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ABSTRACT

ITERATED DEFECT CORRECTION METHODS FOR
SEMI-EXPLICIT DIFFERENTIAL-ALGEBRAIC EQUATIONS

Sennur Somals (Uzuner)
PhD in Mathematics
Supervisor: Assoc. Prof. Dr. Biilent Karasozen

June 1990, 68 pages

The application of the iterated defect correction (IDeC) techniques to linear con-
stant coefficient differential-algebraic equations (DAE’s) of arbitrary index and
nonlinear semi-explicit index one DAE’s is analyzed. The convergence behavior
of the defect corrections based on the linearly implicit Euler method is studied
using the perturbed asymptotic expansions of the global error. Various numerical

results are presented and discussed.
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implicit Euler method, asymptotic expansions.
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OZET

YARI ACIK DIFERANSIYEL-CEBIRSEL DENKLEMLER iCIN
YINELEMELI HATA DUZELTME YONTEMLERI

Sennur Somal (Uzuner)
Doktora Tezi, Matematik Bolimi
Tez Yoneticisi: Dog. Dr. Biilent Karasozen

Haziran 1990, 68 sayfa

Bu cahgmada yinelemeli hata dizeltme yontemlerinin sabit katsayih isteksel in-
disli dogrusal ve bir indisli dogrusal olmayan yari-acik difereansiyel-cebirsel den-
klemlere uygulamg incelenmigtir. Dogrusal kapah Euler yontemine dayal: olan
hata yinelemelerin yakinsama analizleri genel hatanmn asimptotik agihmlari kul-

lanilarak yapilmigtir. Cesitli sayisal sonuglar verilmig ve tartiglomgtir.

Anahtar Kelimeler: diferansiyel-cebirsel denklemler, hata diizeltme ydntemleri,
dogrusal kapall Euler yontemi, asimptotik agilimlar.
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INTRODUCTION

The numerical and analytical treatment of differential-algebraic equati(;ns
(DAE?’s) has been the subject of intensive research activity in the last few years
(see monographs [1], [12], [14]). The application of ordinary differential equa-
tion (ODE) methods to these systems presents numerical difficulties. In the last
twenty years several numerical methods were applied with some success to DAE’s.
Among them are the backward differentiation formulas (BDF) [9],[11}, [19],[20],
multistep methods [12]), one-leg methods ([12],[23], implicit Runge-Kutta meth-
ods [14], , [25], [27], Rosenbrock methods [26], [28] and extrapolation methods [4],
[21]. The well known codes for DAE’s are LSODI of Hindmarsh [18], DASSL of
Petzold [24], LIMEX of Deufelhard et al. [5] and RADAUS of Hairer and Wanner
[16], [14].

In this thesis we will apply an efficient acceleration technique for stiff and non-stiff
ODE’s , namely the iterated defect correction (IDeC) method due to Frank et.
al. [6] to DAE’s and analyze its numerical behavior. We will outline briefly the
DAE’s considered here and glve the formulation of the IDeC method for ODE’s.

DAE’s are special implicit differential equations of the form

F(t,y(t),y'(t)) =0 (0.1)

with singular Fs, where F' and y are of the same dimension. Here and in the

following we denote partial derivatives by subscripts, so that F;y = 0F/0y’. Equa-



tion (0.1) is also called a fully implicit DAE system . We are here especially inter-
ested in semi-explicit systems , differential equations with algebraic constraints

of the form

¥'(t) = ft,¥(t),2(t))  f:R™*1 R
0=g(t,y(t),2(t))  g:R™™! - R" (0.2)

where y represents the differential variables and z the algebraic variables. The
numerical methods devised for DAE’s take into account the structure of the un-
derlying DAE. We will giye two commonly handled DAE types in the literature
which are the subject of this work.

Linear constant coeflicient DAE’s are of the form ;

Az'(t) + Bz(t) = f(2) (0.3)

where A and B are m X m matrices and ¢ is a real variable. This system is a
special type of the fully implicit nonlinear DAE (0.1). It is known that if the
matrix pencil A + AB , with A a complex variable , is a regular matrix pencil,

then there exist matrices P and ) such that

paa=(1 ) . msa=(C ) ey

where E is a nilpotent matrix of nilpotency index yu (E# = 0 and E*~1 £ 0 ) and
I is the identity matrix. This transformation is known as the Kronecker canonical
form (see [2, pp. 18]). The application of this transformation to (0.3) yields a

linear constant coefficient DAE system of the form

y{ + Cyz = f] (05&)

Ey+y2=Fo (0.5b)

The first equation is an explicit ODE system and does not interest us further. A
nilpotent matrix of nilpotency index p can always be transformed to a strictly
upper or lower triangular matrix (see [2, pp.20 , Theorem 2.3.5]). Therefore the

second equation is a special case of the nonlinear semi-explicit DAE system (0.2).



The most characteristic value of a DAE system is its index. For linear constant
coefficient DAE’s it is defined as to the nilpotency index p of the matrix E. It
plays an important role in the analytical and numerical considerations. The nu-
merical solution methods run into difficulties if the underlying DAE has a high
index. The regularity of the matrix pencil A + AB is equivalent to solvability
in the case of linear constant coefficient DAE’s, which is not the case for linear
DAE’s with variable coefficients and nonlinear DAE’s. The properties of the an-
alytical solution of (0.3) are pointed out in [2, pp. 18, Theorem 2.3.1] and they

will be discussed in sections I and III .

The nonlinear semi-explicit DAE systems of index 1 are an important subclgﬁss
of (0.2) where f and g are sufficiently differentiable. We assume further that .gz
has a bounded inverse in a neighborhood of the exact solution. Then the second
equation of (0.2) can be transformed into z = G(y) by the implicit function
theorem, so that (0.2) becomes y' = f(y,G(y)). This proves the local solva.bi]ity
and regularity of a nonlinear system of index 1. We further assume that the
initial values yo and 2y are consistent with (0.2) , i.e. g{yo,20) = 0. This type of
DAE occurs very often in science and engineering.

There are two main definitions of the index for nonlinear DAE systems. One is
due to Gear [10], [8] and it is called the differential index, di, of the system (0.1)

; it is the minimum integer such that the system of equations (0.1) and

d '
th(t)yay) _0

dm ,
&mF@yw)—O

can be solved for y' = y'(y). This means that the equation system above can be

written as



F(t,y,4") =0

Fay(t,y,y,9")=0

(0.6)

F[m](t7 Y, y,, ce ,y(m-l), y(m)) =0

where F;;,7 = 0,...,m denote the total derivatives, for example Fiyj = Fyy" +
F,y' + F;. We can write (0.6) as

Fr(¥,9,Ym) =0

where

Ym = (¥s---,y")T
The index p of (0.6) is the smallest number p such that F,;; uniquely determines
the variable g’ as a continuous function of y and ¢ (see [1, pp. 33, Def. 2.5.1]).
This definition can be satisfied in case of a semi-explicit DAE (0.2) in the following
form :

If we differentiate the constraint equation (0.2b) with respect to ¢t , we get

y' = f(tayvz)

gy(t1 Y, Z)y' + gz(t, Y, z)z’ = "‘gt(ta Y, z)

If g, is nonsingular, the system is an implicit ODE and we say that (0.2) has
index 1. Otherwise we have to write the system by algebraic manipulation and
coordinate change in the form of (0.2), and differentiate the constraint equation
again. If an implicit ODE results, we say that the original problem has index 2.
If the new system is not an implicit ODE , we repeat this process.

Hairer et. al. [14] gave a new definition of index as a measure of the sensitivity of
the solutions to the perturbations in equation (0.1) , which is an important factor

in the numerical solution of DAE’s. Gear called this [7] the perturbation index

4



pt ; it is the smallest value of the integer m, such that the difference between the

solution of (0.1) and the solution of the perturbed equation
F(t,3,7) = ()
can be bounded by an expression of the form

l13¢) — y @)l < Cl3(0) — y(O)| + max 16EE)]| + - .. + max [[6™-D ().

0LE<t 0<é<t
For semi-explicit systems of index 1 these two definitions are equivalent i.e. di =

pt, according to [14] and [7]. For general nonlinear DAE systems di < pi < di+1

(see [7]).

IDeC methods originate from an idea of Zadunaisky [31] by estimation of the
global discretization error of ODE’s by means of Runge-Kutta (RK) methods.
This idea has been modified by several authors and is applied to partial differen-
tial equations, to stiff and nonstiff ODE’s (initial and boundary value problems).
These lead to a class of fast converging numerical methods, known as IDeC meth-
ods.

We will now summarize the formulation of the IDeC method due to [6] for initial

value problems (IVP) in the following form

y'(#) = f(v(t)) t€[0,T] and y,9', f € R™

¥(0) = %o (0.7)
with the exact solution y(¢). Subsequently this problem will be called the orig-
inal problem (OP). This problem is first solved numerically by a method (basic
method) on the grid

G={t,:t,=v-h, v=0,....m-n, h:=T/m-n}

where h is the constant step size in the interval [0, T
The resulting numerical approximation 7 is denoted by 7!¥ := (70,...%mx)
(The meaning of m and n will be given in Chapter I). The global discretization

error 7, — y(%,) can be estimated by computing the defect
dy = BP(t) - £(PY) (0.8)

5



where P, is computed by a piecewise interpolation of [ on the subintervals
[t*-1,#],i = 1,...,n. Adding this defect to the right hand side of (0.7) an artificial
IVP is obtain which is called the neighboring problem (NP) whose exact solution
is P,

v'(t) = Fu(t)) +di) (0.9)
The NP may be solved by the same method as the OP or by another method.
The numerical solution of (0.9) is denoted by 7 := (70, ...,...,Tmx). Now the
global discretization error 7l — PI%,) of the NP is available and can be used

for the estimation of the global error of the OP :
7":[?] - P}EO](tV) ~ 771[101 ~y(t)

Frank and Ueberhuber have shown in [6] that under suitable assumptions about
the problem (0.7) , the methods for solving OP and NP approximately and the
interpolation polynomial, #(® — 5! give an error estimate of order p + ¢, where
p and ¢ are the orders of the methods for solving equations (0.7) and (0.9)
numerically. In the identity

y(t,) = — (1 — y(2,))

the term [ — y(#,) can be replaced by its estimate 7l — P’)(£,) which leads to
an improved numerical approximation of order p + ¢q. By subtracting the error
estimate 7% — % from the approximate solution 5!° we obtain an improved

numerical approximation of order p + ¢.
1805 1f1 = (19— 19 (010

Further defect correction steps can be constructed iteratively by interpolating
7"l by a new polynomial P, and solving the new NP. In this way one obtains a

sequence of approximations

gt 0 (ol gl 5= 0,1, juma (0.11)

The number of maximum defect correction steps jmax is determined by the maxi-

mum attainable convergence order which in turn depends mainly on the degree of

6



the interpolation polynomial and the convergence orders of the numerical meth-
ods for solving (0.7) and (0.9). We have chosen the linearly implicit Euler method
as the basic method. It belongs to the class of semi-explicit methods. The major
advantage of these methods is their low computational cost. They use a fixed Jo-
cabian in each interval and only one Newton iteration is performed. This method
is applied with success to stiff and nonstiff ODE’s and is known in the literature as
a very efficient acceleration technique. Like the extrapolation method, the error
analysis and asymptotic order results are based on the asymptotic expansions of
the global error in powers of the step size h. Applying the implicit Euler method
to the explicit ODE (0.7) one obtains asymptotic expansions of the global error

!

of the following form : p
. :
y(t) —ua(t) = ; ei(D)h + En(t)RNH (0.12)
where y(t) is the implicit Euler approximation obtained with the step size & and
y is the exact solution . For nonstiff ODE’s and linear constant coefficient DAE’s
the asymptotic expansions can be generated in a simple manner with uniformly
bounded remainder term Ej(t). However, for stiff ODE’s and nonlinear DAE’s it
is not possible to obtain the usual form of asymptotic expansions with a bounded

remainder term (see [2, pp. 109]). Using the analogy between the stiff system

y(@) = f(t,y(®),2(2))  y(0)=wo
ez'(t) = g(2,y(t), f(t)) 2(0) = zo (0.13)

where 0 < € < 1, and the corresponding semi-explicit DAE of index 1 obtained
by setting (¢ = 0) the so called perturbed asymptotic expansions due to Hairer
et. al are developed.

