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ABSTRACT

SIMULATION OF UNCODED AND CONVOLUTIONALLY ENCODED
CONTINUOUS PHASE FREQUENCY SBHIFT KEYED S8SIGNALS BY USING

SIGNAL SPACE METHOD

SANCAR, Ahmet Glrkan
M.8. in Electrical and Electronics Engineering
Supervisor:Assoc.Prof.Dr.Melek D. YUCEL

September, 1992, B3 pages.

In this study, some uncoded and convolutionally
encoded continuous phase frequency shift keying (CPFSK)
systems are studied. It is assumed that the channel is an
additive white Gaussian noise channel and the ﬁoise is
introduced to the modulated signals by the so called
signal space method. for which an orthonormal basis is
derived. It 1is assumed that the receiver performs
coherent maximum likelihood sequence detection by means
of the Viterbi algorithm. The bit error probability of
the simulated systems are obtained and, it is observed
that several decibels of signal to noise ratic gain can

be obtained by convolutionally encoding the CPFSK
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signals. The orthonormal basis and the table obtained for
modulating signals can be used for any rate 1/2

convolutional encoder combined with CPFSK system.

Keywords:Continuous Phase Modulation, Continuous Phase
Freguency Shift Keying, Signal Space Method,

Convolutional Encoding, Viterbi Algorithm

Science Code: &02.02.07
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SINYAL UZAYI YONTEM! KULLANILARAK KODLANMAMIS VE EVRIGIM
KODLU FREKANS KAYDIRIP ANAHTARLANAN SUREKL1I FAZ

SINYALLERININ BENZETIM1

SANCAR, Ahmet bLlrkan
Yiksek Lisans Tezi, Elektrik ve Elektronik Miuhendisligi
Anabilim Dala
Tez Yoneticisi: Doc.Dr.Melek D.YUCEL

Eylal, 1922, 83 sayfa

Bu calismada, bszi kodlanmamig ve evrisim kodlu frekans
kaydirip anahtarlanan sirekli faz sinyalleri sistemi Uzerinde
calisildi. Kanalin toplanir, beyaz, Gauss glrultlisi kanala
oldufu varsayild:r ve kiplenmis sinyallere sinyal uzay1l ydntemi
kullanmilarak girilti eklendi.Bu ydntem icin dikdluzgulu bir baz
GCikarildi. Alicinin Viterbi algoritmas: kullanarak bafBidasik en
viiksek olasilik sezimi yapti1g: varsayildi. Benzetimi yapilan
sistemlerin ikil hata olasi1l11g:1 elde edildi ve evrisim kodlara
kullanilarak bir kac desibel isaret glUriultd orani kazanci elde
edilebildigi gériildii. Elde edilen dikduzglld baz ve kiplenmis
sinyal tablosu, butin 1/2 oranl: evrisim kodlu frekans
kaydirip anahtarlanan surekli faz sinyallleri igin

kullanalabilir.



Anahtar Kelimeler : Sirekli Faz Kiplemesi, Frekans Kaydirip
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Anahtarlanan Sirekli Faz Kiplemesi, 8inyal Uzay:1 Ybntemi,

Evrigim Koﬁiarl, Viterbi Algoritmas:.
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CHAPTER I

INTRODUCTION

Constant—amplitude digital modulation schemes have
been proposed and analyzed in the recent literature. Many
of these schemes are special cases of the Continuous
Phase Modulation (CPM) class (Aulin et al, 1981 a-b).
Memory is introduced into the transmitted signal by means
of continuous phase and also by means of correlative
encoding. Uncoded partial-response CPM yields - good
combined power and bandwidth efficiency (Anderson et al,
1986). Continuous Frequency Shift Keying (CPFEK) is a
special case of the CPM signal class (Anderson et al,

1986) .

In this thesis work, some ' uncoded =~ and
convolutionally encoded CPF8K signalling schemes ™ are
studied. Transmission over an additive white Gaussian
noise (AWGN) channel is considered. The receiver is an
ideal coherent maximum likelihood sequence detector
using the Viterbi algorithm both for the uncoded and the

encoded cases. In order to simulate the effect of AWGN



channel on the transmitted signals the so called signal
space method is wused. By this way computation of
integrals for metrics of the Viterbi receiver is avoided.
To use the signal space method, an orthonormal basis is
derived for both the uncoded and convolutionally encoded
CPFSK systems. Also for these CPFSK systems, the
probability of error perfbrmance is obtained by computer

simulations.

In chapter 2, continuous phase modulation systems
are introduced. The difference between convolutionally
encoded CPM and conventional CPM is presented and their
state structures are given. Viterbi receiver is
used for coherent detection of CPM signals. An
approximation is given for the symbol error probability

in AWGN channel.

In chapter 3, the simulation of convolutionally
encoded and uncoded CPFSK systems are presented. Because
of its importance in the probability of error
calculations, minimum normalized sguared Euclidean
distance is introduced and its calculation is explained.
Then the signal space method for the simulation of
channel noise is presented and a 4-dimensional basis +or
the uncoded CPFSK for the use of this method is given.
The system is simulated Ffor h=1/2 and h=1/4 uncoded

CPF8K and tables for modulating signals are obtained for



these cases.

And then for the convolutionally encoded CPFSK
system simulation, an 8 dimensional orthonormal basis is
derived to use the signal space method. The system is
simulated for h=1/4 convolutionally encoded .CPFSK with
the rate R=1/2 (7,2) convolutional encoder and a table
for the modulated signals are obtained. The Viterbi
algorithm and metric derivations for the algorithm are
given for both the uncoded and convolutionally encoded
CPFBK systems. The bit error performances of the coded
and encoded systems are given, and compared.

i

In chapter 5, final discussions are made about the

results of this study.



CHAPTER I1I

CONTINUOUS PHASE MODULATION SYSTEMS

In this chapter convolutionally encoded and uncoded
Continuous Phase Modulation are explained and general

features of them are given.

2.1 Continuous Phase Modulation

Continuous Phase Modulation (CPM) is a bandwidth
efficient constant -.envelope signaling scheme for digital
transmission over bandlimited channels. CPM is
represented by a signal of the form A cos (2nFct+¢(t))
where the phase ¢(t) is continuous and follows some coded
pattern in response to data. The conventional CPM system

is given in Figure 2.1.

a(i) CPM s(t, &)

SOURCE — SN
MODULATOR |

e(i)€ {£1 *3....+ (M-1)}

Figure 2.1. The Conventional CPM System



The CPM signal associated with the sequence
a=...,...,a_1,ao,a1,... chosen +from the M-ary alphabet

(+1,%3,...,£(M-1)} is

S(t,a) = gTE cos ( 2ﬂ¥ct + ¢(t,o) + ¢°) (2.1)

where the phase ¢(t,a) is

~ [+ o]
Pt ,a) = z mhe g (t=1T) : (2.2)
i=—o
with
t 13
gty = [ f(1) ar (2.3)
-Q0

¢ois a caonstant phase shift, T is the symbal length, and

E is the symbol energy. Here h is the modulation index.

The pulse g(t) in (2.3) is called the phase response
and is equal to the integral of the baseband pulse f(t).
It is assumed that f(t) is strictly time-limited to the
interval [0,LT] and the area under f(t) isunormalized to
unity, so that the maximum phase change caused by the

symbol a_ is ntho .
n n

Note that if f(t)=0, for t>T, the CPM signal Iis

called +full response CPM. If Ff£(t)*®0, for t>T, ¢the



modulated signal is called partial response CPM. An
infinite variety of CPM signals can be generated by
choosing different pulse shapes f(t) and by varying the

modulation index h and the alphabet size M.

Generally used pulse shapes for +f(t) are the
rectangular and raised cosine pulses. An LREC pulse is a
rectangular pulse of length LT:

1, ost=LT

fepy={ LT (2.4)

0 s, elsewhere

and an LRC pulse is a raised cosine pulse of length LT:

1 27
F(t) = LT [1 S i t)] y OSEELT (2.5)
0 s elsewhere

Note that CPM modulation with 1REC pulse is also
known as Continuous Phase Freguency Shift Keying (CPFSK).
And, CPF8K with h=1/2 is known as Minimum Shift Keying.
Note also that, the modulation index h can be changed for
every symbol interval T, so that the so called multi-h

CPM signal is obtained.

2.1.1 State Description of CPM

We can rewrite (2.2), the phase relative to the



carrier of the transmitted signal, as

th ai g(t—-im

<
~
Y
3\/
]
™M

i=-00
n n—L
= nhZ ai g(t—iT) + nhz o yNTELES(n+ 1) T (2.6)
i=n—-L+1 i=-0
by using the properties that g(t)=0, t<o0, and‘

g(t)=1, t>LT. Hence , given h and f(t), for any symbol
interval n, the phase ¢(t,an) is uniquely defined by the
present data symbol o the so-called correlative state

vector (an-l’an—Z""’an—L+1)’ and the phase state en,

where

n-L

en = [ th E:ai ] modulo 2n (2.7)

i=~00

The number of correlative states is finite and equal

to Mbq. For rational modulation indices, let us define

the modulation index in terms of integers as
h = — k,p = 1’2,3’.-- (2-8)

There are thus p different phase states with values

6 e{o, 2. 4% . etl) o, } (2.9)
n P’ p )

Thus, the total state of the transmitted signal can



be chosen as the L-tuple

o = (6 ,0 ) (2.10)

n n’%n-1%n-27" " Y-l

and there are p M'""*’ distinct states. The current data

symbol an controls the transition from the state on to
the next state an+1 .

It is thus clear that +For CPM signaling, the
Viterbi algorithm can be used for optimum  detection of
state sequences and hence, also for detection of the data

~

sequence o .

2.2 Convolutionally Encoded CPM

Convolutionally encoded CPM differs from a
conventional CPM system by the presence of a
convolutional encoder between the source and the
modulator. The convolutionally encoded CPM system is

given in Figure 2.2.

