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ABSTRACT

PIEZOELECTRIC CERAMICS AND THEIR APPLICATIONS
IN SMART AEROSPACE STRUCTURES

Caligkan, Tarkan
Ph.D., Department of Aeronautical Engineering
Supervisor: Prof. Dr. Yavuz Yaman

Co-Supervisor: Dr. Volkan Nalbantoglu

September 2002, 279 pages

This thesis investigates some applications of smart structures in aerospace
engineering. The smart structures considered are finite and flat aluminum beam-like
and plate-like structures with surface bonded PZT (Lead-Zirconate-Titanate)
patches. The smart structures are studied in cantilevered configuration.

The thesis gives the theoretical and experimental studies conducted on the smart

structures with particular attention given to the vibration control aspects.

In the determination of the structural models of the smart structures, the finite
element package program ANSYS® (v.5.6) is used. During the analysis and the
design of the vibration controllers both finite element approach and the

experimental system identification techniques are utilized.
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The thesis first determines the structural models of smart beam-like and plate-like
structures. By using those models, the study extensively analyzes the static and
dynamic behaviour of the smart structures by considering the effects of the smart
elements like the size, placement and the actuation voltages of the PZT patches in
detail.

The study then proceeds to obtain the models of PID and H, vibration controllers,
which are intended to be used in the suppression of the vibrations of the smart
structures due to their first two flexural modes. The closed-loop control
characteristics of the smart structures are studied. It was shown that the designed

controllers ensure robust performance of the system in the presence of uncertainties.

Keywords: Smart structure, finite element modeling, system identification,

vibration control, PID and H., controllers, robust performance
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PIEZOELEKTRIK SERAMIKLER VE AKILLI UZAY YAPILARINDAKI
UYGULAMARI

Caligkan, Tarkan
Doktora, Havacilik Mithendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Yavuz Yaman
Ortak Tez Yoneticisi: Dr. Volkan Nalbantoglu

Eyliil 2002, 279 sayfa

Bu tez akilli yapilarin havacilik ve uzay miihendisligindeki baz1 uygulamalarini
arastirmaktadir. Calismada kullamlan akilh yapilar, diiz, sonlu kiris ve plak
geometrisindeki alliminyum yapilardan ve bunlarin ylizeylerine yapistirilan PZT
(Lead-Zirconate-Titanate) yamalardan olusturulmustur. Calismada kullamilan akilli

yapilar bir kenar1 tutturulmus diger kenarlar1 serbest olarak alinmigtir.

Bu tezde, akilli yapilarin 6zellikle titresim kontroliine yonelen teorik ve deneysel

¢alismalar1 sunulmaktadir.

Calismada yapisal modellemeler ANSYS® (siirtim 5.6) yazilmimn kullanildig:
sonlu elemanlar teknigi ile yapilmistir. Denet¢i tasarim ve analizi esnasinda sonlu

elemanlar yaklagimi ve deneysel system tanimlama teknikleri kullanilmigtir.



Bu tezde 6ncelikle akill kiris ve plaklarin yapisal modellemeleri yapilmigtir. Elde
edilen modeller, akilli elamanlarin boyut, yerlesim ve piezoelektrik uyar1 gerilimi
gibi etkileri diistintilerek, akilli yapilarin statik ve dinamik davramiglarinin detayli

analizlerinde kullanilmustir.

Caligmanmin daha sonraki asamasinda, akilli yapilarin ilk iki frekansindan dolay:
olusan titresimlerinin s6niimlenmesinde kullanilacak olan PID ve H, denetgileri
tasarimina yonelinmis ve akilli yapilarin kapali dongii karakteristikleri
aragtirilmigstir. Tasarlanan denetgilerin belirsizliklerin varliginda giirbiiz performans

Ozelligine sahip oldugu goésterilmistir.

Anahtar sozciikler: Akilli yapilar, sonlu elemanlar modellemesi, titregsim, system
modeli tamimlama, aktif titresim kontrolii, gilirbiiz performans.
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CHAPTER 1

INTRODUCTION

1.1 Background to the study

Recent developments in the field of piezoelectric materials have encouraged many
researchers to work in the field of smart structures. The smart structure can be
defined as the structure that can sense external disturbance and respond to that with
active control in real time to maintain mission requirements. Smart structures
consist of highly distributed active devices and processor networks. The active
devices are primarily sensors and actuators either embedded or attached to an

existing passive structure.

In the smart materials technologies, the developments are realized by two
approaches. While the first approach concentrates on the improvements in the smart
materials for their suitability as sensors and actuators at the molecular level, the
second approach involves the applications of the known smart materials in the

design of the smart structures.

The smart structures are expected to provide new and innovative capabilities in
military and civilian aerospace applications. This is done by specific applications in
terms of system functional enhancements such as, active vibration control and/or
health monitoring. These functional enhancements also lead to overall benefits like

reduced life cycle costs.



The future aircrafts are expected to take advantages from smart materials and smart
structures technologies. These structures may include aircraft wing, rotorcraft
blades, air inlets and engine nozzles. Some of the expected benefits include
enhancing the performance by manipulating the lift and drag, by chancing the shape
of the control surface or by affecting flow conditions over the lifting surface
producing twist in aircraft wings or rotor blades, reducing the vibrations such as

panel flutter, tail buffet and blade vortex interaction.

The role of smart structures for space systems indicates the direct applicability of
the smart structures technologies to resolve many of the current and future space
challenges. Its value to the space program can be described as providing design
options to the direct applicability which leads to the rapid insertation of the smart

structures into fight experiments and space missions.

The use of smart structures offers a potential for precision shape control and
correction in the deformation of space structures. The structures and systems
considered for space applications are usually flexible, deployable, lightweight and
remotely operated, which makes them expensive and their maintenance difficult.
These structures are constantly exposed to the harsh environment of space that
subjects them to low gravity, vacuum, thermal cycling, large temperature gradients,
radiation, impact from space particles. These conditions results in undesired shape
deformation and uncontrolled vibrations which can adversely affects the

performance and shorten the useful life of the structure.

The applications of smart materials in aerospace structures technologies are not
limited to shape and active vibration control. The use of the smart structures in
health monitoring is very popular among the researchers working in smart structure
technologies. The high frequency vibration signature based techniques for example,
are considered to be very effective in detecting the very minor damage that may

grow or exist in the structure on which piezoelectric material is mounted.



Depending on the characteristics of the smart structures involved and the expected
operating conditions, the selection of the sensors and actuators vary considerably.
The most promising smart materials that can be considered in smart structures
technologies include piezoelectric materials, electrostrictive  materials,
magnetostrictive materials, shape memory alloys, optical fibers, electrorhelogical

fluids and magnetorhelogical fluids.

1.2. Contents and Scope of this Study

Aerospace structures are complex assemblages of structural components that are
mainly in the geometry of beams, plates and shells. These components operate
under severe and uncertain service environments and require high reliability and

performance.

The objectives of this thesis are first to present the structural dynamics of smart
structures that are composed of aluminum beam-like and plate-like structures
modeled in cantilevered configuration with surface bonded piezoelectric patches.

Active vibration control strategies applied to smart structures are also developed.

Since the determination of the accurate model of the system that is as close as
possible to the realistic smart structure is an essential step in the design of a high
performance control system, the thesis focuses on accurate representation of the
electromechanical coupling inherent to the piezoelectric materials and their effects
on the smart structures. In the determination of these models both theoretical and
experimental approaches are considered and the factors influencing the accuracy of

the theoretical models are investigated.

Based on the theoretical and experimental models, the thesis examines PID and H

control design techniques for their effectiveness in active vibration control of the



smart structures with special attention paid to the modelling of the uncertainties and

robustness issues.

Chapter 2 gives the detailed survey of the trends in the applications of the smart
structures. In this chapter, the specific assumptions in the modeling, design and the
active vibration control of smart structures are given. Although the focus is
basically on the modeling and the active vibration control of the smart structures
having piezoelectric patches, other types of smart structures and the work on the
active aeroelastic control and structural health monitoring are also explained for

completeness.

Chapter 3 investigates the effectiveness of the finite element method in the
modeling and the design of smart structures. In the theoretical analysis, the
commercial finite element program ANSYS® (v.5.6) is used to model the smart
structures. During the development of the smart structure models, parametric design
capabilities are considered. By using these models, the study gives the effects of the
piezoceramic patches on the static response and explains the influences of actuator
size, placement and determines the maximum piezoelectric actuation value to
ensure the integrity of the piezoelectric patches. The effects of the element type

selection are also dealt with.

Chapter 4 describes the finite element based system modeling techniques for the
determination of the state-space representation of the smart structures. It explains
the robust control design and analysis applied to the smart structures and serves to
combine the methods of structural dynamics and the control design and analysis

techniques.

Chapter 5 explains the experimental work and system identification algorithms
applied to determine the experimental models of the smart structures. This chapter
details on the determination of the factors influencing the accuracy of the theoretical

models obtained through the applications of the methods developed in




Chapters 3 and 4. Furthermore, the methods to tune the accuracy of the theoretical
models by using the experimentally identified models of the smart structures are
also described in detail.

The design of the robust active vibration controllers that effectively suppresses the
vibrations of the smart structures due to the first two flexural modes are presented in
Chapter 6. In this thesis, the vibration suppression is achieved by the application of
robust PID and H, controllers. The effectiveness of the controllers in the vibration
suppression and the modeling of the uncertainties are also compared. The real time
implementation of the H. controller designed for the smart beam is also

demonstrated.

Finally, the general conclusions drawn from the study are given in Chapter 7.

1.3 The Limitations of the Study

The flexible smart structures considered in the study consist of finite aluminum
beam-like and plate-like structures modeled in cantilevered configurations with

surface bonded piezoelectric patches.

The thesis extensively uses finite element software ANSYS® (v.5.6) to model the
smart structures.

The theoretical calculations of the study are performed within the linear range of the
elasticity and piezoelectricity. Since the smart structures are not designed to
withstand large temperature gradients, the effects of possible thermal loads on the
response of the piezoelectric materials are excluded in the theoretical analyses
conducted. Furthermore, the damping of the piezoelectric patches are ignored

during the theoretical calculations



The smart structures involved in this thesis have non-clustered, complex poles with
small real parts. Hence, the influences of the heavy damping and the cluster of

modes are not included in the analyses.

It is further assumed that the possible incompatibilities between the theoretical and
the true models due to changes in the system parameters arising from the time
dependence of the components, aging, damages or environmental changes and

unmodeled nonlinearities can be represented in terms of the model uncertainties.



CHAPTER 2

LITERATURE SURVEY

2.1. Introduction

This chapter aims to detail the advances and trends for the smart engineering
structures. The first section gives the literature survey about the smart structures
with different smart materials. The second section describes the work on the
modeling and the active vibration control strategies with piezoelectric patches.
Finally for the completeness of the smart structures studies, the work done on the
active aeroelastic control and structural health monitoring by using smart structures

are also explained.

2.2. Smart Structures with Different Smart Materials

Advanced smart materials are being developed for sensors and actuators to be
integrated with smart structures. Typical smart structure sensors include fiber optics
and piezoelectric ceramics and polymers. Either surface bonded or embedded
sensors can be used in discrete or distributed locations to measure the performance
of the system. The typical actuators used in the smart materials technologies
strtucture include shape memory alloys (SMAs), piezoelectric ceramics,

piezoelectric polymers (PVDF), electrostrictive and magnetostrictive(MS)



and electro-rheological (ER) and magneto-rheological (MR) fluids.

Depending on the mission requirements the actuator devices can be dynamic for

vibration suppression or static for shape control.

Clauser first published the idea of producing smart materials and structures in a
broad and conceptual form in 1968 [1]. By 1970°s the idea had received an
international interest and many researchers published articles on the smart materials
and structures. Crowe and Sater [2] presented a paper for the evaluation of the
materials together with sensing and actuation techniques, design, and control

algorithms, fabrication and test of the smart structures.

In 1999, Koko et al. [3] presented the detailed survey on the sensor and actuator
materials that are currently used in smart structures technologies. In this work, the

advantages and disadvantages of the smart materials were discussed.

Shape memory alloys (SMA) like Nitinol, are the materials that undergo shape
changes due to phase transformation associated with the application of the thermal
field. When a shape memory alloy is deformed in its low temperature condition and
the stresses are removed, it regains its original shape by phase transformation to its

high temperature condition when heated.

The ability of the SMA to recover it’s preset shape upon heating can provide a low
mass and power mechanism. The utilization of SMAs allow large force generation
with low power requirements. Furthermore, SMAs have high resistance to corrosion
and dust. SMA devices can be controlled such that very smooth maneuvers can be
performed. The use of SMA as actuators for shape correction in space industries
provide several advantages [4]. However, SMA can only be suited for low
frequency (0-10Hz) and low precision applications. The SMAs also exhibits

complex constitutive behavior with large hysteresis [3,5].



Zhong and Mei [6] investigated thermal deflection and random response of
composite plates with embedded SMA fibers. They presented a finite element based
modeling technique to account for the nonlinearities in the geometry and the
material properties. By using their modeling technique, they numerically
demonstrated that SMA can effectively be used to reduce the thermal deflection of

composite plates at elevated temperature.

Jiang et al.[7] studied the feasibility of SMA actuator to control the dynamic
response of a cantilevered beam. They proposed experimentally that the SMAs can
be used to shift the fundamental frequency up by 7%. In another study, by using
appropriate SMA elements available in NASTRAN® Jiang ef al. [8] presented the
method of optimal design and dynamic analysis of shape memory alloy strips. They
showed that the damping capacity of the smart beam increases with the size of the

SMA but the damping rate slows down.

Electrostrictive materials (Lead-Magnesium Niobate, PMN) differ from the
piezoelectric materials in their response to the electric field. While the response of
the piezoelectric materials to the applied electric field are proportional, that of
electrostrictive materials is proportional to the square of the applied field.
Therefore, electrostrictive materials always produce positive displacements
regardless of the polarity. That is the electrostrictive materials always produce
compression under the action of electric field. Although the electro restrictive
materials exhibit quicker response time and hysteresis compared to piezoelectric
materials, the electrostrictive materials are more sensitive to temperature variation

compared to piezoelectric materials [2,3].

Magnetostrictive materials like Terfenol-D are the materials that experience
mechanical stress when subjected to magnetic field or vice versa. The main
advantage of these materials is the high force capability. The main disadvantages

include its brittleness, heavy weight and high hysteresis in their response to the



applied magnetic field. Furthermore, only the compression components are

available [2,3].

Electro-rheological fluids (ER) like Alumino-silicate in Paraffin oil, are a class of
controllable fluids that respond to an electric field with radically change in its
rhelogical (viscosity, elasticity and plasticity) behavior. The essential characteristic
of these fluids is their ability to reversibly change from free-flowing linear viscous

fluid to semi solids with controllable yield strength.

Electrorheological fluids are the suspensions of fine dielectric particles in insulating
carrier media, typically nonconducting oils which exhibit dramatic and reversible
changes in rheological behavior in their response to the electric field [3,9]. When
they are subjected to electric field they turn into a gel-like solid as the electric field
is removed, they quickly to liquid state (typically within 0.0001 to 0.001 second).
Furhermore, the gelling phenomenon is proportional to the electric field strength, so
by changing the electric field any rheological state from the liquid to solid or vice
versa can be smoothly or instantly reached. A smart structure based upon
electrorhelogical fluid [10,11] can be considered for suppressing vibrations in a
smart beam with the proper selection and the combination of actuator materials such
as piezoceramic actuators. Various hybrid sensor and actuator systems can be
designed. Hybrid smart structures consisting of several different classes can easily
be configured for vibration suppression applications [12]. The electrorheological
fluids however, are suitable in low frequency applications and not suitable for low
temperature applications. Furthermore, its highly nonlinear behavior in the
formulation of the reciprocal relations and very high voltage requirements (2-10kV,

[3]) limits their use in the smart structures technologies.

Magneto-rhelogical Fluids (MR) like are similar to ER. These materials respond to
an applied magnetic field with the change in its rheological behavior. These
materials have extremely higher densities and lower voltage requirements than ER.

Similar to ER, these materials exhibit highly nonlinear response to the applied field.

10



Wereley et al. [13,14] involved analytical and experimental studies for the
determination of the active vibration control studies using magnetorheological
fluids and elastomeric materials. The magnetorheological fluids combine the
flexibility for altering structural response with low voltage requirements within
wide range of temperatures. Similar to the electrorheological fluids, they exhibit
highly nonlinear response [3,14]. The density of MR is larger that of ER which may
bring additive mass effect on a smart structure.

Optical fibers such as Fabry-Perot and Bragg grating, offer very high accuracy,
temperature stability and very short response time. Despite those advantages their
delicacy in handling, bulky control systems and cost make them unpopular. The

fiber optic materials are suitable only for sensing.

Sensor based on fiberoptic technology offer distinct advantages over conventional
sensors in the synthesis of smart structures [2,3]. In 1999, the applications of fiber
optic materials briefly overviewed by Mrad ef al. [15]. The bulky control units and
their fragility in handling limits their use in smart structures technologies.

The strong piezoelectric effect is observed in PVDF (Polyvinylidene Floride)
polymer was discovered in 1969. This material is characterized by such properties
as flexibility rudgeness, sofiness, light weight [16]. PVDF differs from crystalline
piezoelectric materials in a way that PVDF has the common properties of polymers
such as, flexibility, sofiness and low acoustic impedance. PVDF are available in
sheets of thin films and inexpensive to produce, easy to cut or shape in complex
configurations. Unlike PZT type of transducers, they can easily be integrated into an
existing structure. However, PVDF foil sensors and actuators are unattractive for
most of the engineering applications because of their very low passive stiffness
value and their extreme sensitivity to environmental conditions, such as humidity

and especially temperature. [3,16].
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In 1985, Bailey and Hubbard [17] initiated the research on the application of the
smart structures in active vibration control by using PVDF as an actuator for the

smart beam.

A vibration damper by using thin layer of PVDF film was designed by Burke and
Hubbard [18]. In their model, the transducer was bonded on a complete side of the
structure and an accelerometer on opposite side close to the root. They showed both
theoretically and experimentally that the spatial variation of the polarization profile
allows the simultaneous control of all modes or selective control of modal subsets.
In their analysis, however, there were many issues that still need to be resolved
before the application appropriate control strategies. Specifically, for the
piezoelectric material (PVDF), electromechanical coupling had to be included in the
development of the reciprocal relations between the sensor and the actuator. In
another study, Burke and Hubbard developed formulation to the vibration control of
thin elastic Kirchoff plates by using PVDF foil sensors and actuators [19]. This
work is the extension of their theory developed for Euler-Bernoulli beams [18]. In
their analysis by including electromechanical coupling of the transducers, they also
proposed the design criteria that guarantee active vibration control of such plates.
This leads to the design flexibility that the active vibration control is a function of

the spatial variation of the transducer weighting function.

Starting from four basic design parameters in the dynamic analysis of fully
anisotropic plates, Lee [20] developed a theory that is capable of incorporating the
piezoelectric properties of the PVDF laminates completely into the classical
laminate theory. The laminates were mounted symmetrically to both up and bottom
sides of existing structure as collocated sensor and actuator pairs. The reciprocal

relations between sensor and actuator laminates have been derived.
The formulation provided in [20] was used to define the new control design strategy

for active vibration control of anisotropic plates by Miller ef al. [21]. They briefly
explained the destabilizing effect of the presence of anisotropy. The strategy is
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based on the second method of Lyapunov. Asymptotic stability is shown to be
ensured as long as the three design criteria proposed are met. The design criteria
are: (1) for each piezoelectric actuator above the composite midplane there exists
corresponding identically polarized sensor laminate also located above midplane (2)
a linear control law governing each conjugate actuator/sensor pair is enforced such
that the input to each actuator is proportional and opposite in sign to current induced
by the corresponding sensor (3) for each conjugate pair above the midplane there
exists an identical pair below the midplane. This work, however, includes purely
theoretical considerations. The numerical and experimental verifications were left

for future studies.

2.3 Smart Structures with Piezoceramic Actuators

More than a century has passed since Pierre Curie first discovered the piezoelectric
effect in 1880. This effect is now a branch of crystal physics, and this owes much to
Woldemar Voigt, who did pioneering studies many years ago [16,22]. The
piezoelectricity also finds wide application in the electrical and mechanical and
aerospace engineering field. Jones et al. [22] explained the characteristics and the

applications of the currently available piezoelectric materials in engineering.

Piezoelectricity is a fundamental process of electromechanical interaction and is

representative of linear coupling in energy conversion. The discovery of the

piezoelectricity dates back the 19" century in which the piezoelectric effect is
found in ferroelectric materials. These materials are known in the form of ceramics
and anisotropic crystals (like quartz, barium titanate, lead zirconate titanate). These
materials are currently used in many transducers such as accelerometers and
pressure transducers. Among the piezoelectric crystalline the most widely used one

is PZT (Lead-Zirconate-Titanate).
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A piezoelectric transducer when subjected to an input voltage changes it’s
dimensions that in turn generates a force exerted on adjacent structural member
(direct piezoelectric effect). In contrast, a piezoelectric transducer generates voltage

due to an applied strain (converse piezoelectric effect).

The major advantage of piezoelectric transducers are realized when they are used as
collocated sensor and actuator pair for active vibration control. The use of highly
distributed piezoceramics combines tunability with quick response time over wide
frequency range together with high stiffness, relative temperature insensitivity and
relatively low hysteresis. The piezoelectric actuators are easily controlled due to

their near linear response with applied voltage

The piezoceramic actuators are found in a variety of forms like thin plates,
multiplayer stacks and injection molded shapes. Many actuator configurations are
reliable and have low cost. The tubular actuators containing multilayer PZT stacks
offer many advantages in linear positioning and pointing applications. Thin plate
type actuators are also a standard product that has been utilized in many active noise
and vibration suppression applications. The piezoceramic actuators exhibit excellent
response to the applied electric field over very large range of frequencies. The
sensing quality of the piezoelectric patches, however are limited to moderate

frequency applications (typically>10 Hz).

Piezoelectric actuator can be used beneficially for the applications in active
vibration control of smart structures. The piezoelectric actuators can easily be
controlled due to their nearly linear response with the actuation voltage. Although
piezoelectric actuators are expected to find many applications in smart structures
technologies, precise material characterization is particularly difficult due to various
possible mechanical compliances and thermal management situations. Therefore,
the configurations and the performances of the piezoelectric actuators for their use

in the design of smart structures must be examined [22].
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Steel et al. [23] worked on the theoretical treatment of the quasistatic response of a
thin piezoelectric PZT plate. In their work, the features dealt with include electrical
poling, hysteresis behavior, transverse and longitudinal mechanical strain of the
bimorph crystal subjected to electric field. An experimental work was also

conducted to validate the modeling technique.

The realization of smart structures with active components greatly depends on the
reliability of its integral components. In this terminology, the reliability is the
probability of which an actuator will perform its specified function under a set of
external function for a specified time. Among the three components, sensors,
actuators and the passive structure, the functionality of the actuators is anticipated
to be limiting factor governing the design and life of the structure. Yoshikawa et al.
[24] discussed the reliability of piezoelectric actuators by considering the stress and
strain requirements and material issues of various piezoceramic materials. Uchino
[25] approached the piezoelectric actuator reliability issues from a slightly different
point of view. He considered the reliability in three categories such as the reliability
of the ceramic material, reliability of the device design like Yoshikawa, as well as
the actuator drive technique with a particular focus on the multilayer actuators. He
further established the possibilities to improve the reliability of the actuators for
their future wide commercialization. In 1995 a comparative study [26], was released
for the identifications of the recent developments in the ceramic actuators among
USA, Japan and Europe. The aim of the work was to investigate the trends in the
development, design, production techniques and their applications mainly on the
smart structures technologies. Various piezoelectric materials, driving techniques

and their performances were illustrated.

For many years, piezoelectric and electrostrictive ceramic materials have been
considered for use as solid state actuators for small displacements and precise
mechanical movement devices. Many applications like loudspeakers and noise
canceling devices however, require actuators with larger displacements. Hence

novel techniques of strain amplification are required to satisfy these demands for
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high displacement actuation [22]. The novel piezoelectric bending actuators include
RAINBOW® (standing for Reduced And Internally Biased Oxide Wafer)[27],
CERAMBOW?® (stands for CERAMic Oxide Wafer) and THUNDER® (standing
forThin layer DrivER and sensor) [28].

Kugel et al. [27-29] discussed the linear and nonlinear performances of the shear
and bending mode actuators in three papers. A year later, Kugel er al. [30]
presented a comparative analysis to study the dynamical performances of these
actuators in terms of the mechanical displacement, electrical impedance and
mechanical quality factor for piezoelectric bending mode actuators. The aim of the
work was to gain knowledge of the dynamic behavior of the bending and shear
mode actuators including hysteresis and the change in the slope of the displacement
versus actuation. They further estimated that because of the nonlinearities the
resonant frequency of the bending mode depends on the driving field. Near [31]
summarized general design guidelines for the selection and the use of piezoelectric
actuators for active vibration control. In this work, several examples of the current
actuators are given for each actuator case. In one of the recent studies, Mukherjee et
al. [32] showed the nonlinear effects in piezoelectric ceramics. They detailed that
the properties for various piezoceramic materials were depend on applied fields

such as, AC and DC and stress.

2.3.1 Structural Modeling of Smart Structures

The determination of an accurate model is an essential step in the design of a high
performance active vibration control. This section briefly explains the work done in
the modeling of the coupled response of the piezoelectric patches and the interactive
response of the smart structures. This section also outlines the analytical, numerical
and experimental techniques for the development of the system model suitable for

the design of active vibration control.
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One of the first studies of smart structures, was performed by Swiger and Forward
[33] in 1981. They conducted a theoretical and experimental study that involved an
electronic damper implementing a system of electromechanical transducers made
from PZT as the elements of the electronic feedback loops to control the mechanical
vibration of an end supported mast. The structure consisted of a hollow fiberglass
cylinder called an omni antenna mast, and the concept was to apply electronic
damping with surface mounted piezoelectric sensors and actuators. The outputs of
the sensors were amplified and appropriately processed in time to provide inputs for
the actuators positioned symmetrically on the cylindrical surface. By the early
1980°s various papers have appeared on the modeling and active vibration control

on various combinations of PZT, passive structures and control algorithms.

By using the variational principles in piezoelectricity, Dokmeci presented theories
of vibrations of coated thermopiezoelectric laminae in two papers [34,35]. In his
first paper, he constructed a system of the three dimensional approximate governing
equations of coated laminate for the case when the mechanical displacement,
electric potential and temperature fields vary linearly across laminae thickness. In
his formulation, he also included the effects of elastic stiffness and the interaction
between layers of laminae and its electrodes. Later, Dékmeci removed the apparent
restriction of his first paper by including the equations of nonlinear piezoelasticity
in his formulation. Dékmeci presented novel formulations in the linear and
nonlinear descriptions of the piezoelectric laminaes. However, his work is confined
by the formulations and not supported by neither numerical nor experimental

results.

The utilization of discrete piezoelectric actuators has been shown to be a viable
concept for vibration suppression by Crawley and de Luis [36]. They proposed an
analytical solution for a static case including various actuator geometries by
considering perfect and finite bonding layers for surface bonded piezoelectric
actuators. Because the interlaminar layer is considered to be negligibly small, in the

case of embedded actuators, perfect bonding case was considered alone. At each
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case, the static models derived, were compared. These static models were then
integrated into the dynamic models of a cantilevered Euler-Bernoulli beam. The
validity of the theoretical models was also confirmed by the experimental results.
They concluded that the discrete piezoelectric actuators could be considered in
vibration suppression of some modes of vibration of flexible structures. However,
the exclusion of the mass of the piezoelectric actuators in their modeling technique
limits the use of the modeling to the actuators that are very thin or having very low

densities.

The vibration excitation of thin plates by using piezoelectric patches has been
analyzed by Dimitridis and Fuller [37,38]. This work is the extension of the one-
dimensional theory proposed in [36] to two-dimension. In this work, however the
directional properties of the actuator patches that are essentially anisotropic and
electromechanical coupling effects are ignored. Furthermore, similar to Crawley’s
approximation [36] their model is limited to the actuators made from thin patches of
negligible mass. They have derived static formulation by following the observations
of Crawley and applied their models to the dynamic model of the structure. Pan et
al. [39] improved the static modeling technique of Crawley [36] by incorporating
the dynamics of the smart beam. This work however, is limited to simply supported
beams. Furthermore, no experimental justifications were presented to confirm the
validity of their modeling technique. Kwak et al. [40] worked first on the reduction
of the three dimensional piezoelectric theory to one dimensional one in order to
comply with the Euler-Bernoulli beam. They then presented the formulation of

flexible multibody systems.

Kalaycioglu [41] developed a new dynamic modeling technique for the vibration
excitation and suppression of plate structures with surface bonded PZT actuators by
relaxing the apparent restriction on the thickness and the density of the actuator
patches of the previous work. The modal analysis based technique incorporates
geometrical and mechanical properties of the actuator with the structures on which

they mounted.
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A wave modeling technique for a dynamic system consisting of smart beam in
cantilevered configuration with surface bonded PZT actuators and PVDF sensors,
was introduced by Koma and Vukovich [42]. In this work, they first described the
transverse vibration of the beam with respect to the traveling waves and then
incorporating the wave model of the piezoelectric actuators and piezoelectric
sensors, a state-space model of the integrated smart structure was derived. The
modeling technique however, did not include the three dimensional
electromechanical coupling of piezoelectric actuators and sensors instead, one
dimensional coupling equation was incorporated to their modeling. Furthermore,

the experimental validation of the modeling technique was not included.

In the analysis of piezoelectric structural elements, many finite element models
have been proposed since early 70°s. But, they are mainly devoted to the design of
ultrasonic transducers [43,44]. By the late 80’s the interests have been directed
towards the application of smart materials and structures [45-49]. The application of
the finite element modeling techniques in the smart materials technologies is in
continuous growth during the last decade. Hence it gains a certain evolution so that
some piezoelectric elements have become available in a commercial finite element

programs like ANSYS® [50].

Wang [51] worked on the effectiveness of the finite element code ANSYS® in the
modeling of the smart structures. In this work, the finite element method was
proven to be a very effective tool for the analysis of the smart structures. Unlike the
analytical techniques, the method offers fully coupled thermo-mechanical-electrical
analysis of the smart structures. This allows the prediction of the reciprocal
relations between the sensors and actuators. This allowance makes the development

of the closed loop controller for active vibration control possible, Prasad er al. [52].
The truss type structures are widely used in aerospace engineering. The space

station main structural backbone for example, is a three dimensional space truss.

The design and analysis of a smart truss structure has of particular importance. The
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smart trusses consist of active and passive strut members that are commonly made
of tubular electrostrictive (PMN) or piezoceramic actuators (PZT). Utku [53]
proposed the applications of finite element technique in the modeling and design of

the smart trusses.

The design and analysis of smart trusses currently used in space structures, were
summarized by Bravo er al. [54]. In this work, by using IDEAS® software they also
presented a finite element based modeling technique for the design and analysis of
smart trusses. Since the commercial program IDEAS® do not contain elements
suitable for the analysis of electro mechanical coupling, these effects were
simulated by the thermal deformations of the rod elements. In this work, the
experimental justification of the modeling was not included. This assumption may

lead to improper calculation of the deformation of the smart truss.

Hydraulic actuators are commonly used as high force linear actuators. The
disadvantages of these actuators like toxic fluids and flammability limits their use in
aerospace actuators. The utilization of solid state piezoelectric (PZT) or
electroresistive materials (PMN) combines the high force capability with no toxic
and flammability problems. In one of the recent research studies for the actuator
design, the inchworm actuator (the actuator that uses small incremental steps to
reach large displacements) design was conducted by using ANSYS® and the
experimental results were used to confirm the validity of the finite element

modeling technique [55,56].

