f Anderson and Vecchia (1993) about
rz(v) being asymptotically normal with mean pe(v). Then following the same
methodology applied for ordinary sample autocorrelations in the context of
stationary processes (Box and Jenkins, 1976), for a season v which follows
a MA(q(v)) process, we start checking values of q(v) successively, start-
ing with q(v) = 1. Then for large N, as long as q(v) < w, (3.12) implies
that re(v), £ > q(v), is normally distributed with mean zero and variance
/N, so that the 95% band (-1.96/N“? 1.96/N?) is applied to those
autocorrelations. If q(v) > w, (3.13) should be utilized. More precisely,
the theoretical seasonal autocorrelations in (3.13) are replaced with
their sample estimates, and letting s, to denote the sample value of
(Var[re(v)])vz, the 95% band is (-1.965v, 1‘9651)) which should be applied
for re(v), £ > q(v). The accuracy of these bands are verified through

simulation in Section 3.5.

3.4 Seasonal Partial Autocorrelation Function

Let {kav} be a univariate periodic time series which follows a
PARMAw(p(v),q(v)) model. Also let v be an arbitrary season such that p(v)
= p > 0 and q(v) = 0, then the AR(p) equation for season v is obtained,
from (1.5), as

(v) »

+ ...+ +a . (3.14)
1 kw1 P  kW+V-p kto+V

kWw+p
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The above equation can be viewed as a regression model in which
(the dependent variable) kav is regressed on the regressors (independent
variables) kav_l, kav_p.

between kav and kaﬂ)—p' keeping the other regressors fixed, is the

partial correlation coefficient between kaw and X s

A reasonable measure of the relationship

vep’ denoted by

¢pp(v), which is defined, for integers p =z 1, as

o X ).
kW+V-p+1

¢pp(v) = Corr(kaw

X X , e
kW+V-p | k+V-1

An alternative and more practical definition of ¢pp(v) is as follows

(Cryer, 1986: 106-107): Let &kww and gkﬁ)ﬂ)—p be the best linear MSE pre-
dictors of X and X based on the set (X seees X },
KWV kW+V-p kW+P-1 kW+V-p+1
respectively. Also, let e = X -2 and e = X -
kW+V KW+Y KW+ KW+V-p kWH+V-p
' be the residuals. Then
kW+V-p
_ A A
¢pp(v) = Corr(ekwv, e, wv—p)’ (3.15)

which coincides with the previous definition if (kaw) is a Gaussian

process. We adopt the second definition here.

The last parameter in (3.14), ¢:’w, can be expressed in terms of

the seasonal autocovariances by the method of moments (see Section 4.3).

(v)

It can also be shown that ¢p can be related to the partial correlation

¢pp(v) as

A 1/2
W _ [ Var(e ) ]

¢ (v)
Var(® ) PP
kW+V-p

(see, for example, Ula, 1982). For example, if p = 2, (3.15) implies that

- A A A _ _ A -
¢22(V) - C;rr(ekwv,ﬁ ekww-'z)’ ;{here Chow = Zpww kkww and €.,
kaﬂ,_z T R w2 ey X being the best linear MSE predictors
of X ., ad X , respectively, in terms of X . It can be easily
shown that

y (v) V2
' = p (v) 2 X
k+y 1 7, -1 kW+P-1

and

39



% wo(v 2)
xww-2 P 1(v-1) 7o(v-1) Xku»v-f

It then follows with some manipulations that Vm(gkmv) = 7o(v)[l - pf(v)]
and Var(8 ) = 7, (v-2)1 - pf(v-l)]. Then ¢22(v) is obtained as

k“/{ V-2 172
Cov(ek w0’ Cuoew )/[Var(e )Var(ekw v—z)]

it can be shown that the moment equation for ¢ (Section 4.3) is equal
1/2
to [Var(ek‘M))/Var(em‘)+ vz ¢ (v)

Furthermore, if plyv) = 2,

As (3.15) is defined for all positive integers p, the seasonal
PACF ¢u(v) can now be defined for any PARMA process for all lags ¢ = 1,

2, ..., by replacing p in (3. 15) by £ The relation between ¢u(v) and

(v)
oy

last AR parameter in the £-th order AR equation for season v.

is again as given above, with p replaced by £, where ¢£ now is the

In the following proposition, the cut-off property of ¢E€(") is

established in the case season v follows an AR(p(v)) process.

PROPOSITION 3.3. Let (kav} be a periodic stationary PARMAw(p(v),q(v))
process. If v is an arbitrary season with q{v) = O, then ¢u(v) = 0 for
all £ > p(v).

PROOF. For simplicity, let p(v) = p. Then, for & > p, (3.14) implies that
the best linear MSE predictor of kaw in terms of X ivey X

. W kt+p-1’ kt+v-£
is & = ¢ X + ... + ¢ , so that e = a . Since
Ak 1 Tkwev-1 P kw+-p kW+V kWY
e is a linear combination of (X yeees X ) and hence of
kw+v-£ kW+V-1 kw+v-£ A
(akww-l‘""akww —Z)’ it is clear that it is not correlated with €
Thus, by (3.15), ¢u(v) = 0. For a similar argument in the context of ARMA
models, see Cryer (1986: 107). =

In the context of ARMA models, the PACF , ¢u, L =1 2 ..,
plays a primary role in the identification of pure AR processes. There, it
is observed that for an AR(p) process, ¢u = 0 for all £ > p. It can also
be shown that ¢££ is the same as the last parameter in an AR(£) model
(Wei, 1990: 14). This also follows from the equation given above relating
¢pp(v) to ¢:)V) (replacing p by £ and eliminating v) by noting that the two

residual variances in that equation are equal for a stationary process.
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Therefore, ¢u can be estimated as the estimate of an AR parameter, either
by method of moments or more accurately by method of least squares. An
iterative technique for the computation of the method of moment estimates
of AR parameters was developed by Durbin (1960) (Box and Jenkins, 1976:
82). However, the above technique of estimation of PACF does not carry
over to PARMA processes since the parameters (or their estimated values)
do not behave as proper correlations. For example, for an arbitrary season
Mg +a , and it can

v ¢1 kW+V-1 KW+

v, let p(v) = 1 and q(v) = O. Then ka
be shown that ¢:v) = 71(1))/70(12—1), where ',ye(v) is the seasonal autoco-
variance function (Section 4.3). It is clear that ¢;w does not neces-

sarily belong to the interval (-1, 1) as a correlation should.

For the computation of tﬁe PACF ¢2£(V) through (3.15), we first
report the following general result for the computation of partial cor-
relations (Morrison, 1976: 94). Let {Yl, Yz’ vens Yp) be a set of p» random
variables, p =z 2. Also, let Yl and YJ be any two variables from this set
such that i # j, then we denote the partial correlation coefficient bet-
ween Y1 and YJ by P where ¢ = {1, ...,pN\ {i,j} (for any two sets A
and B, A\B AnB%). If p = 2, then the partial correlation coefficient

between the two variables is taken by convention as their ordinary cor-
relation coefficient. If p > 2, then all partial correlations can be ob-
tained in terms of ordinary correlations iteratively through the following
relation:

P - P P

P = ij.c ih.c " jh.c , (3.16)

ij.he
2 2
‘/ -p Jh.c)

.c)(l -p

i, j h =1, ..., p; i # j # h; and ¢ < {1,...,p\{i,j,h}. These are com-
puted, firstly, by taking c to be the null set, so that

Piy " Pin P

b 7 - —
(1 -pm)(l -pjh)

P

Then using these, the partial autocorrelations with ¢ containing one
element can be obtained by (3.16), and so on.

Now, by convention, ¢u(v) = Corr(ka , X ) = pl(v). Also,

v kWw+vY-1
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from (3.15) and (3.16), it is apparent that

¢22(V)= Corr(kkwq.v' 2k(ml)-z) = pv,V—Z.V-l

pV,V-Z - pv,v-l pV—l,V-Z

’

2 2
(- pv,v-l)(l T Py, v-z)

where & and & are the best linear MSE predictors of X and
kWY e+ kto+

V-2 v
wa_z, respectively, in terms of kaw-l' Using Povit = Corr(kav,
kaw—t) = pe(v), ¢ =1, 2, we have

p,(¥) - p,(Vp (v-1)
$,,00) = (3.17)

Y- P21 - p2(v-1)]

This result can also be verified independently by obtaining the correla-
tion of & and § directly from their equations given earlier in
kW+V kW+V-2

this section.

As an illustration of the cut-off property of the seasonal PACF,
¢&(V)’ summarized in Proposition 3.3, let, for example, p(v) = 1. Then
(3.14) is written as X = ¢:"’x + a . Multiplying this

kW+V-1 KW+

ec(;:):—xtion with ka+l)-1 and X(l{) vz and then taking expectation give yl(v) =
¢1 70(1)-1) and 72(1;) = ¢1 71(1)—1), respectively. Utilizing (3.1), it can
then be easily shown that pz(v) = pl(v)pl(v-l). Hence, by (3.17), ¢22(v) =

0. The same way can be used to show that ¢££(V) =0 for all &> 1.

Although we could derive easily, through (3.16), explicit for-
mulas for the first two seasonal partial autocorrelations, (bn(v) and
¢22(v), this task for third or higher orders gets tedious. An alternative
approach, which will be adopted here, is due to Sakai (1982). He proposed
the following algorithm for calculating ¢&(V) iteratively:

1) Initial Conditions
2 _ 2 _ 1. = -
av(o) = 'rv(O) = 70(1)), ocv(p,o) L p=012 ..., v=1, ...,

2) Order update from p to p+l (p =0, 1, 2, ...)
a) Compute

42



Av(p) = mzoyp+l_m(v—m)av(p.m)

Av(p)

)= —m— (3.18)
(p+1)(p+1)
8,(pit,_(p)

¢

b) Update

o (p+1,p+1) = -A (p)/T._(P), B (p+L,p+1) = -A (p)/8%(p),

Si(pﬂ) az(p)ll - av(p+1.p+l)Bv(p+1,p+l)],

2, | 2
-rv(p+l) tv_l(p)ll - av(p+1,p+1)Bv(p+l,p+l)],

and fori =1, ..., p,

av(p+1,1) av(p,l) + av(p+l,p+1)l3v_1(p,p+1—1),

B, (p*Li) = B, (p,i) + Bv(p+1,p+1)av(p,p+l—i).

where 'a'e(v) is again the seasonal autocovariance function and the sub-

script v-1 = O is always replaced by w.

Now we will verify analytically that the first two seasonal par-
tial autocorrelations obtained by the above algorithm are identical to
those obtained on the basis of (3.16). For ¢u(v), following the above
algorithm,

Av(O) wl(v)
¢11(V) = = vz pl(V)'
§,(0)r  (0) [y (v)7 (v-1)]
For ¢22(v), it can be shown that ocv(l,l) = -71(12)/70(12—1), Bv(l,l) =

-, W)y W), af,u) = 7,01 - pf(vn, zz(l) = 7,(v-D1 - pf(vn. and

7l(v-l)71(v)
72(')) - 7011)-1) ’

Av(l)

Av(l)

9, 0) = —2
5 ()T, (1)
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Then it follows with simple manipulations that ¢22(v) is the same as that
given by (3.17).

Now the sample seasonal PACF, 322"’)’ £ =1 2, ..., can be ob-
tained from (3.18) by replacing the theoretical seasonal autocovariances,

¥,(v), by their corresponding sample estimates, 9 (v), defined by (3.6).
¢ L

Sakai (1982) also proved, under the assumption of white noise
terms being independent and normal, that if a season v follows an AR(p(v))
process, then, for all v and £ > p(v), the sample seasonal partial auto-
correlations 3&(")) are asymptotically independent (for each v and £), and
normally distributed with zero mean and variance 1/N . Therefore, for
large N, the 95% band (-1.96/N“? 1.96/ NY?) should be applied for the

sample seasonal partial autocorrelations for £ > p(v).

3.5 A Simulated Example
3.5.1 Simulation Results
To illustrate the results concerning the properties of the sample

seasonal ACF and PACF, discussed in the previous sections, we consider the
following PARMA4(2,2;O,1;3,0;0,4) model

X = 0.8 X + 09X + a - 04 a
4k+1 4(k~1)+4 4(k-1)+3 4k+1 - 4(k-1)+4
- 0.9 a
4(k-1)+3
X = a + 0.8 a
4k+2 4k+2 4k+1
=12 X - 07X + 0.5 X + a
4k+3 4k+2 4k+1 4(k-1)+4 4k+3
= a - 05 a - 0.7 a + 0.3 a -11a
4k+4 4k+4 4k+3 4k+2 4k+1 4(k-1)+4

First, we will show using the results of Chapter II that this
process is periodic stationary and invertible. For this, note that follow-

ing the lumped- vector representation as given by (2.1), p'l = 1, q‘ =1,
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and

1 0. 0. oO. 0. 0. 0.9 0.8]
L = 0. 1 0. 0. , _ [0 0 o0 o
107 -1.2 1. o} "1 lo. 0. 0. o.5)
K 0. 0. 1. 0. 0. 0. O |
1. 0. 0. O. [0. 0. 0.9 0.4]
0.8 1. 0. O _lo. 0. 0. o
A=1o. o0 1. ol YiT]o. o o o
0.3 -7 -5 1. 0. 0. 0. 1.1]

Then, following Pr'oposition 2.1 and using the program listed in Appendix
A, the exgenvalues of L U are (0, 0, -0.63, 0) and those of A~ V are
(o, 0 0 756, 0) which are all less than 1 in modulus. Thus the process

above is perlodxc stationary and invertible.

Next, assuming that the white noise terms are independently and
normally distributed with zero means and unit variances (0‘:(12) =1 v =1,
.., 4), 100 realizations each of length N (years), i.e. 4xN values, N =
30, 100, 500, are simulated from the above PARMA model. Then, for each
realization, the sample seasonal autocorrelations, re(v), and sample sea-
sonal partial autocorrelations, $u(v), for v =1, 2, 3, 4, and & = 1,
.., 20, are computed. Their averages over 100 realizations are also ob-
tained. Besides, in each realization and for all seasons v, the number of
autocorrelations re(v) going outside the corresponding 95% band is also
obtained for £ > q(v). The same is done for gu(v) for & > p(v). More
precisely, note that the second season’s equation is pure MA(1), so that,
in view of (3.12), as q = 1 < w = 4, the relative frequency (over all
realizations) of autocorrelations, re(z), £ > q = 1, going outside the 95%
band (-1.96/NV2, 1.96/NV2) is obtained. This is also true for v = 4, in
which case q = 4 = w < 2w, so that (3.13) applies with k = 1, and the
relative frequency of r£(4), ¢ > q = 4, going outside the corresponding
957 band is obtained. For v = 3, the season is pure AR(3), so that the
relative frequency of $u(3), L > p = 3, going outside the 957 band
(-1.96/N"?, 1.96/N"?
puter program listed in Appendix C, which is written for univariate
PARMAw(p(v),q(v)) models with p(v) = 2w and q(v) = 2w. The results are

summarized in Tables 3.3(a) through (c), in which the average values of

) is obtained. This task is done by using the com-

autocorrelations and partial autocorrelations for the first 10 lags are
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presented only. The relative frequencies of autocorrelations and partial
autocorrelations over all realizations going outside the 95% bands men~
tioned above are given in these tables in percentage, denoted as (frZ). We
only include those corresponding to v = 2 and 4 for the autocorrelations
and v = 3 for the partial autocorrelations since these are the pure MA and
pure AR cases, respectively. For the other cases, relative frequencies are
only presented in Table 3.3(a) and in parentheses for illustration. In
those cases, the relative frequencies of autocorrelations and partial
autocorrelations are computed assuming that the equation of season v is

pure MA or AR with orders p(v) and q(v), respectively.

To illustrate whether or not the variances o';(v) affect the
results, the same program (Appendix C) is executed for N = 100 and 0':(1)) =
0.8, 0.5, 4.0, 0.2 for v = 1, 2, 3, 4, respectively. The results for this

case are summarized in Table 3.4(d).

Table 3.3. The Average Sample Seasonal ACF and PACF for l”ARMA4 (2,2;
0,1; 3,0; 0,4) Model

(a) Oz(v) =1, N = 30

Seasonal Autocorrelations Seas. Partial Autocorr.
Season Season

lag 1 2 3 4 1 2 3 4
1 .342 .329 .552 -.436 .342 . 329 .552 -.436
2 .278 -.000 -.154 -.193 ~-.508 .138 .434 -.058
3 .358 .012 .225 ~-.041 | -.270 .198 -.514 .182
4 -.220 -.033 -.385 -.334 .318 .170 .123 .173
S -.070 -.026 -.351 .002 ~.271 -.152 .060 .373
6 -.348 010 .095 .004 .179 .123 -.069 .118
7 -.333 -.013 -.092 -.005 .108 -.106 .036 -.052
8 .082 -.021 .197 -.021 -.024 -.028 -.003 .268
9 -.100 -.007 .192 .013 .118 .006 -.017 .109
10 .209 =-.008 -.05 .006 .006 -.057 -.007 .026
frZ| (34.8) 3.1 (41.7) 2.7 (30.0) (18.8) 1.7 (27.7)
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Table 3.3 (cont’d)

(b) 0':(12) =1, N = 100

Seasonal Autocorrelations Seas. Partial Autocorr.
Season s Season
lag 1 2 3 4 1 2 3 4
1 .361 .347 .573 -.451 .361 .347 .573 -.451
2 .318 -.001 -.179 -.193 -.577 .148 .496 -.089
3 .403 .000 .228 -.049 -.291 .281 -.590 .239
4 -.217 -.010 -.421 -.370 .350 .170 .050 . 189
5 -.079 -.006 -.365 .010 -.384 -,201 .024 . 450
6 -.397 .000 .103 .004 .183 .247 -.013 .136
7 -.347 -.004 -.121 -.005 067 -.116 .021 -.068
8 | 106 .-.009 .256 ,.005 -.046 -.029 -.005 .376
9 -.103 -.001 .222 -.007 .145 .017 -.020 .175
10 .244 .007 -.063 -.001 .041 -.104 -.003 .046
frz 4.2 3.0 4.4
(c) 0';(1)) =1, N = 500
Seasonal Autocorrelations Seas. Partial Autocorr.
Season Season
lag 1 2 3 4 1 2 3 4
1 .372 .353 .588 -.461 .372 . 353 .588 -~.461
2 .311 .001 -.184 -.205 -.587 .151 .519 -~.092
3 .399 -.002 .223 -.041 -.285 .301 -.615 .245
4 -.212 -.002 -.423 -.355 .354 .161 .015 -.163
5 -.068 .003 -.359 .000 -.429 -,219 .004 .477
6 -.405 .002 .121 -.001 .143 .294 -.003 .132
7 -.345 .002 -.118 -.004 .045 -.109 .003 -.090
8 .111 -.002 .265 ~-,004 -.029 -.025 .000 .435
9 -.121 -.003 .228 -.000 .161 .015 -.013 .209
10 .258 .002 -.072 -.007 .073 -.119 -.002 .070
frz 5.4 4.4 4.9
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Table 3.3 (cont’d)

(d) 0':(1)) = 0.8, 0.5, 4.0, 0.2, N = 100.

Seasonal Autocorrelations Seas. Partial Autocorr.
Season Season
lag 1 2 3 4 1 2 3 4
1 .470 .404 .332 ~.773 .470 .404 .332 -.773
2 -.218 -.014 -.096 -.118 -.262 .258 .269 -.233
3 .362 .013 .042 .069 -.424 .134 -.230 .135
4 -.090 .008 -.103 -.108 .415 .251 .016 -.045
5 .000 .000 -.193 -.006 -.413 -.285 .019 .374
6 -.158 -.008 .061 -.005 .086 .341 -.029 .206
7 -.277 .014 -.023 .001 .070 -.085 .006 -.278
8.|.,.065 ~-.008 .061 =.007 -.041 -.030 .020 .447
9 -.070 -.016 .112 .003 .132 .039 -.000 .109
10 .114 -,011 -.033 .006 .035 -.089 -.003 .037
frz 4.8 4.1 4.5

3.5.2 Discussion

Generally speaking, the simulation results above are compatible
with the theoretical results in the previous sections. In particular, the
cut-off properties of the seasonal ACF are verified for seasons v = 2 and
4, and those of the seasonal PACF for v = 3. More precisely, the cut-off
in seasonal autocorrelations is clear from the average values of the
sample seasonal autocorrelations. For pure MA cases, v = 2 and 4, for lags
£ > q(2) =1 and € > q(4) = 4, respectively. Similar comment applies for
the seasonal partial autocorrelations for the pure AR case, v = 3, for
lags £ > p(3) = 3. These observations are apparent for all N = 30, 100,
and 500, although they become more clear as N gets larger. This is also
assured by the relative frequencies (fr7%) corresponding to these cases
which in turn agree with the proposed 957 bands. As N increases, the rela-
tive frequencies approach the theoretically expected 5% values. It should
be remembered that the theoretical results we employ are large sample

results.

