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ABSTRACT
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M.Sc., Department of Mathematics
Supervisor: Assoc. Prof. Dr. Yildiray Ozan

June 2002, 49 pages

Given two nonsingular real algebraic varieties, we can consider them as
smooth manifolds and view regular maps between them as a subset of the
topological space of smooth mappings between them. Thus we can ask when
can a smooth map be approximated by algebraic ones. In this thesis, we
deal with sufficient and necessary conditions for the set of regular maps to
be dense in the smooth mappings, based on two main results of J. Bochnak

and W. Kucharz.
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Yiiksek Lisans, Matematik Boliimii

Tez Yoneticisi: Dog. Dr. Yildiray Ozan

Hagziran 2002, 49 sayfa

iki cebirsel varyete verildiginde, bunlar: diizgiin manifoldlar olarak, aralarmn-
daki regiiler déniigiimleri de s6zkonusu diizgiin manifoldlar arasindaki diizgiin
dﬁnﬁsﬁmlerden miitesekkil topolojik uzayin bir alt kiimesi olarak ele al-
abiliriz. Boylelikle, bu uzayda hangi diizgiin doniigiimlerin cebirsel olan-
larca yaklagik ifade edilebilecegi sorusunu sorabiliriz. Bu tezde, cebirsel
doniigiimler alt kiimesinin diizglin doniigiimler uzayinda yogun olmas: i¢in
gerek ve yeter gartlari, J. Bochnak ve W. Kucharz’in iki esas sonucunu temel

alarak inceleyecegiz.

Anahtar Kelimeler: Reel Cebirsel Varyeteler, Regiiler Doniigiimler, Weier-
strass Yaklagtirmasi, Cebirsel Vektér Demetleri, Abel Varyeteleri.
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CHAPTER 1

INTRODUCTION AND

PRELIMINARIES

1.1 Basic concepts and motivation

An affine real algebraic variety X is an irreducible Zariski closed subset of
R™, for some n. Thus X is the common zero locus of finitely many irreducible
polynomials taken from R[zi,... ,Z,]). Morphisms of real algebraic varieties
are called regular maps. If f is a regular map between the real algebraic
varieties X C R™ and Y C R™, then it is of the form f = (f1/91,-- - , fm/9m)s
where f;,9; € R[z1,...,z,] and g;(0)NX =, foralli =1,... ,n. If there
exist regular maps f: X — Y and g: Y — X satisfying go f =idx and
f o g = idy, then real algebraic varieties X and Y are said to be isomorphic.
In this context, an affine real algebraic variety X will actually mean the
isomorphism class of X, unless we mention the ambient space. We define
a real algebraic variety as a topological space that has a finite open cover
consisting of affine real algebraic varieties. Note that every projective real
algebraic variety is actually affine ([3], Theorem 3.4.4., Proposition 3.2.10).
Every real algebraic variety is endowed with the Zariski topology, but also

carries the usual Euclidean topology. The latter topology is much more finer
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than the former. Here and throughout this thesis, all topological notions
related to real algebraic varieties will refer to the Euclidean topology, unless
explicitly stated otherwise.

Given two real algebraic varieties X and Y, let R(X,Y) denote the set
of all regular maps from X to Y. Let C(X,Y) be the space of all continuous
maps from X to Y, endowed with the compact-open topology. It is clear that
we can consider R(X, Y) as a subset of this function space, and endow it with
the relative topology. If X and Y are nonsingular, then it is well-known that
X and Y are smooth manifolds. In this case, let C*(X,Y) be the space of
all smooth maps from X to Y, endowed with the C* compact-open topology.
Then R(X,Y) is a subset of this space and is endowed with the relative C*
compact-open topology this time. We ask the following two questions:
Problem(1) When R(X,Y) = C(X,Y)?

Problem(2) When R(X,Y) = C®(X,Y)?
Here the closures are in the topologies of C(X,Y’) and C*(X,Y'), respectively.

One can weaken these questions and ask, in general, when f : X “"22%% y

in R(X,Y) is or when f : X "™%4" v in R(X,Y) is. However, we are
going to concentrate on the stronger formulations given above. Note that
C*(X,Y) is dense in C(X,Y’) and C* compact-open topology is coarser, so
(2) = (1).

Mainly, there are two motivations for these problems. The first one is
the classical Weierstrass Approximation Theorem. Together with the im-
provement of M. H. Stone in 1937, this classical result answers our ques-
tions positively, when the target variety is a real affine space ([13], Theorem
3.2.21.). That is; any smooth map from a compact smooth manifold em-
bedded into some R™ to R™, for any m, can be approximated by n-variable

real polynomials defined on this compact manifold. On the other hand, J.



Nash showed in 1952 that any closed smooth manifold is diffeomorphic to a
component of a nonsingular real algebraic variety ([26]), and later in 1973,
A. Tognoli proved that any closed smooth manifold is diffeomorphic to a
nonsingular real algebraic variety ([32]). According to these, one can always
pick a nonsingular real algebraic variety X from the diffeomorphism class of
a smooth manifold M. Such an X is called an algebraic model of M. What
naturally accompanies this process of making smooth objects algebraic is

approximating smooth maps by algebraic ones.

1.2 Concise history

In general, very little is known about regular maps between real algebraic va-
rieties. The situation is the same to a large extent for the aforementioned den-
sity problem. Most results are obtained for maps between spheres, whereas
the others are for products of spheres, flag varieties, Grassmannians, and ra-
tional surfaces, which are all examples of rational varieties (see Section 1.3).
In the related studies, general results mostly occur in low-dimensions, actu-
ally when the dimension of the domain or the target variety is 1 or 2. All the
results are obtained by making use of topological/algebraic (co)homology,
topological/algebraic vector bundles and algebraic K-theory, together with
some analytic methods and some classical methods in algebraic geometry.
Chronologically, we may accept Jean-Louis Loday’s studies on regular
mappings to be the avant-garde of studies in this topic ([22]). It was Jacek
Bochnak and Wojciech Kucharz who advanced the studies on the subject.
Together with M. Coste, M.F. Roy, D.Y. Suh and Y. Ozan, they have ex-
tensively studied mappings into spheres in [3], [5], [6], 8], [9], [10], [12],
[27], and [31]. The results that Bochnak and Kucharz obtained in 1987 were



the initiators for these works (see [5]). Among several results for maps be-
tween spheres, they showed that R(S", S¥) = C*(S", S*) when n > 1 and
k=1,2, or 4.

Kucharz studied mappings into flag varieties in [19]. Suh, Kucharz and
Rusek obtained results for the case in which the target variety is a Grass-
mann variety in [21] and [30]. In particular, Kucharz and Rusek showed in
1997 that R(X, Gr(n, k)) = C*(X, Gr(n, k)), provided that X is a compact
nonsingular curve (see [21]). Finally, Bochnak put forth results for mappings

into rational surfaces in [20].

1.3 Main theorems

Definition 1.3.1. Let X C R® and Y C R"‘ be real algebraic vari-
eties. If f : X — Y is of the form f = (fi/g1,-.., fm/9m), where
fiv9i € Rlzy,...,2,] and g;7*(0)NX # X, for all 4 = 1,...,n, then f
is said to be a rational map between X and Y. If there exist rational maps
f: X —Yand g:Y — X satisfying go f =idx and fog =idy, then

X and Y are said to be birational.

Definition 1.3.2. An n-dimensional real algebraic variety X is called

rational if it is birationally equivalent to RP”.

Example 1.3.3. Affine spaces and spheres of any dimension are rational.
An important type of rational varieties is the Grassmann variety, which is
defined to be the space of all £-dimensional vector subspaces of R®, and
denoted by Ggr(n,k). A flag variety is the set of all possible linear cell

decompositions of RP”, for some n. Also flag varieties are rational.
In this thesis, we focus on the results that Bochnak and Kucharz obtained
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in [11], in 1999. There are two main theorems in consideration. The first the-
orem generalizes the ideas in the works we mentioned in the previous section,
for the case when the domain is a compact curve, as all varieties appearing
there are rational. The second theorem provides a necessary condition for

the density of regular maps.

Main Theorem S (chhnak-Kucharz). Let X be a compact nonsin-
gular real algebraic curve and let Y be a nonsingular real algebraic variety.
If Y is rational, then R(X,Y) is dense in C*°(X,Y).

Main Theorem N (Bochnak-Kucharz). Let X be areal algebraic variety
of positive dimension and let Y be a compact nonsingular real algebraic va-
riety. If R(X,Y) is dense in C(X,Y), then b,(Y,C) =0.

Note that Theorem S proposes a sufficient condition also for Problem(2)
and Theorem N proposes a necessary condition also for Problem(1). We
discuss and prove Theorem S in Chapter II, and Theorem N in Chapter
ITI. All the required preliminaries but some general concepts are given in
the related chapters. The remaining sections in this chapter constitute a

preliminary part for both Chapter IT and Chapter III.

1.4 Blowing-up

In this section we present blowing-up for both smooth real manifolds and for
real algebraic varieties. For details and proofs in this section, we refer to [2]
and [3]. Although we will mostly deal with algebraic blowing-up, we begin

with the blowing-up in the smooth category, as it provides a visualization



for what goes on. Note that everything described below can be also trans-
lated into the analytic category and each proposition mentioned here has an
analytic analogue. Proofs in the analytic case are the same to the letter.

Let M be a smooth real manifold and let N be a proper smooth real
submanifold of M. We will construct a new manifold B(M, N), called the
blow-up of M along N, and a proper map n(M, N) : B(M, N) — M, instead
of which we mostly use 7, in short. We call N the blow-up center and call 7
the blow-up projection.

