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ABSTRACT

CONSTRAINT ON THE NUMBER OF QUARK GENERATIONS
THROUGH MASS MATRICES

ERDEM, Recal

Ph. D. Thesis in Physics
Supervisor: Prof. Dr. Perihan Tolun
September 1991, 40 pages

Kobayashi-Maskawa mixing, flavor mixing throngh mass matrices and the relation be-
tween them in the general cese, in Glashow-Salam-Weinberg model and in SU(2). ®
SU(2)r ® U(1) models are reviewed. It is shown that the number of quark generations
must be three in SU(2). ® SU(2)x ® U(1) models with one fermion mass generating
Higgs multiplet through analysis of quark mass and flavor mixing matrices under the
assumption no rero mass quark exist.

Keywprds: Flavor Mixing, Quark Generstions, Standerd Model, Left-Right
Symmetric Models, Electroweak Models

Science Code: 402.02.01,



OZET

KOTLE MATRIKSLER] YOLUYLA KUARK NESILLERINE
SINIRLAMA

ERDEM Recal

Doktora Tezi, Fizik Bolimi
Tes Yoneticisi: Prof. Dr. Perihan Tolun
Eykil 1991, 49 sayfa

Genel halde, Glashow-Salam-Weinberg modelinde ve SU(2). ® SU(2)z ® U(1) model-
lerinde Kobayashi-Maskawa kangmasi, kitle matriksleri yoluyla kuark gesni kangmas
ve aralarmdaki iligki gozden gegirildi. Fermiyonlara kitle veren Higgslerden bir tane
kullamlan SU(2). ® SU(2)s © U(1) modellerinde kiitle matriksleri ve cesni kansma
matriksleri incelenerek, hig bir kuarkm kutlesinin sifir olamiyacalh varsayimi altmda,
kuark nesilleri sayismm Gg tane olmasm gerektifi gosterildi.

Anzhtar kellmeler: Cesni Kangmas, Kuark Néﬁjeri, Standart Model, Sol-Sa}
Simetrik Modeller, Elektro-zayif Modeller

Bilim dah saymsal kodu: 402.02.01.
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Chapter 1

INTRODUCTION

The standard model of electroweak interactions and its extensions (e.g. left-right sym-
metric models) make use of the fermions whose, at least, left banded components are
doublets of the internal group. Each such doublet is called a lepton or quark gener-
" ation. The standard model does not predict the number of fermion generations. It
works equally well for all number of quark and lepton generations although we know
that ex;:eriments fix the number of Igpton generations as three thus requiring the num-
ber of quark generations as well to be three through the abeence of gauge anomaly. All
generations couple to gauge besens with the same coupling eonstant. Hence we may
say that all generations are equ}v-aient under all known interactions {e.g.weak interac-
tions). The differences between different gemerations are due to different masses and
in the case of quarks, also due to their different favor mixings ﬁ"ith the other genera-
tions. Both fermion masses and Bavor mixings result from the part of the Lagrangian
“for fermion masses in the standard model and in its extensions. Hence the pumber
of quark generations somehow must be related to the form of the fermion mass terms
in the Lagrangian. This is cur starting point to seek such a relation. We study the
standard mode} and its most viable extension; SU(2); & SU(2)z © U{1). We see that
altough the quark mass matrices in the sta;Jdard model does not put a constraint on the
number of quark generations the quark mass matrices in a class of left-right symmetric

models with a simple plausible assumption require the number of quark generations to



be three.

The necessity for a non-diagonal mass matrix follows from the flavor mixing in left
handed charged weak currents which is known as Cabbibo mixing in the two generations
case and as Kobayashi-Maskawa mixing in the three generations case. So first we must
understand Kobayashi-Maskawa mixing. This is reviewed in chapter 2. Then we point
out the relation between the mass matrices and Kobayashi-Maskawa mixing in the
first section of chapter 3. The fermion mass terms in the Lagrangian and hence the
fermion mass matrices result from Yukawa Lagrangians through spontaneous symmetry
breaking in electro-weak models. These are found in the remaining part of chapter 3
for the standard model and in chapter 4 for SU(2); ® SU(2)g ® U(1) models. Finally
we derive a constraint on the number of quark generations in SU(2), ® SU(2)a @ U(1)
models with one Higgs multiplet belonging to (},1,0) representation of the internal

group.



Chapter 2

KOBAYASHI-MASKAWA MIXING

2.1 Historical Background

The fact that AS = 1 weak decays are suppressed compared to AS = 0 weak decays
together with a Fermi type maximally parity violating weak current-current theory
was formulated by Cabbibo! based on an SU(3) symmetry by making use of all three
quarks known at that time. He wrote the the total hadronic charged current in the

form
(4.). = cos 8, 1,(AS = 0) +5in 8,7,(AS =1) (2.1)
where
J(AS=0)=J+il? J(AS=1)=J]'+i)° (2.2)
with
Tt = dlt + 1s)gh (2:3)
Where 7 = (4,d,s) and ); (f = 1,2....8) are the SU(3) generators. The electric

charge is given by @ = I; + (B + S). Here B and S are baryon and strangeness
quantum numbers respectively. Js of u and d are 1/2 and -1/2 respectively and of s is
zero. In order to calculate some cross section by using this scheme we first determine
the corresponding curreat from (2.3) then we multiply it with cos § or sin § depending
on whether it is 3 AS =0 or a AS =1 transition as in (2.1). When one tries to use

this formulation in Glashow-Salam-Weinberg's SU(2). @ U(1) electro-weak model (now



known as the standard model of electro-weak interactions), which was originally devel-

oped only for leptons, the following observation becomes crucial: The total hadronic
hadronic charged current in (2.1) may be written as

Jeu = W7(1 + 715)d. + hec. (2.4)

where
de =dcosd, +3smi, (2.5)

We notice from (2.4) that instead of treating u, d, s, a3 members of a triplet of SU(3)
we may treat them as members of an SU(2) doublet (,d,) with @ = L, + Y, Li(u) =
1/2, I(d) = Ii(s) = -1/2 Y = 1/3. This interpretation has the trouble of gauge
anomaly because of lepton-quark asymmetry (two generation of leptons were known at
that time so the number of quark and lepton doublets are not the same in this case).
Moreover even if we did not take care of gauge anomaly it would introduce unacceptly
large favor changing neutral currents, through sin8cos 8d4#(1 + 7s)s type of terms,
which are dangerous as we see in section 4 of chapter 3. In 1970 Glashow, Illioupulos
and Maiani? introduced the orthogonal combination 3, = —dsinfd, + scosd, and the
additional quark field ¢ to solve the problem. In 1973 the extension of the scheme to
three generations to incorporate CP violation (which is known as Kobayashi-Maskawa
mixing) into the scheme was formulated by Kobayashi and Maskawa? while only two
generations of quarks were known at that time. We shall study three most frequently
used parametrizations of Kobayashi-Maskawa mixing namely, the original Kobayashi-
Maskawa, Malani* and Wolfenstein® parametrizations. In all these parametrizations
we use ‘quark phase convention’ which assumes K® — 27; Al = 1/2 and AT = 3/2
amplitudes being real to lowest order, which is easly achieved by choosing the mixing

elements U4 and U, as real.



2.2 Kobayashi-Maskawa Parametrization

We may account for flavour changing charged weak currents as well as flavor conserving

charged currents by assuming the lower element of quark doublet to be a mixture of

left handed charge -1/3 quarks, that is,

q() , (c’) (") 29
d! s 5
L L L

in the three generations case where d!, &, b} are mixtures of d,3,b quarks. The La-

grangian giving rise to charged currents may be written as
. 1 s
L =iggz? 1AM (1 + 7)q (2.7)
The neutral current part of (2.7) is

. |
Ls = 39§ 51'3’7”14?(1 + 71s)
= %yﬁh“(l + s)u{A, - -;-yd'a"t“(l +1s)di A, (2.8)

where uT=(u' ¢ '), dT=(d, s!,,5.). We know that flavor changing neutral currents(FCNC)
are absent or highly suppressed®. So the terms of the form d;7¥(1 + 75)d in Eqn.2.8
must be flavor diagonal. In other words

d:, = Uxud (29)

where Uk is a unitary matnix. After identifying Kobayashi-Maskawa mixing by a
unitary matrix we must parametrize it. The form of mixing in two generations model
is 8 rotation. We seek a similiar form for three generations. It must be reducible to a
two generations case after setting some of the mixing angles to zero.