In the modeling of the smart structures analytical methods such as variational
approach and modal expansion, wave analysis or numerical methods like finite
element modeling are available. Alternatively an experimental approach was also
adopted in the modeling of the smart structures, Bai and Lin [57]. When an accurate
analytical or finite element model is not available, an experimentally identified

model was typically used [58-60]. Furthermore, Dosch et al. [5S9] proposed that the
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experimentally identified models could also be used for tuning the accuracy of the

finite element models.

2.3.2 Active Vibration Control Strategies Applied to Smart Structures

This section presents the current trends and the methodologies applied to the active

vibration control of smart structures

Hanagoud and Obal [61] developed an optimal control procedure based on the
minimization of the quadratic performance index which chosen to be the total strain
energy of the system. State and control vectors for a system consists of sensors and
actuators occupying discrete subdomain of elastic cantilevered beam. The method
they proposed makes use of the output feedback methods. In this work, they
considered the actuator patches as point actuators that increase the spill over
problem. The effect of spill over due to the unmodeled modes on the control

procedure and the optimal number of actuators and their positions not attended to.

The Linear Quadratic Regulator (LQR), and controllability measure, were
compared for the determination of the optimal actuator size and placement for
vibration suppression of a simply supported smart beam by Devasia et al. [62]. In
this paper, it was proposed that the LQR based measures more suitable than the
controllability measures for placement and sizing of the actuators. Sunar and Rao
[63] approached the optimal placement problem of the actuators on a cantilevered
beam with symmetrically placed PZT actuators from a different point of view. By
using a finite element based modeling technique, they observed the magnitude of
the structural vibrations for various actuator configurations to determine the optimal
location of the actuators. In this work, it was shown that the placement of the

actuator closer to the root is more efficient than the pair further away.
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The effectiveness of Linear Quadratic Gaussian Algorthm (LQG) on the
experimentally identified beam was shown by Bai and Lin [57]. The experimental
results obtained in this study shows that the algorithm provides significant

attenuation of the vibration signal.

Based on the dynamic modeling described in [41], Kalaycioglu and Misra [64]
discussed the suitability of the applications of the various control strategies to the
problem of shape control of spacecraft appendages. They presented the improved
version of an efficient method developed to handle vibrations in the flexible
structures by Singer [65] for calculating optimum voltage profile causing minimum
vibrations. They justified their work both experimentally and numerically. Using
the time-delay techniques presented in [41,64] Kalaycioglu er al. showed the
effectiveness of the model on the active control of space structures in which fiber-

optic materials are chosen as sensors and PZT patches are chosen as actuators [66].

The optimum placement of piezoelectric sensor/actuator for active vibration control
of the laminated beam, was investigated by Kang et al. [67]. In this work, they
firstly identified the optimal locations by selecting the modal damping ratios as their
performance index, then identified the optimal sensor/actuator locations as the

points where the performance index reaches its maximum.

Xu and Igusa [68] presented a new optimal design method for the actuator
placement. In this method, the gains of the actuators and sensors are considered as
an output control system. They explored the efficiency of their model by

considering several numerical studies for two dimensional membrane structures.

Hwang et al. [69] presented a technique that allows the optimal design of the size
and the location of the collocated pair of the piezoelectric sensors and actuators
together with the composite layer angles. By using a modal analysis based
technique, they stated that an efficient control algorithm could be designed for the

active vibration control of the layered composites in cantilevered configuration. The
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work however includes only the numerical results. Experimental justifications were

not made and issues on the robustness performance were not included.

A new control algorithm for eliminating structural vibrations is presented in [70].
The developed algorithm so-called Pulse Active Damping is applied to eliminate
the residual oscillations of space shuttle remote manipulator system (RMS). In this
study, simulation results presented both in plane and out-of-plane vibrations are
cancelled effectively by injecting appropriate torque pulses at shoulder yaw and
shoulder pitch joints of RMS. By using the concept of integral manifolds and
singular perturbation theory, Moallem et al [71] presented a nonlinear control
strategy for tip position tracking of a class of structurally flexible multi-link

manipulators

Ge and Jouaneh [72] proposed a PID control with nonlinear model in driving the
piezoelectric actuator to resolve the hysteresis problem. However, they did not
consider system uncertainties in the formulation of feedback controllers. A Preisach
model that captures hysteresis in a stacked piezoceramic actuator was developed

and experimentally validated by Hu and Mrad [73].

Choi et al. [74] proposed the Quantitative Feedback Theory (QFT) that is a
frequency domain design technique to reach the robust performance within the
frequency range of interest for a smart structure consisting of composite beam with

a surface bonded piezoceramic actuator.

By using the experimentally identified model of flexible ribbed antenna Dosch et al.
[59] developed Multi Input Multi Output (MIMO) and Single Input Single Output
(SISO) models. They showed the necessity of the application of MIMO models in
the case of the presence of the repeated eigenvalues and designed a positive position

feedback and H., controller that increases damping in all modes of vibrations.
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Nalbantoglu [60] studied robust control and system identification for flexible
structure that is considered to be a four stories space truss with active components.
In his study, system identification, performance criteria selection and optimal sensor
placement for flexible structures were examined within the H, and p analysis

framework and the ideas developed were tested on the flexible structure.

In another study, Bravo ef al. [54] also considered H, controller for the vibration
suppression of a truss by using finite element modeling [54]. Their finite element
modeling was not capable of electromechanical coupling and their controller was
designed by considering the uncertainty structure as a full block [60,75]. This

approach may yield to conservative results [60].

A control criterion based on the absorption of the traveling waves of the sensing
area was introduced by Koma and Vukovich [42]. Based on the global wave
absorbing technique a controller for active vibration control of smart beams in
cantilevered configuration with surface bonded PZT actuators. It was shown that the
technique had unique advantage over more common dynamic model based
controllers such as LQR. In this technique, the utilization of PVDF polymers as
strain rate sensors eliminates the necessity of integration and differentiation. They
also included experimental results to validate the effectiveness of the controller.
Although the controller design greatly depends on the accurate modeling of the
system no information was provided for the validation of the modeling and the

robustness issues [75].

Mei and Mace [76] studied the reduction of spillover in active vibration control.
They combined an optimal damping feedback wave control strategy with LQG and
showed the robust performance of the controller. Their work however, was limited
to the active vibration control of smart beams and the analysis of more complex

structures was not included.
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By using ANSYS®, Yaman et al. [77] worked on the finite element modeling
technique based for the determination of the smart beam. Based on this model they
designed a controller that effectively suppressed the vibrations of the beam due to
its first two modes. In their work, the effectiveness of H. design technique in the

modeling and the evaluation of the robust performance were also demonstrated.

In another study, Yaman er al. [78] extended their finite element modeling
technique and the robust controller design approaches developed for the analysis of
smart beams [77] to the analysis of a flat fin (flat plate with surface bonded
piezoelectric actuators). This study, first gave the effects of the piezoelectric
actuators on the response of the smart fin, then explained the influence of the
actuator size and placement and also determined optimum sensor location. The
smart fin was then used in the determination of an experimentally identified model.
Based on this model, a single input two outputs H, controller was designed to
suppress the in-vacuo vibrations due to the first two modes of the smart fin. The
effectiveness of the technique in the modeling of uncertainties was also given. It
was shown that the controller designed guarantied the robust performance in the

presence of the uncertainties.

In one of the recent studies Sivrioglu et al. [79] discussed the effectiveness of He
output feedback control technique on the acoustic power suppression of a panel
structure. In this paper, a robust control system was designed to suppress the
radiated acoustic power emitted from vibrating planar structure, and the spill over

effects due to unmodeled frequencies of the structure were presented.
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2.4 The Applications of Smart Structures in Active Aeroelastic Control

Aeroelastic effects and related problems have considerable importance in the design
and analysis of aeronautical structures. These effects are felt by the structure in the
form of changes in the aerodynamic load and lift distribution. These changes affect
structural integrity of the vehicle as well as flight stability, effectiveness of the
control surfaces and overall performance. This section outlines the current

applications of smart structures in active aeroelastic control.

Active aeroelastic concepts deal with the treatment of static or dynamic aeroelastic
deficiencies with respect to stability, maneuverability, loads and aerodynamic
response. The goals of applying smart devices to aeroelastic problems are to control
the aerodynamic and/or structural characteristics of aeronautical structures, to
improve flutter, gust, buffet and maneuver load behavior of fixed wing vehicles and
to reduce the loads on rotorcrafts. In many cases, applications of smart materials
will create more efficient structural designs. Several analytical and experimental
studies clearly demonstrated that the piezoelectric devices can be used as actuators

to actively control the vibratory response including the aeroelastic response [80-82].

Suleman [83] discussed the feasibility of employing passive control methodology
by using piezoelectric actuators to control the panel flutter. In order to achieve best
performance, there exists an optimum patch size and configuration. However, a
compromise needs to be determined between the advantages of an increased
actuation capability and the disadvantages of an increased weight due to the
addition of the piezoelectric materials. These questions left untouched for further
studies. In another study, Suleman et al. [84] proposed the effectiveness of the
piezoceramic sensor and actuators on the suppression of vibrations on an
experimental wing due to the gust loading. They showed, experimentally, the
feasibility of the application of the smart structures in the suppression of vibrations

due to the gust loading on the smart wing
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By using frequency response fitting and a semi analytical model, P transform
technique [85], Baker et al. [86] presented the aeroservoelastic modeling and design
techniques for transport aircraft based on their experiences derived from several

transport aircraft programs at Boeing

A joint research program in the field of aircraft structures was initiated between
Daimler Chrysler Military Aircraft Division (DASA), Daimler Chrysler Research
and Technology (DC-FT) and German Aerospace Center (DLR). Within these
efforts various different concepts for active vibration suppression on vertical fins
were developed investigated theoretically and experimentally [87]. Luber et al.
[88,89] considered a method for the improvement on the design strategy of flight
control system development through an algorithm that included the integrated
design optimization involving the modeling of the coupled system of flight
dynamics, the actuators, sensors and the effects of the processor network. In this
work the aeroelastic and aeroservoelastic models were based on the theoretical
finite element model representative of the stiffness and mass characteristics of
European Fighter 2000 by means of dynamic assembly. By using NASTRAN®, the
complete flutter model is assembled through the dynamic model components and

included the unsteady aerodynamic components.

A comparable research program was initiated in the United States with a
participation from Canadian and Australian institutions in which the active rudder
and integrated piezoelectric actuators concept were investigated on a modified F/A-
18 fighter aircraft. Nietzche et al. [90] presented a finite element approach for the
design of control algorithms for vertical fin buffeting by using strain actuation.
Since for the first time the full scale aircraft (F/A-18) was tested at buffet control
using the smart materials technologies, this work represents an important step in the
development of smart structures. In this work, by using the commercial code
NASTRAN® [91] the structural and the aeroelastic model of the vertical fin is
modeled. Based on this model, a MIMO LQG based controller design was

performed for the alleviation of the buffeting effects on the vertical fin. However,
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since NASTRAN® has no elements for the analysis of the effects of the
piezoelectricity, the actuation of the piezoelectric actuation was simulated by the
deformations of the rod elements under constant temperature. Furthermore, the
robust performance property of the controller design was not shown. Despite of the
approximations considered in the modeling, very promising results were obtained.

In another study, Hanagoud et al. [92] presented a different approach for the tail
buffet alleviation of the twin tail aircraft. By using the offset piezoceramic stack
actuators and acceleration feedback concept, this study focuses on the reliability and
maintainability of the actuator and the robustness of the controller. The theoretical
model of the study was based on the single degree of freedom approximation for the
system model. They also provided certain experimental validations for the
effectiveness of the acceleration feedback concept on a full scale tail sub assembly
and on a 1/16™ scale wind tunnel model. These studies had shown that the active
control systems offer a compromising solution to alleviate buffet induced strain and
increase fatigue life of modern fighter aircrafts. The aeroservoelastic characteristics
of the B2 bomber and its implications for future large aircraft was also discussed by

Britt et al. 193].

Recent developments in the finite element modeling of smart structures for
aeroservoelastic response, were presented by Nam et al. [94]. In this work, it was
shown that, a commercial program ASTROS® [95] provides a successful means of
integration as a result of the thermal versus PZT analogy and the control surface
versus PZT equivalence principle. The capabilities of the software were also
demonstrated by considering certain numerical examples. These included the neural
net work based active flutter suppression of F-16 wing by using PZT actuators, the
gust-load alleviation of a modeled F18 wing by using active control, and the trim
reduction of TOMAHAWK missile with or without battle damage by using PZT

actuators.

The present helicopter research is mainly directed towards the improvement of the

aerodynamic efficiency and the acoustic emissions. The helicopter flight dynamics
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are governed by many complex and still quite poorly understood phenomena [96].
This makes accurate modeling hard and consequently designing new controllers are
challenging [97]. The applications of smart materials have also a high potential to
significantly suppress noise, reduce vibration and increase the overall aerodynamic
efficiency. The utilization of the smart materials provides means of direct approach

aiming the alleviation of the problems at their physical sources [98-100].

In one of the recent studies, Suleman et al. [101] described the wind tunnel
aeroelastic testing of a Remotely Piloted flight Vehicle (RPV). The aeroelastic
response to gusts and performance of the RPV wing by using traditional
aerodynamic control surface methods is compared to the ones obtained by using
PZT actuation. Piezoelectric shunting, a passive form of control was used to create

system redundancy and thus improving flight safety in the worst-case scenario.

2.5 Structural Health Monitoring By Using Smart Structures

This section reviews and discusses the enhancements and developments in the
applications of the smart materials for the structural health monitoring of aerospace

structures.

The structural integrity of the critical connections or parts of the aerospace
structures must be assured during its lifetime. Structural health monitoring of these
regions has of primary importance and this is currently being fulfilled on aircraft
externally and internally. When health monitoring is performed internally, the
access to the locations of the critical parts by using traditional Non-Destructive-
Inspection (NDI) techniques is rather limited or unavailable. In this case, the
disassembly of the aircraft structure is required. These inspections are necessary

during the service time of the aircraft to ensure the structural integrity of the aircraft
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for flight-worthiness. The inspection of these structural elements by traditional

methods, therefore, requires a lot of time and effort.

The application of smart structures technologies provides effective solutions to the
problem by eliminating unnecessary aircraft structural disassembly for the structural
health monitoring of the critical parts. Furthermore, in principle, the smart
structures offer not only in-service inspections but also provides in-situ basis for

continuous monitoring.

In structural health monitoring, the state of the structure is sensed during in-service
life and measurements are compared with previously measured reference response
levels. Therefore, it is essential to have basic understanding of expected response of

the structures for which sensors can be used.

The structural health monitoring of the structure during its service life can be
accomplished by sensing global as well as local parameters. The sensing of local
parameters (deformation, strain, temperature and pressure) can give information on
exact location. The extent of the damage to the structure however, can be
understood from sensing global parameters (natural frequencies and damping
factors). Typical response parameters that can be used in health monitoring are the
natural frequencies and the strains caused by in service loading. The natural
frequencies are affected by both distributed or localized mass and stiffness changes.
The reduction of mass (e.g. impact damage) will increase natural frequencies while
reduction in stiffness will reduce natural frequencies. However, the health
monitoring strategies based on changes in structures global parameters require very
sensitive sensors since, in most cases extensive damage is required before
significant changes occur. Some modes may be significantly affected by the
relatively small amounts of damage. However, which modes experience large
changes in modal parameters depends on where the damage is located in the

structure. If the damage is located at high strain region of a certain node, it will take
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relatively little damage to produce a significantly changes in natural frequencies,

Bicos and Tracy [102].

The aim in structural health monitoring is to provide means for warning before the
actual failure occurs. In addition to the safety requirements, the target should be the
reduction of the maintenance cost. One way to achieve this is to perform the
maintenance only when it is necessary. This can also be achieved through the

structural health monitoring

As it was mentioned in the previous sections, significant work conducted on the
development of piezoelectric and fiber optic sensors that can be used to monitor the
performances of the structures [102,103]. In the health monitoring, depending on
the operating conditions, loading and the passive material type, different kind of

smart materials are used.

When an alternating voltage drives the PZT bonded to the structure it imposes
bending moment on the structure through its longitudinal expansion and contraction
causing structure to vibrate. This vibration in turn modulates the current flowing
through the patch and consequently the electric impedance which is defined as the
ratio of the applied voltage to the resulting current of the bonded patch.

The idea to use the electric impedance in the dynamic analysis of smart structures is
introduced by Liang et al. [104]. Since the method reflects the physical essence of
the active material systems precisely, the technique has advantages over other
conventional techniques like the static and dynamic finite element approaches. By
using the observations of Liang, Sun et al. considered the measurement of the
admittance of the PZT patch that is related to the mechanical impedance, (the ratio
of the applied force to resulting velocity of the structure) for the on-line damage
detection of the smart structures in two articles [105,106]. They first proposed an
electrical impedance measurement based frequency response function acquisition

technique for the flexible structures. Later they presented a novel vibration signal
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recognition technique for the determination of the damage of the smart structures.
In their work, the damage is obtained by using the statistical algorithm based on the
difference in electrical impedance of a healthy and the damaged structure. This
algorithm is then applied to extract an index of the health of the structure. In another
study, Chaudhry et al. [107] further provided an experimental proof of the
technique for the health monitoring of an assembled truss structure. In this work, it
was shown that the local effects of the collocated PZT sensors /actuators greatly
simplifies the determination of the location and the extent of the damage. The idea,
used in the vibration signature sensing techniques described, is actually based on
the fact that each part of the structure contributes to the impedance to some extent.
Any variation in the structure integrity will cause a change in the measured
electrical impedance of the patches. This approach works well for truss type
structures. For the solid structures having high spatial mass distribution however,
the number of the required sensors increases greatly. Thus, there seems a little

feasibility for this approach [107].

By using results of [106] and [107], Chaudhry ef al. [108], introduced the high
frequency mechanical impedance technique to the local area health monitoring of
the critical sections of an aircraft by using piezoceramics. In this application,
because the size of the PZT transducer area limits the sensing and the actuation
area, the impedance was affected only by the changes in structural properties close
to the sensing/actuating and insensitive to the changes in the far-field boundary

conditions and loading,

Since, at high frequencies the response is dominated by local modes, the incipient
damages like small cracks, loose connections and delaminations can be identified at
the locations where high structural integrity must be assured at all time. Chaudhry et
al. [108] proposed that the technique developed can be applied to the critical parts
on an aircraft, like the main fuselage joint, the engine to-fuselage joint and other
critical regions. Because of the high frequency of the excitation, the analysis is very

sensitive to minor damage that may exist in the structure. High frequency excitation
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(typically in the order of 50 kHz) is critical for the success of this technique since it
assures clearly visible change in the impedance. Because the wavelength of the
oscillation should be less than that of the crack to detect, it is directly related to the
accuracy of the model. Chaudhry et al. further showed that at such high frequencies
the technique is comparable in sensitivity to sophisticated traditional NDI
techniques.

The examination of the mechanical impedance of a structure at the location of
interest has been proven to be an effective way to estimate the structural integrity of
the structures. However, with the utilization of the conventional transducers such as
accelerometer and force gauge, it is economically and technically impractical to
implement in service or real time health monitoring of large structures composed of
hundreds of joints and components. The vibration signature based techniques
applied on the piezoceramic patch however, provides simple means of acquiring the
vibration signature pattern that is much easier to measure than that of mechanical
impedance. For the success of the vibration signature based technique however, the
piezoelectric patches should be mounted to the surfaces of the critical parts of the
structure on which health monitoring is necessary. Chaudhry et al. [109] further
investigated the effectiveness of the vibration recognition technique on the
monitoring of the integrity of the composite repair patches used in the aircrafts and
showed that the technique assures a clearly visible change even for very minor

changes.

Acoustic emission is also being considered for health monitoring of aeronautical
structures [102,103]. In this technique, the fiber-optic sensors embedded to the
structures are replaced with surface mounted piezoelectric sensors. The technique is
reported to have advantages over other techniques, Rogowski [103]. Because an
acoustic signal propagates for relatively long distances in many structural elements,
the number of sensors required for the technique is minimum compared to other
techniques. In this technique, the propagation of acoustic signals are modeled and
compared with measurements, the relative signal arrival times are then used to

localize the damage, Spiliman and Fuhr [110]. A complete understanding of
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fundamental physical process is required to allow proper interpretation of acoustic
emission data to locate and identify structural defects.

Tsou and Shen [111] explored the application of the artificial neural networks to the
structural damage detection and identification on the discrete structures. They
proposed that the neural network’s ability to learn the feature of the nonlinear
mapping and their fast computational speed make the application of the neural
networks in the structural health monitoring feasible. By using piezoelectric sensors
and actuators, Islam and Craig [112] proposed a neural network based strategy for
the detection of damage in composite structures. By using the back propagation
neural network trained with the first five modes of the laminated composite beam,
the technique was shown to yield accurate results in the determination of any

delaminations.

McBride et al. [113] conducted a feasibility study for the determination of debrid
impact and damage assessment for space structures. They showed acoustic emission
technique could provide a basis for the monitoring of debrids impact and materials
degradation in large, isolated space structures. Since the accuracy of the technique
greatly depends on the selection of the sensors, currently available sensors should
carefully be examined in terms of the characteristics of both passive and active

components to contain both debrid impact and materials damage requirements.

The flexible structures can experience structural integrity problems as a result of the
damaged connections. Real time monitoring of the structures can be achieved by
using piezoelectric actuator by sensing the global parameters of the structures.
Nesculescu and Abreu [114] compared the effectiveness of frequency and transient
response based health monitoring. They first obtained the damage index by
considering different levels of loosening for the joints of the clamped smart beam
with surface bonded piezoelectric actuators. Then by comparing with a healthy
beam, they showed that the transient response could also be used effectively in the

determination of the structural integrity problems.
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CHAPTER 3

MODELING AND DESIGN OF SMART STRUCTURES

3.1 Introduction

This chapter is devoted to the modeling and the design of smart structures. By using
ANSYS® (v.5.6) software, the study determines the effectiveness of the finite
element modeling technique in the analysis of piezoelectric materials and the design
of smart structures. The study first gives the effects of the piezoelectric patches on
the response of the smart structures and also explains the influences of the actuator
size, placement and the maximum admissible piezoelectric actuation value to secure
the integrity of the piezoelectric patches. These models will then be reduced to the
state space models of the smart structures necessary for active vibration control.
This study focuses on the accurate representation of anisotropy and the
electromechanical coupling inherent to the piezoelectric materials and their effects
on the passive portion of the smart structures. The smart structures considered in
this thesis consist of aluminum beam-like and plate-like structures modeled in
cantilevered configuration with surface bonded PZT patches. The identically
polarized piezoelectric patches are bonded symmetrically on top and bottom
surfaces of the passive portion of the smart structures.
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3.2 Theory of Pieozoelectricity

This section presents both analytical formulation and numerical technique for the
analysis of piezoelectric materials in which there is an inherent coupling between
the mechanical and electrical behavior. This section first describes the fundamental
differential equations of linear piezoelectricity then gives a finite element based

modeling technique for the analysis of the linear piezoelectricity.

3.2.1 The Analytical Modeling of the Piezoelectric Materials

This part of the thesis gives a brief review of the three-dimensional equations
governing the response of piezoelectric materials under the application of an
electric field. During the course of work, the formulations are adapted to the
dielectric, piezoelectric and anisotropic material properties of BMS500, the
piezoelectric material that is used throughout the study. The properties of BM500

are presented in Appendix A.

Piezoelectricity deals with the coupling of structural and electric fields, which is the
natural property of anisotropic crystals. The analysis of the coupled field problems
requires the incorporation of the piezoelectric interaction equations with strain

displacement and the equations of the motion of the problem.

The actuation of a piezoceramic material is characterized by the three-dimensional
deformations of the ceramics under the application of an electric field [16,20,22].
Depending on the polarization pattern of the ceramics and the actuation values, the

applied electric field generates tension or compression in a piezoceramic material.
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If one denotes the material or the body coordinates of the piezoelectric rectangular
coordinate and the principal axes of the piezoelectric material by the axes (x, y, z)
and (x1, y2, X3) respectively, Figure 3.1 then gives the positive sign convention,
which will be followed in the analysis of the piezoelectric materials. In that the
actuation voltages applied to inner and outer electrodes of the piezoceramic material
represented by V; and V,, respectively. The equations to be solved in the analysis of

the coupled field problem are summarized in equations (3.1.1) to (3.1.5)
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Figure 3.1. The piezoelectric patch and the positive sign convention used in the

study

During the presentation of the equations (X, y, z) coordinates are used in the
formulation of the strain-displacement and equilibrium equations. The constitutive
equations and the transport equations however, are written in the principal
coordinate system (X;, X2, X3). For the small displacement analysis of an elastic

structure, the strain displacement equations are well known to be,
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where, u, v, w represent the displacements along x, y and z directions respectively.
In the absence of the body forces, the equilibrium equations are given by

equation (3.1.2).

o, 0o, oo, o’u
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Here o defines stress oj; where, i=X, y, z, stands for normal stress and o;, where i
and j=x, y, z, gives shearing stresses. p, symbolizes the density per unit volume of
the piezoceramic material and t stands for time. The transport equation, relates the

electric field &; to the scalar potential function y; by the following relation,

g = -t (3.1.3)

In the analysis of piezoelectric materials having constant thickness, the electric field
is described by the ratio of the potential difference between the surface electrodes of
the piezoelectric material to the distance between the surface electrodes. When the
stress strain relations for a piezoceramic material [22,115] are adapted to BM500
type actuators [116]; these relations, in principal directions, take the form of

equation (3.1.4).
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where, Cj; defines the elastic moduli and e;; is the piezoelectric stress constant of the
actuators. o are the thermal expansion coefficients of the piezoelectric material in
principal directions and AT is the temperature difference during the process. The

electric flux density vector, D; can be found from equation as [22,50,115],

o) .
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Here, €; where i=1, 2, 3 gives the dielectric constants of the piezoelectric material

in the principal directions.

The three-dimensional analysis of a piezoelectric material consists of finding the
displacement components u, v, w and the electric potential y satisfying equations

(3.1.1) to (3.1.5), completed by adequate boundary and initial conditions.
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3.2.2 Finite Element Modeling of Piezoelectric Materials

This section aims to investigate the effectiveness of the finite element technique in
the analysis of the piezoceramic materials. Since these materials are generally used
as the actuators in smart structures, their analysis has of primary importance in the
determination of accurate models of smart structures. During the analysis, the
modeling incapabilities of the finite element technique that inevitably limits the

accuracy of the results are also stated.

The finite element method was shown to be a very effective tool for the analysis of
the piezoelectric materials since the method offers coupled thermo-mechanical-

electrical analysis of the structures [50,52,55,77].

In the analysis of thermo-mechanical-electrical coupling field problems
ANSYS®(v.5.6) has only three elements. These elements are, PLANE13, SOLID5
and SOLID98. These elements have magnetic, thermal, electrical, piezoelectric and
structural field capabilities with coupling between these fields [50]. While
PLANE 13 can be used in two-dimensional problems, SOLID5 and SOLID98 are
considered in the analysis of three-dimensional coupled field problems. The
geometry node locations and coordinate system for these elements are shown in

Figure 3.2.

The piezoelectric actuation of a smart structure is characterized by the three-
dimensional deformations of the piezoelectric actuators under the application of
electric field [22,23,34]. Thus, in the finite element analysis of smart structures

utilization of the prismatic or solid elements is common [52,56,77].
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Figure 3.2. The comparison of the geometry, node locations and coordinate system
for the element having coupled magnetic, thermal, electric and structural capability
in ANSYS® (v.5.6).

a. PLANE13

b. SOLID5

c. SOLID98

The prismatic elements, SOLID5 and SOLID98 are the suitable elements in three-
dimensional coupled field problems available in ANSYS® (v.5.6). These elements
have three displacement degrees of freedoms per node. In addition to these degrees
of freedoms, the elements have also potential degrees of freedom. SOLIDS can be
used to model regular meshes involving thin and flat geometries. The element has
extra displacement shapes and uniform mass distribution [50,52,77]. SOLID98 is
the 10 node tetrahedral version of 8 node SOLIDS. The element has a quadratic

displacement behavior and well suited to model thick and irregular meshes [55,56].

SOLID98 however, has non-uniform mass distribution such that the mid-nodes of
the element always have larger mass [50]. The non-uniform mass distribution may
influence the accuracy in the sub-structuring analysis which is the analysis
conducted to condense the properties of the finite element to a single element or
modal analysis that requires the condensation of the voltage degrees of freedoms at

certain nodes in the finite element model called master degrees of freedoms [50].
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Despite of the quadratic displacement behavior defined, SOLID98 has linear
potential variation through thickness.

In order to avoid the inclusion of extra degrees of freedoms and non-uniform mass
distribution, the smart material models of this study are created by using the regular
meshes that allows the efficient use of SOLIDS for the theoretical modeling of
piezoelectric patches throughout the study. The utilization of this element also
guaranties the uniform mass distribution within an element during the dynamical

and sub-structuring analyses [50].

The proper interpretation of the static and dynamic characteristics of the
piezoelectric actuator is one of the most important steps in the analysis of the smart
structures. For this reason, by using SOLID5 element, the theoretical model of a
single piezoceramic crystal (25x25x0.5 mm, type: BMS500) is obtained. In this
thesis the sizes of the rectangular models are described in terms of their
LengthxWidthxHeight. The model is then used in the static and dynamic analysis of
the patch modeled in mechanically clamped (C-C-C-C) configuration. The
deformation of the piezoelectric patch under the application of 300V (V;=300 and

o=0) is calculated and the result is shown in Figure 3.3. Since, the boundaries of
C-C-C-C patch is highly constrained, the deformations are found to be symmetric

with respect to the x-y plane.

The mechanically clamped configuration for the actuators are considered to
simulate the electro-mechanical behavior of the surface bonded PZT actuators
closer than other possible boundary conditions such as, free and simply supported
and elastic boundary conditions. Hence during the theoretical calculations the
properties like dielectric and stress constant of the actuators are measured in its
mechanically clamped configuration [52,51,116]. Figure 3.4 gives the first two
theoretical natural frequencies and the mode shapes of a single piezoceramic crystal
in mechanically clamped configuration. When all resonances of the actuator are

higher than the frequencies of interest for the smart structures, the actuator acts
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quasistatically compared to the smart structure. In this case, the dynamics of the
actuator and the smart structure can be decoupled [35,36] and hence the numerical

accuracy of the model is improved.
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Figure 3.3. The deformation of a single C-C-C-C piezoelectric crystal at 300V
(z=0; V;=0, z=t;n; V=300 and AT=0)
a. Side view

b. Top view

f1=62988Hz f5=16764 Hz

Figure 3.4. The first two theoretical natural frequencies and mode shapes of a single
C-C-C-C piezoelectric crystal
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3.2.3 The Limitations in the Finite Element Modeling of Piezoceramic

Materials

The inherent electromechanical coupling which exist in the smart structures and the
required surface compatibility and continuity characteristics can be handled through
the three-dimensional finite element modeling with an extended nodal degrees of
freedom vector containing both mechanical and potential degrees of freedoms. This
is generally done, by assuming the linear variation of the electric potential
[50,117,118]. However, the assumption of linear variation of the electric potential
neglects the induced potential. Depending on the type of the piezoceramic material
and loading, this assumption may lead to the incomplete treatment of the

electromechanical coupling [35].

The effect of the induced potential on the response of the smart structures is closely
related to the extent of the elastic deformation of the piezoelectric material such
that, the assumption of the linear variation of the electric potential across the
thickness of the piezoelectric material ceases its validity for the smart material
undergoing large deformations. In this case, the linear approximation should
accordingly be modified [35]. Therefore, the influences of the initial stresses on the

piezoceramic material must be investigated prior to the analysis.

In the finite element modelling of the smart structures, although the element
SOLID98 is designed to have quadratic displacement behaviour, similar to
SOLID5, the element assumes linear potential variation through thickness so
ignores the effects of the induced potential. ANSYS® (v. 5.6) does not have
elements suitable for the analysis of the effects of the induced potential and the

large deformations by using scalar potential field approximation.

