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ABSTRACT

STABILITY OF THE ZERO SOLUTION OF IMPULSIVE
DIFFERENTIAL EQUATIONS BY LYAPUNOV SECOND METHOD

Yolcu, Tlrkay
M. Sc., Department of Mathematics
Supervisor: Prof. Dr. Agacik Zafer
Co-Supervisor: Prof. Dr. Marat Akhmet

July 2002, 45 pages

In this thesis, we firstly introduce some basic concepts and several well-
known criteria for stability, asymptotic stability and instability of the zero
solution of impulsive differential equations (IDEs). Next, in the light of the
known results, we used Lyapunov second method as a tool in obtaining new

stability criterion for the zero solution of an IDE with variable moments.

Keywords: Differential equation, impulse effect, stability, instability, Lyapunov

second method, variable moment .
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Y/

LYAPUNOV’UN IKINCiI YONTEMI ILE IMPULSIVE DIiFERENSIYEL
DENKLEMLERIN SIFIR COZUMUNUN KARARLILIGI

Yolcu, Tiirkay
Yiiksek Lisans, Matematik Boliimii
Tez Yoneticisi: Prof. Dr. Agacik Zafer
Ortak Tez Yoneticisi: Prof. Dr. Marat Akhmet

Temmuz 2002, 45 sayfa

Bu tezde, ilk olarak, degisken zamanl ”impulsive” diferensiyel denklem-
ler tizerindeki temel bazi kavramlar ve bilinen kararlilik kriterleri verilmig ve
sonra, bilinen sonuclar 1g1ginda Lyapunov’un ikinci yontemi kullamlarak sifir
¢cozumiiniin kararlihig ile ilgili yeni bir sonug elde edilmistir.

Anahtar Kelimeler: Diferensiyel denklem, "impulse” etkisi, kararhlik, Lya-

punov’un ikinci yontemi, degigken zaman.
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CHAPTER 1

INTRODUCTION

1.1 Impulsive Differential Equations (IDEs)

The impulsive differential equations are adequate mathematical models of nu-
merous real processes and phenomena studied at physics, biology, population
dynamics, bio-technologies, control theory, industrial robotics, etc. In spite
of great possibilities of applications, the theory of these equations has been
developed rather slowly. Recently there have been intensive studies on the
theory of impulsive differential equations, especially on the stability of their
solutions.

Moreover, the theory of impulsive differential equations is much richer than
the corresponding theory of differential equations without impulse effects. For
instance, inital value problems of such equations may not, in general, possess
any solution at all even when the functions involved are smooth enough. Fur-
thermore, fundamental properties, such as continuous dependance relative to
initial data, may be violated and qualitative properties like stability may need a
convenient interpretation. A simple IDE may exhibit several new phenomenon
such as rhythmical beating, merging of solutions, and noncontinuability of so-
lutions. Consequently, the theory of IDEs is interesting in itself and will assume
greater consideration because of the increase in the application of the theory
onto various fields. Although there are limited monographs related to this sub-
ject [4, 10, 16], the study of impulsive systems has been the subject of intensive
investigations for the last 20 years {1, 2, 3, §, 6, 10, 12, 13, 15, 17, 18, 19, 20].

It seems that this topic will call close attention of many scientists for years.
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One of the important issues in the study of IDEs is to determine whether
or not a solution of an IDE is stable. In general, this can not be carried over
to stability of the zero solution of an IDE. That is why we have the additional
concern of determining if system inhibits the stability of the zero solution.

In this thesis, by using Lyapunov second method, we investigate the sta-
bility, asymptotic stability and instability of the zero solution of an impulsive

differential equation of the form

dz
E—‘f(tvx)a t#ez(x)
Afltlt:gi(z) = J,,(.’L‘), 1€EN= {1,2, .. .}, (1.1)

where Az|i—g := z(8+) — z(0), z(0+) = tl_i)rg}’_ z(t).

After presenting some theorems and examples, we discuss the qualitative
properties of (1.1) and derive a new stability criterion for its trivial solution in
the light of some known results obtained for such IDE. In particular, sufficient
conditions are obtained under which stability and asymptotically stability of
the zero solution of (1.1) are ensured.

Let us start with introducing some preliminaries [3]. For our purpose, we

first introduce the following notations :

G={(tz): t>0, z€S5,},
Sy={z € R": |zl < p},

where p > 0 is a fixed real number and ||z|| denotes the euclidean norm of

z € R™. Next, we assume the following conditions :

(a) f(t,z) : G — R™ is piecewise continuous with discontinuities of the
first kind at ¢ = 6;(z), where it is left continuous with respect to t;

sup ||f(¢,z)]| = M < oo, and f(¢,0) = O for all ¢ > 2.
(t,z)eG

b) 6;(z) : S, — R, are continuous; 6;(z) < 6;41(z) forallz € S, and i € N;
P p

lim 6;(0) = <.
t—00



(¢) Ji(z): S, — R™ J(0) =0.
By a solution of (1.1), we mean a function ¢(t) defined on I such that

(i) ¢(t) is piecewise continuous on I having discontinuities of the first kind
at 7; where 7; = 6;(z(7;)) and it is continuous from the left, i.e.,
o(r;) = lim o(2),
t7;

7

(ii) ¢(t) is differentiable for ¢t # 7, t € I, and

d%it)‘ = f(ta(p(t))a t # Ti,

o(rit) —oln) = Ji(p(n)).

Letting P(t) = (¢, z(t)), we can describe the trajectory of the integral curve
as follows: The point P(t), starting at the point (¢, z), traverses along the
curve {t,z(t)} defined by the solution ¢(t) = z(t; 9, zo) of system & = f(¢,x)
until ¢ = 73. At the moment ¢t = 71, the point P(t) is affected by the impulse
effect which causes the solution to momentarily jump from the point (7, z(m1))
to the point (71, z(m1) +Az|4=r ). Then the point P(t), beginning at this point,
moves along the solution curve until ¢t = 75. All in all, this process keeps going
on provided that the solution exists.

An initial value problem (IVP) related to system (1.1) is the problem of
finding a solution z(¢) of (1.1) which satisfies the initial condition z(tp) = z.
It can be shown that the IVP is equivalent to the integral equation

z(t) = z(to) + /ttf(s,x(s,azo))ds + Z Ji(z(m;, zo)). (1.2)

to<Ti<t

The following basic existence and uniqueness theorem is taken from [16].

Theorem 1.1.1 In addition to f € C(G) and J; € C(S,), assume that f and
Ji satisfy Lipschitz conditions with respect to x in G and S, respectively. Then
for each (to, z0) € G, IVP (1.2) has a unique solution z(t) defined on [ty, to+0]

for some a > 0.



In the stability theory solutions are required to exist on an infinite interval
of the form [t,, c0) for some t.. The following theorem provides conditions for

such solution to exist on infinite interval, see [10] for details.

Theorem 1.1.2 Assume that the hypothesis of Theorem 1.1.1 hold. Suppose
further that

If&aI < g lil),  (t2) G,
e+ Ji(@)ll < llzll, 2 €5,

where g(t,u) € C[Ry x Ry, Ry] is nondecreasing with respect to u for each

t € Ry. If the mazimal solution of
v =g(tu), ult)=1 20,

ezists on [ty,00), then the interval of ezistence of solution z(t) = z(t, %o, To) of

(1.1) such that ||zo]] < uo is [to, 00).

The proof of this theorem is similar to one in differential equations without
impulse effect. We should only mention that the condition ||z + Ji(z)[| < ||z,
z € S, is sufficient for solutions z(¢) not to exceed u(t) at the impulse points.
Furthermore, in order for a solution z(t) to continue on the infinite interval, we
need to have some conditions for absence of beating. In the following section

we give some lemmas providing no pulsation.

1.2 Pulse Phenomena

Although solutions of system (1.1) are (left) piecewise continuous, the points
of discontinuity, depending on the solution, make the study of such systems
considerably more difficult. One of difficulties arises from the pulsations of the
solution at the surfaces ¢t = #;(z) which often hampers the solution to be on
the domain of impulsive system. To illustrate this let us look at the following

example.



Example 1.2.1 Let A € R;.

d
d—: = -z, t# arctanz+im
Am]t:a.rcta.n:c+i7r = A.’L’, 7 c {0, 1, 2, . .}, (13)

Keeping in mind that A > 0, we see that the integral curve of an arbitrary so-
lution of this system, ¢(t) = ¢(0)e™ with ¢(0) < 0, intersect the hypersurface
t = arctan z only once, and the integral curve of the solution ¢(t) = (0)e*
with ¢(0) > 0 meets the surface of discontinuity ¢ = arctan z countably many

times, that is, pulsations occur on this surface.

As is seen from the example, the solutions of the (1.1) may experience
the pulse phenomena, namely the solution may hit the same surface finite or
infinite number of times causing rhtmical beating. Consequently, it is desirable
to find conditions that guarantee the absence or presence of pulse phenomena.
In this section we shall deal with this problem. Accordingly assuming that
conditions (a)-(c) are satisfied, we state some lemmas for such system to have

no pulsations.

Lemma 1.2.1 [16] Let the functions f(t,z), Ji(z), and 0;(z) be continuous
for (t,z) € G, 6;(z) be continuously differentiable with respect to x, and

—[ < N. .
x|l =5 || S N (1.4)
Moreover, suppose that the inequality
00;(z + sJi(x))
s (B ) <o (1.5)

holds for all (t,x) € G. Then there is a number Ny such that for all N < Ny,
the integral curve of any solution of system (1.2), z(t), for to < t < to + A
(A > 0), intersects each hypersurface t = 6;(x) only once.

Proof. Proving the lemma amounts to proving that, for sufficiently small
values of IV, any solution z(t) of system (1.1), starting at zo + J;(zo) and lying
in the domain G, does not hit the surface ¢t = ;(z) for 8;(zo) < ¢t < t*, where

tm = i .
; (gggGH (z)



Suppose, on the contrary, that a solution z(t) starting at the point zo +
Ji(zo) intersects the hypersurface at the point (¢f,7*), (i.e, tf = 6;(xz*)), for
t¥ > 0;(xo). Clearly z(t) is continuous in the interval (6;(xo),]*). Moreover,

we know that

z* = zo + Ji(zo) + i f(r,z(T))dr. (1.6)

8i(zo)

t
Letting / f(r,z(r))dr = n and ¢(t) = 0;(z + Ji(x) + tn) we observe that
8

i (o)

0;(z*) — 0;(zo + Ji(zo)) = ¢(}) - ¢(0)
= /0 ¢(r)dr
Y/ 06i(z + Ji(z) + )
= /0 < pe ,n> dr  (1.7)

Likewise,

z+ TJ,'((L‘))’

b+ o)~ e = [ (PRI s)har

Therefore, we see that

t: - 01(1170) = 01,(.’17*) — 9,(:150)
= 9,,(.’1,'*) —_— Gz(mo + J,(xg)) + 0, (.’170 =+ Jz(.’ll'o)) = 0z(a:0)

_ /01<80i(z+Ji(x)+nT)’n> dr+

Oz
1 . .
+ / <69’($ *1{z) Ji(:c)> dr (1.9)
0 Oz
It follows from sup ||f(¢,z)|| < M that the first of these integrals in the right
(t,z)eG

hand side of (1.9) admits the estimate

[ (PHAEHILT ) ar < 0 G - (o),

and thus,

(1 = MN) (& - 8:(a0)) < / <3"i(””g;Ji(””)’,Ji(x)>df (1.10)

Now it suffices to choose Ny such that M Ny < 1 because, in this case, inequality
(1.10) can not hold due to the condition (1.5).

Let us next illustrate lemma 1.2.1 by an example.

6



Example 1.2.2 [10] Consider the impulsive differential equation

%—f- =cost, t#0;(z),z(0)=0

Azl=py =1, 1€ N={1,2,...}, (1.11)

where 6;(z) = —(z + 1) + (2 + 1)3. Since

oz Oz

then every solution of (1.11) meets any given surface t = —(z + 1) + (27 + 1)¢

<1 and max<

0<s<1

,J,-(x)> = -1<0

(tz)ed

only once.
Now let us introduce the following lemma:

Lemma 1.2.2 [16] Let, in system (1.1), the functions f(t,z) and Ji(z) sat-
isfy the conditions of the the lemma 1.2.1 and the functions 6;(z) satisfy the

Lipschitz condition
16:(x1) — 0i(22)] < Nllz1 — 22|, 21,72 €G (1.12)
and the inequality
6;(z) > 0;(z + Ji(z)) (1.13)

for all (t,z) € G instead of (1.5). Then there is a positive number Ny such
that for all N < Ny, the integral curve of any solution z(t) of system (1.1),
which belongs to the domain G for ty <t < tg + A (A > 0), intersects each

hypersurface t = 6;(x) only once.

Proof. The proof of this lemma is similar to the proof of lemma 1.2.1. In this

case, instead of (1.7), we invoke the Lipschitz condition (1.12) to infer that

t*

10:(2%) — 6i(wo + Ji(za))] < N [ |If(r,z(r))|ldr

0i(zo)
< NME — 6i()). (1.14)

Accordingly,
ty —0;(zo) = 0;(z*) — bi(mo)
= 0;(z*) — 0;(wo + Ji(z0)) + i (@0 + Ji(x0)) — (o)
< NM(t — 0;(z0)) + 8i(zo + Ji(m0)) — 0;(z0) (1.15)

7



That is to say,
(1 = MN)(t; — bi(z0)) < Oi(xo + Ji(20)) — 0i(z0) (1.16)

It follows that if IV is so small that 1 — MN > 0, then inequality (1.16) can
not hold due to inequality (1.13). This completes the proof.
The proof the following lemma is quite similar to that of the previous one,

and hence is disregarded.

Lemma 1.2.3 [16] Let the function f(t,x) be continuous with respect to t and
z (piecewise continuous with respect to t) for t > to, and € be sufficiently small
number. If the functions J;(z), i = 1,2,..., are continuous for ||z| < €, and
if, for ||lz1]| <€ ||ze2|| <€ and alli=1,2,..., the functions 6;(z) satisfy the
Lipschitz condition

16:(z1) — 0i(z2)| < Nijz1 — o]

and the inequality

Then, for t > to, the integral curve of any solution z(t) with ||z(ty)|| < € of the

system (1.1) intersects each surface t = 0;(z) only once.

1.3 Continuous Dependence of Solutions

Now let us examine the following simple but important example:

Example 1.3.1 [16] Consider the system
s _
dt
Azl =X i€ N={1,2,..}, (1.17)

0, t£2%~1z

where A € R,. We see with just an overview that ¢(¢t) = 1 and ¥(¢) = 1+e€ are
two solutions of this system starting at ¢, = 0 where € is an arbitrarily small
number. These solutions on the interval [0,2] do not depend continuously on
Ty because |¢(t) — 9¥(¢)] = A + € on the interval [1-¢,1] if € > 0 (or [1,1-¢] if
¢ < 0) no matter how small e may be. But, outside this interval, the difference

can be made arbitrarily small by making e sufficently small.

8



However, if we exclude from the interval [to, to+2] sufficiently small neigbor-
hoods of the points where the integral curve intersects the surfaces t = 6;(z),
then the solutions will depend uniformly on the remaining values of indepen-
dent variable.

Suppose that the functions f(¢,z), Ji(z), and 6;(z) in (1.1) are continuous
for (t,z) € G and the inequalities

[ £t 21) — f(t, 32)|| £ Lllz1 — 24l | 7i(21) = Ji(@2)ll < Lilz1 — 22},

10:(z1) — 0;(z2)| < N|z1 — 22| (1.18)

hold for all t € I, z,z,,z9 € D.

Let z(t, zp) and z(t, yo) be two solutions of the system (1.1), which belong
to the domain G for all ¢ € [to,ty + A]. Suppose that each of these solutions
intersects every hypersurface ¢ = 6;(z) only once, and denote by 6;°,0%° the

corresponding times when these solutions intersect the surfaces ¢ = ;(x).

Lemma 1.3.1 [16] If the stated above conditions are satisfied and MN < 1,
then

lott,a0) = st < (14 =2 ) Pleo-wall (119
J

for allt € [0, 6M,], where 0" = min(67°, 6¥°), 6} = max(67°,6%°) and p is the

number of points 0 (or 6M) in the interval [to, to + Al
Now we consider the following theorem.

Theorem 1.3.2 [16] Let the functions f(t,z), J;(z), and 6;(z) in (1.1) satisfy
inequalities (1.18), the inequality (1.19) hold, and MN < 1. If a solution
of (1.1), z(t,xzo), is defined for t € [ty,to + A], then this solution depends
continuously on the initial condition zy in the following sense: for arbirary
€ > 0, there ezists § = 8(€) > 0 such that for any other solution z(t,yo) of
(1.1), the inequality ||zo — yol| < 0 tmplies

llz(t; zo) — z(, yo) || <€ (1.20)

9



for all t € [to, to+ A], satisfying |t — 67°| > €, where §7° are the times, at which

the integral curve of the solution z(t,zo) intersects the hypersurfaces t = 0;(z).

Proof. The conditions of the theorem imply that there are no pulsations of the
solutions of the system (1.1) at the surface ¢ = 8;(z) and that the conditions
of lemma 1.3.1 hold. By lemma 1.3.1, two solutions of the system (1.1) satisfy

the estimate (1.19). Fix an arbitrary ¢ > 0 and choose §; > 0 so small that

max |67° —6Y°| < e
lzo—yol|<d1

for all ¢ such that 67° € [tg,ty + A]. As of the choice of §, we take

L - LA
0 = min 61’6<1+m) € .

If yo is such that ||zg — yo|| < 4, then, by (1.19), the solutions z(t, o), (¢, yo)
satisfy the inequality (1.20) for all ¢ € [to,to + A] with [t — 6;°] > €, which
completes the proof.

Let z(t, zo), y(t, 7o) be two different solutions of the system (1.1) on [, o+
A]. Suppose now that there exists ¢} such that z(¢, zo) and y(t, 7o) differ in size
with value € at ¢ = ¢} for the first time . Namely, ||z(t}, zo) — y(¢f, z0)|| = €.
But if |t} — 67°| > ¢, then, by theorem 1.3.2, ||z(t}, zo) — y (¢, Z0)|| < €. Hence
[tf — 67°| < €. But for 0 < [t} — 67°| < ¢, there exists €, €; < €, such that
|tf —67°] > €;. In this case, again by theorem 1.3.2, ||z(t}, zo) — y (¢, zo)|| < €.
At last, for if ¢f = 67° , then since both z(¢,z,) and y(t,z,) undertake the
same pulsation at ¢ = ¢} , it is not possible to obtain different values of z(t, z)
and y(t,zo) on interval [to,to + A]. Therfore we have z(t,zo) = y(t, zp). This
means that continuous dependance of solutions implies the uniqueness of the

solution.

1.4 Some Definitions

The following definitions are extracted from [14].

Definition 1.4.1 The zero solution of (1.1) is called stable if for any given
€ > 0 and to € R, there ezists § = (¢, tg) > O such that ||zo|| < § implies
|z (2, to, zo)|| < € for all t > to.

10



Definition 1.4.2 The zero solution of (1.1) is called asymptotically stable if it
is stable and there ezists & > 0 such that any solution x(t, to, xo) with ||To]| < é

satisfies tllf?o z(t) = 0.

Definition 1.4.3 A continuous function ¥ : R, — Ry is said to belong to

class K, if 9 strictly increasing and 1¥(0) = 0.

Definition 1.4.4 A scalar-valued function V(t,z) is called positive definite
on G, if there exists 1 € K such that V(t,z) > ¥(||z]|]) for all (t,z) € G; it is
called positive semidefinite on G, if V(t,z) > 0 for all (t,z) € G. The function
V(t,z) is called negative definite (negative semidefinite) on G, if =V (t,z) is

positive definite (positive semidefinite) on G.

Definition 1.4.5 A scalar-valued continuous function V(t,z) : R X R* - R

is said to be decrescent, if there exists a positive definite function w: R™ — R

such that
|V(t,z)] <w(z) forall t>1ty and forall z €S, for some p>0.

Now we are ready to see some results obtained by employing Lyapunov method.

11



CHAPTER 2

SOME KNOWN RESULTS ON THE STABILITY OF
THE ZERO SOLUTION

2.1 Introduction

In this chapter, we state certain known stability criteria for impulsive differ-
ential equations with variable moment.

As is mentioned in the preceding chapter, there are various sets of sufficient
conditions for the absence of pulse phenomena. Therefore, it is essential to
impose some conditions that the beating of solutions of (1.1) on each surface
of discontinuity be absent. To this end, namely for the system (1.1) to have
no pulsation, in this chapter, in addition to conditions (a)-(c) we assume that

there exists L > 0 with ML < 1 such that
16:(z) ~ 6:(y)| < Lllz — y]| and 0:i(z + Ji(z)) < 0i(x) (2.1)

for all z,y € S, and i € N. By the way, it is straightforward to see that these
conditions are not necessary [16].

It is also well-known that the solution curve of the sytem (1.1) may in-
tersect a surface of discontinuity at certain time and stay there for a while
[4]. Therefore some caution should be taken, when such a system is under
investigation. In this chapter, we have only two kinds of surfaces of disconti-
nuities, namely ¢ = 6? and ¢t = 6;(z). It can be shown that no solution curve
of (1.1) can stay on the surface ¢t = 62 for a period of time. Even in the case
of ¢ = 6;(x), this behavior is still not possible, since each ¢t = 6;(z) is also a

surface of impulse points.

12



2.2 Lyapunov Second Method for the Stability of Zero

Solution

It is natural to ask whether it is convenient, in some situations, to utilize
several Lyapunov function. As we shall see, the answer is positive and this
approach offers a more flexible mechanism to investigate stability of the zero
solution in a unified way by using a single Lyapunov function and the theory
of impulsive differential inequalities. Lyapunov’s second method has its origin
in simple theorems that form the core of what he himself called his second
method for dealing with question of stability. The method is an indispensible
tool not only in the theory of stability but also in the study of other qualitative
properties of solutions of differential equations. Each Lyapunov function needs
to satisfy some requirements which will be described in the theorems.

Let V(t,z) be a continuous real valued Lyapunov function defined on G
with V(¢,0) = 0 for ¢ > t;. We assume that V'(¢,z) is locally Lipschitz in z,

and denote

D*V(t,z) = limsup V(t+hz+hf ) - V() .
h—0t+ h

Notice that if V is differentiable then

. OV =V
DYV(t,z) =V(t,z) = -+ ) ~—fit,z).
ot i1 6:12,

Note that, in what follows, we denote by A the set of all continuous func-
tions 1 : R — R such that ¢(0) = 0 and %(s) > 0 for s > 0.

In view of the assumption (2.1), we shall take into account the qualitative
behaviour of the zero solution of the system (1.1) and consider the method of

Lyapunov by indicating its fruitfulness.

2.3 Theorems on the Stability of IDE

In what follows, firstly some basic theorems with their proofs will be examined
and secondly the foregoing results combined with comparison theorem will be

derived.
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Theorem 2.3.1 [16] If there is a positive definite differentiable function V (t, z)

satisfying in G the inequalities

V(t,:z:) = %lt/— + ‘" %fi(t,x) <0
V(0:(), 5 + () < V(6:(z), 2), 2.2)

then the trivial solution of the system (1.1) is stable. If, instead of the second
inequality of (2.2), we have

V(0:i(z),z + Ji(z)) — V(6i(z),z) < —¢(V(0;(z), z)) (2.3)

foralli=1,2,..., and ¢ € A, then the zero solution of (1.1) is asymptotically
stable.

Proof. Let € > 0 be fixed and § > 0 be sufficiently small such that

= _inf V(tz), m = sup V(t,2). (2.4)

t>to,e<||z]|<p llzl| <8

and m < [. Take an arbitrary solution z(t) with (¢y) = zo of the system (1.1)
such that zq € Bs, which is a ball centered at zy with radius ¢, and consider
the function v(t) = V (¢, z). If we assume that, at a moment t*, ||z(t*|| = € for
llzo|| < 6, then v(t*) = V(¢*,z(¢t*)) > I. Observe that for 6; = 6;(z(6;)), we

have

v(0;i+) V(0i+, z(6:+))
V(6;,2(6:))

v(6;) (2.5)

IA

Besides, the inequalities (2.2) imply that the function v(t) is nonincreasing
along any solution of (1.1) that lies in the region G, so that v(¢*) < v(tp) =
V (to, z(ts)) < m < . This contradiction proves the first part of the theorem.

As of the proof of second part, we now suppose that, instead of the second

inequality of (2.2), the inequality (2.3) holds. Our aim is to prove that the
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zero solution is asymtotically stable. To this end, it suffices to show that
tl_iglo v(t) = 0. The first of inequality of (2.2) and inequality (2.3) imply that
the fuction that v(t) is nonincreasing and, since it is bounded from below, the
limit }l{i{, v(t) = « exists. Suppose, for the sake of contradiction, that o > 0.
Let 7= min (s). If the function z(t) intersects the surfaces ¢ = 6;(z) at

a<s<v(to)
the points (6;(z;), z;), then by (2.3), we have

v(0i(z:)+) — v(0i(z:)) < —¥(v(6i(:))

foralli =1,2,.... Since a < v(6;(z;)) < v(t), we see that —(v(6;(z;)) < —,
and accordingly,

v(é)z(a:z)—l-) — v(O,(z,)) S —T.

Inasmuch as, by the first inequality of (2.2), the function v(¢) is nonincreas-
ing on every interval where it is continuous, we obtain from v(6;(z;)+) >

v(0;11(xiy1)) that, for any natural k,

v(Ok(ze)+) < v(Bklze)+) + i[v(ez’(wi)ﬂ — ¥(0i41(2i11))]
= v(t) + Z[v(fh(wi)ﬂ — v(0i(z:))]

< (k) — k7.

That the right-hand side of this inequality becomes negative for large values
of k contradicts the fact that the function V'(¢,z) is positive definite, yielding

the result that a > 0 is not possible. Proof ends up with this contradiction.

Example 2.3.1 [16] We shall consider stability of the lower equilibrium point
of a pendulum subject to an impulsive effect with the following motion equa-

tions

3.7=y, ;Q=~sinx, t$é0z($7y)7
2

AYlimozs) = —y, 1€N={1,2,...}.
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Let us study stability of the zero solution of the system. Take the total energy

of an unperturbed pendulum
y?
V(z,y)=1—cosz + 5
to be a Lyapunov function. We easily find that

av

— =ysinz — ysinz =0,
7 (] Y

2
V(z+ Az,y+ Ay) = 1-—cos <arccos (cos T — %—))

%
= 1—cosz+ 5 = V(z,y).

Since the conditions of theorem 2.3.1 are satisfied, the zero solution of this

system is stable.

Theorem 2.3.2 [16] Suppose there ezists a positive definite funtion V (¢, z),

which satisfies in G the inequalities

5 g i) < Vo) (2.6
V(o) + i) < V), 7), (2.7

where @, € A and let

sup( min 6;41(z) — max 6;(z)) = 6 > 0. (2.8)
i llzll<e llzll<p

Then, if the functons ¢(s) and ¢(s) are such that
¥ gs
— <8 2.9
[ 29)
for some ag and all a € (0,a0), then the zero solution of the system (1.1) is
stable. Furthermore, if, instead of inequality (2.9), we have
¥a) gg
— <0 - 2.10
[ emsen (210
for somey > 0, then the zero solution of the system (1.1) will be asymptotically
stable.
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Proof. Let us fix an arbitrary sufficently small € > 0. For this ¢ choose § > 0
to be so small that the inequalies (2.4) hold. Take a solution z(ty) = zo of
the system (1.1) such that z € B;, which is a ball centered at zy with radius
8. We will show that z(t) never leaves the ball B,. Consider the function
v(t) = V(t,z). To prove the theorem it suffices to show that v(t) < ! for
all £ > t;. An assumption that z(t) leaves B, without reaching the surface
t = 0 (x) at a moment t* leads to a contradiction, because on one hand v(t*) =
V(t*,z(¢t*)) > I, and on the other hand, the function v(t) is not increasing
and v(t*) < v(ty) = V(to,z(to)) < m < I. So, z(t) intersects the surface
t = 6,(z), for example at a point (6(z1),z1). By using (2.7), to < 6;(z1) and
v'(t) < —p(v(t) we have

01(.’81) !
-~ / v(t)at > 81 (z1) — to. (2.11)
¢

By setting in (2.11) v(¢) = s and using (2.8), we get

vito)  gs
/ > i) — 1o > 0. (2.12)
v(61(z1)) @(s)

Now by replacing a by v(0,(z1), 1) in the inequality (2.9) and using (2.7), we
obtain
v(81(z1)+) Y(v(01(x1)))
/ 8 < f _G°% <8é. (2.13)
o) P8) T Ju@)y (s
It follows from (2.12) and (2.13) that

/v(to) ._di _ /v(to) _ds__ _ /V(fh (z1)+) i >0
(61 (z)+) P(8) w(01(z1)) P(5) o(0im))  P(8) T
which clearly implies that v(6,(z1)+) < v(¢). To end the proof of the first part
of the thorem what we need to do is to apply the induction to get v(6;(z;)+) <
v(tp) foralli=1,2,....

Now suppose that, instead of (2.9), inequality (2.10) holds and the solution
z(t) intersect the surfaces ¢ = 6;(z) at the points (8;(z;),z;). By inequality
(2.7) and 6;(z;)+ > 6;41(zi41) , we have

() + Oiy1(@it1) t
—/ dt > —/ vi{tdt > Oiy1(zia) — Oi(z;) > 6.
9i+1(zi+1) 9;‘(3:{) (p('U(t))
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Setting @ = v(6;41(z;41)) in (2.10) and using (2.7), we see that
/v(0i+1 @+)+)  dg /¢(v(9i+1($i+1))) ds
<
v v

=<7 (2.14)

(Bis1(mis1)) S0(3) T S (i) <p(s) B

In view of (2.14), we see that

i ds o ds % ds
[{ e s [
a;':'_l 90(3) a4l ‘10(8) ai41 80(3)
where af = v(;(z;)+). Since the sequence a; is decreasing for all 4, the
following inequality is satisfied
ai d
/ 2>y (2.15)
af,, P(8)
Now let us show that lim v(6;(z;)+) = 0. Suppose the converse, i.e. assume
1—0o0
that lim v(6;(x;)+) = > 0. Let 7= min o(s). From (2.15) we get
i—00 a<s<v(to)

v [ 25 < 2hE) ) ~ v )L

T
That is to say, v(0;(z;)+) —v(0it1(zit1)+) = ¥7 = constant, which contradicts
the convergence of the sequence v(6;(z;)+). Thus v(8;(z;)+) — 0 for ¢ — oo.
To end the proof, recall that by (2.7), v(t) is decreasing on every interval of
continuity (8;(z;), 6i+1(zi+1)], and hence SUPp, ;3 crcpiys (zirn) V(E) = v(0i(z:)+),
which, together with the inequality v(0;(x;)+) > v(0i41(%i1)+) that holds for
all i, leads to the inequality v(t) < v(8;(z;)+) for all t > 6;(z;). Thus, it follows
that v(6;(z;)+) — 0 for all i — oo that lim v(t) = 0, and so tli)xg llz(¢)|] = 0.
For the following analogous theorem, additionally we assume that the func-

tion 6;(x) are such that, for some 6; > 0

ax 0;(z) — min 6;_(z) < 6. 2.16
leli<p (=) llzl|<p 1(z) < 6 (2.16)

foralli =1,2,....
Theorem 2.3.3 [16] Let there exists a positive definite function V (¢, ) sat-

isfying in the domain G the conditions

YV <=V
Z —f <
5 +i=1 a%,ifz(t,:v) < @(V(t,x)), (2.17)

V(6i(z), z + Ji(z)) P(V(0:(2), x)), (2.18)

IA

18



where @, € A. If the functons ¢(s) and ¢¥(s) are such that

¢ ds
— > -
/¢ ok 61 (2.19)

for some ay and all a € (0, ao}, then the zero solution of (1.1) is stable. Fur-

thermore, if, instead of inequality (2.18), we have

¢ ds
— 20+ 2.20
/¢(a,) (p(S) ' ( )

for some v > 0, then the zero solution of (1.1) is asymptotically stable.

We skip the proof of this theorem, because it can be similarly done by
adopting previously straightforward approach. The principal purpose of the
preceding discussion is to point out that stability of the zero solution can be
provided under some circumstances. Before embarking on the results for the
theory of instability of solutions, let us look at the following examples on the

stability of solutions for illustration.

Example 2.3.2 [16] Consider the system

=1y, 7 = —sinz, t # 6;(z,y),
AZ|i=p,(,3) = oz + By,
Aglt:ﬂi(m,:&) = —fz + ay. 1EN= {1, 2,.. }

As in the example 2.3.1, we take the function V (¢, z) to be

y?
V(z,y) =1-cosz + 5

The derivative of this function along the solution is identically equal to zero.

Moreover, we observe that

Viz + Az,y + Ay) — V(z,y) = %(oz2 + 2a + B%) (2% + ¥*) + O(2® + ¢2).
= @148 =D 1) 1 4,

where y(z? + y2) — 0 for 22 + 3> — 0.

1 .
Let 5((0{ +1)24+82~-1)=1<0,ie ((a+1)?+ 82 < 1. Then there exists
A > 0 such that [y(z? +3?)| < € < —[ as long as % + y% < )%, and we have

V(z+Az,y+ Ay) - V(z,y) < (e+1)(z* + 7).
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Consequently, if ((o + 1)2 + 82 < 1, then the zero solution of the system is

asymptotically stable.
Example 2.3.3 [16] Consider stability of the zero solution of the system

j"=_y+m37 y=x+y31 t7£0z(x,y);
A:L’|t=ai(z,¢) = —az’ + ﬂy3,
Aylimoyzsy = B7° —ay®, i€ N={1,2,...}.

where a > 0, 8 > 0, and ;(z,y) = i+ 22 +y>. It can be checked that solutions
of this system satisfy the conditions of lemma (1.2.3) in a sufficiently small
neigborhood of the origin and so there are no beating at the surfaces ¢ = 6;(z).
Set V(z,y) = 2% + y*. Then

% = 2z* + 2" < 2V3(z,y),

I

V(z + Az,y + Ay) z? + 1% — 20(z* +y*) + 2(2® +y%)zy +
+ (&®+BY) (=% +¢°) — 4aB2%y?
<

V(z,y) - (@— HV(2) + (&® + B)V3(z,y).

Thus, it is better to take p(s) = 25? and ¥(s) = 5 — (a — B)s® + (® + §%)s°.
By using the fact that

max 0;(z,y) — min 6;1(z,y) <1+p,

z2+y%<p z2+y?<p
/“ ds _ a—f—(c?~p%a
v@ 25 21— (a—Bla+(a®+ B?)a?)’

we see that, for the zero solution of the system under consideration to be

asymptotically stable, it is sufficient to impose the condition o — 8 > 2.

We are now in position to find out the sufficient conditions for the zero
solution of the (1.1) to be unstable. For such theorems that give these con-
ditions, we first require that the function V(t,z) exist and have the following

properties [16]:
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i) The intersection of the region = {(¢,z) € G|V (t,z) > 0}, where a
plane t =constant, is a nonempty open set adherent to the origin for any

t 2 to;
i) The function V (¢, z) is bounded in

Theorem 2.3.4 [16] If there there exists a function V (t,z) having properties

i) and ii) and satisfying in the region Q the conditions

%‘E-Jr =1 %fi(t,x) > 0, (2.21)
V(0i(z),z + Ji(z)) — V(0i(z),z) > ¢(V(0i(z),z)), (2.22)

where ¥ € A, then the zero solution of system (1.1) is unstable.

Proof. By the conditions of the theorem, in any neighborhood of the point
z = 0 there exists such a point zy that V(f,z9) > 0. We will prove that
the solution x(t) that starts at the point zo will eventually leave the ball B,.
Suppose, on the contrary, that z(t) € B, for all £ > ¢;. Let z(t) intersect the
surfaces ¢ = 0;(z) at points (6;(z;), z;). Consider the function v(t) = V (¢, z(t)).
By the inequalities (2.21) and (2.22), v(¢) is nondecreasing function, and hence
v(t) > v(to) > 0 for all ¢ > ¢o. This means that (¢,z(t)) € Q for all ¢ > %.

Let 7 = min 4(s), where ( = sup V(t,z). It is clear that 7 > 0 and

v(to)<s<(¢ {t,z)eQ
v(0;(z:)+) —v(0;(z;)) > 71,4 =1,2,.... So, for any natural k, we have that

k-1
v(O(ze)+) > v(9k($k)+)+2[v(9i($i)+) ~ v(i41(2i11))]

k
= v(t) + Z['U(ez(xz)'l") — v(0;(z;))]
> ulty) + k.

The right-hand side of the last inequality becomes unbounded as ¥ — oo,

which contradicts the assumption 4). This completes the proof.

Theorem 2.3.5 [16] If there there ezists a function V (t,z) having properties
i) and i) and satisfying in the region Q the inequalities
OV 0V
— —fi > —p(V(t,2)), :
o g 6 2 eV (2) (2.23)
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V(6i(z),z + Ji(z)) = ¥ (V(i(z),z)), (2.24)

where ¥, p € A. Also, assume that the functions 0;(z) satisfy the condition
(2.15). If the functions ¥(s) and ¢(s) are such that, for some v > 0,

9(a)
/ 5 Sy (2.25)

for all'a € (0, ao], then the zero solution of the system (1.1) is unstable.

Proof. In every arbitrarily small neighborhood of the point z = 0 there exists
such a point zy that V (¢, zo) > 0. We will prove that the solution that starts at
this point will eventually leave the ball B,. Suppose, conversely, that z(t) € B,
does not not intersect the surfaces t = 6;(z) at the points (8;(z;),z;) for all
t > to. Let us assume that, from the assumption z(t) € B, it will follow that
(t,z(t)) € Q for all ¢ > t¢. Indeed, it is impossible that (6;(z;),z;) € Q and
(0:(z:), z(8:(z;)+)) € Q, because it follows from (2.24) that

V(0i(z:), 2(0:(z:)+)) = V(0i(ws), Jiz:)) = (V (0i(=:), 2:)) > 0.

If we assume that the phase point (¢, z(t)) leaves the region 2, then it necessar-
ily intersects its boundary. Let t* be the smallest moment when this occurs.
If Ox(zk) < t < Oky1(zgs1), then, denoting v(t) = V(¢,z(t)), we have that
v(t*) = 0 and v(fk(zx)+) > 0. It follows from (2.23) that

[T J@dt _ . -
/ak(mk)cp@(t»“ ().

and, by using (2.15),
v(0(ze)H) g .

/v IR R TR (2.26)
Fix o' > 0 such that 0 < ¥(a') < v(fx(zx)+). By using inequalities (2.24)-
(2.26) we get a contradictory chain of the inequalities

b4 < /w(a’) ig_ < /"(9k(zk)+) _df_ _ /‘v(@k(zk)+) ﬁ <6,
«  #s) T Jo o(s)  Jugr) (s)

Hence, if z(t) € B,, then (¢, z(t)) € Q for t > to. So it follows from (2.23) that

al
/ ds <01, i=0,1,2,.--
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where a; = v(0;(2;)) and af = v(f;(z;)+). By substracting this inequality
from(2.25) with @ = a;11 = v(0;41(zi4+1)) and using (2.24), we obtain

¥(aiv1)  gg ¥(af) ds ¥laf,) ds of ds
s [ [ e [ s
Q341 SO(S) Qi1 SO(S) Qi1 (,0(3) Qi1 gO(S)

or equivalently

sfi ds
— >y,  i=012,.... 2.27
/a; o(s) (227)

This shows that {a;} is an increasing sequence and it is bounded by ag due to

(t,z(t)) €Q. Let = min ¢(s) > 0. From (2.27) we get

v(to)<s<ap
1 [%n 1
v < il N ds = - [”(9i+1(~’0i+1)+) — U(9i($i)+)] ;

that is, v(0ir1(zir1)+) — v(0i(z:)+) > 7, and hence, for any natural k,
v(0;(z:)+) = yrk+v(to), which is a contradiction since the sequence {v(8;(z;)+)}
is bounded.

Now we state one more analogous theorem that can be proved similarly.

Theorem 2.3.6 [16] If there there eists a function V (t, z) with properties 3)

and i) and satisfying in the region Q the inequalities

T LS > eV, (229
V), + A 2 BV (6(),2)), (2.29

where Y, € A. Also assume that the functions 0;(x) satisfy the condition
(2.8). If the functions ¢(s) and ¢(s) are such that, for some v > 0,

¢ ds
— 20— .
/1/)(0.) ()0(3) - 7 (2 30)

for all a € (0, ag], then the zero solution of the system (1.1) is unstable.

The following basic comparison results, extracted from [11], are to be used

in the remaining part of the thesis.
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Lemma 2.3.7 Let V(t,z) be as above, and
D*V(t,z) < g(t,V(t,z), (t,z)€q, (2.31)

where g € C[Ry X Ry, R]. Suppose that u(t) = u(t,to,uo) is the mazimal

solution of the scalar differential equation
u' = g(t: U), U(to) =1Ug 2 07

which ezists to the right of to. If z(t) = z(t, %0, z0) is any solution of (2.81)
such that V (ty, zo) < ug, then V(t,z(t)) < u(t) for t > t,.

Proof. First of all, let us start by refreshing our memory with the definition of

the maximal solution. To do this suppose that u(t) is a solution of the system
u =g(tu), ulty) =u>0 (2.32)

and, for sufficiently small € > 0, u(%, €) is a solution of
v =g(tu)+e u(t) =u+e (2.33)

Um(t) = um(t, %o, uo) is called maximal solution of the system (2.32), if there
exists a sequence {&,} with &,4+1 < &, and JLII;O &, = 0 such that nl_lg,lo u(t, &) =
um(t). To prove the lemma, suppose that un,(t) is a maximal solution of
(2.32). If z(t) is any solution of (2.31) and if V (¢, 7o) < ug, then we see
that V'(to, o) < up < up + € = u(ty, €), which means that V' (¢, o) < u(to, €).
Suppose on the contrary that V (¢, z(t)) < un,(t) fails to hold for all t > ;. This
means that there exists t* > to, the smallest moment, such that V(¢*, z(¢*)) =
u(t*, €) with V(¢,z(t)) < u(t, ) for t € [to,t*) and V' (¢, z(t)) > u(t, €) for some
t > t*. Now we observe that, for arbitrary sequence &, > 0 with £, — 0 as

n — 00,

V(t" +&,2) - V(t"2) _ V" +8&n2) —ulte)  u(t” +6n ) —u(t',¢)
én - &n én

Since &, is arbitrary positive sequence converging to zero, it follows that

DYV (t*, z(t*)) > u'(t*, €)
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This implies, for € > 0, that

gt V(" z(t")) = D'V, =z(t"))
> u/(t%¢€)
= g(t"ut",€)) +e
> g(t*,u(t",€))
= g, V({t*, z(t*))).

This contradiction completes the proof of the lemma.

One can similarly prove the following analogous comparison result:
Lemma 2.3.8 Let V(t,z) be as above, and
DtV (t,z) > g(t,V(t,z)), (tz)€QG, (2.34)

where g € C[Ry x R, R]. Suppose that u(t) = u(t,to,up) is the minimal

solution of the scalar differential equation
u' =g(t,u), u(t) =wug >0,

which ezists to the right of to. If z(t) = z(t, %0, z0) is any solution of (2.84)
such that V (ty, zo) > uo, then V(t,z(t)) > u(t) fort > to.

Note that by taking g(t,u) = 0, one can easily verify that if D*V(t,z) >
0 then V(¢,z(t)) is nondecreasing, and if D*V(¢,z) < 0 then V(¢,z(t)) is
nonincreasing,.

We note that until now the change of Lyapunov function in the interval
of continuity is compared with its change at the moments of discontinuity. In
the following theorems, the changes of a Lyapunov function in the vicinity of
the moments, where solutions undertake an impulse effect are comparied. In
fact, the following results play an important role in our study as we will try to
improve them.

In the sequel, we denote
G; = {(t,z) € D: tis between 6 and 6;(z)}.
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Theorem 2.3.9 [3] Assume that the following conditions are fulfilled.

(i) V(t,x) is positive definite and decrescent on G.
(it) DYV (t,z) is negative semidefinite on G.
(#i) DYV (t,z) < —p(V (t,z)) for some ¢ € A and for all (t,z) € UienG;.

() V(6;(z),z + Ji(z)) < ¥(V(6i(z),z) for some v € A and for allz € S,
andi € N.

(v) There ezists a real number L > 0 such that |0;(z) — 6;(y)| < L||z — y]|
Jorallz,y € S, andi€ N.

(vi) There ezists a real number Ly > 0 such that |0;(z) — 6| > L, ||z|| for all

z€S,andi € N.
(vii) There ezists a real number v > 0 such that

—— < (L1 —7)ll=ll

/¢(V(9i @) s
V(8i(z),x) ©(s)

forallz € S, andi € N.

Then, the zero solution of (1.1) is stable if v =0, and is asymptotically stable

if v > 0.

Proof. Let z(t) = z(t,t, o) be a solution of (1.1) having discontinuities at
t =7; for i € N. It follow that v(¢) := V(¢,z(t) is nonincreasing on each of
the intervals [¢y,71) and (7, Tit1), ¢ € N. To obtain more information on the
behavior of v(t), we need to investigate its change in G;. For each fixed i € N,
there are two possible cases:
Case 1. 7; > 62. We let u(t) be the maximal solution of v’ = —¢(u) on [6, 7]
such that u(69) = v(6). In view of Lemma 2.3.7 and (vi), we have
w8) g W89) gs

MMWWSn—@=Lm ﬁgs[w oy (2.35)

Using (iv) and (vii) we also have

w~mmamns—/

y 2@ S (2:36)

P(R) g /v(n+) ds
'I)(Ti) QO(S).
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Summing (2.35) and (2.36) leads to

/ " s e
— 2 vz 2.37
v(Ti+) (10(8) ( )
and hence we obtain that
v(09) > v(r+). (2.38)

Case 2. 7; < 69. We let u(t) be the maximal solution of 4’ = —p(u) on [r;, 67]
such that u(r;) = v(r;+). It follows that

u(7;) ds v(Ti+) ds

Ly||z(m; 39?—%:/ ——5/ —_ 2.39
el u(62) ©(s) ~ v(69) ©(s) ( )

From (2.36) and (2.39) we get

”(7i) s
/ w50 2 (2.40)
and so

o(r) > v(8l). (2.41)

Define T := U, (&,¢] and A = [tp,00) \ T, where & = 7; and (; = 67 if
7, <609, & =00 and ;= 7 if i, > 69, From (2.38) and (2.41) we may write
v(+) <w(&), and hence conclude that v(t) is nonincreasing on A.
Let 0 < € < p and £y be given. Without loss of generality, we may assume that
to € A. It is now clear that v(t) < v(to) for all t € A. Set
€ = m and 7 =infisy, e>a V().

Since V (¢, z) is continuous and V (¢,0) = 0, it is possible to find a positive real
number § such that § < ¢; and

sup V(to,z) < 7.

ll=l|<é
We first claim that if ||zo|| < d, then ||z(¢,to, Zo)|| < €1 for all ¢ € A. Suppose
on the contrary that this is not true. Then, there would exist a t* € A such that
|lz(t*, to, zo)|| > €. But this leads us to the contradiction that n < v(t*) <
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v(to) < 7.
Next suppose that ¢ € (&, ¢;} for some 7. Clearly,

z(t) = z(&) + /;f(s,a:(s))ds if 7 > 62, (2.42)
and
z(t) = z(§) + /:f(s,:c(s))ds if 7; < 69. (2.43)

In view of (v), we easily obtain from both (2.42) and (2.43) that
z(t) Le(l+ ML) <e.

Therefore, the zero solution of (1.1) is stable. We shall now show that if v > 0
then tllm z(t) = 0. We first observe that since v(t) is positive and nonincreasing
e}

on A, there is a nonnegative real number y such that
}Hﬁ, v(t) =p, tEA. (2.44)

We claim that g = 0. Suppose on the contrary that u > 0. Because of (2.44)

and (i), there exists a positive real number p; such that
lz(@®)]] = p1 for all £ € A. (2.45)
If 69 > 7; then, since 7; € A, (2.45) implies that
()|l 2 p- (2.46)
Suppose that 89 < 7;. In this case, #? € A, and therefore by (2.45) we have
2@} > p1. (2.47)
Using (v), we also have
|6:(z(7:)) — 671 < Lllz(m)]l- (2.48)
In view of (2.47) and (2.48), we easily obtain from

2() = w(62) + /o " fls,a(e) ds
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that
lz(m:)ll 2 g1 — ML{lz(r)]]

and hence
()l > /(1 + ML) (2.49)
Thus, we see from (2.46) and (2.49) that
[|z(7)|| > po for alli € N, (2.50)

where pp = p1 /(1 + ML).

On the other hand, since ({;,&+1] € A for all i € N, zliglo v(G+) = Zli)rg v(&) =
p and v(&) > v((;+) > p. Letting m = usrs%ivl%to) ©(s), it follows from (2.37),
(2.40), and (2.50) that

v(&) — v(G+) > ymus for alli € N. (2.51)

Using v(&i+1) < v(¢;+) in (2.51) and then summing the resulting inequality

over ¢ from 1 to kK we get
v(&1) — v(€k+1) = (ympa)k forall k € N. (2.52)

It is clear from (2.52) that if k is sufficiently large, then the function v takes on

negative values. But this contradicts the fact that v is positive definite. Thus,

we must have u = 0. As in the classical case, it follows that tlim z(t) = 0, and
—00

hence we may conclude that the zero solution is asymptotically stable.

Corollary 2.3.10 [8] Let all conditions of Theorem 3.2.1 except (v) are sat-
isfied. In addition, suppose that the family {6;(z)} is equicontinuous at z =0,
and 69 > 0;(z) for all z € S,. Then the conclusion of Theorem 2.3.9 remains

valid.

Proof. We proceed as in the proof of Theorem 2.3.9, until ¢; is picked. Now
since the family {6;(z)} is equicontinuous at z = 0 and 6] > 6;(z) forallz € S,

given any €2, 0 < €3 < €/M, we can find €3 > 0 such that ) — 6;(z) < €, for
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all ||z|| < €3 and ¢ € N. Fix ¢ > 0 such that €; < min{es,e — Mey}. Then, it
follows from (2.42) and (2.43) that

lz(t)]| < €1+ Mea <e.

Clearly, (2.44), (2.45), and (2.46) hold and by our assumption the case 67 < 7
does not exist. Thus (2.50) is satisfied with ps = p1. The rest of the proof is
the same as that of Theorem 2.3.9. '

Example 2.3.4 Let 0;(z) = i — /27 + 23 so that G; = {(t,z) € G : i—
V22 + 12 <t <i}. We define S = |J2, G; and consider the impulsive system

. {—m,@@¢&
T =

-, (t, .’17) €S
g T, (t7 SC) ¢ S:
Ty =

—ZT9, (t, .'17) €S
Amllt:ﬂi(z) = —az; + ﬂ$2s

AZsi=g;(z) = Bz1 — a2
We choose V(z) = z? + 22 and make the following observations:

(a) V(z) = 0if (t,z) ¢ S and V(z) = 2V (z) if (¢,z) € S. Since V(z +
Az) = ((1 — )? + 82)(z} + 23) — 48(c — 1)7122, We have

V(s + Az) < £(a, B)V (),
where £(c, 8) = (18] +]1 - al)®.

(b) |lz+Az|2 = (1 )2+ %) (z?+123) —48(c— 1)z122 and s0 [lz+ Az||® >
(11 — af? - |81%)?||z|2. It follows that if [ |1 — a| — |8]| > 1, then

0;(z + Az) < 0;(z).

(c) 18:(z) — 6| = /=i + 2 = [|z]]-
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(d) Let ¢(s) = 2s and 9(s) = £(aB)s, and fix a positive number y < 1. If
£(a, B) < 1, then In£(a, ) < 2(1 — )||z|| and hence

11
[ g ==l

In view of Theorem 2.3.9 we deduce that the zero solution of (1.1) is asymp-

totically stable, if

11— —|8]]>1 and |1 +a| + |8 < 1.

If we take 6;(z) =i — {/m, then it is easy to verify condition (v) is
not satisfied and therefore Theorem 2.3.9 does not apply. However, since the
additional conditions stated in Corollary 2.3.10 are true, we may conclude that
the above conclusion is valid. We note that the beating is still absent in this
case, since 2 a({)] = 0 for all (t,) ¢ S and (b) holds.

In the next theorem we do not require that D*V (¢, z) be negative semidef-

inite on U;enG;.

Theorem 2.3.11 [8] Assume that the following conditions are fulfilled.
(i) V(t,x) is positive definite on G.
(i) DtV (t, ) is negative semidefinite on G \ UienG;.

(iii) DYV (t,z) < p(V(t,z)) for some ¢ € A and for all (t,z) € UienGi.

(iv) V(8i(z),z + Ji(z)) < ¥(V(bi(x),z) for some ¢ € A and for allz € 5,
andi € N.

(v) There ezists a real number L > 0 such that |6;(z) — 6;(y)| < Lz — y]|
forallz,y€ S, andi € N.

(vi) There exists v > 0 such that
WV (B@)) g
/ =2 > L+l
V(;(z),z) ©(s)

forallz € S, andi € N.
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Then, the zero solution of (1.1) is stable if v =0, and is asymptotically stable
if vy > 0.

Proof. Let u(t) be the maximal solution of u' = ¢(u) on [§, (] such that
u(&;) = v(&+), where & and (; are as defined in the proof of Theorem 2.3.9.

Proceeding as in the proof of Theorem 2.3.9 we easily obtain

/v(Ti) ds_ L||z(r;)|| for 7; > 67 (2:53)
wee) P(8) T ' e '

and

w8 dg
/ % < Lla(m)| for m < 67 (2.54)
v(Ti+) 90(3)

Using (iv) and (vi) we also have

Y _ds < —(L 2.55
/m,.) S <=L+l (2.55)

It follows from (2.53), (2.54), and (2.55) that v((;+) < v(§&) for all i € N. The

remainder of the proof is similar to that of Theorem 2.3.9 and hence is omitted.

Example 2.3.5 Let 6;(z) = i+ 2 + 23. Clearly G; = {(t,z) : i <t <
i+ 22 + z3}. Define S ={J2, G; and consider the impulsive system

. T2, (ta x) ¢ S:
r =
~zy+23, (t,z)€S

T +.’Dg, (t,:L‘) € S,

Azllt:&(z) = —oazx; + IB$2’

. { Zy, (t:x) ¢ Sa
To =

Azy|i=p,z) = Bz1 — oz
We choose V() = z? + 22 and make the following observations:

(a) V(z) = 0if (¢,2) ¢ S and V(z) < 2V2(z) if (t,z) € S. Since V(z +
Az) = ((1 — a)? + B2)(2? + 23) — 48(a — 1)z172, We have

V(z + Az) < (o, B)V (),
where £(c, 8) = (|8] + [1 - al)*.
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(b) Let z,y € R™ such that ||z|| < h and ||y|| < h, where h > 0 is some real

number. It follows that
10:(z) — 6:(y)| < 2h|lz -yl

(c) If ¢(e, B) < 1 then 6;(z + Az) < i+ €(a, B)]|z|| < 6;(z).

(d) Let g = (—z2+23, 21 +23) and m(h) = max)g<s ||g||. Clearly m(h) — 0
as h — 0 and so there exists hg such that 2hm(h) < 1 for all A < hq.

(e) Let ¢(s) = 2s% and 9(s) = £(a, 8)s, and fix a positive real number ~.
Choose ||z|| < min{he, §/(1 —1)/(21(2ho + 7)) }. It follows that 1 — £ >
2¢(2h + v)||z||® and so

\4

ds

— 2> (2 .
| om 2 GhF )]sl

By Theorem 2.3.11, the zero solution of (1.1) is asymptotically stable if
18]+ |e—1] < 1.
In this case, 2hM < 1 is sufficient for the absence of beating.

The following result is a Chetaev’s type instability theorem [14], for the

zero solution of (1.1).
Theorem 2.3.12 [3] Assume that the following conditions are fulfilled.

(i) For every € > 0 and for every t > ty there ezists points T € S, such that
V(t,Z) > 0. The set B of all points (t,z) such that £ € S, and such that
v(t,Z) > 0 is called the "domain v > 0.” The set B is bounded by the
hypersurfaces ||z|| = p and by v(t,z) = 0. We assume that v is bounded
from above in B and 0 € 0B for all t > 1.

(it) DTV (t,z) is positive semidefinite on B \ Ujen (G; N B).

(iii) DYV (t,z) > —p(V(t,z)) for some ¢ € A and for all (t,z) € Ujen(G; N
B);
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(iv) V(6i(z),z + Ji(z)) > $(V(8;(z),z) for some 1 € A and for all (,z) €
Uien(Ts N B), where T'; = {(t,z) : t = Oi(x)}.

(v) There ezists a positive real number L such that |8(z) — 67| < L||z|| for
ze€S,andi € N.

(vi) There exists a positive real number vy such that

—— 2 (L +7)lll

/w(V(ﬁi @):2) s
V(8i(z),x) <P(3)

forallz €S, andi € N.
Then the zero solution of (1.1) is unstable.

Proof. Fix € > 0 and to, (t,z0) € B, and let z(¢) = z(¢, %, Zo) be a solution
of (1.1) having discontinuities at ¢ = 7; for i € N. We shall show that z(¢)
must leave the ball S, in finite time. In view of (i), we see that v(t) is
nondecreasing on each interval of its continuity in A We need to prove that
v(t) is nondecreasing for all t € A. So we let u(t) be the minimal solution of
u' = —p(u) on [, ;] such that u(&) = v(&+), where &; and (; are as defined

in the proof of Theorem 3.2.1. By using Lemma 2 and (vi) we see that

v(ri+) ds
/, o o 2N 7> (2.56)
and
v(®) s
/,, oy 2 et it <2 (2.57)

From (2.56) and (2.57) we may deduce that v(&) < v(G+). Therefore, v(t) >
v(to) for all t € A, implying that (t,z(t)) € B \ UienGi for all £ € A.

Let M > 0 be real number such that V(¢,z) < M for all (¢,z) € B, which is
possible by (). Since v(t) > v(to), there is a p; > 0 such that lz(®)|| = w1 for
all t € A. If we now define m = v(tor)nsi%M ©(s), then it follows from (2.56) and
(2.57) that

v(Git) — v(&) = ymu. (2.58)
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Since v(&i+1) 2 v({i+) we get
v(&ir1) —v(&) > ymp, forallie N (2.59)
Summing (2.59) over 3 from 1 to k we see that
v(€es1) — v{&1) = (ymp )k forallk € N. (2.60)

But (2.60) leads to a contradiction that v(t) is unbounded in B. This completes
the proof.
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CHAPTER 3

A NEW STABILITY THEOREM OF THE ZERO
SOLUTION

3.1 Introduction

In this chapter, we shall try to improve the theorem 2.3.9. We define
G; = {(t,z) € G: tis between t = w;(z) and t = §;(x)},

where ¢t = w;(z) is any given surface like ¢t = 6;(z) such that w;(0) = 6;(0). We
note that w;(z) = 6;(0) in [3].

As is mentioned before, the solutions of differential equations with variable
moments of impulse effect may experience pulse phenomena. That is to say,
they may hit given surfaces of discontinuity finite or infinite number times
causing rhythmical beating [10, 16]. One of the things we came to realise
was that this results in additional complications in studying such systems and
therefore in most cases it is necessary to find conditions that guarantee the
absence of beating and the stability of zero solution. In this chapter, we assume
that 6;(z) is Lipshitzian and satisfies the inequality 8;(z + J;(z)) < 6;(z).

It is worthwhile noting that the arguments developed in [5, 6] were based
on a comparison method. Specifically, the change of a Lyapunov function
in the interval of continuity was compared with its change at the moments of
discontinuity. Our technique is also based on a comparison, but it is somewhat
different. We compare the changes of a Lyapunov function in the vicinity of
the moments where solutions meet a surface of discontinuity. Moreover, there

is no restriction on the distance between moments of impulses. As a result,
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the following result seem to be very useful for stabilization and controllability

of impulsive systems [9].

3.2 The Main Result
Theorem 3.2.1 Assume that the following conditions are fulfilled.
(i) V(t,x) is positive definite on G.
(it) D*V (t,z) is negative semidefinite on G.
(iii) DYV (t,z) < —p(V (¢, %)) for some ¢ € A and for all (t,z) € UsenGi.

(iv) V(8i(z),z + J;(z)) < ¥ (V(bi(x),z) for some Y € A and for allz € S,
andi € N.

(v) There exist positive real numbers Ly, Ly such that |0;(z)—6:(y)| < Ly|lz~
yl| and |wi(z) — wi(y)| < Lo|lz — yl| for all z,y € S, andi € N.