A general orthogonal continous tranformation may be constructed by applying
three successive rotations, in other words O = 0,(8;)04(8:)0s(9;). Similiarly we may

parametrize a general unitary transformation as
U = D;20,(02) D, 0.(0,) Ds05(8s) D} = VU, UsUs (2.10)
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where

Uz = DgO,(O;)D% U;=Dleo,(81)(Dsz)7

Us = D;D,DyD} Us= Ds0,(0;)D} (2.11)
1 0 0 a a0
O;(8) =10 e & | O8)=] =31 ¢, 0 (2.12)
0 - o 0 01
i = 2,3
Unitarity of Us, Uy, Us imposes
(=0 0 ) 1 0 o0
D, = 01 0 s D,Dy=] 0 ein 0
| 0 0 e ) 0 0 ¢
(e"" 0 0 )
D, = 01 0 (2.13)
Y 0 0 e"‘ﬂ'}

with

0 —ge~is ¢ 0 0 1
.3 (2.15)

a, p, B; are arbitrary real numbers. D; remains arbiteary. So D Dy Dy D} is an arbitrary

1 0 0 61 a gh 0
Ui = 1o ¢ gt |, U=] =g ¢ 0] (214)
2

diagonal matrix which can be parametrized as
Us=D;D0,Ds D: = a:p[s'(ao + azly + 03)3)] (2.16)

where )5 and ), are the diagonal SU(3) generators.

1 0 0 ' 10 0
1
M=o -10], Aa=7§ 01 0 (2.17)
0 0 0 00 -2



Now we redefine the phases of the mixing matrix U and the fermion felds 4!, «'

by

we rewrite [/’ as

We take

di, = Dad,, 4 = Dpu U= D, U Dl (2.18)
U= D,UgD;D,Ul D;D,UoDI D,UsD: (2.19)
D, = ezpfi{as +a3)hs + as)s)] (2.20)
D. = ezp[i(bo + bs)s + baAa)} (221)

We may express (2.19) and (2.21) as

D, =

Dy

( ezpli(so + as + Jas)] 0 0

0 ezpli{s0 — as + J564)] 0 (422)
\ 0 0 ezp|i{a0 — Jos)]
[ caplifbo +bs + Jgb) 0 0

0 expli(bo — bs + Jyba)] 0 2.23)
\ 0 0 ezpli(bo — Jgbs)]

After using (2.22) and (2.23) we obtain

DonD;

D,U, D}

D,U,D}

= ezp|t{oo + a0 = bo) + (s + a5 — bs))s) + (s + a5 — ba)As]  (2.24)
( a siezp[i(Br + 2a5)] O

= | —siezp|-i(5 + 2a5)] a 0 (2.25)
L 0 0 1
(1 0 0

=10 2 sgezp[i(B; — as + /3as)}
\ 0 —sgezp|—3i(B; — a5 + /3a3)) ¢

(2.26)



1 0 0
DUsD} = | 0 & ssexpli(fs — bs + 3hs)] [227)
0 —aaezp[—i(ﬁa - ba +\/§ba)l Ca

The parameters a,,a5,3,b0,03,0s may be chosen such that

P2 —as+ 32y =0 (2.28)

P1+2a3=0 (2.29)

ag tag — bs =0 ‘ (2.30)

Ps—bs + /3 =0 (2.31)
1

oy +ay — bg = ——‘/-3-;(03 S bg) (2.32)

Using Eqn.2.30 and Eqn.2.31 in Eqn.2.24 we obtain

o + 8o — bo + (g + as = b)da = (s + s — bg)(De — -\‘E)
00090
=looo|=4 (2.33)
004

where § = ag + a3 — bs. The only remained phase is §. The others are removed by 2.28
- 2.32. Finally we obtain Kobayashi-Maskawa mixing matrix

Uk = U'
(1 0 o[ & s 0) (10 0)
= 0 ¢ s - a 0 01 0 |X
\0 -3 ¢ 0 01 003“)
1 0 0 r a 303 3133 )
0 cs 85 1 = | —sicz cicacs — 32356  creass + sac68 (2.34)
0 —35 c \ 8192 —C132Cy — C233e'%  —¢13285 + cpcye’l j



where we used the identity

100
VAL
eld = 1+ 332, (‘:!) =101 0 (2.35)
0 0 &

2.3 Maiani Parametrization

We may derive other forms of Kobayashi-Maskawa mixing matrix as well by taking
rotation matrices in different orders or through rotations around different axis. Al-
though the resultant parametrizations are different they are equivalent. One of the
most frequently used parametrizations is Maiani parametrization® which is especially
convenient for B meson physics since CP violating phase §' is written as a common
factor in (Uns)as element of the mixing matrix.

One may take s, 85 = 35, 8;C3 = €3, (c10263+37356") = 8,c¢" and parametrize

(2.34) accordingly. If we take

8183 =83, 81C3 =Cp8 (2.36)
then
c1=cacs, 8 = \/(1 —calc?), cp= /(1 - 81%s53) (2.37)
The equation
(c1ca3s + 32¢56™) = a,¢p¢" (2.38)
together with the relations
2,956 |2 = s3c} = cicla] + s3c3 + 2c109098285Co8 b
| = 18295 + cacse®® | = c2a2a2 + cBcZ — D¢y 85350565 co8 8
and
s3eg® +| - c12293 + cacse’ Ia = 12852 +cy?

= 1-9,252 =¢,°



gives us

- €13285 + C2036" = cycpe’” (2.39)
We may take 5’ =0 after a suitable definition of ¢4 and §’
— 13283 + 62633“ = CqCs (2.40)

and we take

€106y + 35936 = 5, {2.41)

By using Eqn.2.40 and Eqn.2.41 we obtain

ig _ Cq €633 + 3a85¢¥
¢ = 84 —C18283 + C23234 + cac3e™s (242)
From Eqn.2.36
a1 =(1-caca)t, c1=cp0 (2.43)
using Eqns.2.41 and 2.42
= A% = 2 2.44
using Equs.2.43, 2.4, 2.40, 2.41, 2.42
o = 8335 + s5c3cq — 2993,6435¢c9c036' $ (2.45)
2 1-c%c}
o = 8293 + 53 93c3c] + 29p¢,¢,99c9c030" } (2.46)
2 1-cich -
ot = 32fela _ 3438375 + 3‘313“' (2.47)
3 92 3 82C2

Replacing these expressions in the other terms of Uiy we get Maiani parametrization
of Kobayashi-Maskawa mixing.

Cacls €p3s 3
Ry (2.48)

4 "
U=] —sp9,c0e® — 353, c400 ~ 323,59 38,¢5

- 14
—3pC,00 + 2,348 8535¢, — 8,006 cac,

10



2.4 Wolfenstein Parametrization

The general form of Kobayashi-Muskawa mixing matrix may be expressed as

U Use Uns
U=]| U4 U, Uy (2.49)

Ui Uw Un
Uicsm and Uy, are some specific forms of U. Another form of Eqn.2.49 is Wolfestein’s
parametrization. It depends on the observation that the off-diagonal elements of
Eqn.2.49 are small while the diagonal elements are of the order 1 and we can choose
an approximately unitary form where we can parametrize all elements in terms of
A =| U, |=0.220 £0.002 (), It is easily noticed that | U, |= 0.050 + (-)0.010(®
A Uy £ 0009 ) o A%, We may treat either one of this parametrization and

Kobayashi-Muskawa parametrization as an approximation of the other
csly=yT=W&1-2)0  for ) small (2.50)

Both cos? and 1 — 1)? values are consistent with data. So we may use 1 — }A?

instead of cosfd; of KM as U,;. The other terms are determined by the approximate

unitarity requirement
1-3A? A MAlp-in)
Uw = - 1-12 a4 (251)
MA(1-p-1p) -2A 1

where A, p,n are determined by experimental data.