Let p: E — N be the projective normal bundle of N in M, that is, F
is the space of lines in the normal bundle of N. So, if N has codimension 7,
p will be a smooth fiber bundle with fiber RP™"!. As a point set, B(M, N)
is M \ N union E. We then put a natural manifold structure on this space.
The map n(M, N) is the identity on M \ N and is the bundle projection to
N on E.

There is a global description of the smooth structure on B(M, N). Let
i : T —> N be the normal bundle of N and let 7 : L — FE be the canonical

line bundle over its projectivization F, so
L ={(z,\) € T x E|zis a point in the line A}.

Identify E and N with their 0-sections in L and T, respectively. Then there
is a canonical isomorphism v : L\ E — T'\ N induced by projection to
the first factor. Let % : T — M be a tubular neighborhood of N. Then
B(M, N) is the manifold obtained by gluing L and M \ N together via the
embedding Yo v|pg : L\ E — M\ N. We have a natural smooth
projection w(M,N) : B(M,N) — M which is the identity on M \ N and
is pon E.



Example 1.4.1. Let us determine B(R3,0). E is just RP?> and we can
identify L with RP2—[1,0,0,0]. The maps  and v are given by n[w, z,y, 2] =
[z,9,2] and vw,z,y,2] = (z,y,2)w/(z® +y* + 2%). In this case, 9 can be
onto, so we just get B(R3,0) =L and w(R3,0) = ov.

Another description of B(R3, 0) is obtained by describing its charts. The
manifold E = RP? has three charts [1,y, 2], [z, 1, 2], [z, ¥, 1], and of course the
bundle L is trivial over each chart. This gives us three charts for L = B(R3, 0)
and the map 7 (R3, 0) is given by (z, zy, zz), (zy, y,yz) and (zz, y2, z) respec-
tively on the three charts.

The concrete description of the blow-up in the example is useful, so we
state it generally:
Let &, : R™ — R™ denote the map whose j-th coordinate is :

z; fj=iorj>n

Ein (21,2, <+ ,Zm)j = {

Then the following describes exactly the local topology of a blow-up:

Proposition 1.4.1. Let N be o proper submanifold of the real smooth
manifold M. Let 6 : U — M be an embedding onto an open set V in M where
U c R™isopenand 671(N) = {(z1,%2,"** ;Zm) € U|z; = 0 for alli < n}.
Then w(M,N)~Y(V) is covered by n charts ¢; : Uy — B(M, N) where
U; = &1 (U) and
0! o (M, N) 0 ; = &inlu;-

Remark 1.4.2. If N C M has codimension one, then B(M,N) = M and
m(M, N) = idy,. Thus if codimN < 2, then blow-up does not change any-
thing. If N is a point in M, then B(M, N) is diffeomorphic to M#RP™,

connected sum of M with RP™,



Now we define the notion of blowing-up in the algebraic category in such
a way that it coincides with our previous notion in the case of nonsingular

real algebraic varieties:
Definition 1.4.3. Let X be an affine real algebraic variety and Y a Zariski
closed subset of X with I(Y) = (f1,--+, fm)- Define

Z ={(z,[fi(z),- -, fm(2)]) € X x RP" |z € X\ Y}

Denote by B(X,Y) the Zariski closure of Z in X x RP™!, (B(X,Y) is thus
an affine real algebraic variety) and 7(X,Y) : B(X,Y) — X, the projection
mapping. The variety B(X,Y) is called the blowing-up of X with center Y,

and 7 is called the blow-up projection.

Remark 1.4.4. The algebraic variety B(X,Y) does not depend on the choice
of generators of I(Y), up to isomorphism compatible with 7(X,Y).

Proposition 1.4.2. If X is a real algebraic variety and'Y is a Zariski closed

subvariety of X, then
(M, Y) saeypry)-r(y) : BM,Y)\ n(M,Y)"(Y) — M\Y

1s a birational isomorphism.

Lastly we present an important proposition on lifting maps between real

algebraic varieties to blow-up. There we use the foﬂowing concept:

Definition 1.4.5. We say a smooth map f: N — M hits a submanifold
L C M cleanly if f~'(L) is a submanifold and df injects the normal bundle
of f~1(L) at each point into the normal bundle of L.



Proposition 1.4.3. Suppose M and N are smooth manifolds or nonsingular
real algebraic varieties, L is a smooth submanifold or nonsingular Zariski
closed subset of M and the smooth map (or regular function) f : N — M hits
L cleanly. Then there is a unique smooth map f : B(N, (L)) — B(M, L)
compatible with projections. The map f is a regular function in the algebraic

case. In other words, the following diagram commutes:

BN, (L) L B, L)

dn (v, 1-1 (1)) dn(ar,r)
N 1, M

1.5 Resolution of singularities

The possibility of resolution of singularities in characteristic zero was estab-
lished by Hironaka ([17]). Let X be a real or complex algebraic variety, then
Sing(X) is a proper closed subvariety of X. By Hironaka’s theorem, we can
desingularize X by blowing-up Zariski closed nonsingular subvarieties con-
tained in the Sing(X;). That is, we have a finite sequence of blowing-ups on

Zariski closed nonsingular subvarieties:
X:Xk-ﬂ‘—)xk_]‘%“' _fl)Xl ll—)X():X

such that By_1,...,B1, By are the corresponding blow-up centers, all con-
tained in Sing(X). Then 7 = m o--- o is a surjective, proper map and
its restriction is an isomorphism between X \ 7~*(X) and X. In fact, what
Hironaka presented was the choice of such admissible centers, despite that
his work does not give an explicit resolution algorithm.

We are going to use the following proposition quite often:



Proposition 1.5.1. Every nonsingular real algebraic variety X is isomorphic
to a Zariski open subvariety of o nonsingular projective real algebraic variety

Y with dimY = dimX.

Proof. Let X C R™ be a nonsingular real algebraic variety. Projectivizing
this pair we have P(X) C P(R™) = RP"™. The projective closure P(X) of X
is possibly singular. As X C P(X) is nonsingular, Sing(P (X)) is away from
X. Thus, without spoiling X, we can resolve the singular locus of P(X) and
obtain a nonsingular projective real algebraic variety Y. SoY = ’F(\X/) in the
notation we used above. Let 7 : Y — X be the composition of blowing-up
projections in this desingularization process. Since we can regard P(X) as
a Zariski open subvariety of Y and regard X as a Zariski open subvariety of
P(X), the conclusion follows. O

Remark 1.5.1. Any projective real algebraic variety is isomorphic to a com-
pact affine real algebraic variety. So the previous proposition states that any
nonsingular real algebraic variety X can be regarded as a Zariski open sub-
variety of a compact nonsingular real algebraic variety Y. If dimX = 1,

then this Y is uniquely determined, up to isomorphism (see [16]).

1.6 Maps between real algebraic varieties

Let X C R?, Y C R™ be real algebraic varieties and let f = (fi/g1,--- s fmn/9m)
be a rational map between them. Z(g; - go- - - gm) N X is the indeterminacy
set of f, so, by definition, it is a proper Zariski closed subset of X. Denote
this closed set by A. Thus f is regular on the Zariski open set X \ A.

We implicitly make use of the following basic fact in many proofs:

10



Proposition 1.6.1. If f: X — Y is a rational map from a real algebraic
variety to a projective real algebraic variety, then the indeterminacy set A of

f has codim> 2.

Proof. Let f be of the form f = [f1,... , fm], 50 A = Z(f1,... , fm) Suppdse
that codimA = 1. Then the subvariety A = Z(g), where g is a nonconstant

irreducible polynomial. Write each component function of f as f; = g™ fz

such that g does not divide f;. Putting 7 = min{ry,...,7m}, we have f =
[g7*" Fiyeoo,gimT fm] The right hand side is defined on the whole X. [

Theorem 1.6.2 (Elimination of indeterminacy). Let f : X — Y C RP™
be a rational map from a nonsingular real algebraic variety to a projective
nonsingular real algebraic variety. Then there erists a nonsingular real al-
gebraic variety X and a surjective, proper map T : X — Y such that
fom: X — Y is regular.

Proof. Let A G X be the indeterminacy set of f. By Hironaka's theo-
rem, we can make the subvariety A a union of codimension one nonsingular
subvarieties with normal crossings by blowing up Zariski closed nonsingular
subvarieties contained in Sing(A). Denote this union by A. Let B be one
of the nonsingular closed subvarieties contained in A, andlet 7: X — X
be the blow-up of X along B. Since B is a Zariski closed nonsingular sub-
variety of codimension 1, the rational map fow : X — RP™ extends over
B. Continuing this process, we extend f over A. Hence we obtain a regular

map on X. O

Example 1.6.1. Let f : RP? — RP' be arational map defined by f([z,v, 2]) =
[z,y]. The indeterminacy set of f is A = {[0,0,1]}. We blow-up RP? at this

11



point. Then we have
B(RP?,[0,0,1]) = {([z,4,2],£) € RP* x RP* | [z,,2] € 4,[0,0,1] € £}

and

2 o m(lz 2 — [a:,y] if [:L‘,y,Z];lé[0,0,l]
f=tonley.2,0 {Kﬂ{z=0} otherwise

where {z = 0} = RP'. Hence f is regular on X = B(RP?, 0,0, 1]).