‘“’-g(l) L B1) -
i)| SERIAL | ay(2)|R=#/n -
a(i)| SERAL | oy e I I VR RS
: convol. | Level I Modulatof
PARALLEL ;a!(‘M) encoder ﬁth) Mapper ! Modulato
a(i)€{0,1} 5€{21,%3...4(M-1)}

Figure 2.2. Convolutionally Enéoded CPM System




The source in Figure 2.2. generates an infinitely
long sequence ot binary bits O and 1, denoted by ,
&=...,a(-l),a(O),a(l),... at a rate of 1/Tb bits/s. Here
H-tuple, (al(l),al(2),...,a1(u)), where
al(i)=a(1p+i~1), enters the rate R=—%— convolutional
encoder. Note that, i is an 1index for the source
generated bits, and 1 is an index showing the symbol (71)
interval. One symbol interval is given by TﬁyTb. As,one
blaock of p bits, are generated by the source; they enter
the serial to parallel converter one by one, and after T
seconds, a block of & bits at the output of the
converter, enters the rate R= convolutional
encoder.Note that, +Ffor a rate R= convolutional
encoder, there is no need for the serial to parallel
converter,  since T=Tb' So, bits generated by the source
enters R=—%— convolutional encoder directly. The output
of the encoder in Figure 2.2. is the 7n-tuple
(By(1),8,(2),...,B, M) . This n-tuple will be mapped into
one of the M=277 channel symbols from the set

{(+1,*3,...,%(M-1)>. Note that, M can also take values

that are not eqgqual to Zn.

Then the coded CPM signal associated with the

sequence ¥y = ...,r_l,yo,?l,... is

~y "~
S(t,r) = _/ gTE cos ( 2ﬂfct + @lt,») +'¢6’ (2.11)



where the phase

~ Q0
Plt,y) = 2 mhy  g(t-iT) (2.12)
i=—0
with g(t) as in (2.3). As u bits of data are transmitted
per symbol interval, T=pr and E=uEb. ¢o is a constant

phase shift.

2.2.1 Canvolutional Codes

A convolutional code is generated by passing the
information sequence to be transmitted through a linear
finite-state shift register.In general the shift register
consists of v (u-bit) stages and 7 linear algebraic
function generétors. The input data to the encoder, which
is assumed to be binary, is shifted into and along the
shift register ¢ bits at a time. The number of output

bits, for each g~-bit input sequence, is n bits. So the

code rate is defined as R = g . The parameter v is

called the constraint length of the convolutional code.

Memory is introduced in conventional CPM by means of
continuous phase. By convolutionally encoding the
generated bits coming from the source, we introduce
additional memory to the CPM signal. ﬁl(m) in Figure 2.2

is given by

10



Bl(m) =

Il MT:

}: gj(i,m) (mod 2) m=1,2...,mn (2.13)

The binary coefficient g (i,m) represents the connection
between al_j(i) and ﬁl(m). It is assumed that, for each
i, at least one member of the set {gvl(i,lf,;.;,gvl(i,n)}
is not equal to =zero. The constraint 1length of nfhe

convolutional encoder is then given by v=v1+v2+...vy.

2.2.2 BState Description of Convolutionally Encoded

CPM

The correlative state vector +for convolutionally
encoded CPM can be defined by the state of the encoder at
that symbol interval n; since those bits in the encoder

registers effect L

A coded CPM signal can be vegarded as a discrete
ﬁime Markov process and is best described by a phase
tree. é.phase tree is the ensemble of phéée trajectories
for all possible input sequences with a common history at
the tree’s root node. The vector associated with each
node of the phase tree is a possible state of the system

and is defined by the vector

11



( en,an_l(1),...,an_vl(i),...,an_vp(p) ) (2.14)
where en is the phase
n-L
en = [ nh Z v ] modulo 2n (2.13)
| i=-w

So, ¢(t,y) can be uniquely defined by the present data
symbal an, the correlative state vector given by (2.14),

and by en’ the phase modulo 27, at time nT.

2.3 Transmission of CPM

There are several ways to implement CPM modulation.
These are phase-locked 1loop modulators for CPM; CPM
modulator with a bandpass filter and hard-limiter, and
the basic quadrature transmitter. The basic quadrature
transmitter is the most general and the most
straightforward way of implementing CPM modulation, so it

is stated here. The structure is given in Figure 2.3.

I- GENERATOR

i~}

s(ta)

t
Q- GENERATQOR Qit) o X
sin 21rfct

Figure 2.3. Basic Quadrature Transmitter

12



2.3.1 Basic Buadrature Transmitter

The most straight forward way of implementing a CPM
transmitter is to use the basic formula for the modulated
signal separated into quadrature components. These are
stored in sampled and guantized form in look-up tables,
for example, in vead only memories  (ROMs). The ROM
implementation has gained popularity in telephone modem

and mobile radio applications.

~

The normalized transmitter signal So(t,an) is

"~

8 (t,a ) = cos( 2nf t + @(t,a ) ) (2.17)
o n c 3

where n denotes that we are considering the transmitted
signal over the time interval corresponding to the data

symbol an. The transmitted signal is
S(t,an) = I(t)'cos(ZnFct) - Q(t) sin(2nFct) (2.17)

where ¢(t,an) is as defined in (2.6) and

Ity costl ¢(t,an) ] } (2.18)

QL)

sinl ¢(t,a ) 1 (2.19)

13



2.4 Receivers +or CPM

There are optimum maximum likelihood coherent and

noncoherent receivers for CPM. One of them is the optimum

Viterbi receiver.

2.4.1 Viterbi Receiver for Conventional CPM

The receiver observes the signal
r(t) = 8S(t,a) + n(t) (2.20)

where the noise n(t) is modeled to be Gaussian and

white.

The maximum likelihood sequence estimating receiver

maximizes the log likelihood function

(o] ’ .
1oge[pr(t)la‘(r(t)|a)] x - [ [r(t)-8(t,0031° dt (2.21)
—00

with respect to the infinitely long estimated seguence o

~

(Aulin and Sundberg,1981la). The maximizing sequence o is

the maximum likelihood estimate and p is the

F(t) |a

probability density function for the dbservéd signal rt)

conditioned on the infinitely long sequence o,

Maximization of (2.21) is equivalent to the maximization

of the correlation

14



L4 m o
J = [ r(t) 8(t,o0 dt (2.22)

-0

In principle, the operation (2.22) is the basis for a
correlation receiver, in which all possible transmitted
signals S(t,;) are correlated with the received signal
and the data sequence ; maximizing the correlation is

chosen as the received data.

Now define

(n+1)T
J (o) = J ry sct,o0 at (2.23)
—Q0
Then
J (o) = J__ (o) + Z (o) (2.24)
n n—1 n
where
(n+1)T
z (o) = [ r(t) coslwet + @(t,o0] dt (2.25)
nT

By using the above formulas it is possible to
calculate the function J(&) recursively through (2.24)
and the metric Zn(;). The metric can be recognized as a
correlation between the received signal and an estimated

signal over the n’th symbol interval.

The Viterbi algorithm is a recursive procedure to

choose those sequences that maximizes the log 1likelihood

15



functiaon up'to the n"th symbol interval. The receiver
computes Zn(mn,en) for alil ML possible seqguences

{&a > and all p possible Gn. This makes

n-1°%n-27 """ oL+l

pML different values of Zn'

2.9 Error Performance

When the CPM signal is assumed to be transmitted
over an additive, white, BGaussian noise channel having
one—-sided noise power spectral density No W/Hz; the exact
error performance of coded and uncoded CPM signal is
difficult to evaluate. However, for large signal to noise
ratio (given as Eb/ No). the symbol errvor probability

will approach to the lower bound

-~ / 2
Pe = C Q[ dminEb/ No ] (2.26)

where C is a constant independent of Eb/ N0 and G(x) is

the area under the uwnit variance normal curve from x

to o, ( Lindell et al, 1986 )

dt (2.27)

X

16



The term diin is the minimum normalized sguared Euclidean

distance (MNSED) of the coded signal, defined as

1 _ ~2
dmin—mlni—E; [S(t,») - 8(t,1)1° dt (2.28)

O ey 8

where S(t,¥y) and S(t,;) are two possible transmitted
signals corrvesponding to the sequences {(y} and {;}. Let
Ec(.)denote the encoding/mapping operation in Figure 2.2;
which transforms ;=...,...,a_1, ao, al,... into
;= ...,y_l, yo, Visers . The minimization in (2.28) is
over all those pairs of sequences ;=Ec(g) and ;'=Ec(;’)
with (a(O),;..,a(y))#(a}O),...,a}p)) and a(k)=a}k) for
k<O. It is ciear from (2.26) that at large Eb/No,' the

power efficiency of a modulation scheme is determined by

its MNSED.

17



CHAPTER III

UNCODED AND ENCODED CPFSK SCHEMES

3.1 Introduction

In this chapter, how the uncoded and convolutionally
encoded CPM systems are simulated for the AWGN channel is
presented. Also, because of it¥s importance the
calculation of the minimum normalized sguared Euclidean

distance (MNSED) is given in the following section.

3.2 MINIMUM NORMALIZED SQUARED EUCLIDEAN DISTANCE

As it is seen Ffrom (2.26), MNSED 1is of great
importance for CPM signals. As we have larger .MNSED, we
get better error performance. So, convolutional encoding.
is wused in conjunction with CPM to achieve larger
MNSED.For the convolutionally encoded CPM system sketched
in Figure 2.2., with the - constraint length v <for the
convolutional encoder; the best MNSED achievable has to

be found through an exhaustive search over all possible



combinations of convolutional codes and mapping rules; as
it is seen from (2.28). It must be noted that, even if
the code and the mapping rule is given; it isn’t easy to
find the two sequences that begin with the same state at
a given time and split from that point and remerge at

some later time; say after interval length of NT.

At the remerge point the states of the two

sequences; (ek,ak_l(l),...,ak_v(p)) and

f g * ’

(8 (1),.‘.,ak_ép)) must be the same. This is

k*Yk-1
required because, after the remerge point the phases of
two sequences must be the same for a given input ak+1.
RS

To calculate the MNSED for an observation length of
N symbols, all pairs of phase trajectories in the bhase
tree over N symbol inte}vals must be considered. .The
Euclidean distance is calculated according to (2.28) Ffor
all these pairs, and the minimum of these Euclidean
distances is the desired result. Note that, for pairs of

sequences, called 1 and 2, that split and remerge after a

time of length NT; we define the distance measure

NT
2 _ 1 s _ ~ P 2
di,(N) = ~§€;- f [S(t,y) S(t,y )3 dt (3.1)
0

It is clear that, for a fixed pair of phase trajectories,
the Euclidean distance is a nondecreasing function of the

cobservation length N.
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For wc» ZE_, eguation (3.1) reduces to

T
NT
2 - 1 _
d12(N) x5 f [l-cos(Ag(t))] dt (3.2)
o

where A¢(t)=¢(t,y)-¢(t,y) , is the time varying phase
separation between the two signals of length NT (Mulligan

and Wilson, 1984).