2.6 Kobayashi-Maskawa Mixing for n Generations

In this section we shall cutline some essential points of a scheme for n generations'®.
Although experiments exclude the possibility of the number of fermion generations

being greater than three and our analysis for a specific set of models supports this

11



derivation of the general aspects of such a scheme will be useful for understanding
some general arguments especially in chapter 5. Kobayashi-Maskawa mixing matrix
for n generations is a nXn unitary matrix as can be secen from Eqn.2.8. So it has
n? parameters corresponding to generators of U(n). The mumber of mixing angles
in the case of n generations is 2(371) since one may change a U(n) tranformation
to a O(n) tranformation by setting all its phases to zero. Then we conclude that
the pumber of the mixing angles of U/(n) must be equall to the the number of the
parameters of O(n) which is ﬂ";—‘l We may find the number of phases by subtacting
the number of angles from the total number of parameters. The result is ﬁL"zﬁ)- We
may absorb 2n — 1 of these phases in the redefinition of up and down quarks as in
Eqns.2.28-2.32. Hence 1"—‘,‘#)- —-{(2n-1)= ‘lﬂlg‘r—a phases remain as the physically
observable phases. Then we may express Kobayashi-Maskawa mixing for n generations
as a general unitary trasformation constructed from application of 5‘3229- successive
orthogonal transformations together with 1(12‘—1)- diagonal tranformations (whose entries
are phases and some of these phases are removed). The order of the application of

the orthogonal tranformations and the selection of the rotation axis depends on the

convention one chooses.
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Chapter 3

FLAVOR MIXING AND
KOBAYASHI-MASKAWA MIXING IN

GLASHOW-SALAM-WEINBERG MODEL '

3.1 Connection between Kobayashi-Maskawa Mixing Ma-
trix fo Mass Matrices and Flavor Mixing Matrices

The general form of the Lagrangian for mass terms is given by
Lywm= 8 MYulp + & M{dip + hoc. {31)
where u! and d! are up and down goarks of n quark generations in the weak interaction
basis. M® andM? are mass matrices for up and down quarks. By the term weak
interaction basis we mean the states coupling to weak gauge bosons in 2 gauge invariant
form i.c as ¥/ D¥'. We determine the quark masses after diagonalising M* andM?. In
the case of a non-singular Bermittian mass matrix M{where M comresponds to either
M® or M¢) we can always diagopalize M tb.rough & unitary matrix V as
VMVi=m (3.2)

where m is a diagonal matrix whose pon-vanishing elements are the quark masses. The
corresponding quark mass stzles are

tlx,-"=V.ﬂ'L d(, =VLd'L ' (33)



ur=Voup dr=Vidp (34)

Here uT = (u;, 43, .., 8s) 4T = (&,,d,,..., dy). Then we may rewrite the charged
left-handed weak current in terms of the physical quarks.

J z.” = ﬁ;yn,d; L = ‘ﬁV.’!,,V" d = ﬂ'ij KM d (3.5)
we see that the Kobayashi-Maskawa mixing matrix is
Ur = Vo V] (3.6)

For a positive definite mass matrix of general form (i.e either Hermitean or not) we may
derive Kobayashi-Maskawa mixing matrix as follows: We notice that (MIM)! = MM
for any mass matrix M. Hence there exist a unitary transformation V which diagonalizes
M'M. Then we have the relation

MM =Vim?v (8.7)
Here m? is a diagonal matrix with tr(m?) > 0. Now we define a diagonal matrix m so
that mm = m? and érm = (irm®)} > 0. We may write
M =Vim(m='V M) (3.8)
‘We call m—VM = V", It is easy to show that V' is umtary Thus we may say that
any positive definite complex mass matrices may be diagonalized as follows
m* =V, MV} | mé=V, MV} (3.9)
We may write the charged left-handed weak current as
It = pyudis = 8, VaV]d (3.10)

and we identify
U = V}V; (3.11)

In this and following chapters we shall mainly deal with Yokawa Lagrangians to derive
the mass matrices and the flavor mixing matrices through vacuum expectation values
of the Higgs field(s).

14



8.2 Minimal Glashow-Salam-Weinberg Model and Fla-
vor Mixing

The standard model (GSW)!? is the first and the simplest complete theory of electro-
weak interactions. At the present time it accounts for all experimental data very well',
This tells us that GSW must be at least the effective low energy theory if it is not the
fundamental one. Therefore the llumination of the form and the origin of Kobayashi-
Maskawa mixing{KMM) is necessary. In fact the question of the origin of Yukawa
couplings which give rise to KMM is one of the motivations for extensions of GSW. So
we first examine KMM in GSW.

We take three SU(2) gauge fields B,,, a U(1) gauge field a, and a set of fermions
whose left handed components tranform as doublets and right handed components as
singlets under SU(2) namely

¥y = ("‘) ’ (u,,) ’ (u‘) (8.12)
/). Y L P

(3.13)

with hypercharge Y=-1
lpi = er, ", TR (8.14)

with hypercharge Y=-2

Qu = ("') , (d) , (f) (3.15)
d y b
L L L

(3.16)

with hypercharge Y=1/3
qm = “'ﬂ’ d'R’ C’R, 8;3, t’n, bk (3-17)

with hypercharge Y=2/3, and & scalar SU(2) doublet

o=|? (3.18)
" .

18



with Y=1 to costruct an SU(2)®U (1) invariant Lagrangian,

L="Lo+Ly-V(2) (3.19)

where

1 - - 1 =) o,
Lo = =g "= 7000" = iU Dyy*¥s - iEaDyr"er

—l.QL D,.'y" Q- iﬂgD,ﬂ"uR ~-idg D‘,’)“ dg — (DpQ)f(Dp‘y) (3.20)
Ly = h;j‘yu,@eja + hijiL@Jm + h;‘jQiL‘ing + h.c. (3.21)

here D, = 3, +ig- B, + ig'a,, it must be under stood that 7 §qg(lg) = 0 and
$ = in,(8)*. Finally
V(®) = -2 8'® + A(Dt0)? (3.22)

with the minimum

|<<I>>|=7"-2= v=7”7 (3.23)
which is the vacuum expectation value of & in tree order. So we must define & about
the true vacuum defined by Eqn. 3.21

<1'>=ezp{.‘?.é}( 0 ) (3.24)

v+x

x 's are the true Higgs fields. After an SU(2) transformation # are absorbed into gauge
fields as longitudinal components. The result is three massive and one massless(photon)
gauge bosons. But we are interested in fermion masses and flavor mixing. So we only
deal with Ly .

We have no evidence for flavor mixing in lepton sector. Hence we take hi; = hipby;
and h;v are charged lepton masses as neutrinos remain massless. If we assume any
flavor mixing in lepton sector we may use a similiar procedure as for quarks. Therefore
we may assume favor mixing only in quark sector without lack of generality . After

spontaneous symmetry breaking (SSB) we may write the quark sector of eqn.3.21 as

16



£Y = h“jﬂdzLd;R + h},vﬁhu}a
+hidioxdir + WyBioxuin + he. (3.25)

We determine the quark masses through diagonalization of the mass matrices

M= hip M=k (3.26)

m* =V, MV}  mi=VMV} (3.27)

with the corresponding (physical) mass eigenstates
wy=Voul,  dp=Vid, (3.28)
ug = Viug dp = Vid} (3.29)

which we derived in the previous section. ¥V = V' in the special case of M? and M"
being Hermitean. The Kobayashi-Maskawa mixing matrix is given by Uxw = VVj as
in Eqn.3.11.