In Chapter I we consider a linear constant coefficient DAE of arbitrary index in
semi-explicit form (0.5b). This system and the resulting NP’s at defect correction
steps are solved by the implicit Euler method. Using the Taylor expansions of
the exact and approximate solutions asymptotic expansions of the global errors
in unperturbed form are obtained for each component of the DAE system. This

makes it possible to analyze the convergence behavior of each component of the

7



DAE system. It turns out that the maximum attainable convergenge order de-
pends on the index of the underlying DAE and is limited by the degree of the
interpolating polynomials. '

In Chapter II a semi-explicit nonlinear DAE of index 1 of the form (0.2) is solved
by the linearly implicit Euler method. The perturbed asymptotic expansions
of the global error for constant step sizes are developed in the Appendix. Us-
ing these, convergenge results about approximate solutions at defect correction
steps are obtained. The results are very similar to the nonstiff and stiff ODE’s.
The maximum attainable convergenge order is one less than the degree of the
interpolating polynomial. On the other side both y differential and z algebraic
components attain the same convergence order.

In Chapter III numerical results for two test examples are presented, one from the
linear constant coefficient DAE and the other from the nonlinear index one DAE.
These results confirm the order of convergence which are predicted theoretically
in the chapter I and II. Using the step size and order control strategy for IDeC
methods in [30] we have solved a pipeline problem as a technical application.
The convergence behavior of the IDeC methods for the DAE’s investigated here,
is similar to the ODE’s. Defect correction method belongs as extrapolation to
the class of acceleration techniques. Extrapolation method is applied to various
types of DAE’s extensively in the last years. It is usual for these techniques to
use a cheap method like the linearly implicit Euler method here. On the basis of
numerical experiments and theoretical results obtained here, the IDeC techniques
based on it seem to be efficient and promising for DAE’s too and diverse further

development.



Chapter 1

ITERATED DEFECT CORRECTION METHODS FOR
CONSTANT COEFFICIENT LINEAR DAE’S

We consider the linear constant coefficient DAE (0.3) in Kronecker canonical form
(0.4). The matrix E is a nilpotent block diagonal matrix E = diag(E;, E,. .., E))

composed of elementary Jordan blocks of the form.

(o )
1 .

\ 1 0/““

The system in (0.5a) and (0.5b) is called completely singular system, but if E
contains only one Jordan block of the form above, then it will be called canonical
(completely) singular system ([1, pp. 79]).

The behavior of the ODE methods are studied generally on the canonical
singular subsystem (0.5b). We will apply the implicit Euler method as the basic
method to this system and study its convergence behavior in defect correction
steps.

The exact solution of the canonical subsystem of index g

Ey =y+g(t)



with g(t) = (91(t),92(t),- - -, 9u(t)) and y(t) = (v1(t),y2(t),- - ., yu(t)) is given by
ni(t) = —a:(t)

y2(t) = —g2(t) — g;(t)

yu(t) = —g,,(t) + ‘i(_l)u—iga(”—‘)(t)

i=1
When the implicit Euler method is applied to this system the derivatives g;(t) will
be replaced by finite differences. The structure of the nilpotent matrix £ makes
the exact and approximate solutions of the :th equation depend only on the
solutions of the first (i-1) equations. This situation is reflected to the behavior of
the defect correction solutions. It turns out that the convergence orders of higher
index components are lower then the lower index components. The maximuﬁl
attainable order of convergence for the y-index component is m + 2 — p, when a
piecewise polynomial of degree m > 2(p — 1) is used. The asymptotic expansions
of the global errors are obtained using Taylor expansions and don’t contain any

perturbation terms.

1.1 Formulation of the IDeC method

In the following, we will describe briefly application of the IDeC method to linear

constant coefficient DAE’s in canonical singular form :

Ey' =y +g(t)
y(0) = %o (t,y)y eGco,T} xR* (1.1.1)

where y(t) and g(t) are vector-valued functions of dimension s and g(t) is a
sufficiently smooth function.

When the implicit Euler method is applied to the original problem (OP)
(1.1.1) on the uniform grid {G := {t, = vk, v=0,1,...,n-m, n,m € N}
with the step size h = T/m - n , the numerical solution obtained is denoted by

7:= (N0, M1s+-+sMvs+-->Tnm) - Lhe meaning of n and m will be given later.

E(u41 — ) = by + hg(tua) (1.1.2)

10



Mo = Y%
Interpolation of § = (7o,---,7nm)? by a vector-valued function P[(1) (i.e.
Py(t,)=m,, v=0,1,...,n-m) yields the defect

&) = EPPY () - PI(t) - o(t) (1.1.3)

By adding the defect d;?](t) to the right-hand side of the original problem (1.1.1),
then the neighboring problem (NP) can be created analogously to the ODE’s

Ey' =y+ EP™(t) - PP@) (1.1.4)
y(0) = o
The numerical approximation of (1.1.4) with the implicit Euler method on the

same grid is denoted by 7 := (7q,..., 7y, ..., Tpm), where 7, is an approximation

to the exact solution P,Eol(t) of (1.1.4) at t,.
E(fl — ) = hally + REPY (t41) = hPO(tn)  (115)

The improved solution of (1.1.1) is given by
i =n, — ()~ PP(L)) (1.1.6)

the succeeding iterations can be constructed as follows; one can interpolate the
values of 71! by a new piecewise polynomial P,EI] (t) and a new NP is constructed
whose exact solution is P,Ell(t), solving the new NP on the same grid G, it leads
to the solution 7"l from which 5[ is computed, and so on. Continuing this we

obtain the sequence of following approximations:
gl = gl (70— PEI()) 5 =1,2,. 0, e (1.1.7)

where 7¥~1 is the numerical solution of the NP, constructed at each defect cor-

rection step. Then 7l denotes the corrected value of the approximation, where

771[/0] = o-

The interpolant P,[ﬂ is a piecewise polynomial of fixed degree m. We use uniform

11



grids, based on the stepsize h = T'/m - n and consider the following subintervals

Of [0, T] = UI;;
L=["11], i=1,2,...,n with ' =i-m-h

Here n denotes the number of subintervals and m the degree of the interpola-
tion polynomial in each subinterval. Our interpolating functions P,Eﬂ are defined
piecewise as

PP(t)=PH@), tel, i=1,2...,n

so that the interpolating polynomials P,-[fg R-R°
PRty =al, v=(G-1)-m, G=1)-m+1,..,6-m §=0,1,...,5max—1
!

The defect d,Lf] (t) is also defined piecewise
dfit) := d9\@) = P () - PRl - g(8), te (7)), i=1,2,...,n
Every NP can be written then

Ey =y+EPH @) —PH#) i=1,2,...,n, §=0,1,...,5max—1

%

. i=1
y(# ) = o , (1.1.8)
PY (@1 i=2,3,...,n

The solution of the i-th part of (1.1.8) is P,[f,z(t) We consider (1.1.8) as an IVP

defined in a piecewise fashion and having the solution P,E’].

This solution has
jumps in its first derivative at the endpoints # of the subintervals Z;. This is not
contradictory to the assumption that the original problem and NP are problems
of the same kind (see [31]) since a smooth original problem is of course a spe-
cial case of (1.1.8). With respect to the connection of the numerical values at
the endpoints of the interpolation intervals, there exist two different connection
strategies; local and global connection strategies. By the local connection strat-
egy, all n-values and further corrections 5l are computed in one interpolation

interval, the numerical solution of the original problem starts with this corrected

value at the beginning of the next interpolation interval. By the global connection

12



strategy, firstly the original problem is solved on the whole integration interval
[0,T] and then the 7l and 5ll-values and so on are calculated. Our analysis is

restricted to the global connection strategy.

1.2 Asymptotic Expansions of the Global.
Error of the Implicit Euler Method

In the following we will give the asymptotic expansions of the global error of the
implicit Euler method in (1.1.2). The analytic solution of the DAE (1.1.1) is of

the form
k-1 . .
y(t) = -, E'q®(t)

i=0

where g@)(t) = (t) and p is the nilpotency index of E. Solving (1.1.2) for

dtz
My41 and noting that

()1 -5 ()

we obtain
1 V i
Z E (X) for v<p-1 (1.2.1a)
=0
p—-1 v i
-YE (X) for wv>p-1 (1.2.1b)
=0
where

k8 z’.
is the backward difference operator.

From definition of the global error e, = y(t,) — 7., we write;

u-1 [t
e, =——ZE’g(') t )+ZE’ (V) g, for v=1,2,...,nm,
1=0 =0

For consistent initial conditions, i.e. ¢ =0

“—1 . »
y(0) = yo = — 3 Eig)(0)
t=0

13



Using the Taylor expansion,

TJV’g" [ {Z( D —m - —k)! § E( k)lf ‘(’l)+0(hm+l)]}

k-O

—g(‘)+kzlz( Vi - —&)! n B (b + 0mH) (122)
=0 [=1+1

and substituting (1.2.2) into the equation for the error e,, we get the asymptotic
expansions corresponding to the two cases of nilpotency in the equations (1.2.1a)

and (1.2.1b) ;

forv<pu—1
v m . . p—1 o
&= 2 a;Eh-ig0t,)— 3 E'gO,) + EOR™)
1=1]=i+1 i=v+1
and forv > p—1
u-.l n . .
e, = Z z cl’iEzhl—tg(l)(tu) + Eo(hm-i-l)
i=1 I=i+1

where

: i (k)
ai = L (D) g k)!( z!)

Since g(t) = Ey' — y, the error formula can be rewritten as

r m . .
= BV R)EY 3 aE R 00) + EO(R™) for v < p—1 (123)
=1 l=i+1

and
-1 m

=Y 3 a:ERyO(1,) + EO(R™) for v > p— 1 (1.2.4)

1=1 =141
where a1 = ¢j_1-1 — €13

We see that the global error behaves like O(h) after g — 1 steps and O(1) for
1<v<p-—-1

1.3 Error Analysis for Index u-Systems

Theorem 1.1 : Let g(t) be sufficiently smooth. For an index p# > 2 linear DAE
system, based on the implicit Euler method, one obtains the following orders

of convergence for defect correction step j with an interpolating polynomial of

14



degree m > 2(u — 1).

O(*) 0<j<pu-1
o, — yu(t,) = (1.3.1)
O(hm+2=4)  j2p-1

where v = m,...,nm, and the subscript p denotes the uth component of the
vectors 7, and y respectively.
Proof : Similar to the (OP), we have for the (NP), asymptotic expansions
of the global error in the following form,
» . “—1 m . . he
- PPN) = 3 Y e BRI ) + BO(T) (13.2)
i=1 I=it+1
X '
where PV _ll(t) is defined as in Section 1.1.
Subtracting (1.3.2) from the global error of the (OP) (1.2.4) and (1.2.5) , we
obtain

8 — y(t,) = [, —y(&)] — [#6~9 — PF(8,)]

=1 m

=Y ¥ a: B 0w) - PO + BO(r )

=1 =i+l

Written in the components of index y system with

Uy] = (7]1.1/, M2pseces nu,v)Ta y(tu) = (yl(tu)’ Y2 (t,,), MARE yu(tl/))T’

PA(,) = (Pun(t,), Pan(ts)s -« Pun(8))T,

and i X .
00 0 0
1 0 0
E=10 0 Ey=| y
(0001 0] s | Yui |y
we have;

= 10 -1
oy — yulty) = 3 3 aih'™ [yu—i(tu) — P i (t,,)] +O(h™?)  (1.3.3)

i=1 I=i41
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i) For j = 1, using the Lemma 1.2 and (1.3.8) in Lemma 1.1;

. b2 m .
<> ) |az,ilhl°"|

illi-l-

yO.t) - P @)

" 77[1] - yp, (tu)

+ 3l [oP(1) - PO(L)

I=u
+ oonst pmtl

[ - )] < Z E const.h!= ! 4 E const.h™+*~# 4 const.h™*!

v
=1 l=141 I=p
< const.h?
where m 4+ 2 — g > 2 and const. denotes from here on a constant which depends
on the derivatives of the unknown solutions and it 1s independent of % and v.
i) For2<j<pu-1, !