12



CHAPTER 2

A SUFFICIENT CONDITION

2.1 Statement of Theorem S

In this chapter we are going to discuss and prove the following theorem:

Theorem 2.1.1 (Theorem S). Let X be a compact nonsingular real alge-
braic curve and let Y be a nonsingular real algebraic variety. If Y is rational,
then R(X,Y) is dense in C*(X,Y)

Remark 2.1.1. If X is non-compact, then the theorem immediately fails,
even when Y is a Euclidean space. To illustrate this, take X =Y = R
and consider the smooth map f(z) = sinz between them. Clearly it is

impossible to approximate sinz by polynomials.

Remark 2.1.2. X can not be replaced by a higher dimensional real alge-
braic variety, even if ¥ = RP!, the simplest rational variety. One can see
_this as follows: Bochnak and Kucharz showed that for a compact connected
orientable smooth manifold M, the following are equivalent:  (z) For each
algebraic model X of M, the set of regular mappings R(X, S") is dense in
C*(X,S') and  (ii) by (M) = 0 or dimM = 1. ([7], Corollary 1.7.) Thus

for any compact connected orientable smooth manifold M with dim> 2 and

13



nonzero first betti number, there exists an algebraic model X of M such that
R(X,SY) is not dense in (X, S1). Noting that RP! is real isomorphic to
S, we have the conclusion. For example take M as a sphere with g > 0
handles.

In order to prove Theorem S, we are going to prove a more general state-

ment. Before stating this general form, we need the following two definitions:

Definition 2.1.3. Given a smooth map f : M —> N between smooth
manifolds, a point @ € M, and a nonnegative integer r, let ag,ay,...,a, be
the first 7 + 1 terms of Taylor expansion of f at a. We define the r-jet of f
at = as the (r + 1)-tuple (ao,ay,...,a,), and denote it by j7f(a).

Definition 2.1.4 (Property(X)). Let X be a compact nonsingular real
algebraic curve. A nonsingular real algebraic variety Y is said to have
Property(X) if for every map f € C*(X,Y), every neighborhood U of f
in C*(X,Y), every finite subset A of X, and every nonnegative integer s,
there exists a map g € R(X,Y) such that g € U and j°g(a) = j*f(a) for all
a € A.

Theorem 2.1.2 (Theorem S'). Every rational real algebraic variety Y has

Property(X) for every compact nonsingular real algebraic curve X.

Y has Property(X) implies, in particular, that R(X,Y) is dense in
C*®(X,Y). Thus Theorem S is a corollary of Theorem S'. Although the
latter is more general, the former states the core.

To facilitate, reader may view Property(X) as the indicated density con-
dition plus ‘some r-jet condition’. Actually, the latter is used only in the
proof of Lemma, 2.5.1 and in a very technical manner. This ‘r-jet condition’
is easily transferred everywhére else it appears, so reader may omit those

lines without loosing the main idea.

14



Now we can sketch the outline of the proof of Theorem S': First we
prove that RP™ has Property(X) for any compact nonsingular real algebraic
curve X. Secondly, we show that Property(X) can be lifted to blow-up.
There we use an intermediate category; namely the real analytic category,
introduced in the next section. Thus in this second step, supplementary job
will be showing that an analytic map can be lifted to blow-up, too. Finally,
we combine these results to complete the proof. These steps correspond to

Section 2.4, Section 2.5, Section 2.6 in order.

2.2 Real analytic manifolds and maps

We say that a function f: D CR — R is real analytic if it has a convergent
power series expansion with positive radius, at each z € D. The analyticity
of a real-valued function with domain in R” is then defined by multi-index
and rearrangement. Finally, for a vector-valued function analyticity can be

defined by the analyticity of each component function.

Definition 2.2.1. A manifold M is called a real analytic manifold if it has an
atlas {(Ui, ¢;) }ier such that each chart transform ;o @;" is a real analytic
function for j,k € I. A map f : M — N between real analytic manifolds
is called analytic if for each € X the composition 1 o f o ™! is analytic

where ¢ and 1 are analytic charts at z and f(z), respectively.

Remark 2.2.2. Zeros of an analytic function are isolated. If an analytic

function is nonconstant then it is not constant on any nonempty open set.

Remark 2.2.3. Every nonsingular real algebraic variety is a real analytic
manifold and every real analytic manifold is a smooth manifold. Every

regular map is real analytic and every real analytic map is smooth.
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It is convenient to improve the above picture. Chow’s theorem remarkably
states that in P", any analytic variety is algebraic. Indeed, algebraic category
and analytic category are locally similar, whereas smooth category is so far
away from these. One bridge between these categories is that an analytic
map is locally an infinite sum of polynomial terms. On the other hand,
analytic maps are dense in smooth maps with respect to C* compact-open
topology, which contributes another bridge. Thus, analytic category appears
to be an intermediate step that Bochnak and Kucharz use to approximate
smooth maps by algebraic morphisms. The following two propositions are

used throughout the proof of Theorem S:and its Lemmas:

Proposition 2.2.1. Let A be a finite subset of a compact nonsingular alge-
braic subset X of R*. Then for any f € C*®°(X) and any neighborhood V
of f in C®(X), there ezists a polynomial g € R(X) such that g € V and
jaf=7jlg foralla € A.

Proof. See [4], Corollary 1. O

Proposition 2.2.2. Let A be a discrete subset of a compact analytic manifold
X, {Sa}aca @ sequence of nonnegative integers, f : X — Y a smooth map
and V a neighborhood of f in C*(X,Y). Then there ezists an analytic map
h: X —Y such that h € V and j% f(a) = j**h(a) for all a € A.

Proof. See [4], Corollary 2. Note that the “very strong Whitney C* topol-
ogy” mentioned there coincides with our C* compact-open topology as X is

taken to be compact. O
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2.3 Algebraic vector bundles

Here we present a plenty of definitions and propositions about algebraic vec-
tor bundles. All these are used in the next section to prove that RP™ satisfies

Property(X). We start with the basic definitions:

Definition 2.3.1. A pre-algebraic R vector bundle is a triple ¢ = (E, 7, X),
where:

(i) E is a real algebraic variety (not necessarily affine), and 7 : F — X is
a regular mapping,

(ii) for each z € X, the fiber #~!(z) is a finite dimensional R-vector space,
(iii) there exists a finite covering {U;}ier of X by Zariski open sets and, for
each i € I, an integer n and a biregularisomorphism ¢; : U; X R® — 7~ 1(Tj;)
such that mo¢; is the canonical projection of U; x R” onto U; and, for every
z € U;, the restriction z x R® — 771(z) of ; is an R-linear isomorphism.
An algebraic section of £ is a regular mapping s : X — E such that
7o s =1idyx. The variety X is called the base space of £ and E is called the
total space of &.

Remark 2.3.2. The rank of an R-vector bundle £ = (F,m, X) is the func-
tion from X to N which assigns to £ € X the dimension of the R-vector
space m~'(z). By (iii), the rank is locally constant for the Zariski topology.
Hence if X is connected in the Zariski topology, the rank of a pre-algebraic

R-vector bundle over X is constant.

Definition 2.3.3. Given two pre-algebraic R-vector bundles ¢ = (E, 7, X)
and ¢ = (E',7',X) over X, an algebraic morphism ¢ : £ — ¢ is a
regular mapping 9 : E — E' such that 7' o4 = 7 and, for every z € X,
Yy : 71 — (7')"Y(z) is R-linear. The bundles £ and ¢ are algebraically
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isomorphic if there exist algebraic morphisms % : § — & and @ : & — ¢

such that @ o =1d; and Pop =idgy.

Definition 2.3.4. Let €% denote the vector bundle (X x R™, 7, X) where 7
is the canonical projection. A pre-algebraic vector bundle over X is said to

be algebraically trivial if it is algebraically isomorphic to €% for some n.

Definition 2.3.5. Let f : Y — X be a regular mapping between real
algebraic varieties and let £ = (E,w, X) be a pre-algebraic vector bundle.
The induced vector bundle or pull-back bundle is f*(§) = (E',n',Y) where
E' = {(v,y) € ExY | n(v) = f(y)} and n'(v,y) = y is equipped with
a canonical structure of pre-algebraic vector bundle. If Y is an algebraic
subvariety of X and f is the inclusion map 4 :Y < X, the bundle f*(E) is
called the restriction of the bundle £ to Y and is denoted by £|y.

It is time to notice that the total space E in the Definition 2.3.1 is not
necessarrily affine. Indeed, this makes a difference between pre-algebraic

vector bundles and the bundles we are going to define:

Definition 2.3.6. A pre-algebraic vector bundle £ over X is said to be an
algebraic vector bundle if there exists an injective algebraic morphism from
¢ to a trivial bundle €%, that is, if ¢ is algebraically isomorphic to a pre-

algebraic vector subbundle of a trivial bundle.

Example 2.3.7. Let X be a nonsingular real algebraic variety. The tangent
bundle TX and the cotangent bundle 7* X are algebraic vector bundles over
X. If Z is a nonsingular subvariety of X, then the normal bundle NZ is an

algebraic vector bundle over Z.

Let us note two facts to complete the picture: It is quite straightforward

to show that the total space of an algebraic vector bundle over an affine
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real algebraic variety is itself an affine real algebraic variety. The converse is
also valid: A pre-algebraic vector bundle with affine total space is algebraic
(see [18]). Secondly, the category of algebraic k-bundles is equivalent to the
category of projective modules of finite type over the ring R(X) of regular
functions on. X (see [3]). The latter fact may provide an inspiration for the

next propositions:

Proposition 2.3.1. Let £ = (E,m, X) be a pre-algebraic vector bundle of
rank k over X. Then £ is algebraic if and only if there exists a pre-algebraic
vector bundle & over X such that &€ ® &' is algebraically isomorphic to a

trivial bundle €% for some n.
Proof. See [3], Theorem 12.1.7. O

Proposition 2.3.2. If £ = (E,n,X) and & = (E',7',X) are algebraic
vector bundles over X, then £®E', £RE, & and Hom(¢,&') are algebraic

vector bundles.