(vi) There ezists a real number Ly > 0 such that |0;(z) — wi(z)| > Ls||z|| for

allz € S, andi € N.

(vii) There ezists a real number v > 0 such that

P(V(8:(z),))
/ ds < L3

= -7z
V(6:(z),z) w(s) (1+ML2 izl

for all (t,z) € G; andi € N.
1

If v = 0, then the zero solution of (1.1) is stable. If v > 0 and V(t,7) is
decrescent on G, then the zero of (1.1) is asymptotically stable.

Proof. Let z(t) = (¢, s, Zo) be a solution of (1.1) that has discontinuities at
t = r; for which 7; = 8;(z(7;)). Let t = 7; be points satisfying 7; = w;(z(n;)) for
all i € N. It follows from (i1) and (44i) that v(t) :== V(t,z(t)) is nonincreasing
on G except the points of discontinuities of the solution z(t) of (1.1). To
determine the change of v(t) we look at its behaviour in G;. For each fixed

i € N, there are two possible cases: either 7; > 7; or 7; > ;.
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We assume without loss of generality that < 7;. Before embarking on

utilizing the conditions of the theorem, we observe that

o) =)+ [ £(s,3(5)ds

and
m—n = wiz(n)) —0i(z(r))
> |wi(z(m)) — 8:(@(m)| — 10:(z(m)) — bi(z ()|
> Lallz(m)l| = MLa(m — 7)
equivalently
m=m > g la)l| 3.)
Let u(t) be the maximal solution of u' = —@(u) on [r;, 7] such that u(r) =
v(r;). We invoke Lemma 2.3.7 and (vi) to see that
Ly /Wi) ds /"(TJ ds
s <m—7i = — < —_ 3.2
T Eml < m o 20 = iy 906) (3.2)

Employing conditions of theorem (iv) and (vii), we also have

( _Ls yiaml < /¢(v(ni)) ds . /v(ne+) ds (33)
Y- T\T; < —_ 5 —_— .
1+ ML i v(m:) <P(3) v(n;) 90(3)
Adding (3.2) and (3.3) yields that
v(13) ds
> Yllz(m)|l- (3.4)
/(17,+) (p( )
Thus we get
v(r) 2 v(n+). (3.5)

Similarly, we can show that v(7+) < v(m) if 7 > 7. Accordingly we define
Q = UX, (&, ¢] and A := [tp,00) \ Q, where §; = 7 and §; = m; if 73 < 1,
& =mnand G =7 if ; > m. It follows from (3.5) that v(G+) < v(§;), and
that v(t) is nonincreasing on A.

Let 0 < € < p and t; be given. Without loss of generality we may assume that
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to € A. It is now clear that v(t) < v(to) for all ¢ € A.
Suppose that 7 = 0. Set

€

T 20T+ M(Ly + Ly)) (36)

€1

According to this ¢;, we can find A = infisyg, 23, V (¢, 2), because V (¢, z) is
positive definite. Since V (¢, z) is continuous and V'(¢,0) = 0, it is also possible

to find a positive real number d such that § < ¢; and

k= sup V(to,z) < A
ll=li<é

We first claim that if ||zo|| < , then
(2, to, zo) | < €1 (3.7)

for all £ € A. Suppose on the contrary that this is not true. Then, there would
exist a t* € A such that ||z(t*, %o, Zo)|| > €1. But this yields the contradiction
that A < v(t*) < v(to) < & < A. This means that (3.7) is valid. Now we

estimate ||z(¢)|| in Q. For ¢ € [w;(0), 7] we write
o(0) = alo) + | fls,a(a)ds 39
which yields |
lz()]| < ex(1 + MLy) forall ¢ € [wi(0), 7). (3.9)

In particular, we have ||z(w;(0))]| < €1(1 + ML,). Using w;(0) = 6;(0), we can

write
z(t) = z(6;(0)) + /t f(s,z(s))ds for all t € [r;,6;(0)], (3.10)
0:(0)
which implies that
le@| < lz(@:O)] + Mt — 6:(0)] < ex(1+ M (L1 + Ls)) (3.11)

for all t € [r;, 6;(0)]. In view of (v), we easily obtain from both (3.9) and (3.11)
that ,
CL‘(t) S 61(1 +M(L1 +L2)) = ‘;- <€
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for all £ € Q, and hence, we deduce from (3.7) and (3.10) that the zero solution
of (1.1) is stable.

We shall now show that if v > 0, then tligxo z(t) = 0. We first observe
that since v(t) is positive and nonincreasing on A, there is a nonnegative real

number « such that

limv(t) =, teA. (3.12)

i—00

We claim that & = 0. Note that v(t) is decrescent, that is to say, there exists
a positive definite function W : S, — R such that |v(t)| < W (z) for all ¢ > 1.
Now suppose on the contrary that o > 0. In this case, we can always find
> 0 such that

0<o=sup W(r)<a
llzll<p

and hence,

a<v(t) <W(z() <o<a.

That is, @ < . This conradiction yields that there exists a positive real number

«; such that
lz(@)|| = a1 forall ¢t € A. (3.13)

On the other hand, since ({;, &i+1] € A for all i € N, we have li)m v({i+) =
1—00

E)m v(&) = a. Therefore from (4¢) and (3.5) we have
1—00
v(&) > v(G+) > forallie N. (3.14)
Let 8= min ¢(s). It follows from (iz), (3.4) and (3.13) that
a<s<u(to)
v(&) —v(G+) > ayfy foralli e N (3.15)
Since v(¢) is nonincreasing for t > t,, we have
v(&i41) L v(G+) forallie N. (3.16)

Substituting (3.16) into (3.15), we obtain

v(&) —v(&iy1) > aufy forallie N. (3.17)

40



Summing the resulting inequalities (3.17) over i from 1 to k, we obtain

k
Y v(&) —v(&s1) =) aipy forallkeN. (3.18)

i=1 =1

Correspondingly, we have

v(&1) — v(€ks1) = (upy)k forall k € N. (3.19)
That is,

b(€e+1) < (1) = (aB)k forall k € N. (3.20)

It is easy to see from (3.20) that if k is sufficiently large, then the function
v(t) takes on negative values. But this contradicts the fact that v(t) is positive

definite. Thus, we must have o = 0. Namely, we have

lim »(t) = 0. (3.21)

t—o0

As in the classical case, it follows that
Jim [l=(9)] =0, 322

and hence we can infer that the zero solution is asymtotically stable.

Let us put Theorem 3.2.1 to a concrete test:

Example 3.2.1 Let 6;(z) = i — /2% + 7% and w;(z) = i — /=% + 23 so that
Gi={(t,z) € G: i—/z} + 22 <t <i-1\/z2+ 2%} Wedefine S =J2; G

and consider the impulsive system

) { —zs, (t,z) &S,
Iy —

-z1, (t,z) €S
. zy, (ta IE) ¢ Sa
T =

-z, (t,z) €S
A$1|t=0¢(:o:) = —oazx; + IB$27

AZs|i=p;(z) = BT1 — .

We take V(z) = z2 + 22 and make the following observations :
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(a) V(z) =0if (t,z) ¢ S and V(z) = —2V (z) if (t,z) € S. Since
V(z+ Az) = (1 — 0)® + %) (2} + 73) — 48(a — 1) 2172
we have
V(z + Az) < k(e, B)V (2),
where k(c, 8) = (18] + [1 — a)*.

(b) |lz+Az|? = (1 — )2+ %) (22 +z3) — 48(a— 1)z17; and so ||z 4 Az|? >
(|1 = af? = |81%)?||||. It follows that if | |1 — a| — |B|| > 1, then

0;(z + Az) < 8;(z).

(c) 16i(2) —wi(z)| = li— v/=f + 2§ — (i—5v/2% + 23)| = 5+/=1 + 23 = 3all.
(@) 16:(z) = :()| = li— vzl + 23— (i— V¥ + 13)| = lllyll = ll=ll] < l|lz -yl
(e) Jwi(z) —wiy)| = li — 5v/=1 + 25 — (i — 3v/uf + )| = 3lllvll — ll=ll] <

sllz —yll.

(f) Let w(s) = 2s and 9(s) = k(a, B)s, and fix a positive number v < 1.
Note that ||f(¢,z)|| = ||z|| < 1 for all (t,z) € S. If k(o,B) < 1, then
Ink(a, B) < 2(3 — 7)||z|| and hence

kY ds 1
(- .
| <Gl

In view of theorem 3.2.1, we deduce that the zero solution of (1.1) is asymp-

totically stable if
1—al = |81 >1 and [1+0a] + |8l < 1.

If we compare this example with example 2.3.4, we infer that we have
opportunity to make use of suitable w;(z) which is closer to 6;(z) than 9. In
other words, we estimate the difference |0;(x) — w;(z)| over a region G;, which
is smaller than Gj;, to ensure that the zero solution is stable or asymptotically
stable. In particular, we can chose w;(z) to be 67 and the only thing that

remains is to find «y satisfying the condition (vi7).
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