. p—2 (m—pti-j+
- 52{ 5 ol ) - PO
=1 i+1

m—p+i

il !
+ Y ladh i) - BEAO®)
l=m—pti-j+2
+ Z lal.i|hl_i "y,(flz(t) PE_—,IIU)(tu) }+const.h"‘+2‘“
l=m—p+i4l

Again using (1.3.10.b) in Lemma 1.2;

p—2 [m—p—j+1+i r m—p+i
"77‘[;’:]” @)<Y > consth™Hi 4 Y const.h™tEH
=1 I=i+1 =m—p—j+i+2
m
+ Z const. B} + const. Bmt2H
l=m—p+l+}'

< const. B! + const.h™t?*# < const. bt

where m+2—p275+1, Jmax=p—2.
iii) For j > p — 1, using (1.3.10b) and (1.3.10c) in Lemma 1.2,

p=2 [(m— u+1+t m .
“nu.u - yﬂ(tu)" < Z { Z const.h™t2—# + Z const.h""l"}

=1 I=1+1 l=m42—p+1
+ const.h™?* < const.h™t2#

To increase the order of convergence after (i — 1) steps the following relation

must be satisfied;
m+2—p2j+1 for Jj=p-—1
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and this gives the degree of the interpolation polynomial (i.e. m 2 2(u — 1))
Lemma 1.1 : For linear constant coefficient DAE’s of index two, one gets

the following orders;

- P - tkyz(t)—o(h) k=0,1,. (1.3.4)

o O™ %) k=0,1,...,m~1
d*
—=PHl() - kyz(t) (1.3.5)
dt dt
Oh) k=m j2>1

fort € [t},T] =
Proof : The error of the second component has the asymptotic expansions

given in (1.2.3);
Tow — Za, h’l() )+ Ry, for v2pu—1

where Ry, = O(h™+1).
Far the proof of this Lemma, we follow similar consideration as in [6]. Let
(H-'hfé) be a mth degree polynomial which interpolates the R, values in the
subinterval I;,

Rg),],.'h(t,,) =Ry, for v=(~1)m,...,i-m, ©=23,...,n
and tke function Rg is defined as
RA@)=RY @), tek, i=23,...,n
Let us define the auxiliary function
O =12 + S sk 3(0) + REG)
From Ry, = O(h™*!) and considering the following form of the interpolation
R, (8) = Li—iym@) Boorym + -+ + Lim(E) Rojm  1=2,3,...,m
where

dk

Et—kz:,-.,,,(t) =0k k=0,1,.

17



we get;
thgJ] (t) = O(™'"%) k=0,1,...,m+1, and te (&)
it gives

[0]

dt* < const.h™ % k=0,1,...,m+1 (1'.3.6)

ax
tel’
As a consequence, using (1.3.5), for ¢ € I we have

dk

d* o
ﬁ%bz.h(t) - zz;yz(t)

m
} <3 ara A0 +
=2

const.h k=0,1,...,m

IA

(1.3.7)
,.

const. k=m+1

At the point ¢, where the kth derivative does not exist, (1.3.5) and (1.3.6)
hold for the left and right kth derivative. Obviously 9L4(t,) = 75, holds and
we know that le?,{(t) interpolates 7, that is Pﬂ(t) interpolates ¢£?}l(t) at the

points #,. Therefore we are able to apply a well known result in [17].

max
tel’

&k
PR() - aik ¢£(3;z(t)“ < const.h™1 % k=0,1,...,m+1 (1.3.8)

tk 2h
d* d*
0 - 0] + |0 - ]

< const.h™ =¥ 4 const.h < const.h for k=0,1,...,m

and together with (1.3.6),

For the jth step of IDeC, all considerations are completely the same, let us define
the auxiliary function 1,b 1(1) as

d* d*
P — ()| <

B0~ 9a2(t) = 3 arphi? (@) - PEHOw) + BE (1)

1=2
where R.E,ﬂh(t) = Rg’:{’h(t) fortel;, t=2,...,n,and Rg];,h(t) is a polynomial of
degree m which interpolates the values R, — R[{l = O(h™*1). Obviously;

dth&’ (f) = O(E™'%) k=0,1,...,m+1

18



From the difference equation (1.1.2) and (1.1.4), it can be easily observed that,

n{’],, = y(¢,) then the interpolating polynomials Plffl(t) interpolates the exact

values of y;(t,). Therefore we can apply again (1.3.7) for ¢ € (¢-2, )

dt,, 1,',h(t) tkyx(t) =OF™*'%) k=0,1,...,m+1 (1.3.9)
and it gives
dk dk < hm+l ~k k=
max||—; — Py (1) — ! (Bf < const. 0,1,...,m+1

Using the above relation, we get;

lsg;%m#WM”Wn—R&””WQWHw%WﬂW

3

dk . dk
ZEWEA(t) — 2z (1)

const.h™* k=0,1,...,m—-1

IA

(1.3.10)

const.h k=m
Since 1,b () = zb,,]l(t,,) = 773'],,, from (1.3.7) fort € I

dtk Py (t) dt" ,]h(t) < const.h™'F k=0,1,...,m+1

then it gives (1.3.4b) together with (1.3.9)

Lemma 1.2 : For linear constant coefficient DAE’s of index y > 2 one gets;

t,, ﬁ?](t) t,,yu(t)—O(h) k=0,1,. (1.3.11)

for1<j<pu-1

O(ht1) 0<k<m—p—j
d*
proa h(t) = dtk-'/”(t) Oh™t2 08y m—j—p+1<k<m-—p
O(h) m—pu+1<k<m
(1.3.12)
for j2p—-1
d* - d* O(h™+2-#=%) O<k<m-—pu+1
ﬁPE (&) — Zuu(t) = ' (1.3.13)
O(h) m—pu+2<k<m :

wheret € [}, T] =T

19



Proof : We will use induction. For g = 2, it is proved in Lemma 1.1
Suppose that they are true for g < p — 1. Now we will prove for iz = p using
the same technique as Lemma 1.1 . Let us define the auxiliary function using the

asymptotic expansion of the pth component.

p—=1 m .
YOO =)+ 3 Y ah™y D) + R (1.3.14)
=1 I=i+1

where the mth degree polynomial Rff’lh (t) is defined as
Rff)}h(t,,) =R =O™') v=m,...,nm so v>p—1

and

d*
dtk

Using the (1.3.12) and (1.3.11), we have

RO = 0(mF) k=0,1,. (1.3.15)

const.h k=0,1,...,m

d ’ (1.3.16)

Yt o
dtk ( ) dtkyl-l( )

const. k=m+1

Using the same idea of the proof of Lemma 1.1 we get Pl[‘?}z(t,,) ¢[0] (t,) = 1%

< const.h™% k=0,1,....m+1

L) -yl

fort € I'.
This gives our assertion (1.3.10a) together with (1.3.13). For the jth step, the
auxiliary function is defined as;
p=1 m .
¥R =n®+ 2 3 ah™ [y0) - PEEIO0)] + R, (0)
=1 [=i41

where

RY.(t,) = RY, and azR“,,(t) OR™1%) k=0,1,...,m+1

Since '{b‘[f:jh(t,,) =qll, = PE],‘(t,,), we have

max —PL7 W) — ==

teIl tk P», S conSt‘hm+1—k k = 0, 1, e ,m + 1 (1.3.17)
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i)Forj=1

=2 m

—i |l (+k
VMO - 0] < 3 3l 0 - B2 )
+ lz: |al.u—1|h’+1—" ||y§l+k)(t) _ Pl[?}];(l+k)(t)ll + O(hm+1—k)
=p
p—2 . ™
<Y const.h "yﬁfi"(t) ﬂgﬁ“"ﬂ)(t)" + " const. k™2 #F 4 const. A
=1 l=p

(const.hz 0<k<m-—pu+1

<9
{ consth m—p+2<k<m
' const. k™ kF < k<m-—pu
+ 4
‘const.h m4+1—-pu<k<m

const.h? 0<k<m-—ypu

IN

for p2>2

kcon.'st.h m—p+1<k<m

ii)For2<j<,u—1 and ¢ € [t1, T

;< 5™ const.h [y 4H0(d) - PEE )

=t p—ih
i=1

d

z:amnh”*""““kg }WHW1WHktw+0hwnk)
I=i41

by substituting j — 1,4 — 4,2 + 1+ k for j, p, k in the relation (1.3.10b) we have;

O(k) 0<k<m-—p—j
() L=1+4R) ik ,
Yoi ()= PLp ()= O™ #F) m—p—j+1<k<m-—y
O(h) m—p+1<k<m
then;
. [ const.hi 0<k<m—p—j
& o d

S0 — Zru®)

lS* const. k™t ¢F% ml—j—pu<k<m-—ypu
const.h? m—p+1<k<m
const.h™t? Pk <k <m—p

+ 4

const.h m—p+1<k<m
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const. hit? 0<k<m-—ypu—j

IA

const.h™t? ¢k myl—j_p<k<m-—u
const.h m—u+1<k<m
iii) For j > p—1, by substituting y — 4,5+ 1+ k instead of p, k in the relation
(1.3.10¢)
O(hmt1-#-F) 0<k<m-—p
li-1) —

E{EP;L-: (t) dtky#—i(t) -

O(h) m—p+1<k<m

then;

const. k™2 FF 0 < k< m—y :

d* d*
ZFUE(0) = e

<

+ 9

Lconst.h2 m—u+1<k<m

const. k™2 F 0<k<m-—p

Lconst.h m—u+l1<k<m

const.h™t2—#F g<k<m—pu+1

‘const.h m—p+2<k<m

The relations (1.3.15), (1.3.16), (1.3.17) give the our assertion (1.3.10a, b, c)
together with (1.3.14).
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Chapter 2

IDeC METHODS FOR NONLINEAR INDEX ONE
PROBLEMS

:
The linearly implicit Euler or semi-implicit Euler discretization of an ordinary

differential equation

corresponds to one Newton iteration for the nonlinear system which arises in the

implicit Euler discretization

(I =k (%)) Yns1 — Yn) = hf(yn)

Applying this method to the system (0.11) and putting € = 0 one gets the formu-
lation of the linearly-implicit Euler method to the nonlinear semi-explicit index

one DAE system (0.2) :

I—hA, —hA;
—hAs —hA,

Ynt1 — Yn ] — h [ f(ym zn)tn+1) :I

Zntl — %n g(ym Zny tn+1)

where

[Al A2}=[f,, fz]
As A4 9y Y-

In the following the linearly implicit Euler method will be formulated for defect

(v0,20)

correction steps. The convergence analysis is done using the perturbed asymp-

totic expansions given in ([4]) for the global connection strategy and constant
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steps sizes. The perturbed asymptotic expansions of the Neighboring Problems
in the defect correction steps are developed in the Appendix.

The main result of this chapter is that at each defect correction step the order
of convergence of the differential and algebraic components of (0.2) is increased
by one. The maximal attainable convergence order is limited by the degree m of

the interpolation polynomial.