Observe that, MNSED depends on h, the modulation
index; (@¢(t,y), the phase modulation characteristic; and
the memory of the encoding process. Note that, the

cumulative squared distance may be recursively computed

as
(N+1) T
d°,(N+1) = d°_(N) + —— [ [l-cos(A¢(t))] dt (3.3
12 12 T
NT

(Mulligan and Wilson,1984).

Now,we are going to examine MNSED on an example. The
system is as in Figure 2.2.. We have h=3/10, rate R=1/2
convolutionally encoded four level CPFS8K with natural
mapping. The two code generator polynomials of the code
are given by Gl(D)=1+D+D2 and Gz(D)=D. The octal
representation of G, (D) is 7 and the octal representation

1

of GZ(D)is 2. So, the octal representation of this code

is given by (7,2).
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Since we have CPF8K, f(f) is given by

1
—_— <<
-F(t)"—{ T , OSt=T
¢} ,elsewhere

In Figure 3.1., we have the rate R=1/2, (7,2)

convolutional encoder and four level mapper. The adder is

a modulo 2 adder.

R By(1)
» Bl1) ﬁngJ ¥
0 0 -3
"
0 1 -1 ;.
——’+
1 0 +1
1 1 +3

Figure 3.1. Rate 1/2 «(7,2) Convolutional Encoder and

Four—~Level Mapper.

The corresponding phase tree when combined with CPFSK, is

given in Figure 3.2.
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L ]

(21h,0.0)
S hE t(sec)
ﬁ?: i ;,ﬁfg%é%gg S o h: . 4T
G L “""‘"-..—. o “a
INPUT

Figure 3.2. Corresponding Phase Tree When Rate 1/2
Convolutional Encoder and Four-Level Mapper

Combined with CPFSK.

In Figure 3.2., the two paths forming the boundary
of the shaded area, merge at state (22h,0,0), four
intervals after the initial state splits at state
(0,0,0). It can be shown that, for this system no other
merge can occur before time 4T. The merge at point 3T is
not an actual merge point because, at the merge point in
3T the states of the two paths are not the same, since

o are different for them. They are (1,0) and

k=1"%=2
(0,0) which are not the same. So they will go to a
different state for a given source input & - Thus, unlike
uncoded CPF8K where a merge can occur in two symbol

intervals, the minimum merge length is increased by prior

encoding of the data symbols. Generally, the longer the
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merge length, the larger the MNSED and hence, the better

the ervror performance.

Now, we will find MNSED Ffor the system given in
Figure 3.1.. For the two paths forming the boundary of
the shaded area in Figure 3.2. we have the equation (3.2)

where N=4, and

T
2 _ 1 _ t .
dio (1) = — j [1-cos( —— mh(y -r,) )1 dt
0
T
= 1 - t 3
= = f [1-cos( —— 35 4 )3 dt
0
= 1.15591.
a2 2y, d2_(3), d°_(4) are found to be 2.15591, 3.15591
12 * P2 * 12 . ’ .

and 4.31182 respectively, after some calculations.

For these two paths we have d2. = d2 (4. So, no
min 12
other two paths can be found to give a smaller normalized

distance (Ho and Mclane, 1988).

As the modulation index h is changed, the paths
giving MNSED and the value of MNSED are changing. For
example, for the same encoder given in Figure 3.1. for
h=1/4: the two paths giving MNSED is not the same as the

two paths forming the boundary of the shaded area in
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Figure 3.2.. We found d2.(4), for h=1/4 for these two

12
paths forming the boundary of the shaded area in Figure
2 2 2 2
I.2.% d12(1), d12(2), d12(3), d12(4) are found ta be 1,

2.636, 4.2732 and 5.273 respectively. But MNSED is eqgual
to 4.30 for another pair of paths (Ho and Mclane, 1988).
Also Ndmin’ MNSED event length is equal to 6.

For h=1/6, for the same code and 4-Level CPFSK

2 2 2 2
scheme; we have  found d12(1), d12(2), d12(3), d12(4)
as 0.586, 2, 3.826 and 3.4125 respectively, for the two

paths forming the boundary of the shaded area 1in Figure

3.2.. But MNSED is equal to 2.42, for MNSED event length

of N, ;, ®qual to 6 (Ho and Mclane, 1988). More details
of df2(4) calculations for h=3/10, h=1/6 and h=1/4 are

given in Appendix A.

So, as it is seen from the example; . for different
values of h, MNSEDVand the sequences of minimum distance
event; in other words, minimum distance event length, are
different. So, to find MNSED, every pair of sequences
that split and remerge must be considered. This is an
exhaustive work and several algbkithms are devel&ped to

find MNSED (Mulligan and Wilson, 1984).

For the encoded 4-level CPFSK example MNSED and minimum
distance event length are given in Table 3.1..Note that

MNSED increases as h increases.
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Table 3.1 MNSED and Minimum Distance Event Length Table

for (7,2) Coded CPFSK.

h (= J code N .
min dmin

176 2.42 (7,2) 6

1/74 4,30 (7,2) 6

3/10 4.31 (7,2) 4

As it is seen from Table 3.1. and Ffrom our
calculations, the paths forming the MNSED event do not
correspond to the shortest length paths that split and
remerge as soon as possible. In the example, this is the
case for the two paths forming the boundary of the shaded

.
area. These paths are the shortest length paths that
split and remerge as soon as possible.But for h=1/6 and

for h=1/4, two longer paths of length 6 give the minimum

distance event.

3.3 The Effect of Channel Noise

The simulation of a CPM system may be broken into.
parts. First of all, we must simulate the  effect of
channel noise.Second, we must construct a receiver and
then analyze the error performance of the receiver. 1In
this section the simulation of noise is introduced. A
general CPM system with AWGN and Viterbi receiver is

given in Figure 3.3.
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AWGN
n(t)

CPM vITERBI | @ (1)
SYSTEM| ¢ (t,§) r(t)RECEIVER

Figure 3.3. General CPM System with AWGN and with Viterbi

Receiver

CPM system in the ¥igurev.is an uncoded or
convolutionally encoded CPM system. One procedure to
simulate channel noise, in common use, is to Fform a
discrete—time approximation to the modulated signal. The
signal is sampled each —%— second, or € times at each
interval of length T, and the assumption is made that the
signal holds that sample value throughout the —%— second
subinterval. During the subinterwval, s(t)" holds a
constant valuej; and for each subinterval an uncorrelated
Gaussian variable 1is added to the signal at that
subinterval. The proper number of points is best found
experimentally by increasing the point count until no

change in the results occur (Anderson et al, 1986:258).
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Another method of simulating channel noise is the
sp-called signal space method. And we have used this
method to simulate AWGN of the channel, Ffor all our

uncoded and coded CPFSK systems.

3.3.1 Signal Space Method

To simulate the effect of an AWGN channel aon a
decoder, we express the signals in terms of components
along the orthogonal directions of a signal space, the
so—called signal space method. We perform a Gram—-8chmidt
orthogg%alization procedure on the phase signals to
produce a basis for the vector space of transmitted

signals. The channel adds Gaussian noise of powek N;'

to each component, and the decoder finds the closest

signal to this received vector in Euclidean distance.

One fact about the signal space method is; you must
produce an orthogonal basis with proper dimensions for
the used CPM system. The advantage of this method is
that, the simulation £akes less time  than . the
discrete-time approximation given in section 3.3, since
we do not need to compute metrics for the Viterbi decoder

by taking integrals for every symbol interval.
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3.4 Uncoded CPFSK

In this section, simulation of the uncoded CPFBK is
presented. The orthonormal functions and vector
representation of the modulated signals are given and,
introduction of the AWGN to the channel, by the signal
space method for CPFSK system is explained. A coherent
Viterbi receiver is introduced to decode the iﬁcoming

bits from the source.

The system is as in Figure 2.1., with the source

generating bits *1, randomly. We have the CPFSK signal as

stt,a ) = / 2E cosuwet +an n 20T 4 6 ) (3.4.a)
n T n T . n

ATSES (n+1) T

where Gn is the phase at the start of the symbol
interval,

We is the radian carrier freguency,

h is the modulation index,

anis the symbol sent in the n’th interval,

T is the symbol interval time,

E is the symbol energy.

Using some trigonometric identities, the signal can be

re-written as
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S(t,aa ) = 2—5 cos( Wet + a7 h LE:EIL ) cos &
n T n T n
- S 28 ciniwet +annE Yy gine o (3.4.D)
T n T n

NnTEt=(n+1) T

The number of modulation signals is twice the number
of an. For binary CPFSK we have an e {1 and thus the

modulation signals are:

- 2 mht
Sl(t) = T cos( Wet + T )
e
B 2 ’ nht
82(t) = —T' sin( Wet + T )
_ 2 _ _mht
83(t) = T cos( Wet T )
_ 2 . _ _mht '
84(t) = - sin( Wect T )

where O=t=T.

So, four signal dimensibns are required during each
symbal interval to vrepresent the 2-level CPFSK. To
express the modulation signals in vector Form on an
orthonormal basis, we apply the Gram—-schmidt procedure to
the 4 modulation signals and we have created a 4

dimensional orthonormal basis for 2-level CPFSK. The
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derivation of the basis is given in Appendix B. The basis

functions are:

- /2 wht

Ql(t) = —?I_—— cos( Wet + T ) (3.5.a)
- /2 . tht

@2(1:) = —-..F—' sin( Wet + T ) (3.5.b)

S_(t) - 8 &, (t) - C &_(t)
o1

ﬁs(t) = i) (3.5.c)
1
S, (t) + C&_(t) - 8 &_(t)
& (t) = —2 o 1 o 2 (3.5.d)
4 D
1
where
_ _sin(2mh) _ _1-cés(2rh) a2 2.1/2
86 = 2nh v Co = 2nh ’ Dl = (1-8,-C?
The signal in the n’th baud interval can be

expressed in terms of the basis vectors as

4

Stt,a ) = ¥ E ZA B (b (3.6)
n {= nil 1

1

where S is the coefficient corresponding. to éi(t)
during this interval. The coefficients +For the sighai
vectors obtained by expressing S(t’;n) in terms of the
modulation signals from equation (3.4.0) and then
expressing the Sn(t) in terms of &i(t) are given in Table

3.2 , where 80, C D, are defined above and en is the

o’ 1

phase at the beginning of the symbol interval.
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Table 3.2 Coefficients for the Signal Vectors
* for Uncoded 2 Level CPFSK