3.3 Multi-Higgs Extensions of GSW and Flavor Chang-

ing Neutral Currents!®

The Yukawa interaction for charge —1 quarks with n Higgs doublets in the context of
GSW may written as (a similiar expression may be written for charge 1 quarks)

Ly = h};Qu®igjn + h}jQic®agin + - - + h};Qic Bugin + hec. (3.30)
The corresponding mass matrix is

M = hioy + Koy +--- + hjo, (331)
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113+ v, being | < &, > |, |< ®; > |,--+,] € ®a > |, respectively. We may see from
the inspection of Eqn.3.30 and Eqn.3.31 that the diagonalization of M? does not lead
to the diagonalization of Yukawa couplings; h};,h};,---,h}; in general. Simultaneous
diagonalizability of the mass matrices and Yukawa coupling matrix are a special case
where h; are diagonalized by the same transformation for every k=1,2,---,n. In the
general case the resulting Yukawa interactions are not flavor diagonal; they contain,
for example, ds® interactions. Experimental data® indicates no evidence for flavor
changing neutral currents . The most stringent upper bound comes from K; ~ Kg
mass difference. We may derive the lower limit on the mass of the favor changing
neutral Higgs bosons by using this bound. Ky — K's mass difference is given by'*

Sy = my, - ms = -ﬂ?l;Rek B 55 (0)1K° >) (3.32)

which corresponds to the diagram

o d S

S

Figure 3.1: Neutral Higgs Contribution to Amy

-

The cortesponding £ is

Liis = Z‘:(hh)’(mz)”(!(l +¥s)d)(3(1 + 7:)d)
= 2;\/5@;(54:4)2(7"3)7 ?(575d)(37:d) (3.33)
Here M!; = hi v;. We dropped 3d3d term since it has a small contribution. The value
of < K° | 375457sd | K® > is determined by making the use of bag model results!* to
be
< K | 57sd57sd | K® >=8,5 x 1072GeV? (3.34)
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We may set a mass scale M;y for quark masses and my for Higgs masses as

M} My
e N (3.35)

If we set M,q equal to the bottom quark mass, m,, then

2
my > E‘LA—Z—;"—;& x 8.5 x 1073 GeV? (3.36)

If we set M,q equal to my = 100GeV then

2
m, > 2‘/5%;020”9 x 8.5 X 107GeV*® > (10°TeV)? (337)

where we have taken Amx = 10-15GeV and Gp = 10-5GeV.
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Chapter 4

FLAVOR MIXING IN $U(2), ® SU(2)x @ U(1)

4.1 Motivation and Tests for SU(2), ® SU(2)z ®U(1)

Although GSW accounts for all electroweak data very well it has some theoretical
shortcomings!®. Left-right symmetric!® models eliminate some of them . The origin of
parity violation is not evident in GSW since it was introduced by hand through the
- internal representations of the fermion}c fields. This question becomes quite pertinent
if to maintan lepton-quark symmetry one introduces the right handeded neutrinos
into the standart model. Even if we assumed right handed fermions to be singlets
under SU(2) it would cause other problems; it would cause neutrinos become massive
since then lepton number conservation could not prevent neutrino to have mass and
it would cause neutral currents conserve parity in contradiction with experiment. In
SU(2).8SU(2)r®U(1) models we can have naturally small neutrino masses {see Ap-
pendix C). Experiments put only an upper bound on neutrino masses!’. All bounds
are consistent with SU(2),®5U(2)a@U(1) provided that my, is taken high enough.
Direct kinematical limits on the electron neutrino comes from searches of spectral dis-
tortions at the endpoint energy in tritium beta decay. The strongest limit is due to
Los Alamos group m,, < 9.4 eV'%, This corresponds to my, > 25GeV for v, = 0GeV
and my, 2 10°GeV for vy, = IQEV as shown in Appehdix C. The direct kinematical

limit on muon eutring comes from the analysis of the endpoint spectrum of ¥ ~ %



and the limit on tau neutrino comes from the end point spectrum of decaying r, pro-
duced in e*e~ storage rings, into 5 charged pions. The results are m,, < 250 KeV'®
and m,, < 35 MeV?®. We find the same lower bound on the right handed gauge
boson masses from the bounds on masses of v, and v, if we take the Yukawa cou-
plins accordingly. Thus we may say that SU(2).® SU(2)a®U(1) will be consistent
with even smaller upperbounds on neutrino masses for higher my,. Left-right sym-
metric models {e.g.5U(2).® SU(2)a® U(1)) spontaneously break the parity so they
elucidate the origin of parity violation. Moreover in SU(2):® SU(2)r®U(1) models
hypercharge gains a physical significance a3 Y=B-L where B is baryon and L is lepton
number. SU(2);® SU(2)z@U(1) models are in agreement with data under cuitable
adjustment of parameters’” as already shown in the case of neutrino mass. As we
have shown in Appendix B the left-right symmetric model parameters which can di-
rectly be checked through experiments; p, the mixing angle of left handed and right
handed gauge bosons 5 and the weak current at low energies, Ji, go to the GSW
values in the limit of my, — co. Their deflection from the results of GSW are due
to finite value of this mass, my,. The deflections are very small but their effect may
be observed in more precise experiments. Their nonobservance does not rule out the
models; it only changes the lower bound on my, and the upper bound on  as long
as W5 remains unchserved. The search for right handed neutrinos (i.e. right handed
currents) in 100 % stoped u+ polarized along the direction opposite to the direction of
the product ¢* through the analysis of the energy spectrum near the endpoint gives a
lower bound on the mass of Wy as discussed above and an upper bound on ¢ (in GSW
there exist no event at the end point of this process since charged weak currents are
wholly left handed in GSW). More elaborate bounds are my, > 432GeV for arbitrary
n and n £ 0.35 for mp, — co 7. The most stringent bound comes from K.-Ks
mass difference. The K;-Ks mass difference is almost wholly due to the AS=2 box
diagram where two gauge bosons are exchanged in the internal lines. In the case of
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SU(2).® SU(2)z®U(1) right handed gauge bosons also contribute to the process. The
leading contributions are due to two left handed gauge bosons and one left handed
gauge boson, one right handed gauge boson. The result is Amx = Am%{l - 430r]
where r = gé. We see that unless r < 2.3 x 102 or mg 2> 1.6TeV we would have
wrong sign for Amg ?2. This bound is is ihdependent of the mass of the neutrinos.
Another bound on 7 is due to the anal}sis of y-distribution in deep inelastic scattering
of antmeutrinos off nuclei. The interaction of antineutrincs with valence quarks give
terms proportional with {1 — y2) while the interaction of antineutrinos with sea quarks
give terms proportional with y. If we include right handed neutrinos the coeficient of
y increases. The analysis of y-distribution gives the upper bound 4 < 0.1 2. This
result is model independent. Here we reviewed the main results on the bounds for the
experimentaly observable parameters of SU(2).® SU(2)g®U(1). Briefly we may say
that SU(2),® SU(2)a®U(1) models are consistent with experimental data as long as
we choose the parameters my, and n in accordance with the experimental bounds.
The left-right symmetric models have a drawback namely, the increase in the number
of Higgs bosons'®. However left-right symmetric models are viable models of electro-
weak interactions and we obtain interesting results in the final chapters in the context
of a set of SU(2), @ SU(2)r @U(1) models, we shall now review some of SU(2).®
SU(2)a®U(1) models and the flavor mixing mechanism in them. First we analyze the
minimal SU(2),® SU(2)r®U(1) model.