In the solution of electromechanical coupling problems, the method of the direct

coupled field is used [50,117]. This method handles the highly nonlinear field

44



coupling by calculating the element matrices or the element load vectors containing
the necessary terms for the solution. The technique is iterative for both matrix and
vector coupling. Because the method calculates the results in single solution, this
method has the advantage to avoid the use of enlarged nodal unknowns vector but
still neglects the induced potential [50,117,118].

The theoretical calculations of the study are performed within the linear range of the
elasticity and piezoelectricity. Therefore, the influences the large deformation (or
large rotations) consequently the influences of the induced potential are not
included in the current analysis. The linearity assumption provides an accurate
description of the small amplitude waves in, and the small amplitude vibrations of

the piezoelectric material [25,35,116].

The validity of the small deformation assumption is confirmed at the design stage
by considering maximum transverse displacement (w) to thickness ratio (h)
[119,120]. The linear plate and piezoelectric theories are not valid if this ratio is
large, that is if it exceeds a few tenths. Although the practical limit of this ratio is
case dependent, large w/t yields to deflections which are significantly different than
those predicted by the linear theories. During the design stages of the smart
materials the w/t ratio, for both active and passive portions undergoing bending
deformations, is kept fairly below 10 to secure the validity of the linear
piezoelectricity and elasticity theories. Furthermore, the piezoelectric material was
also selected among the crystals from which the influences of the induced potential
under small deformations are considered to be negligible. The validity of this

assumption was shown in [52,55,116].

Since the piezoelectric or voltage degrees of freedom have no mass, the only option
in the modal analysis for the models including coupled-field elements is the reduced
method. The method uses Householder-Bisection-Inverse iteration algorithm to
calculate the natural frequencies and mode shapes. Since the method works with a

small subset of the degrees of freedoms called master degrees of freedoms, the
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accuracy of the method depends largely on the number and location of the
freedoms. Furthermore, the method does not allow the specification of the damping.
Hence only undamped natural frequencies and mode shapes can be found by using

modal analysis.

In the harmonic response analysis of the coupled field problems, the damping can
only be included through the specification of the Rayleigh damping coefficients, the
modal damping ratios associated with the modes of the smart material can not be

specified.

3.3 The Finite Element Modeling and Design of Smart Structures

This section presents a finite element based modeling technique for the analysis and
the design of the smart structures. The technique used in this section is the
appropriate extension of the theory developed for the analysis of the piezoelectric
materials. During the analysis the effects of the electromechanical coupling are
incorporated in the modeling of passive structures. The design of the smart
structures was conducted by developing models having the parametric design
capabilities that consequently allow variation in the location and the size of the

actuators.

3.4 Finite Element Modeling of Smart Beam-Like Structure

The smart beam-like structure considered in this study is composed of an aluminum
beam modeled in cantilevered configuration with eight surface bonded piezoelectric

patches (PZTs). In the study, it is generally referred to as smart beam.
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Depending on the mission requirements and the surface characteristics of the
passive structure, the selection of either unimorph or the bimorph configurations is
common in the design of the smart structures. In the monomorph configuration, the
actuators are bonded to one face of the passive structure. In the bimorph
configuration however, the identically polarized piezoelectric actuators are
symmetrically bonded to the top and bottom surfaces of the passive structure. The
bimorph configuration doubles the forcing capacity of the piezoelectric actuators
and improves symmetry [22,31,37]. The bimorph configuration is favorable when
the forcing levels and the power requirements are critical [22,31]. Throughout this

thesis, the bimorph configuration is considered in the design of the smart structures.

When piezoceramic crystals are bonded to the passive structure, their responses to
the voltage actuation are modulated by the presence of the passive structure.
Therefore, the mathematical model to be used in the analysis should be capable of
appropriately modeling of active components and their interaction with the passive

components.

Depending on the polarization pattern of the actuators and the actuation values, the
applied electric field generates bending moments on the smart structure by inducing
tension and compression on the opposite sides of the smart structure modeled in
bimorph configuration. In Figure 3.5, this situation is represented for a smart beam-
like structure subjected to different piezoelectric actuation. In this case, the net

potential difference between the top and the bottom actuators is given as.

AV' =V_-V, (34.1)

AVE =V, -V,

Here the subscripts T and B denote the top and bottom actuators respectively.
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Figure 3.5. The piezoelectric actuation of a bimorph cantilevered smart beam.
a. The configuration and the polarization of the piezoelectric actuators

b. V, < V,, top actuators in tension, bottom actuators in compression

c.V, > V,, top actuators in compression, bottom actuators in tension
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3.4.1 The Influences of the Element Type Selection

In finite element modeling, the selection of the element type profoundly affects the
accuracy of the problem. Therefore, in modeling of smart structures, it is imperative
to understand the effects of the geometry, the loading conditions and the capabilities
of the finite element program.

Because piezoceramic actuators exhibits anisotropy and yields three dimensional
spatial variation in their response to the piezoelectric actuation, the models
developed for the passive portion should also include consistent spatial degrees of
freedoms with the actuator elements where the active and passive elements

interface.

Piezoelectric patches strain in both directions in their plane. Hence, the passive
portion of the smart beam-like structure should also be able to incorporate these
deformations in its model. Thus, the smart beam-like structure is not an Euler-
Bernoulli nor a Timoshenko beam but actually a plate strip and works in accordance

with plate theory.

Theoretically, the plate elements (shell or solid) can be considered in the modeling
of the passive portion of a smart structure. While the shell elements are used in
accordance with the thin plate theories, the prismatic or solid elements work with

the three dimensional elasticity theories [50,115,120].

Depending on the problem linear shell, prismatic, or their higher order versions may
be used to model structures consisting of the thin plate strip or plates. In many
situations however, the results obtained by using linear elements is known to yield
results, which are not very accurate [50,120]. The utilization of linear elements with
extra displacement shapes or the ones having quadratic displacement behavior is

favored for the modeling of such structures [50].
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In the modeling of piezoelectric patches, the typical elements used are the prismatic
elements, whereas in the modeling of the passive portions, which are in the
geometry of thin plates or plate strips, the quadratic shell elements may also be
considered as an alternative to the prismatic structural elements [51,52]. The shell
elements, in addition to the three displacement degrees of freedom, also have three
rotational degrees of freedom per node. The use of elements possessing different
degrees of freedoms in the same model requires coupling of the consistent degrees
of freedoms at the contact surfaces where these elements interface. Although the
application of the coupling strategies guaranties the appropriate transfer of the nodal
forces between the active and passive portions at the interface, the nodal moments

corresponding to nodal rotations do not transfer [50].

The geometry, node locations and coordinate system for the elements that are used
to model the passive portion is given in Figure 3.6. Appendix B compares the
effects of the element types by calculating the natural frequencies of the passive

portion of the smart beam.

Figure 3.6. Elements used in the modeling of the passive portion of the smart beam
structure [50]

a. SOLID45

b. SOLID95

c. SHELL93
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The appropriate model of the smart beam considered in this study is decided by
considering two approaches [52,77].

In the first approach, the prismatic elements (SOLIDS) are used for modeling the
active portion (piezoelectric patches) and two different cases, which correspond to
the modeling of the passive portion of the smart beam with different prismatic
elements, are considered. In case 1, the passive portion of the smart beam is
modeled by using the structural elements that are compatible with actuator elements
(SOLID5). The element considered for this purpose is a linear prismatic element
with extra displacement shapes (SOLID45). This model is called ‘model 1°. In the
second case, the structural quadratic elements (SOLID95) are used to model the
passive portion .The model so obtained, is called ‘model 2°. The element SOLID95
is a higher order version of the 8 node structural prismatic element SOLID45. The

element has 20 nodes.

Then the passive structure is modeled with quadratic shell elements (SHELL93)
whereas the piezoelectric elements are still prismatic elements (SOLIDS5). This

hybrid model is denoted by ‘model 3°.

The smart beam models obtained are then subjected to a piezoelectric actuation of
300V and the deformation results of the three different models are shown in
Figure 3.7. Significant differences are observed between the solid-solid hybrid
models (model 1 and model 2) and shell-solid hybrid model (model 3). It can also
be seen from Figure 3.7 that the results obtained from the model consisting of linear
elements having extra displacement shapes (model 1) are very close to that of the
model with quadratic elements (model 2) such that, for the piezoelectric actuation
of 300V, the maximum deviation in the deformation patterns of the solid-solid

hybrid models are in the order of 1 percent.

51



-3

x 10

1 T T T T T T T T T T

-— - undeformed
- modeld

0.5 — model2

— - model3

response(m)
o

|
o
%4

-1 1 L 1 I ) 1

I 1

J - o
o 0.05 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45 05
beam spanwise locations(m)

Figure 3.7. The comparison of the effects of the element type selection on the
deformation of the smart beam by piezoelectric actuation at 300V (modell:
SOLID5 and SOLID45, model 2: SOLID5and SOLID95, model 3: SOLIDS and
SHELL93)

The previous analytical studies revealed that the response of the smart beams
[36,74] and plates [34,38,41] depends largely on the actuator thickness such that the
increase in the actuator thickness reduces the response of the smart beam-like and
plate-like structures. Thus, the influences of the patch thickness variation on the

response of the smart beam-like structure models are investigated.

Figure 3.8 shows the dependency of the response on the patch thickness for three
hybrid models, which are subjected to a piezoelectric actuation of 300V. In that
figure the theoretical responses, in terms of the tip deflection values for twelve
patch thickness values calculated by using the smart beam models, are plotted
against actuator thickness. It can be seen from figure 3.8 that, as the patch thickness
increases, the response reduces for the solid-solid hybrid models (model 1 and
model 2), within the range of the actuator thickness values. The solid-shell hybrid
model, (model 3), however, exhibits an unexpected behavior in its response to the
piezoelectric actuation. The response increases for the patch thickness values

between 0.1 and 0.75 mm. Thus, similar to the to the observations of Yaman, et al.
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[77], the contradictory results are obtained from the shell-solid hybrid model,
(model 3). These differences observed in model 3 may be attributed to the improper
modeling of the element stiffness matrix in the determination of the global stiffness

matrix for the shell-solid hybrid model.
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Figure 3.8. The comparison of the influence of the actuator thickness on the
response of the theoretical models (legend of Figure 3.7)

The influences of the element type selection on the natural frequencies of the smart
beam are also investigated. By using modal analysis, the first three natural
frequencies are calculated and the results are shown in Table 3.1. During the
theoretical calculations, since the voltage degrees of freedom associated with the
coupled field analysis have no mass, these degrees of freedoms are condensed out
through the application of the reduced method with master degrees of freedom
chosen only for the structural degrees of freedom [50].

In order to avoid the inaccurate calculation of the mass matrix in the reduced
analysis, the master degrees of freedoms are selected at the locations having larger
mass and relatively low stiffness [50,120,122]. Hence, during the analysis, the
master degrees of freedoms are selected at the mid-nodes that have greater mass for

the quadratic elements. Since the highest stiffness of the smart structures are
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observed at the locations where the piezoelectric patches are bonded to the passive
structures, the master degrees of freedoms are selected at the locations which are

sufficiently away from these locations.

During the theoretical calculations, the surface electrodes of the piezoelectric
patches are assumed to be grounded (AV=0). Hence, the effects of the prestressing
due to the piezoelectric actuation of the smart beam on the natural frequencies are

excluded in the analysis.

It can be seen from Table 3.1 that while solid-solid hybrid models (model 1 and 2)
yields to the closer results, the ones obtained from the solid-shell hybrid model
(model 3) differs significantly. This expected result is due to the mismatches
between the prismatic piezoelectric and shell structural elements used in the smart
beam model. The slight differences observed between the solid-solid hybrid models
may be attributed to the non-uniform mass distribution of the quadratic elements
used in model 2. This statement will further be justified in Chapter 5 by considering

the experimental results.

Table 3.1. The influences of the element type selection on the natural frequencies of

the smart beam (Legend of Figure 3.7)

Model 1 Model 2 Model 3
Frequencies (Hz) | Frequencies (Hz) | Frequencies (Hz)
7.3047 7.3595 6.76
44.112 44.50 42.164
117.28 121.38 100.04

Because of the inevitable compatibility problems identified in the solid-shell hybrid
model, in the modeling and analysis of the smart structures of this study always

solid-solid hybrid models are used.
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The smaller order prismatic elements having extra displacement shapes in the
modeling of the passive portion of the smart beam is found to yield results nearly as
good as those of the higher order elements. Hence, in order to avoid the inclusion of
the extra degrees of freedoms, the study considers the smaller order prismatic
elements with extra displacement shapes to model the passive portion of the smart
beam. The inclusion of the extra degrees of freedoms is well known to increase the

computing time.

The preliminary analysis conducted, indicates that higher strain gradients are
observed in the vicinity of the regions where piezoelectric patches interfaces with
the aluminum beam. Hence, finer meshes in x and y directions without wedges or
tetrahedral forms are generated in these regions to improve the accuracy of the
model. Furthermore, because the smart beam model is composed of thin
components, single elements is considered to model piezoelectric patches and the
aluminum beam in z direction. Figure 3.9 gives the geometry, dimensions and the

finite element model of the smart beam used in the study.

Although the use of prismatic elements in the modeling of the passive portion of the
smart structures inevitably increases the number of nodes to account for the
calculation of through thickness variation of the normal and transverse stresses
hence increase the computing time, the regular geometries of the smart structures
involved in this thesis allow the creation of the models consisting of small number

of nodes and gives accurate results within reasonable computing time.
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. Aluminum-beam:
E=69GPa,v=0.33,:p,=2710kg/m>
507x51x2-mm

7 PZT:8x(25%20%0.5 mm)

Type-BMS00

M Clamped end

Figure 3.9. The geometry and the finite element model of the smart beam (solid-
solid hybrid model with 1192 nodes and 420 SOLID45 and 72 SOLIDS type
clements)

a. Top view

b. Side view

3.4.2 The Effects of Polarization and Placement of Piezoelectric Patches

This section explains the effects of the polarization, and the symmetrical placement
of the piezoelectric patches on the response of the smart beam. Depending on the
polarization pattern of the piezoelectric patches and the direction of the applied
electric field, the patches induce bending moments by generating tensile and
_ compressive stresses on the opposite sides of the smart beam if the beam is modeled
in bimorph configuration. This configuration requires the symmetric placement of

the piezoelectric actuators on top and bottom surface of the smart beam.
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The utilization of the bimorph configuration for smart structures allows the
simultaneous control of the magnitude and the direction of the response of the smart
structure. In this configuration, the bending moments induced on the opposite sides
of the smart beam have the same magnitude. Furthermore, the direction of the
response is directly related to the polarization of the actuators and the direction of
the electric field applied. Hence, the same amount of response but in the opposite

direction can simply be obtained by reversing the direction of the applied field.

Figure 3.10.a shows the deformation of the smart beam to the piezoelectric
actuation of -300V (Vi=0 V=300 V), and Figure 3.10.b gives the response of the
same beam to a piezoelectric actuation of 300V (Vi=0 V=-300 V). It is evident
from this figure that simply by reversing the direction of the electric field, the

response equal in magnitude but opposite direction can be obtained.

The symmetric placement of the patches on the top and bottom surfaces of the smart
beam increases the actuation power of the patches [36,38]. In order to investigate
the effects of the symmetric placement of the patches on the response of the smart
beam, a case is considered. That involves the modeling of the smart beam in
unimorph configuration. The unimorph model of the smart beam shown in
Figure 3.11.a. This model is obtained by removing the bottom actuators of the
bimorph smart beam model shown in Figure 3.9. The response of the unimorph
smart beam to the piezoelectric actuation of 300V is calculated and the resulting
deformation of the unimorph beam is shown in Figure 3.11.b. The comparison of
Figure 3.10.a and Figure 3.11.b reveals that despite the reduction obtained in the
stiffness of the structure, the removal of the actuators from one face significantly

reduces the response from 1.015 mm to 0.689 mm.
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Figure 3.10. The comparison of the effects of the actuator polarization and the
electric field on the deformation of the smart beam by,

a. Piezoelectric actuation of -300 V (Vi=0,V,=300 V)

b. Piezoelectric actuation of 300V (Vi=0 V,=-300 V)
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Figure 3.11. The unimorph smart beam
a. Side view of the finite element model

b. The deformation of the model at 300V actuation (Vi=0, V=300 V)

3.4.3 Effects of Piezoelectric Patch Position

In this section, the influence of the positions of 8x(20x25x0.5 mm) BMS500 type
patches on the smart beam is considered. For this reason, the positions of the
patches relative to the clamped end are varied. During the analysis, the tip
displacement responses of the smart beam are calculated at eight different patch
locations for a piezoelectric actuation value of 300V and the results are plotted in
Figure 3.12. It can be seen from the figure that as the patches move away from the
clamped end, the response decreases. This is due to the higher strain developed near
the fixed end. For this reason, the patches should be placed on the beam as close as

possible to the fixed end.
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Figure 3.12. The effects of the patch position on the response of the smart beam

3.4.4 The Influence of the Piezoelectric Patch Size

Depending on the mission requirements the size of the piezoelectric patches can be
altered. The effects of the increase in the size of the patches on the response are
investigated in terms of the coverage ratio. The coverage ratio is defined as the ratio
of the area covered by the piezoelectric patches to the surface area of the passive
structure. The coverage ratio of the initial configuration of the smart beam given in
Figure 3.9 is increased during the analysis by enlarging the actuator length. The tip
displacement results for eight coverage ratio values obtained by the application of
piezoelectric actuation at 300V are shown in Figure 3.13. Although the increase in
the size of the actuator makes the smart structure stiffer, it also increases the energy
transmitted to the structure thereby giving a rise to the energy transmitted to the

structure. That consequently increases the response of the smart structure.
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Figure 3.13. The influences of the patch size variation on the response of the smart

beam.

3.4.5 Effects of the Actuation Voltage Variation and the Maximum Admissible

Piezoelectric Actuation Value

This section aims to determine the effects of the actuation voltage variation on the

response of the smart beam and on the integrity of the piezoelectric actuators.

The tip displacement responses of the smart beam are calculated for eight
piezoelectric actuation values and the results are plotted against the piezoelectric
actuation voltages as shown in Figure 3.14.a. Since the theoretical model is in the
linear range of piezoelectricity and the influences of the large deformations are
negligible [116,119], the response of the structure is found to vary linearly with the
actuation voltage.

Piezoelectric material used in this study is brittle and has tensile strength value,
which is in the order of 63 MPa [116]. The level of the stress, which will develop in
the piezoelectric material, can be critical in adverse applications. In order to
determine the maximum possible piezoelectric actuation value that can safely be
applied, the variation of the Von Mises stresses developed in the actuators due to

the piezoelectric actuation is analyzed. For this reason, the Von misses stresses
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developed on the piezoelectric patches are calculated for eight piezoelectric
actuation voltages and the results are shown in Figure 3.14.b. Similar to the tip
displacement results, the Von Mises stresses developed are also found to vary
linearly with the actuation voltage. Since the Von Mises stresses developed in the
piezoelectric actuators are in the order of 7-8 MPa for normal operating conditions

of the smart beam (200-400V), the piezoelectric actuators are not expected to fail.
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Figure 3.14. The influences of the piezoelectric actuation voltage variation
a. The tip displacement response of the smart beam

b. The Von-Mises stresses developed in the piezoelectric actuators
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3.4.6 The Influence of the Transverse and Normal Stresses

The modeling of the passive portion by using compatible prismatic elements not
only guaranties the proper transfer of the nodal forces generated by the active
elements on the passive elements at the interface where these elements meet, but
also allows the computation of the through thickness variation of the transverse
shear and normal stresses developed on the passive portion of the smart beam due to

the piezoelectric actuation.

In this section, the factors influencing the generation of the transverse and normal
stresses are investigated by considering the variation of the three parameters. These
parameters are the piezoelectric actuation voltage, the patch size described in terms
of the coverage ratio, and the patch thickness. During the analysis, the maximum
stress values on the passive portion (aluminum beam) of the smart beam, are found
to be in the vicinity of the locations where the piezoelectric patches bonded on the

aluminum beam for all cases considered in the study.

The influences of the piezoelectric actuation voltage variation on the maximum
transverse and normal stresses developed in the passive portion of the smart beam is
analyzed by considering the response of the smart beam to eight piezoelectric
actuation values and the results obtained are shown in Figure 3.15. It can be seen
from the figure that the actuation of the piezoelectric patches results in the
generation of the significant normal and transverse stresses. These stresses are

found to vary linearly with the piezoelectric actuation voltage.
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Figure 3.15. The influences of the voltage variation on the maximum stresses
developed on the passive portion of the smart beam (Sxx, Syy, Sz are the maximum
normal stress component along X, y and z directions respectively , Sy, Syz, Sk, are

the maximum shearing stress component on xy, yz and xz planes respectively)

In addition to the piczoelectric actuation voltage variation, the variations in the
patch size and thickness also affect the generation of the transverse and normal
stresses on the passive portion of the beam. Figure 3.16 and Figure 3.17 show the
influences of the piezoelectric patch size and thickness on these stresses for a

piezoelectric actuation of 300V.

The response of the smart beam is calculated by using eight coverage ratio values
and the results obtained are shown in Figure 3.16. Since the increase in the size of
the piezoelectric patches yields to an increase in the energy transmitted to the smart
beam for a specified piezoelectric actuation value the stresses developed also

increases with the size of the patches.
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Figure 3.16. The influence of the piezoelectric patch size on the maximum
transverse normal and shear stress developed on the passive portion of the smart
beam (S, is the maximum normal stress component along z direction, and Sy,, Sy,

are the maximum shearing stress component on yz and xz planes respectively).

The influences of the piezoelectric patch thickness are also analyzed by considering
twelve actuator thickness values. The results obtained are plotted in Figure 3.17.
Because the increase in the thickness of the piezoelectric patches effectively

reduces the actuation power of the piezoelectric patches, it decreases the transverse

coverage ratio

stresses developed in the passive portion of the smart beam.
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Figure 3.17. The influence of the piezoelectric patch thickness on the maximum
transverse normal and shear stress developed on the passive portion of the smart

beam.

By considering the results of the parametric study conducted for the determination
of the factors affecting the generation of the transverse normal and shear stresses, it
can be concluded that the generation of these stresses depends largely on the
piezoelectric actuation power transmitted to the passive portion rather than the local
stiffening effects which is closely related to the size and thickness of the
piezoelectric patches. It can be seen from these figures that the piezoelectric
actuation generates significant amount of transverse and normal stresses on the
passive portion of the smart beam in the vicinity of the regions where the patches
interfaces with the passive beam. Hence any exclusion of theses stresses may yield

to erroneous results
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3.4.7 The Influence of the Placement of the Patches on the Natural Frequencies
of the Smart Beam

This section, investigates the effects of the placement of the actuators on the natural
frequencies of the aluminum beam-like structure. For this reason, the natural
frequencies of 507x51x2 mm aluminum beam-like structure are determined by
removing the piezoelectric patches of the smart beam shown in Figure 3.9 and are
compared with the resonance frequencies of the smart beam. The results are shown
in Table 3.2.

Table 3.2. The influence of the piezoelectric patches on the natural frequencies of
the passive beam-like structure

Frequency (Hz) Passive beam Smart Beam (*) | Increase
fi 6.679 7.3047 %9.37
f 41.858 44.112 %5.38
f3 117.20 117.22 %0.1

("): The theoretical results obtained without prestressing, AV=0

The presence of the patches, as expected, shifts the natural frequencies to higher
values. This effect is known as the stiffening effects of the patches and is more
prominent at lower frequencies. The first two mode shapes of the smart beam are

shown in Figure 3.18.
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Figure 3.18. The first two natural frequencies and mode shapes of the smart beam.

3.4.8. Sensor Placement

In this thesis, the strain gage sensors are considered to sense vibrations due to the
first two flexural modes of the smart beam. The finite element method allows the
determination of the most suitable location for the strain gage sensors. By using the
modal analysis results, the location for the collocated strain gage sensor pair is
determined. In order to determine location for the strain gages, which will be used
to sense first two modes of vibrations modal strain values are considered. The
location of the sensor is determined at the location where the strain values attain
their highest value for the first two modes of vibrations. Figure 3.19 shows the

position and the configuration of the strain gage sensors on the smart beam.
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Figure 3.19. The position and the configuration of the strain gages on the smart

beam.

3.5 Finite Element Modeling of Smart Fin

Based on the finite element modeling technique presented for the smart beam, this
section presents the finite element modeling technique for the design and analysis of
the smart fin. The smart fin is actually a plate with symmetrically placed
piezoelectric patches and modeled according to the plate theory. Since its shape

looks like the typical vertical tail of an aircraft, it is called smart fin.

During the development of the smart fin model, a model having parametric design
capability is created. The design parameters include the actuator size and their
positions. Prismatic elements (SOLID5) are used for the modeling of the active
portion (piezoelectric patches) and compatible solid elements (SOLID45) are
considered for the modeling of the passive portion (aluminum plate). By using the
modal analysis results, which were obtained by the finite element modeling,
24x(25%25x0.5 mm) BMS500 type patches are placed on the aluminum fin at the
locations where the modal strain values reaches their maximum values at its first
two modes of vibration. The identically polarized patches are bonded symmetrically
on top and bottom surfaces of the fin.
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An additional symmetrically placed piezoelectric BM500 type sensors are also
considered to sense bending and torsional vibrations. The finite element model
developed in the study is shown in Figure 3.20. The smart fin is modeled in
C-F-F-F (Clamped-Free-Free-Free) configuration. The smart fin considered to be
clamped along y=0 edge.

The theoretical static transverse displacements of the smart fin to various
piezoelectric actuation values are given in Figure 3.21. The first two theoretically

determined natural frequencies and mode shapes are shown in Figure 3.22.
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Figure 3.20. The finite element model of the smart fin (4438 nodes and 416
SOLIDS and 1491 SOLID4S5 elements)
a. Top view

b. Side view
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Since the main idea behind the vibration suppression is to excite the smart structure
with an opposite vibration relative to the observed one so that vibration cancellation
will be achieved, the resemblances between the static deformation patterns and the
mode shapes are considered to confirm the configuration of the piezoelectric
patches on the aluminum fin for exciting or suppressing the vibrations due to the

first two modes of the smart fin.

3.5.1 The Effects of Piezoelectric Patch Position

In order to determine the effects of the patch position on the response, two cases are
considered. At each one, by keeping the relative distance between the piezoelectric
patches constant, the x or y positions of all patches are varied from their original
configuration given in Figure 3.20. During the theoretical calculations, the
variations in the positions of the patches are expressed in terms of the percent
increase from the original configurations. The right-tip corner transverse
displacement results are obtained for eight patch locations and the results are plotted

in Figure 3.23.

It is evident from the Figure 3.23 that as the patches are moved away from the root
(y=0) along y direction, the response of the smart fin, reduces for both bending and
twisting actuation. This is due to the higher strain developed near the root. For this
reason, the patches should be placed on the fin as close as possible to the root.
Furthermore, as the patches are moved away from the leading edge (x=0) the
bending response remains less affected but the twisting response reduces due to the
reduction of the twisting arm that is the x distance between the patches. In order to

improve the twisting response this distance should be maximized.
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Figure 3.23. The effects of the patch position on the response of the smart fin
a. Bending (by 300V)
b. Twisting (by +300V and -300V)

The effects of the patch location on the first and second natural frequencies of the
smart fin are also investigated for the same eight actuator locations and the results

are shown in Figure 3.24.a and Figure 3.24.b respectively.
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Figure 3.24. The influences of the patch position on the first two theoretical natural
frequencies of the smart fin, (AV=0)

a. First natural frequency (f; =14.963 Hz)

b. Second natural frequency (f,=45.737 Hz)

It can be seen from Figure 3.24 that, while the x variations of the actuator positions
do not appreciably affect the first natural frequency, it increases the second natural
frequency. The y variations in the actuator positions however, reduce both first and
the second natural frequencies. These results can be attributed to the variations in
the flexural and torsional stiffness values of the smart fin associated with the x or y
variations. This occurs in a way that, as the patches are moved away from the root
the flexural stiffness of the smart structure decreases. Thus, the frequencies reduce.
Since the flexural stiffness variations remain less sensitive to the x variations, the
first frequency of the smart fin remains almost unaffected. Conversely, as the
patches get close to the trailing edge the torsional stiffness significantly increases

giving rise to an increased second frequency.

74



3.5.2 The Influence of the Piezoelectric Patch Size

According to the mission requirements, the size of the piezoelectric actuators can be
altered. The effects of the increase in the size of the actuator on the response in
terms of the change in the coverage ratio are investigated. By using the original
configuration of the smart fin, the coverage ratio is increased and the results in
terms of the right tip corner displacement, for the piezoelectric actuation of 300V
are calculated for eight coverage ratio values and the results are shown in
Figure 3.25. Although the increase in the size of the actuators makes smart fin
stiffer, it also increases the energy transmitted to the smart fin giving a rise to the

response for the specified piezoelectric actuation value.
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Figure 3.25. The comparison of the effects of the patch size variation on the right
tip displacement of the smart fin
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3.5.3 The Maximum Admissible Piezoelectric Actuation Value

In order to determine the maximum possible piezoelectric actuation value, the Von
Mises stresses developed in the patches for various actuation types and values
should be investigated prior to the operation. The Von Mises stresses for various
actuation types and voltages are calculated and the results are shown in Figure 3.26.
Since the resultant Von Mises stresses developed in the patches are in the order of
10 MPa for normal operating conditions (200-300V), the piezoelectric actuators are

not expected to fail.
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Figure 3.26. The effect of the piezoelectric actuation voltage on the Von Mises
stresses developed within the piezoelectric patches of the smart fin.

3.5.4 The Influence of the Transverse and Normal Stresses

The modeling of the passive portion by using the compatible solid elements not
only guaranties the proper transfer of the nodal forces generated by the active
elements to the passive elements at the interface, but also allows the computation of
the through thickness variations of the transverse and normal stresses developed on

the passive portion of the smart fin due to the piezoelectric actuation.
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In order to investigate the importance of the transverse and normal stresses, the
smart fin is actuated for bending and twisting. Figures 3.27 and 3.28 give the
variation of the resultant stress components as a function of the piezoelectric
actuation voltage. For the twisting actuation, shear stress in yz plane is the

maximum stress component. Therefore, any exclusion of these stresses may lead to

the inaccurate results.
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Figure 3.27. The comparison of the effects of the voltage variation on the maximum
stresses developed in the passive portion of the smart fin due to the piezoelectric
bending actuation (Sxx, Syy, Sz are the maximum normal stress component along x,
y and z directions respectively Syy, Syz, Sx, are the maximum shearing stress
component on xy, yz and xz planes respectively)

a. The normal stresses

b. The shearing stresses
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Figure 3.28. The comparison of the effects of the voltage variation on the maximum
stresses developed in the passive portion of the smart fin due to the piezoelectric
twisting actuation (Legend of Figure 3.27)

a. The normal stresses

b. The shearing stresses

3.5.5 Placement of Strain Gage Sensors

Finite element method allows the determination of the suitable locations of the
sensors for vibration sensing. These locations can be determined by the utilization
of mode shapes of the smart structure. In this thesis, by using the modal strain
distribution for the smart fin at its first two modes, three locations where the strain
components reach their maximum values are determined. These locations are then
considered for attachment of the strain gage sensors to sense the vibrations of the
smart fin. The locations so obtained are shown in Figure 3.29. In this model, while

the strain gage at location (1) is used for the measurement of strain in x direction,
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locations (2) and (3) are considered in the measurement of the strain in y direction.
Figure 3.29 also includes a pair of symmetrically placed piezoelectric patch, which

are intended to be used as a sensor.