2.1 Formulation of the IDeC method for non-

linear semi-explicit index one systems

f

In this section, we will describe briefly how defect correction can be applied to

solve the non-autonomous index one problem

v'=f(y,2t) y0)=w

0=yg(y,2,t) 2(0)=2 te€[0,T] (2.1.1)

where f and g are vector-valued functions of dimension sy, s, and f, g are suf-
ficiently smooth. The initial conditions are consistent i.e. g(yo,20,%0) = 0 and
97 (y, z) exists

o'l £ const. for t€[0,T].

This system can be interpreted as a limiting case of singularly perturbed systems
considered in [13]. By the linearly implicit Euler method the Jacobian is evaluated
at the initial values and held constant in the whole integration interval. On the
uniform grid G := {t, =vh, v=0,1,...,n-m, n,m € N} with the stepsize
h = T/m - n, the linearly implicit Euler method applied to the Original Problem
(OP) (2.1.1) reads

I—hA; —hA;
—hA; —hA,

Tv+1 — v ] —h [ f(nuaguatrﬁl) } (2.1.2)
£V+1 - €V g(nvaé‘mtv+l)
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where

5 o 0, 0
A= a—';(yo,zo, 0) A = a—':(yo,zo, 0) As= a_z(ym 20,0) Aq= ’(%(yo, 20,0)
(2.1.3)

We get the following numerical solution;

n= (770a'°',7]1/1“-’nn-m) £:= ({0’o-a,§y,...,£n.m) (2.1.4)

Interpolation of 7 and £ by a suitable vector-valued interpolation functions Py (t)

and Q(t) (i.e. Py(t,) =, and Qn(t) =€, v =0,1,...,n m) yields the defect

dl,h = Pli, - f(Phthat)
dap = —g(Pn, Qn,1) (2.1.5)

By adding the defect d ;(t), dan(t) to the right hand side of the (OP) (2.1.1),

we construct the Neighboring Problem (N P) whose exact solutions are Py(t) and

Qn(t)

v'=fzt)+dia®)  y(0)=w
0=g9(y,2,t)+d2n(t) 2(0)=2 (2.1.6)

Solving the (NP) (2.1.6) with the Implicit Euler Method on the same grid leads

to the following numerical solution

T 1= (M0y M1ye e vy Mygevss Tnum)

W = (W0, Wiye e yWyye s s yWrem)

where 7, and w, are the approximation to the exact solutions P(t) and Qx(t) of

I—- hA] —hAg ‘ Tyt1 — Ty
—hAa "hA4 Wy41 — Wy
_3 [ f(m,wi,tyia) + Pr(tusn) — f(Pa(tosn), @u(tosa) o)
g(”wwu’ tv+1) - g(Ph(tv+1)7 Qh(tv+1),tu+i)

(2.1.6) at the point 2,.

} (2.1.7)
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Then we compute an improved solution 5[}l and ¢ of (OP) which is given by

77:[/1] =, — (7 — Ph(tV))

& =¢ — (0, - Qu(t.)) (2.1.8)

and so on.

2.2 Asymptotic Behavior of the Linearly Im-
plicit Euler Method and IDeC - Methods

In this section, we analyze the asymptotic behavior of the sub-class of IDeC-
methods for the non-linear index one problem. Our analysis is restricted to the
global connection strategy. At the beginning, we will transform the (OP) and
(NP) into semi-explicit form in order to apply the theory of asymptotic expansions
of the linearly implicit Euler method developed in [4] and [13].

We introduce the additional variable ys,,, = t, therefore the semi-explicit

form for the (OP) is in autonomous form,

¥ = f(y,2)  9(0)=yo

0=g(y,z) 2(0)=2 te[0,T] (2.2.1)

where y5,41 € R, fe R**! and f,, 11(y,2) =1 Ys1+1(0) = 0. We consider
the following subintervals of [0, 7.
L=[t%¢], i=1,2,...,n with#' = i - m -k and the interpolating polynomials

P,-U] ‘R — RaH Eﬂ : R — R*

PRy =1 Q) =€ for v=(i—1)-m,...,i-m, j=0,1,..., 5mm—1
(2.2.2)
The interpolating functions P,[lﬂ (t) and Q,[;ﬂ (t) are now defined as

PPy =PI Q') =QP), tek i=12..,n (2:2.3)
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According to the new additional variable, the (NP) is defined piecewise as an

initial value problem in the interpolating intervals ;

y = Fim(y, z)

0=G"y,2) i=1,2,...,n j=0,1,..., max — 1 (2.2.4)

. i=1
y@ =" (2.2.52)
PR (&Y i=23,...,n

. z t=1
2(tY) = °m o (2.2.5b)
QL) i=2,...,n

with the exact solutions P,-m(t) and QY\(t) where P}[,’EIH (y,2) =1, ye€ R»*!
and P,&ﬂ(t) € R**! and the (s;+1)—th component of the solution (P,-m (B)s41 =1

?

(d[lj?i(ys] +1))sl+1 =0

After the transformation of (NP) into semi explicit form, the perturbation dgi,]z(t)

and d[{:],(t) are functions of y,, 41 only;

dl(t) = d(yo41) = P (50141) = FPP 90r41)s QP (War 1), Vs 1)

A (t) = A8 (ysr41) = —9(PPH(Wsr41)s @ We 1) Yss 1)

In our later discussions, we will consider only the systems (2.2.1) and (2.2.4). In

according to the semi-explicit form the asymptotic expansions of the global errors

of the methods
Yv+1 "' Yv } =} [ f(ymzu) } (2.2.6)

Zy4l — 2y g(yua zu)

B

5 [ bl i } . [ F (o}, ) J 221

Wi, — W Gl i)
are investigated in the Appendix.

These solutions have jumps in the first derivatives at the endpoints of the

interpolation intervals as in case of linear problems in Chapter 1.

27



Theorem 2.1 : Let f and g be sufficiently smooth. For an IDeC method based
on Linearly Implicit Euler Method of order 1 and on piecewise interpolation with

polynomial of degree m, for the index one problem, we have;

nd — y(t.) = O(A*)
eV — 2(t,) = O(RHY) ji=0,1,...,m—1 (2.2.8)

In this situation further steps of the iteration do not increase the asymptotic

order of the approximation.

Proof: From the iteration of IDeC methods; we write

—y(t,) = (@ - y(t.)) - (@~ - PE(e,)) (2.2.92)
c&ﬂ ~ 2(t,) = (€9 — 2(t,)) — W5V - QF (1)) (2.2.9b)

Using the asymptotic error formula (A.1,2) and (A.19a,b), by subtraction we get
1~ y(t) = 2o R(a(t) - ol (1))
=1

+ 3 K(d, — ol + (R, — RUFY) (2.2.10a)

=2

—2(t) = o) - )

=1

+ BB - B + (R, - BEY) (2.2.10b)

1=2
where
R, — [‘7 1]" < const. ™! »=0,1,2,...,n-m (2.2.11a)
IR, — REU|| < const. B™1 §=1,2, .. 5max+1  (2:2.11b)

and const. denotes a constant which depends on the (OP) and (NP) respectively,
but is independent of h and v. Then (2.2.9a) would lead to

I =y < In =y + I = PE )|
<> la(s) - a7 Ne) + Eh'ua oS+ ||R, ~ R

=1
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From Lemma 2.9;

lau(ts) = ol (21| < max llou(t) — ali (Ol < const. B for 1=1,2,. cm—j

llai(t,) — a,hll(t,,)ll < Dax, ||a1(t) - a,h ](t)" < const. A for l=m—j+1,.
!, - [" 1]l” < const. ¥ 1=1,2,....m—j

v

e — o 1]l||< const. h™! Il=m—j+1,...,m

We can separate the summation terms in two parts, and substitute the above

relations.
. m—;
8! — y(t.)]| < > const. Rt Z const. k™ + O(R™*1)
=1 I=m—j+1

< const. k¥*' + const. K% + ... + const. K™ + O(R™TY)

and in a similar way, using Lemma 2.9 we obtain

€5 — =(t, >n<2utn(u> ‘](tu)llh’+Ellﬂ' B + ||R, — REY

< const. RItY 4 const. kT2 4 ...+ const. K™ + O(R™)

It is easily seen that the maximum attainable correction step j satisfies the rela-

tion jmax + 1 = m for j = 0,1,..., Jmax, this would imply that

||7),L,ﬂ—y(t,,)|| < const. K1 and ||§y]—z(t,,)|l < const. K¥t', j=0,1,...,m—1

Lemma 2.1 For non-linear index-one problems (2.2.1)

Imax, | dtkPlol(t) ky(t)" < const. h for k=0,1,...,m (2.2.12a)
PP) - < =

Dax || dt" (2) dt"y(t)“ const. for k=m+1 (2.2.12b)

max |17 || [ol(t) - dt"z(t)" < const. h for k=0,1,...,m (2.2.13a)

te[OT]”dtk Qi() - dtkz(t)” < const. for k=m+1 (2.2.13b)
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where P,[lol(t) and Q;?] (t) are the m-th degree polynomials which satisfy the prop-
erties (2.2.2) and (2.2.3).

Proof: We first define the functions
R :[0,T] - R** with RP()=R%1), i=1,2,...,n  (2.2.14)

where R,lo](t) is a polynomial of degree m which interpolates the R, values in the

equation (A.1)
Rt,)=R, v=(i—-1)-m,...,i-m i=12,...,n
From (A.18), we can write
o, = Ni(ag, ..., a0, B3+, Bo, Y(ty = v h),y(ty — (v~ 1)h)
oyt — ), 2t — v B),e.ns2(t, — b))
where h = L%tﬂ Let k(t) = t_;lu A new continuous function ¢!(t) can now

be defined such that
o(t,) = o (2.2.15)

Now, we define the auxiliary function -

S = y(t) + Z hla(t) + 2 hol(t) + RI(2) (2.2.16)
=2
with
Pl =gl i=1,2,...,n (2.2.17)

From R, = O(k™*1) it follows after some simple considerations ,

;ltk RY(t) = O(A™'*) £ =0,1,...,m+1 forall i€ N and t€ (t~1,&)
(2.2.18)
jth[Ol(t) = O(h™1*) k=0,1,...,m+1 (2.2.19)

As a consequence, we get

tk”bg)](t) - 7y(t) - Z W dt* a’(t) + 3 jtk o'(t) + dthIO](t)

=2

= (’)(h) for £k=0,1,...,m (2.2.20)
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and

amt 29 mH
dtm+1 ( ) - dtm+1 y(t) = O(]‘)

Remark: At the points ', where the k** derivative does not exist, (2.2.19) and
(2.2.20) hold for the left and right k** derivative. Obviously (@) = 719, it
means P ](t) interpolates ¢[°] (t) at the points ¢,

PP(,) = ¢l%¢,) = n (2.2.21)

therefore we are able to apply a result due to [17]

d*

= PP ¢£°1t = O™ %) k=0,1,...,m+1, for Viand ¢ € (£, ¢
gt T g

(2.2.22)
which together with (2.2.20) implies

0] 0 0] dk
2eP0)  S2) = (S0 - 59P0) + (400 - 000
=Q0O(h), k=0,1,...,m

and

dm+1
dtm+1

these give our assertion (2.2.12a) and (2.2.12b). The inequalities (2.2.13a) and

PO() — t::ly(t)—ou) Vi € 0,T] (2.2.23)

(2.2.13b) can be proved similarly.