+1 -1
A cos@ 8 cos8 +C _sing
nil n o] n o n
A -5iné C sin -8 sinB
n2 n o n o n
An3 0 chosen
An4 o) -Dls1n6n

Similarly, white Gaussian noise having a two—sided
power spectral density can be projected on this signal

space and expressed as

4
ni(t) = }: n, & (t) (3.7)

whare ny - i=1,2,3,4 are i ndependent identically

distributed Gaussian random variables with zero mean and

No
5 -

a variance of

Now, as we add the AWGN components to each signal
space vector component forming s(t), we get the

projection of the received signal ri(t) as

4
r(t)y = /E 2: Ani @i(t) + - }: ni §i(t)
i i

i=1 =1

and after re—-arranging the terms, we have

4
r{t) = E: B _. ii(t) (3.8)
=1
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where

By =4/ B Ayt 0y -

3.4.1 The Viterbi Algorithm and the Simulation

We have discussed the Viterbi algorithm in section
2.4.1 and have the metric Zn(a) as in (2.25); now as we
insert r(t) of eguation (3.8) and 8(t,a) of equation

(3.6) into this metric equation we have

(n+1)T 4
Zn(d) = j [,/E E:Ani Qi(t)][ }: an §j(t) ]dt
nT i=1 j=1

using the fact that §1, §2, 53, §4 are the vectors of an

orthonormal basis we have

4
Zn(a) = JE 2: Ani Bni (3.9)
i=1

The Viterbi algorithm is a recursive procedure to
choose those sequences that maximize the 1log 1likelihood
function up to the n’th symbol interval. The receiver
computes Z (& ,8 ) for all possible o and p possible & .

n n’n n n
This makes 2p different values of Zn' Remember that the

state description of the uncoded CPM was given in section

2.1.
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We have made the simulation for binary CPFB8K, <or
the modulation indices h=1/2 and h=1/4. The state trellis
diagram for h=1/2, h=1/4 are given in Figure 3.4. and
Figure 3.5. respectively. Also, all transmitted signal
space vectors for h=1/2, h=1/4 are given 1in Table 3.3.

and Table 3.4. rvespectively.

3xwl? - _

T
n]2 / .

0 - —

Figure 3.4. The State Trellis Diagram for h=1/2 Uncoded

CPFSK

Table 3.3 All Transmitted Signal Space Vectors

for h=1/2 Uncoded CPF8K

Initial| Phase Signal Space Vector Components
Phase Slope Anl An2 An3 An4
0 0.5 1 o 0 o
/2 0.5 0 -1 0 0
4 0.5 -1 0 o 0
3n/2 0.5 o 1 o o
0 -0.5 0 Co D1 0
n/2 -0.5 Co o 0 —D1
w -0.3 0 —Co —D1 o
3n/2 -0.3 —Do 0 0 D1
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Table 3.4 All Transmitted Signal Space Vectors for h=1/4

Uncoded CPFSK.

Initial| Phase Signal Space Vector Components
Phase Slope Anl An2 An3 An4

0] 0.25 1 (o] 0O O

n/4 0.25 .707 —-.707 0 0
/2 0.25 0 -1 0] 0]
3In/4 0.25 -.707 -.707 0 0

E 13 0.25 -1 0 0 0
Sn/4 0.25 -.707 . 707 o] 0
In/2 0.25 -0 1 0 0
7r/4 0.25 .707 -=.707 0] o)

o - -0.25 . 637 .637 .435 0]

n/4 -0.25 .9 0 . 300 -.300
n/2 -0.25 .637 -.637 0 -.433
3In/4 -0.25 0 -.%00 -.300 -.300

Es -0.25 -.637 -.637 -.435 0
Sn/4 -0.25 ~-.900 0 -.300 . 300
3In/2 -0.25 -.637 . 637 0 .435
/4 -0.25 0 . 200 . 300 . 300

inla
3xl2 '

enid 4/

EVARN /
3Ti4 / : |
xl2 J/ . \L : o

4 :
0

Figure 3.5. The State Trellis Diagram for h=1/4 Uncoded

CPFSK
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So, as it is seen from Figures 3.4. and 3.5., we
have 4 possible states fovr h=1/2 case, and 8 possible
states for h=1/4 case. The Viterbi algorithm assumes
that; all possible transmitted finite sequences start
from the state 1, corresponding to zero phase, and end

in the same state.

The Viterbi algoriﬁhm calculates 4 metrics for h=1/2
and 8 metrics for h=1/4, for each symbol interval. We
assume that all-metrics are zero initially. Then the
metrics Ffor each state are computed - and updated
recursively. There are two possible paths entering each
state, and the path with the smalk:lest metric is deleted.
The undeleted one is called the survivor. At each state
in the trellis, the surviving paths are saved only back
to a certain point, a length calied the path memory NT'
At this delay a decision on the first symbol is fprced by
choosing the largest metric path’s first symbol. Then at
NT+1 we decide on the second symbol by the same way, and
this goes on., By making a decision after NT symbol
intervals, we have reliéd on the fact that, a path which
has splitted from the correct .path will accumulate
distance from it in proportion to the length of the

unmerged span. Incorrect paths will have a low

probability of having a long unmerged span.
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We have taken the path memory NT to be 350 channel
symbol intervals, for all our simulations, which is large
enough to ensure that all unmerged pairs have a distance

greater than MNSED (Lindell et al, 1988).

We have used a table to store the state transitions
caused by each data symbol from each state, and another
table which stores the backwards state information, the
states from which it is possible to enter each state. The
transmitter uses the first table and the receiver the
second. For each state; a memory is maintained to store
the metric of the best path leading into the state at the
present time, the identity of the path, that is the data
symbols corresponding to 1it, and certain temporary

information.

Considering the whole simulation; we generate random
binary bits, we modulate them and obtain signal space
vectors for each corresponding bit, that are given in
Table 3.3. and Table 3.4.. Then, we add an independent,
identically distributed Gaussian variate of variance _%2
on to each component to form the components of the
received noisy signal (Press et al, 1988). Then beginning
with the first state initially, the algorithm seeks the
best metric path leading into each state at the next

time. There are 2 paths out of each state at the present

time and into each state at the next time. 8o, two
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metrics, for each state in that interval, is calculated.
The path giving the smallest metric is deleted. And after
the path memory length is reached, we begin to decide on
transmitted symbols one by one as the algorithm goes on,

in the same manner.

And, we measure the error performance of the
receiver by comparing the ocutput symbols with the known

transmitted symbols.

3.5 ©&Simulation of the Convolutionally Encoded CPFSK with

R=1/2, (7,2) Code ot

In our work, we have used R=1/2, (7,2) convolutional
cbde, givén with the four level mappfﬁg jp*'secﬁign“xé,i;{
and CPFS8K signalling scheme is alsd>used For.tgis part of
the work.'we“have chosen the (7,2) convolutional code
because of its good.perfdrmance; that is it has  large
MNSED (Lindell et al,1988), (Ho and Mclane,1988). Note
that, R=2/3 convolutional codes and R=1/2 convolutional
codes are the most popular convolutional codes, used with

CPM in literature.
In the Fqllowing subsections, first the orthonormal

functions and vector representation of the modulated

signals are given; and the introduction of AWGN to the
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system by the signal space method is presented. Next, the
modifications for the Viterbi algorithm of the
convolutionally encoded CPFSK for h=1/4 is stated and

then, the simulation system is explained.

3.5.1 Orthonormal Functions and Vector

Representation of the Transmitted Signals

The convolutionally encoded CPM system was given in
Figure 2.2.. Since rate R=1/2 convolutional encoder is
used; as indicated before, we do not need the serial to
parallel converter. The R=1/2, (7,2) convolutional
encoder with 4-level mapper, that was given in detail in
Figure 3.1., is used. The source generates bits 1 and O
urandomly. We Eéve :P=1 and*;n=2;Q sol.wé' have.”.4—ary
signalling. That is 7 _ takes values (%1,*3) at the n’th
symbol interval. For the CPFS8K signalling scheme, we have

the CPFSK signal at the output of the 4- level mapper as:

M 2 E (t=nT)
S(t,») = » -5 cos( Wet + Ynﬂ h T + en) (3.10.a)

NTStS(n+1) T
Note that, an is the generated bit by the random
generator at the n’th symbol interval, but Yn is the
output bit of the 4-level mapper. en,WC, h, T and E are
as given in section 2. The relation between

a and rn is given in Table 3.5.

o a
n’ n-1’ n-2
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Table 3.5 The Relation Between the Generated

bits and the Output Bit of the 4-Level Mapper.

2
=)
®
3
|
o
]
N
R
3

e O00O0
HEQOOR OO
HORORORO
+
-

Using basic trigonometric identities, the signal 1in

equation (3.10.b) can be re-written as:

2 E (t—-nT)

S(t,yn) = - cos{ Wet + ynn h T ) cos en
2 E . ' . {t-nT) # AN .
- sin( Wet + ynn h — ) sin Gn (3.10.b)

NT=LS(n+1) T

The number of modulation signals is twice the number
of .. Bince ¥y, can take the values (*1,+3}, we have the
i i

modulation signals as:

_ /2 nht
Sl(t) = —T—— cos( Wet + T )

_ / 2 ; ntht
Sz(t) = - sin( Wet + —F )

Y _ _mnht
83(t) = T cos ( th T )
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5, (t) = 2 sinC Wet - 05
8. (t) = 2 cos( Wet + —i’;ﬂl— )
5, (t) = 2 sinC wet + XNt
87(t) = —%— cos( Wet -— —§%DE— )
Sg(t) = /2 sinC Wt - —zht
where O=t=T.
So, eight signal dimensions are required du?ing

each symbol interval to represent the 4-Level CPFSK
signal obtained with R=1/2 convolutional encoder. To
express the modulation signals in vector form on- an
orthonormal basis, we have applied the Gram—8chmidt
procedure to the 8 modulation signals anq we have created
an B dimensional orthonormal basis for 4-Level
convolutionally encoded CPFSK. hThe derivation :D¥ the

basis is given in Appendix B. The basis functions are:

. _ 2 tht
§1(t) = /~7—- cos( Wet + T ) (3.11.a)

40



E_(v)

&_(t)

& (t)

&_(t)

2 (t)

®_(t)