4.2 Minimal SU(2); ® SU(2)z ®U(1) Model

We begin with the assumption of left-right symmetry (except in vacuum) as an exten-
tion of GSW. The immediate possibility is SU(2), @ SU(2)z ®U(1). Then fermionic
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sector consists of quark

representations,

and the leptonic representations

( v,

\ €
( v,

\ ¢

¥ =

Y=

-+
o

-

The electric charge operator is defined as

1
Qa=ILi+Lr+zY

2

So the representation content of fermionic multiplets are

1.1 11
Qu=(503 Qir={(03 3
1 1
‘riL = (5’0’ "l) ‘I’.'R = (0» §9 "l)

1=1,28

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(46)
(4.7)

To gauge the theory we must introduce three SU{2). ,three SU{2)s and one U(1) gauge

field in interaction with the fermion fields previously defined

L= —%f,...f“" +Qi,DQir + QinDQin + Vi D¥ip + ¥;p D¥ip+

where
D (" =
f we =

3y +4g7.BL +igd - BR +iga,
[y, D.] = 8,8 - 8,8 + g x B
+a“B-:R - ayB}"' gﬁf X B':? + B“ay - ya“
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(49)
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We must add Higgs fields to break the symmetry spontaneously ; Ay =(1,0,2) , Ar =
(0,1,2) to suppress left and right handed currents in different magnitudes (i.e. spon-
taneous parity violation) and & = (},1,0) to give masses to fermions. We write the

kinetic terms for Higgs fields and the coupling of Higgs fields to the other fields as

L = tr|(D,)N(D*®)) +[tr(DpAL)er(D*AL)) + [tr{ DpAR)]Hir(D*Ag)]
+hij ¥ 8¥;r + GV ¥,z + hi;Qi18Qsr + h?,-Q«L‘i’QjR
+h}”;-(‘¥{;c"' 727, ¥ AT + ‘??RC-I TzT;WjRAg) + h.c. (4.11)
where & = 7,8*7; is the charge conjugate of ® . One may induce the vacuum ex-

pectation values for Higgs fields to break the symmetry through the following Higgs
potential

Ly = p?,-tr(ﬁ@,-) + X;,‘u[ff(@}@j)if(@{@:)] + )-:,-Htf[QIQ,-QIQ;]
+itr(ALAL + AkAR) - Aftr(ALALP - Asltr(AkAR)P  (4.12)
¢ =9 &= ‘i", Bis = By, Az = Ao,

Auge = Xiangy Aijee = dgue, '\sﬂu = /\fejk = A5;;.',' = ;'m (4.13)

with the minimum given by

E 0 $+k Xt
<®>= ] e=( ™M X
0 Kei? x~ xX+F
0 o A} A
. < Apy >= ( ) Ay = ( R(L) H}o) )

vr) O Ay toury Ak

The spontaneous symmetry breaking of SU(2); ® SU(2)z ® U(1) leads to 1) six massive
and one massless gauge bosons (see Appendix A ) 2) masses for Higgs bosons which
can be read from the lagrangian.
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4.3 Flavor Mixing in the Left-Right Symmetric Models
with One & Field

The fermion masses and flavor mixings result from only the coupling of & = ( 1,1,0)
field(s) to fermions as can be seen from Eqn.4.11. Therefore the conclusions derived for
the Yukawa Lagrangian of the minimal model is applicable to any SU(2),® SU(2)z®
U(1) with only one @ field. After the spontaneous symmetry breakfng the Yukawa
interaction part of the Lagrangian 4.8. takes the form

Ly = Lnp+ Ly, (4.14)
Ly = (hgk + hg-k' 8-“')%;1/,'3 +he+ h}f}(v;uﬁc"‘u,-; +L— R)

+(hgk + h;}k'e“')eme,-g + h.c.

+(h},h + h?’-k'e-“')ﬂ;[,u,‘g + (h?,k + h},-k'e“’)l,-;,d,-g + h.e. (4.15)

Lyi = h3Duxivir+ hEiLx3ein
+h30ix3'vir + hEiLx3 ¢in
+hF (v e i AL + vipe v AR)
+hYdix3din + Bl xYuin + B3 dipxd dir
RS U 4 . (4.16)

Since there is no evidence for flavor mixing in leptonic sector we assume hfy'? =
hi® | We may read charged lepton masses directly from Eqn.4.16. The remarkable
aspect of left-right symmetric models in lepton sector is that we get naturally small
neutrino masses after diagonalizing Dirac and Majarona masses (see Appendix C ). In
quark sector we diagonalize Eqn.5.1 to obtain quark masses and flavor mixing as in the
standard model. Unlike minimal GSW there exist flavor changing neutral currents in
the minimal SU(2).®SU(2)a®U(1).
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This is due to the form of Yukawa coupling being , for example for d quarks,
iz (hix3 + hix3*)din + hec. (4.17)

whereas the mass term is

dic (L + BLRe™)dsr (4.18)

The transformation diagonalizing the matrix A}k + h%;k'e* does not necessarily diag-
onalize both h}; and h?. So in general there remains non-diagonal terms in Eqn.4.17
after mass diagonalization. Hence there exist flavor changing neutral currents even in
minimal SU(2).® SU(2)r® U(1) in general. The procedure to suppress these currents
is similiar to the procedure in multi-Higgs extensions of the standard model.
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Chapter 5

CONSTRAINT ON THE NUMBER OF
QUARK GENERATIONS IN

SU(2),@5U(2),8U(1) MODELS WITH ONE &

SCALAR

5.1 Preliminaries

The standart model does not predict the number of fermion generations. It works
equally well with any mumber of generations'®, Experimental results exclude the pos-
siblity of light neutrino generations being more than three?*. The results come from
the experiments measuring decay width of Z bosons.. One determines the number of
light neutrino generations; N, by measuring the decay width corresponding to invisible
decay modes and then setting this value equal to N, T, where [, is the expected value
of neutrino width. The latest experimental results for the number of light neutrino
generitions is due to L3 Collabration. Their result gives the mumber of light neutrino
generations as N, = 3.01 £ 0.11. We may argue that if there exist three lepton gener-
ations the number of quark generations must be three as well due to absence of gauge
anomaly. There are some studies reqmnng the mumber of fermion generations being

three in superstring theories?® and there are some others making the use of chirally



confining dynamics®®. An electro-weak model constraining the number of generations
to three would be highly desirable. We shall show that under the assumption that there
exist no gero mass quark, SU(2),®SU(2),0U(1) models of electroweak interactions
with only one (1/2,1/2,0) Biggs field & necessarily require the number of quark gener-
ations to be three. First we shall study the case of the mass matrices for up and down
quarks being non-Hermitean. Then we shall study the case where the mass matrices
are Hermitean. Lastly we shall show that we can always find mass matrices consistent
with our assumption for the number of generations being three.

5.2 The Case of Non-Hermitean Mass Matrices

The Yukawa Lagrangian for SU(2),®SU(2),@U(1) with one Higgs field & for n gen-
erations may be written as (summation over dummy indices is implied)

Ly1 = h}Qu®Q;r + Qi $Qsr (5.1)

! u'
Qu=| " Q=] ' f=12.n (52)
@), L

are (1/2,0,1/3) and (0,1/2,1/3) representations of SU(2),®SU(2)z®U(1). The La-
grangian in Eqn.5.1 induces the fermion mass terms through breaking the symmetry
spontaneously (see Eqn.4.15)

where

L m = (h},k + h?jk'e-“’)‘u:l;ﬂ;'n

+(h}jk'e“' + h?jk)a"‘[,d;n (5.3)
After diagonalizing the mass matrices namely,
My = (hlk + hLKe™) MY = (hhK'e® + hik) (5.4)

we obtain
m* = VMV (5.5)
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{m;OO 0

0 m 0 0

0 0 ms 0
= (5.6)

0

0

Lo 0o 000m|
mé = VAMAVE (5.7)

(m{ 0 o 0 )

0 m O 0
o om0 69

Lo 0 000 m

V,‘,'((g are the diagonalization matrices, which are known as flavor mixing matrices,

given by

(Ve = auye'®s (Vi)y=bye® (6.9

(VE)is = djed  (VEks =bj,e  (5.10)

nosummation over dummy indices

where ay, biz, al;, b, are the 5("7‘9- angles and of, f%, o¥, By are the ﬂ%’- phases of

the associated flavor mixing matrices (see section 2.5 and section 3.1). We may invert