Lemma 2.2: Let f and g be sufficiently smooth on [0,7] and K, Kﬂ be

matrices whose entries are functions of y, z and P,-lo](t), QE-O] (t) respectively, then

1K (g, 2) — KPP QM) < const. b (2.2.24)

1K(y, 2)yP(2) — KPP, QY PPO1)|| < const. h (2.2.25)

1K (3, 2)20(2) — KE(PO, QPHQPD(8)]| < const. b (2.2.26)

where || - || corresponds to the induced matrix norm of the maximum norm for

vectors, forallsandt € I;, [=1,2,...,m
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Proof: Since f and g are sufficiently smooth , then the entries of K,(y,z2) and
K, [ (Plo], Q[O]) are sufficiently smooth and bounded. Let ¢,(y,2) be any entry of
K,(y,z) and c[ol(P,-[O],QE-O]) be the corresponding entry of K 5?,- (P,-IO] [01) Then

ac’(A +(@=NP 2z + (1 -0QM) - (y - P

ei(y,2) — SIP, Q) =
F 220+ (1= NPz + (1 - 0@ - (2 - o)
, with0<A<l1
Using the inequality (2.2.12a), (2.2.13a) and the boundedness of ¢, and c;, we

get
lleo(y, 2) — [O](P[O],Q[01)||<const h Vs, tel,

Now, the following result can be obtained

I1K(y,2) — KPP, Q)| < const. b Vs, Viandt € L,

1K, (y, 2)y () — KPP, QP PPO@)| = 1K, — Ky D) + KE(yO ) — PEO@))))
< 1K, — Kol IO @1 + IED) ly® @) — PO @)
< const. h4+ const. h , 1=1,2,...,m and Vs

The inequality (2.2.26) can be proved similarly. We will use the following lemmas
taken from [6] in order to prove Lemma 2.5, 2.6, 2.9.

Lemma 2.3 Let f,g : R*?! — R" be arbitrary functions defined on a region
[a,8] x G with G C R" and v,w : R® — R" be continuous functions on [d, ],
where (2,v(t),t,w(t)) € ([a,b]) x G) for t € [a,b] with v(t) being the solution
of v' = f(t,v), v(a) = v, and w(t) is the solution of W' = g(t,w), w(a) = w,.
Assume further that f,g € ¢°([e,b] x G) and that f is bounded and

Nf (@t 3n) — £ wa2)|l < Ly — w2l (2.2.27)

|f(t,y) — g(t,9)|| < 6 for (t,y) € [a,8] X G (2.2.28)

Under these assumptions
)
lv(t) = w@®)]| < [Ive — walle) + E(e‘r’(t_“) —1) for t € [a,b] (2.2.29)
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It is not possible to apply Lemma 2.3 immediately to the variational equations
(A.21) since the solutions of the variational equations of the NP’s have jumps in
their first derivative at the points ¢!, Therefore we need a slight modification of

Lemma 2.3. whose proff can be found in [6].

Lemma 2.4: Replace the second IVP of Lemma 2.3 by a piecewise problem

defined on the partition of [a, 8] in subintervals I; = [t"1,¢]:

) Waq i=1
w's = gz'(t7wi)7 tel; wi(tz_l) = .
w,-_l(t"l) 22 2
g; is defined on I; X G and w; is defined on I;. If instead of (2.2.28) the following

inequality is satisfied:
Nf(ty) —g(t,v)|| <6 for (ty) eLxG, t=1,2,...,n (2.2.30)

where 6 is independent of ¢, then (2.2.29) is again valid.

Proof: (See [6]).

The variational equations of the NP’s (A.21) are defined in a piecewise fashion.
For h — 0 the number of the points t* tends to infinity. Since Lemma 2.4 holds
for an arbitrary number of intervals I;, it may be applied immediately to the
variational equations for ;(t) and ay,]z(t), J=0,1,...,Jmax. Lemma 2.5: Let
a;(t) and a[ﬁ]h(t) = a[f]i(t) for ¢ = 1,2,...,n satisfy the differential equations
(A.13) and (A.21) with [ = 1, with the initial conditions (A.15a) and (A.23a)
then

_ 4
max lai(t) — a3 ()] £ const. h (2.2.31)
Proof:
a'l(t) = (pl(t, al) te [O,T]

¥ () = p1,4(t, d4(2))
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. 0 i1=1
a(0)=0 o)) = {

a1t i=2,...,n
For the arbitrary a;(t) and @(t) € G, ¢1(t,a1)—1(2,81) = Ka(y, z)(a1(t)—a1(?))
and ||K;(y, 2)|| is bounded therefore

llp1(tya1) — a(t,@1)|| £ const. |ja; — || (2.2.32)
and therefore ¢, is the Lipschitz function. Now we will show that
lpr(tya1) — @Kt @)l < comst. hifor (t,a1) € (I x G) (2.2.33)
where the constant is independent of ¢. Another form of (2.2.33) is

(K1 — KXDar (2) + (Kay'(t) — KSR (2))
(a8 — K9QP (1) + Gy ()~ P )
< | Ky~ KX Nlaa (@)

[} [ 1 " "
HKay' — KRV + 1Kaz' — KGO I + Sy () — P (1)2-2.34)
it follows immediately from Lemma 2.1 and Lemma 2.2 that
lpa(ty @) — @4t )| € const. hllay(t)]| + comst. h

where the constants are independent of h and ¢. Since all solutions a;(t) are
in a certain finite region, ||a;1(t)]] < S then we get the inequality (2.2.30) the

assumptions of Lemma 2.4 holds, then

_ 40 <
ax llai(t) — a;3,(2)|| < const. h

Lemma 2.6: Let g;(t) and ag?'}(t) satisfy the variational equations (A.13) and
(A.21) with their initial conditions, then

max |lai(t) — alb ()| < const. b 1=1,2,...,m—1 (2.2.35a)

tefo,T]
max [lam(t) - L@ < const. (2.2.35b)
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Proof: When [ = 1, the inequality (2.2.35a) is proved in Lemma 2.5 .Suppose
the inequality is true for 1 <1 < m — 1. Let Il = m — 1, then the differential

equations is of the form.

@' m—1(t) = Pm-1(t, am-1(t))

51]—1 i(t) - ‘Pg:]— ,t(t a[0] ,t(t))

where fl¢m-1(t; @m-1) —Pm-1(, @m—1)]| < const. ||@m—1—8m-1|. From the equal-

ity of ¢,,—; and <p£n]_1 ;s We write;

lPme1(ts am—1) — 5L, i(2, am_1)||<nK1 KON lama ()] + !
gl Kay ™0 () - KEPP D)) 4 | K29 (@) — KEQIAm=D(y))|

(m —1)!
@) ~ PP + By — B

(m)

Since the smoothness of E,,_;, and E,,_;; using the mean value theorem

m—2 a m-l

B — EXL 1 < E =5 Nlax — o
aEm_ aE,,,_
+ === lu ly = P+ |l —==2| ||z — Q9 < const. k

Using the Lemma 2.1, 2.2, 2.5 we have
lem-1(t am-1) — P51 ;(t,amen)]| < const. h
Again the assumptions of Lemma 2.4 holds, then
2385 lam-1(6) — A ()] < const.
Let | =m, in the same way, we have
lom(t,am) — @Dt am)l| < const. h+ [y (t) — PR (y)))
Using the inequality (2.2.12b) in Lemma 2.1, we conclude that

lom(t am) — @Rt am)ll < const. Vi
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therefore

_ [0 < .
Dax lam(t) — @y (DIl £ const.

Lemma 2.7 Let b(t) and blo](t) satisfy the variational equation (A.14) and (A.22)
with the initial conditions (A.15b), (A.23b) then
max [[bi(t) - AN < const. b, 1=1,2,...,m~1 (2.2.36a)

max bn(t) - L@ < const. (2.2.36b)

Proof: From the equation (A.14) and (A.22)

Ia@) — @) < 1 Kaai(t) — K@) + 1Ky (@) — KELPPO 1))
+ | Koz () — KQUO) + | E - BT (2.2.37)

Since

[ Ksa(t) — Kol @) = 1(Ks — KiDai(t) + Kii(a — ol
< | Ky, 2) — KL(PL Q) a2 ]
+ I1EQ ait) - @) (2.2.38)

from the inequalities (2.2.24) in Lemma 2.2, and the inequalities (2.2.35a) and
(2.2.35b) in Lemma 2.6 we have

max || Kaai(t) - ERQA(t)]| < const. b for 1=1,2,...,m —1(2.2.39a)

 max||Kyam(t) - K% 1) < const. (2.2.39b)

4,@ Mt

and using the smoothness property of £; and E[ ] we conclude that

- . ok
||E:—E‘°lu<>: = Jag — a2 +

k=1

BE; l

\laE‘|| ly(t) - PO

| l2(t) — QU0
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then for 1 =1,2,...,m
max E: - E£°]|| < const. h (2.2.40)

therefore (2.2.37) gives together with the inequalities (2.2.39a) and (2.2.39b),
(2.2.40) and the inequalities (2.2.25), (2.2.26) in Lemma 2.2,

max|[bi(2) - (0)| < const. b

max b (1) - LN < const. andi=1,2,...,n

Since bg?,]l(t) = b;?,l(t) tel; i=1,2,...,n,it leads to our assertion.

Lemma 2.8 Let the sequences {d!}, {a,[f:],f , {6}, {,B,[,?}f} satisfy the equations
(A.18) and (A.24) then

el —a[011|< const. b 1=2,....m-1

lof — o™ < const. for Vv e N (2.2.41)
and

18, — [0]I||< const. h 1=2,...,m—1

8 — [O]m" < const.  for Vv e N (2.2.42)

Proof: We know that ¢;(0) = o}, b(0) = B, alo] »(0) = a[O]l and b}?,{(o) = ([,?;: .
From the inequalities (2.2.35a,b) and (2.2.36a,b) in Lemma 2.6, 2.7 respectively.

llai(0) — f%(0)]] = ||lab — F%l| < const. b 1=1,2,...m—1

llam(0) — a2, ()] = lleg* — o™ < const. (2.2.43)
and

16:(0) — BRO))| = 185 — BEX| < comst. B 1=1,2,...m—1
18(0) — 8L, Ol = 185" — BEE" I < const. (2.2.44)
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From the equation (A.18), we get

1 [O]I 0Ny ol — [0]1 0N, (0]
= + t;) — P (t;
ot - ol < 3 |50 { E._o o Iote) — PO
~1 9N, ON,
}: 7 (t' ll=(t:) — aﬂg 185 — 8%, forall ve N
=0

using the inequalities (2.2.43) and (2.2.44) we conclude the inequalities (2.2.41).

The inequalities (2.2.42) can be proved similarly.

Lemma 2.9 For the same problem of Lemma 2.1, with j =0,1,...,m —1

dk [j] dk

@:’P dt"y(t) < const. W' k=0,1,...,m—j (2.2.45a)

max
t€[0,T1

max
te[o,T]

dtk By ()—dtky(t)" const. K™ ¥ k=m—j+1,...,m+1 -

(2.2.45b)

const. h*' k=0,1,...,m—j (2.2.46a)

d* i
PAOR dt,,z(t)

max
t€[0,7]

iel0.1] dth ()_dt"z(t) const. h™*H k=m—j+1,...,m+1

(2.2.46b)

max llai(t) — al (t)|| < const. W' 1=1,2,...,m—j—1(2.2.47a)

—_ m—l —n— 3
max las(t) — afA(t)]| < const. h l=m—3j,...,m (2.2.47b)

max |[b(t) - b,Lj},(t)ug const. Bt 1=1,2,...,m—j—1 (2.2.48a)
max l|a(t) — bﬂ(t)” < const. ™! l=m—j,...,m (2.2.48b)

and forallv €N, v=0,1,...,n-m
e — aB¥|| < const. B! 1=2,...,m—j—1 (2.2.49a)

llal - ||<const Rt l=m—j,...,m (2.2.49D)
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8L — BYY|| < const. BT 1=2,...,m—j—1 (2.2.502)
18, — [ﬂl' < const. ™! l=m—j,...,m (2.2.50b)
where PL"l (t) and Qm (t) are the piecewise polynomial of fixed degree m.

ai(t), a,,(t), bi(t), bkg(t), al, E],i, B, ,[;ﬂ,,’ satisfy the equations, (A.13), (A.21),
(A.14), (A.22), (A.18), (A.24) with their initial conditions.