& _(t)

where

= /—%— ‘sin( Wet +

Tht

41

) (3.11.b)
_ 83(t) - So§1(t) - C°§2(t)
= (3.11.c)
D
1
S (t) + C & (t) — 8 &_(t)
=4 o 1 ° 2 (3.11.d)
D
1
S.(t)-8 & (t)+C & _(t)—-b__&_ (t)-b_, 8,6 (£)
- ol o 1 o 2 33 3 . 54 4 (3.11.e)
D2
S, (t)-C & ()-8 & _(t)+b_,8_ (t)-b__&, (t)
= 6 o 1 o 2 34 3 53 4 (.11.6)
DZ
- _1 _ _ _ _
= D3 [87(t) 81§1(t) C&@Z(t) b73§3(t) b74§4(t)
—b75§5(t)—b76§6(t)] (3.11.g)
= 1 _ -
= 03 [Sa(t)+01§1(t) Siiz(t)+b74§3(t) b73§4(t)
+b76§5(t)~b75§6(t)] (3.11.h)
- _sin(2rh) C o= 1-cos(2mh)
o 2rnh * Yo 2nh ’
sin(4mh) C = l1-cos (4nth)
1 41th 7 s 47th ’
2 2
_ S1 So +C° . b ZCOS° D1 .
33 = D 34 = D
1 1
8§ -8 8-CC C +C 8 -8 C
73 = 0O 04 O 1 ’ b74 - 0 04 O 4 ,

D
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b75 _ 82—8081+C0C1~b53b73*b54b74 ,
DZ
b76 _ Cz'co81’8081+b54b73—b53b74 ’
Dy
g = sin(é6nh) C = l1-cos (6mh)
2 67h et I 67 h ’
_ 2 2.14/2 _ el2_R2_,2 .2 /2
D1 = (1-8 Co) . D2 = (1 80 Co b53 b54)
2. .2.,2 2 2 2 4/z
Dy = (178 -0 =b,5bs=byg7b5,)

Similar to the uncoded CPFBK, the signal in the n’th
baud interval can be expressed in terms of the basis

vectors as

8
S(t,y ) =Y E E: A B (t) (3.12)
n =1 ni 1

i

where Qni is the coefficient corresponding to Qi(t)
during this interval. The coefficients for the
transmitted signal vectors, obtained by expressing
S(t,;n) in terms of the modulation signals fram (3.10.b)

and then expressing Sn(t) in terms of éi(t), are

given in Table 3.6. where So' Co’ D1’ Dz, Da’ 81, Ci,

b

b are defined above and en

b b b and b7

S3° "S54’ T73° “74° 775 é

is the phase at the beginning of the symbol interval.
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Table

3.6

Coefficients

Signal Vectors for R=1/2

for

(7,2)

Encoded CPFSK.

the Transmitted

Convolutionally

+1 -1 +3 -3
A, cosé S cos@ S cosf S _cosé
il n o n [+ n o n
+C°s1n9n —C°s1n9n +0051n9n
912 —51n6n Cocosen —Cocosen Cocosen
—SosinGn —8051n6n —S°s1n6n
Ai3 0 chosen b53cosen b73c059n
+b5451n6n +b74s1n6n
Ai4 0] —Dlsinen b54cosen b74cosenv
—b5351n6n —b7351n6n
AiS 0 0 chosen b75cosen,
+b7651n?h;
Aié 0 0 —Dzslneh b76c059n
-é7531n9n
Ai? 0] 0 0 DSCDSen,
AiB 0 0 0 —D3s1n9n
Similar to the uncoded case, white 0b(aussian noise
with two-sided power spectral density, can be projected
on this 8 dimensional signal space and expressed as
(3.13)

8
ni(t) = Z n; Qi(t)
i=1
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where ni. i=1,2,...,8 are independent, identically

distributed Gaussian random variables with zero mean and

No
5 -

a variance of The projection of the received

signal can be expressed as

8
r(t) = 2: B , &, (t) (3.14)
ni i
i=1

i}

where B

ni - YE Pt
3.5.2 The Modified Viterbi Algorithm and

System Simulation

For the Viterbi receiver described in section 2.4.1,

we have the metric

(n+1)T
Zn(y) = J r(t) 8(t,y) dt (3.15)
nT

As we insert r(t) of (3.14) and S(t,y) of (3.12)

into (3.13), and use the fact that §1,§2,...,§8 are the

vectors of an orthonormal basis

8
Zn(a) = /JE E: Ani Bni (3.16)
i=1

For convolutionally encoded CPFSK system a modified

Viterbi algorithm must be used. So, a modified Viterbi
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algorithm for the h=1/4, R=1/2, (7,2) convolutionally
encoded CPM system, is used. The state description of a
convolutionally encoded CPM system was given 1n section
2.2.2 and the state vector was given in (2.14). Now,
considering the rate R=1/2, (7,2) convolutional encoder
we have the state vector

G ) (3.17)

n? %-1° %-2
where €  is the phase at the beginning of the symbol
interval and it is given by

n—1

Gn = [ 7 h E: yi ] mod 2 (3.18)

i=—o0

For our case; O 17 %h-p BrEe the generated bits at
(n=1)’th and (n-2)’th symbol intervals respectively as we
are at the present, n’th symbol interval. Note that dn—l
and‘an_Q“are the,register Valués' of thef'GOnV01Utiona;
encoder at the n’th symbéi iaférval. As we have h=i/4, Gn
can take 8 different values; and since o 2%, Can take
the values of 0 or 1, we totally have 32 states. Note in
general that the number of states, for a rate R=p/m
convolutionally encoded CPM with h=2k/p and with
constraint length v, is given by S=p2v2y(L—1) where L is

the modulation pulse length (Ho and Mclane, 1988).

The Viterbi algorithm, for the h=1/4, R=1/2 (7,2)
convalutional encoder, works in the same way in principle
as the Viterbi algorithm described in section 3.4.1 +for

uncoded case.The main difference is that, the states of
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the receiver consist of two past generated symbols
an_l,an_z. Also the metrics are computed by considering

ol and o The algorithm calculates 32 metrics,

% %h-t n-2°
for each symbol interval after the 1initial transition,
and hal¥ of them is discarded since two paths enter into

each state.

We assume that all metrics are initially 2zero and
the algorithm begins with the (0,0,0) state where the
initial phase is assumed to be =zero. The canvolutional
encoder rvegisters are also assumed to contain zero
initially. We have taken the path memory length NT ta bhe
50 channel symbol intervals which is again large enough
to ensure that all unmerged pairs have a distance greater
than MNSED (Lindell et al, 1988). Note that this state
structure is in the form of a Markov process which. is
essential for the application of the Viterbi algorithm

(Ho and Mclane, 1988).

In our system,we generate random binary bits {Q,l},
we convolutionally encode them with R=1/2 (7,2)
convaolutional encoder and then oabtain ¥ according to
Table 3.5., we modulate the obtained 4-ary bit vy and
obtain signal space vectors for the corresponding bit.

Then we add an independent, identically distributed

. . . No
Gaussian variate of variance > onto each component to

obtain the received signal. Then the algorithm loocks for

46



the best metric path leading into each state Ffor each
symbol interval. There are two paths entering and coming
out of each state; and the path giving the smallest
metric at each state is deleted. After 50 bit intervals,
the receiver begins to decide on the transmitted bits & .
And then we get the error perftormance of the receiver by
comparing the output symbols with the “known transmitted

bits a..
i

3.6 Simulation Results

The simulations have performed Ffgr h=1/2, h=1/4
uncoded CPFSK | system and h=1/4, R=1/2, (7,2)

convolutionally encoded CRFSK system.

For uncoded binary case the constant C” given in
(2.26) is equal ta 1 (Lindell et a1,1989). The‘
probability of error curve obtained - by the simQIéfién,
for h=1/2 uncoded CPFS8K is given with the G[,’diinEb/ No]
curve in Figure 3.6. As it can be seen from the figure,
the curves are close to each other.Note that Q(x) can be
approximated by

1 —x2/2
e

for large x (Anderson et al, 1986:21). Note also that

d2 =2 for h=1/2 case (Anderson et al,1986:63).

min
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-1 TPe x Simulation Results
10'_L &8a0 ’
] 3.8x10 . Q( d2m|n-——-
0 6.8x1072 126x107°
10 B.4x1073
3 2.42x107
y 415x10 4
1651 13703 7.86x10
12431073
164l 456x1073
5
10
166 ] | ] ] i | EE)INO
] ] T 1 | i 7
2 3 4 5 6 7 (dB)

Figure 3.6. Probability of Error Curve for h=1/2. Uncoded

CPFSK with »a[’/dz. E / No] Curve.
min b

For h=1/4 uncoded CPFSK <the probability of error

curve obtained by the simulation with the Q[,’diinEb/ No]

curve is given in Figure 3.7. As seen from the curve, the
reéults are close to the approximated probability

2 E /N ]. Note that d2. =0.72 for
mln

of error curve Q[ dm nEh

h=1/4 case (Anderson et al:43).
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-1

] 1 Pe 1.19x10 »
10 8207 g 702 2
1.085x10 " 4.02x10
2
-2 3.44x10
o<l 2 .
1 2.33x10’ 1.4510°2
10°4-
-4 X Simulation Results
107 Eb -
. Q(szmir\——
5 No
10
ol B
3 5 6 7 (dB)

Figure 3.7. Probability of Error Curve for h=1/4 Uncoded

 CPFSK with. @[/‘ a2 E./ No] Curve.
min b )

Acs it is seen from the simulation curves, given in
Figures 3.6 and 3.7, h=1/2 uncoded CPFSK has better error
performance than h=1/4 case. This 1is expected because,
MNSED diin for h=1/2 case is much larger than MNSED for

h=1/4 case.

For h=1/4, rate R=1/2, (7,2) convolutionally encoded

CPFSK; with Q[,’diinEb/ No] curve, the simulation results

obtained are given in Figure 3.8. Note that the "constant
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C in (2.26) is not exactly equal to 1 for this case but

it is approximated to be 1 so that

-~ 2
P ~ Q[ dminEb/ No ]

(Anderson et al, 1986). The curves are close to each
other. Note that MNSED is equal to 4.30 as can be seen

from Table 3.1.

_ ]Pe x Simulation Results
10 - 5"
« Q,dmin==
2| * 104107 783x1073 g
10 + f
3 6.8x10
10}
10
1 0—5_4_ B.0x10°6
- ©+ Eb{No
10° + - t s B
2 3 4 5 6 (dB)

Figure 3.B. Probability of Error Curve for h=1/4, R=1/2

(7,2) Convolutionally Encoded CPFS8K with

Q[/dz. E. / No] Curve.
min b
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For comparing the h=1/4 uncoded CPFSK and h=1/4,
R=1/2, (7,2) convolutionally encoded CPFSK systems, we
give the simulation results together for these cases, in
Figure 3.9. As it 1is seen from the curves, the
convolutionally encoded h=1/4 CPFSK system "has much
better error performance than the uncoded h=1/4 case. To

2
’s we need

reach probability of error in the order of 10~
about 7 dB SNR for the uncoded case but for the encoded
case we need less than 3 dB SNR for the same probability

of bit error.