Equs. 5.6 and 5.8 as

Ll‘;-r-

(VZTm*VR)is (5.11)



M

mxvffiviu

+ maVin Ve

M 84 by et

+ Ma8izbagel

+ oo Min Bin by e’
(VI'm*Vi)y
minﬂV}gu
+myVisVia,

+ ety Vi Vi
m gl b "

3
+ myalpbetd

n
+ miaf, bl ;e

(5.12)
(5.13)

(5.14)

where m,m), are the eigenvalues(i.e. masses of the quarks) with m; = mq, mz; = m,,

My = My ...m} = mq, mh = m,, m§ = my .... with the mass eigenstates

— '’ fa® 0
g = Vint'ip = arieg® ugg

—ydp  _ 1 Ao
dyy = Vigd'sp = a,,68" dyy

= Vo = bt ol
“*B o Vk"u‘n - bggc ﬂ‘ u‘n

dip = Vi dig = bue™ dig

(5.15)
(5.16)
(5.17)
(5.18)

We observe that the quark mass correction graphs at the end of the chapter?”

require that

af - off = ff - B
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since we have Uj*UJ} in the mass correction term with
URUR = (VEVENH(VRVE)s
= VL.;lefile:er}{:f
= asal b bl e~ (o~ g ~F]) (5.20)

where U is the ij’th element of Kobayashi-Maskawa mixing matrix associated with
the first vertex of the first graph and U} is the ij'th element of the right handed anolog
of Kobayshi-Maskawa mixing matrix associated with the second vertex of the same
graph. We see that in order to keep the fermion masses real we must cancel the phases
m Eqn.5.20. We may take

off —af =pf - F; (6.21)
For k=r Eqn.5.19 follows. We may express this relation more generally as Im(U%)=
Im(UR). This reduces the number of phases from 2(321) ¢o 22341 This conclusion is
valid for all higher order mass correction graps ( see Appendix D). The equations 5.12
and 5.14 are not independent since they are expressed through the same matrices Ay;
and h;. So we should solve them simultaneously. The two equations define 4n? equa-
tions with 3231 phases instead of 4251 ones, 2n eigenvalues and 42(5~2) mixing
angles. Then we have 2242 ynknowns and 4n? equations. In order to determine all

the parameters uniquely we must have
n(7n + 3) = 8n? (5.22)

Eqn.5.22 yields n = 3. When n < 3 the number of equations is less than the number of
parameters. In other words the mixings can not be determined uniquely i.e. physical
quarks can not be determined. When n > 3 the number of equations is more than
the number of unknowns. Then either the extra equations are redundant i.e. the
same quarks are repeated or the eigenvalues(i.e. masses) corresponding to the extra
generations are zero which contradict with our assumption. So only n = 38 is possible
in this framework.
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We shall see if & similiar restriction applies to GSW. The Yukawa Lagrangian
for GSW is the same as Eqn.5.1 as & changed from (1/2,1/2,0) representation of
SU(2).8SU(2)r®U(1) to (1/2,1) representation of SU(2).®U(1) with < &T >=
(0,v) and Qg from (0,1/2,1/3) representation of SU(2).®SU(2)r®U(1) to (0,2/3)
representation of SU(2) ® U(1). The related mass matrices are

M = hlq‘v, M‘u = h’uﬂ (5.23)

We see that Eqns.5.23 are wholly independent as M* and M* for SU(2).®SU (2)r®U (1)
are not independent. This will be more obviously evident in the Hermitean case. A

second reason for absence of any restriction on the mumber of generations in GSW is

that the graphs given in Fig.2 do not exist in SU(2).®U (1) models because of the ab-

sence of right handed currents. Hence we do not have the constraint given in Eqn.5.19

in the case of SU(2),®U(1) models. Therefore no restriction arises on the number of

fermion generations in GSW.

5.3 The Case of Hermitean Mass Matrices

Now we study the special case where the mass matrices are Hermitean. In this case we

may write the mass matrices as

ik + hik' e = my806146'%% + my0130056"% + ... Ma Ginaage'™? (5.24)
hiKe' + hik = miai,ai,e‘“@m;aiza',,e"'g + ol 0hge®d  (5.26)

where af; = of = o}, af} = off - aff. Eqn.5.19 is automatically satisfied since in the
Hermitean case of = ff, alf = f* so it does not reduce the number of relevant phases.
We have n? equations and n? unknowns. Hence we do not have any constraint on the
number of quark generations for the case of Hermitean mass matrices. We develope

another method for this case. Because V*, V™, V¢, V" are Hermitean of = —af,
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olf = off, p¥ = -pf, pi* = Bi. Then we may rewrite Eqn.5.20 as

of ~of=p-Hi (5.26)
If we take § = j Eqn.5.25 becomes

of ~al=p'- 4, (5:27)
We may rearrange Eqn.5.26 as

of - ! = of - (5.28)

In the Hermitean case Eqn.5.27 reduces to
of, = o} —of =af, = of - af (5.29)

Then we may say that we have a set of phases whose total number is 3"'—._}m, ’—“-(Pf—‘l
angels and 2n eigenvalues versus 2n? equations i.e. we must set 22341 = 203 which
again gives the result n = 3. This reasoning as well is not valid in the case of GSW
gince Eqn.5.28 does not apply to it.

5.4 Existence of Mass Matrices Consistent with the Re-
quired Form for n=3

Let us see that we can construct up and down quark mass matrices consistent with the
form we require for 5 = 3 in the SU(2).®SU(2)r®U(1) models with one & field. We

may write
khde™ = k| % | ¢~*) = k' | h); | +gi5¢®  no summation (5.30)

where g, is the complex phase of A%,. We have two equations and two unknowns so we
can determine f;; and g;; uniquely. We may also write

K | BL; | o) = kg 4 B etou (5.31)
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which fix h{,, f';; and ¢';;. Then the mass matrices may be expressed as

My = fy+aye®5 4+ k| bl | e (6.33)
M‘; = _ﬂ,- + gf,e‘"‘" + h:,-@im" (5'34)

with f,u = k‘j + h‘j) f‘j =K l h}j |' By taking I h}j ls f‘i: gijs hlj: 9'41) Pijy ﬁlj
accordingly we may write

fu = muonayj, Gig = My, k|hi;|=mienay

fc'j = mMgai Gy, 9:; = m.a{,a;,, h‘_f = mb“is“ﬂj

By = of—aj=af —af py=af —a}=af -af (6.35)
We notice that if we introduce more &’s into the scheme there will be more parameters
in the form of 5.33 in general. This means if we introduce more &’s more generations

exist in general. Then Eqns.5.23 and 5.24 suplemented with Eqn.5.28 exist for =3 in
SU(2). ® SU(2)r ® U(1) models with one &.