Proof: We will use mathematical induction; when j = 0, all inequalities in
Lemma 2.9 are proved in Lemma 2.1, 2.6, 2.7, 2.8 respectively. Suppose these
inequalities are true for 0 < j < m — 1. Let j = m — 1; in this step, all consider-
ations are completely the same. In order to prove the first inequalities (2.2.45'a)

and (2.2.45b), we will consider the new auxiliary function as the following;

) = y(t)+§h'(a,(t)—a,h‘”(t))+zh'(a'<t) o A(1)) + R

=2

where

RLm—l](t) i .R,Em_ll(t)7 t E Ii 7: = 1,2, . NS ,n,

a;:n—ﬂﬁ (t) are defined in a similar manner as discussed in proof of Lemma 2.1, and

Rgm_lﬁ(t) is a polynomial of degree m which interpolates the values
R, — [m_2] = O(h™*!) for v=(i—1)m,...,i-m

and

ag"'m(t,,) = Nl[m—2] (agn—Z]I, ) [m—2]l ﬁ[m—z]l ’B[m_z][

, P,Em-w(tu-uh),.. P, — 1), Q0 A(t, — v B),..., QT — 1))

After the same consideration in Lemma 2.1, we get
d* im-1] m41-k
-‘Ek-Rh (&) = O(h ) k=0,1,...,m+1

According to our assumptions for 0 < j < m — 1, from (2.2.47a and b) we write

that;
ay(t) — a7 A(t) = O(A™Y)
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a(t)—d7 ) = o¢™"  1=23,...,m
o —am A =0r™" 1=23,...,m

Differentiation with respect to the ¢ of the variational equations (A.13) and

(A:21), and similar considerations as in the proof of Lemma 2.1 leads to
dtkaf(t) T L fnA(e) = O+ k=0,1,...,m+1

Since the difference of 4¢ L al(t) — d ¥ [m_2p(t) depend on the difference

k i — m—
4 pn=A(2) ~ Ly (1) and L0l 0) - La(1)

we obtain that

dtk Lalt) - dtk ot = o) k=01,

T et = Solm (1) = O(™+) k=3,...,m+1

As a consequence we get

[m-ll(t) y(t) = h(al—a[m"2])+z h'(a;—a, h—zl)_l_z hl(al(t) a[m-2ll(t))+R£;m-1](t)

=2 =2

- d* @ -
dtk¢[ 1](t)‘dtky(t) E(Eﬁ“‘(t) dt"a;h Zl(t)) 3

d m— M-~
+Ehl (dtk o)~ gk 2]l(t)) T

= (’)(h"‘“""), =1,2,...,m+1 (2.2.51)

Obviously i (t,) = gl holds, ie. P (1) = ¢ (t,) = g~
then P;Em—ll(t) interpolates ™! (t) at the points t,, therefore from [17]

d* 1) & tm1] 1-k
o ) - tkz,bh (t) = O(A™' %) k=0,1,...,m+1 (2.2.52)

which together with (2.2.51) as Lemma 2.1, we conclude that, ¢ € {0, 7]

& e o
dtkp,{ U) - dtky(t)—-(’)(h ) for k=0,1

jtk m—ll(t) - y(t) O(h™t1%) for k = 2, 3,...,m+1

For the function 2(t), define the auxiliary function oY1) as follows,

8l(t) = (1) + 2o H(hi(e) — 330 + 3o WA — B Te)) + B Ie)

=1 =2

40



According to above definition and the same consideration as y, we get the our
assertion for 2(t).
Now we will show the inequality (2.2.47a,b) for j = m — 1, using induction for

1=1,2,...,mie

max la®) — el (@) < const. K™ 1=1,2,...,m (2.2.53)

when [ = 1, in order to prove, we will use the same process of Lemma 2.5. The

assumptions of Lemma 2.5 are valid for 4;(2), aE,mh-l](t), ¢ and goE:-‘_—]](t), then we

can write;
lles(t 1) = 43t a0l < 1o = K llas ()] + 11K/ (2) — KSZ TP )
m— m—1V 1 " m—11" /-
+ [l K2 (1) ~ KGR @)l + Sy @) - P @)

< const. h™?
From the mean value theorem;
1K, — K79 < const. [ly— P+ const. ||z — Q" || < const. A™
and in the similar way

1Ky — K P ) < const. h™ and ||K,2'— KITTUQI T < const. BT

with
ly" @) — P @) < const. h™?

where K Z',-‘"l] is a function of P~ and QI Y as Lemma 2.2, then from Lemma

2.4 we conclude that

—_ [m~1] < m—1
max laa(t) - a5 O < const. b

let the inequality (2.2.53) be true for I < m, when ! = m, in the same way we

obtain

lem(t,am) — @7t am)l| < 1K1 — KT770 lam(@)]] + | K2y™ (@) — K57~ 0@) P
+ [ Ka2t™(t) — Ko=) 5)))
+ |yt () — P gy
+ [|[Em — E,[:f,-—ll || < const.
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Since {Jy™+1) — P,»lm_l](m“)” < const. then it gives our assertion (2.2.53). Since
b(t) and bﬂ(t) depends on () and a,[{,{(t), using the same consideration in
Lemma 2.7, the inequalities (2.2.48a and b) can be proved. We can write from

the inequality (2.2.47a,b) and (2.2.48a,b)

lai(0) — B (0)]] = fleh — o]l
l18:(0) — L (0))| = 1185 — BEY

As the same consideration the proof of Lemma 2.8, we obtain the inequalities

(2.2.49a,b) and (2.2.50a,b).
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Chapter 3

NUMERICAL RESULTS

The IDeC methods discussed in the previous chapters are applied to a linear con-
stant coefficient index four and nonlinear index one artificial test problems. Tlile
numerical results confirm the predicted orders of convergence given in Theorems
1.1 and 2.1. Using the step size control strategy for IDeC methods in ([30]) a
pipeline model is integrated as a technical application of nonlinear index one DAE
system. All computations are performed on a IBM PC PS 2/60 in FORTRAN
77 in DOUBLE PRECISION.

Before we present the numerical results, we want to discuss the extension of

IDeC method to the index one problems of the form

By' = f(y), (0)=1yo (3.1)

where B is a n X n singular matrix. There is no explicit uncoupling of the differ-
ential and algebraic parts as in the semi-explicit form (2.1.1). This system can be

converted easily to the semi-explicit form using the singular value decomposition

of B. With regular Householder matrices U and V we obtain

UBVV Y =U f(Vv-ly),_ V1Y) = Vly

[ o ]

UBV =

!
o
2

%
N

%
D
Vv
o

Or
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The first r components of V~1y will be denoted by §, the remaining compo-

nents 7+ 1,...,n with Z. After inversion of D we obtain the semi-explicit form

211) o (Uf (V( )))
(o (+(2)) i

=

n

N

with the initial values
[5(0), 2(0)]" = V™50

The numerical problems concerned with the solution of both form of index one
problems using ROW (Rosenbrock-Wanner) methods are discussed in detail n
[26] and [29]. For the application of the IDeC method to problems of the form
(3.1.1) it is important whether the asymptotic expansions of the global error
obtained for the semi-explicit form are changed or not. A simple answer to this
question can be found using the Lemma 9.6 at p.79 in ([29]). The assertion of
this lemma is:

I [, 2,]T are solutions of the semi-explicit DAE (2.1.1) and y, solutions of
(3.1.1) by the ROW method, then

=v| .
Zn

Because the linearly implicit Euler method belongs to the class of ROW method
(it is namely the simplest of this type of methods), the results for the asymptotic
expansions of the global error is also valid for the DAE’s of the form (3.1.1)

Linear Constant Coeflicient Index Four DAE System

We consider the following artificial test example

0 = pttlet y(0) = -1
N = Y2 12(0) = -1
Y2 = U3 ys(0) = -1
Ys = Ya ya(0) = -1
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Table 3.1: Order Pattern

Y2 Ys Ya

IE {1 1 1
1.DC|6 2 2
2.DC 5 3
3.DC 4

with the exact solutions

yy = —tlel, y, = —4t3e!, ys = —12t%%, yq = —24te’
Global cqnnection strategy and piecewise polynomials of degree m = 6 are used.
The predicted orders of convergence for this problem can be derived using The-
orem 1.1. Here IE denotes implicit Euler solutions and 1.DC, 2.DC, 3.DC the
first, second and third defect correction solutions respectively.
The numerical results using constant step size and observed orders of con-
vergence for each component are listed in the following tables at ¢ = 2.4. The

observed orders are computed using

e
log —-ﬂ—-en T

log -ﬁ—ﬂ—l;l

where e, and e,; are the global errors when the problem is solved with step

p

sizes k, and h,,, respectively.
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Table 3.2: Global error and observed orders for y;

h IE 1st DC
0.1  .389 DO1 121 D-05
0.05  .198 D01 .216 D-07
0.025 .995 D00 .362 D-09
0.0125 .449 D00 725 D-11
Observed Orders
0.9743 5.8078
0.9927 5.8989
0.9957 5.6419

Table 3.3: Global error and observed orders for y3

h IE 1st DC 2nd DC

0.1 .661 D01 .858 D-01 .590 D-04
0.05 .338 D01 217 D-01 .211 D-05
0.025 .170 D01 .544 D-02 .709 D-07
0.0125 .855 D00 136 D-02 .217 D-08

Observed Orders

0.9785 1.9833 4.8054
0.9915 1.9960 4.8953
0.9915 2.0100 5.0300
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Table 3.4: Global error and observed orders for y4

h IE 1st DC 2nd DC  3rd DC

0.1 512 D01 .751 D-01 .268 D-02 .176 D-02
0.05 .259 D01 .197 D-01 .268 D-03 .127 D-03
0.0250 .130 D01 .504 D-02 280 D-04 .866 D-05
0.0125 .665 D00 .128 D-02 .305 D-05 .468 D-06

Observed Orders

0.9832 1.9306 3.3219 3.7927

0.9944 1.9607 3.1587 3.8743
f

0.9889 1.9773 3.1985 4.2098 ‘

For the first component we got an error .169 D-14 and it is not changed
by defect correction steps because it was solved exactly by the linearly implicit
Euler method. The observed orders are in good agreement with the predicted

ones. With decreasing h the convergence to the fixed point is very fast.

Nonlinear index one artificial test problem

This test example is taken from ([26]).

¥ = ozyp’ 1) = 1

Y2 = yz2-2° y(0) = 1

0 = z+B8u/ys’ 2(0) = -8
with the exact solutions y; = e™*%, y, = e~%, z = — .