It is seen that the comments above carry over to the case of

varying (i.e. non-constant) white noise variances, given in Table 3.3(d).
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On the other hand, making comments on the seasonal autocorrela-
tions for v = 1 and 3, and on the seasonal partial autocorrelations for v
=1, 2 and 4 is not easy. It can be noted that in these cases no cut-off
situations are apparent, as theoretically expected. In particular, for the
mixed case, v = 1, the relative frequencies presented in Table 3.3(a),
34.8%2 and 30%, are extremely high for both autocorrelations and partial
autocorrelations which indicate that the equation of this season should be
mixed, or possibly pure MA or AR, but of higher order. It is worth men-
tioning that, as in the context of ARMA models, the autocorrelations and
partial autocorrelations do not offer much help for the identification of

the orders of mixed processes.
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CHAPTER 1V

ESTIMATION IN PARMA PROCESSES

4.1 Introduction -

The method of moments is one of the most common methods of esti-
mation in statistical inference. It is also common in the context of time
series analysis, as well. Although, in some situations, this method has
some serious drawbacks, mainly in the estimation of the parameters in MA
processes or ARMA processes in which an MA part is present, it is, how-
ever, quite satisfactory in the case of pure AR processes. For PARMA pro-
cesses, the situation does not differ much. In the following section we
will discuss moment estimation in a simple PARMA model, namely the uni-
variate PARMAw(l,l) model, through which the difficulty and deficiency of
the method of moments in the presence of a MA part is exposed. Pagano
(1978) studied this method in univariate PAR processes and obtained some
asymptotic properties of the estimates obtained by this method. Our main
aim in this chapter is to compare this method for both univariate and
multivariate PAR models with the conditional least squares (LS) method

through some simulated examples.

In the context of AR models estimation it is known for small
samples that the conditional LS method produces slightly better estimates
than those obtained by the method of moments, and that the difference
between these estimates is negligible for large samples (see, for example,
Fuller, 1976: Ch. 8). In this chapter, this fact will be investigated for
PAR models in the sense of bias and mean squared error (MSE) criteria

through simulation.



4.2 Moment Estimation in PARMAw(l,l) Process

We know from (2.7), by setting m = 1, that the univariate
PARMAw(l,l) model is written as

($%) v)
= + -
k+V ¢1 kaw-x IR 91 A -1’ (4.1)
for all integers k, where, for each fixed v, v = 1, ..., w, (ako»v) is a

. . . . 2
white noise process with zero mean and variance rra(v).

Moment estimation of the seasonally standardized version of the
univaxfiat'e PARMAw(l,l); model has’ been investigated by Salas et al. (1982).
Their result ‘involves solving a set of w simultaneous non-linear equa-
tions. The analogous result for the non-standardized model, (4.1), can be
obtained by multiplying (4.1) by kav, kaw-l and kaw-z' and then
taking expectations and making some manipulations give, for each v, the

following set of equations

7,0) = 977 @) + o’w) - 8™ - 6")e2(w-1)
7, @) = 67 (-1 - 8702 (v-1) (4.2)
7,v) = ¢;"’71(v-1). (4.3)

These equations can also be found in Vecchia (1985a). Then, solving them

for ei"’ gives

w
o™ = g 7,0) - ¢,
1 1 (v)

¢1

(v+1)
1

7, (v-1) - 7 (v) [q&im

)
Wl(v) ¢ 'Jo(v) -wl(w-l)

(4.4)

9(v+1)'

'xo(v—l) - 'xl(v)} X

It can be easily shown that the above equation reduces to equation (17) of

Salas et al. (1982) by setting 70(12) = 1 and replacing 71(12) by pl(v).

Now, replacing 72(12) by their estimates QZ(V), defined by (3.6),

the moment estimates of ¢;v) can be obtained directly from (4.3) as 3:"’ =

;w, 6;"’, can then be obtained

through (4.4) after replacing ¢;v) and 72(1)) by aiv’ and Qz(v), respect-

?z(v)/Q l(v-l). The moment estimates of 0

S1



ively, and then solving the ® non-linear equations corresponding to all
values of v, v = 1, ..., w, simultaneously. Obviously, this is a difficult
task. Finally, the moment estimates of 0':(1)), éz(v), can be obtained from

(4.2) by replacing ¢:W, eiv

) and 7 E(V) by their corresponding estimates.

It is known that moment estimation of the parameters of the
ARMA(1,1) model produces poor estimates of the MA parameters. They even
may not be real or satisfy invertibility conditions. Likewise, these draw-
backs are expected to arise in the PARMAw(l,l) model, which reduces to an
ARMA(1,1) model if w = 1. In fact, Vecchia (1985a) investigated moment
estimation in. PARMAw(l,l) madel through simulation and reached such con-
clusions. In .about 50% of the simulation runs, the moment estimates were
not feasible. For feasible solutions, the moment estimates of AR para-
meters were usually good but those for MA parameters were usually not

satisfactory.

It can also be shown that moment estimation in the pure PMAw(l)
model has the same difficulties as in the PARMA w(l,l) model. This can be
seen from (4.4) by setting ¢:V) = 0, in which case we will again have a
set of w non-linear equations to be solved. For the m-variate PARMAw(l,l)
model, an equation similar to (4.4) can be obtained in matrix terms. In
that case, w non-linear matrix equations are to be solved simultaneously,

which is a formidable task.

Therefore, moment estimation in the presence of a MA part is not

recommended for PARMA models due to its difficulties and deficiencies.

4.3 Moment Estimation in PAR Processes

We now consider the periodic stationary m-variate PARw(p(v))
model, which can be written, following (1.5) and setting all ©'s to zero,

as

X - Q(V)X (v)

+ ... + a . .S
k+V 1 kWw+Y-1 p(V) kW+V-p(V) kW+P (4 )

Now let v be an arbitrary season and denote p(v) by p for sim-
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plicity of presentation, then post-multiplying (4.5) by X:wv—l’

T

X and taking expectations, give, respectively,

kW+V-p
_aWs WIT, WILT
Zl(v) = Ql Zo(v 1) + Qz Zl(v 1) + ... + @p Zp_l(v 1)
_ A _ (v) _ (V)T _
Zz(v) = 01 zl(v 1) + <b2 Zo(v 2) +... + <l>p Zp_z(v 2)
Rt _ (v) _ (v _
}:p(v) = @l Zp_l(v 1) + Qz Ep_z(v 2)+ ... + Gp Zo(v p)

where Zl(v) are the ‘seasonal autocovariance matrices as defined by (2.8).
These equations are analogous to the multivarite Yule-Walker equations in
the context of vector ARMA models (Fuller, 1976: 73), and therefore named
as seasonal Yule-Walker equations (Pagano, 1978). Employing matrix nota-

tion, the above equations can be written as

T =0T or & =gxr}!

v vy 1 vy’ (4.6)

4 V)
) (]

where ¢V = [@1 A~ <I>p R Zv = [Zl(v), . Ep(v)], and

Zo(v-l) zl(v-l) o o d Zp_l(v—l)
T
Xl(v—l) Zo(v-Z) . Zp_z(v—zl
r =
v
T T
sz_l(v-l) 'Zp_z(v-z) e Zo(v-p) i

Thus, moment estimates, 6?’), vees 6:)). of v-th season AR para-
meters can be obtained through (4.6) by replacing the seasonal autocovari-
ance matrices with their corresponding sample estimates which in turn are

defined, in analogy with (3.6), as

N-1
= A1 - g 4T
ﬁl(w - N kzo(kav Xv)(xku»v-e xv—Z) ’
in which X = X z N-1 X is the sample mean vector for season v, and
v N k=0 = kW+V

the terms are set to zero whenever kw + v - £ < 1. The moment estimates,

ﬁa(v), of the white noise variance-covariance matrices, Za(v), v =1 ..,
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w, may be obtained through the following equation

_ CeWsT - aWIsT( s e T
Za(v) = Zo(v) ® zl(v) @p Zp(v) Zo(v) ¢z
-1.T _ _ T
=ZW -T2, =20 - e T0, 4.7)

which follows by post-multiplying (4.5) with XkTw«,v and then taking expec-

tations.

The statistical properties of the moment estimators for univari-
ate Gaussian PAR processes were investigated by Pagano (1978). He showed
that . these estimators are almost surely consistent and asymptotically
efficient, and therefore asymptotically joint normal and unbiased. The

moment estimators of ¢’s are also asymptotically independent.

4.4 Conditional Least Squares and Maximum Likelihood Estimation in
PAR Processes

Consider the univariate PARw(l) process, X = ¢:"’x +

kW+Y ktd+ -1
LR On the basis of an observed realization of size Nw (say, N years)
from the time series, which we denote its seasonally mean-subtracted ver-

sion by Xl, ceey an, we have the following relations

(1)

al = Xl - ¢l xO
a2 = X2 - ¢;2)xl
(4.8)
a =X -¢@x
NWw Nw 1 Nw-1

Therefore, in the equations above, Xl. X2 and Xm, for example, represent

in fact X1 - M, X2 -k, and XW - "w’ respectively. Then the conditional

LS estimates of ¢:m, v =1, ..., v, are those which minimize

R , & Nt W w 2 2 .
§= Z a) = Ex kZaakwv =Z Z (kaw - ¢1 kaw-l) = X Sv’ (4.9)
= v V=1 v=1
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where a = 1, and a, = O for all other v. The term conditional actually
comes from the conditional likelihood function, as to be discussed later,
and is related to the fact that in (4.8) it is not possible to obtain a
since an unknown observation, Xo‘ is involved. This in turn explains why j

starts from 2 in the first formula above.

It can be seen from (4.9) that S‘, called the conditional sum of
squares, is written as the sum oi w different sum of squares, S;, v =1,
..., W, such that, for each v, Sv is the sum of squares of error termf
which belong to season v only. Thus, for an arbitrary v, minimizing S
with . respect . to ¢:v); reduces to minimizing S; only. Therefore, we will
adopt the regression model and utilize it to obtain the conditional LS
estimates of the parameters for eéch of the w seasons, separately. More
precisely, in minimizing S; with respect to 4{”, X and X k =

kW kw+v-1’
«, .., N -1, will be the values of the dependent and independent vari-

v

ables in regression, respectively, and the conditional LS estimate of ¢:v)
will be obtained as the regression coefficient. This approach has already
been adopted for estimation in both univariate and multivariate AR pro-

cesses (see, for example, Priestley, 1981, and Wei, 1990).

Another important feature of the conditional LS estimates is that
under the assumption that the white noise process is Gaussian, they are
identical with the conditional maximum likelihood (ML) estimates. To see
this, let us again consider the univariate PARu;(l) from which the realiza-

tion, X, ..., X is observed. Assume that a are independently dis~
1 Nw KW+

tributed as N[O,o':(v)]. Then it follows that the joint pdf of a, ..., a

2 NW
in (4.8) is

W
fla,...,a, ) = (2m) -1 72 lo:(m““‘”’z I o2 )™ exp{-

2
20, (1)
N1 ; Na o, y N
X o T T 2 Z qmz T T T 2 Z A
k=1 20_(2) k=0 20_(0) k=0

= (2n)MN1/2 (2172 [; o211 ™ 2exp! - y 1 Nil 2
- %a 1 a v’
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where «, is as given in (4.9). Now, in (4.8), assuming that Xl is fixed,

the Jacobian of the transformation from (a,...,a ) to (X, ....X ) is
2 Nw 2 NW

one. Hence, the conditional likelihood function, conditional with respect

to Xl, is given by

W
L=, .., X ,1X) = (2n) NO-127/2 [0;(1)]1/2 ( oz(v)r“’z

2
w N-1
1 W) 2
X exp{ X 2 Z (kaw ¢1 kawq)}

v=1 Zwa(v) kK=o

~(N 1)/2 1z 2 2 N/2Z 1 & s,
s (an) N o (1)] eI exp{—— Z v }, (4.10)
1 a 2 2
. v=1 o_(v)
a
and its natural logarithm (&n) is
L’ = M_Een(z)»f —_en[ w1 - N §Fopnre?ey - L § i
2 Z Ta'¥ 2 Z 2,
V=1 V=1 o'a(v)

Then the conditional ML estimates of the parameters ¢ ) and o (v) v =1,
.., W, can be obtained from ZnL by taking the partial demvatives with
respect to the par-ameters and setting them to zero. For ¢ , this process
leads to mlmrmzmg S with respect to ¢ . Therefore, the conditional ML
estimates of ¢ are the same as their conditional LS estimates. The
conditional ML estimates of o (v) denoted by a' (v) are obtained as ¢ (1)

S /(N-1), and o~ 2(v) = S /N, v =2, ..., 0, where S is the estimated sum
of squares for season v. Note that since, in this case, al = 1 and “v = 0,
v=2 .. o then 5':(12) = §;/(N-ocv) for v =1, ..., w, where N - °, is

~
the number of terms in Sv.

Although we are assuming that the time series (kaw} is season-
ally mean-subtracted, it is worth mentioning that if estimation of the
seasonal means, B, is of question, then, replacing {Xk } with (XWV -
pv) in (4.9), it can easily be seen that, under the assumption of indepen-
dence and normality of the white noise terms, the conditional LS and con-
ditional ML methods will again give the same estimates for B, However, in
this case, the conditional approach will lose its simplicity since the

»
conditional sum of squares, Sv’ will involve parameters other than those
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of the v-th season, so that minimization can not now be performed in a

season-wise manner. For example, for the univariate PARz(l) model, written

as
_ (D
2~ % 20k-1)+2 T 22k
(4.11)
X = ¢(2’X +a .
2k+2 1 T2ke1l  2k+2
following (4.9), the conditional sum of squares is s’ = Zz_l S;, such that
N-1
* _ _ _ 2
§, = _ml[(ngﬂ K x) ¢ (Xz(k—mz K 2)]
. N=1
> _ _ 42) _ 2
S, = kzol(xzxuz m) = b K ~ BT

N:)te that each of S: and S; is a function of ) and K, so thz-‘x’t minimizing
S with respect to K. say, does not reduce to minimizing Sl only. This
means that the conditional LS or ML estimate;s of B and K, should be ob-
tained by taking the partial derivatives of S with respect to ) and K1,
setting them to zero, and then solving the resulting two equations simul-
taneously for K and M, This fact generalizes to PARw(p(v)) processes in

which case w simultaneous equations have to be solved.

The common way to overcome this problem is to estimate ®, by f(v,
the sample mean of season v, which is also the moment estimate of B, This
method is also adopted as an adequate approximation in the context of ML
estimation of ARMA models (Box and Jenkins, 1976: 210). It should also be
pointed out that the estimates of K, affect the esti'mates of the other
parameters. In using regression model for minimizing Sv’ the mean problem
is usually handled by including a constant term in the regression equation
of each season. For the univariate PARz(l) model, for example, the con-
stant terms corresponding to seasons v = 1 and 2 are, respectively, Bo-
¢Inp2 and B, - ¢:2)u1. It will be apparent from the next example that the
estimation of these constants by regression is equivalent, for season 2,
to estimating B, by iv’ but is slightly different for season 1. More gen-
erally, for any PAR model, it can be shown that, for seasons with o, = 0,

these two methods are equivalent, but for seasons v with av > 0, there are
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slight differences. The variable a, was defined for the PARw(l) model as
« = 1 and a, = O for other v, and it was mentioned that N - «, is the
number of terms in S;. For the more general case of (univariate or m-

variate) PARw(p(v)) model, «, is given as

_[pv) - v
av = [——6—— + 1], (4.12)

where [c] stands for the integral part of of the real number ¢, and N - «
is the number of terms in the sum of squares of errors for season v, S;,
which is defined explicitly for the PARw(p(v)) model later in this sec-

tion.

The next example illustrates the relations between conditional LS

and ML estimates and moment estimates.

EXAMPLE 4.1. We again consider the univariate PARZ(I) model, (4.11). It
can be easily seen that (4.6), with m = 1 and p = 1, implies that for v =
2, for which «, = 0, the moment estimate of ¢;2) is $i2) = 91(2) / 90(1).

which can be written as

N-1
Xz = XX — %)
$(2) v k=0
1 N-1 - 2 ’
X e ~ %)
k=0

by using (3.6) for 90(1) and 91(2). It can also be seen that this is

identical with the conditional LS estimate of ¢:2) resulting from regres-

sing X on X for k =0, 1, ..., N - 1. Also, the LS estimate of the
2k+2 2k+1 _ (2)=

constant term in regression is X2 - 31 Xl. Therefore, by this constant,

B, Vv = 1, 2, in S: are being estimated by )-(v' The moment estimate of

02(2) can be obtained through (4.7) as §2(2) = % (2) ;2’91(2), which
reduces to
N-1
A2, _ 1 7o A2 _ % 12
o‘a(Z) - T\I—k_o[(xzmz Xz) 31 (szm xx)] ’
which is identical with the conditional ML estimate, ;;(2) = §;/N, where
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§; is the estimated S in which ¢ is being estimated by @(2)' and K, Vv
=1, 2, in S are being estimated by X
For v = 1, for which a = 1, the moment estimate of ¢(1) a(l)

'y (1) / 'a' (2), which can be written as

-1
Z(szﬂ - xl)(XZ(k-l)+2 - X))
3(1) = k=1

N-1 - 2
Z (X -X)
2k+2 2
k=0
(1)

On thé other ‘ha’nd, the conditional LS estimate of 4{1), 31 » resulting

from regressing sz1 on x2(k—l)¢2 for k=1, ..., N -1, is given as

~

Z(szu T XX ez T XD

~) _ k=1
% Nil o y
(X -X)
Lo Tz T2
A 1 N-1 =¥ 1 N-1
where X, = N1 Z k=1 Xz 29 X, = R L ker XKowenez TPE 2djusted

~

sample means Xl and Xz differ from Xl and Xz by the exclusion of the ob-
servations X and XZN, respectively. Therefore, the moment estimate of
1 $(1) is not the same as its conditional LS counterpart, ¢ . Aside
from the difference in means, the denornmator of $m contains one addi-
tional term as compared to that of ¢ . It should however be pointed out
that, for large N, these differences can easily be shown to be negligible.
Also the LS estimate of the constant term in regressmn will be X -
¢ X Therefore, by this constant, B, v = 1, 2, in S are being esti-

mated by X rather than X The moment estimate of o (1) is /\2(1) o(l)

(1){7\ (1), which reduces to

A2 1 [N = \2 w2 V& = \2
ca(l) SN kZo(XZ‘“l - Xl) - [31 ] kzo(xzuz - Xz) :

The conditional ML estimate of O‘Z(l) is ;:(1) = §:/(N—1), which can be

written as
N-1
~2oy 1 _ ~(1) _ %2
o) = 11 kzll(xz“*‘ S D &) i
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1 N o2 Dz e
< w3 kzl(xz‘“‘ - %)% - 18" kzl(x

o N2
1 2(k-1)+2 XZ)

It may be seen that each of the two summations in 6\‘;(1) contains one addi-
tional term as compared to those in ;:(l). The two estimates also differ
in terms of estimates of B, and ¢in, and also in terms of the divisor
term. Therefore, the moment estimate of o‘:(l) is not the same as its con-
ditional ML counterpart. Again, the difference will be negligible for

large samples. n

+More, generally, for any, PAR model, it can be shown that, for
seasons with a, = 0, the conditional ML estimates of parameters are iden-
tical with the moment estimates, but for seasons with av > 0, there are

slight differences which are negligible for large samples.

Generalization of the above results to the univariate PARw(p(v))
process, which is defined by (4.5) with m = 1, is straightforward. More
precisely, on the basis of an observed seasonally mean-subtracted realiza-
tion, Xl, ..., X , it can be shown, in analogy with (4.9), that the con-

Nw
»
ditional sum of squares, S, is written as

N-1 » N-1
. _ W ¢ 2 2
s = Z 2 a Z Z (kaﬂ) ¢1 ka+v-1 ¢p(V)ka+V-p(V))
=1 k=a, V=1 k=0
»
= ZS ,
v
v=1

where «, is as defined by (4.12). It should be noted that S:, the sum of
squares for season v, contains only akw+v terms for season v with k = o,
..» N-1, which do not contain any unknown observations like Xo, X_l, X_z,
. For e):ample, for a PAR (2 4) process, for which a = 1 and «, = 2 by
(4.12), Sl contains (as,as,...) and S contains (a6,a8,...), because a,
a, and a, involve unknown observatxons (Xb'x—x)’ (XO.X_I,X ) and (X )

respectively. The conditional likelihood function L‘ = g (X3 Xs X6 X7
. X IX X X) can be obtained from the pdf f(a 3851330023 Nw) with

a umt Jacoblan. The exact likelihood function, L, can be obtained as L =
. . *
g(Xl,...,XNw) = L h(Xl,XZ,X4), where h(Xl,Xz,X4) is the joint pdf of X,
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X2 and X4. It can be shown, in the same manner as followed for the PARw(l)
model discussed previously, that the conditional LS and conditional ML
estimates of the ¢’s are the same, both methods being based on minimizing
S. seasonwise with respect to these parameters. Multiple regression
methods can be employed directly for this purpose. The conditional ML
estimate of o':(v), the white noise variance for season v, can again be

obtained as

~2
O‘a(V) = N_a £
v

w.here: §; is the ‘estimated sum of squares for season v, which is defined as
Sv above but ‘with ¢’s replaced b)'r their conditional ML estimates, and N -
«, is the number of terms in Sv' The results in Example 4.1 also carry
over to the univariate PARw(p(v)) model, as mentioned earlier, so that for

seasons v with a, = O, the moment and conditional ML estimates of ¢;w,

w)
oo ¢p(V)’

sample means Xv in regression. For seasons with @, > 0, the moment and

and o':(v) are identical and uv’s in S; are estimated by the
conditional ML estimates are again slightly different, and the means are
again estimated in a slightly different way, all these differences being
negligible for large samples. The moment estimates of the parameters can
be obtained from (4.6) and (4.7).