Alumirmm fin

Piezoelectric actuatars
- Piezoelectic sensar
T Straingages

Figure 3.29. The placement and the configuration of the strain gages and

piezoelectric patches on the smart fin

The influences of the piezoelectric actuation voltage variation on the responses at
the three strain gage sensor locations are calculated for both bending and twisting
piezoelectric actuations. Figure 3.30 gives the results in terms of the magnitude of
the strain at the measurement locations. It can be seen from these figures that for

bending and twisting actuation the highest response is calculated at location (2).
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Since the theoretical model is in the linear range of the piezoelectricity and the

effects of the large deflections are considered to be negligible, the response of the

smart fin is also found to vary linearly with the actuation voltage.
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Figure 3.30. The comparison of the response of the
locations (2) and (3): &y)

a. Bending by 300V

b. Twisting +300V and -300V
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3.6 Conclusions

This chapter, by using ANSYS® (v.5.6) software, presented the effectiveness of the
finite element modeling technique in the analysis and design of smart structures.
During the course of the work, basic analytical formulations for the analysis of
piezoelectric materials were also given for the completeness. The formulations were
adapted to BM500 type piezoelectric patches and the limitations of the modeling

techniques were outlined as well.

The finite element method offers fully coupled three-dimensional, thermo-
mechanical-electrical analysis of the smart structures. This allows the prediction of
the reciprocal relations between the sensors and actuators. The simulation of the
smart structures also provides the necessary information for the design of the closed

loop controllers, which suppress the vibrations of the smart structures.

The smart structures designed in this thesis, consisted of aluminum beam-like and
plate-like structures modeled in cantilevered configuration with surface bonded
PZT patches. The identically polarized piezoelectric patches were bonded
symmetrically on top and bottom surfaces of the passive portion of the smart
structures to achieve the bimorph configuration.

The finite element method was shown to be especially advantageous in handling the
multiple design parameters of piezoelectric patches and sensors. By enabling the
parametric design feature of the technique, the influences of the piezoelectric patch
placement and size on the responses of the smart structures can be obtained. The
technique also allows the determination of the maximum admissible piezoelectric
actuation value, hence effectively gives the actuator limits. Based on these models,

the sensor locations can be found.
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This thesis focused on the accurate representation of anisotropy and the
electromechanical coupling inherent to the piezoelectric materials and their effects
on the passive portion of the smart structures. The influences of the element type
selection on the response and the importance of the transverse stresses and normal

stresses on the passive portions of the smart structures were dealt with.

It was shown in this chapter that the utilization of inconsistent hybrid finite element
models including shell-solid elements yield erroneous results in the analysis of the

smart structures.

The modeling of the passive portions of the smart structures by using linear
prismatic elements with extra displacement shapes is shown to be a correct
approach for the simple smart structures considered in the thesis, but the difficulties
in the modeling of the irregular geometries with these elements and the increased

computing time limit their potential applications on realistic acrospace structures.

In order to eliminate these difficulties, the offset modeling techniques for the shell-
solid hybrid models should be improved or shell piezoelectric elements having

quadratic displacement and voltage behavior must be developed.

The modal analysis based sensor and actuator placement technique considered in
the thesis does not form a basis for a formal optimization. It gives satisfactory
results for the simple structures such as the ones considered in the thesis. The

extension of the technique to the realistic structures is known to be very difficult.
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CHAPTER 4

THEORY OF ACTIVE VIBRATION CONTROL FOR SMART
STRUCTURES

4.1 Introduction

This chapter describes the finite element based system modeling techniques and the
robust control design and analysis applied to the smart structures. This thesis
combines the methods of structural dynamics and the structural control design and
analysis techniques. Thus, it aims to form a link between the structural and control
engineering disciplines by incorporating the methods of structural dynamics into the

control concepts.

In the design of aerospace structures and fight control systems, the inevitable
interaction between the flight mechanics, structural dynamics and flight control
system dynamics must always be considered. This is necessary to improve the
handling qualities and travel comfort. The utilization of smart structure technologies
is believed to offer effective means of shape and active vibration control of

aerospace structures within acceptable reliability and cost margins.

The active vibration control of smart aerospace structures that inherently exhibit

flexibility becomes more important, when the designers attempt to push with,
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the state of the art, faster and lighter structures for aerospace applications. Generally
two steps are necessary for the control of a flexible smart structure.

First a precise mathematical model, which is capable of handling the
electromechanical coupling effects, must be developed. Second, a robust controller

that successfully incorporates the possible modeling uncertainties must be designed.

4.2 Finite Element Based System Modeling Technique for Smart Structures:

State-Space Representation

The system models of smart structures can be obtained by using the finite element
modeling technique. The aim in the system modeling is to obtain the mathematical
description of the structure which is suitable for the design of the control system.
The system modeling technique involves the determination of the state space
representation of the system. The model of the system can also be found by using
the system identification approach [58,59,60]. The system model obtained from
experimental data may also be used to tune the accuracy of the model derived from
the finite element method [59]. This approach will be briefly explained in
Chapter 5.

In the dynamical analysis of the smart structures, the theoretical models are
represented by the second order linear differential equations with constant
coefficients. In that analysis, the system is modeled by the generalized coordinates.
In the controller design however, the dynamics of the structure is modeled by the
first order equations which are in terms of states. The approach used in the

controller design is known as the state-space representation.

Although the choice of the coordinates used in the state-space representation of the

model is arbitrary; the use of two coordinate systems, namely, nodal (or physical)
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and modal coordinates is common [122,123]. While the nodal coordinates are
defined through the displacements and velocities of the structural locations called
the nodes, the modal coordinates are defined in terms of the displacements and

velocities at the structural modes.

4.2.1 The Formulation in Nodal Coordinates

The finite element method can effectively be used in the modeling of smart
structures. This section describes the application of the nodal coordinates approach
in the modeling of smart structures. The governing differential equation of motion
for a smart structure subjected to the piezoelectric actuation can be represented as
[77,123],

Mg} + D, Ha}+ K Ka} = [Flu} 4.2.1)

here, by defining N as the number of nodes of the finite element model and p as the
number of degrees of freedoms associated with each node (for the finite element
models of this thesis which are consisting of prismatic elements, p=3), [M], [Do}]
and [K] give NpxNp mass, damping and stiffness matrices respectively. In this
representation, the vector {q}npx1 represents the generalized vector of
displacements, {q }npx1 Symbolizes the generalized vector of velocities and { § }npx1
defines the generalized vector of accelerations for each node. Defining k as the
number of piezoelectric actuators [Flnpx is the unit piezoelectric voltage
generalized force transformation matrix from i™ (=1 to k) actuator applicable to
each node and {u}; is the piezoelectric actuation voltage vector associated with the

j™ piezoelectric actuator.
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In the nodal coordinates based system modeling approach for smart structures,
Rayleigh damping model is generally used. Rayleigh damping is effectively a
proportional damping where viscous damping matrix D, is directly proportional to

mass matrix, stiffness matrix or both [121,122] and given as,
[D,]=vM]+B[K] 4.2.2)

where, v is the constant mass matrix multiplier and B defines constant stiffness
matrix multiplier. When only the stiffness damping is used (y=0) with the i (i=1 to
N) natural frequency o; of the system, the modal loss factor ; takes the form of
equation (4.2.3)

O;
g, = 7[3 4.2.3)

In order to obtain a state space representation of a smart structure, the differential
equation of motion described by equation (4.2.1) is premultiplied with [M]" (for

nonsingular mass matrix)

{Q}prl + [M]I_\Ilprp [Do]prNp {q}prl +

[M]I—\Ilprp [K]prNp {q}prl = [M];\Ilprp [F]prj {u}jxl (424)
where

p=1to3,j=1tok

Furthermore, selection of the state vector {x}, as {q q} T leads to the formation of

the specific form given in equation (4.2.5)

- o o
L -[M]j[DO]LW{X}W {[M]-?[F]{u}Lxl -
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where [0] and [I] defines zero and identity matrices respectively. In this case,
defining r as the number of sensors, the output {y} of the system can be written in

the form of equation (4.2.6)

{Y}ixl = [Cq ]ipr {q}prl + [Cv ]ipr {q}prl ’ (l =1to I') (426)

where, [Cq] and [C,] give the displacement and velocity output matrices
respectively. The displacement and velocity output matrices represent the nodes
where the response is measured. Such that, if no measurement is made on a node in
the finite element model, its value is set to zero otherwise taken to be unity. The
forms of equations (4.2.5) and (4.2.6) allow the representation of the governing
differential equation of motion given in equation (4.2.1), to be cast into the state
space form that is generally used in the controller design of a linear time invariant
systems. The linear time invariant systems are the systems consisting of the
differential equations with constant coefficients [121,122]. The standard form of the

state space representation is given as [122],

{&}=[alx}+[B]{u}, v}=I[clix} (4.2.7)

In this representation, [A] describes the system matrix and [B] gives the input
matrix, [C] defines the output matrix and {u} symbolizes the vector of inputs to the
system. The matrices (A, B, C) are real constant matrices, and (A, B, C) is the
system triple. The triple is called the state space representation of the system.

The equations from (4.2.5) to (4.2.7) allows the determination of the state-space

representation for a smart structure consisting of k piezoelectric actuators and r

sensors in nodal coordinates as,
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[Al{ q J ol . |
~MI[K] -MD, ], M[F]

[cl=llc,] .l G=1torandj=10 k)

(4.2.8)

Equation 4.2.8 gives the description of the nodal coordinates based state-space

model for the smart structures that can be used in controller design.

4.2.2 The Formulation in Modal Coordinates

In the determination of the state-space representation, the alternative approach is to

use the modal coordinates in the second order form.

Define a diagonal matrix [A] with order mp (mp<Np) formed by the natural
frequencies of the N nodes within the frequency range of interest, each with p

degrees of freedoms (mp<Np) as,
[A]=diag(w,), (j=1tomp) (4.2.9)

In this formulation, the mass normalized Npxmp modal matrix formed by the mode
shapes of the system, symbolized by [¥], diagonalizes the mass, stiffness and

damping matrices of the system considered.

[T M][w]=[1]
[T K]]=[AF (4.2.10)
[Dm ] = [lP]T [Do ][lP] = diag(2w,C;)
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where, [I] is mpxmp identity matrix and [Dy] is a mpxmp diagonal modal damping

matrix. Defining a new vector {qnm} as,

{qm }mpx] = [T]zlpxnp {q}npxl (4'21 1)

and by using equation (4.2.11) in equation (4.2.1) and then by premultiplying
equation (4.2.1) with [‘I’]T results in the following form.

[¢T MI¥ ], }+ [T D, J[#]ian )+ [#T KI¥]an} = [T [FRe} ~ @2.12)

By using equations (4.2.10) and (4.2.12) and also defining the new state variable x
as the modal displacements {q_q,}", the state-space representation of the smart

structures can be obtained as,

' Ll 0 [o]
{x}m‘”l ) [‘ E\F iy [;m ]prmp {x}m"“ ' {[‘P]prmp [F]nm‘ {u}ixl }mpxl (4.2.13)

(j=1tok)

Furthermore, the substitution of equations (4.2.11) to (4.2.6) yields the output of the
system, in modal coordinates. The output vector obtained is given in equation
(4.2.14).

{y}ixl = [Cq]ixnp [lP prmp {qm }mpxl + [CV]ixnp [\P ] npxmp {qm }mpxl , (i=ltor) (4.2.14)

Together with the general form of the state space realization given in equations
4.2.7, equations (4.2.13) and (4.2.14) allows the determination of the components of
the state-space realization of the smart structures in the modal coordinate based
modeling technique. The components of the state space realization for the smart

structures in modal coordinate based systems are given in equation (4.2.15).
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0 I
[Am1=[ ]
- A2 - Dm 2mpx2mp

[B.]= [[LP]? [Fﬂzm,,xj (4.2.15)

c.l=lc]iw] ]l d=1tr =1tk

In this formulation, [An] describes the system, [Bp] gives input and [Cp]

symbolizes the output matrices in modal coordinates.

The state-space representation provides necessary and sufficient information for the
design of the controllers that aim to suppress the vibrations due to the modes of the

smart structures.

The modal coordinates based system model retains the physical correspondence
between the theoretical model and the test structure, a relation that is somehow lost
in nodal coordinates based modeling technique. The modal coordinates based
technique also allows the specification of the desired number of modes contributing
to the response under consideration. This allowance always results in smaller order
models than those of nodal coordinate based technique. Another advantage is that,
by assigning different modal damping ratios associated with the modes of the
structure, the modal coordinate based technique offers greater flexibility in tuning
the theoretical model to the experimental data [59,121].

By using the state space realization developed for the smart structures, the transfer
functions of a system can also be found. The transfer function of linear time
invariant systems can be defined as the ratio of the Laplace transform of the
response (or output) of the system to the Laplace transform of the actuation (or
input) under the assumption of zero initial conditions. The transfer function of a
smart structure is analogous to the receptance function, as) of the structure in
classical modal analysis techniques. The receptance matrix can also be found by

using equation 4.2.7 [121,122] as follows,
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{&} = [Alx}+ [BJu(s)}
= [clix}
y(s) = C[}-[AD ™ [Bfu(s)} or, (4.2.16)
y(s) = a(s) u(s)
a(s) = C(s[1]-[A]'[B]

where, s defines the variable of Laplace transform.

The substitution of equation (4.2.15) in equation (4.2.16) allows the formulation of
the receptance matrix of the smart structures in modal coordinates. Equation
(4.2.17) gives the receptance function of the smart structure that relates k

piezoelectric actuators to r sensors in partitioned form as follows,

[ b
ol [l e e - (a1 o

2mpxj

4.2.17)

(p=1to3),(m=1toN)and(i=1 tor, j=1to k)

The transfer function or the frequency response of the smart structures is
characterized by two factors: The resonances where natural frequencies reside in;
and the antiresonances or minima between the resonances. In the transfer function
representation, while the roots of the polynomial appearing on the numerator of the
transfer function are called the zeros of the system, those of the denominator are

called the poles of the system.

The smart structure system models having poles on the positive real axis give rise to
the exponential term that increases in time. That is, more positive real part of the
pole the faster the rate of growth is. The systems in which a transient term increases
indefinitely with time are called unstable. Conversely, systems in which all transient
terms die out with time are called stable system. Any pole having a positive real

part leads to a transient term that increases with time. For a stable system, the
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system settles into steady state after all the transient terms in the response decay to
zero. Therefore, for a system to be stable all the system poles must lie in the
negative left half of the s plane giving the plot of the poles and the zeros of the
system along the real and imaginary axes. The location of zeros does not affect the
stability of the system [121,122]. The systems with no poles in the right half plane

but one or more on the imaginary axis are known as marginally stable.

The poles of the transfer function are responsible for the transient response. The
zeros however, have an effect on the magnitude of these terms. For this reason, the
aim in the closed-loop controller design for the active vibration control is to
increase damping ratios of the dominant poles without reaching the unstability
limits of the system [122]. Therefore, the controller design should start with the
investigation of the open loop behavior of the system to be controlled. This can be
achieved only by extracting accurate system model of the smart structure to be

controlled.

The transfer function describes the property of the system that relates output to
input. The transfer function approach maintains the physical correspondence
between the theoretical models and the actual test structure that is implicit in state
space models [59]. Therefore, the transfer function approach can effectively be used

to investigate the nature of the system.

In the active vibration control of the smart structures, depending on the nature of the
problem, both transfer function approach and state space approach are utilized.
While the classical control design techniques like PID controllers considers the
transfer function approach, modern optimal controller design schemes like H,, use
the state space realizations [126]. Table 4.1 summarizes the interrelationship

between the finite element based system modeling techniques.
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Table 4.1 The interrelations of the finite element based system modeling techniques

for active vibration control of smart structures

Model nodal coordinates modal coordinates
state variable vector : -~ T
{q q} ipxl {qmqm }mpxl
{x}
Parameters Knpxps [MINpxNps V> B [Almpxmps[WInpxmps Emp
[Do ] = Y[M]“‘ Y [K] [Dm]mpxmp
output matrix, [C] [ [0] ] 0
. (]=1 to k) N T F
MI [Fl . [T [F1L, 0

input matrix, [B] “C q] [Cv ]_l.szp (=1 tor)

llc, Ji¥] [c, 1),

System matrix, [A] [ [o] 1] :l [ 0 I ]
SMIK] M DLy | C D e

Transfer function [CIGII-[A] "[B] [Cnl (S[T]-[Am])” [Ben]
matrix, [G(s)]

(N: the number of nodes in the finite element model , p: The number of degrees of
freedom (p=1 to 3), m: The number of modes contributing the response (m=1 to

Np), k: The number of piezoelectric actuators, r: The number of sensor)

4.2.3 The Determination of the Spatial Model: Spatial Reduction of the Models

In the finite element modeling, the structure is generally modeled by using large
number of degrees of freedoms for better accuracy. In active vibration control of
smart structures however, the use of higher order models has considerable
computational difficulties. This limitation requires the order of the model to be
reduced to a level which is as small as possible. This is generally achieved by

reducing the order of the model to a restricted set of nodes and degrees of freedoms.
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The application of the spatial model reduction techniques results in the formulation
of the reduced model having t (t < p ) reduced degrees of freedoms associated with
n number of (n < N) nodes. This leads to the formulation of reduced or condensed
models. In this technique, the full model of the system is used for the determination
of the master degrees of freedoms describing the accurate dynamical characteristics
of the model. In the determination of the spatial model, a transformation matrix,
which relates the master degrees of freedoms to the remaining degrees of freedoms
called secondary or slave degrees of freedom, is used to reduce the order of the

system.

The reduction process is performed upon a transformation, which neglects inertia or
static contributions of the secondary degrees of freedoms, then deriving ntxnt
spatial matrices of the condensed system as the reduced mass matrix, [M~] and the

reduced stiffness matrices [K}].

The equation of equilibrium for an undamped system subjected to the forces due to
unit piezoelectric actuation voltage, F;, acting only on the primary degrees of
freedoms can be written in the following partitioned form [121,122].

(4.2.18)

ol T[] TG B flad ] {{os}}
. e[| K] Gl ) L)

NpxNp Npx1 pxNp
Where, s defines the number of secondary degrees of freedom (s<3) and t is the
number of primary degrees of freedom (t <p). In this formulation, {qs} is nsx1
vector of secondary degrees of freedoms and {q;} defines ntx1 vector of primary
degrees of freedoms defined on n (n < N ) nodes in the finite element model. In this

technique, all secondary degrees of freedom can be related to the primary degrees of

freedom by using the following transformation
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{qs }nsxl = [T]nsxnt { t}ntxl (4‘2'19)

in this formulation, the transformation matrix relating the primary degrees of

freedoms to the secondary degrees of freedoms, [ Tlasxnt, iS given by

[T = 0 —B)- (K L) [KL,)-B (ML ML) (42.20)

where, B defines the reduction coefficient whose value is zero for static reduction
(Guyan reduction) and one for dynamic reduction. By using the matrix reduction
techniques, the reduced mass and reduced stiffness matrices, describing the reduced
spatial model for both static and dynamic condensation, can be found. Hence, the

reduced mass matrix to be used in the analysis becomes,

[M ss ] [M § ] [T] nsxn
e ]=[ T (1] t | @221)
ntxnt ntxNp [Mts ] [M " ] [I] v
NpxNp Npxnt
and the reduced stiffness matrix takes the following form.
[K ss ] [K S ] [T ]IISXII
K*)= [T [ ) ’ ' (42.22)
ntxnt ntxNp [K ps ] [K pp ] [I]npxnt

NpxNp Npxnt

In this thesis, the computer code ANSYS® (v.5.6) is used for the calculation of the
reduced mass and stiffness matrices through Guyan matrix reduction technique

[50].

The key assumption in this procedure is that for lower frequencies (f<150Hz),
inertia forces on the secondary degrees of freedoms are negligible compared to the
elastic forces transmitted by the primary degrees of freedoms. Therefore, the total
mass of the structure is only allocated among the primary degrees of freedoms [50].
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During this procedure the group of the finite elements is condensed into a single
element whose mass and stiffness matrices and load vectors are calculated at the
master degrees of freedom of the model. Because the accuracy of the reduced mass
matrix depends solely on the selection of the correct number of degrees of
freedoms, the selection of the appropriate master degrees of freedoms is the most
important step in this analysis. The procedure applied in the determination of the

spatial model is summarized in Figure 4.1.

The effectiveness of the nodal and modal coordinates based techniques applied to
the smart beam is compared in Chapter 5. In this thesis, while the nodal coordinates
are considered in the determination of the spatial models for the smart structures,
the modal coordinate based techniques utilized in the extraction of the system

model.
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Figure 4.1. The spatial model reduction algorithm used in the study (p: the total
number of degrees of freedoms of the model, t: the reduced number of degrees of

freedom, N: the number of nodes of the model, n: the reduced number of nodes

associated with the model).
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4.2.4 The System Model Reduction: The Reduced Order Models

In the active vibration control of the smart structures, the complexity and the
performance of the finite element based control model depends on the order of the
structural model. The oversized model not only brings extra computational
difficulties but also may cause the inclusion of the unwanted signals in the form of
the noise. Therefore, the model reduction is one of the most important parts of the

analysis and the design.

In the finite element based system models the application of the static reduction
technique provides an effective means for the calculation of the reduced order
spatial model. But since the spatial model reduction does not necessarily yield the
minimal order system models necessary for the controller design, the extraction of a
minimal order model of the system that sufficiently describes the dynamics of the

system is required.

Among the reduction techniques developed for the flexible structures, the balanced
realization and modal reduction techniques offer nearly optimal solutions within
reasonable computational efforts. [123,127]. This study makes use of the balanced
realization technique developed for stable systems. The system models are reduced

to the minimal order using p analysis and synthesis toolboxes of the numerical

analysis code of Matlab® (v.5.2.).
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4.3 Control Design Techniques

In this thesis, the objective of the controller design is to improve the performance of
the controllers that are intended to suppress the flexural vibrations of the smart
structures. During the study, the deviations of the theoretical models from the actual
models are represented through system uncertainties. PID and H, techniques are
used for designing the controllers. Classical and modern frequency response, robust
control and u analysis techniques quantifying stability and performances are

considered in the analysis of the controllers.

This thesis deals with closed loop control systems, but it is best to describe both
open and closed loop systems first. An open loop system is the one which neither
the output nor any of the other system variables has any effect on the control of the
output. The closed-loop systems however, provide means of control over the output.
In a closed-loop system (often referred to as feedback control system) the actuation
error, which is defined as the difference between the input signal and the feedback
signal which can either be the actual output signal or a function of the output signal,
is fed to the controller so as to reduce the error and bring the output to the desired
value. The term closed loop control implies the use of the feedback control to

reduce the system error.

The advantage of the closed loop control arises from the fact that the use of the
feedback makes the system response relatively insensitive to the external
disturbances and any possible internal variations in the system parameters. Thus it
is theoretically possible to use the relatively inaccurate and inexpensive components
to obtain precise control of a given system. This is not realizable in the case of
open-loop controllers [124]. From the stability point of view, in the open-loop
controller the system’s stability is not the major problem. On the other hand,
stability is the major problem in closed-loop controllers such that the system may

overcorrect the errors which can cause oscillations [124,125]. The block diagram
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representation of typical open-loop and closed-loop systems are shown in

Figure 4.2.

In any open-loop control system such as the one shown in Figure 4.2.a, the
controller K(s) processes the reference input r(s) which represents a fixed operating
conditions and directly feeds to the system P(s) to obtain the desired output y(s) for
the system. In an open-loop system, because the output of the system is not
compared with any condition, the accuracy of the system depends only on the
calibration of the actuators. For this reason, the open-loop system can not maintain
the performance requirements in the presence of the disturbances d(s) and the
sensor noises n(s). This limits the applications of open-loop control schemes to the
cases where the relationship between the input and the output is known and no
disturbance acts on the system only [124]. In the closed loop systems however,
despite the presence of the sensor noises and the disturbances, the controller K(s)
processes the error signal e(s) in a useful manner and feeds back to the system to
reduce the error. Figure 4.2.b gives the block diagram representation of a closed

loop system.
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Pis). System

E(s): Controller

r(s): Reference command
u(s): Control signal

d(s): Input disturbance
n(s). Sensor noise

y(s): Output

eis): Etror signal

Figure 4.2. The block diagram representation of typical open-loop and closed-loop
controllers
a. Open-loop system

b. Closed-loop system

By assuming the P(s) is unalterable and zero initial conditions of the state variables,
the performance of the closed-loop system is mainly characterized by the three
closed-loop transfer functions. The transfer functions include Gy, (the transfer
function relating the reference signal to the output), Gyg (the transfer function
describing the relation between the output and the disturbance), Gy, (the transfer

function which gives the relation between the output and the sensor noise)
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Defining the loop gain L(s) as,

L(s)=P(s)K(s) 4.3.1)

The transfer functions that can be used to describe the performance of the closed-

loop system then have the following forms:

_y(s) __P@)
“d(s)  1+Lo(s)
_y® _ L) 4.3.2)
Y on@s)  1+L(s) -
_y(s) _ L(s)

Y rs) 1+L(s)
4.3.1 Series Compensators : PID Compensators

Early in the design of the control systems, it was thought that many systems can be
adequately controlled with a simple series compensator. This approach is specially
applicable to the chemical and manufacturing processes. This simple series
compensator called a PID (Proportional Integral Derivative) compensator. The
compensator has three components and the transfer function of the compensator is

well known to be [124,128],

K(s) =K, +%+ K ,s) (4.3.3)

where K, defines the proportional gain, K; is the integral gain and K4 symbolizes
the derivative gain. The integral and derivative constants can be related to the
physical parameters like the integral or reset time T; and the derivative term Ty

[128] by using,
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K,=—, andK, =T, (4.3.4)

There are commercially available modules that have knobs for the user adjust the
set of values of each of the three constants [128]. The commercial success of PID
controllers lies in their ease in the implementation and general applicability to most
controllable systems [124]. In the field of process control systems, it is also a well-
known fact that the basic and modified PID control schemes have proved their
usefulness in providing satisfactory control, although they may not provide optimal
control in many situations [124,126,128]. Depending on the performance
requirements of the control system, certain combinations of the proportional,
integral and derivative gains such as, P (Proportional), PI (Proportional plus
Integral) and PD (Proportional plus Derivative) compensators may also be
considered in the design. These combinations are obtained by setting the relevant
gains of PID compensators to zero. In this thesis, PID control scheme is applied to

the smart structure models

Now, let the block diagram of the closed-loop system shown in Figure 4.2 be
modified to include the proportional, derivative and integral actions of the PID
controller with the sensor noise and disturbances. Then, the block diagram of the
PID controlled closed-loop system is obtained. Figure 4.3 gives the block diagram
representation of the PID controller algorithm used in the thesis.
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Figure 4.3. The block diagram representation of PID controller applied to smart
structures

4.3.2 The Analysis and Synthesis of Smart Structures for Robust Control

It is a well known fact that the feedback control systems reduce the effect of
disturbances and moderate modeling errors or parameter changes on the
performance of a control system. In certain cases however, the extend of the
modeling errors, disturbances and sensor noises may influence both stability and the
performance of the feedback control systems. Therefore, the control system design
must satisfy the stability and the desired performance specifications in the presence
of the parameter changes and disturbances. The robust control of the linear time
invariant systems is generally realized by the analysis or the synthesis of the control
systems. In this terminology, while the robustness analysis of a linear time invariant
control system deals with the evaluation of the stability and the performance of the
system in the presence of a set modeling errors and disturbances for a given
feedback controller, the synthesis of a system involves the design of the controller
that satisfies the stability and the performance requirements for a set of modeling

errors and disturbances.
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The ideas to evaluate the robustness of a control system based on the frequency
response methods dates back to 1930’s. In the classical frequency response
techniques, the robustness analysis of a control system was adressed mostly by trial
and error. These techniques were considered mainly for SISO applications and their
applications in MIMO systems are very difficult [129]. In 1980°s the developments
in the H, and robust control gave the classical robust performance analysis a new
modern look. In the modern robust analysis and synthesis techniques, the modeling
errors and the performance requirements are included in the analysis systematically
[60]. In this thesis, the classical and modern robustness analysis and H,, design and

sythesis techniques are used.

Since the standard PID controller design is not able to include the modeling errors
and disturbances which may be present in the system at the design stage, the
determination of the proportional, integral and derivative gains is iterative for the
robust control [124,128]. In this case, for each gain specification, the robust stability
and performance analysis should be conducted to secure the success of the PID
controllers. In H,, controller design and synthesis technique however, modeling
errors and disturbances are included in the synthesis of the controllers

systematically [60,129].

4.3.2.1 The Classical Robust Stability Analysis of Control Systems

The stability analysis of a linear time invariant control system is generally
performed at two stages. These stages involve the determination of the absolute and
relative stability of the system. The absolute stability analysis investigates whether
the control system is stable or not. The relative stability analysis however, gives
how stable is the system and how much can it be perturbed within the range of

stability. In the design of a controller the most important requirement is the
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preservation of the absolute stability. Furthermore, the system must also have

adequate relative stability [124,125].

The closed response of the systems can be determined from the frequency response
characteristics of the loop gain including the stability. In the frequency response of
the loop gain, there exists a critical point which separates the stable and unstable
systems where the phase shift is —180° and the loop gain is 1. This point
corresponds to s=1 point on the Nyquist diagram. Nyquist diagram presents a polar
plot of a complex number that gives the frequency response at each frequency. The
frequency at which the open loop system contributes 180° phase lag is known as the
phase cross over frequency [124]. Nyquist theorem is generally used in the
determination of the absolute stability of the closed loop system [125]. The theorem
states that, the closed loop system is stable if and only if the net number of the
clockwise encirclements of point s=-1 plus the number of poles of G(s) in the right
hand plane is zero. Thus in the absolute stability analysis of open-loop and closed-
loop systems it is necessary to analyze pole-zero map and Nyquist plots
simultaneously. Figure 4.4 illustrates such a stable open loop system. For this
system, the lack of encirclements around s=-1 and right hand zeros ensures the

stability.
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Figure 4.4. The plots used in Nyquist stability theorem (open-loop system: The
smart beam model of [77])

This thesis makes the effective use of the Nyquist theorem to ensure the absolute

stability of the control systems including PID controllers.

In the classical frequency response techniques, the relative stability concept is
applied in the characterization of the behavior of the system by using mainly two
relative stability measures. These measures are the gain and phase margins
[124,125].

The gain margin (GM) of the system can be defined as the gain that can be
increased before the system is marginally stable. The gain margin is approximately
the reciprocal of the open loop gain at the phase cross over frequency. In the
classical robust stability analysis, the small gain margin indicates a Nyquist plot that
approaches the s=-1 point too closely such that the closed loop characteristics are

oscillatory. That is, the controller may become unstable in the presence of modeling
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errors and uncertainties [124,126]. The specification of the gain margin is generally

not enough to express the relative stability of the control systems.

In addition to the gain margin the specification of the phase margin (PM), which is
defined as the additional phase lag that will make the system marginally stable,
allows the appropriate description of the relative stability of the systems. Similar to
the gain margin, the phase margin can also be obtained from the loop gain
frequency response. The phase margin in Nyquist plot is simply the angle between

the negative real axis and the intersection L(s) locus with the unit circle.

In the classical robust stability of the control systems, the systems with the small
gain and phase margins are not considered to be robust because a perturbation may

force the system to be unstable [124,125].

In classical control usually gain and phase margins are used as a design criteria for
good performance, PM values from 30°to 60° and the GM values larger than 6dB
values are considered [130]. In general, for a design with good GM and PM is
considered to be robust against the variations in the system components. In certain
exceptional cases however, good margins may not imply robustness. That is, a
minor change in the parameters of the system may influence the robustness of the
system. Thus, the classical robust stability and performance analyses may not
guarantee the robust stability and performance of the closed loop systems

[129,130].

108



4.3.2.2 The Classical Robust Performance Analysis of Closed-loop Systems

Although the relative stability considerations are very important in the design of a
controller for the desired performance; the controller design based on the nominal
system model including the modeling errors should also satisfy the performance
specification. Thus, the response of the actual system should be within the perturbed

system response.