Piecewise polynomials of degree m = 3 are used and the numerical results are
listed at ¢ = 0.3. We have applied the IDeC method for = 0.5, 8= 6.0.
LIE denotes here the numerical solutions obtained by the linearly implicit Euler
method. The numerical results confirm the predicted orders of convergence by

Theorem 2.1. Again on finer grids better results about the orders are obtained.
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Table 3.5: Global error and observed orders for y;

h LIE 1st DC 2nd DC

0.1 .526 D-01 .133 D-01 .168 D-01
0.05 |.302D-01 .583 D-02 971 D-03
0.01 [.700 D-02 .318 D-03 .953 D-05
0.005 | .357 D-02 .826 D-04 .225 D-05
0.001 | .727 D-03 .340 D-05 .105 D-07

Observed Orders

0.8005 1.8990 3.4754
0.9083 1.8073 2.8374
0.9714 1.9448 2.9305
0.9888 1.9822 2.9697

Table 3.6: Global error and observed orders for y,

h LIE 1st DC 2nd DC

0.1 .284 D-01 .946 D-02 .113 D-02
0.05 .133D-01 .236 D-02 .252 D-03
0.01 .255D-02 .909 D-04 .194 D-05
0.005 .127 D-02 .226 D-04 .239 D-06
0.001 .252 D-03 .899 D-06 .188 D-08

Observed Orders

1.0945 2.0031 2.1648
1.0626 2.0235 3.0239
1.0057 2.0000 3.0210
1.0049 2.0034 3.0105
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Implementation of IDeC methods to nonlinear index one DAE’s

An efficient implementation of any ODE and DAE integrator requires the
possibility to change the stepsize and the order of the method automatically
during the integration . This will be done using local or global error estimations
of the unknown exact solution. For the implementation of DAE’s in general the
techniques which work successfully for ODE’s is taken with some modifications.
Defect correction methods offer the possibility of both local and global error
estimations, of changing the stepsize and order simultaneously ( changing the
the degree of the interpolation polynomials and the number of defect correction
steps). For a discussion of problems encountered in the application of IDeC
methods to stiff ODE’s see ([30]). We also adopted this technique with slig,ht
modifications and will summarize it briefly in the following.

The first part of the control mechanism consists of calculation of the numerical
approximation together with an error estimation. We will use the local error
estimation ¢/ at the endpoints of each interpolation interval I;. Here ¢/ denotes
the defect correction solutions of the nonlinear index one problem in Chapter 1I,

namely 7’ and €. The local solution on I; is defined as the exact solution of

y, = f(yazat) y(ti—l) = -1

0 = g(y,2,1t) 2t =&, te [t1,¢] (3.3)

The initial values of (3.3) are the last components of the most accurate defect
correction solutions in the previous interval I;_; = (#*~2,#*-') . The exact solu-
tions of (3.3) are denoted by y(¢;t"~Y,7:_1) and 2(¢;#"1, £i_1) respectively.

For the local error estimation we will use extrapolation; the integration from #~*
to ¢' is done twice. The one defect correction step with the interval length H;
produces (7, and the other with H;/2 using two step produces the approximation

... Then

(¢ - G/ - 1) (3.4)
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is an estimate for the local errors 7}, —y(t; t~,7;—1) and &, — z(t; £, &:_1). &b,
is produced using the global connection strategy by proceeding from the first half
of the interval I; to the second one, because for the local connection strategy the
computational effort is significantly larger. To avoid underestimation or overesti-
mation of the observed errors a reliability factor ¢; is computed too. In situations
where the estimates are correct, {3, and (4! should be identical. Therefore an
obvious way of checking the assumptions of the asymptotic convergence orders is
to control how much the following quotient varies from 1.
=— G = —g:'rfl

(Gn — Gm)(Z = 1)

This requires one more defect correction step, but gives a reliable error estimate

@

s '
if @; ~ 1. If for all iterates (3, (7 = 0,...,Jmax) in the interval I; Q; = 1'is
satisfied, then the new interval length can be determined according to

$\ —1/(2+3)
s ) (3.5)

Hne'w = ddold (m

where est denotes the local error estimation computed by (3.4) and tol the user
specified tolerance. In practice H,., will be multiplied by a constant factor
< 1 (here by 0.9) to make the stepsize selection conservative. To avoid large

oscillations of the step size we restrict it in the following way
0'5Hold < Hnew < 1-5Hold

The est is obtained using the following scaled norm

est = max (l)

Si

i _
My C2m Kl

4 (3.6)

where _(;’;,,'- and Z;'m,,. denote the the i th components of the vectors of (7, (..
The scaling factor is defined as s = (s1, $2, .-, $s) by 8; := max(1, |C;’n,|)

The scaling implies that for the solution components which are less then unity ,
absolute error control ; otherwise relative error control mechanism is applied (see
[29)).

If est < tol then the step is accepted and the integration can be done with the

new stepsize. Otherwise the step is rejected, the integration must be repeated
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with the new stepsize according to (3.5). This process is continued until the step
is accepted or Hyew < Hypin, where H,,;, depends on the machine epsilon and the
length of integration interval [0, T].

The degree of the interpolation polynomials m; can be changed during the in-
tegration too. The grids adapt better to the problem if polynomials of lower
degree are chosen, whereas high degrees allow higher orders. A possible strategy
to overcome this conflicting situation is given by [30] and we use it here :

The degree of the interpolation polynomial m;y, in the next interval is chosen

() I the step was accepted :
if jlaat = jmaxg then miy = my +1
if Jlast = Jmax; -1 then miy; = m;

if Jlast < Jmax; —2 then miy; =m;—1

(ii) If the step was rejected :

if Jlast < Jmax; —2 then myyy =my; — 1
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Two phase plug flow problem
This example is concerned with a semi-explicit nonlinear DAE of index one for
a pipeline problem. It was solved in Bryne and Hindmarsh [3] using DASSL and
in Hairer et. al. [14, pp. 106] using RADAUS.

The equations are
n\/-;i:(R Uy (2.5111 [ %%\/—_P' - 5} + 10.5)
—bQco — %Qco(l —b) =0 (3.7a)
27r\/2—_}§\/—_P’ ((2.5Ry —1.25y%)In [ %R%\/ZF - 5} +3Ry

—2.125y* — 13.6 Ry /piR IP,) — Q. =0 (3.7h)

The physical meaning of the variables and parameters are described in the refer-

ences above. v/— P’ is substituted by u so that the differential equation
Pl - _u2

with the algebraic equations (3.7a) and (3.7b) together give a nonlinear index
one DAE. P corresponds to the differential variable y in (0.2) , u and y to the
algebraic variable z in (0.2).

This problem is solved for two set of data. The first one is the normal flow. The
relevant data with consistent initial conditions is given in the references above.

Figure (3.1) shows the numerical solution of this problem for ol = 1073,

The numerical results for a chocked flow is given in Figure (3.2) with

tol = 1073, The data for this problem is given again the references above.
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Figure 3.1: Two phase plug problem : normal flow
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Figure 3.2: Two phase plug problem : chocked flow
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Table 3.7: Performance of the IDeC method for normal flow

tol | nsuc | nfail | njac | nfcn | nIDeC | jmax | mmin | mmax | hmin | hmax
10° 3 0 6 81 "6 1 3 3/11.0D5|14D6
107! 7 0| 14| 189 14 1 3 311.0D5]9.1D6
1072 22 0| 441074 59 2 3 4|5.7D4 | 1.6 D5

Table 3.8: Performance of the IDeC method for chocked flow

tol | nsuc | nfail | njac | nfcn | nIDeC | jmax | mmin | mmax | hmin | hmax
10° 8 0 8| 126 9 2 3 3(1.0D5 | 1.2D6
107! 13 1| 28| 662 35 3 3 4(1.0D5|2.4D6
1072 11 1| 23] 405 28 3 3 4|1.0D5| 3.5D6

This problem is characterized by a singularity at z = 1.0958 - 10". The nu-

merical results show that this singularity is detected by the IDeC method with a

modest accuracy.

A performance analysis of the IDeC methods is given in the tables above :

The meaning of the parameters in the tables above is :

nsuc
nfail
njac
nfcn
nIDeC
jmax
mnin
mmax
hmin
hmax

Number of successful steps

Number of failed steps

Number of Jacobian evaluations

Number of function (right hand side) evaluations

Number of defect correction steps including the OP solution o
Maximum defect correction step

Minimum degree of the interpolation polynomials

Maximum degree of the interpolation polynomials

Minimum stepsize

Maximum stepsize

problem is solved using the stepsize control mechanism described previously .
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A comparison with the other codes not done yet. The other- DAE codes like
DASSL and RADAUS are more flexible for stepsize and order changing and work
for tighter tolerances. But the results presented here is still promising and justify

further development of application of IDeC methods to DAE’s .
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Appendix

ASYMPTOTIC EXPANSIONS OF NON-LINEAR
INDEX ONE DAE’S

5
As mentioned in the previous chapters the theoretical justification of the conver-

gence analysis of IDeC methods requires the existence of the global error in powers
of the step size h. The most elegant representation of the asymptotic expansions
for DAE’s and stiff ODE’s is obtained using the way of analysis given by Hairer
and Lubich in [15, pp. 211] . For index one and for some index two problems
the asymptotic expansions of the semi-implicit methods like semi-implicit Euler
and semi-implicit midpoint rule and for some implicit RK- methods are obtained
using this concept (see [4] , [21], [22], [14]). For linearly implicit Euler method in
case of nonlinear semi-explicit index one DAE’s the so called perturbed asymp-
totic expansions are given first by Deufelhard et. al. ( [4] ). The perturbation
terms are introduced to obtain a bounded remainder term in equation (0.10).

The perturbed asymptotic expansions are of the following form

Yo = Y(ta) = a1()h + (az(2) + A)A +.... + (an(t) + off) + A(n, )RV
2n = 2(tn) = (bi(t) + B + (Bx(t) + Bo)b? + ...+ (b () + BY) + B(n, AR

where
@) a2=0, oa3=0, o2=0, B1=0, n>0
b Bi=0, B=0, n>1
¢) ait'=0, =0, n>j—2 andj>4
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Most of the perturbation terms vanish with increasing n, so that for IDeC meth-
ods with global connection strategy they don’t affect the order of convergence
with succeeding integration. In the following, the perturbed asymptotic expan-
sions of the global error of the NP problem are derived for constant step sizes h

, which give us the basis for the convergence analysis in Chapter 2.

Theorem A.1: Let the method (2.2.6) satisfy the consistency conditions,
the solution (y(t), 2(¢)) of (2.2.1) is smooth and under the boundedness condition
of g;1 , then the numerical solution of (2.2.6) possesses a perturbed asymptotic

expansion of the form

v =y(t) + ar(t)h+ 3 K(at,) + o) + R, (AD)
=2

2 = 2(t,) + b(L)h + W (h(t) + B) + R, (A2)
1=2

where q;(t) and b(t) are smooth functions and all coefficients vanish for v = 0
ie.
a1(0) =0, &(0) =—ap, b(0)=—4, (A-3)

and ||R,|| < const. k™*1, ||R,|| < const. h™* for & € [0,T).