The least squares theory for regression (or more precisely gene-
ral linear model) involves the crucial assumption that the independent
variables are nonrandom variables. Therefore, the inferences there are
conditional on the given values of the independent variables. However,
most of the results in regression are valid for the case where the inde-
pendent variables are random, provided that the joint distribution of
dependent and independent variables satisfy certain conditions. A multi-
variate normal joint distribution is one such case. If the dependent and p
independent variables have a multivariate normal joint distribution, and
if N independent observation vectors are available from this joint dis-
tribution, then the regression coefficients estimated by LS are again (as
in the nonrandom independent variables case) ML and also uniformly minimum
variance unbiased (UMVU) estimates. The ML and UMVU estimates of the
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residual variance are again given as the sum of squares of estimated re-
siduals divided by N and N - p ~ 1, respectively, where 1 accounts for the

regression constant. For more details, see, for example, Ula (1983).

The independence and normality assumption on the white noise
terms in PAR models imply joint multivariate normality of the process
{kav)' However, any regression between these variables does not satisfy
the crucial assumption in regression theory about the independence of

observation vectors on these variables, as {kav) is a correlated pro-

cess. However, for the PAR (p(v)) process, X = ¢Vx + o+
) w kWY 1 k-1
¥ 4 N + ‘ i N
¢p(V) K whv-ps - a s the observations on the vector (kav X -
X } for k = a, ..., N -.1 for a given season will be at least
k+P-p(V) v

w - p(v) time units apart. Therefore, if w is large and p(v) is relatively
small, the observation vectors will be very weakly correlated due to the
decaying nature of the autocorrelation function. The PAR case has an ad-
vantage in this sense over the AR case, where no separation is available
between the observation vectors. The different nature of time series and
regression estimates can be clearly seen from the fact that conditional LS
estimates for ¢iw in PARw(l) model, for example, are exact ML estimates
under regression assumptions but they are only conditional ML estimates
under PAR assumptions. Also the UMVU property, which is valid under re-
gression assumptions, can not be attached to conditional LS estimates
under PAR assumptions. As far as the white noise variance is concerned, a
regression-type estimate (as we will call it) can still be defined for the

univariate PARw(p(v)) model as

where the degrees of freeciom df. = N - » ” p(v) - 1, in which N - «, is
the number of terms in Sv’ p(v) is the number of independent variables in
regression, and 1 stands for the regression constant. This estimate cor-
responds to the UMVU estimate of the residual variance in regression. The
ML estimate of the residual variance in regression is obtained by using
d.f. = N - av in the above formula, which then is the same as the condi-

tional ML estimate, 3‘;(12), of 0’:(1)). For the univariate PARz(l) model, for
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example, the regression-type estimates of ¢ (v) are o (l) S:/(N-B) and
- (2) S /(N-2), as @ = 1, @ = 0 and p(l) = p(2) 1. For the same
model. the conditional ML estimates of o (v) are o (1) =S /(N—l) and
;Z(Z) S /N. It had been shown in the context of AR models (Fuller, 1976:
337) that the regression-type estimator of the white noise variance is
consistent. Also, in the same context, Jenkins and Watts (1968) suggest
that the regression-type estimates are more appropriate.

A further generalization to the more general case of an m-variate
PARw(p(v)) model can also be made. Here, the appropriate regression model
to be adopted for conditional LS estimation is the multivariate multiple
regression: model, and the general form of the conditional sum of squares,

in ahalogy with the univariate case, is given by

S’ m Sl
Z z B0+ ke v Z Z vy’
V=1 k=a, v=1 }=1
_ _ g _ _ s
where, by (4.5), 3 oy = kaw ‘b ka+v-1 Qp w )kaﬂ)-p(v) is ar:
m-variate error vector which can be written as (a v, @ ), S
ku»v, kW+,m v

is again the sum of squares for season v, is the sum

Z k=0 ka»v,j
of squares for season v for the j-th dimensmn, and o, is as def ined by
(4.12). Tt can be seen that rmmrmzmg s’ with respect to 0 i=1,
.., p(v), reduces to minimizing S separately, and it can also be seen
that minimizing S with respect to the elements in the j-th rows of tb

matrices reduces to minimizing S - Hence, the conditional LS estimates
of the ¢’s in each dimension are those which minimize the sum of squares
for that dimension. For the adoption of the multivariate regression model
for minimization of S;, the m components of the m-dimensional vector
wa, in (4.5), are treated as the set of dependent variebles. while the
mp(v) components of (ka«»v—x zwv-p(v))r
variables. This is also in analogy with conditional LS estimation in vec-

tor AR processes (Fuller, 1976: 339). It can be shown that if the error

stand for the independent

seey

vectors are independent and normally distributed, then the conditional ML

estimates of QW) cees Q(w
p(V)

respect to these parameters and therefore, they are again the same as the

are again obtained by minimizing S; with

conditional LS estimates.
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The conditional LS and conditional ML approaches for the m-

variate case are clarified in the following example.

(V)X

EXAMPLE 4.2. Consider the bivariate PAR (1) model X = @ +
w kW+V 1 ke

a , which can be expressed as

kWD
8% (v)
kaﬂ),l - ¢11 ¢1z kaﬂ)—l,l + akww.l
w W )
Xka»v, ¢21 ¢2z kaw-l, akww.
Then, viewing ka+v,1 and Xka»v,z as the dependent variables, and
kav%l’ly and . xﬁmv-l,i as the independent variables, the following two

regression equations are equivalent to the above matrix equation

V) (v)
X = ¢! + ¢ +a
kW+V,1 11 T kw+p-1,1 12 T kw+v-1,2 kW+D,1
v v
X = ¢( ) + ¢( ) + a .
kW+V,2 21 " kw+p-1,1 22 " kWwp-1,2 kW+V,2
. v » » » » *
Based on this, the conditional sum of squares § = S1 + 82 , and Sv = Sv X
. . i N-1 2 > N~1 2 ’
+ S with § = a and S = a for v =1, ...,
v,2 V,1 k=0 k4,1 V.2 k=0 kWi1,2

w, where, by (4.12), @ = 1 and @,
)

O for other v. Note, for example,
and ¢;? only, and that the conditional LS
estimates of them are those which minimize S; X This explains the fact

that the conditional LS estimates of the ¢’s in each dimension are those

»
that S is a function of ¢(v
V.1 11

which minimize the sum of squares of that dimension.

For the conditional likelihood function of (Xz,...,Xw) given Xl,
the system of equations (4.8) applies for the m-variate PARw(l) case with
scalar quantities now being replaced by their vector or matrix counter-
parts. Assuming that the error vectors (akwv} are independent and multi-
variate normally distributed with zero mean vector and variance-covariance

matrix Za(v), the joint pdf of (az"“’anw) is

@ N
exp{— 2 Z Z 3 e 2 (v) akww}
Va1 ke
f(a_,...,a_ ) =
2 NW

»

W
)m(Nh)~1)/2 -1/2 N/2

(2n 1z (1) Tz )l
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where [.| stands for determinant. Now, conditioning on Xx’ the Jacobian of

the transformation from (az,....an) to (Xz""’xnw) is one, and therefore

the conditional likelihood function L' = g.(XZ,...,XNwIXI) is the same as
. (v)
the one above but with N replaced by kav - ¢1 wa_l. It can then

be shown that

- m(Nw-1) N @& 1 2 e
L’ = - T n(2n) + _znlz wl - - Zmlza(v)l - -z-vzlsv,
where
s - N’f x - oV ¥ z oy x - oWx )
v . L, kw L K- kW+V 1 kw17

P . . ) se s s e
Maximizing enl. with respect to <bl reduces to minimizing Sv . It can
P - . ) (V)
also be shown that minimizing Sv with respect to ¢11 and ¢12 , for

N-1 (X -

example for the bivariate case, reduces to minimizing Z DV > S
v »

sk b

11 k+p-1,1

(see Anderson, 1984: 287-291). Therefore, the conditional LS and condi-

»
w )2, which is the same as S defined above
12 “kwv-1,2 v,1

tional ML estimates of @:w are the same. It can also be verified that for
seasons v = 2, 3, ..., w, for which @, = 0, the conditional ML estimate of
tb:w is the same as its moment estimate, which can be obtained from (4.6),
but the two estimates are slightly different for season 1 for which « =

1. It should be noted that for the univariate case, S;‘ reduces to

S‘/cz(v). =
v a

If we denote the conditional LS or ML estimates of 0 cees
d’w) by <I> cees <I>(V) then it can be shown that the condxtional ML

p(V) p(vy
and regression—type estimates of the white noise variance-covariance ma-

trix for season v, Za(v), which were given earlier for the univariate

case, are expressed as

§a(v) =

(4.13)

following from Anderson (1984: 291), and
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~ S,

Ea(v) - d.f. s (4-14)
respectively, where d.f. = N -~ @, - mp(v) - 1, the mxm matrix 'S;“ is
given by

~um -

Z 3w ko’
. ~ _ R _ _ oz

and, according to (4.5), 3 = ka+v @1 wa_l Op o
va_p o 1S the estimated error vector. The d.f. in (4.14) is explained

L2 2]
as the number of terms in S o N - o minus the number of independent
variables in .the multlvanate regression equation including the constant

term, mp(v) + 1. For the bivariate PAR (1) model, for example, ia(l) =

g

~Be n ~
S, /N, S:au) =S
2 and p(l1) = p(2) =

'lr

§:“/(N—1), £ (2 /(N-4), and “f: 2) =§ * /(N-3), as

a1=1,a2=0,m

1.

The regression-type estimate §a(v)', (4.14), corresponds again to
the UMVU estimate of the residual variance-covariance matrix in multivari-
ate regression (Anderson, 1984: 291). The ML estimate of the residual
variance-covariance matrix in multivariate regression is again the same as
the conditional ML estimate fa(v) 3n (4.13) (Anderson, 1984: 291). It
should be noted that the matrix S reduces for the univariate case to
§:, the estimated version of . S The relations between the conditional ML
) and Z_(v) are still valid for the

p({V)
m-variate case. They are the same for seasons v with o, = 0, but slightly

and moment estimates of 01 s eeey O

different otherwise. The moment estimates of the parameters can be ob-
tained from (4.6) and (4.7).

In Section (4.6), the relations between the methods of moments,
conditional LS, and conditional ML for PAR models are verified for some
simulated examples. In those examples, the regression-type estimate,
(4.14), and the moment estimate, (4.6), for the estimation of the white
noise variances are also considered and compared, and then for some uni-
variate case a comparison is also carried out between these and condition-
al ML estimate (4.13).
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So far we have discussed the conditional LS approach in PAR
models and its relations with the method of moments and conditional ML
estimation. Now we bring some insight into the exact ML estimation in PAR
models through the univariate PAR | (1) model, wa = ¢§kamv-1 ta
The conditional likelihood functlon L =g (X XNwIXl) for this case
was already obtained earlier in this sectlon. The exact (unconditional)
likelihood function L can be obtained as L = g(X, .., X ) = L'h(X),

where h(Xl) is the marginal pdf of Xl, which belongs to the first season.

It can be shown that the general linear process form, (3.3), of
kau" following Ula (1993), is given by

‘ n (1) (W)
= + +
Ko+ ke ¢1 A -1+ ¢1 ¢1 (k-l)ww-l
(1) ,(w) (w-l) (V)
+ ..
¢ ¢ ¢ (k DW+-2 (vu1¢1 (k 1)+1
(1) (¢%] (v)
+ . +
¢ (an¢l Ja (k- 2)w+w (v]=1-1¢1 A k-2)041

®)) w2 (Y (wa-2)
[ z (E 1¢ (k J)w+1] 4 ¢1 VZZ{(EEx ¢1 )

0
z (2)
- 1R 17 Pmpow [

w-v
where 21-11 is taken as 1 for v = w. Then, it can easily be shown that

1 (§)) (w+1-8)
Var(Xk )=V=—w—2{0‘a(l)+(¢)2[el¢ ] (v)}

W ! w)
-1 ¢)

Therefore, kaﬂ is N(ul,Vx), and the mean subtracted X1 used in the like-
lihood function is N(O,Vl).

Multiplying the conditional pdf g'(xz,...,xm

the marginal pdf of X1 gives the exact likelihood function

IXI), (4.10), with
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-Nw/2 o 2 -N/2 2,,y1~1/2 1 Xl & Sv
L = (2n) [Ill o'a(v)] [Vl/cra(l)] exp{- [ + ]},

. 2 \' v=1 u':(v)
whose natural logarithm is
v © x? w S
L = -y—(fln(Zn) S S NS N E-[ Z&wz(v)] - .1 ): 2z
2 2 2 2 a 2 2
oa(l) v=1 ZV1 v=1 o'a(v)

As Vl is a highly non-linear function of all the ¢’s (it also involves all
0‘:(1))), it is obvious that maximizing the above expression with respect to
¢'s ilnvélvés ‘solving ‘w non-linear equations simultaneously. Nevertheless,
the desired dccuracy in the estimates specifies what kind of simplifica-
tion or approximation is allowed on the likelihood function. Clearly, the
estimates based on the exact likelihood function as it is should be bet-
ter than those resulting from any such approximation, in the sense that
some information are lost by such approximation. The amount of this loss
is an important question and should be investigated for PAR processes,
although it is shown to be negligible in the context of AR(l1) process
(Cryer, 1986: 136). If the second term in &nL which involves V1 is neg-
lected, which is usually dominated by the other terms, maximization of the
log-likelihood function with respect to the ¢'s is equivalent to the mini-
mization of Xf/V1 + th;’l S:/o-;(v), which may be named as the uncondition-
al sum of squares function in analogy with ARMA estimation. This function
is again non-linear in the parameters and the estimates based on this have
to be obtained through numerical iteration (for a similar discussion in
the context of AR(1) model, see Cryer, 1986: 137). Existence and conver-
gence of solutions in this case are additional problems which need inves-
tigation. A further approximation is to neglect the first term Xf/V1 in
the unconditional sum of squares function, which is usually dominated by
the second term in this function. In this case, the estimation of the ¢'s
becomes identical with the conditional ML estimation discussed earlier in
tl:is section. In this case, note also that the estimates of o':(v) become
§v/N’ for all v, which differ from the conditional ML estimates, (4.13),

only for the first season.

In view of the above discussion, it is foreseen that in higher
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order PAR processes, the terms corresponding to those involving Vl in the
likelihood function above will be much more complicated, and it may be
very difficult, if not impossible, to obtain explicitly the exact likeli-
hood function. For example, for the PAR2(2,4) model considered earlier,
the variance-covariance matrix of (X1’Xz’x4) is needed, and obtaining of
which is a difficult task. The additional complexity of the multivariate

case is also obvious.

Finally, it is worth mentioning that in the context of ARMA model
estimation, Box and Jenkins (1976) developed an iterative technique for
the computation 'of  unconditional: sum of squares function, without having
the néed for :its explicit expr'ession,_ which is mainly based on an import-
ant concept, called backcasting. The essence of this concept is that a
stationary ARMA process can be represented in two equivalent forms, namely
the forward and backward forms. It then allows the unattainable initial
error terms, like a in (4.8) for the PARw(l) model, to be obtained by
back-forecasting (backcasting) using the backward form of the model. This
technique, however, has no counterpart for PARMA models yet. The main
problem here is that a backward form of a PARMA model can not be related
to its forward form, (1.5), in the same manner as for ARMA models due to
seasonality. We believe that this problem deserves to be considered for

future research.

4.5 Conditional Least Squares and Maximum Likelihood Estimation

in PMA Processes

The exact likelihood function of any PARMA model in which a MA
part is present, as that of an ARMA model with a MA part, is very compli-
cated. The conditional version of it is relatively less complicated but
still difficuit to maximize. Vecchia (1985a) followed a similar approach
to that of Box and Jenkins (1976) and developed an algorithm for approxi-
mate conditional likelihood estimation for univafiate PARMA models. If AR
components are present, this algorithm assumes that some initial values of
the realization are fixed. For pure PMA models, it obtains the exact ML

estimates, but by setting the unattainable error terms (as a, in the next
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example) to their expected values which are zero. This algorithm, however,
was tested only for univariate PARMAw(l,l) process, for which explicit
formula of the conditional likelihood function is still obtainable, but is
extremely difficult to apply for higher order PARMA models, as it is very
difficult to obtain this function there.

In Section (4.2), we exposed the difficulty of the method of
moments for estimation of a PARMA model with a MA part, and also mentioned
its deficiencies as observed from some previous simulation studies. In
this section, the exact likelihood function for a PARMA model with a MA
part is investigated through the simple case of a PMAZ(I) model along with
its conditional version and its relations with the conditional LS ap-

proach.

The univariate PMAz(l) model can be obtained from (4.1) by taking

w) )

w = 2 and setting ¢l to zero, and letting eiv = ev for v =1, 2, as

X = a - 06a
2k+1 2k+1 1 2(k-1)+2

X = a
2k+2 2k+2

6 a .
2 2k+l

where, for all integers k and v = 1, 2, (a2k+v} are assumed to be indepen-
dently distributed as N[O,o':(v)]. Based on the realization Xl, cers in’
we have the following equations

X =a ~06a
1 1 10

X =a -06a
(4.15)

X =a -806a
2N 2N 2 2N-1

Then, conditioning on a the conditional sum of squares here
becomes ‘S’ = ?:1 a?. Note that, in this case, S’ is a highly non-linear
function of the parameters. This can be seen by writing aJ in terms of Xj,
Xj-x’

the expected value of a, a = X, a =X + 06X, a =X + 686X +
o 1 1T 2 2 21 3 3 12

ceny X1 for j =1, ..., 2N. For instance, setting a = 0, zero being
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- + ) s e e . .
elele, a4 X + 0 X + elezxz ele:xl, etc. Also, minimizing this sum
of squares w1th respect to, say, 91 does not only involve the error terms
for the first season, but actually (as,a“,...,am) are all involved. That

is, although, in analogy with the conditional LS approach in PAR models,
2

aka , this ap-

it is possible to write S = S + S where § -z
v k=0
proach does not help much here since each of S’ and S is a function of

both B and 8 2 so that ES /89 = as /ae + BS /69 #® 8S /69 Therefore,
S can not be mlmmlzed in a seasonwise manner as in PAR models,, and also

regression can not be employed due to non-linear nature of minimization.

To .obtain the exact likelihood function, we follow Vecchia

= T = T *
(1985a). Let Y = (Xl,...,XZN) , A = (al,...,aZN) and A = a. Then the
system of equations (4.15) are rewritten in matrix notation as Y = SA -
MA®, which in turn implies that A = S(Y + MA"), where S and M are, re-

spectively, 2Nx2N and 2Nxl1 matrices defined as

1 0 o 0o o0 o
-8, 1 0 0o 0o o
0o -8 1 o o0 o
S = 1
o 0 o -6 1 0
o o o0 o -0 1|

and M = (91,0,...,0)T.

The joint pdf of Ay s B is given by
h(a,...,a,) = 0™ oo @)1 exp[-—;—ATD_IA],

where Dzu = diag[o’;(l),wz(Z),oz(l),...,0':(2)], which i»in turn is the same
as the conditional joint pdf of LRI S given A, due to independence
of the error terms. The Jacobian of the transformation from A to Y, given
A', is IS?] = 1. Then the conditional joint pdf of X, « X given A

2N
(or the conditional likelihood function) is given by
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L = g"(v1ah) = en)™ [c:u)cr;(z)r“’z

X exp ['—;- (v+MA" (ST DS (Y4MA" )]. (4.16)
Now, for the exact likelihood function, the marginal pdf of A’ = a, is
needed. Note that a, belongs to the the second season, therefore, a is

N[O,o':(z)]. Hence, multiplying L by the pdf of a gives

£(Y,A") = (2n)3N+1)/2 [¢§(l)¢:(2)l_wz [wz(z)l“’z

~1_-1 1

.2
-1 {E_)_ + (Y+MA" YT (s) D 'S (Y+MA')}]'

X exp[ =
' ¢ 0:(2)

4
.

which may be rewritten as

£IY,A") = (2m) 3N*1)72 IDII-Vzexp ['% (AY-HA’)TD;‘(AY-HA')],
where (D)) =  diagle’(2), c¢2(1), ..., ©(2)], A =
17 (2N+1)X(2N+1) a "’ a oo a (2N+1)XN
0 r 1 A* T -1 -1 T.-1
[-;:-l— , and H(2N+l)>(1 = [ —S-IM]. Let A = (H D1 H) 'H Dl AY. Then it

can be shown that the exponential term in f (Y,A‘) above is written as
exp [’% {(AY-HQ’)TDII(AY-HA') + (A'-ﬁ')’(HTD;‘H)(A’-ﬁ')}],

which means that f(Y,A") = fl(Y)fz(A‘m, and that fz(A’m is NIA®,
(HTD;IH)'II. Thus, the exact likelihood function, f,(Y), is written as

-1/2

L= (zu)'"lulr"zanlm exp (‘% (AY-HA’)TD;‘(AY—HA')].

»
-A

(2N+1)X1 = [ ﬁ

Furthermore, it can be shown that (AY-H.Q‘) ] which implies

that in the likelihood function above

A% .2
exp [-—é— (AY—Hﬁ‘)TD_l(AY—Hﬁ')] = exp [1{—(—4—)— + ﬁTD'lﬁ}].
1 2 2
c_(2)
a
. . T 2 A1, T -1,+1
Besides, it can be shown that H DlH = l/O‘a(Z) + (S'M)D (S M) and that

-1 2 N.T . .
S M = (61, 9192, 91(9162), (9192), . (9192)). Then it follows with

simple manipulations that
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=V

N.