—x \

uy, di dir Ui

M
—x

die Vi Uig dir

Figure 5.1: Second Order Quark Mass Correction Diagram



Chapter 6

CONCLUSION

After clarifying the basis and the form of Kobayashi-Maskawa mixing we pointed out
the connection betweeen flavor mixing through fermion mass matrices and flavor mixing
in left handed charged weak currents namely, Kobayashi-Maskawa mixing. Then we
reviewed Yukawa interaction, fermion mass matﬁces, flavor mixing through fermion
mass terms and Kobayashi- Maskawa mixing in the standard model of weak interactions
and in SU(2) ® SU(2)r ® U(1) models of weak interactions. We used this review
material to investigate existence of a constraint on the mumber of generations in the
standard model and in SU(2), ® SU(2)a @ U(1). We found that under the assumption
that there exist no zero mass quark , the mass matrices in SU(2). ® SU(2)r ® U(1)
models with one fermion mass generating Higgs multiplet & restrict the number of quark
generations to 3 on the other hand the standard model can not put such a constraint.
This prediction is in agreement with experimental studies mentioned in the first section
of Chapter 5. As we pointed out in Chapter 4 SU(2), ® SU(2)s ® U(1) models are
viable models of electroweak interactions. The prediction of the right number of quark
generations is another point in favor of left-right symmetric models which ther standva.rld

mode] can not provide.
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APPENDICES



Appendix A

GAUGE BOSON MASSES IN MINIMAL

SU2): @ SU2)2 @U()
We start with
Dy = 8,+gigt B+ 7igd B} + Lig¥a, (A1)
® = (730=wha, be=(OD6=050 (A2
Ar = (1,0,2) =8¢ Ax=(1,0,2) = yafl (A3)
Du® = 8,8+ ig(?- Bid - 27 BY) (A4)

D,Arry = QAL r) + %;g(?.é‘f(a,A;(R) + A;(a)a' 3:(3)) +i¢B, (AS5)
The gauge invariant gauge bosons mass term is
Lp =tr{(D.2) (D*®)] + tr]( DAL ) (DPAL)] + tr|D,AR) (D#AR)] + he.  (A6)

From now on we will omit the Lorentz indices, u’s and lower the superindices, L and
R for simplicity. The interaction Lagrangian for gauge boson masses corresponding to
Abis

L = 3loel(7- BEd - &7 BR)(e7. By - 7. BL)]
+Hel(g? Wo + a)A (o7 Wy + @a)AJ+ LR (AT)
We make the use of

(7-By<2>-<%>7.B])=
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weowi \[# o) (& o Y[wa Wi
wi -wi )\ o ke 0 ke |\ Wi -wh
=( K(WE - W) k"c“'Wf-kW;) s
W - fWE —Ke? (W3 - Wh)

(¢7- Wi + g'a) < Ayr) >= Wim+s Wi |
Wi —gWir) + da vir) O

- v RyWiir) 0 (A9)
vu(r)(~9gWi(m) + g'a) 0
then
(7 BE<®>-<®>7 BRSW7 BE<®> - <& > 7 B
= k(W3- WEYP + (KW — Ke W) (kW — KT W) +

(K Wi — kW) (KW - kWg) + K3 (W — WE)? (A20)
trl(g7- Wi + ¢'a) < Apqr) >IM(o7- Wi + /a) < Army >) =
SR mW Wi + iy (~9Wim + g'a)? (A1)

By using A.11 and A.10 in A.7 we obtain the gauge boson mass Lagrangian
Lom = (R + KRS - WA + 2078 + KWW +
i—g’(k’ + EWEWE - %g’kk’coﬂ'(W,‘th +WHW;)
+PRWIWL + A WEWE + 03 (—gW3 + da)’ + he.  (A12)
a) Charged Gauge Boson Masses: The mass matrix for charged gauge bosons may be
written by making use of Eqn.A.12,

M=(a’l%(k’+"'”)+”ﬂ b ) (A13
~1kK coss'  g[R(K2 +K?) + v}



The eigenvalues of A.13 are the masses for W, and Wr.They are the solutions of an

equation of the form

-2
" I N (A14)

™Mz Mmyp-—A
Le.

Mg = Mutmasd (—)\/F(__{i = v&)* + ;KT cos &
= 1P o 4 o)+ (<))
Then we have two sets of charged gauge bosons with masses
mhy, 0% mh, = 1ovy (A.15)
The eigenstates may be determined after diagonalization as
Wy cosn  ¢¥siny Wy
(W3 ) B (-e“'sinn cos ) (Wn )
Wi = cosgWy + ¢ sin gWp (A.16)
W, = cosgWg—e" singW, (A.17)
Where 7 is determined from the off-diagonal elements of the diagonalized matrix,

- sinn cos {30 (K" + h2) + 2*u3] + 26°kH oin? ncos 5~
-;—gzcos’nkk'cosﬁ'+ g’sinncosn[%(k’ +5%) +v}]=0

tany = ";’—;i_"';-;-" (A15)
b)Neutral Gauge Boson Masses: The mass matrix for neutral gauge bosons is
gk + k%) + 457 -g(K + k) —4g9'v}
M, = i— P +k7) PR+ + 4020 —4ggvd (A19)
~4gg'vi —499'v% 497(v] + v})

The eigenvalues of the equation A.19 are the masses of the neutral gauge bosons. The
equation | My — AT |=0 results in

~N 4+ +ed+d=0 (A.20)
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where
b= 22K+ K7 + (6 + )0k +93)
—dc = [§P(K + k?) + 4g%v}]

x{Z0(K? + %) + g3

(K + K7) + 422 (ol + v)

HP(R + £7) + 457 Rlg (3 + )

4300 + K = 45070} - 4570 (A21)

d = [0+ + g0l

X3 (K + K7 + PoRle (o2 + o)

~[36%( + ¥7) + Podle* ok

+30°0° + k)= 12 + 47)

xg?(v} +v}) - £'g(v303]

~g0 {30 (K + K)o}

Hg A+ 47) + PRl = 0 (A.22)
Since d = 0 one of the ei}envalues is gzero which corresponds to massless photon field.
The masses of the other two gauge bosons is determined through

-2 +bA+e =0
Btde = =g B+ + (7 + P} + o2 -
PIF + )0 + 03) — 46°(6 + 20l
mia = 37+ K7) + (7 + )L+ 02)

HgY 6+ N6+ )~ gy k4 47) (A2
We may approximate the inside of the square root bracket since (k?+k"?) << (v} +v3).

The first order approximation gives
s - laga ' T
m; = 4g’(k +P)+W(k +k’2)
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T ,ﬁ;f)(mkﬂ) (A24)
29

7t g.,)(k” + %) +2(¢" + 97)(v% + v}) (A.25)
(A.26)

mj

We may write m; and m, in a more convinient way by defining weak mixing angle §

as sinf = . Then
miy,
mZ\ cos? § (A.27)
1,c0824 cos 20
Z: 4(6 2 0) Wx cos 20 ma’: (A'28)

We see that in the first order approximation the relation between the masses of the
usual charged and neutral weak gauge is the as GSW which is g-“;’l; = cosf. If we

include the higher order contributions for mw, and mz, we get

miy, = IR k,’};é—j (_2"+":,,) ..... ) (A29)
my, = LELR),, + ke~ (g yELED) L] (as0)

We see that the higher order contributions are highly suppressed since
vy € (VI + F?) € va.

The neutral gauge boson eigenststes may be determined by constructing the
diagonalization matrix by the use of the eigenvectors of A.19. The result is (in the
limi¢ k2 + k" << v})

A = s (W} + W}) + cos 204 (A.31)
= cos W} — sin § tan IW} — \/cos 20 tan fa (A32)
= V:::;a W3 — tanda (A33)



Appendix B

LOW ENERGY LIMIT OF

SU(2):®SU(2):Q U(1)

In this appendix we shall show that low energy limit of SU(2); ® SU(2)r ® U{1)

almost reduces to that of GSW. From Appendix B we infer that sinf = e in
this model as s = 7;5—’"- in GSW. We notice that if we eliminate all ¢’ by the

variable ¢ = 7:;%‘,- in SU(2). ® SU(2)a ® U(1) the electroweak currents are the
same as of GSW up to & high degree of spproximation at the low energy limit, This
result is not surprising. In SU(2), ® SU(2)r ® U(1) we first break SU(2)z ® U(1)
down to U(1)' through Higgs field Az 50 that the generator of U(1)’ is Y? with

1., 1
-2-Y =L+ -2-Y (B.l)

The coupling constant of U(1)' iz g” where

1 1 1
R R (82)

The next step of symmetry breaking ie the same as that of SU(2), ® U(1) while U(1)
is replaced by U(1)'.