The control system is designed to be stable and perform well when used with the
true physical system including disturbances. The output of the actual system can be
expected to behave in a similar manner to the nominal model including the
modeling errors. A controller design that works well with a large set of system

models is said to be robust in the classical frequency response analysis.

In the classical frequency response analysis, the performance of a closed-loop
system is analyzed by using the tracking,T, and sensitivity functions, S which are
given in equations(4.3.5) and (4.3.6). The tracking performance of the system is
analyzed by the transfer function Gy, (or complementary sensitivity function, T)

S = 1 (4.3.5)
1+ P(s)K(s)
__POKE) (4.3.6)
1+ P(s)K(s) -

Theoretically, the controller may be adjusted to achieve a good disturbance
rejection. For a good disturbance rejection, the sensitivity function S should be
small over a wide frequency range. In order to achieve good noise rejection, the
complementary sensitivity function should also be small over a wide frequency

range. Since S+T=1, this is conflicting. That is, no controller gain can make both T
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and S small. In practice, this conflict is resolved by keeping these functions small at
different frequency ranges [124,128]. For instance, because the influences of the
sensor noise is more prominent at higher frequencies, the adjustment of small T
values at high frequencies results in good noise rejection. Similarly the selection T
values close to 1 at lower frequencies improves the command tracking or
disturbance rejection. The algorithm used in the classical robust performance

analysis is shown in Figure 4.5.

4.3.2.3 Modern Robust Stability Analysis of Control Systems: Uncertainty and
Robustness

The presences of the measurement errors, the mismatches between the true and
mathematical model and the time dependance of the parameters describing the
system do not usually allow the exact representation of the real system models. In
many cases the modeling error ultimately influence the stability and performance of
the controller systems. In modern robust stability analysis techniques and He
controller design and synthesis techniques, the possible deviations of the
mathematical models from the real world system are represented by system
uncertainties. This allows the representation of the model sets including
uncertainties instead of a fixed model. This section starts with the definitions for the
norms commonly used in robust control and H., control theories. Signal norms serve
as a measure of signal size. The performance of a control system can be described

by the norms of the signals such as the size of the error signals.

The energy or the 2 norm of a signal x(t) is given as [80,129],

- 12
ux<t>||2=[nx<ordt} w3
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Figure 4.5. The algorithm used for the classical robustness analysis for the PID
controllers designed in the study (f; : The lower frequency of interest, f;, : The upper

frequency of interest)

The o norm of a signal is defined as the least upper bound or the supremum of its

absolute value [129].
x|, = 51t1p|x(t)| (4.3.8)
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The H,, norm of a stable system is the supremum of the singular value when the

transfer function is evaluated on i axis [60,129]. For example, H, norm of a

single-input, single-output system is the peak value of the transfer function

magnitude given as
|G|, =supT(G(w)) 4.3.9)

here o defines the singular value and supG(G(w) symbolizes the largest singular

value of G(w). In the modern robustness analysis and synthesis techniques, the
uncertainties are assumed to influence the linear time invariant systems P(s), by
means of another norm bounded linear time invariant system A(s). Describing the
perturbed system by P, the definitions of the modeling uncertainties, additive

uncertainty and multiplicative uncertainty used in the thesis are given in Figure 4.6

[80,129],

@ ®)

Figure 4.6 The descriptions of the modeling uncertainties used in the thesis

a. Additive uncertainty, P = P + AW,

b. Multiplicative uncertainty, P=(+ AW,)P

In Figure 4.6 Wy(s) is a fixed stable transfer function called weighting and A(s)

defines a norm bounded transfer function such 1:hat||A“o0 <1. In the modern
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robustness analysis and synthesis techniques, the description of the uncertainty
structure A(s) and the weighting function W(s) forms a basis for the modelling of

the uncertainty present in the control system.

In order for a system to have robust stability, the system must be stable for all
systems described by the uncertainty structure, A(s) [129]. That is to say all the
modeling errors are assumed to influence the nominal system model of the linear
time invariant systems by another linear time invariant system A(s). The conditions
for the robust stability of the closed loop controllers are given in equation (4.3.10)

for additive uncertainty and in equation (4.3.11) for multiplicative uncertainty.

[W.K$]|, <1 (4.3.10)

[W,T], <1 (4.3.11)

The weighting function W is selected to account for the unmodelled dynamic
characteristics, such as ®,’s, of the system. Therefore, this weight should have
higher values in the frequency range of interest where modeling errors
increases. In active vibration control of smart structures for example, this weight
should increase as the frequency increases to include the effects of the

unmodeled or truncated higher frequency modes [60,80,129].
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4.3.2.4 Modern Robust Performance Analysis of Control Systems

The nominal performance of a closed-loop system is achieved when the system
satisfies the desired performance criteria. Similarly, the robust performance is
obtained as the system satisfies the performance specifications for all systems

described by the uncertainty set.

In order to achieve the desired performance specifications, the sensitivity
function S should be small within the frequency range of interest. Because the
transient response of the smart structures are dominated by the frequencies in
the lower frequency range of interest, the sensitivity function kept small at low
frequencies. This is assured by choosing a performance weight as a stable
transfer function Wi(s). In terms of c norm, the condition is formulated as

[127,129]
W8], <1 (43.12)

By using weights W(s) and W,(s), the necessary and the sufficient condition

for the robust performance criteria can be stated as follows [129],
Iwis|+[w,T]|, <1 (43.13)

or, equivalently

WS

"WZT"w <1 and “m—z'—rI

<1 (4.3.14)

The algorithm for the modern robust performance analysis used in this thesis is

given in Figure 4.7.
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Figure 4.7. The algorithm used for the modern robustness analysis of the PID
controllers designed in the study (for additive uncertainties).
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4.3.3 H,, Optimal Control

PID control schemes have proved their usefulness in providing satisfactory control
for the SISO applications. The MIMO synthesis of PID controllers however, is very
difficult. Furthermore, PID controllers generally do not yield optimal solutions.
Another drawback of the application of PID controllers is observed in their robust
performance calculations. Since the uncertainties, can not be included at the design
stages, the robustness issues of the PID controllers are addressed by trial and error.
The applications of H, controllers however, eliminate the apparent restrictions of
the PID controllers and more likely to yield optimal results within reasonable

computing efforts.

The standard closed loop architecture of the Hy, controller is shown in Figure 4.8. In
this figure {w}, {v}, {u}, {e}, {z} and {y} are vector valued signals. The {w} and
{v} are the exogenous inputs, typically consisting of command signals,
disturbances, and sensor noises. {u} is the control signal, {z} is the output to be
controlled and {e} symbolizes the error signals; their components typically being
tracking errors, filtered actuator signal and {y} is the measured output. P(s)
represents a generalized nominal transfer function of the system. In this
architecture, K(s) processes the outputs and feeds back to the system. The H.
control problem consists of determining K(s) such that the H.,, norm of the transfer
function from {w}, {v} to {z}, {e} is minimized and the closed loop system is
stable [77,80,127,129].
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Figure 4.8. The closed loop architecture of the H., controller

Unlike other conventional controller designs such as PID, the uncertainties present
in the system can systematically be included in the modeling. In this technique,
despite of the presence of the uncertainties A(s) as shown in Figure 4.9, the

controller minimizes the ratio of the signal energies {e} to {v} [80,127,130]

P A(s)
Z ] w

ca—— P6) [«

¥ :l u
P K(s)

Figure 4.9. The modeling of the uncertainties in Hs, controller

For the design purposes, the A block is eliminated and the input-output map from

[{w} {v}]" to [{z} {e}]" is expressed in lower linear fractional transformation form
Fi(P,K) [78] as,

Ezﬂ =F(p] [K])ﬁwﬂ (4.3.17)

c \4
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where, F,(P,K)=P,, +P,K({—-P,,K)"'P,. P; represents the partitioned elements
of [P] (according to the dimensions of the control, measurement, disturbance and

error signals) as

P, P
Pl= " 12] 43.18
[] l:PZI P22 ( )

The objective is to find a stabilizing controller K that minimizes the co-norm

of|[F, (P,K)] .- For an uncertainty block satisfying ||| <1, the closed loop system

in Figure 4.3.8 has robust performance if ||F;,(P,K)|_ <1 is achieved [130].

This result, however, is conservative because it assumes that the delta block is a full
block. The uncertainties in a realistic problem are due to the components of a
system, and the representation of such uncertainties results in a block diagonal A(s).
A less conservative robustness test for the closed loop system is given by examining
the structured singular values (n) of M = F; (P, K). For a given system M and an
uncertainty structure, the structured singular value p is defined by Doyle and Zhou
[130] and [127] as,

1

AT T = (4.3.19)
mln{G(A) :Ae A, det(I-MA) = 0}

where A’ is the set of block diagonal matrices
If no Ae A’ makes (I-MA) singular then pa(M)=0 [80,130].

4.4. Conclusions

This chapter was devoted to the finite element based system modeling techniques
and the robust control design and analysis applied to the smart structures. This
thesis attempted to introduce the methods of structural dynamics to the structural
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control design and analysis techniques so as to serve as a link between the structural

and control engineering disciplines.

In this thesis, the effectiveness of nodal and modal coordinates based system
modeling approaches was illustrated. During the formulations, the theory and the
basic assumptions underlying the method of the static reduction for the
determination of the reduced spatial models of the smart structures was also

outlined.

It was theoretically determined that the modal coordinates based technique allows
the specification of the desired number of modes contributing to the response under
consideration. This allowance always results in smaller order models than those of
nodal coordinate based technique. Another advantage was appeared in the damping
models. The modal analysis based technique offers greater flexibility in tuning the
damping characteristics of the model by assigning different modal damping ratios
associated with the modes of the structure.

This chapter was served to lay down the essence of the open and the closed-loop
control systems and detailed on the robustness analyses of the closed-loop
controllers. In this thesis, PID and H.,, techniques were considered in the design of
the controllers that suppresses vibrations of the smart structures. The classical and
modern frequency response robustness analyses were introduced to evaluate the
robustness issues of the PID controllers. The robust control design and the modeling
of the system uncertainty within the framework of H. controller design and p
synthesis were also described. In this thesis, the deviations of the theoretical models

from the actual models are represented through system uncertainties.
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CHAPTER 5

SYSTEM IDENTIFICATION TECHNIQUES FOR SMART STRUCTURES

5.1 Introduction

This chapter describes system identification techniques for the smart structures.
Based on the theoretical analyses described in Chapter 3, the aluminum test articles
with surface bonded piezoceramic actuators and strain gage sensors are fabricated
to obtain the experimental characteristics of the smart structures for the

development of active vibration control strategies.

The determination of the accurate model of the system is an essential step in the
design of a high performance control system. The system models may be obtained
from finite element model or system identification. System identification is a
method of constructing a mathematical model for a system by using input-output
data. The technique provides the appropriate description of the system, especially in
the cases where the finite element modeling of the structures becomes insufficient

to provide the accurate results.

Usually at the initial stages, the finite element model is sufficient. The finite
element modeling allows the determination of the optimal actuator and sensor
placement, actuator size and power requirements. Generally, finite element method
accurately predicts the natural frequencies and mode shapes. But, since the

technique makes no damping predictions [59], it usually does not determine the
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transfer functions relating the inputs and outputs very accurately. Hence, because of
the difficulties in the development of an accurate finite element model of the smart
structures, the technique is generally considered at the design stage. For the
controller design, usually experimentally identified models are considered
[58,59,60]. The results obtained from system identification may also be used to tune

the accuracy of the finite element modeling results.

Since the system identification techniques only require the specification of the
input-output relations of the system, the accurate description of these relations has
of vital importance for the success of the technique. The input-output relations can

be synthesized from the frequency response data [58,122].

In this thesis, the finite element models are considered in the determination of the
natural frequencies of the smart structures specifying the frequency range of
interest. For the determination of the identified minimal order models of the smart
structures the frequency domain identification technique, which is based on the least

square curve fitting, is used.

5.2 Test Articles

By using the results of Chapter 3, three test articles are produced and tested in
Sensor Technologies Limited of Canada. These are called the smart beam and the

smart fin in this thesis.

The smart structures consist of spatially distributed BM500 type piezoelectric
patches bonded symmetrically on the top and bottom surfaces of the passive
structures. The direction of polarization is in the thickness direction. The electric,
dielectric and material properties of the piezoelectric patches are given in

appendix A.
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The response of a smart structure may be described in terms of displacement, strain,
velocity or acceleration. Although accelerometers are the most common form of the
transducers used in the measurements of the response of large structures, their
considerable mass and local stiffening effects have negative effects on the response
of the smart structures consisting of light components. The recent advances in the
laser based transducer systems may also provide an extensive non-contacting
measurement capacity. Laser doppler systems may be considered for the
measurement of the vibration signals. However, their delicacy in handling, cost and
the difficulties in the integration of the sensor units to the aerospace structures limit
their potential use in the smart structures technologies. The piezoelectric sensors
offer precise vibration measurements for smart structure applications [101]. But the
accuracy of the piezoelectric sensors is limited to the relatively moderate
frequencies (f>10 Hz) [116]. Furthermore, the piezoelectric sensors are very
sensitive to the changes in the environmental conditions such that thermal

fluctuations result in continuous drift in the measurements [106].

The utilization of strain gages in smart structure applications yields good
performance at relatively low cost. They are also relatively insensitive to
temperature changes and suitable for a frequency range of 0 to150 Hz. In this thesis,
the smart structures contain pairs of SG-7/350-LY13 type (Omega Engineering,
CT) strain gages bonded top and bottom surfaces of the smart structures
symmetrically to sense the vibration signals. During the tests the smart structures
are firmly attached to the fixtures designed to provide the required clamped-free
configuration.
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5.2.1 The Smart Beam

The smart beam produced, consists of an aluminum beam (507x50x2 mm) with
surface bonded BM500 type 8x(25x20x0.5 mm) symmetrically placed BM500 type
piezoelectric patches. The smart beam further contains a pair of SG-7/350 type
strain gages bonded symmetrically on the top and bottom surfaces of the structure

to sense the vibrations. The test article used in the study is shown in Figure 5.1.

Figure 5.1. The smart beam used in the thesis
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5.2.2 Smart Fin

The smart fin is actually a plate and designed according to the plate theory. Its
shape resembles to a typical vertical fin. Hence it is called a smart fin. The smart fin
consists of 24x(25x25x5 mm) symmetrically placed BMS500 type piezoelectric
actuators. It further contains 6 symmetrically placed SG-7 LY13 type strain gages
to sense the flexural and torsional vibrations. An additional pair of PZTs, were also

placed on the fin to work as sensors. The test article is shown in Figure 5.2.

Figure 5.2. The smart fin used in the thesis
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5.3 Nonparametric Identification for the Smart Structures

It was given in Chapter 4 that the existence of a mathematical model allows the
determination of the state-space representation or equivalently, the transfer function
of the system. This makes the calculations of the poles and zeros of the system
possible. The systems are generally described by specifying the poles and zeros. In
this, the numbers giving the poles and zeros are called the parameters of the models.
These models provide the parametric description of the system. The existence of the
parametric description of the system allows the computation of the frequency

response and corresponding transfer function.

In certain cases however, the accurate parametric model may not be available. In
such cases, the nonparametric system identification defines the input-output relation
of the system without parameters, so there is no finite set of numbers that describe
the system exactly [58,60]. In the determination of the nonparametric description
for a system, the Fourier transform of the impulse response function or equivalently
the frequency response function is considered in most system identification
techniques. The methods of determining the experimental frequency response
function from the input-output measurements are called nonparametric
identification. In this thesis, the spectral estimation method of nonparametric
identification is applied to the smart structures. The other common methods of
nonparametric identification are the impulse response and step response analyses in

time domain and sine wave testing in frequency domain [58, 60, 121, 122].

The nonparametric identification of the smart structures considered in this thesis is
achieved at two stages. The first stage involves the excitation of the system to be
identified with an input signal x(t) and the measurement of the output signals y(t).
The second stage deals with the determination of the resulting transfer function

through the application of the appropriate signal processing techniques [58,60].
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For the nonparametric identification technique applied in the thesis, the input signal
x(t) should continuously excite the system within the frequency range of interest. A
band limited white noise or a chirp signal usually used as input signal [58,60]. The
chirp is a sinusoidal function with a frequency that grows from an initial value to a

final value so as to cover the frequency range of interest.

5.3.1 Data Acquisition

This section describes various experiments that were conducted to determine the
dynamic characteristics of the smart structures. During the experiments PZT
actuators were excited by the chirp signals. The signal generator (Stanford Research
DS 345) was used for generating the £ 10Vpp (peak to peak) chirp signals. The
chirp signals so generated were amplified to the desired levels by using the power
amplifier (KROHN-HITE 7602M) before they were fed to the PZT actuators. The
responses of the smart structures were measured by using the strain gages in the half
bridge configuration. The symmetric placement of the strain gages allows the
construction of a half Wheatstone bridge circuit that eliminates the temperature
effects and doubles the vibration signal [131]. The schematic representation of the
half bridge configuration considered in the thesis is shown in Figure 5.3.

During the tests, the sensor signals were preamplified and to eliminate the noise
present in the environment. The analog sensor signals were then converted to digital
ones by a 16 bit Analog to Digital Converter (ADC) board (NI-PCI16XE-50) and
stored in the host computer. The ADC board has 16 channel analog and 8 channel
digital input-output channels and can stream data up to 20kS/s. The commercial

software LabVIEW® (v.5.1) was used.
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Sg: Gage factor, 2.09

V: Driving voltage for the circuit

R Fixed resistance of 10 k(2

AE: Potential difference measured due to the elongation of the strain gages
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Figure 5.3. The configuration of the strain gages on the smart structures and the
schematic representation of the Wheatstone bridge used in the thesis
a. The placement of the strain gages on the smart beam

b. The half Wheatstone bridge connection of the strain gages

5.3.1.1 The Smart Beam Experiments

The frequency range of interest for the nonparametric identification of the smart
beam was determined by using the theoretical analysis conducted in Chapter 3. The
frequency range of interest was selected to span the first three flexural frequencies
of the smart beam. During tests, the smart beam was continuously excited by a chirp
signal changing from 0.1 Hz to 150 Hz in 120s. The magnitude of the 10V peak to
peak (pp) chirp signal was increased to 165V through a power amplifier and the
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response of the smart beam was measured. The preamplified strain gage signals and
the output of the signal generator were converted to the digital signals by using the
ADC board at the rate of 4096 sample/s and stored in the host computer that
includes LabVIEW® (v.5.1).

The detailed description of the data acquisition system is shown in Figure 5.4. In
this setup, the passive portion of the smart beam was appropriately grounded and
the smart beam firmly attached to the fixture throughout the tests. The LabVIEW®
(v.5.1) program used for the acquisition of the data is shown in Figure 5.5.
Figure 5.6 gives a sample time domain representation of the chirp signal and the
output of the smart beam for nonparametric identification. The first three resonance
frequencies of the smart beam show up in the form of three sharp peaks in the
sample output of the smart beam shown in Figure 5.6.b.
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(a) signal genenator:
Stanford Research DS 345

10V pp chirp signal

power amplifier:
KROHN-HITE 76021
(with the gain adjustment of 16.5)

L,

z
¢
Strain gage preamplifier:
KAZTEK
o| ADC conwversion | - Host computer +
"| NI-PCI16XE-50 LabVIEW
(®)
power amplifier it

N = [ ] piezoelectric actuators: RMS500
[ strain gages: OMEGA SG-7/350-LY13

Figure 5.4. The data acquisition for smart beam

a. The data acquisition system

b. The connection of the piezoelectric actuators to a bipolar power amplifier
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Figure 5.5. The block diagram of the computer program used during the data

acquisition
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Figure 5.6. Sample time domain representations of the signals measured during the
tests for the smart beam

a. A portion of the chirp signal for 10s

b. An output of the smart beam for 120s
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5.3.1.2 The Smart Fin Experiments

In this thesis, as a result of the analysis explained in Chapter 3, only the strain gage
pairs labeled (1) and (2) were considered for the nonparametric identification of the
smart fin. Furthermore, the actuation was only applied to the PZTs on one face of
the fin. Figure 5.7 gives the details of the data acquisition system used for the smart
fin

During the tests, the PZT actuators the piezoelectric actuators were connected to the
positive port of the power amplifier and the aluminum fin was joined to the negative
port of the power amplifier. Figure 5.8 gives a sample time domain representation
of the chirp signal whose frequency changes from 1Hz to 100 Hz in 30s and the
outputs of the smart fin for nonparametric identification. The data was collected at a
rate of 1024 samples/s for 30 s throughout the tests. The computer program used in
the storage of the data is shown in Figure 5.9. During the tests, in order to improve
the signal to noise ratio, the DC offsets of 8V and 9V were applied to the strain

gages at location (1) and location (2) respectively.

In Figure 5.8, the first three resonance frequencies of the smart fin can be seen as
the peaks shape of which are different for each output channel. These differences
are due to the sensing of the response of the smart fin at different locations. It is
evident from the figure that while the strain gages at location (1) have better
response characteristics at the second and third modes than that of the first mode,
the strain gages at location (2) have superior response characteristics at the first and
the second modes compared to the third mode. Hence, the dynamic characteristics
of the smart fin at its three modes of vibration can be estimated by using the current

configuration of the strain gages on the smart fin.
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Figure 5.7. The data acquisition for smart fin

a. The data acquisition system

b. The connection of the piezoelectric actuators to a bipolar power amplifier
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Figure 5.8. Sample time domain representations of the signals measured during the
tests for the smart fin

a. A portion of the chirp signal for 10s

b. An output of the smart fin for 30s (strain gages at location (1))
c. An output of the smart fin for 30s (strain gages at location (2))
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Figure 5.9. The block diagram of the computer program used in the multi channel

data acquisition for smart fin

5.3.2 Signal Processing

The impulse response of a linear time invariant systems characterizes the dynamics
of that system. In order to determine the nonparametric description of the system,
the input and output relation of the system must be determined. The input/output

relation of a linear time invariant system is given by the convolution integral
[58,60].

y(t) = [e(x(t-7)d (5.2.1)
0
R, (1) = [g(1)R,(x—7)dy (5.22)
0

T
R_(1)= ;1_52% j x()x(t + T)dt
0

.17
R, (M= ;gg? 0 x(t)y(t +T)dt
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By taking the Fourier transform of the convolution integrals given (5.2.2), the
corresponding power spectral density functions of Sy and Sy are obtained. In this

case, the spectral densities and the transfer function G(®) can be related as,

S,, () = G(©)S,, () (5.2.3)

where

S, (@)= G]'ny (t)e™"dt

S, () = TRXX (t)e™dt

In most of the recent signal processing softwares, like Matlab® (v.6.0), due to the
numerical advantages [60,127] the power spectral density functions are calculated
from the Discrete Fourier Transform (DFT) of x(t) and y(t) rather than using the

correlation functions.

This thesis presents the method of spectral estimation method of nonparametric
identification for the smart structures. The thesis uses Matlab®(v.6.0) package
program to calculate the DFT of the input and output signals that are used to
determine the spectral estimates. The study first finds out the data set in which the
input signal influences the output effectively without measurement errors. These
errors may arise when the response times of the actuation and measurement devices
are not synchronized properly. The data set is obtained by considering the power
spectral densities of the input and output signals. The thesis then, by using the data

set, computes the experimental transfer functions for the smart structures.
During the theoretical calculations involving the Fourier transform, the windowing

of the data is considered to avoid the leakage problem. The leakage is a direct
consequence of the need to take a finite length of time history coupled with the
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assumption of the periodicity. The windowing involves the imposition of a
prescribed profile on the time prior to the Fourier transform. In this thesis, the
Hanning windows are considered to reduce the leakage problem. The Hanning
windows are typically used for continuous signals like those produced by steady

periodic or random vibration [121,122,134].

In order to obtain the estimates for the spectral densities or correlation functions
that are used to characterize the output signals, there are additional considerations
concerning their accuracy and statistical reliability. Generally, it is necessary to
perform the averaging process involving several time records or samples before an
obtained result can be used in confidence. The two major considerations, that
determine the number wof averages required, are the statistical reliability and the
removal of spurious noise from the signals. In this thesis, the overlap averaging

technique is considered to remove the noise from the output data.

In overlap averaging technique, the input and output signals have time duration of
Tt with n number of samples. The signals measured are then separated into the M
overlapping segments each of which has duration of T. Denoting the fraction of
overlap time by q and the overlap time by qT, the relation among these variable is

given as,

T = (M-1)1-q)+ )T 523

Denoting the original continuous signal s(t), defined on 0 <t < T, and its m®

overlapped segment as,
S, =s(t+(Mm-DA-q)T) 0<1<T, m=1toM (5.2.4)

That is, each segment is defined over a time interval of [0,T], and the m™ time

interval is taken from the original signal starting at time (m-1)(1-q)T. The
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windowing and sampling of each of the overlapping segments then can be achieved

as,

Xy = WAt xs, (jAt) m=1toM,j=0ton-1 (5.2.5)

where w(t), 0<t<Tis a temporal weighting function of DFT and T=nAT. The
sampling of each overlapping segments yields a sampled ensamble of signals that
can be used to estimate the spectral densities of the input and output

signals[127,132,134].

In overlap averaging technique however, since the window w(t) modifies the
amplitudes of the original measured signal, a scaling is required. This can be
obtained by analyzing the effect that the window has on the measured original
signal and requiring that the estimated spectral density reflect the same mean square
value as the original signal. The spectral density of the windowed signal must be

corrected by a factor. Defining the effective bandwidth of the signal as [132]

1 1&a
B =—|1+—)» &= 5.2.6
¢ T( ZZa j ( )

where ay defines the constants of the temporal weighting function. The correction

parameter can be found as [132,133].

T

= 5.2.7
aéBe ( )

Q

For Hanning window K=1 and the coefficients are, ap=0.5 and a,=0.5

In overlap averaging technique, the Discrete Fourier Transform (DFT) of m samples

can be calculated in an extremely short time. The procedure is more effective than if
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all the data points are used only once and it manifests this extra processing by
producing smoother spectra than would be obtained if each data sample were used
[121,127,132,134]. The extraction of the smoother spectra allows the determination
of the accurate experimentally identified system models [60,127].

The success of the technique depends on the number of the averages that must be
used in the estimation of the spectral densities. As the number of averages used in
the estimation of the spectral density increases, the variance of the estimate
decreases; thus the number of averages should be maximized for a specified
sampling interval [121,132,134]. Obviously, the number of overlap should strictly
be less than the window length specified by the sampling rate of the measurement,
My [127]. The factors, influencing the selection of the window length includes
storage space for measurements, the cost of obtaining measurements, or the time
required to analyze signals. Figure 5.10 summarizes the algorithm considered for

the nonparametric identification of the smart structures used throughout the thesis.

5.3.2.1 Nonparametric Identification for the Smart Beam

The experimental transfer function of the smart beam is obtained by using the
signals, an example was shown in Figure 5.6, signals through the method of spectral
estimation. The plots of sample power spectral density functions S, . S, and S,y are
shown in Figure 5.11. The spectral estimates are then used to calculate the
experimental frequency response function. During the theoretical calculations the
number of overlap averaging are selected to be as large as possible (M<4096).

Figure 5.12 gives the bode plot of a sample experimental transfer function obtained.

In this thesis, unless stated otherwise, voltage is considered as the measurement

units in the transfer function frequency response plots
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Figure 5.10. The algorithm for the method of spectral estimation of nonparametric

identification used in the thesis (M; M, are the lower and higher estimate values for

overlap averaging number respectively and My, is the window length)

The accuracy of the method of spectral estimation depends largely on the number of

overlap. Figure 5.13 gives the comparison of the effects of the number of overlaps

on the experimental transfer functions of the smart beam. It can be seen that as the
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number of overlap increases, the frequency response curve converges to each other.
This is due to the decrease in the variance. The number of averages used to obtain
the spectral density increases as the variance of the estimate decreases; so the
number of averages should be maximized for a specified sampling interval. In this
case however, the overlap averaging values larger than 2600 do not give

appreciable differences.

By using the same experimental set up designed for the smart beam and the
algorithm developed for method of spectral estimation, the transfer functions of the
smart beam corresponding to three different tests in terms of the frequency range,
the sampling rate and duration of the experiment are also calculated. Table 5.1
describes the parameters of the measurements conducted. The bode plots of the
resulting experimental transfer functions are shown in Figure 5.14. As expected for
each measurement, the technique predicts the same poles and zeros for the smart
beam, only a slight deviation around the first zero of the system is observed. This
deviation may be attributed to differences in the window length and the frequency

range.

Table 5.1.The tests conducted for the nonparametric identification of smart beam

Testno | Frequency range | Duration of the | Sampling rate Number of
(Hz) test (s) (Samples/s) overlaps
1 0.1-150 120 4096 2600
2 1-150 60 2048 1600
3 1-150 30 1024 650
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Figure 5.11. Sample power spectral densities of the input and the output of the
smart beam

a. The spectral density of the input, Sk

b. The spectral density of the output, Syy

c. The cross spectral density, Syy
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Figure 5.12. Bode plot of a sample experimental transfer function of the smart beam
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Figure 5.13. The influences of the overlap averaging number on the experimental

transfer functions of the smart beam
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Figure 5.14. The comparison of the influences of the different measurements on

the experimental transfer functions of the smart beam

5.3.2.2 Nonparametric Identification for the Smart Fin

By using the time domain representations of the input and the output signals
obtained for the smart fin which are shown in Figure 5.8, the spectral estimates of
the smart fin are calculated. During theoretical calculations 650 overlap averages
are used for the determination of the power spectral densities Sxx Syy and Syy. The
sample power spectral densities of the smart fin are shown in Figure 5.15. The bode
plots of the sample experimental transfer functions corresponding to the strain gage

locations (1) and (2) are shown in Figure 5.16.
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Figure 5.15. Sample power spectral densities of the input and the output of the
smart fin (dotted: Strain gage measurements at location (1), solid: Strain gage
measurements at location (2))
a. The spectral density of the input, S
b. The spectral density of the output, Sy

c. The cross spectral density, , Sy
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measurements at location (2))

5.4 Frequency Domain Least Squares Curve Fitting Technique

The accurate model for the system can be obtained by curve fitting to each
nonparametric SISO transfer functions [58,60]. In this thesis, the experimental

transfer functions obtained for the smart structures in the Section 5.2 are considered

for this purpose.

The discrete transfer function representation for each experimental transfer function

may be represented by the following form

_n@
g(z) = ) (5.3.1)
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where n(z) and d(z) describes the polynomials of degree<p with unknown

coefficients. Equation (5.3.1) can then be rewritten as [58,60],

an Zj
8(2) =—"5—— (5.3.2)
z? +Zdj z’
=0

multiplying both sides by the denominator and rearranging the terms gives,

Edjzjg(z) -in 2 =gz’ (5.3.3)
=0

=0

equation 5.3.3 can be put in a compact form by defining the following variables
[60].

Let, {z}!", represent the points on the unit surface obtained by mapping the discrete

frequency points, o; of the experimental transfer function as,

[z]=|1: Db 9 (5.3.4)

p
1] |z Zy

Setting Zo =7 and deleting the last column of the matrix equation given in equation

5.3.4 and by defining the following variables,

D = diag[g(z, ), 8(zy)]
[no,...’np]’r

ey
y =gz @0z |

=
I

(5.3.5)

I

d

equation (5.3.3) can be written in the following form.
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(DZ, - Z){g} =y (5.3.6)

The form of equation (5.3.6) represents a standard least square problem. The
vectors {a}and {ﬁ} can be estimated by solving equation (5.3.6). In the solution an

iterative technique is considered. The resulting discrete transfer function can be

transformed to continuous system by using bilinear transform [60,127].

In this thesis, the frequency domain least square technique is applied to the
experimental frequency response functions. During the theoretical calculations
Matlab®(v.6.0) package program is used to find the experimentally identified
models for the smart structures. Figure 5.17 gives the flowchart of the least square
curve fitting technique applied for the identification of the smart structures.