2 2N 2(N+1)
T _ 9 [ 1-1(ep0) ] . 1 [ 1-1(88) ]
2 2
O‘a(Z) 1 - (9192)

Hence, the exact likelihood function L reduces to

_ N [ 2.0y 2.,\-N/2 2,172
L=f(Y)=(2m)" [o (o (2)] v, ()]

A®*\2
X exp [-—1—{——&- + ﬁTD'lﬁ}].
2 2
c (2)
a
We have seen earlier that the conditional sum of squares function
for the' PMA‘Z(-I)' model is a 'non-linear function of the parameters, and
minimizing this function requires solving a system of non-linear equa-
tions. The exact likelihood function above is clearly more complicated and
its maximization is also more difficult. This fact carries over to the
conditional likelihood function L' given by (4.16). To see this, it can be
shown that the natural logarithm of L' reduces to

*» *

b N 2 2 1 Sl Sz
L = "NM(Z‘I[) - —2—'{2110‘ (1) + ino (2)) - -—-[ + ].
a a 2 2 2
O‘a(l) o‘a(z)

Maximizing énL” with respect to 8 , v = 1, 2, gives o_’(1)3S,/30 + o7°(2)
x as;/ aev = 0. On the other hand, minimizing s = s: + S; with respect to

Ov, to obtain the conditional LS estimates, gives HSI/GOV + SS; /aev = 0.
Therefore, the conditional ML estimates of ev are not the same as condi-
tional LS estimates unless 0‘:(1) = 0:(2). For PAR models, on the other
hand, it was shown that the conditional ML estimates of ¢’s are the same
as conditional LS estimates. Besides, maximizing L’ with respect to
o‘:(v) gives ;:(v) = §;/N for v = 1, 2, where §; is the estimated sum of

squares for season v, whereas in the case of P_ARZ(I) model, the condition-

al ML estimates of 0';(12) were given as ;;(1) = §:/(N-l) and ;':(2) = §;/N,

;:(1) being slightly different for the two models.



4.6 A Comparison of Estimation Methods for PAR Processes Through
Simulated Examples

4.6.1 Simulation Results

In this section, we consider three different PAR models for simu-
lations. We denote them, for simplicity, by Model (1), Model (2) and Model
(3), and following (4.5), they are defined as follows:

(1) The univariate PAR (1;3;1;2) model with ¢ = 0.9, ¢ = 0.9,

1
@ _ (2 _ @ _ @ _ _ 4 _
q'bz 8, ?3 ,_ i0.’7, ¢1 1.2, ¢1 0.5, ¢2 0.6,

(2) The univariate PAR (1) model with ¢” = 14, ¢ = -0.7, ¢¥ = 14,

1 1
¢:4’ = -0.9,

(3) The bivariate PARZ(I) model with

w_, _[0o9 -0.7 @ _ . _[os o2
% “1’1‘[0 0.6]’ i "°z‘[o 0.6]'

Also, in all cases, a zero mean process is assumed. That is, B, = 0, for v

=1, ..., W.

It is readily shown, in view of Proposition 2.1, and by using the
computer program listed in Appendix A, that the three processes defined by
the models above are periodic stationary. More precisely, the
lumped-vector process corresponding to each of the above models follows a
4-variate AR(l1) model, and the eigenvalues of l.._IUl in Theorem 2.1
corresponding to Models (1), (2) and (3) are, in modulus, (0, O, 0.84, 0),
(0, 0, 0, 0.97) and (O, O, 0.45, 0.36), respectively, which are all less
than 1.

Our aim here is to compare estimation methods for PAR processes
through simulation. We investigate the behavior of these methods, for
various cases, such as the case of varying orders, as in Model (1), the
case of fixed orders, as in Model (2), the case where the parameters are

close to the boundary of the periodic stationarity region, as in Model
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(2), and the bivariate case, as in Model (3). The cases of fixed and vary-

ing white noise variances are also considered.
The simulations are performed for the following cases:

(a) Model (1) with 0':(12)

i
=
<
[
=
*

(b) Model (1) with o':(l)

il
L
wiw
)
]
>
5%
«
]
©
o
q
p_N
&
]
N

(c) Model (2) with o:(v) =1, v=1, .., 4,

(d) Model (3) with Za"(l)

matrix.

b a(2), =, Iz’ where I2 denotes the 2x2 identity

In each case, n = 100 realizations each of length N (years), i.e, Nxw
values (or vectors), for N = 30, 100 and 300 are simulated assuming that
the white noise terms are independently and normally distributed with zero
means. Then, for each parameter, the average values (over n realizations)
of its estimates and their corresponding root mean squared errors (RMSE)
are obtained for different methods. We use the common definition of the
RMSE, which is defined in terms of estimating a parameter ¢ by an estimate
¢ as
. 1 n 2 172
RMSE(¢) = [:X‘% - ¢)] ,
¢ 1=1

-

where ¢l is the estimate of ¢ for i-th realization, i = 1, ..., n. The
average estimate is then (l/n)z"_'l(éi). The simulations are carried out

using the programs listed in Appendix D.

The simulation results for cases (a), (b), (¢) and (d) are sum-
marized in Tables 4.1, 4.2, 4.3 and 4.4, respectively. In Table 4.5, case
(a) is again considered for a comparison of white noise variance esti-
mates. Tables 4.1- 4.4 give the average moment and conditional LS esti-
mates for all parameters together with their RMSE. The conditional LS
estimates of ¢’s were obtained by regression. As discussed previously, the
conditional LS method does not provide estimates for white noise vari-

ances. However, we use a regression-type estimate instead, as given by
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{(4.14) for the multivariate case. In this section, we will refer to this

estimate also as the conditional LS estimate.

Table 4.1. The Average Moment and Conditional LS Estimates and Their RMSE
for Univariate PAR,(1;3;1;2) Model with ¢ = .9, ¢ = .9, 9, = .8,

(2) . (3) (4) (4) 2
87 =7, ¢ =12 ¢ =560 =6 W =Lv=1 .., 4
(a) N=30
Moment Estimates |Cond. LS Estimates
Parameters & (RMSE) & (RMSE)
T TR 594 9527
¢ (.187) (.183)
5 (2 @ .873 .76 645 | .896 79T .679
. %% % | (.289)(.393)(.086)| (.226)(.307)(.064)
Y 1,202 1.202
¢, (.063) (.063)
TSR —.505 554 =505 553
¢, ¢ (.208)(.251) (.208)(.251)
) k(2 985 1. 416 995 1.024
a a (.277)(. 669) (.291)(.277)
N 947 . 915 1.015 1.016
a a (.235)(.236) (.246)(.246)
(6) N = 100
Parameters Moment Est imates Cond. LS Estimates
& (RMSE) & (RMSE)
Y 896 504
¢, (.090) (.090)
(27 (20 @] .930 .753 682 | .913 . 776 .690
¢ % % | (.112)(.142)(.033)] (.100)(.119)(.031)
T} 1.202 1.202
¢, (.030) (.030)
TSR —.514 609 —.514 . 609
¢, ¢ (.099)(.120) (.099) (. 120)
2 o2 1,007 1,164 1.0iZ 984
a a (.150)(.302) (.150)(.137)
23 o (&) 986 .970 1.007 1.000
a a (.142)(.140) (.145)(.141)
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Table 4.1 (cont’d)

(c) N = 300
Parameters Moment Estimates [Cond. LS Estimates
& (RMSE) & (RMSE)
(1) .904 . 907
¢, (.055) (.054)
5 (&) @ .903 794 695 | .897 .804 698
¢, % % | (.056)(.078)(.014}| (.057)(.076)(.013)
Y 1,199 1,199
¢ (.015) (.015)
YRS 504 .603 =504 .603
¢, ¢ (.057)(.072) (.057)(.072)
) %2 992 1. 091 992 1.009
a a (.072)(.152) (.071)(.090)
T 2. .993 995 1.000 1.005
¢, (3) o (4) (.074)(.073) (.074)(.073)

Table 4.2. The Average Moment and Conditional LS Estimates and Their RMSE

for Univariate PAR (1;3;1;2) Model with ¢;" = .9, ¢:2’ = .9, ¢;2’ = .8,

(2) ) @ _ @ _ 2\ _ 2,00 _
3.2 = 7, 2 = 12, ¢V = -5, ¥ = .6 o2 = 1, 022) = 4,
2 2
o‘a(3) =S, o‘a(4) = 2.
{a) N =30
Parameters Moment Estimates Cond. LS Estimates
& (RMSE) & (RMSE)
D 896 926
¢, (.138) (.134)
(20 (2) (2| .925 .740 .630 | .843 .837 .655
¢, % % | (.430)(.512)(.109)| (.365)(.417)(.086)
3 1.196 1.196
¢, (.028) (.028)
TSRS -.507 .568 -.507 .568
¢, 9 (.364)(.441) (.364)(.441)
() o) 1.123 4.500 1,070 3.917
a a (.334)(1.531) (.284)(1.139)
23) o4 459 1.748 491 1.942
a a (.125) (.535) (.127) (.528)




Table 4.2 (cont’d)

(b) N = 100
Parameters Moment Estimates |[Cond. LS Estimates
& (RMSE) & (RMSE)
D 595 903
¢, (.065) (.064)
(27 (2 | .950 .734 677 | .908 782 684
¢, % 5| (.226)(.264)(.043)| (.201)(.230)(.038)
Y 1.199 1,199
¢ (.013 (.013)
YA =532 632 —.532 . 632
¢, 9 (.184)(.219) (.184)(.219)
z 2 572 4.317 958 3.963
o (1) 0, (2) (.140)(.830) (.146)(.561)
478 1.933 488 1.992

. z, ; , 2 PR
IcaA(3) ma(4)

(.067)(.266)

(.066)(.266)

(c) N = 300
Parameters Moment Estimates |[Cond. LS Estimates
& (RMSE) & (RMSE)
D 896 7500
¢, (.043) (.044)
(70 () @ 919 .762 692 | .906 779 .695
¢ % % | (.138)(.152)(.019)] (.132)(.144)(.018)
Y 1,199 1,199
¢, (.006) (.006)
TYREATS 516 .618 -.516 .618
¢, % (.102)(.121) (.102)(.121)
2 ot 994 4,155 989 4.016
a a (.079)(.404) (.081)(.322)
495 1.975 398 1.995

2 2
o‘a(3) oa(4)

(.048)(.158)

(.048) (. 158)
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Table 4.3. The Average Moment and Conditional LS Estimates and Their RMSE

for Univariate PAR (1) Model with ¢ = 1.4, ¢2 = -7, ¢ = L1,
¢:‘” = -.9, c;(v) =L v=1 .. 4

Parameter Moment Est. & (RMSE) jCond. LS Est. & (RMSE)

N=30 | N=100 | N=300 | N=30 | N=100 | N=300

(1) [ 1.263 | 1.379 | 1.390 ] 1.355 | 1.396 | 1.396

¢, (.170)] (.034)| (.015)] (.080)| (.019)] (.008)

2y [ -.674 | -.699 | -.696 | -.674 | -.699 | -.696

¢, (.049)| (.009)| (.006)| (.049)| (.009)] (.006)

(3) [ 1.057 [ 1.094 | 1,097 ] 1.057 | 1.094 | 1.097

¢, (.087)] (.016)| (.009)| (.087)| (.016)| (.009)

(47 | -.859 | -.894 | -.896 | -.859 | -.894 | -.896

¢, (.073)| (.018)| (.008)| (.073)| (.018)| (.008)

221 | #-573 [ 3.312 | 1.675 950 599 7996

a (5.063)[(3.141)| (.976)| (.263)| (.135)] (.073)

w%(2) | 935 | 972 | 1.004 [ 1.002 992 | 1.011

a (.257) (.137)} (.090) (.267)| (.137)] (.091)

%3y | 904 | .992 | .994 | .968 | 1.012 [ 1.001

a (.251)] (.136)] (.083)| (.250)| (.140){ (.083)

224y | - 923 | 1.004 976 | .989 | 1.024 983

a (.251)f (.134)] (.073)] (.257)| (.139)] (.072)

Table 4.4. The Average Moment and Conditional LS Estimates and Their RMSE

. 9 - S5 .2
for Bivariate PARZ(I) Model with @1 = [0 .6]’ ¢2 = [0 .6]' }:a(l) =
5 (2) = [1 0].
a 0
(a) N = 30
Par Moment Moment Est. Cond. LS Cond. LS Est.
’ Estimates (RMSE) 4 Estimates (RMSE)
® .826 -.T7I19((.167) (.162) .858 -.743](.159) (.166)
1 -.001 .5211(.178) (.194)| -.000 .5371(.183) (.192)
® .453 .2081(.128) (.175) .453 .208](.128) (.175)
2 .035 .603((.122) (.154) .035 .603[(.122) (.154)
T (1) 1.045 -.024((.277) (.206)}] 1.034 .010((.252) (.215)
a .946 (.311) 1.011 (.321)
s (2) .904 -.005[(.249) (.164)] 1.004 -.006][(.256) (.182)
a 0.878 {.250) .975 {.244)
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Table 4.4 (cont’d)

{(b) N = 100

Moment Moment Est. Cond. LS Cond. LS Est.

Par. Est imates ( RMSE) Estimates (RMSE)
Q 898 -.697 [(.069) (.085)] .909 -.706 J(.071) (.085)
1 .002 .564 |(.082) (.095)| .002 .570 [(.083) (.093)
> .478 .183 [(.061) (.086)| .478 .183 [(.061) (.086)
2 .005 .582 |(.064) (.080)} .005 .582 |(.064) (.080)
s (1) 1.040 -.020(.152) (.106)] 1.028 -.006[(.143) (.104)
a .988 (.153) 1.005 (.151)
s (2) .966 -~.002|(.149) (.097) .996 -.002]|(.150) (.100)
a .954 (.153) .983 (.151)

(c) N = 300

Par Moment Moment Est. Cond. LS Cond. LS Est.

Estimates (RMSE) Estimates (RMSE)
® .894 -,691{(.045) (.047) .897 -.693](.044) (.047)
1 -.004 .594((.046) (.046)] -.004 .596{(.046) (.047)
» .496 .202[(.032) (.045) .496 .202](.032) (.045)
2 .004 .589((.035) (.049) .004 .589](.035) (.049)
s (1) 1.010 .008((.078) (.058)] 1.009 .012](.079) (.058)
a .990 (.084) .996 (.084)
'z (2) .992 .003[(.079) (.057)] 1.002 .003[(.079) (.057)
a .992 (.073) 1.002 (.073)

Table 4.5 The Average Moment, Conditional LS, and Conditional ML Estimates

and Their RMSE for White Noise Variances for Case (a), o':(v) =1 v =1,

s 4

Meinod | N [ oZm cz(z)Parametezzta) c2(4)
a a a a

30| .985 (.277)|1.416 (.669)| .947 (.235)| .915 (.236)

Moments| 50]1.007 (.150)|1.164 (.302)| .986 (.142)| .970 (.140)

300| .992 (.072)|1.091 (.152)| .993 (.074)| .995 (.073)

Cond. |.30] :995(.291)]1.024 (.277)|1.015 (.246)|1.016 (.246)

LS 100{1.012 (.150){ .984 (.137)}1.007 (.145){1.000 (.141)

300| .992 (.071)]1.009 (.090){1.000 (.074)|1.005 (.073)

Cong. | 30| 926 (.280)| .883 (.265)| .947 (.235)| .915 (.236)

ML 100| .991 (.147)| .944 (.142)| .986 (.142)| .970 (.140)

300| .985 (.072)] .995 (.088)| .993 (.074)| .995 (.073)
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4.6.2 Discussion

The first conclusion that can be drawn from the tables above is
that, as expected, all methods seem to be satisfactory in the sense that
they produce estimates which are close to the actual values of the para-
meters. The differences between the estimates of different methods, if
any, are generally small, and negligible for large N, for both univariate

and bivariate cases.

We first summarize some theoretical results from Section 4.4 for

the relationships of various estimates for PAR processes:

i) Conditional LS estimates for ¢’s are the same as conditional ML

estimates.

ii) For seasons with «, = 0, the conditional LS estimates for ¢’s are

the same as moment estimates.

iii) For seasons with av # 0, the conditional LS estimates for ¢'s are
not the same as moment estimates, but they are close for large

samples.

iv) For seasons with a, =0 the conditional ML estimates of white noise

. 2 .
variances, aa(v) or Ea(v), are the same as moment estimates.

v) For seasons ocv # 0, the conditional ML estimates of o':(v) are not the

same as moment estimates, but they are close for large samples.

vi) The conditional ML estimate of o':(v) can be obtained from conditional
LS estimate (meaning regression-type estimate here) as

N-av-mp(v)-l

(conditional ML estimate) = Y {(conditional LS estimate).
v

This relation also applies to averages but not to RMSE.
Results (ii) through (vi} will be verified from the tables.

For the three models considered here, «, values, (4.12), are as
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follows:

Model (1): @ = = 1, @, =a =
Model (2): @ = 1, « =« =a =
Model (3): al =1, ozz = 0.

Although we assume a zero-mean process, we include a constant term in
using regression for conditional LS estimation of ¢'s, because due to
simdlation, the sample means may not be exactly zero. For instance, the
averages of the regression constants corresponding to each of the four
seasons in the simulations summarized in Table 4.1(a) are -.001, 0.009,

-.056, and .016, which are close to zero.

Result (ii) above is seen to be verified in Tables 4.1 and 4.2
for ¢:3’, ¢:"’ and ¢;", in Table 4.3 for ¢i2’, ¢;3’ and ¢i". and in
Table 4.4 for ® . Result (iii) is observed, for example, in Table 4.1c for
¢il). ¢:2), ¢;2)’ ¢:(32).
in Tables 4.1 - 4.4 can be obtained from the average conditional LS esti-

The average conditional ML estimates of variances

mates by using the relation in result (vi). Then result (iv) can be veri-
fied, in terms of average values, in Tables 4.1 and 4.2 for 0';(3) and
02(4), in Table 4.3 for 0':(2), 0";(3) and 0:(4), and in Table 4.4 for
Za(Z). Result (v) can also be observed in terms of average values, for

example, in Table 4.lc for o~:(l) and 02(2).

In Tables 4.1 - 4.4, the conditional LS estimates of ¢’s (which
are the same as conditional ML estimates, by result (i}) can be compared
with the moment estimates, for the cases where they are not identical (see
result (ii)), in terms of RMSE and bias. A measure of bias for any para-
meter can be obtained as Bias = |(average estimate of parameter) - (actual
value of parameter)|. It can be seen that, in terms of RMSE of a’s, in 27
out of 39 cases, which we will simply denote as 27/39 (69%), conditional
LS estimates are better, in 8/39 (21%) cases moment estimates are better,
and in 4/39 (10%) cases they perform equally 'well. In terms of bias of
$’s, in 28/39 (727%) cases conditional LS estimates are better, in 7/39
(18%) cases moment estimates are better, and in the remaining 4/39 (10%)
cases they perform equally well. Therefore, conditional LS estimates of

¢’s (which are identical with the conditional ML estimates) are superior
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to moment estimates (when the two are not identical) in terms of RMSE and

bias.

In Tables 4.1 - 4.4, the conditional LS estimates of variances
can be compared with the moment estimates. In terms of RMSE, in 21/54
(39%) cases conditional LS estimates are better, in 20/54 (377Z) cases
moment estimates are better, and in 13/54 (247%) cases they perform equally
well. In terms of bias, in 41/54 (767%) cases conditional LS estimates are
better, in 9/54 (17%) cases moment estimates are better, and in the re-
maining 4/54 (77Z) cases they perform equally well. Therefore, for vari-
ances, conditional LS estimates are superior to moment estimates in terms
of bias, but in terms of RMSE, they perform almost equally well. For sea-
sons with «, = 0, the conditional ML estimates of variances are the same
as moment estimates (result (iv)). For these seasons, in terms of RMSE of
variances, in 14/30 (477%) cases conditional ML estimates (which are the
same as moment estimates) are better, in 6/30 (207) cases conditional LS
estimates are better, and in 10/30 (33%) cases they perform equally well.
In terms of bias, in 23/30 (77%Z) cases conditional LS estimates are bet-
ter, in 4/30 (137Z) cases conditional MIL. estimates are better, and in the
remaining 3/30 (10%) cases they perform equally well. Therefore, for vari-
ances, conditional ML estimates are superior to conditional LS estimates
in terms of RMSE, but in terms of bias conditional LS estimates are super-
ior to conditional ML estimates. These observations also follow from Table
4.5 which give, for case (a), the conditional LS, conditional ML and mo-
ment estimates of variances. It may be noted that in this table, for a‘:(3)
and 02(4), the conditional ML estimates are the same as moment estimates,
which follow from result (iv). Result (v) can also be observed for o‘:(l)
and o':(z) for N = 300. It can also be seen from this table that in terms
of RMSE of variances, the conditional ML estimates are superior to condi-
tional LS estimates and also to moment estimates (when they are not
equal). In terms of bias, conditional LS estimates are superior to condi-
tional ML and moment estimates. Since RMSE is a more reasonable measure of
estimation accuracy as compared to bias, conditional ML estimates are

recommended for estimation of white noise variances.

Therefore, among the method of moments, conditional LS and condi-
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tional ML, conditional ML estimation is recommended for all parameters of
univariate and multivariate PAR models. Although this method gives satis-
factory results, if, however, more accurate estimates are required, then

exact maximum likelihood estimation should be considered.