In order to see the situation more explicitly first we must derive the electroweak
cwrrents in SU(2); ® SU(2)g ® U(1). The fermion-gauge boson interaction Lagrangian
of SU(2), @ SU(2)x @ U(1) is given by

Loy = g¥ LWL, + gV RyT Wa¥a + g’-}zia\lf'yif (B.3)
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where ¥7 = (¢, ¥3)L(r) are SU(2)r(r) doublets and we ommited Lorentz indices as
before. From A.17 we see that W) = W) w2 = wH) since k24 k2 << v
So the charged weak current of SU(2), ® SU(2)r ® U(1) is almost the same as that
of GSW as easily seen. The neutral weak current of SU(2). ® SU(2)r ® U(1) may be
written by using B.3 as

JO = g\Irm-;-rs‘\I'LWi + gV TR RWE + g'\hlz’-\ha + g’\l'g-}zi\lma (B.4)
After using A.81-A.33 we express W}z, and ¢ in terms of the mass eigenstates

WP = cosdZ +sinfA (B.5)
s _ y cosl
Wi = I
s 2

-V’C%(mu sinftand)]Z + sindA - sinftandZ,  (B.S)

o = [VeosBH(A ~ tan8Z) — sin f{cos 0 + sin 0 tan 6) Z] (B.7)

Then we may write B4 as

1 . 1 ¢
J° = g‘IfL-z-r,"Wg,(cos 02, +sin 6A) + gi’n-z-r,“'lig [ch%i

2
- 7%((:050+sin0tanﬂ)] Z, +sin 0A — sin 0 tau 07, +
Y ¥ [VemT(A~ tan02;) - sinf(cos 0+ sin Otan)Z;]  (BS)

For we may take only Z; and A since the contribution of Z; is highly suppressed because
of its large mass
J = [gi';,%‘r,"‘l’;,cosa - gi'n%rf‘lfg sinftand —
LY ¢ Vem T tan ]2: + [g¥2 3 rf¥osin 0+
¢¥ngr¥nsind + /Y ¥ Ve T)A (B9)
We make the folowing idetifications {as in GSW)

sinﬂ:ﬁw gz=é?g87 e=7?££='w (B.lﬂ)
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P = gsl¥s %-1'3" -

(¥ng¥n +y37%;)sin’ 0 — ¥5Y ¥sin?0]2,

+e[\P(%r," + -;-r;‘ + %Y)\IV]A

9al¥s %135@, — Qsin®0¥¥)Z, + .QUEA (B.11)

We arrived the expression for electro-weak current in GSW at the symmetry breaking
scale of SU(2),®U(1). In other words for vz — 0o J° of SU(2),@SU(2)a®U(1) is just
the electroweak current of GSW. This conclusion is independent of the represeﬁtation
of Higgses. The reason is that as vp — oo the mass eigenstates of gauge bosons are
independent of Higgs sector as can be seen from Eqns.(A.17, A.31-A.33) although gauge
boson masses carry information on Higgs sector as can be seen from Eqns.(A.15,A.27,

A.28). Hovewer the conclusion p = 1 of GSW is maintained as vp — co since

_ (P <d><d>t+Ia)? <AL >< Ay >
P~ < P ST chsc a0

where I’s are isospin representation of the corresponding Higgs fields with I = ()2 -
(Is)*. We see that p = 1 in SU(2); ® SU(2)r ® U(1) as well since ¢ are doublets
under SU(2); and v} << (k? + k. Another parameter which can be checked through
experiments is the mixing angle of left handed and right handed charged gauge bosons,
n which was defined in A.17. We may relate it to the mass of the right handed gauge
bosons through the observation

k? + k" >> kk' (B.13)
which can be reexpressed in general as
tri(n)? < ¢ >< $>Y >>|tr(r- < $ >t < ¢ >) | (B.14)
- This means that
m{b >> mig (B.15)
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where mz; and m.p are the terms corresponding to the coefficients of W7 W; and
W7 Wy respectively in the charged boson mass matrix. This, in turn, implies

q 2
o mgn < ma’n .16
jn] m, - (m"'W.' (B.16)

We again conclude that as mw, — oo 7 — 0 which is the situation in GSW.
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Appendix C

NATURALLY SMALL NEUTRINO MASSES

IN SU(2). @ SU(22 @ U(1)

The neuntrino mass Lagrangian is given in 3rd section of chapter 4 as
Ly = (hizk + hﬁk'e"‘"}ﬁu vir + h.c. + b (vhe wirvL + V&C"V,‘av)z) (c1)

The neutrino masses are determined after dingonalizing the the neutrino mass matrices

whose entries are the Dirac and Majarona masses of neutrino which are given in C.1.
For the ith neutrino,
M= ( L3473 (h3k + A3k ) ) ©2)
(M3k + hRkeE) TR .
We assume k << ¥’
_ hglve + va) + (=) /FETuL ¥ n)® T A PRk T hgEe

M2

2
nry3 2
("n k) o 3M, (0'3)

E m E -
m & hR(ve+vr)  m AP (v, +vg) ~ Almw,

myis a very heavy neutrino and m; is the usual neutrino mass whose smallness is related

to the heaviness of mp,.
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Appendix D

VALIDITY OF THE CONSTRAINT

IN HIGHER ORDERS

The genere] Feynman graph for up querk masses (s similisr graph msy be drewn for
down quarks) may be drawn as

U;L

wbere all the mass terms are included in the blob, We require the corresponding terms
to be real m exder to keep quark mesees rezl.

Flavor mixing angles and pbases are introduced only through Jeft banded znd
right Lznded cherged currents ie. through Kobsyeshi-Meskaws mixing metrix U Lits
right banded anologous matrix UR, (VEVR), (VL Ve n other words through the

vyt AT U‘WR
J
U,

- et dir Ui

vertices
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-7 -

"
w7 - 102} - x 1
hrﬁ}, hﬂ“r/

UrL dar der  Umg
The only graphs we may construct out of these vertices for quark masses (which must

bave two external lines ending with u;; and u;r) must be of the form

U cl_;:: olj,qj U'r U.‘z_' Cx_',g X diL  Uig
W, W WR
Pt A
U, oje Y%L s g ViR

Uin d:

50
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and the graphs with

~ s W
~ NN = =7\
WR iR WR
WR ,/-?W
AN U;S'
IR >
x _( y----

U UiR
So the only subgraphs which favor mixing contributes are
: di W
Wi Cd-‘ - “/L W
Ui R
Ui
H/Vf,’;m“ WR
Uie A Y U dir  Urg
X 3 MRS
Vie div cir Vkg Vit dig diL Vg
dir
. X
Vst
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The Aavor mixing terms for the first seven subgraphs are of the form U4' UL, U 5 U8,
(VER V) (VERVEL), (VR VE, ) (VA VE;,) which do pot have imaginary parts, so no
phases. Only the eighth and nineth subgraphs give the constraint in chapter 5 in order
to keep quark masses real. When each such subgraph is repetead in the main graph
the relation Im[U%(a,a’)] =Im[UR(B, )] or Im[V'VE(8',e)] =Im[VETVE(8,c')] is
repeated. Thus one set of phases reduced. For example in the graph

mmﬁo’“\ |

lL J‘_ d,}&ulﬂ\ OlsK U"K {R J(L fl.d dnL U,K

the releation repeated twice as o} — o} = g — f] and af ~af = f{ - f. and
once as Im[VEV (8, 2)] =Im{Vi'V{(B,a')]. Therefore we conclude that higher order
contributions to quark masses can not change the relation given in Eqn.5.20. In fact
the relation imposed by Higgs boson exchange is equivalent the one imposed by guuge
boson exchange. Let us analyze the graph

h -~ ~ 1(2)
fm(f \\hrm
L N N
' - [
)
rL Umg Ve ”’nR
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The corresponding term is
(g ! YA’ &, vk Y Mo, 8 Lt g

= (W 0 RVARVial dy ) (" irVEARVAS uL)m 8 085m

Im(VAVas) = —Im(ViVii")
fo-ap = —(B-of)

forj=n=r,m=k we get
B~ Bl = of/ ol
which is the as Eqn.5.15 where we used off = ~af and g = -f?,

(D.1)

(D:2)

(D3)
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