The least square curve fitting technique applied to the smart structures is iterative
for the order of the system to be identified. The process is repeated until the desired
accuracy between the experimental and the identified model is achieved. Thus,
algorithm allows the specification of the minimal order models for the accuracy
specifications at each frequency of the smart structures. The minimal order in state
space realization is analogous to the number representing the sum of modes and

residual modes contributing the response for a dynamical system.
In certain cases however, the numerical curve fitting algorithm may estimate the

order than this number. This is due to the addition of over-damped poles to fit the
DC gain of the experimental transfer function [127].
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Figure 5.17. The algorithm used for the application of frequency domain least

squares curve fitting technique to the smart structures
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5.4.1. System Identification for the Smart Beam

The least square curve fitting technique is applied to the experimental transfer
function of the smart beam shown in Figure 5.12. In this technique, the aim is to
find the minimal order that sufficiently matches with the experimental transfer
functions. The identified minimal order transfer function obtained may then be used
to find the state space representation of the system with some computational effort
[80,127]. Figure 5.18 gives the effects of the influences of the system order
estimation on the identified model of the smart beam. It can be seen that the 10™
order identified model for the smart beam sufficiently matches with the
experimental frequency response within the frequency range of interest. Thus the

minimal order for the identified model for the smart beam is determined to be 10.

The Matlab® (v. 6.0) code used in the system identification of the smart beam is

given in Appendix C.
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5.4.2 System Identification for the Smart Fin

The experimental frequency response functions of the smart fin given in Figure 5.16
are used to find the experimentally identified model of the smart fin. The
application of the least square curve fitting technique results in 6™ order transfer
functions from the actuators to each sensor. The comparisons of these models with

the experimental models are shown in Figure 5.19 and 5.20.
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Figure 5.19. The comparison of the frequency responses of the experimental and 6"

order identified models (Strain gage measurements at location (1))
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5.5 The Validation of the Finite Element Models of Smart Structures

The application of the system identification techniques allows the determination of
the precise description of the dynamical characteristics of the smart structures. In
this section, the undamped theoretical frequencies obtained from the finite element
models of the smart structures and the experimental resonance frequencies are
compared. The first three resonance frequencies are tabulated together with the

experimentally determined modal damping ratios.

The comparison of the first three resonance frequencies and the modal damping
ratios calculated for the smart beam is given in Table 5.2. The resonance
frequencies and the modal damping ratios are also calculated for the smart fin.
Table 5.3 gives the comparison of the frequencies together with the modal damping

ratios.

Table 5.2. The comparison of the theoretical and experimental frequencies of the

smart beam
FEM Experimental
Frequencies (Hz) | frequencies (Hz) damping ratio (*)
7.3047 7.2885 7.731x107
44.112 40.065 1.778x107
117.28 110.622 7.061x107

(#): &, = -real(w,)/ mag(w,)
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Table 5.3. The comparison of the theoretical and experimental frequencies of the

smart fin
FEM experimental
frequencies (Hz) frequencies (Hz) damping ratio
14.963 14.51 4.800x107
45.737 48.94 2.023x107
68.253 69.43 1.792x107

The frequencies obtained from the finite element models of the smart structures
corresponding to the 1% and 3" modes are close to the experimental values but the

ones corresponding to the 2" mode are different.

5.6. The Response of the Smart Beam by Assumed-Mode Summation Method

The finite element based modeling technique presented in this thesis offers three-
dimensional fully coupled thermo-mechanical-electrical analysis of the smart
structures. In order to highlight the advantages of the finite element based modeling
technique developed in this thesis, the smart beam of the study is remodeled by
using a technique available in the literature. The modal analysis based technique
presented in [74,135] is considered for this purpose. The technique makes the use of
the assumed mode-summation method developed for the proportionally damped
smart beams. The assumed mode-summation method is known to yield accurate
results for the analysis of the structures whose geometries are closed to those of
beams [121,122]. During the adaptation of the assumed mode-summation method to
the smart beam, the motion of the smart beam is assumed to be constrained on the
horizontal plane and the passive portion of the smart beam is considered to be thin
compared to its length so that it can be regarded as an Euler-Bernoulli beam. This

assumption, leads to the reduction in the three-dimensional theories of the elasticity
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and the piezoelectricity described in Chapter 3 to one-dimensional theories. This
reduction implies the elimination of spatial variation of the anisotropic material and
the piezoelectric properties of the piezoelectric patches. That is, the number of
independent elastic constants associated with the piezoelectric patches is reduced
from seven to one. The analysis also results in the reduction of two independent
dielectric and three piezoelectric constants to one variable only, namely

piezoelectric strain constant.

In this section, the results obtained by using the assumed mode-summation
approach and those of developed finite element modeling are compared for the
smart beam. Since the assumed mode-summation approach requires the
specification of the modal damping ratios, the modal coordinate based finite
element based modeling technique presented in Chapter 4 is also considered for the
modeling of the smart beam. Table 5.4 gives the values for BM500 type
piezoelectric actuators which are necessary for the theoretical calculations of the

assumed mode-summation method.

Table 5.4. The properties of BM500 type piezoelectric patches [116]

Properties Constant Unit
Density: p, 7730 kg/m’
Compliance: Sy; (S11=1/C1y) 15.5x1072 m”/N
Piezoceramic strain constant: ds; -160x1072 C/N

Figure 5.27 shows the comparison of the responses of the smart beam obtained by
using these approaches, in terms of the mid-tip point displacement. It can be seen
from the figure that the results obtained by using the mode summation approach
significantly over-estimates the resonance frequencies of the smart beam. These
discrepancies may be attributed to the elimination of the spatial variations of the

material properties of the piezoelectric patches that eventually yields to the
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inaccurate calculation of the stiffness of the smart beam. Table 5.5 gives the

comparison of the theoretically calculated resonance frequencies together with the

experimentally determined frequencies of the smart beam.
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Figure 5.21.

frequency(rad/sec)

The comparison of the responses of the smart beam (the mid-tip

displacement response with &;=7.7309107, £,=1.7784107 and £3=7.0605107)

Table 5.5. The comparison of the resonance frequencies of the smart beam
Frequencies (Hz) | Finite Element | Assumed Mode-Summation | Experimental
fi 7.305 8.673 7.2885
i) 44.112 46.371 40.065
f3 117.280 119.37 110.622
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In addition to the inaccurate calculation of the stiffness of the smart beam, the
assumed-mode summation method also requires the elimination of the lateral
deformations of the piezoelectric patches under the application of the electric field.
Thus, the omission of the lateral deformations may also lead to inaccurate
calculation of the bending moment distribution due to the piezoelectric actuation. It

is evident that all those simplifications and omissions cause erroneous results.

5.7 The Tuning of the Finite Element Model of the Smart Beam

This section deals with the determination of the factors that influences the accuracy
of the finite element based theoretical models and explains the techniques used for

tuning the theoretical response with the experimental data.

The unmodeled effects like the cable weights may influence the accuracy of the
theoretical models. The exclusion or the improper interpretation of the damping
characteristics including, the modal damping ratios (&;) reduces the effectiveness of
the theoretical models. In order to improve the accuracy of the theoretical models,

these effects should systematically be incorporated into the analysis.

Another impediment in the accurate modeling of the smart structures designed in
this thesis is the hysteresis behavior of the piezoelectric patches. The piezoelectric
actuators exhibit the hysteresis nonlinear behavior in their response to applied
electric field [3,16,22]. The hysteretic behavior of the piezoelectric actuators results
in the mismatches between the theoretical and the experimental transfer functions
that influence the effectiveness of the closed loop controllers designed to suppress

the vibrations of the smart structures if not properly taken into account [15,17].
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The experimentally identified models can be used to tune the accuracy of the finite
element based theoretical models of the smart structures. The tuning of the response
of the theoretical models deals with the incorporation of the experimental models
with the theoretical models. In this thesis, the tuning of the theoretical models is
achieved at the three stages. While the first stage focuses on the influences of the
hysteretic nature of the piezoelectric actuators on the response, the second deals
with the compensation of the cable mass effects on the response. The last stage in
the tuning algorithm involves the correction of the damping characteristics of the
theoretical models. The following section details on the method of tuning the

response of the smart beam used in the thesis.
5.7.1 The Influences of The Hysteresis Effect: LVDT Te}s on the smart Beam

The piezoelectric actuators offer a number of benefits for applications in active
vibration control of aerospace structures. Their high stiffness results in high actuator
authority and excellent integration to the structures. However, the piezoelectric
actuators exhibit the material specific nonlinearities in their response. This is
observed in the form of hysteresis [3,16,22]. LVDT (Linear Variable Differential
Transducer) tests are generally considered to investigate the hysteresis nonlinear

behavior of the piezoelectric actuators [15,22,74].

In this thesis, the LVDT tests were conducted in Sensor Technologies Limited
laboratories for the determination of the hysteresis effects on the piezoelectric
actuators of the smart beam. During the tests, piezoelectric actuators are driven
automatically by 200V a LabVIEW® program controls the process for hysteresis
loop experiment. During the experiments, the magnitude of the loop was limited
with a maximum applicable electric field and the rate of change of the magnitude
was very slow. Figure 5.22 gives the data acquisition used in the LVDT tests

conducted for the smart beam.
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Figure 5.22. The data acquisition of the LVDT tests for the smart beam.

By using the setup shown Figure 5.22 various hysteresis loop experiments were
conducted. Figure 5.23 gives the sample results of the hysteresis loop experiments
conducted. The slight differences observed between the hysteresis loops reveals that
depending of the history of the excitation, one of the possible expansions shown in
Figure 5.29 can be the result of a specific voltage applied to the patches. This
behavior is typical to the materials that experience the hysteresis nonlinearity with
memory [72,73,74]. Hence BM500 type actuators used in the thesis exhibits

hysteresis nonlinearity with memory in its response to the applied electric field.

It can be seen from these curves that, the hysteretic response of the smart beam may
be approximated by the first and higher order curves. While in the range
approximately from 0 to 100V the response can be approximated by the first order,
for the actuation values approximately from 100V to 200 V the response is
characterized by higher order curves. Since the range of the linearity changes for

each sample of records, these ranges are not sharp.
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Figure 5.23. The hysteresis nonlinear behavior of the smart beam: The samples of
the LVDT tests conducted.

The results of the LVDT tests indicates that that, the linear relationship between the
piezoelectric actuation and the response of the smart structure predicted by the
theoretical analysis conducted in Chapter 3, is valid only for the low range of the
actuation voltage. Thus, if a relatively high voltage values is applied to the

actuators, the relationship exhibits the hysteresis nonlinear behavior.

Generally closed loop controllers reduce the hysteresis effects on the system, if
properly taken into account during the design stage. These effects can be included
in the analysis as the phase lag, which causes instability if the phase margin is not

taken large enough [15,74]. In this thesis, the hysteresis effects of the piezoelectric
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patches are included in the analysis as the modeling uncertainties at the design stage

of the closed-loop controllers.

5.7.2 The Influences of the Cable Masses on the Response of the Smart Beam

In this thesis, the effects of the cable masses on the response of the smart beam are
simulated by the addition of the spatially distributed mass elements on the finite
clement model of the smart beam developed in Chapter 3. The mass element
MASS21, available in ANSYS® (v. 5.6) is considered for this purpose. Figure 5.24
gives the orientation and the positive sign convention for the point mass element.
The distribution of the mass elements on the finite element model of the smart beam
is shown in Figure 5.31. In this figure, m; represents the amount of the mass
distributed on 63 mass elements to account for the effects of the actuator cables and
m;, gives the amount of mass distributed on 4 elements to include the effects of the
sensor cables. The effects of the tape mass are also considered by using 26 mass

elements. In this model, the amount of the tape mass is represented by m;.

Figure 5.24. The positive sign convention and the orientation of the point mass

element, MASS21 used in the thesis.
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During the theoretical calculations involving this element, the mass is assigned to z
direction only. The influences of the masses in other directions and the effects of

the rotatory inertia are not included.

The smart beam used in t

) g_x

@ active poriion: PZT actuators, SOLIDS

passive portion: Aluminum beam: SOLID45
added masses for cable and tape masses, MASS21

m : masses for actuator cables
my : masses for sensor cables
m3 : masses for tape

Figure 5.25. The smart beam and the configuration of the mass elements on the
finite element model of the smart beam (m;=6gr, my=4gr, mz=1gr)

a. Smart beam

b. The finite element model of the smart beam (93 MASS21, 420 SOLID4S5, 72
SOLIDS5 elements)
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Since ANSYS® (v.5.6) software does not allow the specification of the modal
damping ratios associated with the modes of the structure for analyses involving the
coupled field elements, the influences of damping present in the smart structures
can only be analyzed through the specification of the mass, y and stiffness damping
constants, B. The preliminary analysis conducted for the analysis of the smart beam
showed that the proportional damping values of y=2><104 and B=1x10" yield closer
results to the experimental data. For this reason, unless stated otherwise, these
proportional damping constant values are used in the theoretical calculations
wherever appropriate. Figure 5.26 shows the influences of the cable weights on the
response of the smart beam, in terms of the longitudinal strain, together with the
experimental frequency response. It can be seen from the Figure 5.26 that the
addition of the cable weights not only shifts the resonance frequencies to slightly
smaller values, but also reduces the amplitudes at the first and second resonance
frequencies. Table 5.6 gives the influences of the cable masses on the first three
undamped natural frequencies of the smart beam together with the experimentally
determined frequencies. It can be seen in this Table 5.6 that, the addition of the
mass elements to account for the cable masses improves the theoretical frequency

values.
Figure 5.26, also reveals the information about the hysteresis effects. The hysteretic

nature of the PZT patches results in phase shifts in the response of the smart beam
[72,73,74].
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Table 5.6. The comparison of the finite element and experimental frequencies of the

smart beam
Finite Element Modeling
Frequencies (Hz) | without cable mass Cable Mass Experimental
fi 7.3047 7.2798 7.2885
£ 44.112 42.631 40.065
3 117.28 111.8 110.622

It can be seen from Figure 5.32 that, although the inclusion of the cable weights
improves the theoretical frequencies, the theoretical response still needs to be tuned
in terms of damping. This is necessary for the success of the closed loop controller

to be designed to suppress the vibrations of the smart beam.

5.7.3 The Influences of the Damping on the Response of the Smart Beam

Since the finite element modeling techniques make no damping predictions of the
damping in the system [59], they offer less accurate results in the determination of
the input/output transfer function parameters such as the zeros and phase-frequency
response. This profoundly influences the performance of the controller designed
[57,58]. In order to improve the response obtained from the theoretical models, the
experimentally obtained damping models should be used. In this thesis, the
theoretical models obtained through the modal coordinate based modeling
technique, is considered in the determination of the theoretical transfer functions.
By using the results of the experimental values obtained the damping characteristics

of the functions are improved.

The modal coordinates based system models retain the physical correspondence

between the theoretical model and the test structure a relation that is lost in nodal
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coordinates based models. The modal coordinate based models allow the
specification of the desired number of modes contributing to the response under
consideration. This allowance always results in smaller order models than those of
nodal coordinate based technique. Another advantage is that, by assigning different
modal damping ratios associated with the modes of the structure, the modal
coordinate based technique offers greater flexibility in tuning the theoretical model
to the experimental data [59,121].

This thesis considers system identification for the determination of the damping
characteristics of the smart structures. The damping characteristic can also be
estimated within acceptable accuracy by a trial and error procedure through half

power point circle fit technique [121,122].

Unlike experimental techniques, in the finite element model based techniques all the
possible degrees of freedoms and their derivatives can be found by using the same
theoretical model with some more computational effort. The transfer functions in
terms of displacement and/or strain may be obtained by using the modal coordinates
based modeling technique given in Chapter 4. The SISO transfer function between

the i™ sensor and jth actuator can be obtained by using equation 5.5.1.

#*

m AL m A,
G(s) = LA 4y B 5.5.1
) Zr:s-!-?u, Zs+k, ( )

here, the modal participation constants can be given as,

® "

Ay = {0 03], and A =107} 17 @ =Ttom) (552)
where (*) defines the complex conjugate and .A; gives the modal participation

constant of the 1™ mode of vibration of the smart beam. Since transfer functions

evaluated for the strain and displacement at the same point share the same system
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matrix, the transfer functions have the same poles. However, because the output
vectors defined for the strain and displacement formulations are different, the modal
participation constants associated with the ™ mode of vibration may not coincide.
These differences in the strain and displacement formulations may yield to the
mismatches between the zeros of the transfer functions. This situation is shown in
Figure 5.33. It can be seen from Figure 5.27 that both flexural displacement and
strain transfer functions evaluated at the strain gage location give the same
resonance frequencies. But the zeros do not coincide. Figures 5.28 and Figure 5.29
give the mass normalized theoretical mode shapes of the smart beam for flexural

displacement and strain respectively.
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Figure 5.27. The comparison of the strain and displacement transfer functions of the
smart beam at the strain gage location (y=2x10™* and B=2x10""

167



the mass normalized mode shapes in terms of transverse displacement
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Since the strain and displacement transfer function models developed for the smart
beam share the same system matrix, a linear transformation from the displacement
to the strain transfer functions can be obtained at the same measurement locations.

In this case, the strain-displacement transfer function G.(s) that relates the

displacement transfer function G4(s) to the strain transfer function, Ge(s) can be

obtained. The relation between the strain transfer function Ge(s) and the

displacement transfer function G4 (s)can be found to be:
Gy(5) = G, (5)G4 (5) (5.5.3)

where G_(s) is the strain—displacement transfer function and has the following

form.

Ko [J(s*/6; +2n;5/6, +1)
G,(s)=—2 (5.5.4)

K 6?7987 +2n;s/8, +1)
j=1

Where, K, and K describes the open loop gain constant for the strain and
displacement transfer functions. In this formulation, 6, and §; symbolizes the zeros

of the strain and displacement transfer functions and m; gives the damping ratio
associated with the zeros of the transfer functions. In this thesis, while the open loop
gains and the zeros of the transfer function are obtained from the finite element
model of the smart beam, the damping ratios associated with the poles and the zeros

of the transfer function are obtained experimentally.

The technique developed in the thesis, relaxes the apparent restriction of the finite
element code ANSYS in the description of the appropriate damping characteristics
of the smart beam and allows the tuning of the finite element based model with the

experimentally determined modal damping ratios. During the analysis, first the
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transfer function in terms of displacement is extracted through modal coordinate
based technique. Then by using the finite element model, the displacement to strain

transfer function is obtained. The flowchart of the algorithm is given in Figure 5.30.

| Finite element | »| _ Spatial Displacement p| Displacement-strain |}
i model Reduction formulation transformation  |!
i Esxperimental ‘ Theoretical transfer E
: ) transfer function function !
| Tuning of FEM Model i E

System model reduction

v

Comntroller design

Figure 5.30. The algorithm used in the determination of the tuned theoretical

response of the smart beam

During the theoretical calculations, the finite element model of the smart beam with
Rayleigh damping multipliers of (y=2x10* and Pp=2x107) is tuned with the
experimentally determined modal damping ratios of &;=7.7309x107,
§2=1.7784x10'2 and §3=7.0605x10'3. The resulting transfer functions so obtained
are compared with the experimental frequency response function. The transfer
functions of the smart beam are shown in Figure 5.37. The transfer functions

include the displacement, displacement to strain and strain.

The comparisons of the experimental model with the theoretical model of y=2x10*
and B=2x10" and the tuned theoretical model of &;=7.7309x102, £,=1.7784x107
£3=7.0605x10" are shown in Figure 5.38. It can be seen that, apart from the

hysteresis effects observed on the experimental transfer functions, the tuned
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theoretical model is in good agreement with the experimental values. Table 5.7

gives the comparison of the parameters of the smart beam.
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Figure 5.31. The transfer functions of the smart beam obtained in the thesis (the
response at the strain gage location of x;=97mm, y;= 25.5mm)

a. Displacement transfer function, G (s)
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c. Strain transfer function, G4 (s)
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Table 5.7. The comparison of the parameters of the smart beam

FEM (tuned) experimental experimental
f: (Hz) Poles | Zeros poles | zeros Cr Nr
fi 7.2798 | 3.285 7.2885 3.078 | 7.731x107 | 8.355x102
f 42.631 39.42 40.065 38.08 |1.778x107 |9.951x107
f; 110.9 129.6 110.622 | 113.44 |7.061x10° |1.191x107

5.8 Overview of Finite Element and System Identification Techniques Applied
to Smart Structures

In this thesis, the system models of the smart structures are obtained by using both
the finite element based theoretical and system identification approaches. Each of
techniques presented has different characteristics. Table 5.8 summarizes the

advantages and disadvantages of the techniques considered in the thesis.

The applications of both finite element and system identification approaches are
generally required in the reliable design and analysis smart structures for active
vibration control. In the smart structures applications, the finite element approach is
generally applied at the design stage of the smart structures. The system
identification approach is usually considered in the determination of the accurate

model of the system to be controlled.
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Table 5.8. The system modeling techniques for smart structures

Model

advantages

disadvantages

Finite

Element

e No prior knowledge for the
parameters of system is required.

¢ Gives the optimal Sensor-actuator
locations and actuator size

¢ Determines the accurate undamped
frequencies and gives mode shapes.

e Sensor types are not fixed.
all of

freedoms and derivatives as the

Determines the degrees
output.

e Used to determine the maximum
admissible piezoelectric actuation
value to secure the integrity of the
piezoelectric actuators

e The results can be tuned

e Accurate mathematical
model for the process is
required.

e Precise description of the
system including material
and actuator properties must
be prescribed.

numerical

be

e  Excessive
calculations may
involved.

e Makes

predictions

no damping

e Hysteresis effects can

not be included

System

identification

eNo prior knowledge for the
parameters of system is required.
eAccurate mathematical model for
the process is not required.

oPrecise description of the system
including material and actuator
properties are not needed

eMakes correct damping predictions
oThe linearized Hysteresis models

can be obtained.

eThe optimal Sensor and
actuator locations can not be
found directly.

eSensor types and locations
are fixed.

eThe maximum admissible
piezoelectric actuation value
can not be determined.
eExpensive equipment and
excessive signal processing

is needed.
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5.9 Conclusions

This chapter was served to lay down the fundamentals of the spectral method of
nonparametric identification and least square curve fitting techniques, which give
the accurate system models of the smart structures when the finite element
modeling becomes insufficient. The results of the system identification were then

used to tune the accuracy of the finite element model of the smart beam.

It was shown that the appropriate actuation patterns and the actuation levels that
excite the structures in their modes could effectively be determined by using the

finite element based models.

In this thesis, the system identification of the smart structures was achieved in two
stages. First the frequency responses of the experimental transfer functions were
found by using the method of nonparametric identification. Then the experimentally
identified system models of the smart structures were calculated through the

application of the frequency domain least square curve fitting technique.

The spectral estimation method of the nonparametric identification was used to
determine the experimental transfer functions of the smart structures. It was shown
that the application of the technique allowed the elimination of the spurious noise
presented on the output signals and resulted in smoother frequency response for the

experimental transfer functions of the smart structures.

The experimental transfer functions of the smart structures were then used in the
determination of the identified SISO transfer functions. During the determination of
the identified models, the method of frequency domain least squares curve fitting
technique was applied to obtain the minimal order experimentally identified models

of the smart structures. In this thesis, the experimentally identified models, in
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addition to their direct applicability to the control design problems, were shown to

have great flexibility in the tuning of the theoretical models.

The validity of the finite element based modeling used in the thesis was confirmed
by comparing the first three theoretical and experimentally determined frequencies
of the smart structures. While the frequency values associated with the first and
third modes were determined to be in good agreement with the experimental results,
but the frequency values corresponding to the second mode for the smart beam and
smart fin were found to be slightly different than those of the experimental. These

differences were attributed the unmodelled effects like cable masses.

It was shown that the unmodeled effects such as the cable masses, damping and
hysteresis were profoundly influenced the accuracy of the finite element based

theoretical model of the smart beam.

The addition of the mass elements to account for the effects of the unmodeled cable

weights were determined to improve the response of the smart beam significantly.

It was further shown that the modal coordinate based technique developed in this
thesis, relaxed the apparent restriction of the ANSYS software in the modeling of
the damping characteristics of the smart beam and allowed the tuning of the

damping characteristics of the finite element based theoretical model.

The LVDT tests were conducted to quantify the hysteretic nature of the
piezoelectric actuators. By considering the results of the LVDT tests, it was shown
that the linear relationship predicted by the theoretical analysis presented in
Chapter 3 can be considered to be valid only for the low range of the actuation
voltage. Thus, if a relatively high voltage value is applied to the actuators of the
smart beam, the relationship exhibits the hysteresis nonlinear behavior. The
hysteresis effects were observed in the form of the phase shifts on the frequency

response of the smart beam.
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The method of tuning the response of the smart beam could also be applied for the
finite element based theoretical models of the smart plate and smart fin with equal
ease. But, since the LVDT tests associated with these articles were not available, the

tuning of those specimens was not presented.

Since the strain gages modeled in half wheatstone bridge configuration yields good
performance at relatively low cost, the strain gages modeled in this configuration
were considered in the thesis. However, the utilization of very small accelerometers
bonded on the surface of the structures is also known to yield precise vibration
sensing for system identification and vibration control. But the cost of the
accelerometers and the peripheral devices, like charge amplifiers made the
utilization of these devices in the design of smart structures considered impossible

for the current study.

Another reason for the selection of the strain gages in the vibration sensing of the
smart structures is their excellent compatibility with the commercial controller unit
SS10, a product of Sensor Technologies Limited Canada, used for the
implementation of the controller designed for the active vibration control of the

smart structures in this thesis.
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CHAPTER 6

DESIGN FOR ACTIVE VIBRATION CONTROL OF SMART STRUCTURES

6.1 Introduction

The objective of this chapter is to present the design of robust controllers that
effectively suppresses the vibrations of the smart structures. Based on structural and
control models developed in Chapters 3 and 5 respectively, the vibration suppression is
achieved by the application of robust PID and H. controllers described in Chapter 4.
The effectiveness of those controllers in the vibration suppression and in the modeling

of the uncertainties is also compared.

In the design of a closed loop systems, it is generally desirable that the system should
exhibit errors, which are very small, in the response to the input signal. The system
dynamics should also remain relatively insensitive to the modeling errors or the
changes in the system parameters. Furthermore, the undesirable disturbances such as
high frequency sensor noises should be attenuated. The performance objectives of a
closed-loop system include the determination of the frequency range and weights for

which the controller affects the output in order to obtain the desired results.
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Depending on the mission requirements, modeling and operating conditions, the
selection of error signals and performance weights for the smart structures varies
considerably. Thus, the specification of the proper performance weightings has the

ultimate importance to achieve the performance objectives.

Since the response of a linear time invariant system is dominated by the resonance
frequencies closer to the imaginary axis, the aim in the design of the closed loop
controllers is to minimize the response in the lower frequency range where first three
resonance frequencies of the smart structures resides in, while making minimal changes
to the response at the higher frequencies. The thesis uses Matlab® (v.6.0) software to
design the controllers.

6.2 The Series Compensator Design for the Vibration Control of the Smart Beam:

PID Compensators

The objective of this section is to examine the techniques that can be used in the design
of a series compensator, or equivalently, a controller that suppresses the vibrations due
to the first two modes of the smart beam. In order to determine the most effective
compensator, various designs are examined for their effectiveness in vibration control.
During the calculations, unless stated otherwise, the experimentally identified model of
the smart beam is used. The series compensators considered in this thesis include
Proportional (P), Proportional Integral (PI), Proportional Derivative (PD) and
Proportional Integral Derivative (PID). In this section, the influences of the controller
gain variations on the performances of the closed-loop systems are fully dealt with.
During the course of work, Nyquist stability criterion is applied for each compensator

design to ensure the absolute stability of the closed-loop systems.
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The series compensator design considered in this thesis, deals with the modification of
the open-loop frequency response of the smart beam to obtain the desired frequency
response shape. This process is known as the loop shaping method of design [124,127].
The method of design is based on the satisfaction of the performance specifications by

means of a trial and error procedure through the addition of new poles and zeros.

6.2.1 Proportional Compensator

The simplest element among the series compensators is the proportional compensator.
The element is just a constant gain. The transfer function of the proportional

compensator is described as
K(s) =K, (6.2.1)

where K, symbolizes the proportional gain constant of the compensator. Figure 6.1

gives the block diagram of the P compensator system used in the study.

d(s)

1(s) @ e(s) '@ » X, u(s)’ + p| P(s) (s

nfs)
G

Figure 6.1. The block diagram representation of the P-compensated system for the

smart beam
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In this chapter, unless stated otherwise, the frequency responses of the theoretical open
and closed loop transfer functions are compared by calculating the frequency responses
of the transfer functions within the frequency range of interest. Hence, no other

disturbances are considered in the theoretical calculations.

In order to investigate the influences of the gain variation on the P-compensated
system, the closed loop responses for three gain values K,=10, K,=30 and K,=50 are
calculated and the results are shown together with the open-loop response in Figure 6.2.
Although the proportional gain slightly reduces the response levels at the first two
resonance frequencies, it significantly increases those at the third frequency. It can also
be seen from the figure that the proportional gain shifts the first resonance frequency to
smaller frequencies. Thus, it can be concluded that the application of the simple
proportional compensator becomes insufficient to yield adequate results for the

vibration control of the smart beam under consideration.
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Figure 6.2. The comparison of the effects of the proportional gain on the P-

compensated system for the smart beam
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6.2.2 Proportional and Integral Controller

The method of increasing the loop gain at low frequencies while making minimal
changes to the response at the high frequencies is provided by a PI or lag compensator.
Figure 6.3 gives the block diagram of the PI-controlled system considered in the study.
The PI or lag compensators consists of the proportional term and an integral or reset

term. The transfer function of a P compensator is given by

K,+K;)

K(s) = (6.2.2)

A PI compensator has high gain at lower frequencies and as frequency increases the
gain approaches asymptotically to that of P compensator. Furthermore, the presence of
the free integrator at the denominator provides improved steady state behavior

[12,122].

—» 1
d(s)
¥
ﬂ, $® @_, K, ﬂ Pe) | ¥
K,
L —
5

Figure 6.3. The block diagram representation of the PI-compensated system for the

smart beam
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The effectiveness of the PI compensator in the vibration control of smart beam is
examined by considering the influences of the PI compensator gain variation on the
response of the PI-compensated system. First the effect of changing K, is investigated.
Three different cases, which correspond to the proportional gain constant values of
K;=30, K;=60 and K,=100 are considered. In each case, the integral constant is taken
as Ki=60. The closed loop responses are shown in Figure 6.4 together with the open-

loop response.

107 T T

Magnitude
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Figure 6.4. The comparison of the effects of the proportional gain Kp on the PI-

compensated system for the smart beam

Then, the proportional gain is kept constant at K,=60 and three different integral gains
are analyzed as Ki=40, K;=80 and K;=110. The resulting curves are shown in Figure 6.5

together with the open-loop response. The analysis of Figures 6.4 and 6.5 reveals that

183



the addition of the integral term to the P compensator offers an improved response at
lower frequency range resulting the reduced peak response levels, but as the frequency
increases the closed-loop response increases and gets close to that of P compensator.
That is, similar to P compensators PI compensator also excites higher frequencies. This
result may be attributed to the closeness of the P and PI compensator loop gains at high
frequencies. Thus, despite of the improved response at lower frequencies, the excitation
of the higher frequency modes also limits the potential use of the PI compensators in

the vibration control of the smart beam.