Proof. Put £ @ ¢ = (E® E',(m,7'),X) and £ Q¢ = (E® E', (m,7"),X)
and the proof is straightforward. Since £ is algebraic, it is a pre-algebraic
direct factor of a trivial bundle, say €%. Then the projection map induces a
surjective algebraic morphism €% — §. Dualizing this morphism we obtain
an injective algebraic morphism £* — (€%)*. Dual of the trivial bundle
is algebraically isomorphic to itself, so £&* is an algebraic vector bundle by
definition. Lastly, the algebraic isomorphism Hom(¢, &) 22 £* ® & together
with our previous results imply that Hom(€, ') is an algebraic vector bundle

over X as well. O

We finish this section with the following theorem:
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Theorem 2.3.3. Let X be a compact nonsingular offine real algebraic curve.
Every smooth vector bundle of constant rank over X is C* isomorphic to an

algebraic vector bundle.

Proof. See [3], Theorem 12.5.1. O

2.4 Approximation for RP"

Now we prove that for any compact nonsingular real algebraic curve X, RP?
has Property(X):

Let X be a compact nonsingular real algebraic curve X and f : X — RP"
be smooth. Let v = (F,n, RP") be the universal line bundle on RP" with
the total space E = {({,e) € RP" x R*+!| e € £}. Here, RP" is regarded as
the space of one dimensional vector subspaces of R™+1.

Consider the pull-back bundle f*(v) on X. Since vy is a smooth subbundle
of the trivial bundle €%+l then f*(7) is a smooth subbundle of f*(efbs) =
e}"'l. By Theorem 2.3.3, there exists an algebraic vector bundle £ and a
smooth bundle isomorphism ¢ : & — f*(7). We can define a smooth

section

u: X — Hom(€, %)

u(z)(e) = p(e) forallz € X and e € &,.

Since £ and €% are both algebraic vector bundles, so is Hom(¢, €x) by
Proposition 2.3.2. Then as we have mentioned in the previous section, there
exists a pre-algebraic vector bundle € over X such that Hom(£,e%™) @ ¢ is
isomorphic to a trivial bundle €} for some N. So Hom(£,ex) @ ¢ =2 €Y

with 7 : €] — Hom(¢, €%, the projection vector bundle morphism -which

20



is regular. Thus, we can define

i: X — el

mod(z) =u(z) forallz e X.

Now, we begin to construct the approximation. By Proposition 2.2.1,
there exists a regular section ¥ : X — €%, arbitrarily close in the C*®

compact-open topology to 4. As 7 is regular, it follows that the map

v: X — Hom(¢, %

v(z) =mot(z) forallz € X

is a regular section. Here v is arbitrarily close to u. Clearly j°v(a) = j°u(a)
for all a € A.

It follows from the definition of » that the linear map u(z) : & —
(e2t1), = {2z} x R"*! is injective for all z € X. Since X is compact, then
for a sufficiently close v to u the linear map v(z) : & — {z} x R**™! is
injective, for all z € X, as well.

Let p : X xR+ — R™+! be the canonical projection and g : R**! — RP”
be the quotient map taking each nonzero element y € R"*! to [y] € RP™.
We define

g: X — RP"
g(z) =qo p(v(z)(&)) forall z € X.

If g(z) = 0 then v(z)(&;) = {z} x 0 and then v cannot be an injection. So g
is nowhere zero which implies that it is well-defined. Moreover, g is regular

because all v, p and g are regular. Lastly, g is arbitrarily close to f because
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f(@) = qop(f(z) x R™*) = g o p(f*(7)s) = g0 p(p(&:)) = g0 (u(z) (&)
and smoothness of all these functions induces the closeness of v and u to g
and f, respectively. Trivially j°g(a) = 7°f(a) for all a € A. This completes
the proof.

2.5 Lemmas on approximation and blow-ups

Given real analytic manifolds X and ¥, we denote by O(X,Y) the space of
all analytic maps from X into Y, endowed with the topology induced from
the ambient space C*(X,Y). If Z is a subset of Y, let O(X,Y)z be the
subset of O(X,Y) consisting of all maps f for which f~(Z) is a finite set.

Let X be a compact real analytic curve and Z be a closed analytic sub-
manifold of the real analytic manifold Y. Let = : Y — Y be the blow-up
of Y along Z. Then there exists a unique f € O(X, f/) such that 7o f = f
(see Proposition 1.4.3).

To prove that one can lift Property(X) to blow-up, we make use of the

following lemma:

Lemma 2.5.1. Let f € O(X,Y)z and let N be a neighborhood of f in
O(X, f"). Let A be a finite subset of X and let s be a nonnegative integer.
Then there exists a neighborhood N of f in O(X,Y) and a positive integer
r such that O(X,Y) C O(X,Y)z and for every g € N satisfying j7g(a) =
§"f(a) for alla € AU f~X(Z), we have § € N and j°§(a) = j°f(a) for all
acA.

Proof. First of all observe that O(X,Y)z is open in O(X,Y). So any neigh-
borhood in O(X,Y)z is a neighborhood in O(X,Y). Let n = dimY and
k=dimZ.
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The proof will be done in local coordinates. Choose a point zo € f~1(Z).
There is a ‘preferred chart’, say (V|z,v), at f(zo); thatis, ¥ : V — R
is an analytic diffeomorphism with 9(V N Z) = R* x {0}. Choose a chart
(U, ¢) at xq such that f(U) C V and the analytic diffeomorphism ¢ maps z,

to 0. Consider the composite map:

pofopt:R—R"”=RFx R**
Er—=(f1(8);- - fu(8)s- - 5 falt))

Here o fo ™' (0) =1 o f(zo) ER* x {0} =9(V N Z) s0 fr1(0)=---=
fn(0) = 0. On the other hand at least one of fx,...,f, is not identically
zero. Otherwise 9 o f o ™1(R) C R* x {0} = 9(V N Z) which means that
f(U) C Z. 1t follows that f~*(Z) contains the open set U and therefore it is
infinite, contradicting to that f € O(X,Y)z.

We may select (V,7) in such a way that f, has order p at 0 and
fr+1s---» fn—1 all has order at least p. This can be done by putting p =
min{order of f; at 0}, (which is well-defined as at lesst one f; is not
identically zero) and rearranging the coordinates. Furthermore, we may
choose (U, p) so that f1(0) = {0}. Since f, is analytic and X is com-
pact, then f;1(0) is a finite set, say, f,1(0) = {p1,.--,pr,0}. Let 0 < e <
min{|p1,...,|pr|}, ¢:(—€,€) — R be an analytic diffeomorphism, and re-
place (U, ©) by (¢~ 1((—¢,¢€)), ¢ o ), without changing the denotation. Now
by the construction the real meromorphic functions fey1/fn, ... , fa—1/fn are
analytic on R. |

By Proposition 1.4.1, there exists a chart (V,4) around f (zo) in ¥ such
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that ¢ : V — R” is an analytic diffeomorphism, fo) c V and

'z/;ofow"l:R——)Rn=kaR”“k

TRTAONIOR. S SRS (D))

Note that fi (zo) is in this chart because n-th entry of 1o f op~1(0) is nonzero,

due to our construction.

Let I be a bounded open interval in R containing 0. Let N be a small
neighborhood of f in O(X,Y)z such that for any g € N, g(¢~'(I)) C V.

Consider the map

Yogoyp l: I —R"=RF x R
t'__)(gl(t)i"' Jgk(t),"' 1gn(t))

If N is sufficiently small and if r is a sufficiently large integer (in particular,
r > max{p + 1,s}), and if j"g(z0) = j"f(xo), then also g;*(0) = {0},
the meromorphic functions gg+1/gn,--- >9n—-1/9n on I are analytic, and
3*(9i/92)(0) = 72(fi/ f2)(0) for i =k +1,...,n—1. Thus §(zo) = F(zo), s0
we can use the same chart and define

Ppojoyp !l :R—R"=Rx R**

gr11(t) gn—1(t)
OB TOR n(t)).

1 |__>(gl(t)5 oo 5gk(t)1
It follows that, if N is small enough, then gogoyp™! = hogop™1|; is close to

Jofop|r and j*5(a) = j*f(a) forall a € 71(X, F1(2)(AUF1(2)) = A.

Now the conclusion follows. O
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Lemma 2.5.2. Let Y be a nonsingular real algebraic variety and let Z be a
Zariski closed nonsingular subvariety of Y. Let m : Y — Y be the blowing-
up of Y along Z. Let X be o compact nonsingular real algebraic curve. If Y

has Property(X), then so does Y.

Proof. Let ¢ € C*(X, Y) and let V be a neighborhood of ¢. Let A be a
finite subset of X and let s be a nonnegative integer. Since Z is a proper
closed subvariety of Y, then codimn=1(Z) > 1. So there exists a transverse
¢ € V with 5°9(a) = j°¢p(a) foralla € A. As 9 th ¢, 9(C) is not contained
in 771(Z) for any connected component C of X.