Proof:

First Step : Let y, — ay(t,)h = y} and z, — b,(1,)h — BLh = 2 can be

interpreted as the numerical solution of a new method

¢ ] _ % Q* *, :, h
B [ yu+l Y :I — h l: u(yu Z ) ] (A4)
byl 2, h)

* *
21— %

where

I—-hA; —hA;
B =
—hA; —hA,

Substracting (A.4) from (2.2.6) we have;

5 [(ym—yzﬂ)—(yu—y:)] ., [f(yu,zu) ] . [@:(y:,z:,h)}

(zv-l-l - z;-l-l) - (Z,, - :) g(ym 2',,) 'tﬁ:(y:,l;, h)
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FO + a1t )k, 25+ bi(t)h + BLh) ]

9> + ai(tu)h, 2 + ba(t)h + BLR)
5 [ a1(t41) = ar() ] 5

0 }
bi(t41) — ba(t) b~ By
Our aim is to find smooth functions a;(t), b:(t) and the sequence {82} such that

[ B (y3, 230 b) }
B2, 720 k)

the new method is more accurate. By using the Taylor expansion;

Y(tss) - (t) ] . [ @ (y(t), 2(4), h) ] _
(ter) = 2(8) W w(t), 2(t), 1)

B

g | WG+ 5 )+ )+
hZ (t")+ hz ”(tu)-l- ha m(t,,)-l—

_p [ Fy(t),z(4,)) + fyar(t )b + f(01(2,) + BL)R 4+ ]
a(y(®), () + gyar(t)b + go(br(t,) + BYR + - -

+ Bh

ﬂu+1 IBI :|

. [ 3V (0) = A (1) = A2 (8) = fyea(8) — fob(6) + e (s)
— Aoy (1) = A () = gy () — g2 (6)

e [ 1.6}

gzﬂll,
we find that the local error of the method (A.4) is O(h®) provided that the

B hzal(t,,) + 5 ha "(t,,) +-
h2by(t,) + & b”(t,,)+

+ O

+ hB

lll-l—l - ﬂ:

function a,(t), b;(t) are smooth solutions of the following nonlinear semi-explicit
DAE

() = fy(#,2)ar(t) + f2 (v, 2)b1(8) + Ary (2) + Aoz (2) — : y" ()  (Aba)

0 = gy(y, 2)ar(t) + g:(y, 2)b1() + Asy () + Aez (2) (A.5b)

and the sequence {4} are bounded solution of

1
0 }:h[f’ﬁ"} (A.6)
ﬂ11/+1 - ﬂz% gzﬂi
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Written in the explicit form 8! satisfy the following equations

A2ﬂ:+1 = (A2~ fZ)ﬂi
AufBryy = (As—g:)B)

At t = 0, using the relations b;(0) = —f3, a1(0) = 0 and the equation (A.5b)
and the total differential of g(y, z) = 0, i.e. g,¥ + g,z = 0, we obtain

0 = A3a1(0) + A1 (0) + Asy (0) + Asz (0)
0= Ayf}

Since A;! and exist, A} = 0 therefore recursively

AsBl =0then gL =0for all v = 0,1,---,n - m.

Second Step: In order to eliminate further error terms, we introduce

v = v — ax(t)k — (aa(ty) + a2k
2" = 2, — bi(t)h — (ba(t,) + B

which are the numerical solution of

y:h—y:*}_h[@*(yu, ; ,h)}

:‘:l-l Z** ’p:* (y:*a z;*a )

B

with the increment function ®}* and ¥}*

h[@**(yy, ; ,h)]
W, 2 h)

" [ F@r + a1tk + (a2(8) + 0D)R?, 2% + ba(t)h + (Ba(20) + B))R?) }
9 +ar(t )b + (aa(ts) + 00)B?, 2% + bi(t)h + (bo(t) + B7)R?)

dﬁ[wmﬂymm»]_Bw[@mﬂywm»]
bl(tv+l) —-b (tu) bZ(tv+1) - b2 (t,,)
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[ 2 2
_Bh2 au+1—a ]
2

u+l—ﬂ

In a similar way, the local error will be of the form

B [ y(tu+l) - y(tu) - —_h [ Q;*(y(tu)az(tu)sh)
z(t,,+1) - Z(t,,) ] "b;*(y(tu), z(tu), h)

_ h2 -21_!3'" - Al?/ - A2z’ - fval - fzbl + all
—Azy — Ay — gya1 — g.by .

v

Y @'z — fyaz — foba — A1y — 2422
—9y02— 9:b2 — 314y — 31447 — Jowet |,

+h3 -Slfym - ‘21_!f‘.llya'§ - fyzalbl - %fzzbg + %all' — Aja’y — Aty !
—gyzalbl - %gzzb% - A3a’1 - A46’1 ;

2 _ .2 2
+h2B au+1 o, r h3 f!l fz a,, +O(h4)
Bhi1— B3 o o], |5

the first matrix is equal to zero matrix from the first step. The local error of

v

this method is seen to be O(h*) if ay(t) and by(t) are the smooth solutions of the
following DAE.

a(t) = fuaa(t) + Fubo(t) + o Auy (t)+2,A2z [OREMI0

_fyya () + fuza: (R0 (t) + ”szzbi(t)
14m+mmw+mwm (A.Ta)
O = gyas(t) + g:b2(t) + Asy (t) t3 A4z '(t)

+ g (ha(t) + -;-lgzzbz(t) + Asd 1(t> + A1) + 20mad(t) (ATH)

and the sequences {2}, {2} are bounded solutions of

03+1—03]_h[fy fZ] [aﬁ
3+1 —,33 9y 9- t, ﬂﬁ

where the functions f,g and all partial derivatives are the function of y(t), 2(¢).

B (A.8)
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Third Step:

¥ =Y a;(t,)h — (a2(ty) + ai)’l” — (as(t) + ai)h:a
22 = 2, — (bi(t)h — (ba(ts) + BB — (ba(ts) + BB

and the new system

B \: y;rl y;" ] _ h [ q)***(y:mk,z***) }
331*1 — z;nnk ,“b***(ywu *-lul-
After using the same way as first and second step we conclude that
d's(t) = fyaa(t) + f2s(t) + 3,A1ym (t) + 3,A2Z'"(t) |3/(4) (2)
+ fry0102(t) + fyba(t)ar(t) + Fuyba(t)az(t) + faabr(£)2(2) |
+ fwya?(t) + fzzyal(t)b%(t) + fyyzaz(t)bl )+ fzzzb?(t) !
1 ]- " 1 "
- 5@ 10+ Aiga )+ Az—b" (8) + 5502(2)
- A1a2(t) - Azb’z (A9a)

" H

O = gyas(t) + g:bs(t) + Asy (1) + A4z (t)
‘+ gyya1a2(t) + gyzb2( )al(t) + gzybl(t)‘h(t) + gzzbl(t)bZ(t)
+ Gy (t) + gyyzal(t)bl(t) + gzzyal(t)bl(t)2

e - S (t) + Ay 1 St @) (A.9b)

B aﬁ_i_l—a?, =h fy o )
Bor1— B 9 9: ), LA
—h fyyal(t) + fzybl(t) fyzal(t) + fzzbl(t) 012/ (A.IO)
Fyya1(t) + gzyb1 () 91 (t) + 92201 ) ,33
We can repeat this procedure in order to find a;(t), b(t) functions and {4}, {8}

sequences. It can easily seen from the (A.5a,b, A.7a,b, A.9a,b) that a;(t) and b(2)

are smooth solutions of the following equations.

¢ (t) = fya(t) + f:bi(t) + %Aly"’(t) + %Agz(')(t) - (l_-l-l_iﬁy(“-l)(t)

+ Sl(aha21 3 A1-1, bl bZa ey bl—la Y, Z)

-1
+ E Arai_r + Z Akbz_ (A.ll)
k=1 k=1
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1 1
O = gy(y’ z)al(t) + gz(y, z)bl(t) + ’I"A3y(l) (t) + ﬁA‘lzm(t)

-1 -1
+ Sl(ala EEFLL =S B bh sy bl—h Y, z) + E Fkal—k + Z rkbl—k (A‘12)
=1 =1

where Ag, Ay, T and Iy are differential operators of order k with respect to t. S
and S; are smooth functions.

Since g;! exist, b(t) is obtained from (A.12) and substituted in (A.11) and
a;(), bi(t) are smooth functions for all /, using the implicit function theorem, after

some substituting process, we get;

di(t) = Ky, 2)ai(t) + %Kz(y, 2y () + ,l!Ks(y,z)z“’(t)

(H-l)(t) + El(ala cee9@i-1,Y, Z) = ‘Pl(t, al(t)) (A~13)

!

o

1 1 ~
bi(t) = Ka(y, z)ai(t) + ﬁKs(y, 2)yO(t) + ﬁKsz(l)(t) + Ei(a,...,a1-1,¥, 2)

= ¢i(t,ai(?)) (A.14)

with the initial conditions;

a;(0) = { 0 =1 (A.15a)

0 =
b(0) = (A.15b)
- 1=2,...,m

where

Kl(ya z) = (fy - fzg; 1Qy)(y.z) K, = (_gz— 1gy)(y.z)
Ky(y,2) = (Ai— fo07 As)y Ks = (—9:7 As)) (A.15¢)
Ka(ya 7-) = (Az - fzgz_lA«t)(y.Z) K¢ = ('9;1A4)(y.z)

and E, E, are smooth functions with E; = El = 0, ¢; and ¢; are smooth

functions defined as follows,
@ : R$172 o, RS 4, RS2 , RS2

Similarly the general system for the sequence {a!} and {8} is of the form

1 — 1 -1
a4 au} =h[fy fz} [au} +hD1(t,,) o, ]
-] la e L8 B
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-2
v
-2
v

+hDy(t,) [ ] + ..o+ hDia(t) { ‘; } (A.16)

v
for1=2,3,...,m.

The entries of the matrices D; are the functions of f and g; and their partial
derivatives at t = {,.

Since (A.8) is the linear system, using back iteration we obtain

o? ol
= HZ(tu-la ty—2ye0ey tO)
5 A
and in similar manner,
al o) _ ol
= Hs(to,...,t,,_l) +H3(to,. --,tu—l) '
B 5 5

then (A.16) can be rewritten

= M + M, +...4+ M, (A.17)
B, B o B

where the entries of the matrices M;, (i = 2,...,1) are the functions of f and ¢
and their partial derivatives at the point ¢g,%y,...,%,_1.

We can now define o, and §! so that

ail = Nl(a(?)’ sy ag)a ﬁga ves ,ﬂf),y(to), y(tl)a sy y(tu—l)a Z(to), z(tl), seey z(tu—l))
lBlll = Nl(a(z)a <oy a(lh ﬂg, cee vﬂ(l)»y(tﬂ)ay(tl)) cee ay(tv—l), z(to), z(tl)’ ceey z(tv—l))

(A.18)

where N; and N; are smooth functions with respect to the values y(t;) and

z(t)) =1,2,...,n-m).

Theorem A.2 : Under the assumptions of Theorem A.1, the numerical solution

of (NP) (2.2.7) hass perturbed asymptotic expansion of the form,

i = P(t) + bl (t)h+ Y R(all() +ofh) + BY, (A19a)
1=2

Wit = QF(t) + BEL ()R + W) + B4) + BEY (A.19b)

=2
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forv =0,1,...,n-mand j =0,1,..., Jmax
where ||R,[;7,]h|| < comst. h™*1, ||1~2!;7:Jh|| < const. h™*! and P,Ej](t), ,Lf](t) are

piecewise polynomial of fixed degree m, and the variational equations for
(t)—a, ®), b (t)-—-b (t), tel, i=1,2,...,n (A.20)
and the sequences
a[j‘]h=a,[;".]1, ,L,ﬂl B yi=(G-1)-m,...,i-m
are given by

d(t) = K““-(P-“’ ol (t)+—K‘ﬂKz..(P”‘, ?”)P,-W"(t)+ kE\(PH, gt 4)

+ P [J](Hl)(t) +EI (al,n az,n ayjl,zap 2 Q[J])

(l+1)'
e AHO) : (A.21)

bE?(t)=K“"-(ﬂ”’,QW)a o)+ REPA, QPO + 5 KEQHO )
(al,n a2.n al-—l,n RUJ, Q[j])

= qs,}(t, afl(t)) (A.22)

with the initial conditions

ety i=1
di(t ) = { 0 iy e, (A.23a)

,1-—1
i=1
-1 = (A.23b)
bl,,_l(t‘ 1) Z = 2 3

and Ew =0, E[ﬂ 0,... ,ka} and ¢,,,- are smooth functions.

(XE]; = M[f;];(amz’ a[j]3 a[(iﬂla ﬂ[jp, g]sa ey ([)jlla th(th tla oo atu—l)-; Qg](to, tl, ceey tu-l))
ﬁ!ﬁf = ﬁl[ﬁ(ag]za agﬂss b ] ag]I’ ﬁ[j]2, :B(I)J]a’ ey ([)j]ls P}?](th tla LA tu—l), Q;[;ﬂ(to, tl, seoy tu-—l))
(A.24)

where N,L”,! and f\”, are smooth functions in according to PF(;), QU)(¢;) for i =

1,...,n - m. The proof is similar to the proof of Theorem 1.1.
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