Magnitude

— Ki=110

-4 s N P 1 N N . P N . e
10° 10' 10° 10
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Figure 6.5. The comparison of the effects of the proportional gain K; on the PI-

compensated system for the smart beam
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6.2.3 Proportional and Derivative Compensator

The last basic compensator is the derivative or lead compensator. In addition to the
proportional term, the PD or the lead compensator also includes a derivative term. The

transfer function of the PD controller is known to be

K(s) =K, (1+K,s) (6.2.3)

In principle, the addition of the derivative term improves the high frequency loop gain
characteristics of the P controller. Figure 6.6 shows the block diagram architecture of

the PD compensator used in the study.

afs)

1(s) Ras g |we X P y(s)
(s)

—»i o —b@—r P —pft » P(s

g: n(s)

Figure 6.6. The block diagram architecture of the PD-compensated system for the smart

beam

185



Similar to the analysis conducted for the P and Pl-controlled systems, the effectiveness
of the PD compensator is investigated by considering the gain variations of the

compensator.

Figure 6.7 shows the effects changing of K, on the response of the PD-controlled
system. During the analysis, the response of the PD-controlled system is calculated by
considering three different proportional gain values of K;=10, K,=30 and K,=50 for a

fixed value of the derivative gain K4 =3/1000.

The effects of Ky variation on the response of the PD-compensated system is also
analyzed by considering three different values of proportional gains of Ks=2/1000,
K4=3/1000 and K4=4/1000 for a fixed value of the proportional gain K;=10 the closed
loop responses so obtained is given in Figure 6.8 together with the open-loop response.
It is evident from Figure 6.7 and 6.8 that the addition of the derivative term allows the
suppression of the peak response levels at higher frequency range, but the first
frequency value increases as the proportional gain value increases. Since, the loop gain
of the PD controller approaches to the gain of the P compensator as the frequency
reduces, the performance of the PD-controlled system is not as effective as the PI-

compensated system at lower frequencies.
Therefore, the most effective compensator design for the vibration control of the smart

beam should include the proportional, derivative and integral terms. This can be

achieved through the application of the PID compensators.
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Figure 6.7. The comparison of the effects of the proportional gain K, on the PD-

compensated system for the smart beam
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Figure 6.8. The comparison of the effects of the proportional gain K4 on the PD-

compensated system for the smart beam.
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6.2.4 Proportional, Integral and Derivative Compensators

This section investigates the effectiveness of the PID controller schemes that are
designed to suppress the vibrations of due to the first two modes of the smart beam.
Figure 6.9 shows the block diagram architecture of the PID-compensated system

considered in this thesis for the smart beam.

-
l d(s)
() u(s)
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Figure 6.9. The block diagram architecture of the PID- compensated system for the

smart beam

In order to investigate the effects of the PID gains on the closed-loop response of the
PID-controlled system, three different gain configurations are considered and, the
results obtained are plotted together with the open-loop response of the smart beam for

each configuration.

First the effects of K, variation are investigated. Three different cases, which

correspond to the proportional gain values of K;=10, K;=30 and K,=50, are used. In
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each case, the integral and derivative gain values are kept constant as K=70 and

K4=3/1000. The responses so obtained are shown in Figure 6.10.

magnitude

10° 10 10° 10°
frequency(rad/sec)

Figure 6.10. The comparison of the effects of the proportional gain K, on the PID-

controlled system for the smart beam

Next the proportional and derivative gains kept constant as K;=60 and K4=3/1000 and
three integral gains of K;=10, K=30 and K~=50 are analyzed. Figure 6.11 gives the

results.
Then the proportional and integral gains are kept constant as K,;=80 and K;=30 and

three derivative gains are considered as K4=2/1000, K¢=3/1000 and K4=4/100. Figure
6.12 shows the results. It can be seen from Figures 6.10 to 6.12 that the PID
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compensators can be used for the suppression of the vibrations due to the first two

modes.
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Figure 6.11. The comparison of the effects of the proportional gain K; on the PID-

compensated system for the smart beam
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Figure 6.12. The comparison of the effects of the proportional gain K; on the PID-

compensated system for the smart beam

In order to compare the effectiveness of the series compensators in the vibration control
of smart beam, the open loop and closed-loop responses of three series compensators
are calculated and the results are shown in Figure 6.13. The series compensators
considered include a PI having the gain values of K,=30, K=70, a PD with the gains
values of K,=30, K¢=3/1000 and a PID K, =30, K=70, K4=3/1000. The frequency
dependency of the series compensators considered are also given in Figure 6.14. It can
be seen from the Figures 6.13 and 6.14 that the applications of the PID compensators
allow the simultaneous suppression of the first three modes of vibration. This is due to

the high loop gains at lower and higher frequencies.
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Figure 6.13. The comparison of the open and closed-loop frequency responses for the

beam (PI: K,=30, K;=70), (PD: K;=30, K4=3/1000), (PID: K,=30, Ki=70, K4=3/1000)
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Bode Diagram
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Figure 6.14. The comparison of the frequency responses of the series compensators
used in the thesis (P: K;=30), PI: K;=30, K;=70), (PD: K;=30, K4=3/1000) and (PID:
(Kp=30, Ki=70, K4=3/1000)

The responses of the PID-controlled systems to the unit-impulse are also calculated for
the three PID compensator gains and the time domain results so obtained are compared
with the open loop response in Figure 6.15. It can be seen from Figure 6.15 that as the
PID compensator gains increase, the closed-loop response gets less oscillatory and the

settling time reduces.
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Figure 6.15. The comparison of the time domain responses of PID-compensated
systems

a. PID compensator with the gain of K,=50, Ki=60, and K4=3/1000

b. PID compensator with the gain of K;=150, Ki=150, K4=3/1000)

c. PID compensator having the gain of K;=300, K;=300, and K4=5/1000

Generally, the closed-loop controllers are known to reduce the modeling errors such as
the one observed for the smart beam due to the hysteresis. The experimentally
identified model of the smart beam obtained in Chapter 5 inherently included the
hysteresis nonlinearities associated with the piezoelectric actuators in a linearized form.

Experimentally identified models and the tuned theoretical model, which does not
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include any information related to the hysteresis, are considered to investigate the
effectiveness of the PID compensators on the modeling errors due to hysteresis. The

closed-loop responses of these models are compared for the same PID compensator.

Representing the closed loop transfer function calculated for the experimentally
identified model of the smart beam byQ(s) and symbolizing, the closed loop transfer

function calculated for the theoretical model with Q(s) the relative error k(s) between

the closed-loop models for the same PID compensator can be described as

(s) = Ez(s)~ - Q(s)
£X(s) (6.2.4)

The closed-loop responses of various PID compensators are used to determine the
influence of the closed loop gain variation on the relative error. Three PID
compensators used for this purpose. The first compensator have the gains of K, =50,
Ki; =60 and K4 =3/1000, the gain values associated with second compensator are
K, =100, K; =100 and K4 =3/1000, and the third compensator is assumed to have the
gain values of K, =300, K; =300 and K4 =5/1000. The resulting plots are shown in
Figure 6.16. It is evident from Figure 6.16 that as the loopgain of the PID-compensated

system increases the relative error reduces.

The hysteresis effects can also be included in the design as the phase lag that causes
instability if the phase margin is not taken large enough [72,73]. Hence, the hysteretic
nature of the piezoelectric actuators results in unmodeled phase lag whose presence
may cause instability in a closed-loop control system if the phase margin is not large
enough. In principle, the derivative term existing in the PD and PID compensators
improves the effects of the additional phase lag due to hysteresis over a limited

frequency range.
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Figure 6.16. The influences of the gain variations on the relative error for the PID-
compensated system models of the smart beam

Compensator 1: K, =50, K; =60 and K4 =3/1000,

Compensator 2: K, =100, K; =100 and K4 =3/1000,

Compensator 3: K, =300, K; =300 and K4 =5/1000

The PID compensators are designed for the suppression of the vibrations due to first
two modes of smart beam without exciting the third mode. In order to investigate the
effectiveness of the compensators at the higher frequencies, the compensators should
be applied to the higher order model that contains the effects of the higher frequencies.
Since the experimentally identified model obtained in Chapter 5 includes the first three
modes of the smart beam only, the tuned theoretical model of the smart beam obtained
in Chapter 5 is considered for this purpose. The tuned theoretical model is extended to
include the first 5 modes of vibration. Figure 6.17 shows the comparison of the

theoretically calculated open-loop response and the closed-loop response of the PID-
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compensated system. During the theoretical calculations, the PID compensator is
assigned to have the gain values of K,=100, K;=150 and K4=1/1000. It is evident from
the figure that the PID-controlled system suppresses the peak response levels at lower
frequencies as well as, those at the higher frequencies. The analysis conducted for this
gain values are repeated for all PID compensator designs considered in this thesis and

the analyses are found yield similar results.

6.2.5 Robustness Analysis of PID Compensators

This section is devoted to the evaluation of the robustness of the PID compensators
designed for the vibration control of the smart beam. During the theoretical calculations

both classical frequency response and modern robustness analyses are considered.

6.2.5.1 The Classical Frequency Response Analysis of the PID-Compensated
System

In the classical frequency response analysis, the good controller design results in large
loop gain for as large a frequency range as possible together with large gain margins
(GM) and phase margins (PM) indicating that the loop gain avoid s=-1 point. The
limitations on the range of the loop gain include the actuator limits and the modeling
inaccuracies [124,125,129]. In classical control, gain and phase margins are used as a
design criteria. During the evaluation of the relative stability measures the Bode,
Nyquist diagrams or Nichols plots may be considered [124,129] In the classical
frequency response analysis, For good performance, PM values from 30°to 60° and the

GM values larger than 6dB values are considered [129,130].
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Figure 6.17. The influences of the higher frequencies on the PID-controlled system for
the smart beam (K,=100, K;=150, K4=1/1000)
a. The comparison of the open and closed-loop frequency response

b. The comparison of the open and closed-loop impulse response
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Nichols plots combine the characteristics of Nyquist and Bode plots by producing a
single plot that gives logarithmic gain plotted against phase shift. In Nichols diagrams
the gain crossover point corresponds to the point where the loop gain intersects 0 dB
axis and the phase cross over point is the point where G(s) intersects -180° axis. Thus,
the phase margin is the horizontal distance between the gain cross over point and the
critical point(s=-1 or, 0 dB, -180°). The gain margin is the distance between the phase
crossover and the critical point. Similarly, the bandwidth of the system can also be
found as the intersection of the G(s) and -3dB axis. Nichols plot is commonly used in

the feedback controller design owing to its ease in the usage, [74,124,125].

In order to investigate the relative stability characteristics of the PID compensators
designed for the vibration control of the smart beam, two cases are considered and
compared for both theoretical and experimentally identified models of the smart beam.
The utilization of the tuned theoretical model and the identified models developed in
Chapter 5 allows one to investigate the effects of the modeling errors on the robustness

issues in the classical frequency response analysis for the compensator designs.

The first case involves the performance analysis of a PID compensator having gains of
K;=50, Ki=60, K4 =3/1000. The comparison of the Nichols plots of the loop gains for
the closed-loop experimentally identified and theoretical models are shown in
Figure 6.18. It can be seen from the figure that the Nichols plots of both theoretical and
experimental models, fall in a region far away form the critical point so the closed loop
models have very large gain and phase margins. The second case involves the analysis
of the closed loop model of the PID compensators with higher controller gains of
K;=300, K;=300, K4=5/1000. The comparison of the loop gains of the identified and
the theoretical models of the smart beam for PID compensator are shown in

Figure 6.19. Similar to the previous case, the models have very large phase and gain

199




margins. Although the increase in the gain values shift the Nichols plots to the higher

loop gain values, the position relative to the critical point remains almost unchanged.

The classical robust performance tests are also conducted for the PID compensators and
the results obtained for the theoretical and experimentally identified models are shown
in Figure 6.20 and 6.21. Figure 6.20 gives the effects of the PID gain variations on the
sensitivity function. It can be seen from Figure 6.20 that as the PID gain values
increase, the magnitude of the sensitivity function decreases. That is, the increase in the
gain values may be considered to improve the disturbance rejection characteristics of
the closed loop system especially at the moderate frequency range (from 0 Hz to 17
Hz).
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Figure 6.18. The comparison of the loop gains of the identified and the theoretical
models of the smart beam for PID compensator with the gain values of K,=50,
Ki =60, and K4 =3/1000.
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Figure 6.19. The comparison of the loop gains of the identified and the theoretical
models of the smart beam for PID compensator with the gain values of K;=300,
Ki =300 and K4 =5/1000.

The influences of the PID compensator gain variations on the complementary
sensitivity function are also compared and the results are shown in Figure 6.21 for the
same gain values considered in Figure 6.20. It can be seen from Figure 6.21 that while
the input tracks the output of the system very well in the moderate frequency range
(from 0 Hz to 17 Hz), the noise rejection property of the system reduces. Since the
sensor noise is known to be effective in relatively higher frequencies. where the
complementary sensitivity function has of its smallest values, the compensator having
the PID compensator gains of K, =300, K; =300 and K4 =5/1000 is considered to have
good noise rejection characteristics. Furthermore, the sensitivity and complementary
sensitivity characteristics of the closed-loop system are shown to remain almost
insensitive to the mismatches observed between the tuned and the experimentally

identified model of the smart beam.
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a. Kp =50, K; =60 and K4 =3/1000
b. Kp, =300, K; =300 and K4 =5/1000
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Figure 6.21. The comparison of the effects of the gain variations on the complementary
sensitivity functions of the PID-controlled systems for the smart beam

a. Ky, =50, K; =60 and K4 =3/1000

b. K, =300, K; =300 and K4 =5/1000
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6.2.5.2 The Modern Frequency Response Analysis of the PID-Compensated
System

Based on the method described in Chapter 4 the modern robustness analysis of the PID-
compensated models developed for smart beam is also conducted. During the analysis
the set of plants in which the true plant, is assumed to lie is given by the multiplicative

uncertainty model as,
P(s) = (1 + A(s)W, (s))P(s) (6.2.5)

where B(s) gives the perturbed model of the smart beam and P(s) symbolizes the
nominal transfer function of the smart beam. In this formulation, the modeling

uncertainties are represented by the norm bounded A(s) block satisfying ||A(s)||w <1

condition and Wy(s) describing the uncertainty weighting transfer function. The
application of the weighting transfer function W(s) allows the specification of the
frequency dependent uncertainty profile. The interaction of the nominal transfer
function P(s), with Wx(s) gives the system model of the smart beam including the
modeling uncertainties. During the modeling, it is further assumed that a performance
weight is also applied output of the system to improve the frequency dependent
performance profile of the compensator. Representing the weighting transfer function
associated with the performance weight by Wi(s), Figure 6.22 shows the block diagram

representation of the perturbed model of the smart beam.

In the modern robustness analysis, the performance and additive weights are
determined first. Figure 6.23 gives the comparison of the performance weight together
with the open-loop response of the smart beam. The application of this weight

improves the response at the lower frequency range (0 Hz to 130 Hz) without affecting
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the response at higher frequencies (>130 Hz). The comparison of the additive weight,
Wa(s) together with the open-loop response of the smart beam is shown in Figure 6.24.
It can be seen in Figure 6.24 that, as the frequency increases the uncertainty increase.

This indicates better system modeling at lower frequencies.

!

Wils) Als) Wa(s)

1(s) ( v(s)
— EI\S)®—’ K(s) P(S}

uls)

Figure 6.22. The block diagram representation of the perturbed model for the smart

beam.

Then the transfer functions associated with these weights are calculated. The results are
given in equation (6.2.6) for the performance weight W(s) and in equation (6.2.7) for
the additive weight, Wa(s).

0.0002869s> +54.09s% +5.892x10* s +8.404 x 10°

W. (s) =
1) s> +1.861e004 s> +9.381e006s + 7.8 x 10°

(6.2.6)

0.003704 s> +2.669s> +918.5s+3.146x10*

W, (s) =
2(8) s +726.4s +3.393x10° s +1.059x 10’

6.2.7)
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The robust stability and performance criteria shown in Chapter 4 for multiplicative
uncertainty models are examined on the perturbed model of the smart beam shown in
Figure 6.22. For this reason, the effects of the PID-compensator gain variations on the
robust stability and performance of the smart beam model are analyzed. During the
calculations the experimentally identified model of the smart beam is assumed to
describe the nominal model and the perturbed system is represented by the weights

given in equations (6.2.6) and (6.2.7).

The effects of the compensator gain variations on the robust stability and performance
parameters for the PID-compensated model for the smart beam are analyzed by
considering four PID compensators. The first compensator is assumed to have the gains
of K,=50, K;=60 and K¢=3/1000, the gain values associated with the second are
K,=150, Ki=150 and K4=3/1000 and the third compensator is considered with the gain
values of K;=200, K;=200 and K=3/1000. The last compensator is assigned to have the
highest gain values as K,=300, K;=300 and K¢=5/1000. Figure 6.25 gives the results.

It can be seen from Figure 6.24 that the necessary and sufficient conditions for the

robust stability ||W2 (s)T(s)IL0 <1, and the robust performance conditions,

"IW1 (s)S(s)|+|W2 (s)T(s)I"w <1, hold true for all compensators considered in the

analysis. Furthermore, It is also evident from Figure 6.25 that as the compensator gain
values increase, the robust stability increase but robust performance reduces. Hence, by
considering the robust stability and performance criteria it can be concluded that the
increase in the compensator gain reduces the stability but improves robust performance.
It can be seen from the figure that both robust stability and do not reach the robust
stability limits for the compensators used in the analysis. That is, the PID-compensated
model for the smart beam is determined to have the robust stability and performance

properties.
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Figure 6.25. The effects of the gain variations on the robust stability and performance
of the PID-compensated system model for the smart beam (compensator 1: K=50,
Ki=60 and K4=3/1000, compensator 2: K,=150, K=150 and K4=3/1000. compensator3:
Ky=200, K;=200 and K4=3/1000, compensator 4: K,=300, K;=300 and K4=5/1000)

a. Robust stability: |W2 (s)T(s)|

b. Robust performance: lW1 (s)S(s)| + |W2 (s)T(s)l
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6.3 H,, Optimal Control design for the Smart Beam

Although PID compensators are shown to yield satisfactory results for the control of
vibration of the smart beam, the PID compensators does not necessarily yield to
optimal results [124,128]. Hence, Ho controller design which offers, the optimal
solutions to the vibration control problems [59,60,129] is also considered. Based on the
theory presented in Chapter 4, this section presents the application of the Hx controller
design for the vibration control of the smart beam. The robust performances of the PID

compensator and the H,, controller are also compared.

The aim in the Hx controller design is to suppress vibrations due to the first two modes
of the smart beam within the frequency range of interest hence, reducing the settling
time. In the Hs, controller design, the aim is to minimize the H,, norm of the transfer
function describing the relation between the inputs and the outputs of a multi input

multi output system.

Figure 6.26 shows the block diagram formulation of the closed loop control problem in
H., framework. In this figure, SY Speam defines the nominal smart beam model, and W44
describes the weight of the uncertainties added to the system. The additive uncertainty
weight W,qq is included to account for the unmodeled or truncated high frequency
modes. The interaction of the nominal transfer function SY Seeam, With the uncertainty
structure A defines the system model of the smart beam including the uncertainties. In
the modeling, Wy symbolizes the performance weight applied to strain gage

measurements
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In the Ho, control design technique applied to the smart beam, Wy describing the weight
added to the disturbance is taken to be 1 indicating that the order of the disturbance

acting on the system and the input signal produced by the controller is the same.

l disturbance

Wa
error signal
< Woer
SYSbeam
| W add
i)‘i Whoice [#—noise

+» K L
Waci

¢ actuator limits

Figure 6.26. The H., control formulation for the smart beam

In Figure 6.26 W, symbolizes the weight applied to the actuator signals in order to
limit the actuator authority. This weight is chosen to be 1/250 representing the upper
limit for the actuation voltage of 250V. Furthermore, Wyoise, Symbolizing the noise to
signal ratio is selected to be 0.01.
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During the H, controller design for the smart beam, the performance weight given in
equation (6.2.6) and the additive weight described by equation (6.2.7) are considered.
The applications of these weights results in the minimization of the strain gage outputs
at lower frequencies (OHz to 130Hz) while making minimal changes at higher
frequencies (>130Hz).

In H., controller design, a scaling factor applied to the nominal model system model
may be required to avoid the numerical difficulties involved in the optimal He
controller algorithm [60,127]. For a linear time invariant systems, the scaling
corresponds to the multiplication of the input signal. Furthermore, the controller is
generally designed by using the lowest possible order for system model representing
the dynamical characteristics of the system model to reduce the numerical inaccuracies.
But the controller so obtained, is usually tested on the higher order model representing
the model closer to the true system. This secures the success of the controller prior to

the implementation of the controller.

In the design calculations performed for the smart beam, the additive weight given in
equation (6.2.6) and performance weight described by equation (6.2.7) are considered.
During the theoretical calculations, scaling factor of 100 is applied to the 10™ order
identified model of the smart beam developed in Chapter 5 and the performance and
the additive weights. That is, during the calculations for the H., controller, the nominal
system model of the smart beam is taken to be SYSpeam=100xP(s) and the performance
and the weights are adjusted to be Wpe(s)=100xWi(s) together with
Waada(s)=100xW>(s).

The inclusion of these weights in the system model of the smart beam yields to the

formulation of the standard H, control problem presented in Chapter 4. The application

of the standard H., solution techniques to 10" order experimentally identified model of
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the smart beam leads to the determination of a 16™ order H., controller. By using
standard model reduction techniques, the controller is reduced to 6" order. Figure 6.27
gives the bode diagram of the H., controller obtained. The comparison of the open and

closed-loop frequency responses are shown in Figure 6.28.

—
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Figure 6.27. The 6™ order H., controller designed in the study
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Figure 6.28. The comparison of the open and closed-loop responses of H, ~controlled

system for the smart beam

6.3.1 The Robustness analysis of the H.-Controlled System for the Smart Beam

In order to test the robustness of the Hy-controller the structural singular value (u) of
the system is calculated across the frequency range of interest. A closed loop system is
said to have the robust performance that is, the stability and the performance
specifications are satisfied in the presence of the uncertainties defined if p value is less
that 1 within the frequency range of interest. Figure 6.29 show that, the closed loop
system designed for the smart beam has robust stability and robust performance

properties [129,136].
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Figure 6.29. The structured singular value (u) of the closed-loop system for the smart
beam

a. Robust performance

b. Robust stability

¢. Nominal Performance

6.3.2 The Comparison of the PID Compensator and the H., Controller for the

Smart Beam

In order to compare the performances of the PID-compensator and Ho, controller for the
vibration control of the smart beam, a test case is considered. The case considers 12
order nominal scaled model for the smart beam SY Spear in the PID compensator design
and the maximum actuator gain value of the PID-compensator is set to the maximum

actuator gain of the optimal H, controller shown in Figure 6.27.
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The serial compensator design is resulted the PID gains of K;=0.5, K=9.6 and
K4 =1/1000. Figure 6.30 gives the comparison of the frequency responses of the PID-
compensator and the H, controller. By using the PID-compensator and the Ho
controller, the closed-loop responses of the smart beam are calculated. The comparison
of the open-loop, PID-compensated and H., controlled and closed loop systems for the
smart beam are shown in Figure 6.31. It can be seen from Figure 6.31 that for the same
maximum controller gain levels, the H, controller results in better attenuation levels at
the first two resonance frequencies of the smart beam than those of the PID-

compensated model

Table 6.1 summarizes the results in terms of the reduction in the attenuation levels at

the first three modes of vibration.
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Figure 6.30. The comparison of the responses of the PID-compensator with the gains of

K;=0.5, Ki=9.6 and K4=1/1000 and the optimal H, controller for the smart beam
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Figure 6.31. The comparison of the open and closed-loop responses of the smart beam

Table 6.1. The comparison of the effectiveness of the PID-compensator and H,

controller on the vibration control of the smart beam

Attenuation levels
Frequencies PID-compensator (*) H. controller
fi 2.25 8.56
f; 2.06 2.67
f3 1.64 1.16

(*) PID-compensator with the gains of K;=0.5, K;=9.6 and K4=1/1000

As it was discussed in Chapter 4, that the major advantage of the H, controllers over
the PID-compensators is observed in the modeling of the uncertainties. Unlike PID
compensator design, The H, controller design allows the inclusion of the modeling

uncertainties in the closed-loop system during the design stage systematically.
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Since the p analysis conducted for the Ho, controller designed requires the specification
of the proper transfer functions for the controllers, that is the controller transfer
function with the order of the denominator is larger than that of the denominator, the u
analysis is not conducted for the PID-compensated model of this section. Instead, the
perturbed model for the smart beam shown in Figure 6.22 is considered. During the
robustness analysis of the PID-compensated system model developed in this section,
the scaled nominal system model of the smart beam Sye.m and scaled performance Woer
and additive weights W,qq are considered. Figure 6.32 gives the robust stability and

performance plots.

It is evident from the figure that the PID-compensated model with the gain values of
Kp=0.5, Ki=9.6 and K4 =1/1000 does not satisfy the robust performance criteria that is
the robust performance parameter reaches to maximum value larger than one. Thus, in
order to improve the robust performance the gain values should be increased. By
considering the results obtained from the test case, it can be concluded that the PID-
compensator should have gain values considerably larger than that of H,, controller to
achieve the robust performance requirement. In this case, the PID-compensator gain

values however are bounded by the actuator limits and the robust stability criteria.
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Figure 6.32. The robust stability and performance tests for the PID-compensated model
with the gains of K,=0.5, K;=9.6 and K4=1/1000 for the smart beam

a. Robust stability: |Wadd (s)T(s)|

b. Robust performance: IWper (s)S(s)| + |Wacld (s)T(s)|
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6. 4 Vibration Control of the Smart Fin

Based on the model obtained in Chapter 5, an H,, controller is also designed for the
smart fin. The goal of the controller is to attenuate the vibrations of the fin at its first
two natural frequencies (in the range from zero to 60 Hz) and gain stabilize the

unmodeled high frequency modes.

6.4.1 H,, Optimal Controller Design for the smart fin

In H., controller design for the smart fin, the performance objective is to minimize
the maximum frequency response of the first two modes of the smart fin at the
sensor locations. Figure 6.33 shows the formulation of the closed loop control in H,,

framework.

In Figure 6.33, SYSg, defines the nominal smart fin model, Wy, represents a
performance weight on the strain gage sensors to achieve the performance
objective. For both strain gage output channels, magnitude of the Wy weights are
shown in Figure 6.34 together with the open-loop response. These weights are
selected to achieve attenuation in the peak frequency response of the closed loop
system. An additive uncertainty is included in the problem formulation to account
for the unmodeled high frequency modes and modeling errors within the controller
bandwidth. This weight is selected to have a magnitude greater than the structural
modes above 500 rad/sec. If robust stability of the closed-loop system is achieved
for this additive uncertainty model, the flexible modes of the structure will be gain
stabilized above 500 rad/sec. Figure 6.35 shows the magnitude of W44 versus the
frequency response of the transfer function from the piezoelectric actuators to both
strain gage sensors. To limit the actuator command signal in the control design

process to 250 volts, W, in Figure 6.33 is chosen as 1/250.
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Figure 6.33. The block diagram formulation of the H., control problem for the smart
fin

During the design, the weights on the disturbance input Wy is taken to be 1. This
indicates that the input disturbance is expected to be in the same order of magnitude
as the controller signals. The strain gage signals have a signal to noise ratio of 100
on both channels, therefore, Wyoise in Figure 6.33 is taken as a 2x2 diagonal matrix
with 0.01 as the diagonal elements for each output channel. A 12 order controller
is obtained by applying the standard solution techniques to the system formulated in
Chapter 4. This controller is tested on a 10" order model of the smart fin obtained
from the experimental data by using system identification as explained in Chapter 5.
Open and closed loop frequency responses for both channels are shown in
Figure 6.36 and Figure 6.37.
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Figure 6.34. The comparison of the performance weight Wy and the experimental
smart fin transfer functions at the strain gage locations
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Figure 6.35. The comparison of the performance weight W,4q and the experimental
smart fin transfer functions at the strain gage locations

a. Location (1)

b. Location (2)
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Figure 6.36. The comparison of the open and closed loop responses of the smart fin
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Figure 6.37. The comparison of the open and closed loop responses of the smart fin

for strain gage location (2)
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It is evident from Figures 6.36 and 6.37 that the application of the H, controller

results in the attenuation in the peak response levels associated with the resonance

frequencies of the smart fin. Table 6.2 summarizes the results obtained in terms of

the attenuation levels for the strain gage outputs at the locations (1) and (2). It can

be seen from the table that the single input two outputs closed-loop model achieves

the best performance in terms of the attenuation levels at the resonance frequencies

of the smart fin at the location (2). Figure 3.38 gives the frequency responses of the

controllers.

Table 6.2. The comparison of the attenuation levels achieved by the H., controller

designed for the smart fin
Strain gage location (1) Strain gage location (2)
frequencies f f f3 fi 1) f3
Attenuation levels(*) | 1.61 1.93 2.12 3.36 1.89 1.20

(*) closed-loop response/open-loop response
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Figure 6.38. The comparison of the frequency responses of the 12™ order Ho,
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6.4.2 Robustness Analysis of the H,, Controller

p-analysis results are given in Figure 6.39. It can be seen that p has a peak value of
approximately one. This indicates that the robust performance requirements are

satisfied for the closed loop system.
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Figure 6.39. Structural singular value (u) of the closed loop system of the H,
controller designed for the smart fin.
a. Robust performance

b. Robust stability

c¢. Nominal performance
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6.5 The Real time implementation of H,, Controller the Smart Beam

This section describes the experimental work conducted for the implementation of
the H., controller designed for the active vibration control of the smart beam. The
H., controller designed in this chapter, is implemented in the structural dynamics
laboratory in the department of Aeronautical Engineering, METU. Figure 6.40
shows the block diagram representation of the experimental setup used for the
implementation of controller. The experimental setup consists of control system
unit (SS10) and a High Voltage Power Amplifier (SA10). Appendix D gives the

necessary data for the real-time implementation of the H,, controller.

disturbance

Strain gage input, Half
bridge mode

Low pass filter |—» ADC

Processor: He controller g— | User interface
algorithm

DAC |4

Figure 6.40. The block diagram representation of the experimental setup for active

vibration control of the smart beam.
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The Control system unit (SS10) used in the thesis is designed by Sensor
Technologies Limited of Canada to accommodate up to eight strain gage inputs in
wheatstone bridge configuration for four low power actuator outputs. SS10 is
designed to tolerate heavy computing applications of real-time signal processing
and control. The unit consists of an intel CPU (266 MHz), RAM up to 64 MB, High
speced ADC (Analog-Digital Conversion), DAC (Digital-Analog Conversion)
boards and has C or C++ code, which makes the development and the
implementation of real-time complex algorithms like H, possible. The controller

unit contains first order low pass filter with the cut off frequency of 80 Hz.

During the closed-loop tests conducted the strain gage signals collected, were low-
pass filtered and converted to digital ones before they were fed to the signal
processing unit which includes the H., control algorithm for active vibration control.
The digital controller outputs calculated according to the algorithm were than
converted to the analog ones by a high speed DAC board. The piezoelectric actuator
inputs were amplified to the desired levels by a High Voltage Power Amplifier to
achieve the high voltage requirements for the active vibration control of the smart

beam.

During the tests, SS10 was controlled by a host computer using RS232 connection.
The high voltage power amplifier, SA10 designed by Sensor Technologies Limited
of Canada provided the high voltage drive for the piezoelectric actuators throughout
the tests.

The open and closed-loop responses of the smart beam in terms of strain gage
output voltage to the initial tip displacement value of 2 cm were measured for 20sec
by using the experimental setup and the results obtained are shown in Figure 6.41. It
can be seen from the figure that despite of the presence of the noise present in the

environment, the controller effectively suppresses the vibrations of the smart beam.
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In order to remove noise from the signal a low-pass analog filter should be used. In
this case, the filter could be connected between the output of the controller unit and
the HVPA.
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Figure 6.41. The comparison of the open and closed responses of the H,, controlled

smart beam (response to the initial tip displacement of 2 cm).

6.6 Conclusions

This chapter presented active vibration control of the smart structures considered in
the thesis. Based on the structural and experimental models developed, the series
compensator and H, control design techniques were examined for their

effectiveness in the vibration control of the smart structures.