By Proposition 2.2.2, we can find an analytic map F € O(X, Y) close
to ¢ in the C*® compact-open topology, satisfying j*F(a) = 7*¢(a) for all
a € A. Since transversality is an open condition, by taking F' sufficiently
close to 9 in V, we ensure that F' is also transversal to 7~!(Z). On the other
hand, being an analytic submanifold of X, F~1(x~1(Z)) is either a finite
set of points or a connected component C' of X. The latter contradicts with
that F(C) is not contained in 7~*(Z) for any connected component C' of X,
so F~1(n~1(Z)) is necessarily finite. Hence, f =m0 F € O(X,Y)z and, in
the notation we used in the previous lemma, f=F.

Now we can apply the previous lemma. There exists a neighborhood N
of f in O(X,Y) and a positive integer r such that N C O(X,Y’)z and for
every map g € N satisfying j7g(a) = j7f(a) for all @ € AU f~1(Z), the
map § € V and 5°G(a) = j°f(a) for all a € A. Since Y has Property(X),
we can choose g € R(X,Y) as above. Then we have a § € R(X,Y) such
that § € V and 5°§(a) = 7°%(a) = j*p(a) for all a € A. It shows that ¥ has
Property(X). O
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Lastly we show that an analytic map between two projective varieties can

be lifted to blow-up:

Lemma 2.5.3. Let ¢ : Z — Y be a regular map between projective nonsin-
gular real algebraic varieties. Let X be an analytic curve andleth: X —Y
be an analytic map. If ¢ is a birational map, then there ezists an analytic

map H: X — Z such that po H = h.

Proof. By applying elimination of indeterminacy theorem to the rational map

¢ 1:Y — Z, we obtain a sequence
V=Y, Y 23... 2y, Y, =Y

and a regular map 1 : Y — Z such that each =; is the blowing-up of Y;_4
along a Zariski closed nonsingular subva.fiety Bii10ofY;, for 1 <i<Ek,
and poyY =m0+ 0.

We now successively construct analytic maps H; : X — Y; satisfying
Hy=h and ;0o Hiyy = H; for 0 <4 < k—1. Without loss of generality,
we may assume that X is connected, because once we construct maps for
connected components then they can be combined to gather the analytic
map on the whole X. Since each B; is a closed analytic variety and each H;
is an analytic map, then H;(B;) is an analytic subvariety of X. As X is
compact, H; *(B;) is either a finite set of points or the whole X.

If H7Y(B,) is a finite set, then H;y; is uniquely determined. Suppose
that H;*(B;) = X. So H;(X) € B;. Let v be the smooth normal bundle
of B; in Y, and consider the pull-back bundle H}(v) over X. Identifying B;
with the 0-section, let T be a tubular neighborhood of B; in Y and 7" be the
tubular neighborhood of the 0-section in v such that T is diffeomorphic to
T'. By Remark 1.4.2 we know that if codimB; < 2, then the blow-up process
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had to be stopped. So we assume that codimB > 2 in Y and therefore
rankH}(v) = codimB; > 2. However any smooth vector bundle over X,
which is diffeomorphic to S', has a-nowhere zero section, provided that k& > 2.
Clearly we can choose such a section whose image is contained in 7”. Thus
H}(v) has a nowhere vanishing smooth section ¢ : X — T" C H}(V) so
that o(X) N H}(B;) = 0. By Theorem 2.3.3, H}(B;) is C* isomorphic to an
algebraic vector bundle £ over X. As € is algebraic, it is a direct summand

of a trivial bundle, say €%. Consider

:X — €y

prod(z) =o(z) foralze X,

where pr : €y — £ is the projection vector bundle morphism. By Proposi-
tion 2.2.1, there exists a regular section § : X — €¥, arbitrarily close in the

C* compact-open topology to &. As pr is regular, it follows that the map

g: X —¢
g(z) =prog(z) forallz e X

is a regular section arbitrarily close to 0. Taking g close enough, we ensure
that g(X) N H}(B;) = 0. Thus g is away from the blow-up center and
7; 0 g = H;. We finish the proof by putting H;,; = g. O

2.6 Proof of Theorem S

Now we prove Theorem S': By Proposition 1.5.1 Y is isomorphic to a Zariski

open subvariety of a projective nonsingular real algebraic variety V. Since
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X is compact, so is f(X) C Y. Therefore if {p;}32, is a sequence of regular
maps converging to the smooth map f : X — V with f(X) C Y, then
there is a subsequence {p;, };>,; with images in Y and converging to f. So,
if we can approximate the maps from X into V, we will be approximating
maps into Y in particular. Because of this, we will assume that Y itself is
projective.

AsY is rational, there exist rational maps ¢ : Y — RP* and ¢ : RP" — Y
such that ¢ o = idy and %) o ¢ = idgp=. By elimination of indeterminacy

theorem, there exists a sequence
V=% 2 Y 23 ... 27, ™5 Y, = RP"

and a regular map ¢ : Y — Y such that each 7; is the blowing-up of Y;_;
along a Zariski closed nonsingular subvariety B;_; of Y;_1, for 1 <4 < k, and
¢ is birational. It follows from Lemma 2.4 and Lemma 2.5.2 that each Y; has
Property(X) and thus ¥ has Property(X).

Let A be a finite subset of X and s be a nonnegative integer. By Propo-
sition 2.2.2, for any given f € C*®(X,Y), we can find an analytic map
h € O(X,Y), arbitrarily close to f, with j°h(a) = j°f(a) for all a € A.
. By Lemma 2.5.3, there exists H € O(X,Y) satisfying ¢ o H = h. Since Y
has Property(X), we can choose G € R(X,Y) such that G is arbitrarily
close to H and j°G(a) = j°H(a) for alla € A. Then g =¢ oG € R(X,Y)
is close to B = ¢ o H and j*g(a) = j*h(a) for all a € A. Hence Y has
Property(X), the proof is complete.
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2.7 Some corollaries

The following corollary is deduced from the above proof but has its own

significance:

Corollary 2.7.1. Let X be a compact nonsingular real algebraic curve, Y
and Y' be nonsingular real algebraic varieties which are birational. If Y’
has Property(X), then so does Y. In particular, if R(X,Y") is dense in
C*(X,Y") then so is R(X,Y) in C*(X,Y).

Proof. In the proof of Theorem S’ just replace RP” with Y”. |

There are examples of varieties satisfying Property(X) which are not
rational, namely stably-rational varieties. Although they are defined in a
purely algebraic setting (in relation to transcendental field extensions), here

we use the following geometric characterization:

Definition 2.7.1. An algebraic variety V is stably rational if V x P* is

rational for some k.

Whether stably rational implies rational had been asked by Zariski. This
is not true for dim > 3, there are examples of stably rational but not rational
varieties (see [1]). Thus the set of rational varieties is a proper subset of
stably rationals. These varieties accur quite often in moduli problems. Here

we present the statement of Theorem S’ renewed for stably rational varieties.

Corollary 2.7.2. Every stably rational nonsingular real algebraic variety Y

has Property(X) for every compact nonsingular real algebraic curve X.

Proof. Let Y be a stably rational variety and f € C*(X,Y). Let V be
a neighborhood of f in C*(X,Y), A be a finite subset of X, and s be a
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nonnegative integer. There exists k such that Y x RP* is birational to RP™

where m = dimY + k. Consider the smooth map

F:X —Y x RP*

z+— (f(2),0)

where ¢ is a point in RP*, By Lemma 2.4 and Proposition 2.7.1, Y x RP*
has Property(X) so we can find G € R(X,Y x RP¥) such that G € V x W
(W is a neighborhood of the constant function) and j°G(a) = j°F(a) for all
a € A. Tt follows that g = pri0o G € R(X,Y) isin V and j°g(a) = j°f(a)
for all a € A, where pry is the projection map ¥ x RP* — Y. O
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CHAPTER 3

A NECESSARY CONDITION

3.1 Real parts of complex varieties

It is convenient to consider real algebraic varieties as real parts of complex
algebraic varieties so that one can use the most of the knowledge accumulated
in complex algebraic geometry. For this purpose we deal with a certain class

of complex varieties:

Definition 3.1.1. Let V' be a complex algebraic variety. If there is an
embedding i : V < C¥ such that the defining equations of 7(V) € C¥ can
be given by real polynomials, then V is said to be defined over R. Then the
real part of V, denoted by RV is the real algebraic variety X C RY defined
by these polynomials. Let f : V — V' be a morphism between complex
algebraic varieties and let V' and V' be defined over R, then we also say f is
defined over R if it can be defined by means of real polynomials.

Remark 3.1.2. Equivalently, a complex algebraic variety V is said to be
defined over R if there is an embedding (indeed the same embedding as
above) i : V < C¥ such that i(V) is preserved under the complex conjuga-

tion (i(V) = i(V)). Then RV is the fixed point set of this conjugation, i.e
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RV =i(V)NRY. In a general setting, we can think complex algebraic vari-
eties defined over R as complex algebraic varieties with an antiholomorphic
involution. In this case, the real part is the fixed point set of this involution.
Finally, a morphism f : V — V' between two complex algebraic varieties
defined over R is a morphism which commutes with the involutions on V

and V'.

Remark 3.1.3. If V is a nonsingular complex algebraic variety with complex
dimension 7, then RV is either empty or a nonsingular real algebraic variety

of dimension n (see [29], Section L.1).
All these have a natural counterpart:

Definition 3.1.4. Given a real algebraic variety X C R¥, complexification
of X is the complexification of the pair X C RY and denoted by X¢. That
is, if X = Z(I), where I is an ideal of R[z;,...,zy], then X¢ C CV is
obtained by considering I as an ideal of C[z,... ,zy]. In other words X¢ is

the smallest complex algebraic variety (in CV) containing X.