4 ] Pe 1085107 4 -

10 ¢ 3.44x10
233107 P

} 3 1.49x10
10 2] 78310
] -3 4 ¢ h = 1/4 Uncoded CPFSK

T x h = 1/4 Coded CPFSK
10 47—- 526107
1 ()-5 6.0x10-6

i} Eb/No

o
3 4 5 6 7 (dB)

Figure 3.9. Probability of Error Curve for the Uncoded

and Encoded CPFSK faor h=1/4.
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So, by convolutionally encoding the CPFSK system for
h=1/4 case, we increase MNSED so that we get better error

performance than the uncoded h=1/4 case.
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CHAPTER 1V

CONCLUSION

In this work, uncoded and convolutionally encoded
CPFSK schemes, in the presence of additive white Gaussian
noise are studied. Noise is introduced to the modulated
signals by the so called signal space method and
or%ponormal bases are derived both for the uncoded and
the encoded CPFSK schemes. The four dimensional basis for
binary uncoded CPFSK, given by the eguations (3.5.a) to
(3,5.d5 can also be obtained as a spé;ial .case of ‘the:.
basis for binéry uﬁcoded multi;h CPFB8K scheéés given in
(Anderson et al,1986). Table 3.2 which shows the signal
vector coefficients ‘is preparedifcr uncoded modulating>
signals that can be used for any modulation index h. Also
all transmitted vectors for the modulation indices h=1/2
and h=1/4 are given 1in Table 3.3 and Table 3.4

respectively.

The eight dimensional basis derived in this work
given by equations (3.11.a) to (3.11.h) appears in

literature for the first time (see Appendix B +for the



details). Also the signal vector coefficients Ffor the
eight dimensional case are calculated and tabulated in
Table 3.6 for rate R=1/2 (7,2) convolutionally encocded
CPFSK signals. The table can be used for any rate R=1/2

convolutionally encoded CPFS8K scheme as well.

The bit error probabilities +for the simulated 3
cases are obtained by computer simulations. The computer
simulations show that the error performance, for uncoded
CPFSK, gets better as h is increased from h=1/4 to h=1/2.
Furthermore as we convolutionally encode the CPF8K
signals, we have larger minimum normalized sauared
Euclidean distance and as seen from the simulation
results, we achieve much better bit error probability
rates. By convolutionally encoding CPFSK signals, about 4
dB SNR gain can be obtained to achieve the same error

probability.

It must be noted that, the arthonormal basis and the
modulation signal tables obtained are necessary to use
the signal space method, for the introduction of channel
noise. The orthonormal basis obtained for the rate R=1/2
(7,2) convolutionally encoded CPFSK system, and the table
obtained for the modulated signals can be used directly
for any, rate R=1/2 convolutional encoder. Also this

table can be used for any modulation index h. If the rate

R is increased, the signal space dimension will also be
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increased. For R=2/3 case the dimension will be 16,
and it must be noted that to obtain 16 dimensional

orthonormal basis will be guite complicated.

Finally note that, the obtained tables can be used
not only for AWGN channels but for some other channels.
For example it can be used for a fading mobile channel
where the modulated signal is normalized by a random
fading amplitude in a symbol interval. The performance
analysis of several, rate R=1/2, convolutional codes for
AWGN channels and other applicable channels may be

proposed for future studies.
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APPENDIX A

DISTANCE CALCULATIONS FOR THE TWO PATH GIVEN IN FIGURE

3.2. FOR SEVERAL MODULATION INDICES

A.1 Calculation of d (4) for the Two Path Given 1in

2
12
Figure 3.2 for h=3/10

# For h=3/10, R=1/2, (7,2) convolutionally encoded
CPFSK
47
2 _ 1 - 2

d],(4) = Tj [S, (£)-8,(£)1° dt

o)

. 47 ,
= = j [1-cosA®(t)] dt
o)

For the first interval:

2 _ 1 [, t ot
di (1) = —T—f ‘1 cos[——T Thr, yo)]] dt
0
Tr
= 1 - _l2nt
= -T—j .1 cos[ T ]] dt
0
= 1.15591

For the second interval:



T
2 _ 2 1 _ 12n I (t-T)
d7,(2) = di (1) + = [ [1 cos[ o~ * To T ]] dt
0
_ 2 10 [ 180 . 12n
= d12(1) i [1 [51n BTN sin 10 ]]
_ 2
= d12(1) + 1
= 2.15591
For the third interval:
2 2 1 o7 3n 3In (£-2T)
di,(3) = d12(2)+—T—_f [1—:03[ o o~ 2 7 ]]dt
27T
_ 2 10 . 12 . 18#
= d12(2) + [1 + yav= [51n 10 sin 10 ]]
_ 2
—1+d12(2)
=3.15591
For the fourth interval:
2 2 1 o 127 3 (t-3T)
di,(4) = di(3)+ —— [ [1-cos[ el ]]dt
37
_ 2 _ 10 g 12m
= d12(3) + [1 1om sin __TB—]
= d12(3) + 1.15591
= 4,31182
A.2 Calculation of df2(4) for the Two Path Given in
Figure 3.2 for h=1/4
For h=1/4, R=1/2, (7,2) convolutionally encoded
CPFSK:

For the first interval:

T

2 1

d

(1)

J

0

[l—cos[ $

12 T

60

4]] dt



WES)

For the second interval:

2 2

= 1 e nt . 27
d12(2) = d12(1) v g [T s1n[ ST (t T)+ﬂ]] =

2 . i 2
d12(1) + [1 - 51n[——i—- + ﬂ]—;{—]

=2.636

For the third interval:

3T
2 2 1 _ 7 . (£t-2T)
d]o (3 d75(2)+ — f [1 cos[ — b5 2 ]]dt

2T

_ 2 _ 2 _ L S b1
= d12(2) p [1 [51n - sin m ]]

4.2732

]

For the fourth interval:

2 = 42 1 _ 4n. 0m (£-37)
di,(4) = di, 30+ —— f [1 cos[ y i = ]]dt
3T
_ 2
= dj,(3) + 1
= 5,273
2

A.3 Calculation of d 4) for the Two Path Given in

12(
Figure 3.2 faor h=1/6

For h=1/6, R=1/2, (7,2) convolutionally encoded CPFSK,

for the first interval:

2 _ 1 N 6T
d (1) = T [ T 51n[ 5 4] e ]

0.586°
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For the second interval:

For the third interval:

2 - 42 e _2m ) __. )
d12(3) = d12(2)+[1 [s1n[n _Z_] 51n(n)]—55]

3.826

]

For the fourth interval:

2 _ 42 N 4 4nm . f4r 6 1
d12(4) = d12(3)+[1 [éln[ 5 _Z—J+Sln£7fj]_§ﬁ]
- _ _6 . an 2
= an sin [ r ] + d12(3)
= 3.4125
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APPENDIX B

DERIVATION OF THE 8 AND 4 DIMENSIONAL ORTHONORMAL BASIS

FOR MODULATING SIGNALS

We have the eight modulating signals:

)

s, (t) = /-2 cos( Wet + —ﬂT‘—t— )
s,t) = /2 sinC wet + S0t )
S, (t) = ~%— cos( Wet - "Dt )
5, (t) = /—%—— sin( Wet - Dt )
SS(t) = /~%L— cos( Wet + —é%DE— )
5,(t) = /%— sin( Wet + —3—T”—'£- )
87(t) = /—%—- cos( Wet - —§$DE— )
Sgft) = %— sin( Wet - —INE

where O<t=T.



The Gram—-Schmidt procedure is used to Fform an
orthonormal basis for these signals (Haykin, 1978). For
the first pair of orthonormal basis, we choose the pair

of signals

_ / 2 Tht
él(t) = T cos( Wet + T ) (B.1)
_ /2 X ht :
§2(t) = T sin( Wet +- T ) (B.2)

These signhals are of wunit energy, and as We -+ 00,

T
(2,,8,) + O . Here (U, v) =j w(t) vi(t) dt .

0

For the second pair, we begin with the pair

*
/ 2 nht

83(t) —5— cos( Wet T ) (B.3)
_ /2 : _ _mht

84(t) = T sin( Wet T ) (B.4)

These are mutually orthogonal in the sense that (83,84)+O

as We » o , but not orthogonal to §1 and §2. From the

Gram—-Schmidt procedure (Haykin, 1978), come es(t) and
64(t) which are orthogocnal,

6 (t) = S (t)-bg & (t)-bg 8, (t) (B.5)

94(t) = 84(t)—b41§1(t)-b42§2(t)—b43§3(t) (B.&)

where b31=(83,§1), b32=(83,§2) and b41=(84,§1),
b42=(84,§2x and b43=(84,§3).

T
- 2 _ _mht nht
l:>:31 = J [———T ] cos[wct T ] cos[wct+ T ] dt
o .
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.
=L cos (2Wet ) +cos [—<TAt dt
T T
0

_ 1 1 . T ,
= = [ SWe s5in(2WeT) + >7h 51n(2nh)]

and as We» —%— we have

b - sin(2rh) = g (B.7)

31 2nh o

2 tht . ht
[——.—r—] cos[wct T ] 51n[wct _T__] dt

T

bz = J
0
T

_ 2 1 . . z2rht
= = J > [Slﬂ(2Wct)+Sln [ T ] ] dt
o]

]

1 1 T
5 [ T (l-cos (2WcT)) + Snh (1 cos(2ﬂh))]

as We » —l—'we have

T
_ l-cos{(2mh) _
P32 = 2nh = G, sk
T
_ 2 ) __mht: Tht
b41 = J [ T ] s1n[kct T ] cos(wct+ T ] dt
0

2 1 2nht ‘
= . — ‘4 2 —_—c 1 — e
T J > [51n(tht) sin [ T ] ] dt
0

_ 1 1 _ T _
= [ SWe {l-cos (2WcT)) + >ah (cosf2nh 1))]

_ cos(2rh)-1 _ _
41 Snh Co (B.9)
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_ 2 , __mht . nht ¥ .
b42 = I [ T ] 51n[Wct T ] 51n[wct+ __T—_] dt

o
T
_ 2 1 2nht _
= 5 I > [ coe[ T ] cos (2Wet) ] dt
o .
as We » —%— we have
_  sin(2rmh) _
b42 = >rh = So (B.10)
Now, define
93(t)
$_(t) = —— (B.11.a)
S le. |
3
64(t)
& (t) = —— (B.11.b)
4 le,, |
4
where |93| and |94| are constants making the energy of

§3(t) and §4(t) unity respectively, so that

T 2 "
f§3(t) dt = f§4(t-) dt = 1
0 0
In other words, &_(t) and'§4(t) are the normalized forms

3

of 93(t) and 84(t) respectively.