Moreover, in the simulation results above, the bias and MSE
criteria were considered for the comparison of differnt estimates. Other
statistical properties of these estimates can also be investigated for

such purpose.
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CHAPTER V

SUMMARY AND CONCLUSIONS

Periodic autoregressive moving average (PARMA) processes are
receiving considerable attention lately. The aim of this study is to con-

tribute to the theory and analysis of these processes in various ways.

The first part of this study considers some items related to the
periodic stationarity of PARMA processes, mainly through the lumped-vector
representation of the process. It has been shown that a PARMA process is
periodic stationary if and only if the corresponding lumped process is
stationary. A compact Ilumped-vector representation previously developed
for univariate PARMA processes is generalized to the multivariate case.
Through this representation, it is shown that the periodic stationarity
conditions (and also, analogously, the invertibility conditions) for any
univariate or multivariate PARMA process can be reduced to an eigenvalue
problem. In addition, in a previous work, it has been shown that the peri-
odic stationarity of a PARMA process implies stationarity of the corres-
ponding aggregated process, but the reverse was not proved or disproved,
although was seen to be true for some special cases. It is shown through a

counterexample here that the reverse is not always true.

For univariate periodic autoregressive (PAR) processes it was
shown that if the periodic stationary process has unit variances for all
seasons, then this imposes additional constraints on the autoregressive
(AR) parameters. This result is generalized to the multivariate case in
which all seasons have equal, but not necessarily identity, covariance

matrices.



The relation between periodic stationarity of a PARMA process and
positive definiteness of covariance matrices of this process is shown for
the multivariate case to follow from the stationarity of the corresponding

lumped process.

The identification of orders of PARMA processes, being a topic
not completely resolved yet, receives considerable attention in this
study. It is shown that the Box-Jenkins approach for identification of
univariate ARMA processes can be generalized to univariate PARMA proces-
ses, following a seasonwise identification routine. For PARMA processes,
the seasonal autocorrelation function (ACF) and seasonal partial autocor-
relation function (PACF) play the same role as ACF and PACF in ARMA pro-

cesses and they have analogous cut-off properties.

The seasonal ACF is employed for the identification of seasons
following a pure moving average (MA) process,  utilizing the cut-off prop-
erty of the ACF of such seasons. For the assessment of this cut-off prop-
erty from a given realization of the process, the sample seasonal ACF is
utilized, and its first and second order moments are derived under certain
approximations which are well justified for large samples. More refined
asymptotic formulas recently developed for the second order moments of the
sample seasonal ACF are difficult to work with. Nevertheless, under cut-
off property, these formulas reduce to ours. The asymptotic normality of
the sample seasonal ACF, which was recently proved, is used together with
its asymptotic moments to obtain bands for the assessment of cut-off prop-
erty. For the non-periodic case, i.e. taking period as one, these bands

reduce to the well-known bands for ordinary MA processes.

On the other hand, the seasonal PACF is employed for the identi-
fication of seasons following a pure AR process, utilizing the cut-off
property of the PACF of such seasons. It is shown that expressing partial
autocorrelations as autoregressive parameters in ordinary AR processes
does not carry over to periodic processes due to seasonally-varying vari-
ances. Therefore, the PACF is defined making use of the properties of
partial autocorrelations in regression context. The well-known recursive

formulas for partial autocorrelations in regression do not prove to be
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useful for the computation of PACF in periodic processes, for which we
adapt a different algorithm. The sample seasonal PACF is utilized for the
assessment of the cut-off property from a realization of the process.
Available asymptotic results for the sample seasonal PACF are used to
obtain bands for the assessment of cut-off property. These bands turn out

to be the same as those for sample PACF in ordinary AR processes.

Simulation results with sample seasonal ACF and PACF bands agree
well with the theoretical results. It is also shown that there is no one-
to-one relationship between the orders of a PARMA process and the orders
of its marginal series for each season. Therefore, a PARMA process cannot

be identified from its marginal series.

The last part of the study is devoted to estimation of PARMA
processes. It is shown through the univariate PARMA w(l'l) model that the
method of moment estimation in PARMA processes in the presence of a MA
component is technically difficult because a set of non-linear equations
is to be solved simultaneously. Previous simulation studies have also
shown that the moment estimates for this case are usually unsatisfactory
or infeasible, Such observations are also valid for ordinary ARMA proces-
ses containing a MA component. On the other hand, it is shown that the
moment estimation for univariate or multivariate PAR processes is

straightforward and gives satisfactory results.

For PAR processes, the conditional least-squares (LS), condition-
al maximum likelihood (ML) and exact ML estimation methods are also studi-
ed for univariate and multivariate cases. Detailed examples are given
using the univariate and multivariate PARw(l) model. It is shown that
conditional. LS estimates of AR parameters can be obtained in a season-wise
manner, and regression methods can be employed directly both for univari-
ate and multivariate cases. The conditional LS method does not provide
estimates for error variances; however, regression-type estimates can be
used for these parameters, utilizing ML and uniformly minimum variance
unbiased (UMVU) estimates in regression. It is shown that for a Gaussian
process, the conditional ML estimates of AR paraméter's are the same as

conditional LS estimates. The conditional LS or ML estimates of the AR



parameters are also the same as the moment estimates, except for some
initial seasons in which some observations are lost due to end effects.
Even in that case, the estimates are not significantly different, being
very close for large samples. The conditional ML estimates for error vari-
ances are the same as moment estimates, except again for some initial
seasons. The conditional ML estimates for error variances are the same as
regression-type estimates based on ML estimates in regression. The regres-
sion-type estimates based on UMVU estimates in regression differ from
conditional ML estimates only in degrees of freedom of sum of squares, the

difference being negligible for large samples.

The results of simulations, in which some Gaussian univariate and
multivariate PAR processes are considered, are found compatible with the
theoretical results above. More precisely, the relationships between the
conditional ML estimates and moment estimates are verified, and in situa-
tions where these estimates are different, conditional ML estimates for AR
parameters often dominate moment estimates in the sense of bias and mean
squared error (MSE). For error variances, in terms of MSE, the conditional
ML estimates are superior to regression type estimates and also to moment
estimates (when they are not equal). In terms of bias, regression-type
estimates dominate conditional ML and moment estimates. Although all
methods considered here are satisfactory and produce estimates which are
close to the actual values of the parameters, based on MSE criterion, the

conditional ML estimation is recommended.

The exact ML estimation in PAR processes is not easy, f irsﬂy,
because it is difficult to obtain the exact likelihood function, and,
secondly, because numerical maximization algorithms are required for the
resulting non-linear equations. These difficulties are illustrated in
terms of the exact likelihood function of PARw(l) model. For PARMA proces-
ses with a MA part, even the conditional LS and conditional ML estimates
are difficult to obtain due to presence of simultaneocus non-linear equa-
tions. These difficulties are shown in term of the conditional LS, condi-
tional likelihood and exact likelihood functions of PMAZ(I) model. In this
case, the conditional LS estimates cannot be obtained in a season-wise

manner and regression methods cannot be employed. It is also shown that,
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in this case, the conditional LS estimates are not the same as conditional

ML estimates.

Computer programs for checking periodic stationarity (and also
invertibility) of a PARMA process, and for identification and estimation

results were developed and are provided in Appendices.

In view of this study, we summarize some problems concerning

PARMA processes which deserve further investigation as follows:

1- Identification of Mixed PARMA Processes. Methods such as Akaike in-
formation criterion (Akaike, 1973; 1974) or the S and R array method (Gray
et al., 1978), which are helpful in the identification of mixed ARMA
models, should be investigated for PARMA models. Identification of multi-
variate PARMA processes is another important topic which was not investi-

gated yet.

2- Estimation of Mixed PARMA or PMA Processes. Techniques such as back-
casting should be investigated for ML estimation, and also some special
optimization methods should be developed. Approaches like state space
modeling and Kalman filtering (Wei, 1990: 384) should also be studied for

PARMA models. This problem exists for the multivariate case as well.

3- Goodness-of -Fit Tests for PARMA Processes. A Portmanteau-type tech-
nique (Box and Jenkins, 1976: 290) should be investigated for this

purpose.

4~ Nonstationarity Transformations. It is known in t.he context of ARMA
processes that techniques such as differencing reduce a non-stationary
ARMA process to a stationary one. Such techniques for PARMA models, to
achieve periodic stationarity, should be investigated.

5- Frequency-Domain Analysis. Almost all available results concerning
PARMA processes are time-domain oriented. Hence, a parallel frequency-

domain study of PARMA processes is to be investigated.

89



REFERENCES

Akaike, H., 1973. "Information Theory and an Extension of the Maximum
Likelihood Principle", Proc. 2nd Int. Symp. on Information Theory, Eds.
B. N. Petrov and F. Csaki, pp. 267-281, Akademia Kiado, Budapest.

Akaike, H., 1974. "A New Look at the Statistical Model Identification”,
IEEE Trans. Autom. Control, Vol. 19, pp. 716-723.

Anderson, P. L., and Vecchia, A. V., 1993. "Asymptotic Results for Peri-
odic  Autoregressive Moving- Average Processes”, J. Time Series
Analysis, Vol. 14, No. 1, pp. 1-18.

Anderson, T. W., 1971, The Statistical Analysis of Time Series, John
Wiley, New York.

Anderson, T. Ww., 1984. An Introduction to Multivariate Statistical
Analysis, 2nd Ed., John Wiley, New York.

Barone, P., "A Method for Generating Independent Realizations of a Multi-
variate Normal Stationary and Invertible ARMA(p,q) Process”, J.
Time Series Analysis, Vol. 8, No. 2, pp. 125-130.

Bartlett, M. S., 1946. "On the Theoretical Specification of Sampling Prop-
erties of Autocorrelated Time Series", J. Royal Stat. Soc., Series B,
Vol. 8, pp. 27-41.

Bartolini, P., Salas, J. D., and Obeysekera, J. T. B., 1988. "Multivariate
Periodic ARMA(1,1} Processes", Water Resour. Res., Vol. 24, No. 8, pp.
1237-1246.

90



Bhuiya, R. K., 1971. "Stochastic Analysis of Periodic Hydrologic Process"”,
J. Hydraul. Div. Am. Soc. Civ. Eng., Vol. 97, No. HY7, pp. 949-962.

Box, G. E. P., and Jenkins, G. M., 1976. Time Series Analysis: Forecast-

ing and Control, Revised Ed., Holden-Day, San Francisco.

Cleveland, W. P., and Tiao, G. C., 1979. "Modeling Seasonal Time Series",
Economie Appliquée, Vol. 32, pp. 107-129.

Cryer, J. D., 1986. Time Series Analysis, PWS-KENT, Boston.

Delleur, J. W., Tao, P. C., and Kavvas, M. L., 1976. "An Evaluation of the
Practicality and Complexity of Some Rainfall and Runoff Time Series
Models", Water Resour. Res., Vol. 12, No. 5, pp. 953-970.

Durbin, J., 1960. "The Fitting of Time Series Models", Rev. Int. Inst.
Statist., Vol. 28, pp. 233-244.

Fuller, W. A., 1976. Introduction to Statistical Time Series, John Wiley,
New York.

Gladyshev, E. G., 196l. ‘"Periodically Correlated Random Sequences”,
Soviet Math., Vol. 2, No. 2, pp. 385-388.

Gray, H. L., Kelley, G. D., and McIntire, D. D., 1978. "A New Approach to
ARMA Modeling", Cumm. Stat., Series B, Vol. 7, No. |, pp. 1-77.

Graybill, F. A., 1983. Matrices with Applications in Statistics, 2nd Ed.,

Wadsworth, Belmont.

Hannan, E. J., 1970. Multiple Time Series, John Wiley, New York.

Householder, A. S., 1953. Principles of Numerical Analysis, McGraw Hill,
New York.

Jenkins, G. M., and Watts, D. G., 1968. Spectral Analysis and Its Applica-

91



tions, Holden-Day, San Francisco.

Jones, R. H., and Brelsford, W. M., 1967. "Time Series with Periodic
Structure”, Biometrika, Vol. 54, No. 3-4, pp. 403-408.

Monin, A. S., 1963, "Stationary and Periodic Time Series in the General
Circulation of the Atmosphere”, Proc. Symp. on Time Series Anal., Ed.
M. Rosenblatt, pp. 144-151. John Wiley, New York.

Morrison, D. F., 1976. Multivariate Statistical Methods, 2nd Ed., McGraw-
Hill, New York.

Obeysekera, J. T. B., and Salas, J. D., 1986. "Modeling of Aggregated
Hydrologic Time Series”, J. Hydrol., Vol. 86, pp. 197- 219.

Pagano, M., 1978. "On Periodic and Multiple Autoregressions”, Annals
Stat., Vol. 6, No. 6, pp. 1310-1317.

Priestley, M. B., 198l. Spectral Analysis and Time Series, Academic Press,
London.

Rose, D. E., 1977. "Forecasting Aggregates of Independent ARIMA Proces-
ses", J. Econometrics, Vol. 5, pp. 323-345.

Sakai, H., 1982. " “Circular Lattice Filtering Using Pagano's Method",
IEEE Trans. Acoust. Sp. Signal Process., Vol. 30, No. 2, pp.. 279- 287.

Salas, J. D., 1972. "Range Analysis for Storage Problems of Periodic
Stochastic Processes", Hydrol. Paper, 57, Colo. State Univ.,, Fort
Collins.

Salas, J. D., 1974a. "Range of Cumulative Sums, I. Exact and Approximate
Expected Values", J. Hydrol., Vol. 23, pp. 39-66.

Salas, J. D., 1974b. "Range of Cumulative Sums, II. Application to
Capacity of Reservoirs”, J. Hydrol., Vol. 23, pp. 329-339.

92



Salas, J. D., Boes, D. C., and Smith, R. A., 1982. "Estimation of ARMA
Models with Seasonal Parameters"”, Water Resour. Res., Vol. 18, No. 4,

pp. 1006-1010.

Salas, J. D., Delleur, J. W., Yevjevich, V., and Lane, W. L., 1980.
Applied Modeling of Hydrologic Time Series, Water Resources Publica-

tions, Littleton, Colo.

Salas, J. D., and Pegram, G. G. S., 1979. "A Seasonal Multivariate Multi-
lag Auto-regressive Model in Hydrology", Proc. 3rd Int. Hydrol. Symp.
on Theo. and Appl. Hydrology, Eds. H. J. Morel-Sertoux, et al., pp.
125-145, Water Resour. Publ., Littleton, Colo.

Tiao, G. C., Box, G. E. P., and Hamming, W. J., 1975. "Analysis of Los
Angeles Photochemical Smog Data: A Statistical Overview"”,  J.
Air Pollution Control Assoc., Vol. 25, pp. 260-268.

Tiao, G. C., and Grupe, M. R., 1980. "Hidden Periodic Autoregressive-
Moving Average Models in Time Series Data”, Biometrika, Vol. 67, No. 2,
pp. 365-373.

Tiao, G. C., Phadke, M. S., and Box, G. E. P., 1976. "Some Empirical
Models for the Los Angeles Photochemical Smog Data”, J. Air
Pollution Control Assoc., Vol. 26, pp. 485-490.

Troutman, B. M., 1978. "Reservoir Storage with Dependent, Periodic Net
Inputs”, Water Resour. Res., Vol. 14, No. 3, pp. 395-40l.

Troutman, B. M., 1979. "Some Results in Periodic Autoregression”,
Biometrika, Vol. 66, No. 2, pp. 219-228.

Ula, T. A., 1983. "Regression, Linear Model, and the Multivariate Normal
Distribution”, Proc. Statist. Seminars, METU Studies in Development,

1982 Special Issue, pp. 135-156.

Ula, T. A., 1990. "Periodic Covariance Stationarity of Multivariate Peri-

93



odic Autoregressive Moving Average Processes”", Water Resour. Res.,
Vol. 26, No. 5, pp. 855-861.

Ula, T. A., 1993. "Forecasting of Multivariate Periodic Autoregressive-
Moving Average Processes”, J. Time Series Anal., Vol. 14, No. 6, pp.
645-657.

Vecchia, A. V., 1983. "Aggregation and Estimation for Periodic Autoregres-
sive-Moving Average Models", Unpublished Ph. D. Dissertation, Dept. of
Stat., Colo. State Univ., Fort Collins, Colo.

Vecchia, A. V., 1985a. "Maximum Likelihood Estimation for Periodic Auto-
regressive Moving Average Models", Technometrics, Vol. 27, No. 4, pp.
375-384.

Vecchia, A. V., 1985b. "Periodic Autoregressive- Moving Average (PARMA)
Modeling with Applications to Water Resources”, Water Resour. Bull.,
Vol. 21, No. 5, pp. 721-730.

Vecchia, A. V., and Ballerini, R., 1991. "Testing for Periodic Autocor-
relations in Seasonal Time Series Data", Biometrika, Vol. 78, No. 1,
PpP- 53-63.

Vecchia, A. V., Obeysekera, J. T., Salas, J. D., and Boes, D. C., 1983.
"Aggregation and Estimation for Low-Order Periodic ARMA Models",
Water Resour. Res., Vol. 19, No. 5, pp. 1297-1306.

Wei, W.  W., 1990. Time Series Analysis: Univariate and Multivariate
Methods, Addison-Wesley, Redwood City. '

94



APPENDICES



APPENDIX A

COMPUTER PROGRAM FOR CHECKING PERIODIC STATIONARITY
AND INVERTIBILITY OF PARMA PROCESSES

Description:

Computer programs in these appendices were all written in
FORTRAN77 and developed using the main frame (CYBER 932/11) in the Depart-
ment of Statistics, at Middle East Technical University.

This program performs a check on a given set of parameters (or
their estimates based on an observed realization) of an m-variate
PARMAw(p(v), q(v)) process as to whether it is satisfying periodic covari-
ance stationarity conditions or not. It is using the AR parameters only.
The dimension of the vector time series (M) and the period (IW) are fixed
beforehand in the first line in this program. It is designed for PARMA
processes with lumped-vector process having an AR order of at most p‘ =2
(see (1.7)), p’ being denoted in this program as MAXl. The maximum value
p. = 2 is sufficient for common applications, and the program can easily

be modified for larger values of p‘, if needed.

Also, due to the symmetry between the AR and MA parts in general
PARMA models, this program can be used to check for the invertibility of
PARMA processes in which case q(v) and ©'s should be given in place of
plv) and @&'s, respectively. Also, p. in the above discussion will be
replaced by q‘ (see (1.7)).

INPUTS:

IP(IW): p(v), v = 1, ..., w.

PHI(M*IW,3M*IW): This matrix can be written in terms of ¢ matrices as
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follows:

R YT N 0..07]
1 2 p(1)
°(2) °(2) . °(2) 0. 0
1 2 p(2)
(W) (W) (W)
0..0
_@1 o2 Qp(w) -

OUTPUTS:

The outputs are L and UIZ matrices defined by (2.2} and (2.3), respective-
ly. Also, it gives the eigenvalues of the matrix R defined by (2.6) and
their modulus. For invertibility, the matrices L and UZ will correspond to
A and VZ matrices in (2.1), respectively. The outputs are saved in file

Tapel.

INPUT COMMANDS FOR A SAMPLE RUN:
Here we consider, as an example, the PARZ(I) model with ¢i1) = 0.8, ¢:2) =
0.5.

/ININ OSAMAO
REMARK: THIS PROGRAM IS DESIGNED FOR PARMA PROCESSES
FOR WHICH THE LUMPED PROCESS AR ORDER IS AT MOST 2
NOW INPUT (IP(V)), LE, THE AR ORDERS '
FOR THE V-TH SEASON, V=l,...,2
ni
MAXi=1 .
NOW, FOR SEASON 1 INPUT THE PHI MATRICES AS FOLLOWS
1) INPUT THE FIRST ROW OF PHII
2) INPUT THE FIRST ROW OF PHI2, ETC...
3) INPUT THE 2ND ROW OF PHIi, AND SO ON
2.8
NOW, FOR SEASON 2 INPUT THE PHI MATRICES AS FOLLOWS
1) INPUT THE FIRST ROW OF PHIl
2) INPUT THE FIRST ROW OF PHIZ2, ETC...
3} INPUT THE 2ND ROW OF PHIl, AND SO ON
2.5
THE PARMA PROCESS YOU‘VE DEFINED IS PCS.
FOR MORE DETAILS, LOOK INTO THE FILE TAPEl
/edif tapel [outputs]

THE L MATRIX...
1. O.
-5 1
THE Ul MATRIX...
0. .8
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0. 0.

EIGENVALUES

RR [real part of eigenvalue]

0. .4

RI [imaginary part of eigenvaluel]

0. O. ’
MODULUS OF THE EIGENVALUES

0. .4

HENCE,... THE PARMA PROCESS YOU'VE DEFINED IS PCS.

PROGRAM LISTING:
This program is stored in file OSAMAO.