Remark 3.1.5. X¢ is a complex variety defined over R. Indeed, X¢ = X¢
and RX¢ = X (see [33)]).

Although the complexification depends on the ambient space, we will talk
about complexification of a real algebraic variety X (without any specified
embedding). This will mean the complexification of X obtained after ‘an’
embedding. Of course this definition makes sense only when the considered
properties of the complexification is independent from the choice. We’ll see

an example of this in the following context.
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3.2 Statement of Theorem N

Definition 3.2.1. Given a compact nonsingular real algebraic variety Y,
b, (Y, C) is defined to be the first Betti number of a nonsingular projective
complexification V of Y. In the next section we show that b, (Y, C) is well-

defined for any nonsingular real algebraic variety.
We are going to give a complete proof of the following theorem:

Theorem 3.2.1 (Theorem N). Let X be a real algebraic variety of posi-
tive dimension and let Y be a compact nonsingular real algebraic variety. If
R(X,Y) is dense in C(X,Y), then b (Y,C) = 0.

3.3 b (Y,C) is well-defined

Let V be a complexification of the compact nonsingular real algebraic vari-
ety Y. By resolution of singularities theorem we can obtain a nonsingular

complex algebraic variety V from V by a sequence of blowing-ups on Zariski

closed subvarieties; say, V = Vi — Vi_y Tl My, TV =V osuch
that By_s,..., B, By are the corresponding blow-up centers, all contained

in Sing(V). Since Sing(V') is defined over R then each B; and V; are defined
over R. AsY = RV is nonsingular, it follows that this blowing-up process
does not effect Y. Therefore Y = RV, for all ¢ = 1,2,... ,k and V is a
nonsingular complexification of Y. By Proposition 1.5.1 we have a nonsin-
gular projective variety I:/ obtained from V and by the same reasons we have
written above, Visa complexification of Y as well.

Let us simply denote this nonsingular projective complexification of Y
by V and let V' be such an other complexification. As RV = RV, this iso-

morphism extends to -at least- a birational isomorphism between V and V'.
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If these are isomorphic then we are done. Suppose that they are birational
but not isomorphic. Then by Proposition 1.6.1 there are closed subvarieties
A C V and A’ C V', eachhaving codim> 2, suchthat V' \ A & V'\ A’
Considering all these as real manifolds, we have Vg \ Ag & Vg \ A where
codimAg, codimAg > 4 > 2. For any real topological manifold M, if N is
a submanifold of M with codim> 2 then m (M) = m (M \ N). Therefore
m1(V,C) = m (Vr) = m (Vg) = m1(V*, C). Finally, b;(Y, C) is well-defined be-
cause of the isomorphism H; (M) & my(M)/[m (M), m (M)] for any compact
topological manifold M.

Remark 3.3.1. If Y is rational then 5 (Y,C) = 0. To see this let Y be in
R™. Complexifying the ambient space R™ we obtain a complexification V' of
Y. As Y is rational, by definition it is birational to RP™ for some n. Then
same maps define a birational isomorphism between V' and CP", where the
latter is simply connected. Thus m(Y,C) = m;(CP™) = 0, implying that
H,(Y,C) is trivial.

3.4 Abelian varieties

This is a preliminary section for the proof of Theorem N. Here we introduce

some definitions and properties concerning Abelian varieties.

3.4.1 General definitions

Definition 3.4.1. A lattice A in C" is by definition a discrete subgroup of
maximal rank in C®. The quotient X = C"/A is called a complez torus.
A complex Abelian variety (shortly, “Abelian variety” in this context) is

a complex torus admitting a positive definite line bundle, where positive
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definite means that the first Chern class of the bundle is a positive definite
Hermitian form. Let X and X’ be two Abelian varieties with positive definite
line bundles L and L. A morphism f: X — X' is a morphism of Abelian
varieties if f*(L') = L.

Remark 3.4.2. By definition, A is a free Abelian group of rank 2n and a
complex torus is an n-dimensional smooth complex manifold. A complex
torus inherits the structure of a complex Lie group from C" (see [23]). It
turns to be an Abelian variety if it satisfies certain conditions, called Riemann
conditions. (see [15]). Equivalently a complex torus X is an Abelian variety

if it can be embedded to a complex projective space (i.e, if X is projective).

As the above definition emphasizes the geometric structure of an Abelian
variety, we give an other -equivalent- definition which emphasizes the group

structure of it. These two definitions in balance will be used substitutively:

Definition 3.4.3. A group variety over C is a complex algebraic variety with

morphisms

M:VxV—V (multiplication)

inv:V —V (inverse)

and an identity element e € V' with respect to m and inv. A complete group
variety over C (i.e its center and outer automorphism groups are both trivial)
is called a complex Abelian variety. An algebraic morphism f: X — X' is

a morphism of Abelian varieties if it is also a group homomorphism.

Remark 3.4.4. A group variety is nonsingular. The group structure on an

Abelian variety is commutative (see [24]).
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Definition 3.4.5. A nonzero Abelian variety A is said to be simple if it does

not contain an Abelian subvariety different from {0} and A.

Definition 3.4.6. An isogeny f : X — X' is a morphism of Abelian groups
with finite kernel. In other words, f is an isogeny if and only if it is surjective

and dimX = dimX'.
Theorem 3.4.1 (Poincaré’s Complete Reducibility Theorem). Given
an Abelian variety X, there is an isogeny

X — XM x e XM

with simple Abelian varieties Xy, ... , X, which are mutually nonisogenous.
Moreover, Abelian varieties Xy, ... , X, and the integersny, ... ,n, are uniquely

determined up to isogenies and permutations.

Proof. See [23], Chapter V Theorem 3.7, or [24], Section 12. O

3.4.2 Jacobian of a curve and Albanese varieties

To any compact nonsingular complex algebraic variety one can associate a

canonical Abelian variety, so called the Albanese variety:

Definition 3.4.7. Let V be a compact nonsingular complex algebraic variety.

Then we define the Albanese variety of M as

HO(V, Ql)*

ABY) = 7 2y Tor

and denote it by Alb(V). Choosing a base point py € V and a basis
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wi,. .. ,wy € HY(V, Q) the map

p:V —Ab(V)

v P
p—( wl,...,/ wWg)
Po Po

is called the canonical Albanese map corresponding to py. In particular, if V
is a compact nonsingular complex algebraic curve, then Alb(V') is called the
Jacobian of V and denoted by Jy.

Remark 3.4.8. Albanese map is a well-defined morphism of complex alge-
braic varieties. Indeed Albanese varieties are generalizations of Jacobians
(see [14] for a detailed treatment). Note that another useful characteriza-
tion can be given by means of Hodge theory, where we obtain Alb(V) =2
Hbn(V)/H?1(V,Z). Albanese varieties are Abelian. For the proofs, see
[15], Section IL6.

Definition 3.4.9. Given a set S, an Abelian group A, a positive integer n,

and a map f: S — A, we define

fr:58" —A
(@1, 30) = f(@1) + -+ + F(2n)

for all (z1,...,2Z,) € S™ Let S be a nonsingular complex algebraic curve C
and let X, denote the permutation group on {1,...,n}. Then each o € %,
can be considered as a morphism ¢ : C* — C™, mapping each (py,... ,Ds)
to (Po(1)s--- »Po(m)), and hence ¥, can be regarded as a subgroup of the
automorphism group of C*. We define f™ : C® — A as f™(z) = f*(z)
where C = C™/%,, the symmetric product of C. In a different point of

view, C™ is the set of all effective divisors of degree n of C.

37



We are going to make use of the following theorem:

Theorem 3.4.2 (Strong form of the Jacobi inversion theorem). Let
C be a compact nonsingular complez algebraic curve and py € C. Let g be
the genus of C and wy, ... ,w;, be a basis of H'(V, Q). Then the restriction

of Abel-Jacobi map corresponding to po:

u:CYW — J(O)

zg:pil——)(i/mwl,... ,i/mwg)

i=1 i=1 Y Po i=1 Y Do

is surjective and ‘generically’ (i.e. those objects in the family not satisfying
this property are parametrized by a subvariety of strictly lower dimension)

injective.

Proof. See [25], or for a detailed and clear proof see [14] together with [15].
O

Lastly we present the following important property of Albanese varieties.
Note that this property can also be used to characterize Alb(V) for a given

compact nonsingular complex algebraic variety V.

Theorem 3.4.3 (Universal property of Alb(V)). Let V be a compact
nonsingular complez algebraic variety and p: V — Alb(V') be the canonical
Albanese map corresponding to py € V. Suppose that A is an Abelian variety
and ¢ : V. — A is a morphism. Then there ezists a unique morphism

@ : Alb(V) — A of Abelian varieties such that ¢ = @ o p.

Proof. See [23], where a clear proof is given in the case of Jacobian variety.

We refer to [28] for the general case. O
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Up to here, we haven’t touch on the real structure of these varieties and
morphisms. The crucial point is that exactly all these definitions and propo-
sitions can well be carried out for the complex algebraic varieties defined over
R; one can just find and replace all “complex algebraic varieties” by “com-
plex algebraic varieties defined over R” and “morphisms” by “morphisms
defined over R”. Proofs of theorems 3.4.1, 3.4.2, and 3.4.3 that we have
mentioned above are the same as in the general case; except one must no-
tice that the real structure on the isogeny and decomposition in 3.4.1 are
induced by the real structure of V' throughout the proof. Yet, the following
is not so straightforward: If V is a compact nonsingular complex algebraic
variety defined over R then Alb(V) and the Albanese map corresponding to
any pp € RV are also defined over R. We sketch the proof below. Meanwhile
we show that the Abel-Jacobi map is defined over R, when the base point of
the complex variety defined over R is chosen from the real part.