Using the fact that 83(t) and 84(t) are orthogonal
: T .
b43 = —— 1 I [ / 2 'Sin[Wct—' Tht ]]
}93| T T -
0

[ 2 cos[wct— ’—Tlt—]—s & (£)-C & (t)] dt
T i T o 1 o 2
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T

= 1 J [ / 2 sin[Wct— mht
(6. | T T

3

(0]
= (- _ I S
= ( b4180 b4200) o | 0

3
To find §3(t) and §4(t) we must obtain |93|
T
2 _ 2
leg 1< = J 65 (t) dt

0

I

"

S0 we have

similarly

than

And using equations (B.7) to

B_(t) =

&

32

2
f [ (t)-bo & (t)-b §2(t)] dt
0

and.|64l :

T
2 2 2 _ 2
J [és(t)—b31 b32]dt =(1-b%,-b%,)
0
- _ 72
|61 = (1-8_-C_) =D,
> d 2
le1< = J 8% (t) dt = 1-by —bj,
0
e e 172
le,1 = (1-C_-8) =D,
(B.14) we have :
S (t) - by & (b) —‘b32§2(t)
D,
Ss(t) - 8.8, -Cc8
D,
S,(t) —b, & (t) - b, &, (t)
(t) = 5

1

¥4

]][—SOQI(t)—C°§2(t)] dt

(B.12)

(B.13)

(B.14)

(B.15)



2 (t) = (B.16)

Now, we have obtained four arthonormal functions, éltt),

&, (t), & (t) and &, (v), corresponding to the  four

modulating signals Sl(t),S (tr, S_ () and g, (t)

2 3 4

respectively. Note that, these four orthonormal functions
create the +four dimensional orthonormal basis For

uncoded 2 level CPFSK.

We continue to create orthonormal functions for the

third pair, and we begin with

el

/ 2 3Intht

Ss(t) T cos( Wet + ’——.'r'——"' )
/ 2 i " 3nht

5 sin( Wet + — )

Sb(t) =
To make this pair orthogonal to, §1(t),§2(t),§3(t) and
§4(t); we have Gs(t) and Gé(t) which are orthogonal from
the Gram—Schmidt procedure :
=9 - - - -
Gs(t) _S(t) b51§1(t) b52§2(t) b53§3(t) b54§4(t)

& _(t)-b, & (t)—b64§'(t)—b 2_(t)

O,ft)=8S, (t)=b,, &, (t)-b, 2, 63%3 4 65%5

6

es(t) and Gé(t) are mutually orthogonal but not of wunit

energy, to normalize them we have

es(t)

d_(t) = —mm— (B.17)
> (6. |
S
Gé(t)

& (t) = ——v (B.18)
& le, |
fe)
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where

_ w2 2 2 2 .1/2
]65) = (1 b51 b52 b53 b54) (B.19)
_ 2 2 2 2 _.2 172
lebl = (1 b61 b62 b63 b64 béS) (B.20)
From now on, as it is assumed that We » —%— the terms
multiplying w? are deleted.

2] cos [wct+ —E’%QE] cos[Wct+ n?t] dt

o
4)}
[y
H
O oy
~—
|

T
_ 1 4nht 2nht
= I [—“.’T—] [cos [2Wct+ T ] + cos [_T'—]]dt
e}
- sin(2rh) = g

2nh o

s0, b51 = So (B.21)
s

S1

2 Itht . ht
—T_) cos[wct+ —-T.——] s1n[wct+ T ] dt

o
i

o Y N—
~

T
_ 2 1 : 4nht) _ . 2nht
= = J- [—i—] [51n[2wct+ —-—.—r——] 51n[—-—-—_|. ]]dt
0]
cos(2rh) -1
27h
b52 = —Co (B.22)
T
b53 = J Ss(t) §3(t) Qt
0
T S_(t)-b, &, (t)—b, & (t)
_ 3 311 322
= S_(t? - dt
3 D
1
0
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EELJ cos[Wct— n?t] cos[Wct+ —éEQE;J dt

B b31“51"“32'352]

1 4nht 2 2
Eﬁri cos[ -——T——J dt - So + Co ].

1 2 2

S0 b53 = —B? L 81_ So - Co ] (B.23)
_ sin(4nh)
where S1 = anh (B.24)
T
b54 = J SS(t) §4(t) dt
O
T S, (t)y-b,.®_(t)Y-b, _B_(t)
4 411 42 2
= S_(t) dt
S D
1
0]
T. . ; .
- 1 " » -
= D1 [ J Ss(t) S4(t) dt b41b51 b42b52] (B.25)
o)
and we have
T T *
— 2 R 3nht)._ . _ _mht
j Ss(t)84(t)dt = J (—T—]cos[wgt+ T ]sln[wct T .]dt
0 0
T ‘
_ 1 . [ 4nmht - - €Cos(4nmh)-1
= I [-T_J 51n[ ———T——] dt = anh .
0
T
we have J Ss(t)84(t)dt = - C1 (B.27)

0
Now as we put equations, (B.27), (B.?), (B.10), (B.21)

and (B.22) into equation (B.25) we have
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b54 - (B.28)
D
1
Now putting b51, b52 into eguation (B.19) we obtain
i ml_R2_, 2_2 1/2 ,
|35|—(1 So Co b53 b54) and define
_ el_~2_, 2_.2 [1/2
02 = (1 So Co b53 b54) (B.29)
so that IGSI=D2 susing (B.17), b51, b52 we have
S (t)-8 2 (t)+C & _<(t)-b_ 8 (t)-b_,%, 6 (t)
§5(t) _ S o1 o 2 53 3 354 4 (B. 30)
D2
Faor the sixth vector we have:
T
b61 = I Sb(t) §1(t) dt
0
T
3 2 . 3Inht nht
= J [T ] 51n[Wct+ ——T——] cos[wct+ T ] dt
0
T
_ 1 . 2rht _ _l-cos(2rh) _
‘I[TJS“‘[ T]dt‘ Smh =G
0}
s0 b61 = Do (B.31)
T
b62 = J Sé(t) §2(t) dt
0.
T
_ 2 , Imht . Tht
= J [ T ] 51n[wct+ T ] 51n[wct+ T ] dt
(0}
T
_ 1 2nht . _ _sin(2rh) _
- [ () eon( 2t e - mipuzm o
0
so we have b62 = So (B.32)
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T

S, (t)y #_(t) dt

63 6 3

o
I
o J N—

T

56

D

S_(t)—b_ &, (t)-b_ & _(t)
(t)[ 3 3171 32 2 ]dt‘
1

1
o —

T

S | - _
= —D~1— [J S, (t) Si(t) dt bgybey b32b62]
0

Here,

T T

_ 2 . Imht _ _mht
J Sb(t)83(t)dt = I [ T ]51nﬂwct+ T ]CDS[Wct T ]dt

o) o

T
-
_ 1 . 4mht _ 1- cos(4nh) _
= J [ T ] 51n[ T ] dt = anh = C1 (B.34)
(o]
s0 inserting b31, b32, bbl’ bbzand (B.23) into equation
(B.24) we have )
Ci—ZCoSo
b63 = D1 = ~b54 (B.35)
T
b64 = J Sb(t) éq(t) dt
0
T S (t)-b, & (t)=b, & (L)
=J‘S(t)[4 4171 42" 2 ]dt
6 D
1
0
T
= 1 -
= Dl [ J Sb(t) 84(t) dt b41b61 b42b62] (B.36)
0
Here
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T T
2 . 3Intht , ht
J Sé(t)84(t)dt J [—T——]31n(wct+ T ]51n[wct —-—T——]dt

"

o) 0
T
_ 1 4nht
= J [ T ] cos[ T ] dt
0O
_ sin(4nh) _
= —Z&mn " S1 (B.37)
b,-and equation (B.37) into

Now as we put bbl’ b62’ b41, 47

equation (B.36) we have

5,*Ce S,
!:)(__,4 = Dl = b53 (B.38)
T
= s
bbS I Sb(t) §5(t) dt
0

by using equation (B.21) and remembering that Ss(t) and
Sé(t) are orthogonal to each other we have
T

= 1 - -
bes = b7 J Sé(t)[ss(t) 8,8, (E)+C, B, (£)=b_ 8 (t)
0
-b54§4(t)] dt
[ T SePe1 * CoPez T Ps3Pez T P54Pes ]

[ T SeCo™® BoSo* bszhsy ~ Bggbss ] =0

0

- N

2
Now, we can write éb(t) using the found coefficients b61

through bbS’ in eguation (B.18) we have

8 (t)
8 (t) = —°2
& e, |
6
_ A2 2 2 2 1/2 _ .
where [66| = (1 C0 So b54 b53) = 02 , that 1is seen

73



from egquation (B.29). Note that |& is obtained from
(B.20). S0, we have
S, (t)-C & (t)-8 & _(t)+b_,8_ (t)-b__% (t)
Qb(t) - 6 o 1 o 2 5S4 33 4 (B.39)
02 |
We continue to create arthonaormal Ffunctions For the
fourth pair, and we begin with
. /2 _ _3nht
87(t) = -5 cos( Wet T )
. /2 ; _ _3mht
SB(t) = T sin( Wet — )