The study first analyzed the effectiveness of the PID compensators in the vibration

control of the smart beam. Although the PID compensators were shown to reduce
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the modeling errors existing between the experimental and the theoretical models
developed for the smart beam and produced satisfactory results in the vibration
control, the difficulties in the modeling of the uncertainties and the inherent
difficulties of the technique in the determination of the optimal solutions were
shown to limit their potential use in the active vibration control of smart structures.
The Ho control design technique however offered the optimal, robust solutions for
the vibration control of the smart beam by relaxing the apparent restrictions of the

PID compensators in the modeling of the uncertainties.

Hence, H, control design technique was also applied to the smart fin. Because of
the difficulties in the development of the accurate finite element model of the smart
fin, the experimentally identified models were considered in the design of the H,
controllers. The thesis was focused on the accurate modeling of the uncertainties
within the H, control design framework. The designed controllers were found to
suppress the vibrations due to the first two modes of the smart fin. By using
structured singular value () analysis, it was also shown that the controllers
designed guarantied the robust performance of those systems in the presence of

uncertainties.

The time domain implementation of the Hy, controller designed for the smart beam
also verified the effectiveness of the technique. It was shown both theoretically and
experimentally that despite of the presence of the uncertainties the controller results
in the attenuation of the response of the smart beam. The high noise levels observed
in the open and closed-loop response measurements indicated the need for the
consideration of the effective means of the noise removal in the signals. One way to
achieve this might be the application of the analog low pass filter to the output of
the controller unit. Because of the high costs of the analog filters suitable for the
current noise problem, the appropriate noise removal could not be handled in the

current study.
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Unlike passive surface damping treatment methods, which can be used to suppress
vibration due to the single frequency generally first mode within the frequency
range, in addition to the superiority of the technique in the modeling of the
uncertainties, the application of the H, controller allows simultaneous suppression
of the desired number of modes within the frequency range while making minimal

change at higher frequencies.
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CHAPTER 7

CONCLUSIONS

7.1 General Conclusions

This study aimed to investigate some applications of smart structures in acrospace
engineering. The smart structure models were considered to be finite and flat
aluminum beam-like and plate-like structures with surface bonded PZT (Lead-
Zirconate-Titanate) patches. The smart structures were studied in cantilevered

configuration.

The first part of the thesis presented a finite element based modeling technique for
the analysis and design of the smart structures. By using AN SYS® (v.5.6) software,
the study described the effects of the piezoelectric patches on the response of the
smart structures. It further explained the influences of the patch size, placement of
patches and suitable sensor types and locations. The study focused on the accurate
representation of anisotropy and electro-mechanical coupling inherent to

piezoelectric materials and their effects on the smart structures.

It was shown in the thesis that the piezoelectric actuation generates significant
transverse and normal stresses in the vicinity of the region where the piezoelectric
patches interfaces with the passive structures. Thus any exclusion of these stresses
such as the modeling of the smart structures through the plane stress approach may

yield to inaccurate results.
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Although the modeling of the passive portions of the smart structures by using
linear prismatic elements with extra displacement shapes was shown to be a correct
approach for the simple smart structures considered such as the ones considered in
the thesis, the difficulties in the modeling of the irregular geometries by using these
elements and the increased computing time limit their potential applications on

realistic aerospace structures.

In this thesis, the finite element method was shown to be especially advantageous
in dealing with the multiple design parameters of the smart structures. By enabling
the parametric design feature, the placement and size of the piezoelectric patches
on the response of the smart structures could be obtained. The determination of the
maximum admissible piezoelectric actuation value, which effectively gives the

actuator limits, was appeared to be another advantage of the technique.

The modal analysis based sensor and actuator placement technique considered in
this thesis is not a formal optimization. It gives satisfactory results for the simple
structures like the smart structures considered in the thesis. The extension of the

technique to the realistic structures is very difficult.

The second part of the thesis described the experimental work conducted to
validate the theoretical models. In this part, the factors affecting the accuracy of the
theoretical models were investigated. During the course of work, the models of the
smart structures were also synthesized from identified single-input, single-output
transfer functions, which were obtained by curve fitting to the experimental data in
the frequency domain. The identified models were then used only to tune the
accuracy of the developed theoretical models. The effectiveness of the method of
spectral estimation in the elimination of the spurious noise was shown. It was
further stated that the system identification technique could be used when the finite

element method becomes insufficient.
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The validity of the finite element based modeling was confirmed by comparing the
first three theoretical and experimentally determined frequencies of the smart
structures. While the frequency values associated with the first and the third modes
were shown to be in good agreement with the experimental results, the frequencies
corresponding to the second mode were found to be slightly different. These

differences were attributed to the unmodelled effects like cable masses.

The probable deficiencies in the determination of an accurate finite element model
of the smart structures were determined to be the exclusion or improper modeling

of the cable mass and/or damping.

It was shown that the tuning algorithm developed in the thesis could effectively be
used to tune the accuracy of the theoretical models. Another impediment to the
accurate modeling of the smart structure was shown to be the hysteresis effects of

the piezoelectric patches.

The LVDT tests conducted had indicated that the linear relationship between the
piezoelectric actuation and the response predicted by the finite element models
holds true only for the low actuation voltage values. Hence, if a relatively high
voltage values is applied to the patches, the relationship inevitably exhibits
nonlinear behavior. The hysteresis in the piezoelectric material, used in the thesis

was determined to have a form of nonlinearity with memory BM500.

By using the models developed in the first and second part, the third part detailed
on the design of PID compensators and H,, controllers that suppresses vibrations of
the smart structures due to the first two flexural modes of vibrations. The

influences of the modeling uncertainties in robust performances of the systems
were fully dealt with.

In the third part of the thesis, first the performances of the PID compensators and

H, controllers in the vibration control of smart beam were investigated by
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considering the theoretically developed and experimentally obtained models. It was
shown that the H,, controller design was offered optimal, robust solutions for the
vibration control of smart beam by relaxing the apparent restrictions of the PID
compensators in the modeling of the uncertainties. The H,, controllers were then
considered in the suppression of the vibrations of the smart plate and smart fin.
Based on the experimentally identified models, H,, controllers were designed. It
was shown that the designed controllers guarantied the robust performance in the

presence of the uncertainties.

The time domain implementation of the H,, controller designed for the smart beam
was verified the effectiveness of the technique. It was also shown that despite of
the presence of the noise levels present in the environment the controller results in

the attenuation of the response of the smart beam.

It was shown in the study that unlike the passive surface damping treatment
methods, which can be tuned to suppress vibration due to the single frequency
within the frequency range, in addition to the superiority of the technique in the
modeling of the uncertainties, the application of the H, controller allows the
simultaneous suppression of the desired number of modes within the frequency

range while making minimal change at higher frequencies.

The high noise levels observed in the open and closed-loop response measurements
indicated the need for the consideration of the effective means of the noise removal
in the signals. One way to achieve was recommended to be the application of the
analog low pass filter to the output of the controller unit. Because of the high costs
of the analog filters suitable for the current noise problem, the appropriate noise

removal could not be handled in the current study.
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Furthermore, the PID compensators for the smart beam and H,, controller designed
to suppress the vibrations of the smart fin due to its first two modes could not be
implemented. The sofware developments for the PID compensators and single
input-multi output H,, controllers to be used in the smart controller unit SS10

should be done.

7.2 Recommendations for the Future Work

It is believed that the results of the current study may serve as a precursor for the

achievement of the following subjects.

The linear theory of piezoelectricity may be refined to include the effects of the
induced potential, which is crucial for the analysis of the smart structures
undergoing large deformations. Furthermore the influences of the thermal stresses

on the response of the smart structures may also be investigated.

In order to eliminate the errors determined in the modelling of the solid-shell
hybrid models, the offset modelling techniques for these models should be
improved or shell piezoelectric elements having quadratic displacement and
voltage behaviour must be developed. This is expected to improve the correctness
and easiness of the smart structure models to be developed for the complicated

realistic acrospace structures.

The control models developed for the suppression of the in-vacuo vibrations may
be extended to include the effects of aeroelastic effects. Hence aeroservoelastic
studies may be conducted by considering the smart structures.

An H,, control with accurate nonlinear model in driving piezoelectric actuators to

resolve the hysteresis problem may be developed.
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APPENDIX A

PIEZOELECTRIC, DIELECTRIC AND MATERIAL PROPERTIES OF BM500
PZT PATCHES

The precise modeling and the description of the smart materials ultimately affect the
accuracy of the smart structure models. The properties of a piezoelectric patch depend
on the direction of the applied electric field, displacement, stress and strain. This
appendix gives the properties of the piezoelectric patch, BM500 produced by Sensor
Technologies Limited of Canada. All the data related to the dielectric and piezoelectric
constants of the piezoelectric patch which is considered throughout the thesis, is
obtained from the PZT in mechanically clamped configuration [51,52,116]. A three
dimensional piezoelectric model requires the specification elastic coefficient matrix,
piezoelectric and the permittivity matrix that relates the scalar potential y to electric

field, € through equation (3.1.4).
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A.1. Dielectric Constant, [¢]° (Relative Permittivity)

The dielectric constant is the ratio of the permittivity of the material to the free

permittivity free space and determined to be

15.32x10~° 0 0
] = 0 15.32x107° 0 (F/m®)
0 0 15.05x107°

Here, superscript ‘s’ indicates the constants are evaluated at constant strain.

A.2. Piezoelectric Stress Constant Matrix

The piezoelectric stress constant matrix is a 6 x 3 matrix that relates the electric field to
stress. The configuration of the actuator influences the determination of the
piezoelectric constant matrix. Depending on the application two data sets namely, free
and mechanically clamped data sets are available. During the study, the data for the

mechanically clamped piezoceramic was used.

-5.4]
-54

15.8
, (Coulomb/m?)

N o oo o o
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A.3. Stiffness Matrix

The stiffness matrix incorporating the anisotropic material properties of the actuators

are given below

[121x10"  7.54x10"° 7.52x10" 0 0 0
1.26x10"  7.50x10" 0 0 0
1.11x10" 0 0 0

[c,]= ,
23010 2.11x10" 0 0
symmetric 2.30x10" 2.26x10" 0

2.26x10"

(N/m?)
A4.Curie Temperature:

The Curie temperature is the upper thermal bound of the piezoceramic material. At this
temperature the crystal structure of the material changes from asymmetric to symmetric

(nonpiezoelectric). Curie Temperature of BM500 is 193 °C.

AS. Other Properties :

Thermal expansion Coefficient (a;;) and the density of the piezoelectric patch are taken

to be a,, =4.0ue /°Candp =7730kg/m?’ respectively. Furthermore, the emissivity

of the actuator is considered to be unity throughout the study.
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APPENDIX B

THE EFFECTS OF ELEMENT TYPE SELECTION ON THE NATURAL
FREQUENCIES

This section compares the effects of element type selection for the aluminum plate
strips by calculating the natural frequencies of the structures. During the analysis,
the plates are modelled in cantilevered configurations and the finite element results
obtained by using ANSYS® (v.5.6) are compared with those available in the
literature. In the analysis of the structures, three finite element model are considered
each of which contains prismatic, SOLID45 and SOLID9S or shell elements,
SHELL93 to model plates. Table B-1 compares the first three theoretical
frequencies of a 500x50x2mm aluminum plate strip obtained by using finite

element method together with the results available in the literature for the beam.

Table B-1 the first three theoretical frequencies of a 500x50x2mm aluminum plate

Referance(*) FEM' FEM* FEM’
Frequencies frequencies Frequencies Frequencies
6.5209 6.6726 6.5692 6.6482
40.864 41.720 41.097 41.631
114.43 112.09 114.94 110.99

(FEM1: Model with 126 nodes and 40 SOLIDA45 element, FEM2: Model with 165
nodes and 40 SHELL93 element, FEM3: Model with 393 nodes and 40 SOLID 98
elements),(*): Formulas for Natural Frequencies and Mode Shapes, Van Nostrand
and Reinhold Company, 1979.
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It can be seen from the Table B-1 that The quadratic elements have the closer
convergence than the linear solid element but the deviations between the model
results remains in the order of 1.5 percent. Therefore, the linear elements with extra
displacement functions can be considered for the aluminum plate strips within the

accuracy of 1-2 percent for the modal analysis.
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APPENDIX C

THE COMPUTER CODES FOR SYSTEM IDENTIFICATION

This appendix is prepared by using Matlab® software, therefore the subroutines and

equations given in the following pages are provided in Matlab® (v.6.0) syntax

C-1. Nonparametric Identification

%input file recorded interms of the input and output must be in the workspace use the
Labview Program shown in Figure 5.6 for data acquisition

% tprm1 and tprm?2 are the truncation parameters for the experimental data

%nlap is the number of overlap (the number less than window length)

% tprm1 and tprm?2 are the truncation parameters for the experimental data

% this is done to find the useful data set for the nonparametric identification

%flnm name of the file

%smplr is the sampling rate

finm=input('the name of the data set(no extension please): ");

smplr=input('sampling rate is: ');

nlap=input('number of overlap is: ");
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tim=input('duration of the experiment is: ");
tprm1=3;
tprm2=146;

wsh1=input(' press 1 to see the input plot for 10 sec: ');

while wsh1>0;

figure;

time=linspace(1,10,10*smplr);
plot(time,flnm(1:10*smplr,1)),xlabel('Time (s)'),ylabel('Input (V)')
%figure;

%plot(xb1(1:10*4096)),axis([1 10*4096 -10 101);
wsh1=input('press 0 to see next plot: );

end

wsh2=input('press 1 to see the output plot:");

while wsh2>0;

figure;

time=linspace(1,120,tim*smplr);
plot(time,flnm(:,2)),xlabel('Time (s)"),ylabel(‘response (Volts)")
wsh2=input('press 0 to see next plot: );

end

% the spectral analysis by using the time domain data

[P,F] = spectrum(finm(:,1),flnm(:,2),smplr,nlap,[],smplr);

wsh3=input('press 1 to see the Power Spectral Density of the input Signal : );
while wsh3>0;

dump=P(:,1);

dumf=2*pi*F(tprm1:tprm2);
dumpl=dump(tprm1:tprm2);
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tf_estd=vpck(dump1,dumf);

figure;

vplot('liv,Im'tf_estd),xlabel('Frequency (rad/sec)’),ylabel('Power').title(Power Spectral
density of the Input signal');

wsh3=input('press zero to see next plot: );

end

wsh4=input('press 1 to see the Power Spectral Density of the Output Signal : );
while wsh4>0;

dump=P(:,2);

dumf=2*pi*F(tprm1:tprm2);

dump1=dump(tprm1:tprm2);

tf estd=vpck(dumpl,dumf);

figure;

vplot('liv,Im',tf_estd),xlabel('Frequency (rad/sec)’),ylabel('Power") title(Power Spectral
Density of Output signal’);

wsh4=input('press zero to see next plot: ');

end

wshS5=input('press 1 to see the bode plot for the experimental data : ');

while wsh5>0;

Fr = F*2*pi;

dump=P(:,4);

dumf=2*pi*F(tprm1:tprm?2);

dumpl=dump(tprm1:tprm2);

tf_estd=vpck(dumpl,dumf);

tf est = vpck(P(:,4),Fr);

figure;

vplot('bode',tf_estd);
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wsh5=input(‘press zero to see next plot: ');

end

wshé6=input(‘press 1 to see the frf for the experimental data :");
while wsh6>0;

figure;

varl=abs(dump1);

ax=[1 140 1e-3 le-1];
semilogy(F(tprm1:tprm2),varl),axis(ax),xlabel('Frequency (Hz)"),ylabel('Response
(V)),grid;

wsho6=input('Press 0 to see next plot: ");

end

wsh7=input('Press 1 to see the system identification results for the experimental data:’)
while wsh7>0;

TFx=tf estd;

figure;

% the least square curve fitting

runfitsys

%print -dps beam_id.eps

[A,B,C,D] = unpck(sys);

sysident10=sys;

D=0;

sysn=pck(A,B,C,D);

[num2,den2]=ss2tf(A,B,C,D);

[num,den] = ss2tf(A,B,C,D); % state space to transfer function
om = logspace(0,3.5,1000);

sysl = frsp(sysident10,0om);

sys2 = frsp(sysn,om);
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wsh7=input('Press zero to see next plot: );

end

wsh10=input('Press 1 to see the system identification results for the experimental data,
while wsh10>0;

Al=[abs(spoles(sysident))/(2*pi)];

A2=[abs(spoles(sysfem))/(2*pi)];

pl=sortrows(Al);

p2=sortrows(A2);

freqs=[p!1 p2]

wsh10=input('Press 0 to continue: ");

end

wsh12=input('press 1 to see the nyquist plot of the experimental model: ')
while wsh12>0

[ALBILCILDI]=unpck(sysident);

[numi,deni]=ss2tf(AL,BL,CLDI);

figure;

nyquist(tf(numi,deni),om?2),axis(ax2);

wsh12=input('Press 0 to continue: ");

end
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C-2 The subroutine for the least square curve fitting technique

%TFx =xtract(sel(TFsw41,1,1),1.1*2*pi,30%*2*pi);%fit from 20 rad/sec to 188 rad/s

ord = input('Input order of the fit: ');

while ord>0
sys = mfitsys(TFx,ord);
sysg = frsp(sys, TFx);
rifd(spoles(sys))

fori=1:1
vplot('bode’,sel(sysg,i,1),"',sel(TFx,i,1),'w")
% subplot(211)
title(num?2str(i))
pause

end

ord = input('Input order of the fit (Enter a negative number to exit): '):

end
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APPENDIX D

THE COMPUTER CODE USED IN REAL TIME IMPLEMENTATION OF H,,
CONTROLLER

In this thesis, the H,, controller designed for the active vibration control of the smart
beam is implemented by using the smart controller unit SS10. The controller unit,
implements the H., controller by using the computer code written in C language. This
appendix gives the data, which is necessary for the real-time implementation of the H,

controller used for vibration control of the smart beam.

D-1 The H., CONTROLLER

The application of the H, controller design technique resulted a 6" order controller. By
using standard model reduction techniques the controller is further reduced to 4™ order.
The system model, which is necessary for the implementation of the controller unit, is

given as follows.
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The system matrix for the controller is,

[-4.2407 25.6641 -22.3859  11.4441 |
-25.6641 -0.5122  8.9394 -4.4089
-22.3859 -8.9394 -831.0786 535.6031

| 114441  4.4089  535.6031 -374.8691

The input, output and direct transmission vectors are found to be

B" ={6.9707 -2.2874 -19.1037 9.6078}
C=1{6.9707 -2.2874 19.1037 -9.6078}
D = {-0.0019}

D-2 The Computer code

The controller is implemented by using the computer code written in C language. The

computer code developed for this purpose is provided in C syntax.

/*
* This program is used to test 8-ADC and
4-DAC of SBC0486 *

C version
* GNU Development Tools of
the Redhat linux 6.2*

*

*

*/
#include <stdio.h>
#include <time.h>

#include <sys/io.h>
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#include <sys/perm.h>
#include <stdlib.h>

#include <termios.h>
#include <unistd.h>

#include <signal.h>

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <termios.h>
#include <string.h>
#include <time.h>

/**%%%% Register Address, ADC & DAC of SBC0486 *****xx/

#define CFGINDEX 0x350

#define CFGPORT 0x351

#define ADCDONE 0x352

#define DACPORT 0x353

#define ADC CONTROL 0x356
#define ADC DATA LOWBYTE 0x356
#define ADC_DATA HIBYTE 0x357

#define HI CLAMP PT 4095 /* high limit for ocutput */
#define LO CLAMP PT 0 /* low limit for output */

#define TIME LIMIT 20

vold Initialize IOPort (void);
void Initialize CFGINDEX CFGPORT (void);

void DAC Update(int):;

int ADC Sample(void);

void Initialize DAC(void):
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/***% End of Register Address, ADC & DAC of SBC0486 ***x/

0x3000;
0x48;

unsigned int DAC_Port

unsigned int ADC Port

void AD DA test(void):
void Choose_test channel (void);

void Show_Channel (void);

/************ End Viscous Damping Vibration **************/

/********************* Signal Of Linux *******************/
long int Cycle number=0;

vold SigHandler (int SigNum)

{

Initialize DAC();
printf("\n Cycle number=%1d.", Cycle number);
Cycle number=0;
Choose_test_channel () ;
Show_Channel ()
alarm(TIME LIMIT); /* Exit if it exceeds certain time */

printf ("\nTest will last 30 seconds!\n"):;

return;

void Choose_test_channel (void)

{
int ch;

struct termios old, new;

tcgetattr (0, &old):;

new = old;
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new.c_lflag &= ~ICANON;

new.c_cc[VMIN] = 1;
new.c cc[VTIME] = 0;

tcsetattr (0, TCSANOW, &new):

/*

0x48 -- ADC 0;
0x49 -- ADC 1;
Ox4A -- ADC 2;
0x4B -- ADC 3;
0x4C -- ADC 4;
0x4D -- ADC 5;
0x4E -- ADC 6;
0x4F -- ADC 7;

0x3000 -- DAC O
0x7000 -- DAC 1
0x0b000 -- DAC 2
0x0£f000 -- DAC 3
*/

/******* Input Channel *******/

printf ("\nInputing 'n' will end the AD-DA test.");
printf ("\nInput the Channel Number of STRAIN GAUGE INPUT or n:");

do {
ch = getchar():
printf ("\n Your INPUT is : %c\n", ch);

}while((ch != '1') && (ch != '2") && (ch != '3") && (ch !=
4
&& (ch != '5') && (ch != '6') && (ch != '7"') && (ch !=
'8') && (ch != 'n"));
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V4|>

if(ch == '1') ADC_Port = 0x48;

else
else
else
else
else
else
else

else

if(ch ==
if(ch ==
if(ch ==
if(ch ==
if(ch ==
if (ch ==
if (ch ==
if(ch ==

'2') ADC Port = 0x49;

'3') ADC Port = Ox4A;

'4') ADC Port = 0x4B;

'5') ADC_Port = 0x4C;

'6') ADC_Port = 0x4D;

'7') ADC_Port = 0x4E;

'8') ADC_Port = Ox4F;

'n') {
tcsetattr (0, TCSANOW, &old);
exit (EXIT SUCCESS);

printf ("\nInputing 'n' will end the AD-DA test."):;
printf ("\nInput the Channel Number of OUTPUT or n:");

do {

&§& (cC

tc

ch = getchar();

printf ("\n Your INPUT is : %c\n", ch):;

}while((ch != '1') && (ch != '2') && (ch != '3") && (ch !=
h I= '™n"));

if(ch == '1') DAC Port = 0x3000;

else if{(ch
else if(ch
else if(ch

else if(ch

setattr (0,

== '2') DAC_Port = 0x7000;
== '3') DAC Port = 0xb000;
== '4') DAC Port = 0xf000;

== 'n') {
tcsetattr (0, TCSANOW, &old):;
exit (EXIT SUCCESS):

TCSANOW, &old);

void Show Channel (void)

{
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if (ADC_Port == 0x48) printf("\n Sampling ADC 0 or Strain

Gauge Input 1 \n");

else if (ADC Port == 0x49) printf("\n Sampling ADC 1 or Strain
Gauge Input 2\n");

else if (ADC Port == 0x4A) printf("\n Sampling ADC 2 or Strain
Gauge Input 3\n");

else if (ADC Port == 0x4B) printf("\n Sampling ADC 3 or Strain
Gauge Input 4\n");

else if (ADC _Port == 0x4C) printf("\n Sampling ADC 4 or Strain
Gauge Input 5\n");

else if (ADC Port == 0x4D) printf("\n Sampling ADC 5 or Strain
Gauge Input 6 \n"):

else 1f (ADC Port == Ox4E) printf("\n Sampling ADC 6 or Strain
Gauge Input 7\n");

else if (ADC_Port
Gauge Input 8\n"):;

0x4F) printf("\n Sampling ADC 7 or Strain

else printf("\n ADC~Port address is wrong! \n"):;

if (DAC Port == 0x3000) printf ("\n Updating DAC 0 or OUTPUT
I\n");

else 1f (DAC Port == 0x7000) printf("\n Updating DAC 1 or OUTPUT
2\n");

else if (DAC_Port == 0xb000) printf(”\n Updating DAC 2 or CQUTPUT
3\n");

else if (DAC Port == 0xf000) printf("\n Updating DAC 3 or OUTPUT
4\n");

else printf("\n DAC~Port address is wrong! \n"};

return;

void Register Signal (void)
{
if (signal (SIGALRM, SigHandler) == SIG ERR)
{
printf("\nCouldn't register signal handler!\n");
exit (EXIT_ FAILURE);
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/********************* Signal of Linux ********************/

int main( void )

{
Register Signal():;
Initialize IOPort():;
Initialize CFGINDEX CFGPCRT () ;
Initialize DAC():

AD DA test();

return 0;

void Initialize IOPort()

{
if((iopl(3)) == -1)

{
printf("\nThe iopl(...) is not called rightly!\n");

exit (EXIT FAILURE) ;

printf("\nInitialize IOPort()...passed!\n");

void Initialize CFGINDEX CFGPORT ()
{
unsigned int OriginalState;

outb (0x00, CFGINDEX) ; /* CFGINDEX Register of SBC0486 */

OriginalState = inb(CFGPORT); /* CFGPORT Register of SBC0486 */
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/* LED4 OFF, RS232 for COM1l and COM2 of SBC0486 */
outb( (OriginalState & 0x0f), CFGPORT):;

printf ("\nInitialize CFGINDEX & CFGPORT...passed!\n");
printf ("\nLED4 OFF, RS232 for COM1l and COM2 of SBC0486\n"):;

void Initialize DAC()

{

DAC Update (2047); /* DAC 0f SBC0486 = 2.5v, High Voltage = Ov */
}

void AD DA test()

{

FILE * fp:
int AD Input = 0;
int DA_OUT = 0;

float y = 0.0;

float all = -4.2407;
float al2 = 25.6641;
float al3 = -22.3859;
float al4 = 11.4441;

/* float alb = 10.8400 ;
float al6 = -0.872;*/

float a2l = -25.6641;
float a22 = -0.5122;
float a23 = 8.9394;
float a24 =-4.4089;

/* float a25 = 7.1140;
float a26 = -0.2668;*/
float a3l = -22.3859;
float a32 = -8.9394;
float a33 = -831.0786;
float a34 = 535.6031;
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/* float a35 = -0.3028;

float a36 = ~0.0786;%/

float a4l = 11.4441;

float a42 = 4.4089;

float a43 = 535.6031;

float a44 = -374.8691;
/* float a45 = ;

float adé = ;

float ab51 = ;

float a52 = ;

float a53 = ;

float ab%4 = ;

float ab5 = ;

float ab56 = ;

float a6l = ;

float a62 = ;

float a63 = ;

float a64 = ;

float a65 = ;

float a66= ;

float B5 = ;

float B6 =;*/

float cl =6.9707;

float c2 =-2.2874;

float c3 = 19.1037;

float c4 = -9.6078;

float x1 = 0;

float x2 = 0;

float x3 = 0;

float x4 = 0;

/*float x5 = 0;

float x6 = 0;*/

float D = -0.0019;

float Bl = -6.9707;

float B2 = -2.2874;

float B3 = -19.1037;

float B4 = 9.6078;
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float ddt = 1.0/540.0;

float AD_I;

printf ("\nAD-DA test!\n"):

Choose test_channel():

Show_Channel () ;
Cycle_number=0;
printf("\nTest will last 30 seconds!\n");

alarm(TIME LIMIT); /* Exit if it exceeds certain time */

Initialize DAC();

fp=fopen ("tarkan.txt","wt");
do {

/* Strain Gauge senses the amplitude of vibration displacement

* Assume dt = 1*/

AD Input = ADC_Sample():;
AD I = 20*(AD_Input -800); /* There is bias on the strain
gage */

/**xxx%x% Make DAC output be in 0 —-= 4095 ***x*x/
/********** H—infinity algorith_m ****************/
x1 = x1 + (all*xl + al2*x2 + al3*x3 + ald*x4d /*+ al5*x5 + al6*x6 */+
B1*AD I)*ddt;
x2 = x2 + (a2l1*x1l + a22*x2 + a23*x3 + a24*x4 /*+ a25*x5 + a26*x6 */+
B2*AD I)*ddt;
x3 = x3 + (a31*xl + a32*x2 + a33*x3 + a34*x4 /*+ a35*x5> + al36*x6 */+
B3*AD T)*ddt;
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x4 = x4 + (adl*x1l + ad2*x2 + a43*x3 + add*x4d /*+ adb*x5 + ad6*x6*/ +

B4*AD_I)*ddt;
/* x5 = x5 + (abl*xl + a52*x2 + a53*x3 + abd*x4 + a55*x5 + a56*x6 +
BS*AD I)*ddt;

X6 = X6 + (a6l*xl + a62*x2 + a63*x3 + a6d*x4d + a6b*xb + ab6*x6 +

B6*AD_T)*ddt;
x/

y = cl*xl + c2*x2 + c3*x3 + c4*x4 /*+ c5*x5 +c6*x6*/ + D*AD I;
DA OUT = 2047 + y;

if (DA_OUT > 4095) DA OUT = 4095;
else if (DA _OUT < 0) DA OUT = O;

printf ("input=%d...output= %d\n",AD Input,DA OUT);
fprintf (fp,"\n input= %d ... output=%d",AD Input,DA OUT);

DAC_Update (DA_OUT) ;

Cycle number++;

}while (1):

fclose(fp):;

return;

void DAC_Update(int DA Output)

{

int loop:;
int DACDATA;

unsigned int Test bit;

JxkxkxkkkkkkkHkk* MAX525 DAC of SBCOABE Start **xxkxkkxkkkkkkhk/
[****x%x  Tnitiate the DACCS and DACCLK of DACPORT **x***%x/
outb (0x06, DACPORT):; /** DACCS = 0; DACCLK = 1 **x/

/* 0 to OV; 2047/2048 to 2.5V; 4095 to +5V for DAC of SBC0486 */
/* Load input register A, all DAC register updated of MAX525 */
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/* 0x3000 -- DAC 0
0x7000 -- DAC 1
0x0b000 -- DAC 2
0x0£000 -- DAC 3

*/

DA Output = DA Output | DAC_Port;

Test_bit = 0x8000;

[xxFxxkxkkkx%x Send data to D/A serially *xkkkkkkkkxxxxk/
for(loop = 15; loop >= 0; loop ~-)
{
if (Test_bit & DA Output) DACDATA = 0x01;
else DACDATA = 0x00;

outb ( (DACDATA | 0x04), DACPORT); /* DACCS = 0; DACCIK = 0 */
Test_bit = Test bit >> 1;
outb( (0x06 | DACDATA), DACPORT); /* DACCS = 0; DACCLK = 1 */

}
outb (0x02, DACPORT); /* DACCS = 1; DACCLK = 1 */
[ ExEF KX KKKk K KX Fk** DAC Of SBCOASE end **H**xHkxkkxksax*/

int ADC_Sample()

{
int AD;

[xFFxxx MAX197 ADC of SBC0486 *x**xxx/
/** Channel 1/AD0; -5v - +5v; Aquisition Mode: Internally controlled
**/

/*** AD Control register, and start aquisition and conversion of AD

***/
/* 0x48 —-- ADC 0;
0x49 -- ADC 1;
Ox4A ~- ADC 2;
0x4B -- ADC 3;
0x4C -- ADC 4;
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0x4D -- ADC 5;

0x4E -- ADC 6;

0x4F -- ADC 7;
*/

outb (ADC_Port, ADC CONTROL) ;

/*************** Sample data from A/D O ****************/

while (! (0x01 & inb (ADCDONE)))
{ /* waiting for A/D conversion completion */
}

AD inb (ADC_DATA HIBYTE);

AD AD << 8;

AD += inb(ADC_DATA LOWBYTE);

if (AD & Ox8000) AD -= 65535; /* Adjust minus number */

return (AD):

}
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