Let V' be a compact nonsingular complex algebraic variety defined over
R with an anti-holomorphic involution 0. We can always choose charts
(@1,... ,bn) on V such that ¢7 () = (jop;00)(x) equals to ¢;(o(z)), where j
is the complex conjugation ([29], Section I.1). Let w = 3 f;dz; be a holomor-
phic 1-form, written in these local coordinates and define w? = ) jo f;00dz;.
Then wy = (w + w?)/2 and wy = i(w — w?)/2 are holomorphic 1-forms on
V with coefficient functions defined over R. A basis for Q! can be formed
among these. Fix this basis and consider the canonical Albanese map yu cor-
responding to po € RV. Any component function of u is of the form j:: w,
where w = ), fidz; is such a basis element. Then (j o u)(c(p)) = fp‘:(p) w
is locally j o f:o(m) [:(z)dz;, where we compute the integration on the curve
7 : [%0,2] — V. So we have jo [ fi(a(z))dzi = [, 30 filo(x)) dz =
[, fi(z)dz = p(z). Hence p and Alb(V) are defined over R.
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3.5 Lemmas on real parts of Abelian varieties

In this section we are going to state and prove some results on real parts of
Abelian varieties defined over R. Lemmas we state here are going to be used

in the proof of Theorem N.

Proposition 3.5.1. Let A be a complex Abelian variety defined over R and
let RAg be the connected component of RA containing 0. Then RA is a real

analytic Lie manifold isomorphic to the usual torus.

Proof. Pick any a,b € RAp and let @ : [0,1] — R4y, 8: [0,1] — RAp be
paths connecting 0 and a, 0 and b, respectively. Define o — §: {0,1] — RA
which maps each z € [0,1] to a(z) — B(z). Since this map is continuous, it .
follows that (o — 3)(0) = 0 and (a— B)(1) = a—b are in the same connected |
component; i.e. a —b € RAy. Hence RA; is a subgroup of RA -~which is |
clearly a subgroup of A. Having induced the analytic structure of 4, R4, is
a real analytic Lie manifold. Besides; characterizing A by C"/A (where n =
dimA and A is a full lattice), we have RAy = R(C"/A), real isomorphic to
R(C"/Z?™) = R"/Z", because there always exists B € GL(2n,R) satisfying
BA = Z?". That is; RA; & R"/Z", the real torus. O

Now we can prove the following:

Lemma 3.5.2. Let f : A — B be a morphism of complex Abelian varieties
defined over R. If f(A) = B then f(RAy) = RBy,. (Note that also f is

assumed to be defined over R.)

Proof. First we show that a +a € RAg for alla € A. Let v:[0,1] — A
be a path connecting 0 and a, and define § : [0,1] — A which maps each

z € [0,1] to y(z) + v(z). As it is a continuous map into RA, it follows that
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v(0) = 0 and (1) = a + @ are in the same connected component of RA.
Thus a + @ € RA, for all a € A.

Let b € RBy. Since RB, is algebraically a torus, we can consider b in
Stx . -x 8 =T" Sob=(b,...,b,) with b; = (cos8;,sinf;) where
0<6; <2rforal j=1,..,n Choose?d = (b,...,b,) € T" with
b, = (cos(%i),sin(%)) forallj=1,...,n. Thend' € RB,is such that 2b' = b.
Choose a € A such that f(a) =¥. Then f(a+a) = f(a)+f(a@) = f(a)+f(a)
(as f is defined over R). Thus f(a+a) = b + & =¥ + ¥ = b and hence the
conclusion follows from the fact that a + @ € RA,. O

Lemma 3.5.3. Let C be a nonsingular projective complezx algebraic curve
defined over R, ¢g € RC, and pp : C — Jo be the canonical morphism
corresponding to cg. For every connected neighborhood N C RC of ¢y there

ezists nen € L such that p"(N™) = (RJ¢)o for every integer n > ng,y.

Proof. First of all, since y is defined over R, then p"(RC) C RJ¢. Moreover,
#(co) = 0, so any connected neighborhood of ¢ is mapped into (RJ¢)o.

Let g be the genus of C. If ¢ = 0 then Jo = 0 and the conclusion is
vacously satisfied. Assume that g > 1. Then by Theorem 3.4.2, 9, which
equals to restriction of Abel-Jacobi map on C®), is surjective. The same
holds for uf. Then pd(CY) = Je. Since the set N9 is Zariski dense in 09 and
w? is Zariski continuous, then there exists a point in V9 at which 9 has rank
g. For, the jacobian matrix of a variety is given by polynomials and it follows
that if rank(u?) < g on the dense set N7 then it is also strictly less than
g on the Zariski closure C9. However, this contradicts that u?(C9) = Jg,
so there exists such a point. Now by the Inverse Function Theorem there
are connected neighborhoods U of zy in N? and V of p9(zo) in (RJg)o,

diffeomorphic to each other.
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As (RJ¢)o is algebraically a torus, we can consider V in S*x. .- xS! = T¥.
So V can be taken of the form V; x -+ x V, C TY, where each V] is a
nonempty open subset of S*. For each V; we have k; such that k;V; = S'.
Put k = max{ky,...,k}, then kV = (RJg)o. Hence for ngny = kg if
n > ne,y then p™(U) 2 p*(U) 2 kud(U) = kV = (RJc). Since p*(U) C
p*(N9) C (RJc)o, the conclusion is satisfied. O

Lemma 3.5.4. Let C,N and ngn be as in the previous lemma. Let A be a
simple complex Abelian variety defined over R, let U be a Zariski neighborhood
of co in RC and f : U — RA be a regular map satisfying f(co) = 0. Let N
be contained in U. Then for every integer n > ney, either f*(N") =0 or
fHN") = (RA)o.
Proof. RC \ U has codim< 1 so f can be extended to a regular map g on
C by Proposition 1.6.1. Theorem 3.4.3 implies that there exists a morphism
¢ : Jo — A of Abelian varieties defined over R, such that pop=g

Since A is simple, the complex Abelian group ¢(J¢) defined over R is
either {0} or A. Therefore either p((RJc)o) = {0} or p((RJ¢)o) = RA,,
implied by Lemma 3.5.2. If the former, then @ o u(c) = {0} C po u(N) C
po p((RJc)o) = {0} and therefore g"(N") = ng(N) = n(pop)(N) = {0}. If
the latter, then RAq = ¢((RJc)o) = ¢(p™(N™)) by Lemma 3.5.3. It follows
that R4y = @ o u*(N™) = (p o p)*(N") = g"(N™). Recall that gly = f.
So gly = f and we have either f*(N") = {0} or f*(N") = R4, for all

n 2 NeN- H

3.6 Proof of Theorem N

We are now ready to prove Theorem N. Idea is simple: We are going to con-

struct a smooth map whose restriction to a fixed curve on X, when composed
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with a nonconstant map from Y to real part of a Simple Abelian variety A
(we’ll see that this morphism is defined naturally) have an image far from
being {0} or RA;. Whereas restriction of any regular map from X to ¥V
on the same curve, composed with the same morphism from Y to A, will
necessarily have an image equal to either {0} or RAg, owing to the results in

the previous section.

Proof. We may assume that Y is of the form RV where V is a nonsingular
projective complex algebraic variety defined over R. Assume that (Y, C)
is not zero. With this assumption, we will be able to define a nonconstant
morphism from V to a simple Abelian variety due to the fact that Alb(V) is
nontrivial.

As Y is a compact nonsingular complex algebraic variety, it is a Kahler

manifold. Thus by Hodge decomposition

"(M,C) & @ HM(M

ptq=r

HPa(M)  FPa()

and HP(M) = HY(M,P) (which is derived from the first two). In partic-
ular, H'(M,C) & HYY(M) @ H* (M), H**(M) = H%I(M) and HY(M)
H®(M, Q). Thus b; (Y, C) # 0 implies that dim(H“*(M)) = dim(H®(M, Q"))
dim(H®(M, Q')* is positive. Hence, nontriviality of Alb(M) arise from its
definition.

Choose a point yp € V(R) and let o : V — Alb(V) be the corresponding
Albanese morphism (in particular a(yg) = 0). As we mentioned in section 3.4
both Alb(V') and « are defined over R. Also by Theorem 3.4.1 there exists an
isogeny 7 : AIB(V) — Ay x--- A, defined over R. Let m: Ay x--+ A, — A,
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be the canonical projection on the first component and let ¢y =7wonoaq,ie
0:V 25 AB(V) s Ay x -+ - 4, - Ay

Let us simply use A to denote A;. As we have noted in the section on
Albanese varieties, the group generated by a(V) is an Abelian variety and
the universal property of Alb(V') implies that it is the smallest Abelian variety
that a(V') generates as a group. Therefore these two coincides; < a(V) >=
Alb(V). It follows that < (V) >= A, s0 ¢ : V — A is nonconstant.

Choose a nonsingular Zariski locally closed real algebraic curve Z in X.
Choose a point zp in Z and let G be a connected neighborhood of zy in Z,
whose closure is compact. By Remark 1.5.1 there is a compact real algebraic
curve C’ with a Zariski open subvariety D isomorphic to Z. As we have
discussed in Section 3.3, we can find a nonsingular projective complexification
C of C'. D £ Z is Zariski open in C' £ RC, so we can consider Z as a Zariski
open subvariety of the real part of a nonsingular projective complex algebraic
curve. If 1 : Z — D is the isomorphism then put ¢, = 9(20) and N = %(G).
Lastly, fix n € Z* as in Lemma 3.5.3 (and 3.5.4).