PARAMETER (M=1,IW=2,11=M*IW,12=2%]1)
REAL PHI(I1,3*11), AL(I1,11), AL1(I1,11), U1(I1,11), RI(I1), RR(I1)
REAL U2(11,11),AL2(12,12),RI1(12),RR1(12),U3(11,11)
INTEGER  IP(IW),INTI(I1),INT2(12)
EXTERNAL FO2AFF,FO1AAF
PRINT *,”"REMARK: THIS PROGRAM IS DESIGNED FOR PARMA PROCESSES’
PRINT *,’FOR WHICH THE LUMPED PROCESS IS AT MOST MULT. ARMA(2,2)’
PRINT *,’"NOW INPUT (IP(V)), I.LE. THE AR ORDERS’
PRINT *,’FOR THE V-TH SEASON, V=i,...,°,IW
READ  *,(IP(I),I=1,IW)
MAX1=0
DO 2 I=1,IW
IF (IP(I).EQ.0) GOTO 2
MOX1=(IP(I})-1)/1W+1
IF (MOX1.GT.MAX1) MAX1=MOX1
2 CONTINUE
PRINT *,”MAX1=',MAX1
IF (MAX1.GT.0) GOTO 7
PRINT *,’MAX1=0, I.LE, THE PROCESS IS A PURE MA, HENCE PCS’
STOP
7 IF (MAX1.LE.2) GOTO 10
PRINT *,’MAX1>2, SORRY, THIS PROGRAM DOESN‘T WORK HERE.’
STOP
10 DO 1 K=1,IW
IF (IP(K).LT.1) GOTO 1
PRINT *,"NOW, FOR SEASON ’,K,’ INPUT THE PHI MATRICES AS FOLLOWS’

PRINT *,’ 1) INPUT THE FIRST ROW OF PHII’

PRINT *,’ 2) INPUT THE FIRST ROW OF PHI2, ETC...’
PRINT *,’ 3) INPUT THE 2ND ROW OF PHII, AND SO ON’
DO 11 I=1LM

DO 11 J=1,IP(K)
READ  *,(PHI(M*(K-1)+I,L),L=M*(J-1)+1,M*]J)
1 CONTINUE

1 CONTINUE
C FRAA AR
C OBTAINING THE MATRICES L AND Ul
c e I T
DO 3 I=LIl
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13

16

18

17

20

21

DO 4 J=1,11
AL(1,J)=0EO
U2(1,J)=0E0
U1(1,J)=0E0
CONTINUE
AL(I,I)=1EO
CONTINUE
DO 5 1I=2,IW
DO § J=1,I-1
DO S K=1,M
DO S L=1,M
AL((I-1)*M+K, (I-J-1)*M+L)=-PHI{(I-1)*M+K, (J-1)*M+L)
WRITE(L,*)’THE L MATRIX...’
DO 6 I=1,11
RI(I)=1E0
WRITE(1,*)(AL(1,J),J=1,11)
DO 8 I=1,IW
DO 8 J=1,IW
DO 8 K=I,M
DO 8 L=I,M
U1((I-1)*M+K, (IW-J)*M+L)=PHI((I-1)*M+K, (1+J-2)*M+L)
WRITE(],*)'THE Ul MATRIX...’
DO 13 I=1,M*IW
WRITE(1,*)(U1(1,J), J=1,M*IW)
IFAIL=1
CALL FOlAAF(AL,I1,I1,ALLILRR,IFAIL)
CALL MXMAB(I1,11,11,AL1,11,U1,11,U3,11)
IF (MAX1.EQ.2) GOTO 20
IFAIL=0
CALL FO2AFF(U3,I1,I1,RR,RLINT1,IFAIL)
WRITE(1,*)’EIGENVALUES’
WRITE(1,*)’'RR’
WRITE(L, *)(RR(I),I=1,11)
WRITE(1,*)'RI’
WRITE(1,*)(RI(I),I=1,11)
WRITE(1,*)’MODULUS OF THE EIGENVALUES’
FLAG=0EO
DO 16 I=1,11
RR(I)=SQRT(RR(I)**2+RI(1)**2)
IF (RR(I).GE.1EQ) FLAG=1EO
CONTINUE
WRITE(1,*)(RR(I),1=1,11)
IF (FLAG.EQ.1EQ) GOTO 18
PRINT *,’THE PARMA PROCESS YOU‘VE DEFINED IS PCS.’
WRITE(1,*)’HENCE,...THE PARMA PROCESS YOU‘VE DEFINED IS PCS.’
GOTO 17
WRITE(1,*)’HENCE,...YOUR PARMA PROCESS IS NOT PCS.’
PRINT *,”YOUR PARMA PROCESS IS NOT PCS.’
PRINT *,’FOR MORE DETAILS, LOOK INTO THE FILE TAPE!’
STOP
DO 21 I=1,IW
DO 21 J=1,IW
DO 21 K=1,M
DO 21 L=1,M
U2((I-1)*M+K, (IW-J)*M+L)=PHI((I-1)*M+K, (I+J+IW-2)*M+L)
WRITE(1,*)’THE U2 MATRIX...
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26

27

28

29

DO 22 I=L11
WRITE(1,*)(U2(1,J),J=1,11)
CALL MXMAB(I1,11,11,AL1,11,U2,11,U1,11)
WRITE(1,*)’THE LINV*U2 MATRIX...’
DO 23 I=L11
WRITE(1,*)(U1(1,J),J=1,11)
DO 24 I=LI1
DO 25 J=LI11
AL2(I,J)=U3(I1,J)
AL2(I+I1,J)=UI(1,J)
AL2(1,I+11)=1EO
WRITE(1,*)’THE AL2 MATRIX...’

DO 26 I=1,12
WRITE(1,*)(AL2(I,J),J=1,12)
IFAIL=0

CALL FO2AFF(AL2,12,12,RR1,RILINT2,IFAIL)
WRITE(L,*)’EIGENVALUES’
WRITE(1,*)'RR’
WRITE(1,*)(RR1(]),1=1,12)
WRITE(L,*)'RI’
WRITE(1, *)(RI1(1),1=1,12)
WRITE(1,*)’MODULUS OF THE EIGENVALUES’
FLAG=0EO
DO 27 I=L,12
RR1(I)=SQRT(RRI(I)**2+RI1(I)**2)
IF (RRI(I).GE.1EQ) FLAG=I1EO
CONTINUE
WRITE(1, *)(RRI1(1),I=1,12)
IF (FLAG.EQ.1E0) GOTO 28
PRINT *,”THE PARMA PROCESS YOU‘VE DEFINED IS PCS.’
WRITE(1,*)"HENCE,... THE PARMA PROCESS YOU‘VE DEFINED IS PCS.’
GOTO 29
WRITE(1,*)’HENCE,...YOUR PARMA PROCESS IS NOT PCS.’
PRINT *,”YOUR PARMA PROCESS IS NOT PCS.’

PRINT *,’FOR MORE DETAILS, LOOK INTO THE FILE TAPE!’

STOP
END
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APPENDIX B

COMPUTER PROGRAM FOR OBTAINING THE SAMPLE AUTOCORRELATION
AND PARTIAL AUTOCORRELATION FUNCTIONS OF THE MARGINAL SERIES
OF PARMA PROCESSES

Description:

This program computes the sample autocorrelation and partial
autocorrelation functions (up to lag NOLAG) of the marginal series of
simulated univariate PARMAw(p(v), q(v)) processes based on a realization
of length Nw, for p(v) s 2w and q(v) = 2w, and can be easily generalized
for higher orders. The parameters IW, N and NOLAG are f ixed beforehand in
the first line in this program. The Box-Pierce statistic is also given for
the autocorrelations, which is useful for identifying a white noise pro-
cess. The NAG subroutine GI3ABF is utilized to obtain these quantities.

In this and the succeeding programs, the error terms are assumed
to be independently and normally distributed with mean 2zero, and the
simulation of these terms are done by the Nag subroutine GOSEAF. These
programs also include an option to use actual data instead of simulated
data, in which case the parameters in the first line of each program must
be set accordingly. Also, the actual realization of the time series must
be given in file "TAPES" before running any of these programs. For an

actual-data run, p(v) and q(v) are arbitrary.

INPUTS:
IP(IW): p(v), v =1, ..., w.
IQUIW): q(v), v =1, ..., w.

PHI(IW,2*IW): As PHI matrix in the previous program with m = 1.
THITA(IW,2*IW): As PHI matrix but with 8’s in place of ¢'s.
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SIGMA(IW): The white noise variances, cri(v), v=1 ..

ISEED: Seed point for random number generation; a positive integer.

OUTPUTS:

The ouputs are the sample ACF and PACF for all seasons of the given real-
ization of PARMA process and the Box-Pierce statistic as well. The outputs
are saved in file Tapel66 (which is specified in the first line of the

program as NOUT=166).

INPUT COMMANDS FOR A SAMPLE RUN:
Here we consider, as an example, the PMAz(l) model with ein = 0.8, 6(2) =
0.5. N = 30, 02(1) = ¢2(2) = 1.

a a

/ININ OSAMAL

INPUT 1IP(1), I=l,..., 2, L.LE, THE AR ORDERS <=2*IW
00

INPUT 1Q(I), I=l,..., 2, I.LE, THE MA ORDERS <=2*IW
7n1

DO YOU WANT TO USE THIS PROGRAM FOR ACTUAL DATA ?
IF YES, TYPE "1I"

70

INPUT PHI"S FOR SEASON 1

20

NOW, INPUT THITA"S FOR SEASON 1
7.8

INPUT PHI"S FOR SEASON 2

20

NOW, INPUT THITA"S FOR SEASON 2
2.5

INPUT SIGMA(I), I=l,..., 2

n1

GIVE SEED...!

2100

FOR OUTPUTS, SEE TAPE166

/edif tapel66 {outputs]

L3312 2223322323222 222 2222232222232 22 312333222327
222222222223

SEASON 1

N 2 0 0

LAG AUTOCORR.

B L T T T e T e
1 .179200137863

2 .1779862436263

3 -.1855937913673

4 .07190671454458

S -.0703076209482
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SEESSRASREENENRREERRENREEEENES
BOX-PIERCE STAT. = 3.250517546349
SESRSEERERRARERRERRASERDHEEERE
BEESRAEREEBERERRSRRERERUSEHNES

LAG PARTIAL AUTOCORR.
SEEESESREEERERERERNEREERBRNERR
1 .179200137863

2 .1507133657195

3 -.2533980529208

4 .1343936020059

5 -.03505194214135
SESERESRERRERRRERERERELESHEREREAAREERREERRERS
SREERSRRERRE

SEASON 2

EREEABRSERRE

LAG AUTOCORR.
T T T P A A
1 .3691400857436

2 .06542144353839

3 -.1280877883058

4 .1144918706175

5 .03368578349005

SESESERSEERRERSERSERRRIREEHERN
BOX-PIERCE STAT. = 5.135819104121
L T TR R T e T
T T T T T P L

LAG

PARTIAL AUTOCORR.

SHS RS ES SRS FER NS EHEERDEREEREER

1

2
3
4
5

.3691400857436
-.08201926562076
-.14446669355753
.2607722T773021
-.1245395870054

SER SRS EHESER SRR SR RS RS LB EEEEEE RN R EEREESEERES

PROGRAM LISTING:
This program is stored in file OSAMAL

PARAMETER (IW=2,N=30,NOLAG=5,NOUT=166)

REAL PHI(IW,2*IW),SIGMA(IW),ZZ(10),ERROR(IW*(N+51))

REAL THITA(IW,2*IW), X(IW*(N+51)),Z(1), MU(IW),Y(N)

REAL SIGG(IW),R(NOLAG),P(NOLAG),V(NOLAG),AR(NOLAG)

INTEGER IP(IW),IQ(IW)

EXTERNAL XO04ABF,X02AJF,COSNBF

CALL XO04ABF(1,NOUT)

PRINT *,INPUT IP(I), I=l,..., ', IW,” LE, THE AR ORDERS <=2*IW’
READ  *,(IP(I),I=1,IW)

PRINT *,Z’INPUT IQ(), I=l,..., ', IW,” LLE, THE MA ORDERS <=2%*IW’
READ *,(IQ(I),I=1,IW)

PRINT *,’DO YOU WANT TO USE THIS PROGRAM FOR ACTUAL DATA 7’
PRINT *’IF YES, TYPE "1
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70

17

7

72

S1

READ(*,*)IFL
IF (IFL.EQ.1) GOTO SO
DO 70 I=1,IW
PRINT *,’INPUT PHI"S FOR SEASON ’,I
READ * (PHI(L,J),J=1,IP(I))
PRINT *,’NOW, INPUT THITA"S FOR SEASON ’,I
READ *,(THITA(1,J),J=1,1Q(1))
PRINT *,(’INPUT SIGMA(I), I=l,..., ’,IW
READ *,(SIGMA(I),I=1,IW)
PRINT *,’GIVE SEED...!
READ(*,*)ISEED
CALL GOSCBF(ISEED)
DO 17 I=1,IW
VM=0EO
CALL GOSEAF(VM,1,SIGMA(I),1,0.001,ZZ,10,IFAIL)
DO 17 L=1,N+51
IFAIL=0
CALL GO5EZF(Z,1,ZZ,10,IFAIL)
ERROR((L-1)*IW+I)=Z(1)
CONTINUE
DO 22 J=1,IW
X(J)=0EO
DO 23 J=IW+1,IW*(N+51)
SSU=ERROR(J)
IV=J-(J/IW)*IW
IF (IV.EQ.0) IV=IW
DO 71 K=1,IP(IV)
SSU=SSU+X(J-K)*PHI(IV,K)
DO 72 K=1,IQ(IV)
SSU=SSU-ERROR(J-K)*THITA(IV,K)
X(J)=SSU
CONTINUE
DO 35 J=1,N*IW
X(J)=X(51*IW+J)
GOTO 51

PRINT *,’SINCE YOU ARE RUNNING THIS PROGRAM WITH ACTUAL DATA’

PRINT *,’YOU SHOULD HAVE MODEIFIED THE PARAMETERS IN THE FIRST’
PRINT *,’LINE OF THIS PROGRAM. ALSO, THE DATA, LE. THE *
PRINT *,"OBSERVED RELAIZATION OF THE TIME SERIES, MUST BE’
PRINT *,’STORED IN FILE "TAPES"
READ(5,*)(X(1),1=1,N*IW)
DO 100 I=1,IW
DO 36 J=1,N
Y(J3)=X((J-1)*IW+I)
IFAIL=0
CALL G13ABF(Y,N,NOLAG,XM,XV,R,STAT,IFAIL)
WRI'I'E(NOUT’t)’.*.*.i“*"l‘i*“!li’i'*!i#‘.i‘*.l.i‘i’*ll!‘**’
WRITE(NOUT’Q)’&.‘!‘U".I‘.'
WRITE(NOUT,*)’SEASON ’,1
WRITE(NOW’.)".‘*.‘IQ!'“!'
WRITE(NOUT,*)’LAG  AUTOCORR.’
WRITE(NOUT’ .)’ (2222 212222312222 2222222222222 %4
DO 37 J=1,NOLAG
WRITE(NOUT,*}J,"  *,R(J)

WRrrE( NOUI".) 00000002000 0 T 0 A0 00000 00 O S

WRITE(NOUT, *)’BOX-PIERCE STAT.TEST STAT. =",STAT
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WRI'[’E(NOUT’ * ) 006020 00 20 00 00 O

IFAIL=0
CALL G13ACF(R,NOLAG,NOLAG,P,V,AR,NVL,IFAIL)

WRITE( NOUr, * ) a2 22223 2232222322222 2200222222 3

WRITE(NOUT,*)'LAG PARTIAL AUTOCORR.’
WRI‘I'E(NOUT't)’!itlltil*i!tl&l!lt‘l&liltttiti'
DO 38 J=1,NOLAG

38 WRITE(NOUT, *)J,’ ' P(J)

100 CONTINUE
WRI’I'E(NOU'I"‘)’ml‘l-tt!li‘tl‘!!‘!&l!“l!‘t!lltlt!ti'ﬂ!(l&il!"'
PRINT *,’FOR OUTPUTS, SEE TAPE’,NOUT
STOP
END
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APPENDIX C

COMPUTER PROGRAM FOR THE COMPUTATION OF THE SAMPLE SEASONAL
AUTOCORRELATION AND PARTIAL AUTCCORRELATION FUNCTIONS
OF PARMA PROCESSES

Description:

This program computes the average sample seasonal autocorrelation
and partial autocorrelation functions (up to lag NOLAG) of simulated uni-
variate PARMA processes over NREPT realizations each of length Nw. It also
gives the frequencies of autocorrelations and partial autocorrelations
going outside the 957 bands developed in Chapter III. The parameters IW,
N, NOLAG and NREPT are fixed beforehand in the first line of this program.
This program can also be used for actual data, in which case NREPT = 1
(see the description of the program in Appendix B). This point carries

over to the programs in the next appendix.

INPUTS:

The same as those of the previous program.

OUTPUTS:
The outputs are the average sample seasonal ACF and PACF, and frequencies
for autocorrelations and partial autocorrelations falling beyond the 957

bands. The outputs are saved in file TapelOO.

INPUT COMMANDS FOR A SAMPLE RUN:
Here we consider, as an example, the PARMA2(1,0; 0,1) model with ¢:l’ =
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0.8, 9:2’ = 0.5. N = 30, NREPT = 2, NOLAG = 5, o‘:(I) = o':(z) =1

/ININ OSAMA2 :

INPUT IP(1), I=1,..., 2, LLE, THE AR ORDERS <=2*IW
no

INPUT I1Q(I), I=l,..., 2, LE, THE MA ORDERS <=2*IW
201

DO YOU WANT TO USE THIS PROGRAM FOR ACTUAL DATA ?
IF YES, TYPE 1"

70

INPUT PHI"S FOR SEASON 1

7.8

NOW, INPUT THITA"S FOR SEASON 1

?0

INPUT PHI"S FOR SEASON 2

70

NOW, INPUT THITA"S FOR SEASON 2

2.5

INPUT SIGMA(I), I-=l,..., 2

ni

GIVE SEED...!

2209

FOR OUTPUTS, SEE TAPEL100

/edif tapel00 [outputs]

SEASONAL AUTOCORRELATIONS

SRERESSSESS S SEE

SEASON 1
SEBEANSESHBREREE
LAG AVERAGE
1 .5317488596371
2 -.01620124427954
3 .1788676040135
4 -.1458501267343
5 .0168994940282
TOTAL NO. OF AUTOCORR. COMPUTED AFTER LAG O
= 10
NO. OF AUTOCORR. OUTSIDE THE BANDS, =2
NO. OF AUTOCORR. OUTSIDE THE BANDS FOR 2
ITERATIONS FOR SEASON 1 ARE AS FOLLOWS:
11
SRRREREERERRR BB R

SEASON 2
RESEERRERRRREERRE
LAG AVERAGE
1 -.2077077712014
2 -.06810569040779
3 -.1187241427203
4 .09762157960473
5 -.07918171082883
TOTAL NO. OF AUTOCORR. COMPUTED AFTER LAG 1
=8
NO. OF AUTOCORR. OUTSIDE THE BANDS, =1
NO. OF AUTOCORR. OUTSIDE THE BANDS FOR 2
ITERATIONS FOR SEASON 1 ARE AS FOLLOWS:
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10
SEASONAL PARTIAL AUTOCORRELATIONS

T T0 A0

SEASON 1
T T T
LAG AVERAGE
1 .5317488596371
2 -.1320125971226
3 -.1264080341135
4  .1019139702972
S -.038491886237
TOTAL NO. OF AUTOCORR. COMPUTED AFTER LAG 1
=8
NO.. OF AUTOCORR. OUTSIDE THE BANDS, =1
NO. OF AUTOCORR. OUSTIDE THE BANDS FOR 2
ITERATIONS FOR SEASON 1 ARE AS FOLLOWS:
10

222223222222 242

SEASON 2
BEES RS SRR SRR S E &R
LAG AVERAGE
1 -.2077077712014
2 -.06170655635853
3 1215119314638
4 -.2758046858665
5 -.05701102215099
TOTAL NO. OF AUTOCORR. COMPUTED AFTER LAG O
= 10 .
NO. OF AUTOCORR. QUTSIDE THE BANDS, =0
NO. OF AUTOCORR OUTSIDE THE BANDS FOR 2
ITERATIONS FOR SEASON 2 ARE AS FOLLOWS:
00

PROGRAM LISTING:
This program is stored in file OSAMAZ.

PARAMETER (IW=2,N=30,NOUT=100,NREPT=2,NOLAG=5)

REAL PHI(IW,2*IW),SIGMA(IW),R(10), ERROR(IW*(N+51))

REAL THITA(IW,2*IW),X(IW*(N+51)),Z(1),MU(IW),ROW(IW,NOLAG)
REAL SS1(IW,NOLAG),SIGG(IW),ASS(NOLAG,NOLAG),COV(IW,NOLAG)
REAL SS2(IW,NOLAG),PAC(IW,NOLAG),DELTA(IW,NOLAG)

REAL ALFA(IW,NOLAG,NOLAG),BETA(IW,NOLAG,NOLAG),SAG(IW,NOLAG)
REAL TAO(IW,NOLAG)

INTEGER IP(IW),IQ(IW),ICCI(IW), ICON1(NREPT,IW)

INTEGER ICC2(IW),ICON2(NREPT,IW)

EXTERNAL X04ABF,X02AJF,COSNBF

CALL X04ABF(1,NOUT)

PRINT *,’INPUT IP(I), I=l,..., °’,IW,” LLE, THE AR ORDERS <=2*IW’
READ *,(IP(1),I=1,IW)
PRINT *,’INPUT IQ(I), I=l,..., ’,IW,” LE, THE MA ORDERS <=2*IW’

READ * (IQ(D),I=1,IW)

107



PRINT *,’DO YOU WANT TO USE THIS PROGRAM FOR ACTUAL DATA 7’
PRINT *,’IF YES, TYPE "I
READ(*,*)IFL
IF (IFL.EQ.1) GOTO 55
DO 70 1=1,IW
PRINT *,’'INPUT PHI"S FOR SEASON ’,I
READ  *,(PHI(I,J),J=1,IP(I)
PRINT *,”NOW, INPUT THITA"S FOR SEASON °’,I
70 READ *,(THITA(,J),J=1,1Q(1))
PRINT *’INPUT SIGMA(D), I=l,..., *IW
READ *,(SIGMA(D),1=1,IW)
PRINT *,’GIVE SEED...!
READ(*, *)ISEED
CALL GOSCBF(ISEED)
DO 101 I=1,IW
ICC1(I)=0EO
ICC2(I)=0EOQ
DO 101 J=1,NOLAG
SS1(1,J)=0E0
101  SS2(I,J)=0EO0
CONS=1.96/N**0.5
55 DO 100 KK=1,NREPT
IF (IFL.EQ.1) GOTO 50
DO 17 I=1,IW
VM=0EO
CALL GOSEAF(VM,1,SIGMA(I),1,0.001,R,10,IFAIL)
DO 17 L=1,N+51 |
IFAIL=0
CALL GOSEZF(Z,1,R,10,IFAIL)
ERROR((L-1)*IW+1)=Z(1)
17 CONTINUE -
DO 22 J=1,IW
22 X(J)=0EO
DO 23 J=IW+1,IW*(N+51)
SSU=ERROR(J)
IV=J-(J/TW)*IW
IF (IV.EQ.0) IV=IW
DO 71 K=1,IP(IV)
71 SSU=SSU+X(J-K)*PHI(IV,K)
DO 72 K=1,IQ(IV)
72 SSU=SSU-ERROR(J-K)*THITA(IV,K)
X(J)=SSU
23 CONTINUE
DO 35 J=1,N*IW
35 X()=X(51*IW+])
GOTO 51
50 PRINT *,’SINCE YOU ARE RUNNING THIS PROGRAM WITH ACTUAL DATA’
PRINT *,’ YOU SHOULD HAVE MODEIFIED THE PARAMETERS IN THE FIRST’
PRINT *,’LINE OF THIS PROGRAM (NREPT=1). ALSO, THE DATA, LE. ’
PRINT *,’THE OBSERVED RELAIZATION OF THE TIME SERIES, MUST BE’
PRINT *,’STORED IN FILE "TAPES"™
READ(S, *)(X(I),I=1,N*IW)
51 DO 19 I=1,IW
SS11=0E0
S$S22=0E0
DO 18 J=1,N
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SS11=SS11+X(I+(J-1)*IW)
18 SS22=SS22+X(I+(J-1)*IW)**2
MU(I)=SS1I/N
SIGG(I)=(SS22-N*(MU(I)**2))/(N-1)
19 CONTINUE
DO 20 I=1,IW
SIG=SIGG(I)**.5
DO 20 J=1,N
ERROR(I+(J-1)*IW)=(X(I+(J-1)*IW)-MU(1))/SIG
20 X(I+(J-1)*IW)=X(I+(J-1)*IW)-MU(I)
DO 210 I=1,IW
DO 21 L=1,NOLAG
PAC(I,L)=0EO
DELTA(I,L)=0EO
TAO(I,L)=0EOQ
SAG(I,L)=0EO0
DO 207 LL=1,NOLAG
ALFA(I,L,LL)=0EO
207  BETA(IL,LL)=0EO
COV(1,L)=0E0
ROW(I,L)=0EO
DO 24 J=1,N-1
IF (I+J*IW-L.LE.O) GOTO 24
COV(1,L)=COV(I,L)+X(I+J*IW)*X(I+J*IW-L)
ROW(I,L)=ROW(I,L)+ERROR(I+J*IW)*ERROR(I+J*IW-L)
24 CONTINUE
COV(1,L)=COV(I,L)}/N
ROW(I,L)=ROW(IL,L)/N
SSi(I,L)=SS1(1,L)+ROW(L,L)
21 CONTINUE
IF (IQ(I).LT.IW) GOTO 220
IZ=1Q(1)/IW
DO 230 L=IQ(I)+1,NOLAG
CONSI1=1E0
1Z2Z=1-1
260 IF (IZZ.LE.O) 1ZZ=IZZ+IW
IF (IZZ.LE.O) GOTO 260
DO 240 JJ=1,1Z
240 CONSI1=CONSI+2*ROW(I,JJ*IW)*ROW(IZZ,JJ*IW)
CONS1=1.96*(CONS1/N)**0.5
IF (ABS(ROW(I,L)).GE.CONS1) ICONIKK,I)=ICONI(KK,I)+1
230 CONTINUE
GOTO 250
220 DO 210 L=IQ(I)+1,NOLAG
IF (ABS(ROW(I,L)).GE.CONS) ICON1(KK,I)=ICON1(KK,I)+1
210 CONTINUE
250 CONTINUE

C SREEREEREREER AR R R SRR RN
C NOW, CALCULATION OF PARTIAL AUTOCORRELATIONS
C T T T PP P P T T R TR L AT Y A
DO 200 I=1,IW
MAM=]-1

IF (MAM.EQ.0) MAM=IW
PAC(1,1)=COV(I,1)/(SIGG(1)*SIGG(MAM))**0.5
$S2(1,1)=SS2(1,1)+PAC(L,1)
ALFA(L,1,1)=-COV(1,1)/SIGG(MAM)
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200

204

203

205

201

206

100

102

BETA(I,1,1)=-COV(I,1)/SIGG(I)
DELTA(I,1)=C0OV(1,2)+COV(MAM,1)*ALFA(I,1,1)
SAG(1,1)=SIGG(1)*(1-ALFA(I,1,1)*BETA(L1,1))
TAO(L,1)=SIGG(MAM)*(1-ALFA(I,1,1)*BETA(L1,1))

DO 201 L=1,NOLAG-1
DO 201 I=1,IW
DELTA(I,L)=COV(I,L+1)
DO 203 M=],L
MM=I-M

IF (MM.LE.Q) MM=MM+IW
IF (MM.LE.O) GOTO 204

DELTA(I,L)=DELTA(I,L)}+COV(MM,L+1-M)*ALFA(I,L,M)
MAM=I-1
IF (MAM.EQ.0) MAM=IW
ALFA(I,L+]1,L+1)=-DELTA(I,L)/TAO(MAM,L)
BETA(I,L+1,L+1)=-DELTA(I,L}/SAG(I,L)
SAG(I,L+1)=SAG(I,L)*(1-ALFA(I,L+1,L+1)*BETA(I,L+1,L+1))
TAO(I,L+1)=TAO(MAM,L)*(1-ALFA(L,L+1,L+1)*BETA(I,L+1,L+1)})
DO 205 M=1,L
ALFA(L,L+1,M)=ALFA(I,L,M)+ALFA(I,L+1,L+1)*BETA(MAM,L,L+1-M)
BETA(I,L+1,M)=BETA(MAM,L ,M)+BETA(I,L+1,L+1)*ALFA(I,L,L+1-M)
PAC(1,L+1)=-DELTA(I,L)/(SAG(I,L)*TAO(MAM,L))**0.5

SS2(I,L+1)=SS2(I,L+1)+PAC(I,L+1)

DO 206 I=1,IW
DO 206 L=IP(I)+1,NOLAG
IF (ABS(PAC(I,L)).GE.CONS) ICON2(KK,I)=ICON2(KK,I)+1

CONTINUE

DO 100 I=1,IW
ICCI)=ICCI(I)+ICON1(KK,I)
ICC2(I)=ICC2(I)+ICON2(KK,I)

CONTINUE

DO 102 I=1,IW
DO 102 J=],NOLAG
SSI(I, J)=SSI(I,J)/NREPT
S$S2(1,J)=SS2(I,J)/NREPT
WRITE(NOUT,*)’ SEASONAL AUTOCORRELATIONS’
DO 103 I=1,IW
WRITE(NOUT, #)’ ##5sssexnsenssns
WRITE(NOUT, *)* SEASON ’,1
WRITE(NOUT, ¥)’ ###asssxsaneassss
WRITE(NOUT,*)’'LAG AVERAGE °’
DO 85 L=1,NOLAG
WRITE(NOUT,*)L,’ ’,SS1(I,L)
WRITE(NOUT, *)' TOTAL NO. OF AUTOCORR. COMPUTED AFTER LAG *,IQ(I)
WRITE(NOUT,*)’ =’,(NOLAG-IQ(I))*NREPT
WRITE(NOUT,*)"NO. OF AUTOCORR. OUTSIDE THE BANDS, =’,ICCI(I)
WRITE(NOUT, *)’NO. OF AUTOCORR. OUTSIDE THE BANDS FOR ’,NREPT
WRITE(NOUT, *)’'ITERATIONS FOR SEASON ’,1,” ARE AS FOLLOWS:’
WRITE(NOUT, *)(ICON1(JJ,1),JJ=1,NREPT)

103  CONTINUE

WRITE(NOUT,*)* SEASONAL PARTIAL AUTOCORRELATIONS’
DO 133 I=1,IW

WRITE(NOUT, *)’ #*##xasssxnususses

WRITE(NOUT,*)* SEASON °,1
WRITE(NOUT, ¥} #*##s5xasuxussnns:

WRITE(NOUT,*)'LAG AVERAGE '’
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DO 851 L=1,NOLAG

851 WRITE(NOUT, *)L.,’ ’,8S2(1,L)
WRITE(NOUT, *)'TOTAL NO. OF AUTOCORR. COMPUTED AFTER LAG *,IP(I)
WRITE(NOUT,*)’ = ',(NOLAG-IP(I))*NREPT '
WRITE(NOUT, *)’NO. OF AUTOCORR. OUTSIDE THE BANDS, =’,ICC2(I)
WRITE(NOUT, *)’NO. OF AUTOCORR. OUTSIDE THE BANDS FOR ’,NREPT
WRITE(NOUT, *)’'ITERATIONS FOR SEASON ’,1,” ARE AS FOLLOWS:’
WRITE(NOUT, *}(ICON2(JJ,1),JJ=1,NREPT)

133 CONTINUE
PRINT *,’FOR OUTPUTS, SEE TAPE’,NOUT
STOP
END
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APPENDIX D

COMPUTER PROGRAMS FOR MOMENT AND CONDITIONAL LEAST-SQUARES
ESTIMATION IN PAR PROCESSES

D.1 Univariate Case
Description:

This program computes the average moment and conditional least-
squares (LS) estimates of the parameters of simulated PARw(p(v)) processes
over NREPT realizations each of length Nw. It is designed for p(v) s o,
but can easily be generalized for higher orders. The conditional LS esti-
mates are obtained by utilizing NAG subroutine GO2CJF. The parameters IW,
N and NREPT are fixed beforehand in the first line of this program. The
estimates of the white noise variances in the conditional LS part are
obtained in this program according to (4.14). This program can also be
used for actual data (see the descriptions of the programs in Appendices B
and C).

INPUTS:
The same as those of the previous program, but excluding IQ and THITA.

OUTPUTS:
The ouputs are the average moment and conditional LS estimates and their

root mean squared error (RMSE). The outputs are saved in file Tapel8l.

INPUT COMMANDS FOR A SAMPLE RUN:
Here we consider, as an example, the PARZ(I) model with ¢i1) = 0.8, ¢;2’ =
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0.5. N = 30, NREPT = 100, o':(l) = o;(Z) = 1

/ININ OSAMA3

INPUT IP(1}), I=l,..., 2, LE, THE AR ORDERS <=IW
7mi1

DO YOU WANT TO USE THIS PROGRAM FOR ACTUAL DATA 7
IF YES, TYPE "1"

20

INPUT PHI"S FOR SEASON 1

7.8

INPUT PHI"S FOR SEASON 2

7.5

INPUT SIGMA(I), I=l,..., 2

7n1

GIVE SEED...!

72203

FOR OUTPUTS, SEE TAPEI18l]

sedif tapelSl [outputs]

MOMENT ESTIMATES

PHI'S

.7214914765803

4724707955424

THEIR RMSE

.1842630427989

.1435949086608

ERROR VARIANCE ESTIMATES

1.000873643797 .9571546466611
. THEIR RMSE

.240318136315 .2547048038934

LS ESTIMATES

PHI‘S

.7473786236009
.4724707955424

CONSTANT

-.01410239527737 .01747087316246
THEIR RMSE

1739665984372
.1435949086608

ERROR VARIANCE ESTIMATES
1.001340916949 1.02616569285!
THEIR RMSE

.2501273087882 .2703871964167

PROGRAM LISTING:
This program is stored in file OSAMA3.

PARAMETER (IW=2,N=30,NOUT=181,NREPT=100)
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REAL PHI(IW,IW),SIGMA(IW),R(10), ERROR(IW*(N+51)),A1(IW,IW)
REAL X(IW*(N+51)),Z(1),MU(IW),COV(IW,IW),PH1(IW,IW),PH2(IW,IW)
REAL SSM(IW,IW),SSL(IW,IW),CO(IW),A2(IW,IW),A3(N),A4(IW+1)
REAL  A8(N),A9(N,IW+1),A10(N,IW+1),A11(IW+1,4),SAR2(IW)
REAL SARV(IW),SARI(IW),SARMI(IW),AO(IW)
INTEGER IP(IW),IPIV(IW+1),MIS(IW),MAS(IW)
EXTERNAL X04ABF,X02AJF,COSNBF
CALL X04ABF(1,NOUT)
PRINT */’INPUT P(D), I=i,...,",IW,” LLE, THE AR ORDERS <=IW’
READ *,(IP(I),I=1,IW)
DO 75 I=1,IW
MIS(1)=0
IF (IP(I)+1-1.GT.0) MIS(I)=1
MAS(I)=IP(I)+MIS(1)+1
75 CONTINUE
PRINT *,’DO YOU WANT TO USE THIS PROGRAM FOR ACTUAL DATA ?’
PRINT *,'IF YES, TYPE "1"
READ(*,*)IFL
IF (IFL.EQ.1). GOTO 55
DO 70 I=1,IW
PRINT *,”INPUT PHI"S FOR SEASON ’,I
70 READ *,(PHI(1,J),J=1,IP(I))
PRINT °*,’INPUT SIGMA(D), I=1,...,",IW
READ *,(SIGMA(I),I=1,IW)
PRINT *,’GIVE SEED...!
READ(*,*)ISEED
CALL GOSCBF(ISEED)
S5 DO 100 KZ=1,NREPT
IF (IFL.EQ.1) GOTO SO
DO 17 1=LIW
VM=0EO :
CALL  GOSEAF(VM,1,SIGMA(I),1,0.001,R,10,IFAIL)
DO 17 L=1,N+51
IFAIL=0
CALL GOSEZF(Z,1,R,10,IFAIL)
ERROR((L-1)*IW+I)=2Z(1)
17 CONTINUE
DO 22 J=1,IW
22 X(J)=0EO0
DO 23 J=IW+1,IW*(N+51)
SSU=ERROR(J)
IV=J-(J/IW)*IW
IF (IV.EQ.0) IV=IW
DO 71 K=l,IP(IV)
n SSU=SSU+X(J-K)*PHI(IV,K)
X(J)=ssuU
23  CONTINUE
DO 35 J=1,N*IW
35 X(J)=X(51*IW+J)
GOTO 51
50 PRINT *,’SINCE YOU ARE RUNNING THIS PROGRAM WITH ACTUAL DATA’
PRINT *,’YOU SHOULD HAVE MODEIFIED THE PARAMETERS IN THE FIRST’
PRINT *,’LINE OF THIS PROGRAM (NREPT=1). ALSO, THE DATA, LE.’
PRINT *,’ THE OBSERVED RELAIZATION OF THE TIME SERIES, MUST BE’
PRINT *,’STORED IN FILE "TAPES™
READ(S,*)(X(I),I=1,N*IW)
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19

20

24
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250

255

2000

270

00 20030006 0 0606 00 3000 06 20030 0602006 000 030 0 3000300 00 0 0 0 O

DO 19 I=1,IW
SS1=0E0
S$S2=0E0
DO 18 J=1,N
SS1=SS1+X(I+(J-1)*IW)
SS2=SS2+X(I+(J-1)*IW)**2
MU(I)=SSI/N
CO(I)=(SS2-N*(MU(1)**2))/N
CONTINUE
DO 20 I=1,IW
DO 20 J=1,N
ERROR(I+(J-1)*IW)=X(I+(J-1)*IW)-MU(I)
DO 21 I=1,IW
DO 21 L=1,IW
COV(1,L)=0E0
DO 24 J=0,N-1
IF (I+J*IW-L.LE.O) GOTO 24
COV(I,L)=COV(l,L)+ERROR(I+J*IW)*ERROR(I+J*IW-L)
CONTINUE
COV(1,L)=COV(I,L)/N
CONTINUE
T T T R T T T TP A T T
DO 1000 I=1,IW
DO 250 JJ=1,IW
MU(JJ)=0EO
DO 250 KK=1,IW
A1(JJ,KK)=0EO
A2(1J,KK)=0EO
DO 2000 II=1,IP(I)
MM=I-II
IF (MM.LE.O) MM=MM+IW
IF (MM.LE.O) GOTO 255
AI(IL, I1)=CO(MM)
DO 2000 JJ=II+1,IP(I)
AI(I1,JJ)=COV(MM, JJ~II)
IFAIL=0
CALL FOlABF(ALIW,IP(I),A2,IW,MU,IFAIL)
DO 350 II=1,IW
MU(II)=0EO
DO 3000 II=1,IP(I)
MU(II)=COV(L,1II)
DO 3000 JJ=IIIP(I)
A2(I1,J3)=A2(JJ,II
IFAIL=0
CALL FOICKF(MU,A2,MU,IW,1,IW,A3,N,3,IFAIL)
DO 270 II=1,IP(I)
PHI(1, II)=PHI1(LII)+MU(II)
SSM(1, IN)=SSM(I, IN+(MU(II)-PHI(I,1I))**2
SSU=Co(I)
DO 400 II=1,IP(I)
SSU=SSU-MU(IN)*COV(I,II)
SARI(I)=SARI(I)+SSU
SARMI(I)=SARMI(I)+(SIGMA(I)-SSU)**2

L2 d 22222322232 22 2222231222222 223232222222 2¢22 22 ]

DO 260 JJ=1,N-MIS(I)
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260

280

380
381

391

Cc

A8(JJ)=X(1+(JJ-1+MIS(I))*IW)

A9(JJ,1)=1EO

DO 260 II=1,IP(I)
A9(JJ, II+1)=X(I+(JJ-1+MIS(1))*IW-II)

IFAIL=0

CALL GO2CJF(A9,N,A8,N,N-MIS(I),IP(I)+1,1,A4,IW+1,SIGSQ, A1O,N,

IPIV,Al11,A3,IFAIL)

AO(I)=A0(I)+A4(1)

DO 280 II=1,IP(I)

A8(II)=0E0

PH2(I, IT1)=PH2(I, I1)+A4(11+1)

SSL(L,II)=SSL(1,I1)+(A4(II+1)-PHI(1,II1))**2

SSU=0EO

DO 381 JJ=1+MIS(I),N

A8(JJ)=0E0

DO 380 II=1,IP(I)
A8(JJ)=A8(JJ)+A4(II+1)*X(I+(JJ-1)*IW-II)
A8(JJ)=X(I+(JJ-1)*IW)-A8(JJ)-A4(1)

DO 391 JJ=1+MIS(I),N

SSU=SSU+A8(JJ)**2

SSU=SSU/(N-MAS(I))

SAR2(I)=SAR2(I)+SSU

SARV(I)=SARV(I)+(SIGMA(I)-SSU)**2

SREEREREE SRSV ERRBEREERBERE SRR RS SRR B ERRRBE

1000 CONTINUE
100 CONTINUE

290

800

801

802

DO 290 I=1,IW
AO(I)=A0(1)/NREPT
SARI(I)=SARI(I})/NREPT
SAR2(I)=SAR2(I)/NREPT
SARMI(I)=SQRT(SARMI1(1)/NREPT)
SARV(I)=SQRT(SARV(I)/NREPT)
DO 290 J=1,IP(I)
PHI(1,J)=PHI(I,J)/NREPT
PH2(1,J)=PH2(1,J)/NREPT
SSM(I, J)=SQRT(SSM(I, J)/NREPT)
SSL(I,J)=SQRT(SSL(I, J)/NREPT)
WRITE(NOUT,*)’

WRITE(NOUT, *)’ MOMENT ESTIMATES’
WRITE(NOUT, *)PHI‘S’
DO 800 I=1,IW
WRITE(NOUT, *)(PHI(1,J),J=1,1P(1))
WRITE(NOUT, *)' THEIR RMSE’
DO 801 I=1,IW
WRITE(NOUT, *)(SSM(1, J), J=1,IP(D)
WRITE(NOUT, *)’ERROR VARIANCE ESTIMATES’
WRITE(NOUT, *)(SARI(1),I=1,IW)
WRITE(NOUT, *)’ THEIR RMSE’
WRITE(NOUT, *)(SARMI(I), I=1,IW)
WRITE(NOUT, *)’

WRITE(NOUT,*)’LS ESTIMATES’
WRITE(NOUT, *)’PHI‘S’
DO 802 I=1,IW
WRITE(NOUT, *)(PH2(1,J),J=1,IP(I))
WRITE(NOUT, *)'CONSTANT’
WRITE(NOUT, *)(A0(J},J=1,IW)
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WRITE(NOUT,*)’ THEIR RMSE’
DO 803 I=1,IW

803 WRITE(NOUT, *)(SSL(L,J),J=1,IP(I))
WRITE(NOUT, *)’ERROR VARIANCE ESTIMATES’
WRITE(NOUT, *)(SAR2(I),I=1,IW)
WRITE(NOUT,*)’THEIR RMSE’
WRITE(NOUT, *)(SARV(I),I=1,IW)
WRITE(NOUT,*)’ ’
PRINT *,’FOR OUTPUTS, SEE TAPE’,NOUT
STOP
END

D.2 M-Variate Case
Description:

This program is the same as the previous program but written for
M-variate (M>1) PAR processes. In this case, we are dealing with matrices
rather than scalars and computations are more complicated. In addition to
the other parameters, M is also fixed beforehand in the first line in this

program.

INPUTS:
The same as those of the previous program but PHI matrix is now defined as
in Appendix A.

OUTPUTS:
The ouputs are similar to those of the previous program. The outputs are

saved in file Tapel8S.

INPUT COMMANDS FOR A SAMPLE RUN:
Here we consider, as an example, the bivariate PARz(l) model considered in
Section 4.6 and named Model (3), case (d). N = 30 and NREPT = 100. The

outputs for this case are also summarized in Table 4.4(a).

/ININ OSAMA4
INPUT (IP(V)<=2), L.E, THE AR ORDERS
FOR THE V-TH SEASON, V=l,...,2

17



M1
DO YOU WANT TO USE THIS PROGRAM FOR ACTUAL DATA ?
IF YES, TYPE "1"
0
NOW, FOR SEASON 1 INPUT THE PHI MATRICES AS FOLLOWS
1) INPUT THE FIRST ROW OF PHIl
2) INPUT THE FIRST ROW OF PHI2, ETC...
3) INPUT THE 2ND ROW OF PHI1, AND SO ON
2.9 -.7
?0 .6
NOW, FOR SEASON 2 INPUT THE PHI MATRICES AS FOLLOWS
1) INPUT THE FIRST ROW OF PHI1
2) INPUT THE FIRST ROW OF PHI2, ETC...
3) INPUT THE 2ND ROW OF PHIl, AND SO ON
2.5 .2
70 .6
INPUT THE UPPER TRIANGLE OF THE ERROR COV. MATRIX
(ROW BY ROW) FOR SEASON 1
10
1
INPUT THE UPPER TRIANGLE OF THE ERROR COV. MATRIX
(ROW BY ROW) FOR SEASON 2
7no
1
INPUT SEED POINT FOR RAN. VEC. GENERATION
72605
FOR OUTPUTS, SEE TAPEIS5
/edif tapel85 [outputs]

MOMENT ESTIMATES

PHI‘S

SEASON 1

.8266985161938 -.7196903151749
-.001802415274898 .5214822721667
SEASON 2

.4532162716309 .208590727829
.03574052257851 .6030688976322
SIGMA'‘S

SEASON 1

1.045390422368 -.02431756270715
-.0243175627071S .9469045275532
SEASON 2

.90427709791169 -.005832523436364
-.005832523436364 .8781976289095
MOMENT ESTIMATES RMSE

PHI‘S

SEASON 1

.1671098883147 .1626030695651
.1784603854327 .1945296663978
SEASON 2

1287638002777 .1750622450189
1223830692813 .1545066364721
SIGMA‘S

SEASON 1

.2T79399233721 .2064018287171
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.2064018287171 .3110346386067
SEASON 2

.2498065383558 .1641935598924
.1641935598924 .2509575959402

LS ESTIMATES

PHI'S

SEASON 1

.8588317404945 -.7433608800007
-.0007930156424487 .5375481279893
SEASON 2

4532162716309 .208590727829
.03574052257851 .6030688976322
SIGMA‘S

SEASON 1

1.034916784983 .01068118098242
.01068118098242 1.011597242355
SEASON 2

1.004745532352 -.006480581595956
-.006480581595956 .9757751432329
LS ESTIMATES RMSE

PHI'‘S

SEASON 1

1591963230447 .1665281372361
.183974212163 .1927733436982
SEASON 2

.1287638002777 .1750622450189
.1223830692813 .154506636472
SIGMA’S

SEASON 1

2527586546192 .2155687771436
.2155687771436 .3219507332793
SEASON 2

.2564176339459 .1824372887693
.1824372887693 .2449974571348

PROGRAM LISTING:

This program is stored in file OSAMA4.

PARAMETER (M=2,IW=2,N=30,NOUT=185,NREPT=100)

REAL PHI(M*IW,M*IW),SIG(IW,M,M),R(M+10), ERROR(M,IW*(N+51))
REAL X(M,IW*(N+51)),Z(M),MU(IW,M),COV(M*IW,M*IW),SS1(M), VM(M)
REAL CO(M*IW,M),A2(M*IW,M*IW),A3(M*IW), A4(M,M*IW),SS2(N, M)
REAL AS(M,M),A6(M,M),Z1(M),A7(1,M}, AL(M*IW,M*IW),A8(N,M*IW+1)
REAL SSM(IW,M,M*IW),SSMV(IW,M,M*IW), SSL(IW,M,M*IW),A9(N)
REAL SSLV(IW,M,M*IW), A10(N,M*IW+1),SAR1(IW,M,M),SAR2(IW,M,M)
REAL SARM(IW,M,M),SARV(IW,M,M),A11(M,M*IW),A12(M*IW+1,M)

REAL BI(M*IW,M),B2(M*IW+1,4}

INTEGER IP(IW),IPIV(M*IW+1),MIS(IW),MAS(IW)

EXTERNAL X04ABF
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CALL X04ABF(1,NOUT)
PRINT *,’NOW INPUT (IP(V)<=’,IW,’), I.LE, THE AR ORDERS’
PRINT *,’FOR THE V-TH SEASON, V=l,...,’,IW
READ *,(IP(I),I=1,IW)
DO 75 I=LIW
MIS(I)=0
IF  (IP(I)+1-1.GT.0) MIS(I)=1
MAS(I)=M*IP(I)+MIS(I)+1
75 CONTINUE
MAX1=0
DO 2 I=1,IW
IF (IP(I).EQ.0) GOTO 2
MOX1=(IP(I)-1)/IW+1
IF (MOX1.GT.MAX1) MAX1=MOX1
2 CONTINUE
IF (MAXL.LE.1) GOTO 16
PRINT *,’MAX1>1, SORRY, THIS PROGRAM DOESN‘T WORK HERE.’
STOP
C REMARK: PHI MATRICES MUST SATISFY PCS CONDITIONS
16 PRINT *,’DO YOU WANT TO USE THIS PROGRAM FOR ACTUAL DATA ?*
PRINT *,’IF YES, TYPE "1
READ(*,*)IFL
IF (IFL.EQ.1) GOTO 66
DO 1 K=1,IW
IF (IP(K).LT.1) GOTO 1
PRINT *,”’NOW, FOR SEASON ’,K,’ INPUT THE PHI MATRICES AS FOLLOWS’
PRINT *,’ FIRST, INPUT THE FIRST ROW OF PHII'
PRINT *,’ THEN INPUT THE FIRST ROW OF PHI2, ETC...’
PRINT *,” AND THEN, INPUT THE 2ND ROW OF PHIl, AND SO ON’
DO 11 I=1,M
DO 11 J=1,IP(K)
READ  *,(PHI(M*(K-1)+I,L),L=M*(J-1)+1,M*J)
1 CONTINUE
1 CONTINUE
DO 170 I=1,IW
IFAIL=0
PRINT *,”INPUT THE UPPER TRIANGLE OF THE ERROR COV. MATRIX'
PRINT *,”(ROW BY ROW) FOR SEASON °’,I

DO 18 K=1,M

18 - READ(*,*)(SIG(1,K,J),J=K,M)
DO 180 J=LLM .
DO 180 K=J,M

180 SIG(1,K, J)=SIG(I,J,K)

170 CONTINUE
PRINT *,”INPUT SEED POINT FOR RAN. VEC. GENERATION’
PRINT *,”ANY NON-NEGATIVE INTEGER’
READ(*,*)ISEED
CALL GOSCBF(ISEED)
66 DO 100 KOZ=1,NREPT
IF (IFL.EQ.1) GOTO 60
DO 17 I=1,IW
DO 19 II=1,M
VM(IN)=0EO0
DO 19 JJ=1M
19 A5(11,1J)=SIG(1,11,JJ)
CALL GOSEAF(VM,M,A5,M,0.001,R,M+10,IFAIL)
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21
17

48

29
26
S1
49
23

60

61

998

999

191

185
192
190

DO 17 L=1,N+51

IFAIL=0

CALL GOSEZF(Z,M,R,M+10,IFAIL)
DO 21 J=LM .
ERROR(J, (L-1)*IW+])=Z(J)

CONTINUE

DO 22 I=1,M

DO 22 J=L,IW

X(I1,J)=0EO0

DO 23 J=IW+1,IW*(N+51)

IV=J-(J/IW)*IW

IF (IV.EQ.0) IV=IW

DO 48 K=1,M

Z1(K)=ERROR(K,J)

IF (IP(IV).LT.1) GOTO SI1

DO 26 I=1,IP(1V)

DO 77 K=1,M

VM(K)'T'X(K",-I)

DO 27 K=I,M

DO 27 L=1M
AS(K,L)=PHI((IV-1)*M+K, (I-1)*M+L)

CALL MXMAB(M,M,1,A5,M,VM,M,Z,M)

DO 29 K=1,M

Z1(K)=Z1(K)+Z(K)

CONTINUE

DO 49 K=1,M
X(K,J)=Z1(K)

CONTINUE

DO 35 J=1,N*IW

DO 35 =L, M
X(1,1)=X(I,51*IW+J)

GOTO 61

PRINT *,”SINCE YOU ARE RUNNING THIS PROGRAM WITH ACTUAL DATA’
PRINT *,”YOU SHOULD HAVE MODEIFIED THE PARAMETERS IN THE FIRST’
PRINT *,’LINE OF THIS PROGRAM (NREPT=1). ALSO, THE DATA, L.E. "’
PRINT *,”THE OBSERVED RELAIZATION OF THE TIME SERIES, MUST BE’

PRINT *,’STORED IN FILE "TAPES™
DO 555 J=1,M
READ(S,*)(X(J,1),1=1,N*IW)

L2222 22232 222222 22222122 22222222222 2222 2]

DO 999 lJ=1,M*IW
DO 998 II=1,M
C0(JJ,11)=0EO0
DO 999 II=1,M*IW
COV(IL, JJ)=0EO
DO 190 I=1,IW
DO 191 J=1,M
-S§S1(J)=0E0

DO 192 K=1,M

DO 185 J=I,N

SS1(K)=SS1(K)+X(K,I+(J-1)*IW)

MU(I,K)=SS1(K)/N

CONTINUE

DO 20 I=1,IW

DO 20 K=1,M

DO 20 J=1,N
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20 ERROR(K, I+(J-1)*IW)=X(K,I+(J-1)*IW)-MU(L,K)
DO 207 I=1,IW
DO 208 II=],M
DO 208 JJ=1,M
208 A5(11,1J)=0EO
DO 209 J=1N
DO 210 II=1,M
SSI{II)=ERROR(IL, I+(J-1)*IW)
210 A7(1,I1)=ERROR(IL I+(J-1)*IW)
CALL MXMAB(M,1,M,SS1,M,A7,1,A5,M)
DO 211 II=1,M
DO 211 JJ=1,M
211 CO((I-1)*M+I1,JJ)=CO((I-1)*M+II, JJ)+AS5(I1,JJ)
209 CONTINUE
207  CONTINUE
DO 212 I=1,M*IW
DO 212 J=1,M
212 Co(1,J)=Co(1,J)/N
DO 200 I=1,IW
DO 200 L=1,IW
DO 195 II=1,M
DO 195 JJ=]lM
195 A5(I1,JJ)=0EO
DO 24 J=0,N-1
IF (I+J*IW-L.LE.O) GOTO 24
DO 196 II=1,M
SSHIN=ERROR(IL I+J*IW)
196 A7(1,II)=ERROR(II, I+J*IW-L)
CALL MXMAB(M,1,M,SS1,M,A7,1,A5,M)
DO 197 II=1,M
DO 197 JI=1,M
197 COV((I-1)*M+II, (L~-1)*M+JJ)=COV((I~1)*M+I1, (L-1)*M+JJ)+AS5(I1,JJ)
24  CONTINUE
200 CONTINUE
DO 198 I=1,M*IW
DO 198 J=1,M*IW
198 COV(I,J)=COV(L,J)/N
C LT T T T L A o T P T
DO 1000 I=1,IW
DO 250 1J=1,IW*M
DO 250 KK=1,IW*M
Al1(JJ,KK)=0EO
250  A2(JJ,KK)=OEO
DO 201 II=1,IP(I)
=I-11I
255 IF (MM.LE.O) MM=MM+IW
IF (MM.LE.O) GOTO 255
DO 201 IJ=1,M
DO 201 IK=1,M
201 AL((I1-1)*M+1J, (1I-1)*M+IK)=CO{(MM-1)*M+1J,IK)
DO 2000 II=L,IP(I)
DO 2000 JJ=II+1,IP(I)
MM=I-11
2550 IF (MM.LE.O) MM=MM+IW
IF (MM.LE.O) GOTO 2550
DO 202 1J=1,M
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DO 202 IK=1,M
202 AL((I1-1)*M+1J, (JJ-1)*M+IK)=COV((MM-1)*M+1J,(JJ-1I-1)*M+IK)
2000 CONTINUE
DO 2001 1J=1,M*IP(I)
DO 2001 IK=1,1J
2001 Al(1J,IK)=ANIK,1J)
IFAIL=0
CALL FOIABF(Al,M*IW,M*IP(I),A2,M*IW,A3,IFAIL)
DO 350 II=1,M
DO 350 JJ=1,M*IW
A12(JJ+1,1)=0E0O
350 A4(I1,1J)=0EO0
DO 3000 J1J=LIP(I)
DO 203 KK=1,M
DO 203 JK=1,M
203 A4(KK, (JJ-1)*M+JK)=COV((I-1)*M+KK, (JJ~1)}*M+JK)
3060 CONTINUE
DO 204 KK=1,M*IP(I)
DO 204 JK=KK,M*IP(I)
204  A2(KK,JK)=A2(JK,KK)
IFAIL=0
CALL MXMAB(M,M*IW,M*IW,A4,M,A2, M*IW,A1},M)
DO 266 II=1,M
DO 266 JJ=1,M*IW
SSM(L,IL,JJ)=SSM(L,II, JJ)+Al11(I1,JJ)
266 SSMV(L,11,JJ)=SSMV(LII, JJ)+(A11(I1,JJ)-PHI((I-1)*M+I1, J1))**2
DO 560 IK=1,M
DO 560 JK=1,M*IW
560 BI(JK,IK)=A4(IK,JK)
CALL MXMAB(M,M*IW,M, A11,M,B1,M*IW,A6,M)
DO 500 IK=1,M
DO 500 JK=1,M
500 A6(IK,JK)=CO((I-1)*M+IK,JK)-A6(IK,JK)
DO 540 IK=1,M
DO 540 JK=1,M
SARI(1,IK,JK)=SARI(I,IK, JK)+A6(IK, JK)
540 SARM(LIK, JK)=SARM(],IK, JK)+(SIG(I,IK, JK)}-A6(IK,JK))**2
c L T T
DO 217 II=1,N-MIS(I)
A8(I1,1)=1E0
DO 216 JJ=1,M
216 SS2(11,J3)=X(JJ, I+(I1-1+MIS(I))*IW)
DO 217 1J=1,M*IP(I)
1Z=1J-(JJ/M)*JJ
IF (IZ.EQ.0) IZ=M
217 AS8(I1,JJ+1)=X(1Z, I+(II-1+MIS(1) ) *IW-(JJ+M-1)/M)
IFAIL=0
CALL GO2CJF(A8,N,SS2,N,N-MIS(I),M*IP(I)+1,M,A12,M*IW+1,VM, AlO,N,
. IPIV,B2,A9,IFAIL)
DO 218 II=1,M )
ZI(ID=A12(1,1I)
DO 218 JJ=1,M*IP(l)
A2(11,1J)=A12(JJ+1,1I)
SSL(L11,J3)=SSLI(1,I1,JJ)+A2(11,JJ)
218 SSLV(LII,JJ)=SSLV(],I1,JJ)+(A2(I1, JJ)-PHI((I-1)*M+II, JJ) ) **2
DO 760 IK=1,M
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761

760

430

660
640

680
620

700

600

605

720
604

740

1000
100

291

290

A7(1,IK)=0EO
DO 761 JK=1,M
A6(IK, JK)=0EOQ
DO 760 JK=I,N
SS2(JK,IK)=0EO0
DO 600 JJ=1+MIS(I),N
DO 430 II=1,M
VM(II)=0EO
DO 620 II=1,IP(I)
DO 640 IK=1,M
DO 660 JK=1,M
AS(IK, JK)=A2((1I-1)*M+IK, JK)
Z(IK)=X(IK,I+(JJ-1)*IW-1I)
CALL MXMAB(M,M,1,A5,M,Z,M,SS1,M)
DO 680 IK=1,M
VM(IK)=VM(IK)+SS1(IK)
CONTINUE
DO 700 IK=1,M
VM(IK)=X(IK, I+(JJ-1)*IW)-VM(IK)-Z1(IK)
§S82(JJ,IK)=SS2(JJ,IK)+VM(IK)
CONTINUE
DO 604 JJ=1+MIS(I),N
DO 605 IK=1,M
VM(IK)=SS2(JJ,IK)
A7(1,IK)=VM(IK)
CALL MXMAB(M,1,M,VM,M,A7,1,A5,M)
DO 720 IK=1,M
DO 720 JK=1,M
A6(IK,JK)=A6(IK, JK)+A5(IK,JK)
CONTINUE
DO 740 IK=1,M
DO 740 JK=1,M
A6(IK, JK)=A6(IK, JK)/(N-MAS(I))
SAR2(L,IK, JK)=SAR2(1,IK, JK)+A6(IK,JK)
SARV(LIK,JK)=SARV(],IK, JK)+(SIG(I,IK, JK)-A6(IK,JK))**2
L T L L T T T
CONTINUE
CONTINUE
DO 290 I=1,IW
DO 290 J=1,M
DO 291 K=1,M
SARI(],J,K)=SARUI, J,K)/NREPT
SAR2(1,J,K)=SAR2(1,],K)/NREPT
SARM(L, J,K)=SQRT(SARM(I,J,K)/NREPT)
SARV(I, J,K)=SQRT(SARV(I,J,K)/NREPT)
DO 290 K=1,M*IP(I)
SSM(1,J,K)=SSM(1, J,K)/NREPT
SSL(1,J,K)=SSL(LJ,K)/NREPT
SSMV(L,J,K)=SQRT(SSMV(I,J,K)/NREPT)
SSLV(I,J,K)=SQRT(SSLV(],J,K)/NREPT)
WRITE(NOUT, *)’

WRITE(NOUT, *)’MOMENT ESTIMATES’
WRITE(NOUT, *)’'PHI‘S’

DO 800 I=1,IW
WRITE(NOUT,*)’SEASON ’,I

DO 800 J=1,M
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800

810

801

811

802

820

803

821

WRITE(NOUT, *)(SSM(I, J,K),K=1,IP(I)*M)
WRITE(NOUT, *)’SIGMA'S’
DO 810 I=1,IW
WRITE(NOUT, *)’SEASON ’,1
DO 810 J=1M
WRITE(NOUT, *)(SARI(], J,K),K=1,M)
WRITE(NOUT, *)’MOMENT ESTIMATES RMSE’
WRITE(NOUT, *)'PHI‘S’
DO 801 I=1,IW
WRITE(NOUT,*)’SEASON ’,I
DO 801 J=I,M
WRITE(NOUT, *}(SSMV(I, J,K),K=1,IP{1)*M)
WRITE(NOUT, *)’SIGMA*S’
DO 811 I=1,IW
WRITE(NOUT,*)’SEASON °’,I
DO 811 J=1M
WRITE(NOUT, *){SARM(I, J,K),K=1,M)

WRITE(NOUT,*)’ -
WRITE(NOUT, *)’LS ESTIMATES’
WRITE(NOUT, *)’'PHI'S’
DO 802 I=1,IW
WRITE(NOUT,*)’SEASON ’,1
DO 802 J=I,M
WRITE(NOUT, *)(SSL(1,J,K),K=1,IP(I}*M)
WRITE(NOUT, *)'SIGMA‘S’
DO 820 I=1,IW
WRITE(NOUT,*)’SEASON °,1
DO 820 J=1,M
WRITE(NOUT, *)(SAR2(1,J,K),K=1,M)
WRITE(NOUT,*)’LS ESTIMATES RMSE’
WRITE(NOUT, *)’PHI‘S’
DO 803 I=1,IW
WRITE(NOUT, *)’'SEASON ’,I
DO 803 J=1,M
WRITE(NOUT, *)(SSLV(L, J,K),K=1,IP(I)*M)
WRITE(NOUT,*)’SIGMA'S’
DO 821 I=1,IW
WRITE(NOUT,*)’SEASON ’,1
DO 821 J=1,M
WRITE(NOUT, *)(SARV(I, J,K),K=1,M)
WRITE(NOUT, *)’

PRINT *,’FOR OUTPUTS, SEE TAPE’,NOUT
STOP
END
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