To make this pair orthogonal to El(t),iz(t),...,éb(t);‘we

have 67(t) and 98(t) which are orthogonal from the
Gram—-Schmidt procedure.
87(t)=-87(t)—b71§1(t)—b72§2(t)—b73§3(t)—b74§4(t)
-b75§5(t)~b76§6(t)] (B.40)
Gé(t)=_Se(t)—b81§1(t)-b82§2(t)—b83§3(t)—b84§4(t)
'—b85§ (t)—psbié(t)~b87§ (t)] (B.41)
67(t) and 68(t) are mutually orthogonal but not of unit
energy, to normalize them we have
67(t)
&_(t) = —— (B.42)
7 le, |
7
ee(t)
& _ (t) = ——M— (B.43)
® 16|
8
where
{2 _ .2 _ 2 _.2 _.2 _ 1/2
'67"‘[1 b717P727P737P747 b5 76] (B.44)
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f(,. .2 2 _.2 2 2 2 _ 2 Y1/2
'6'8"[-1 bg1 P2 Pe3 P4 "PasPas t’87] (B.45)
we have
T
b71 = JS7(t) Ql(t) dt
0
T
2 3Intht Tht
= J [——T—]cos(wct— T ]cos[wct+ T ]dt
0
So b71 = S1 (B.46)
T
b72 = I 87(t) §2(t) dt
0
T
- 2 _ _3mht}_. nht
= J [—.—r-—]cos [wct -t ]s1n[Wct+ T ]dt
O
T
_ 1 . 4mtht _ 1- cos(4rh) _
“J[T]S”‘[ T]dt' 4mn =t
0
S0, , ) b72 = C1 . | v (B.47)
T
b73 = J S7(t) §3(t) dt
0
T
_ 1 : . _ o
= —DT [J 87(t) Ss(t) dt b31b71 b32b72]n4 (B.48)
5 Rl
we have,
T T

_ 2 _ _3mht _ _mht
J 87(t)83(t)dt = I [_T—)CDS[FCt T )cos[Wct T ]dt

0 o
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_ 1 2nht _  sin(2rh) _
= J (_T_J cos[ T ] dat = —%mn - 80 (B.49)

0]
Sa putting b71, b72, b31, b32 and equation (B.49) into

the equation (B.48) we have
S -8 8-CC
0O 01 O 1%

by = 5 (B.50)
.
b, = J S, (t) &,(t) dt
0
T S, (t)-by & (£)-b, 8, (t)
= I s (t)[ ] dt
7 D,
0
.
_ 1 - -
o n [ J S, (t) 8§, (t) dt - b, b, b42b72] (B.51)
0
we have
T T

r f 2 _ _3nht)_. _ _mht o
J.87(t)84(t)dt = J [——T ]cos[wct T ]51n(wct T ]dt_

0 0

_ 1 . 2nht _ 1= cos(2nh) _
= f {——~) s1n[ ———T—~) dt = Snh = Co (B.32)

by. putting b71,b72,b41,b42 and eguation (8752) in

equation (B.51) we have
C0+C081—80C1
b = (B.33)

74 01

T
b = I 87(t) Qs(t) dt
0
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T
dt

Ss(t)—b51§1(t)—b52§2(t)—b53§3(t)—b54§4(t)
S_ (&)
7 02

0
;
1 - - - -
o [ J 8, (t) Sg(t) dt = by, by, ~bg,b,, b53b73-b54b74]
0

Here we have

T T
2 __3nht 3Inht
j 8, (t)8g(t)dt J [—T~]cos[@ct T ]cos[Wct+ T ]dt

0

o

T

K

1 cos érht dt = sin(&nrh)
T T 67th

and define
sin{(6mh)

Sz= &rh (B.35)
s0 we have
‘ T
J 87(t)85(t)dt = S2 (B.36)
0
by putting b51,b52,b71,b72 and equation (B.36) into

equation (B.54) we have

8,7855,%CL, ~bg3by<7bg 05,

b, = 5 (B.57)
2
T
by, = J §,(t) B, (t) dt
0
T L
I [ S, (t)=b B, (£)=b, B (t)=b, B (t) b64§4(t)]
= | s,(t) dt
7 D
2
0

&
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T

— - - - -

= o, [[ S, ()8, (t)dt-b, b, =b b, ~b b« b64b74](8.58)
0

Here,
T T
_ 2 _ _3aht)_. " 3mht
I 87(t)86(t)dt = J [ T ]cos[Wct ——TF—JSIH[WCt+ _—T—_—]dt
0 0
T
_ 1 . orht _ 1= cos(é6rh)
= J [ T ] Sl”[ T ] gt = onh
0
define
_ 1- cos(é6mh)
C2 = anh (B.39)
we have
T
J 87(t)86(t)dt = C2 v (B.60)
0]

by putting bbl’bbz’b71’b72 and equation (B.60) intp

({B.58) and also by using (B.33) and (B.38) we have

€ L0547 8,0 *Bgy by~ bbby
- (B.6&1)
76 D,

Now, putting b71 and b72 into equation (B.44) we have

(97(=[1—Cf—sf—b2 —b2 b2 —b2 ]1/2 and define

73 "74 "75 76
[, 2. 02,2 _, 2 .2 _ . 2\1/2
Dy = [1 Cy -8 ~b5<-b5, b b76] (B.62)

so that |6 And by using (B.40) in (B.42) we have

7|=03 .

&_(t) = [87(t)—81§1(t)—01§

7 (t)—b7

> 3§3(t)—b74§4(t)

1

Dy

-b, . & (t)—b76§6(t)]

75%s5 (B.é;)
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For _(t) we have the coefficients,

8
T
b81 = J Se(t) él(t) dt
0
T
_ 2 , _ _3nht ntht '
= J [—.F—]s1n[wct T ]cos[wct+ T ]dt
o]
T
_ i . 4mht _ _cos{(4nh)-1
‘I[T]S”‘[ T]dt‘ anh = -C,
0
Than, b81= —C1 (B.64)
T
b82 = J Se(t) §2(t) dt
0
T
- 2 . _ _3aht ht
= I [—.F-—]sun[wct T ]sin[bsh:t-!- —F ]dt
0
T .
- 1 " 4ntht dt = sin(4mrh)
T ‘ T 4rh
e}
so b82 = 81 (B.bS)i
T
b83 = J Sa(t) §3(t) dt
0O
T S (£)-b. &. (t)-b. B, (t)
_ 1 3 311 32 2
= S (t) dt
8 D
1
0
T
- _1 - -
= D1 [ J Ss(t) Sz(t) dt b31b81 b32b82] (B.66)
o .
where,
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T T

_ 2 . _ _3mht _ _mht
JSB(t)SS(t)dt = J [T ]51n[wct T ]cos[th T ]dt

-
=‘I [_%_J Sin[_ 2n$t ] at = coséigh)—; = ¢,
" :
T
so, J Sg(t)Ss(tidt = —C (B.&7)
0

By putting b31’b32’b81’b82 and (B.67) into (B.66) we have

—C°+SOC1—C°S1 I )
b = = -b (B.68Y

83 D1 74

S_(t) &, (t) dt

o
]
O ey
-

84 7 4
y 8, (t)=b, & (t)-b, B, (t)
= g_(t) dt
8 D
1
0
T '
S | - -
= —BI [ I Sa(t) 84(t) dt b41b81 b42b82] (B.69)
0
we have
T T .

o . _ 2 . . 3mht)_. _ _mht :
J‘Sa(t)84(t)dt = I [—.—F—]51n[Wct T ]s}n[Wct T ]dt,
0 0

T
_ 1 : 27ht _ sin(2rh) _
= J [‘f‘] CDS[ T ] at = 5nh = 5
o}
T
So j Ss(t)84(t)dt = So (B.70)
0
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By putting b and (B.70) into (B.&9)

41°P42°Pg17 g
S -C C -8 8
o O 1 O 1

by = 5 = b (B.71)

;

bos = I Sg(t) &_(t) dt
o
.
B (£) b B, (£)=b__8 (£)=bg B (£)=b,8, (t)
= | s.(t) dt
8 D
2
0
;

_ 1 _ _ _ _
= b, [ J Sg(t) Sg(t) dt — by, bg,~bg,bg,=bgzbgs b54b84]

0

Here we have

T T
_ 2 . _ _3mht 3ImTht
JSB(t)SS(t)dt = J [—T——]51.n[wct T ]cos[Wct+ — ]dt
0 0
T
_ 1 . [_ _énht _ costénh)-1 _
= J [‘T‘] 51"[ T ] P 3 &nh = -,
0]
T
50, J SB(t)SS(t)dt = —DZ (B.73)
O

By putting bSl’bSZ’bel’bBZ and (B.68B), (B.71), (B.73)

into (B.72)

—C, 8,0, *CS, *bg3b, b, bys
bgs = D '
2
So, bgs = -b., (B.74)
T
bg, = I Sg(t) &, (t) ot
0
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T

Sé(t)_b61§1(t)_b62§2(t)_b63§3(t)—b64§4(t)
= S_(t) dt
8 D
2
0
[[ (t)S (t)dt- b61 81~ 62b82_b63b83-b64b84] (B.73)
6}
Here,
T

_ 2 . _ _3nht , 3tht
I SB(t)Sé(t)dt = I [ T ]51nEWCt ——T——]51n[Wct+ —_T—__]dt

o 0

T
_ J [%] CDS[ em_;t ] dt = sin;:;’:‘h) - s,
0
-
So J Sa(t)Sb(t)dt = Sz (B.76)
(0]
Now by putting, by Pgp» Bgy» bg, and equations (B.357,

(B.38), (B.&68), (B.71), (B.76) into (B.73) we have

S,*C6C, 568, b4 b5, P3P0

Pag T 02
So bg, = bog (B.77)
T
by, = J 8g(t) B (t) dt
)

By using (B.73) and remembering that 87(t) and Selt) are

orthogonal to each other

1
D J S, (t) 87(t) S § (t) Ciﬁz(t) b73§3(t)
0

—b74§4(t)—b75§5(t)—b76§6(t)] dt
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1
D [ bg15,7C,Pg2"P75P837 P74 Pga P75 a5 b76b86]

3
By inserting b81""’b86 and b73,...,b76 into the above

eguation we get

b87 = 0 , (B.79)

Now, we need |98| to write the eguation for §8(t), so by -

using (B.43) and putting b81 and b82 into this'équation

(22,2 2 .2 .2 ., 271/2
‘esl‘[l C, ™S, bg37 P54 Pg5Pas b87]
So, legl = g (B.79)

as it is seen from (B.62).

So QB(t) can now be written by using equations (B.41) and

(B.43); we also use equations (B.&64), {B.63), (B.68),

(B.71), (B.74), (B.77), (B.78) and (B.7%9) for the

coefficients b81’b82""’b87’]981 respectively. So
finally
= _1 ' _ 5
is(t) = 03 [Ss(t)+01§1(t) Siéz(t)+b74§3(t) b73§4(t)
+b76§5(t)—b75§6(t)] (B.80)
Now, the eight dimensional orthonormal basis

{§1(t),§2(t),...,§8(t)} have been constructed by wusing

the Gram—Schmidt‘procedure.

7.8 YURSEKOGRETIM KURULY
DOKUMANTASYON ME ;
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