We can choose a small neighborhood U of 3y in V(R) such that the set
RAp \ ¢™(U™) contains a nonempty open subset of RA4y. Any smooth real
algebraic variety is locally defined by means of analytic charts so shrinking
U if necessary we can find a real analytic diffeomorphism ¢ : U — R™
with o(y) = 0, where m = dimV. We know that ¢ is nonconstant on V.
However, U is Zariski dense in V' and ¢ is continuous in the Zariski topology
so it follows that ¢ is also nonconstant on U. Choose a point 1, € U with
¢(y1) # 0 and consider its image in R™ under 0. As o is one-to-one, o(y) = 0

and o(y1) defines a line L in R™ passing through the origin. Let M be the
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one dimensional real analytic submanifold of U with (M) = L. Thus it is
diffeomorphic to R, say, via ¢ and suppose that ¢(y) = 0. Furthermore,
both yp and y; lie in M so ¢ is nonconstant on M.

Now we can construct a ‘perverse’ map f : X — Y. For instance we
can take the following map: Let i : X <> RY be an embedding of X. Since
X has positive dimension, there exist ; € 1,..., N such that the projection
map onto i-th component is nonconstant around zg. Let p; : R¥ — R be
this projection and define h : R¥ — R as p;(z) — p;(zo) for all z € X. Put
f = ¢ ohoi but ensure that y; € f(M) (if not, use a self-diffeomorphism
of R in the composition of f). ’

Thus we can define define a continuous map f : X — Y = RV with
F(X) € M, f(zo) = yo and f is nonconstant on any neighborhood of z; in Z.
By construction, f is nonconstant on G and ¢ is nonconstant on f(G) C M,
therefore o f is nonconstant on G and (po f)™ is nonconstant on G™. On the
other hand since f(X) C M then R4 \ (¢ o f)™(X™) contains a nonempty
open subset of RAy. Hence (¢ o f)*(G™) is far from being equal to {0} or
RAgy. However by Lemma 3.5.4 for any regular map g : X — Y the image
of (¢ o g)™(G") is either {0} or RAy. This implies that (¢ o g)" cannot be
arbitrarily close to (¢ o f)®, implying that (¢ o g) cannot be arbitrarily close
to (po f). O

3.7 Insufficiency of the theorem

It is clear that the Theorem N not only provides a necessary condition for the
approximation problem but also provides a practicable one. Because we do
two concrete jobs: complexification and computing the first Betti number.

Yet, this condition is too weak to insure Vé.lidity of Theorem S. In this section
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we illustrate that.

We begin with the following observation: Let X be a compact nonsingular
real algebraic curve and let Y be a compact nonsingular real algebraic variety.
Let H¥(Y) be the subgroup of H(Y,Zs,) generated by the homology classes
represented by the Zariski closed real algebraic curves in Y. Suppose that
R(X,Y) is dense in C*(X,Y). As X is topologically disjoint union of circles,
then for any 1-cycle a generating Hy(Y,Z;) we can find a smooth map
f:X — Y with Imf = a. Since we can approximate f by regular functions
then there is a close enough regular map g homotopic to it. Because we can
consider a tubular neighborhood of Imf and if Img is in it then we can define
a linear homotopy inside this neighborhood. Thus Img is homotopic to «
and therefore [o] = g.([X]) € H™(Y), by definition. Hence the subgroup
H¥(Y) is equal to H (Y, Zy) when R(X,Y) = C°(X,Y).

Now let Y be a nonsingular surface in RP? of deg > 4 which is not
homeomorphic to S? or RP2. Then it is a complete intersection and hence
b1(Y, C) = 0 by virtue of Lefschetz Theorem.

On the other hand Bochnak and Kucharz showed that (|7]) any ‘general
surface’ (see [15], section on Kodaira number and the classification of sur-
faces) Y C RP? of deg > 4 has dimz, H**(Y,Z,) < 1. By our assumption,
Y is homeomorphic to either a sphere with g handles or to a connected sum
of kRP?s due to classification of compact surfaces, where ¢ > 1 and &k > 1.
But then dimH(Y,Zs) is either 2g or k and it is strictly greater than 1.
Hence the observation we have done above and the conclusion of Bochnak
and Kucharz imply that R(X,Y’) can not be dense in C*(X,Y).

46



REFERENCES

[1] A. Beauville and J. L. Colliot-Théléne, J. J. Sansuc and P. Swinnerton-
Dyer, Variétés stablement rationnelles non rationnelles, Ann. Math. 121
(1985), 283-318.

[2] S. Akbulut, and H. King, Topology of Real Algebraic Sets, M. S. R. L.
Book Series, Springer-Verlag, New York, 1992.

[3] J. Bochnak, M. Coste and M. F. Roy, Real Algebraic Geometry, Ergeb-
nisse der Math. vol. 36, Springer-Verlag, Berlin, 1998.

[4] J. Bochnak and W. Kucharz, On equivalence of ideals of real global an-
alytic functions and the 17th Hilbert problem, Invent. Math. 63 (1981),
403-421. :

[5] J. Bochnak and W. Kucharz, Algebraic approzimation of mappings into
spheres, Michigan Math. J. 34 (1987), no. 1., 119-125.

[6] J. Bochnak and W. Kucharz, On real algebraic morphisms into even-
dimensional spheres, Ann. of Math. (2) 128 (1988), no. 2., 415-433.

[7] J. Bochnak and W. Kucharz, Algebraic models of smooth manifolds,
Invent. Math. 97 (1989), 585-611.

[8] J. Bochnak and W. Kucharz, Elliptic curves and real algebraic mor-
phisms into the 2-sphere, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no.
1., 81-87.

[9] J. Bochnak and W. Kucharz, Polynomial mappings from products of
algebraic sets into spheres, J. Reine. Angew. Math. 417 (1991), 135
139.

[10] J. Bochnak and W. Kucharz, Elliptic curves and real algebraic mor-
phisms, J. Algebraic Geom. 2 (1993), no. 4., 635-666.

[11] J. Bochnak and W. Kucharz, The Weierstrass approzimation theorem
for maps between real algebraic varieties, Math. Ann. 314 (1999), 601-
612.

47



[12] J. Bochnak and W. Kucharz, The Weierstrass approzimation theorem
and o characterization of the unit circle, Proc. Amer. Math. Soc. 127
(1999), no. 6., 1571-1574.

[13] R. Engelking, General Topology, Sigma Series in Pure Math. vol. 6,
Heldermann Verlag, Berlin, 1989.

[14] P. Griffiths, Introduction to Algebraic Curves, American Mathematical
Society, vol 76., Providence, Rhode Island, 1989.

[15] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley
and Sons, Inc., New York, 1994.

[16] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. no. 52.,
Springer-Verlag, New York-Heidelberg, 1977.

[17] H. Hironaka, Resolution of singularities of an algebraic variety over a
field of characteristic zero, Ann. Math. (2) 79 (1964), 109-326.

[18] J. Huisman, On real algebraic vector bundles, Math. Z. 219 (1995), no.
3., 335-342.

[19] W. Kucharz, Real algebraic morphism into flag varieties, Boll. Un. Mat.
Ttal. A. (7) 8 (1994), no. 3., 345-352.

[20] W. Kucharz, Algebraic morphisms into rational real algebraic surfaces,
J. Algebraic Geom. 8 (1999), no. 3., 569-579.

[21] W. Kucharz and K. Rusek, Approzimation of smooth maps by real alge-
braic morphisms, Canad. Math. Bull. 40 (1997), no. 4., 456—463.

[22] J. L. Loday, Applications algébriques du tore dans la sphére et de SP x S9
dans SP19, Algebraic K-Theory II, pp 79-91, Lecture Notes in Math. vol.
342., Springer, Berlin, 1973.

[23] H. Lange and Ch. Birkenhake, Compler Abelian Varieties, Springer,
Berlin, 1992.

[24] J. S. Milne, Abelian varieties, in Arithmetic Geometry, pp. 103-150,
edited by G. Cornell and J. H. Silverman, New York Berlin Heidelberg,
Springer, 1986.

48



[25] J. S. Milne, Jacobian varieties, in Arithmetic Geometry, pp. 167-212,
edited by G. Cornell and J. H. Silverman, New York Berlin Heidelberg,
Springer, 1986.

[26] J. Nash, Real algebraic manifolds, Ann. Math. 56 (1952), 405-421.

[27] Y. Ozan, On entire rational maps in real algebraic geometry, Michigan
Math. J. 42 (1995), no. 1., 141-145.

[28] J. P. Serre, Morphisms universels et différentiels de troiséme espéce,
Séminaire Chevalley, exposé bf 11, 1958/1959.

[29] R. Silhol Real Algebraic Surfaces, Lecture Notes in Math. vol. 1392,
Springer-Verlag, Berlin, 1989.

[30] D. Y. Suh, Fquivariant algebraic approzimations of G-maps, Commun.
Korean Math. Soc. 10 (1995), no. 4., 949-961.

[31] D. Y. Suh, Homotopical triviality of entire rational maps to even-
dimensional spheres, Commun. Korean Math. Soc. 11 (1996), no. 3.,
807-814.

[32] A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa
(3) 27, (1973), 167-185.

[33] W. H. Whitney, Elementary structure of real algebraic wvarieties,
Ann. Math. (2) 66 (1957), 545-556.

49

T.C. YOKSEKOCRETIM KURULY
POKDMANTASYON MERKEZ:



