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ABSTRACT

MULTI ITEM INTEGRATED LOCATION/INVENTORY

PROBLEM

Balgik, Burcu
M.S., Department of Industrial Engineering
Supervisor; Assist. Prof. Dr. Sedef Meral

August 2003, 187 pages

In this study, the design of a three-level distribution system is considered in which a
single supplier ships a number of items to the retailers via a set of distribution
centers (DC) and stochastic demand is observed at the retailers. The problerﬁ is to
specify the number and location of the DCs, and the assignment of the retailers to
the DCs in such a way that total facility, transportation, safety stock, and joint
ordering and average inventory costs are minimized, and customer service
requirements are satisfied. Single source constraints are imposed on the assignment
of the retailers to the DCs. The integrated location/inventory model incorporates the
inventory management decisions into the strategic location/allocation decisions by
considering the benefits of risk pooling and the savings that result in the joint
replenishment of a group of items. We develop two heuristic methods to solve the
non-linear integer-programming model in an integrated way: (1) Improvement type

heuristic, (2) Constructive type heuristic. The heuristic algorithms are tested on a

il



number of problem instances with 81 demand points (retailers) and 4 different types
of items. Both of the heuristics are able to generate solutions in very reasonable
times. The results are compared to the results of the p-median problem and found
that the total cost and the number of DCs can be lowered using our integrated model
instead of the p-median problem. Finally, sensitivity analysis is performed with
respect to the changes in inventory, transportation, and ordering cost parameters, and

variability of the demand.

Keywords: Constructive Type Heuristics, Distribution System Design, Facility
Location Problem, Improvement Type Heuristics, Integrated Location/Inventory
Problem, Joint Replenishment Policies, P-median Problem, Risk Pooling, Supply

Chain Management
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COK URUNLU TUMLESIK YER BELIRLEME/ENVANTER

PROBLEMI

Bal¢ik, Burcu
Yiiksek Lisans, Endiistri Mithendisligi B6limii
Tez Yoneticisi: Yrd. Dog. Dr. Sedef Meral

Agustos 2003, 187 sayfa

Bu ¢alismada, tek tedarikginin birden fazla iirlini dagitim merkezleri yoluyla
perakendecilere gonderdigi ti¢ seviyeli bir dagitim sisteminin tasarimi ele alinmigtr.
Bayilerde belirsiz talep g6zlenmektedir. Problem; toplam tesis, tasima, emniyet
stogu ve ortak siparis ve ortalama envanter maliyetlerini en kiigiiltecek ve miisteri
hizmet gereklerini karsilayacak sekilde dagitim merkezlerinin sayisinin ve yerlerinin
belirlenmesi ile perakendecilerin dagitim merkezlerine atanmasidir. Tiimlesik yer
belirleme/envanter modeli; stratejik yer belirleme/tahsis etme kararlarina risk
ortaklamasi faydalarini ve {iriinlerin gruplar halinde siparis edilmesinden dogan
kazanglar1 dikkate alarak envanter yonetimi kararlarimi dahil etmektedir. Dogrusal
olmayan tamsayi programlama modelini tiimlesik olarak ¢6zebilmek igin iki sezgisel
yontem gelistirilmigtir: (1) Geligtirici tip sezgisel yontem, (2) Yapici tip sezgisel
yontem. Sezgisel yontemler 81 talep noktasi (perakendeci) ve 4 farkl {irtin ¢esidi

olan ¢ok sayida problem &Srnegi igin denenmistir. Her iki sezgisel yontem de ¢ok



karsilagtinldiginda, p-medyan modeli yerine tiimlesik model kullamilarak toplam
maliyetin ve dagitim istasyonu sayisinin diisiiriilebilecegi bulunmustur. Son olarak
envanter, tasima ve siparis maliyeti parametrelerindeki degisiklikler ve talep

degiskenligi tizerine duyarlilik analizi yapilmaigtir.

Anahtar Kelimeler: Yapict Tip Sezgisel Yontemler, Dagiim Sistemi Tasarimi,
Tesis Yer Belirleme Problemi, Gelistirici Tip Sezgisel Yontemler, Tiimlesik Yer
Belirleme/Envanter Problemi, Ortak Siparis Politikalari, P-medyan Problemi, Risk

Ortaklamast, Tedarik Zinciri Yonetimi
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CHAPTER 1

INTRODUCTION

A supply chain can be described as a network of facilities and distribution options
that performs the functions of materials procurement, transformation of the materials
into intermediate and finished products, and product distribution to customers.
Supply chains exist in both service and manufacturing organizations and the
complexity of the chain may vary greatly from industry to industry and firm to firm
(Ganeshan, Harrison, 1995). The goal of supply chain management is to optimize
the entire system, which consists of different functions with conflicting objectives
(Simchi-Levi, Kaminsky, Simchi-Levi, 2000). For years, researchers and
practitioners have primarily investigated the various processes of the supply chain
individually. Recently, however, there has been increasing attention placed on the

performance, design, and analysis of the supply chain as a whole (Beamon, 1998).

Supply chain models integrate different functions of the supply chain and allow the
consideration of the trade-off between these functions within the supply chain.
Effective integration of these various functional entities is the primary objective of
supply chain planning. In other words, effective management of a supply chain must
take into account the coordination of all of the functions of the chain without
degrading the quality or customer satisfaction, while still keeping costs down.
Reduced inventories, lower operating costs, and customer satisfaction are some of

the benefits, which can be achieved by effective supply chain management.

The decisions associated with supply chain management cover both the long-term

and short-term decisions. According to the time horizon of the decisions, they can be



classified as strategic, tactical and operational decisions. Strategic decisions deal
with corporate policies, which consider the overall design and the structure of the
supply chain, and require high capital investment. Typically, strategic decisions are
not reviewed before a time horizon of a few to several years expires. Tactical
decisions concern the annual or seasonal adjustments of the organization's
operations and require moderate capital investment. Operational decisions are short-
term decisions, which focus on the everyday activities and problems of an

organization's supply chain and involve relatively low level of investment.

Traditionally, the decisions concerning different time horizons have been optimized
sequentially, in the sense that the optimized output of one stage becomes the input to
the following stage. In other words, tactical and operational level decisions are
optimized assuming strategic-level decisions are already made. However, the
effectiveness of a supply chain is affected by the interaction among all decisions
made at different levels. Therefore, an organization must structure its supply chain
through long-term analysis, focusing on its medium-term and short-term activities
simultaneously. Substantial savings have been achieved by the companies that
applied an integrated analysis to their operations. Some of these cases are presented
by Blumenfeld et al. (1987), Robinson, Gao and Muggenborg (1993), and Sery,
Presti and Shobrys (2001). The problem of simultaneously considering the
characteristics and requirements of different functions to perform an overall
optimization has attracted the attention of researchers during the recent years; as a
result, some analytical models have been proposed in this direction. The objective of
this thesis is to develop a model that provides such an integrated view, considering

the decisions related to the distribution stage of the supply chain.

From an overall perspective, a supply chain network can be analyzed in three stages,
which are the supplier stage, the plant stage and the distribution stage (Erenglig,
Simpson, Vakharia, 1999). The distribution stage decisions can be classified broadly
as distribution network, location/allocation and inventory decisions. Briefly, the
distribution network decisions are strategic-level decisions that consider the type of

the network configuration of the distribution channel. These types of decisions are



related to the centralization or decentralization of the distribution network and the
determination of the distribution strategies that are to be utilized. Location/allocation
decisions are also regarded as strategic level decisions that are mainly about the
selection of distribution center (DC) sites and the allocation of service zones to the
selected DC sites. Location decisions reflect a company’s basic strategy for building
and delivering its products to the market. Allocation decisions determine the cost of
supplying the customers from the DC sites, which is a function of which DC sites
are chosen. Due to the interrelationship between the location decisions and
allocation decisions, it would be preferable to adopt an approach for the
simultaneous determination of location and allocation decisions. Lastly, the
inventory decisions are considered as tactical/operational level decisions and they
are mainly related to planning and control of inventory to be maintained at each
potential stocking location. In this study, we assume that the type of the distribution
network and distribution strategy is predetermined as having an intermediary
(distribution centers) between the suppliers and customers. The distribution centers
keep inventory and provide customers with items as required. Therefore, we focus
only on the location/allocation and inventory decisions at the distribution stage of

the supply chain.

Location decisions have strong impacts on the cost and performance characteristics
of a supply chain. Determination of the locations of manufacturing and warehousing
facilities has received considerable attention from academicians over the past four
decades. Location models have been formulated to answer the questions as: how
many facilities to establish, where to locate them, and how to distribute the products
to the customers in order to satisfy demand and minimize total cost. It is observed
that traditional location models seek optimal solutions by considering only the
transportation and facility costs but ignoring the inventory costs. Most location
models do not explicitly incorporate inventory; rather they consider the flow of
products through the system and charge throughput costs for the amount of products
that flow through the warehouses. This fails to recognize the interdependence
between location and inventory decisions and misrepresents inventory costs in

location models (Daskin, 1985). However, one of the most important aspects that



affect the performance of a given supply chain is the management of inventories,
since the decisions taken in this respect have a significant impact on service levels
and total cost in the supply chain. Moreover, the cost and service level performance
of a distribution system depends heavily on the interaction between the physical
design of the distribution system and the inventory control system. The location of
distribution centers and the allocation of retailers to the distribution centers have a
significant effect on the total inventory investment, inventory distribution, and

customer service (Schwarz, 1981).

The location and inventory models are linked because it is crucial to consider, at
least approximately, the inventory implications of location decisions at the strategic
level, and the decisions about the inventory allocation must be made within the

overall system structure determined by the strategic analysis.

In this study, the design of a distribution system is considered in which a single
supplier ships a number of items to the retailers. Some of the retailers are set as
distribution centers, where some amount of safety stock is maintained to achieve
suitable service levels. A retailer, which is chosen as a distribution center, orders the
items from the supplier and distributes them to the other retailers. A modification of
the (R,S,s) type periodic review policy is assumed to be implemented at the
distribution centers for the control of the inventories of the multiple items. The
objective of our problem is to specify the number and locations of the distribution
centers in such a way that total facility, inventory and transportation costs are
minimized and customer service requirements are satisfied. We incorporate
inventory management decisions into the strategic location/allocation decisions and
model them with an integrated approach. The main difference of our problem from
the multi-item distribution system design problems is that, our study considers a
multi-item inventory policy followed at the distribution centers and incorporates the
inventory related decisions implied by the multi-item inventory policies into the
strategic location/allocation decisions. A multi-item inventory system is usually
characterized by some interaction among the items. Savings in the ordering cost may

result when several items are ordered simultaneously or when several items are



replenished from a single supplier. The incentive behind the desire for joint ordering
of the items as a group lies in the fact that, if each item is replenished individually,
the major ordering cost is associated with for each of these individual
replenishments, which does not accurately indicate the situation faced by most firms
(Snyder, Daskin, Teo, 2002). To the best of our knowledge, there is no study in the
literature that considers the cost implications of a joint replenishment policy while

designing a multi-item distribution system.

We formulate a multi-item integrated location/inventory model that considers the
facility costs, inbound and outbound transportation costs, safety stock costs and the
cost implications of a joint replenishment policy used at the distribution centers. Due
to the complexity of the exact analysis of the (R,S,s) type multi-item inventory
problem, we approximate the (R,S,s) policy by assuming that the demand is
deterministic. Then a lower bound for the cost of best joint replenishment policy is
incorporated into the model, which is derived in Silver, Pyke, and Peterson (1998)
by using an efficient heuristic to solve the deterministic joint replenishment
problem. After formulating the model, the development of a solution algorithm,
which would handle the difficulties posed by the nonlinear terms in the objective
function and the structural properties of the joint replenishment policy, is required.
We then use two heuristic procedures to solve the non-linear integer-programming
model with an integrated approach. The improvement type algorithm and the
constructive type algorithm developed are based on some traditional heuristic
location algorithms. Both of the algorithms are tested on the generated problem
instance and they are compared in terms of their solution qualities and computation
times. Moreover, the solutions obtained by these algorithms for the integrated
inventory/location problem are compared to the solutions of the p-median problem,
which only considers local delivery costs in locating facilities. We also perform
sensitivity analysis to find how the solutions obtained respond to the changes in the
transportation, inventory, and joint ordering cost parameters, and also variability of

the demand.



The rest of the study is organized as follows: In the second chapter, the literature
about the strategic location/allocation models, the joint replenishment policies, and
the related solution methodologies are reviewed. In Chapter 3, the multi-item
integrated location/inventory problem is defined, and the way the inventory policies
are incorporated into the location/allocation model is explained. The detailed
analysis of improvement type and the constructive type algorithms developed to
solve the formulated non-linear integer programming model is provided in Chapter
4. In Chapter 5, the problem instances used for the computations are explained, and
the computational results are provided. Finally, conclusions and suggestions for

future research are elaborated in Chapter 6.



CHAPTER 2

LITERATURE REVIEW

Operations Research has contributed many models and methods for distribution
planning since its early years, in particular, for locating warehouses, but also for
more comprehensive design problems. The distribution/location family of problems
covers formulations, which range in complexity from simple single commodity
linear deterministic models to multi-commodity nonlinear stochastic versions. In
modeling logistics problems, it is important to represent the dynamic and
evolutionary nature of the systems, stochastic and uncertain components including
future demands, nonlinear costs, and multiple objectives of a firm or agency,

multiple products, fixed costs and capacity constraints (Daskin, 1985).

Distribution/location problems can be classified into different categories based on
the properties of the problem addressed. Aikens (1985) classifies
distribution/location models according to:

1. Whether the underlying distribution network is capacitated or uncapacitated
The number of warehouse echelons, or levels
The number of commodities (single or multiple)
The underlying cost structure for arcs and/or nodes (linear or nonlinear)

Whether the planning horizon is static or dynamic

AN O S i

Patterns of demand (e.g. deterministic or stochastic, influence of location,

etc)

7. The ability to accommodate side constraints (e.g. single-sourcing)



Although the range of previous work on distribution/location problems is quite
extensive, comparatively less attention has been paid to warehouse location
problems in which inventory costs are a significant determinant of the warehouse
locations. A review by Vidal and Goetschalckx (1997) on the strategic
production/distribution models highlights that certainty is generally assumed in the
models presented in the literature. Most of the formulations focus on a mixed integer
programming representation, in which the demands at a set of specified locations are
assumed fixed and known with certainty, and, thus, inventory costs are either
neglected or assumed to be unrelated to the distribution center location decisions.
The models generally include integer variables for locating plants and/or distribution
centers in given locations and allocating customers to the distribution centers, and
continuous variables for determining flows of products through the system. This
approach fails to recognize the interdependence between location and inventory
decisions and misrepresents inventory costs in location models (Daskin 1985). Only
some recent papers consider the inventory impacts on the number and location of the
warehouses on total distribution costs, although facility location and inventory

management are intimately related.

In the following section, we review the studies about the distribution system design
problem first. Afterwards, some studies about the solution methods that are used to
solve location models are reviewed. Lastly, we go over some studies about the joint

replenishment policies.
2.1. Distribution System Design Problems
In this section, some studies that do not consider the inventory policies explicitly in

their models are reviewed first. Then those studies in which the inventory

costs/policies are a significant determinant of the distribution system are presented.



2.1.1. The Studies without Inventory Considerations

Geoffrion and Graves (1974) deal with a distribution design problem which tries to
determine the number and location of intermediate distribution facilities between
plants and customers, and the allocation of the customers to the opened facilities, in
a multi product environment. The mixed integer linear programming model
proposed minimizes the sum of fixed warechouse construction and operating costs,
variable throughput costs and the transportation costs from plants through
warehouses to customers subject to the constraints related to demand, plant capacity,
and distribution center throughput. An effective optimal seeking solution approach
based on Benders decomposition is developed. The proposed approach is
implemented on a large real life problem. Additionally, various types of computer

runs such as sensitivity analysis, and tradeoff analysis are carried out in the study.

Kelly and Khumwala (1982) deal with a special case of warehouse location problem
that considers the minimization of total costs where, in addition to the effects of
spreading fixed costs, there are opportunities to achieve economies of scale in
variable warehousing costs. Without the capacity constraints and nonlinear operating
costs, the problem is an uncapacitated warehouse location problem. They use an
iterative procedure, which solves a series of conventional transportation problems in
order to converge to the optimal system design. The algorithm can be used to solve

large problems of the type normally encountered in practice.

Ro and Tcha (1984) deal with a facility location problem in a three-level distribution
system to locate both plants and warehouses simultaneously. There is no capacity
constraint for plants and warehouses. Commodities are delivered from plants to
customers either directly or via warchouses. Some side constraints are imposed on
the problem, which represent the adjunct relationship of some warehouses to certain
plants such that if a plant is open, its associated warehouses are then required to
open, but not vice versa. They propose an efficient branch and bound algorithm

using a set of simplifications, which are obtained by exploiting the submodularity of



the objective function and the special structure of the side constraint. They present

computational results on 15 test problems.

Pooley (1994) carries out a study with a project team, at the fluid division of a large
dairy processor Ault Foods Limited. The team develops a strategy for the fluid
division facilities by analyzing the opportunities associated with the existing and
new production and distribution network. The main cost drivers of the system are
customer demand, customer-service requirements, production costs and capacity,
depot costs and capacity, production sourcing requirements and transportation costs.
They split the overall analysis into manageable subcomponents. The distribution
network design part of the problem is solved by using a mixed integer programming
model based on the work of Geoffrion and Graves (1974). Also, some sensitivity
analyses are performed on some factors such as customer demand, capacity,
customer service requirements, and operating costs. The results show that changes in
customer demand have the greatest impact on total network costs. However, from a
unit cost perspective the model is most sensitive to capacity constraints and
customer service requirements. Also, the results of the sensitivity analysis are used
to study the interrelationship of different variables. Based on the study, the company
has established new production and distribution facilities and closed two supply
depots, which resulted in operating savings of more than several millions dollars per

year.

Hindi, Basta and Pienkosz (1998) consider a three-stage distribution planning
problem where the customers are to be served with different commodities from a
number of plants, through a number of distribution centers. The demand of
customers for each commodity is known and single sourcing constraints are imposed
on the model so that each customer is served by only one distribution center for all
commodities. Plants and distribution centers have limited capacities. A mixed
integer-programming model is developed to locate the distribution centers by
minimizing the fixed cost of opening distribution centers, operating costs for
handling commodities at open distribution centers and transportation costs. A branch

and bound procedure is used to calculate lower bounds and a descent search
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algorithm is described to generate upper bounds for the problem. The computational
results are provided for six classes of problems. The model is computationally
efficient and capable of solving realistically large problems due to the effectiveness
of the generation of lower bounds and upper bounds. Moreover, the results show
that the number of distribution centers and the number of customers affect the
computation time much more significantly than the number of commodities and the
plants. Pirkul and Jayaraman (1998) also consider a similar problem and solve it by
using a Lagrangian based solution algorithm. The only difference is that the location
of the plants is also a decision variable in their problem. They also extend their study

to account for the production costs at the plants in Jayaraman and Pirkul (2001).

Tragantalerngsak, Holt and Ronnqvist (2000) consider a three-level facility location
problem. The plants and the warehouses have capacity limits. Single-source
restrictions are imposed on the assignment of the warehouses to the plants, and on
the assignment of the customers to the warehouses. They propose an integer
programming model to determine the number and locations of the plants and the
warehouses, and the assignments of customers to the warchouses as well as the
assighments of the warehouses to the plants. They minimize the establishment costs
of facilities and the costs of assigning customers to the located warehouses. The
proposed model is NP-hard. Previously, Tragantalerngsak (1997) has developed six
different Lagrangian relaxation based heuristics for the same problem, each using
the structure of the problem in a different fashion. Using the most promising
relaxation with respect to both the average gap and the average computing time of
these relaxations, Tragantalerngsak, Holt and Ronngvist (2000) develop a
Lagrangian relaxation-based branch and bound method to solve the problem where
branch and bound procedure is performed in three stages. Six sets of test problems,
each with 20 problem instances, are constructed to test the performance of the
proposed algorithm. According to the results, it is concluded that the algorithm is
efficient and requires significantly less computational time than those of a standard

LP-based 0-1 integer programming package.

N
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Klose (2000) considers a two-stage capacitated facility location problem to find the
location of depots to open from a given set of potential depot sites, and to determine
the assignment of customers to the open depots and the product flow from plants to
depots. This problem is an extension of the one-level capacitated facility location
problem in that it considers the transportation costs between plants and warehouses.
The problem is formulated as a linear mixed-integer model and a Lagrangian relax-
and-cut approach is used to solve the model. The algorithm is tested on two different
sets of test problems. The first set of problems is randomly generated, whilst the
Swiss road network data are used to generate the second set of problems. The
computational results show that the bounds obtained by the proposed method lie
within a range of 0.5% (lower bound) and 0.1% (upper bound) from optimality. It is
stated that, in the case of small or easy problems, it can take less time to solve the
problem optimally using an LP-based cutting plane approach. However, in the case
of large or more difficult problems, the Lagrangean relaxation procedure has
provided much better upper bounds (and sometimes also lower bounds) in far less
running times than the application of an LP-based approach. A weakness of the

approach is the large effort to optimize or reoptimize the Lagrangean dual.

Melkote and Daskin (2001) study a two-level capacitated facility location/network
design problem and provide a mixed integer programming formulation and some
valid inequalities to strengthen its LP relaxation. The model minimizes the sum of
transportation costs, facility establishing costs and cost of constructing the links
between the facilities and the demand points subject to flow and capacity
constraints. The model is tested on 72 test problems. Solutions guaranteed to be
within 10% of optimality have been found for 68 of the 72 problems, and solutions
within 5% of optimality have been found for 43 problems. Also, some sensitivity
analyses are conducted on a particular test problem to gain further insight into the
behavior of the model. Particularly, the behavior of total cost and individual cost

terms is analyzed with respect to capacity.
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2.1.2. The Studies Incorporating Inventory Costs/Policies into the

Location Models

Robinson, Gao and Muggenborg (1993) develop an optimization-based decision
support system for designing a multi-product distribution system and apply it to a
problem facing DowBrands, Inc., which is a manufacturer of food-care products.
The existing distribution system of DowBrands consists of four levels, which are
plants, central distribution centers (CDCs), and regional distribution centers (RDCs)
and customers. Product mixing operations are performed at CDCs, which maintain
cycle stock, seasonal stock and safety stock. RDCs maintain cycle stock, safety
stock and a minimal amount of seasonal stock. They find out whether a four-level or
a three-level system is preferable, determine the number and location of facilities at
each level, the assignment of customer demand to facilities, and shipment sizes and
routings by product through the distribution system. Warehousing costs are
composed of handling costs (per unit) and storage costs (per unit per unit time) and
they vary by location. They assume that the facilities are uncapacitated and allow
the model determine what the facility capacities should be at each location. A fixed
charge network-programming model is used to model the problem and a
mathematically equivalent mixed integer programming formulation of this network
model is presented. They solve the problem using a dual-based optimization
procedure. The problem they consider include 13 CDC, 23 RDC locations with 93
market zones with 3 demand classes in each zone. They evaluate over 60 different
cost and customer-service scenarios during the study. Sensitivity analysis is
performed particularly to investigate the potential impact of errors in the estimation
of facility-fixed cost structures. Also, relationship between the system cost and
customer service, which is defined by maximum shipment distance for less-than-
truckload deliveries, is analyzed. Finally, they perform what-if analysis by forcing
an existing facility that was not recommended in the optimal solutions into the set of
opened facilities. Considerable savings are obtained as a result of the study due to

the reduction in the number of RDCs.
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Barahona and Jensen (1998) describe a two-level logistics design problem that
involves the design of a distribution network for computer spare parts. They present
an integer programming model to find the location of warehouses and allocate the
customers to the warehouses. They include the inventory cost for storing a part in a
location. They design networks considering 2-hour, 4-hour and 24-hour service level
constraints. Service level constraints are added to the model ensuring that at least a
specified percentage of demand is satisfied within a given service level. Also, the
single-source constraint added to the model indicates that all spare parts required by
a customer should be stored at the warehouse that the customer is assigned to. They
use LP relaxation, which can be solved by Dantzig-Wolfe decomposition. The
subproblems reduce to the minimum-cut problem. Subgradient optimization is used
to accelerate the convergence of Dantzig-Wolfe decomposition. Their solution

approach results in near-optimal integer solutions.

Nozick and Turnquist (1998) consider a system consisting of one or more
production plants, a set of distribution centers, retail outlets and customers. The
number and location of the plants and the retailer outlets is fixed. Individual
products having uncertain demands move through the distribution system. It is
assumed that expected demand across all retailers is divided equally among the
distribution centers. (S-1, S) continuous review policy is implemented where S is
order-up-to level. In this inventory policy, retailers order replenishment stock from
the distribution centers on a one-for-one basis as products are sold, and the
distribution centers in turn order replenishment from the plant(s). Safety stocks of
each product are held at the distribution centers to buffer against the uncertain
demands at the retailers. The problem is defined as finding the optimal number of
distribution centers and their locations by considering fixed facility costs,
transportation costs and inventory costs. Their focus is on safety stock in inventory
analysis due to the expected square-root relationship between total safety stock and
the number of distribution centers (Eppen, 1979). Safety stock requirements are
approximated as a linear function of the number of distribution centers and included
within fixed-charge coefficient of the fixed-charge facility location model. They use

a greedy add-and-improvement heuristic algorithm to solve the fixed-charge facility
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location model. A distribution system for finished automobiles with 700 vehicle
configurations (products) is considered to illustrate the modeling approach. The
model recommends 23 regional distribution centers among 698 demand areas. The
same authors study on the extensions of this problem by addressing customer
responsiveness and maximal coverage and in three more papers. Nozick and
Turnquist (2001a) consider the trade-off between customer responsiveness and costs
when designing a distribution system by formulating a multi-objective model. By
giving a weight to the objective of minimizing uncovered demand in the model, a
variety of trade-off solutions are identified. An efficient frontier is obtained by
changing the weighting parameter. Solutions with 23 and 64 distribution centers are
generated at two extremes with zero and a very large weighting parameter,
respectively. In this example, fixed facility costs are less significant in the cost trade-
off analysis, since the primary cost trade-offs seem to be between transportation and
inventory costs. Nozick (2001b) integrates a maximal covering model within the
fixed charge facility location model with a bound. The solution ensures that all
demand is served but the uncovered demand will be served at a lower level of
service. Two Lagrangian relaxation based heuristics, which are allocation and
decoupling, are presented and tested on test networks with 62 and 106 nodes by
assuming a coverage distance of 200 miles. Five coverage restrictions changing
between 70% and 99% are investigated for each test problem. In the test cases,
decoupling heuristic dominates the allocation heuristic in terms of the quality of
upper bounds and lower bounds and also in terms of solution times. Finally, Nozick
and Turnquist (2001c) consider a two-echelon inventory-distribution system. In
addition to determining the optimal number and location of distribution centers by
incorporating inventory costs in their location model, they decide which products'
inventories should be maintained at both the distribution center and the plants, and
which ones should be maintained only at the plant. (S-7, S) continuous review policy
is implemented at both the plant and distribution centers. In the inventory analysis,
they construct an inventory model that minimizes total stockout costs and inventory
holding costs to determine optimal stock levels at each echelon for a given product.
The optimal inventory policy depends on the number and location of the distribution

centers opened. They integrate the inventory analysis and the location analysis by
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constructing an iterative procedure that can alternate between solving a fixed-charge
facility location problem (given an inventory policy), and solving an inventory
optimization problem (given the number and the location of distribution centers).
They apply this modeling approach for a distribution system for finished
automobiles with 698 demand locations and 260 vehicle configurations belonging to
20 unique volume categories, where first volume category involves highest demand
configurations and twentieth volume category involves lowest demand
configurations. The converged solution is obtained at the fifth iteration, which
recommends opening 45 distribution centers and stocking the first four volume

categories at both the distribution centers and the plants.

Erlebacher and Meller (2000) develop a strategic model for the location-inventory
problem by considering a three-echelon system involving plants, distribution centers
and customers. The location and capacity of the plants is fixed and known, and very
large number of customer locations is represented continuously. Rectilinear
distances are used to measure the distance between plants and distribution center
locations, and between distribution center locations and customer locations.
Continuous review inventory system is applied at each distribution center and both
cycle stock and safety stock are considered as inventory components at the
distribution centers. The objective function of the non-linear integer-programming
model minimizes the fixed cost of locating distribution centers, inventory costs at
distribution centers and total transportation cost. They do not propose a method to
solve the model; rather they develop an analytical model based on some simplifying
assumptions to reduce the size of the enumeration on N (number of open distribution
centers). They also obtain bounds for the value of N and they use these bounds to
develop a heuristic for allocating customers to distribution centers. They present a
case study example, motivated by their interaction by Frito-Lay Inc., which has a
large distribution system with 42 plants, one regional DC, and 325 local distribution
centers, with each plant also acting as a regional distribution center. The results of

this study are not reported in the paper.
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Karabakal, Giinal and Ritchie (2000) address the problem of determining new
distribution center locations for Volkswagen in USA. In the existing distribution
system, the vehicles are shipped to one of five US ports that act like distribution
centers. These ports have processing centers that conduct various handling and
quality control checks on all vehicles. Then the vehicles are transported to dealers.
The main idea of the study is to establish more distribution centers close to
metropolitan areas and to test the effects of this on two performance criteria, which
are customer responsiveness and system cost. Customer service is measured by the
counts of first and second choice hits at dealers and distributions centers, direct
factory orders and lost customers. System cost is the sum of distribution costs and
inventory holding costs. Distribution cost occurs during the transportation of
vehicles from plant to processing centers, from processing centers to distribution
centers and finally from distribution centers to market areas. Inventory holding cost
is composed of market inventory, distribution-center inventory, processing center
delay, and transportation delay. Two types of facilities are considered for installing
at the distribution center locations. They use an iterative method between a mixed
integer programming model and a simulation model to obtain the final location
policy. Mixed integer programming model is used to generate a reasonable amount
of location scenarios by minimizing the distribution and fixed costs. The dynamic
and stochastic aspects of the problem are reflected in the simulation model. They
state that they reach the final location policy between the mixed integer
programming and the simulation in two to three iterations. The results show that
adding more than six new distribution centers to the existing ones is not profitable.
Volkswagen has opened a number of pilot distribution centers to test the

implementation of the findings and realized varying degrees of success.

Daskin, Coullard and Shen (2003) consider expected inventory costs when making
facility location decisions via their model that combines strategic and tactical
decisions. They address an integrated facility location/inventory location problem by
considering a distribution system involving a single supplier and a set of retailers,
each with uncertain and independent demand. Some safety stock is maintained at

each retailer to achieve acceptable service levels. The small amount of inventory
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maintained at the retailers is ignored and the inventory policy applied at the
distribution centers is based on the EOQ model. The problem is to choose the set of
retailers that will serve as distribution centers and become inventory storage
locations for other retailers thereby achieving riskpooling benefits and to allocate the
other retailers to these distribution centers. Two different mathematical
programming models are presented for this problem: a location/allocation model and
a set-covering model The location/allocation model includes nonlinear terms in the
objective function due to the shipment and inventory costs. To solve the set-
covering model, a solution approach using column generation method is developed.
Nonlinearity appears in the pricing problem of the set-covering model. 47 problems
using 4 different data sets ranging in size from 33 nodes to 150 nodes are generated
to test the modelling approach. It is observed that as the inventory holding cost
factor gets larger with respect to the distribution cost factor, the problem becomes
more difficult to solve. Also, as the transportation costs increase or inventory costs
decrease relative to other costs, the number of opened distribution centers increases.
Another observation is that the smaller set of opened distribution centers is not
necessarily a subset of the bigger set of opened distribution centers. Daskin,
Coullard and Shen (2002) developed a Lagrangian based solution algorithm for the
location/allocation risk pooling model based on the assumption that the variance-to-
mean ratio is assumed to be identical for all retailers. They test their algorithms on
problems with 88 and 150 retailers. Also, sensitivity analysis of the results with
respect to the changes in transportation and inventory costs is performed. The results
are also compared with the traditional uncapacitated fixed charge (UFC) location
model and it is found that UFC model locates more distribution centers with lower
costs due to the lack of inventory terms in it. When the computational capabilities of
the algorithm are compared with the column generation approach that is presented
by Daskin, Coullard and Shen (2003), it is found that computation times are
consistently lower than those obtained using the column generation approach.
However, the computation times with this algorithm grow with larger distribution
cost factor, while the computation times with the column generation decrease with

large distribution cost factor.
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Sery, Presti and Shobrys (2001) consider the BASF North America’s distribution
system to define the optimal number and location of warchouses and the
corresponding material flows needed to meet the anticipated customer demand and
the required delivery service times at the lowest overall cost. The distribution system
involves three levels, which are plants, distribution centers and demand points. A set
of product groups that may require special types of storage requirements flows
through the distribution system. Customer service level is measured in terms of the
same-day and the next-day deliveries and the cost components are fixed costs for
opening distribution centers, variable and handling costs at the distribution centers
and freight costs for replenishing distribution centers and shipments to customers.
Since both truckload and less-than-truckload shipments exist in the distribution
system, network combinations that allow for the use of truckload shipments rather
than the more expensive less-than-truckload shipments are identified to reduce the
costs. A three-step modeling approach is used to formulate the problem. A single-
echelon distribution model is used in the first step of the formulation and the busiest
and least active distribution centers, attainable customer service levels, and
candidate distribution center locations are obtained. In the second step, they search
for the best distribution center candidates by adding constraints that force the model
to select between the distribution center locations by adjoining the distribution
centers located in the adjacent regions. In the first two steps, the fixed cost of
opening distribution centers is not considered in the models, since they take the
transportation flow patterns required to serve customer demand as the primary
criteria. In the last step, fixed costs and the restrictions on the number of distribution
centers to be opened are considered in the model. The alternative configurations are
found to outperform the original configuration with 86 distribution centers in terms
of both cost and customer service levels. BASF has made changes in its distribution
network by opening a new distribution center and eliminating several warehouses,
and consolidating storage and handling activities and as a result improved the next-

day delivery volumes by 15%.

Teo, Ou and Goh (2001) study the impacts of consolidating several regional

distribution centers into one central distribution center on the facility investment and
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inventory costs. They propose a location model that captures the impact of the
inventory-related costs. Stochastic demands are assumed at customer locations. As a
result of their analysis, they conclude that consolidation leads to lower total facility
investment and inventory costs if the demands are identically and independently
distributed, or when they follow independent but possibly nonidentical Poisson
processes. However, they show by an example that consolidation can be infinitely

worse off than the optimal decentralized system for the general demand processes.

Snyder, Daskin and Teo (2002) present a stochastic version of the location model
developed by Daskin, Coullard and Shen (2000), and Daskin, Coullard and Shen
(2002). Although location model with risk pooling model (LMRP) incorporates
stochastic demands that follow a normal distribution by assuming stationarity of the
demand distribution, it fails to take into account the changing environment in which
the supply chain will operate. A stochastic version of LMRP (SLMRP) is proposed
in this study that handles parameter uncertainty by allowing parameters to be
described by discrete scenarios, each with a specified probability of occurrence. The
SLMRP is a two-stage model, in that strategic decisions (facility location) must be
made before it is known which scenario will come to pass, while tactical decisions
(assignment of retailers to distribution centers, setting inventory levels) are made
after the uncertainty has been solved. Hence, the location decisions are scenario-
independent, and assignment decisions are scenario-dependent. There are two levels
of randomness in SLMRP: scenarios determine the means and variances of the
demands, but once the scenario has been realized, demands are still random
according to the specified normal distribution. The goal of the model is to minimize
the expected cost of the system. A Lagrangian relaxation algorithm, similar to the
one developed for LMRP, is proposed for that nonlinear integer model. Also, a
branch and bound procedure is applied to close the gap, if any, after the Lagrangian
procedure. 3, 5, and 9 scenario problems are generated on the 3 chosen data sets to
test the algorithm. When the stochastic solutions with the deterministic individual
scenario solutions are compared, it is seen that they differ substantially in their
choices of distribution center locations. Also, it is observed that some retailers —

roughly half on average, but up to 97%- are assigned to different distribution centers
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in different scenarios, indicating the importance of allowing retailer assignments to
be scenario dependent. This suggests that each of the deterministic individual
scenario solutions would perform poorly in long-run expected cost. They also

describe how to use the SLMRP framework to model multi-commodity problems.

2.2. Heuristic Location Algorithms

Location models are often extremely difficult to solve, at least optimally. Even the
most basic models such as p-median, p-center, and maximal covering are
computationally intractable for large problem instances. In fact, the computational
complexity of location models is a major reason that the widespread interest in
formulating and implementing such models did not occur until the advent of high-
speed digital computers (Current, Daskin and Schilling, 2002). Due to these facts,
location analysts have developed heuristic algorithms to find at least very good
solutions. Among these, a number of heuristic algorithms for solving p-median
problems as well as uncapacitated fixed charge facility location models have been
proposed and have demonstrated outstanding performance (See Daskin (1995) for

the heuristic algorithms for location problems).

Heuristic solution methods for location/allocation problems have a number of
advantages when compared with exact programming techniques: large problems can
be solved relatively quickly; many objective functions can be used; and a range of
alternative, marginally suboptimal solutions can be identified (Densham and
Rushton, 1992). Also, due to their simple structure and relatively low computation
times, heuristic methods can allow for sensitivity and robustness analyses, which
would probably be very important for a decision maker, who is required to evaluate
many aspects and effects of the decisions when confronted with a strategic problem.
The major drawback of heuristic solutions is that they are not exact; none can be

guaranteed to find the optimum solution.
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The literature devoted to heuristic location algorithms often distinguishes between
two broad classes: improvement algorithms and constructive algorithms.
Improvement algorithms generally start with a feasible solution and iterate to obtain
a better solution. In order to use improvement heuristics, one must decide how to
obtain the initial solution. Initial solutions can be generated randomly or by using
the result of a greedy heuristic. When a series of randomly generated solutions are
used, the best solution among all of the local optima found is selected as the one to
be implemented. On the other hand, a constructive algorithm builds a solution from
scratch by adding individual components (e.g., nodes, arcs, variables) one at a time
until a feasible solution is obtained. In this method, the first facility is located in
such a way that the total cost is minimized. Then the facilities are added one by one,
each time selecting the location that most reduces the total cost. The algorithm
terminates at the point when the total cost starts to increase. Also, some
neighborhood heuristics can be applied to improve on the solution found using

constructive algorithms.

We use some local search type algorithms in the improvement type heuristic that we
develop to solve our problem. Neighborhood/Local search algorithms are a wide
class of improvement algorithms where at each iteration an improving solution is
found by searching the neighborhood of the current solution. One solution is a
neighbor of another solution if it can be obtained by adding or deleting or changing
the location of a facility, and by reallocating the demands to different facility sites.
In case the neighborhood of the solution does not contain any solution better than
itself, local search returns the current solution and terminates. This method does not
guarantee globally optimal solutions to most combinatorial problems, but generally
returns relatively good quality solutions (Ghosh, 2003; Hansen and Mladenovic,
1997).

The neighborhood search algorithm developed by Maranzana (1964) for the p-
median problem is one of the earliest improvement heuristics. In this method, the
algorithm begins with any feasible solution or specifically a set of p facility sites.

Demand nodes are then assigned to their nearest facility and the set of nodes

22



assigned to a facility forms a cluster around that facility. Then 1-median problem
can be solved optimally within each cluster by enumeration method for each facility
location. Then the procedure is iterated with the new location of the facilities until
no more changes in the assignments occur. The most widely known improvement
heuristic for p-median problem is introduced by Teitz and Bart (1968). In this
method, a facility is moved from the location it occupies in the current solution to an
unused site. Each unused location is tried in turn and when a move produces a better
objective function value, then that relocation is accepted and an improved solution is
obtained. The search process iterates on the new solution until no better solution can
be found by this method. This procedure is known as an "interchange", "exchange",

or " substitution" heuristic, since it exchanges an open site with one of the unused

sites.

The most efficient implementation of the exchange algorithm is presented by
Whitaker (1983). In Whitaker (1983), three efficient ingredients are incorporated in
the interchange heuristic: (i) move evaluation, where a best removal of a facility is
found when the facility to be added is known; (ii) updating the first and the second
closest facility of each user; (iii) first improvement strategy, where each facility is

considered to be added only once.

We can use a number of alternative strategies while implementing improvement
heuristics. For instance, in the exchange heuristic of Teitz and Bart (1968), every
time an exchange is found that yields a better solution, the solution set is updated
and the search process is restarted and applied to the new solution set. Alternatively,
one can select the best solution after considering all possible moves for a given
facility site, or choose the best after all possible exchanges for each of the sites are
examined. Applying different search strategies influences the computational speed

of the heuristic and may also affect the quality of the solution.
Our problem is similar in structure to the problems in the literature that include

warehouse operating costs in their models. Since big warehouses are more “efficient’

than small ones, total warehousing costs will rise as the number of warehouses is
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increased. Since shipping costs decrease as the number of warehouses is increased,
the problem of minimizing total cost is to balance against warehouse operating costs
(Feldman, Lehrer and Ray, 1966). There are some constructive type heuristic
algorithms proposed to solve this kind of problems and they are stated to be flexible
algorithms with respect to the kind of warehousing cost function allowed and can
accommodate widely varying cost structures and parameters among the different
warehouse sites. Some of the authors who propose heuristics for solving non-linear
warehouse location problems are Kuehn and Hamburger (1963), Feldman, Lehrer
and Ray (1966), Khumwala and Kelly (1982), and Whitaker (1985). These heuristic
techniques can generate near optimal solutions to large-scale warehouse location
problems having continuous nonconvex warchousing cost functions (Feldman,

Lehrer, Ray, 1966).

2.3. Joint Replenishment Problem (JRP)

Although single-item models are analyzed in most of the literature on inventory
theory, in practice one often needs to determine stocking policies for multiple items.
The problem of coordination in the replenishment of multiple products when they
share common resources (i.e. the same mode of transportation or the same stocking
location), with the idea of benefiting from the savings in major ordering costs can be
observed in many supply chains. The economic incentive behind the joint
replenishment of a group of items lies in the fact that if each item is replenished
individually, major ordering cost is associated with each of these individual item
replenishments. Also, as Viswanathan (1996) points out, the JRP is relevant only
when the major ordering cost is moderate. When major ordering cost is very low,
applying independent EOQ systems for each item would be as cost effective as a
coordinated system. When major ordering cost is very high, it is best to replenish all

the items together and consider only a single EOQ model.

Special attention has been given to the JRP in the literature for the last three
decades. A survey of algorithms can be found in Aksoy and Erenguc (1988) and
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Goyal and Satir (1989). Nevertheless, few studies considering a multi-item
environment relate the JRP to the developed mathematical models for real supply
chains (Muckstadt and Roundy, 1987; Viswanathan and Mathur, 1997; Qu,
Bookbinder and Iyogun, 1999)

Inventory models related to JRP literature basically fall in two main categories
according to the nature of demand: deterministic and stochastic models. In the
deterministic methods it is assumed that the major ordering cost is charged at a basic
cycle time T and that the ordering cycle of each item is some integer m; multiple of
T, which is called a (m;, T) policy. In this line of research Goyal (1974) propose a
solution method for the JRP based on enumeration where the running time of the
procedure grows exponentially with the number of items, and therefore the method
is only suitable for small problem instances. Moreover, he does not specify bounds
for the problem and therefore one cannot test for optimality. Wildeman, Frenk and
Dekker (1997) present a more suitable optimal solution method for larger problems
based on Lipschitz optimization. Other authors focused on heuristic procedures most
of which are based on setup-to-holding cost ratios for each item (Silver, 1976; Goyal
and Belton, 1979; Kaspi and Rosenblatt, 1983). Kaspi and Rosenblatt (1983)
investigate the effectiveness of different heuristic algorithms by using a simulation
program. Also using a sorting algorithm, Jackson, Maxwell, and Muckstadt (1984)
present an efficient procedure for the JRP under the restriction that the reorder

intervals must be a power of two times a base period length.

The development of decision rules for coordinated items under stochastic demand is
not an easy task (Aksoy and Erenguc, 1988). Continuous review and periodic review
models are developed for the stochastic JRP. In the stochastic arena, Balintfy (1964)
first introduces the use of (S,c,s) systems or “can-order” systems, in which items are
replenished up to level S if they reach a reorder level s. Coordination is achieved by
including in the order any other item of the same family whose inventory level is
below its can order level c¢. Later, Silver (1974) proposes a method to determine in
an optimal way the parameters of the (S,c,s) system. Although this policy performs
relatively well, Ignall (1969) shows that optimality cannot be guaranteed. Periodic
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review policies perform better than continuous review can-order policies in terms of
total cost except when the major ordering cost is close to zero (Silver, Pyke and
Peterson, 1998). Atkins and Iyogun (1988) propose the use of periodic
replenishment policies, where all items or specific subsets of them are ordered in
every replenishment opportunity up to a base stock level S. The objective is to select
optimal values of the review time and the order up to level S. They also suggest
modified periodic review policy where the review intervals for the items differ and a
varying number of items will be jointly ordered in each period. For the set of
problems used in their computational test, periodic review policies perform better
than the continuous review can-order policies. In the periodic review joint
replenishment policies suggested by Atkins and Iyogun (1988), the items are ordered
periodically irrespective of their inventory positions. Viswanathan (1997) analyses a
periodic review P(s, §) policy, where the inventory positions of all items are
reviewed once every R units of time, and item k is ordered up to level Sy, if its
inventory position is less than or equal to sy at the time of the review. In their
method, the review interval (R) is a decision variable and they attempt to find the
best value of R by searching for different values of R. Viswanathan (1997) also
compares the solutions of the P(s, S) policy with those of the other policies in the
literature, and finds that P(s, S) policy give solutions that generally dominates other

policies.
Having reviewed the studies about the distribution design problems, solution

methods and joint replenishment policy, we define our multi-item integrated

location/inventory problem in the following chapter.
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CHAPTER 3

ANALYSIS OF THE INTEGRATED LOCATION/INVENTORY
PROBLEM

3.1. Description of the System and Definition of the Problem

In this study, we consider the design of a distribution system, in which a single
supplier ships a number of items to the retailers via a number of distribution centers.
The locations of the single supplier and the retailers are assumed known and fixed.
Associated with each retailer, there is some random demand for all the items. We
assume that the demands at each retailer are uncorrelated among different types of
items. Also, independent demand is assumed across retailers for all types of items.
Due to the variable demand at the retailers, some amount of safety stock is held
therein to achieve suitable service levels. To take the advantage of risk pooling,
some of the retailers are set as distribution centers. Then safety stock for all retailers
served by a distribution center is assumed to be maintained at the distribution center.
Therefore, less total safety stock is required than in the case where every retailer
maintains its own safety stock. Centralizing inventory reduces both safety stock and

average inventory in the system (Simchi-Levi, Kaminsky, Simchi-Levi, 2000).

All of the retailers are considered to be candidate locations for distribution centers.
Alternatively, only a subset of retailers can be considered as the distribution center
candidates. A retail location, which is chosen as a distribution center, orders the
items from the supplier and distributes them to the other retailers, assigned to itself.

The graphical representation of the distribution network is provided in Figure 3.1.
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Single source constraints are imposed on the assignment of the retailers to the
distribution centers. That is, each retailer should be assigned to one and only one
open distribution center and all the demand of a retailer is satisfied by a single
distribution center. Also, when a distribution center is located at a retailer location,
the demand occurred at that retailer is replenished by the distribution center opened
at the same location; that is, if there is a DC at a retailer location, it must serve the

demand that occurs at that location.

Retailers

Supplier

Figure 3.1: Representation of the Distribution System

Capacity restrictions are not considered at any level of this distribution system. That
is, the single supplier in the system is assumed to have infinite supply for all items.
Also, distribution centers are assumed to be uncapacitated; therefore, single source
restrictions imposed on the assignment of retailers to the distribution centers do not
create any problem in terms of capacity. Due to the single source constraints and no
capacity restrictions, the assignment of retailers to the distribution centers can be
considered as if there is only one item in the system. The model with single source
constraints may result in achieving less benefit from risk pooling across items
compared to the model without such constraints. However, it is still likely that high

demand from one retailer for an item is offset by low demand from another and thus
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the advantage of consolidating demand for items at the distribution centers is

obtained.

Satisfying a customer's demand from a single distribution center is frequently
justified in practice because this results in economic advantages due to increased
economies of scale in distribution center-to-retailer shipments, decreased
administrative costs and more convenient service levels (Geoffrion and Graves,

1974).

Each distribution center can maintain and distribute all the items; that is, there is no
restriction for an opened distribution center on the type of the item it can keep and
distribute. There may be plenty of items in the system requiring the precise control
of inventory levels. Although daily operation of inventories may require item-level
control, long-term planning of the inventory can be accomplished by substantially
aggregating items into broader groups. Alternatively, a number of representative
items can be selected over a range of key dimensions such as demand, size, weight,
and manufacturing cost for simplification (Daskin, 1985). Therefore, we assume that
all the items are grouped into a manageable number of item groups. That is, a

number of item groups is considered rather than all items at individual level.

In this multi-item distribution system, the distribution centers replenish their
inventories by ordering each item from the single supplier. A multi-item inventory
system is assumed at each distribution center. By implementing a multi-item
inventory system, each distribution center should determine the items that should be
procured on each order and the ordering interval for each item. A multi-item
inventory system is usually characterized by some interaction among the items.
Savings in the ordering cost may result when several items are ordered
simultaneously or when several items are replenished from a single supplier. The
economic incentive behind the desire for joint ordering of the items as a group lies
in the fact that, if each item is replenished individually, major ordering cost is
associated with each of the individual replenishments. Assuming that the major

ordering cost at each distribution center is neither very high nor low which would
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otherwise encourage us to replenish all items together or separately, respectively, a
joint replenishment policy is assumed to be implemented at each distribution center
to benefit from the savings that may result from consolidating the requirements of

different products in a single order under moderate level of major ordering costs.

We also consider the fixed cost of locating distribution centers at retailer sites and
shipping costs due to moving of items from the distribution centers to the retailers
(outbound transportation), as well as from the supplier to the distribution centers
(inbound transportation). Shipping costs are both item and distance dependent. Fixed
facility costs include the expenditures for establishing the facilities, such as the
investments in buildings and equipment. Moreover, some locational factors may
affect fixed facility costs such as land value, energy costs, property taxes and

insurance rates.

In this distribution design problem, the objective is to investigate the optimal
balance between facility establishment, transportation and inventory decisions and to
analyze the trade-offs among these functions of the distribution system. For
example, as the number of distribution centers increases, transportation costs are
expected to decrease while inventory costs increase. Moreover, the costs are

dependent on the location and demand characteristics of the retailers.

Given this background, we can state the problem as follows: Given a collection of
retailers, each with uncertain demand for a number of items, determine how many
distribution centers to locate, where to locate and which retailers to assign to each
distribution center such that the sum of facility costs, inbound and outbound
transportation costs, joint ordering and average inventory costs, and safety stock
costs is minimized while ensuring a specified level of service at the retailers for each

item.
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3.2. Inventory Policy at the Distribution Centers

The physical distribution of inventory is an extremely important problem for any
organization. The profit potential for improved system design and inventory control
is considerable, as well as the challenges. One such challenge is posed by the
uncertainties inherent in these systems, principally customer demand uncertainties.
Another important challenge is the fact that system performance and cost depend in
large part on the interaction between the physical system design and the inventory
control system (Schwarz, 1981). For example, the location of distribution centers
and the allocation of the retailers to the distribution centers have a significant effect
on the total inventory investment, inventory distribution, and customer service. On
the other hand, the production/inventory policies used to operate a system can have a

significant effect on the design parameters of the physical system.

The main aim of an effective inventory policy in a supply chain should be to ensure
that the right levels of stock are held in the right place at the right time. To achieve a
high customer service level, some amount of inventory must be held as a buffer
against the variability in demand. Holding large amounts of inventory allows a
company or an entire supply chain to be very responsive to fluctuations in customer
demand. However, the creation and storage of inventory is a cost and to achieve

high levels of efficiency, the cost of inventory should be kept as low as possible.

We assume a periodic review system at the DCs. In the situations where the
coordination of the replenishments is attractive, a periodic review policy is
particularly appealing, because all items in a coordinated group can be given in the
same review interval (Silver, Pyke and Peterson, 1998, p.236). We assume that a
modification of the periodic review (R,S,s) policy is implemented at each DC. In the
usual form of an (R,S,s) policy, the inventory position of an item is checked every R
units of time. If the inventory position of the item is at or below the reorder point s,
an order is given enough to raise the inventory level to the order-up-to-point S. If the

inventory position is above s, nothing is done until at least the next review. Although
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it is shown that under quite general assumptions, the best (R,S,s) system produces a
lower sum of replenishment, carrying, and shortage costs than does any other
system, the computational effort to obtain the best values of the three control
parameters is more intense than that for other systems (Silver, Pyke and Peterson,

1998, p. 241).

For the problems with multiple items, Atkins and Iyogun (1988) propose the use of
(R, S) type periodic replenishment policies, where all items are ordered in every
replenishment opportunity up to a base stock level S. The objective is to select
optimal values of the review time (R) and the order up to level (S). They also
suggest “modified” (R, S) type periodic review policy where the review intervals for
the items differ and a varying number of items are jointly ordered in each period. In
these periodic review joint replenishment policies, the items are ordered periodically
irrespective of their inventory positions. Also, Qu, Bookbinder and Iyogun (1999)
use a “modified” (R, S) type policy in their study, which considers an integrated
inventory/transportation system with multiple-items. Viswanathan (1997) states that
more flexibility can be achieved by ordering any particular item only if its inventory
position warrants it and analyses a periodic review (R,S,s) policy for multiple items.
In this policy, the inventory positions of all items are reviewed once every R units of
time, and item k is ordered up to level S if and only if its inventory position is less
than or equal to s at the time of the review. Viswanathan finds the initial value of R
by solving the deterministic version of the JRP and attempts to find the best value of
R by searching for different values of R. Then optimal values of s and § for each

item are computed by using the algorithm of Zheng and Federgruen (1991).

In this study, we propose the use of a “modified” periodic review (R,S,s) policy. Our
“modified” (R,S,s) policy can be considered as an extension of the multi-item (R, S,s)
policy proposed by Viswanathan (1997). In the “modified” periodic review (R,S.s)
policy, the review interval of each item (R;) may differ and each Ry is an integer
multiple of the base review interval R. Then inventory positions of only a group of

items are checked every R units of time and item k is ordered up to level Sy if its
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inventory position is less than or equal to its reorder point sz Therefore, a varying

group of items is jointly ordered in each review period (R).

Because of the complexity of the exact analysis of the (R,S,s) multi-item inventory
policy, we approximate the “modified” periodic review (R,S,s) policy for our multi-
item problem by assuming that the demand is deterministic. Then it is assumed that
the DCs order inventory from the supplier using the approximate solution, which is
provided by the deterministic model with Type I service constraint. The analysis of

the deterministic model and its implementation are presented in §3.2.2.

3.2.1. Types of Inventories at the Distribution Centers and the Risk
Pooling Effect

As mentioned before, some amount of inventory is maintained at the distribution
centers. It is assumed that the retailers maintain only a small amount of inventory.
This is because the retailers are replenished frequently (daily for example) with
relatively small batches by the distribution centers in most of the fast-moving
consumer goods industfy. Therefore, we ignore the inventory costs that is incurred at
the retailers in our study. The inventory maintained at the distribution centers
includes both cycle (average) inventory and safety stock inventory. Cycle
inventories result from an attempt to order in batches instead of one unit at a time.
The amount of inventory on hand, at any point, that results from these batches is
called the cycle stock. The amount of cycle stock on hand at any time depends
directly on how frequently orders are placed (Silver, Pyke and Peterson, 1998, p.30).
Companies tend to produce and purchase in large lots in order to gain the advantages
that economies of scale can bring by reducing ordering costs. Ordering costs include
clerical and other processing costs associated with order preparation or receipt,
which are independent of the quantity ordered. However, large lots give rise to
increased carrying costs, which include the cost of capital on purchased goods, cost
to store, handle, and insure the inventory. The trade-off exists between the reduced

cost of ordering by purchasing items in large lots, and the increased carrying cost of
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the cycle inventory that comes with purchasing in large lots. In our problem, the
average inventory to be maintained at each distribution center is found by the
application of a joint replenishment policy, which considers the trade-off between
the ordering and carrying costs in a similar way that EOQ does. The details about

the joint replenishment policy are presented in the next section.

Safety stock inventory is held as a buffer against uncertainty in demand. Safety
stocks are not needed when the future rate of demand and the length of time it takes
to get complete delivery of an order are known with certainty. The level of safety
stock is controllable in the sense that this investment is directly to the desired level
of customer service (Silver, Pyke and Peterson, 1998, p.31). The trade-off here is to
weigh the costs of carrying extra inventory against the costs of losing sales due to

insufficient inventory.

An important and commonly used service level measurement in inventory systems is
the stockout rate, which is the percentage of demand that cannot be satisfied from on
hand inventory. In the presence of uncertain demand, safety stock is carried to

reduce the stockout rate (or to increase the fill rate).

As mentioned before, in our problem, the safety stock required is assumed to be
maintained only at the distribution centers to achieve the benefits of risk pooling.
Centralizing inventory results in reduced safety stock inventory in the system.
Therefore, less total safety stock is required than in the case where every retailer
maintains its own safety stock. Other benefits of centralizing inventory beyond the
reduced inventory costs can be stated as follows (Teo, Ou and Goh, 2001):

e Reduced facility investment costs: A large distribution center is more
cost efficient to build and operate compared to having many smaller
stocking points (the effect of economies of scale).

o Increased service quality: Centralized inventory ensures better

quality control and visibility of stocks within the system.
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On the other hand, having smaller number of distribution centers increases the cost

of transporting items to the retailers and delivery times to the customers.

Risk pooling concept suggests that demand variability is reduced by the aggregation
of demand. It becomes more likely that high demand from one retailer will be offset
by low demand from another. The reduction of variability by demand aggregation
allows reducing safety stock and therefore reducing total inventory costs. The
reallocation of inventory is not possible in a decentralized distribution system.
Eppen (1979) shows the benefit of centralizing inventory in a multi-location
newsboy problem with N retailers. Associated with each retailer, there is normally

distributed customer demand with a mean of y;, and a standard deviation of o; for

retailer /. Eppen demonstrates that the expected cost of a decentralized system is

N
K Z o; , whereas the expected cost of a centralized system can be expressed as
i=1

N
K f ZO',-Z when the demands of the N retailers are independent. K is a constant
i=1

depending on the holding and penalty costs and the standard normal loss function.
Since the expected cost of the centralized system is less than that of the

decentralized system, we have the risk pooling incentive for centralizing inventories.

In order to see the effects of risk pooling on safety stock inventory, assume that we
know the set of retailers assigned to the distribution center j. Let S represent the set
of retailers assigned and replenished by the distribution center j. Also, assume that

the demand for item £ at retailer i is normally distributed with a mean of 4, and a
standard deviation of oy, . Then if the lead time from supplier to the distribution
center j is L;, the lead time demand for item £ at distribution center j is normally

distributed with a mean of Z; Z My, and a variance of L; Z o , assuming that the
ieS; ieS;
J J

retailer demands are independent. Thus, the safety stock inventory to maintain a
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service level of ¢, for item £ at distribution center j, is given by Zo, ’L i Z 0'5{ ,

ieS;
where z, is a standard normal deviate such that P(z <zg, ) =ay . Then under

constant lead times, the safety stock of an item is proportional to the standard

deviation of the item’s demand supplied by the distribution center.

Consider the following case with five retailers and two items. In Figure 3.2, in the
decentralized system, each of the five retailers replenishes themselves for both
items. Assuming constant lead times and the same service level for all items, the

total safety stock maintained for item 1 is proportional to:

(512 +09) +03; T 0y +052)

, and the safety stock maintained for item 2 is proportional to:

(011+021+031+041+051)

Retailers

N( Wi, o1 ), NCpiz, 012%)

Supplier
@ N( w21, 21, N( piz2, 622°)

> @ N( ps1, 0317), N( paz, 035°)

Q@ N( tat, 041>, N paz, 042°)

@ N( ps1, o517 ), N( sz, 052°)

Figure 3.2: Representation of the Decentralized System

When a distribution center is located at retailers 2 and 4, as shown in Figure 3.3, the

total safety stock maintained for item 1 is proportional to:

7 2 2 2 2
\/011+621+°31 +\/041+°51
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, and the safety stock maintained for item 2 is proportional to:

2 2 2 2 2
\/012+622+632 +\/G42+052

which is less than that of the decentralized case.

N( i1, 011%), N( iz, 012°)
N( 21, 6217), N paz, 0227)
N( p31, 0312), N pa, 632°)

R C
D%" 8 @
N( a1, 041 2, N( 12, cmy\)@

N( s, 6512), N( sz, 652°)

Retailers

Supplier

Figure 3.3: Representation of the Centralized System

3.2.2. Joint Replenishment Problem (JRP)

The JRP is an inventory problem concerning a multi-item system. In an inventory
system with multiple items, cost savings can be achieved when the replenishment of
several items is coordinated. Inventory models related to the JRP basically fall in
two main categories according to the nature of demand: deterministic and stochastic
models. The starting assumption under deterministic models is that the demand rate

for each item and the lead times are deterministic.

In our study, we handle the JRP at the distribution centers by assuming that the
demand is deterministic, since coordinated control of items with probabilistic
demand complicates the decision problem, as also noted by Silver, Pyke and

Peterson (1998, p.434). As a result, the solution to the deterministic JRP turns out to
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be an approximate solution to the real stochastic JRP in our integrated

location/inventory problem.

In the deterministic JRP, a specific joint setup cost which is a major setup cost (fixed
cost of placing an order) is incurred for each order, irrespective of the number of
distinct items involved in the order. Additionally, an item specific (minor) setup cost
is incurred for each specific item that is included in the order. Joint replenishment of
a group of items reduces the number of times the major ordering cost is charged and
hence reduces the costs. The optimization criterion in the JRP studies is the long-run

average cost.

Assumptions:
We use the following assumptions in the derivation of the deterministic JRP model

due to Silver, Pyke and Peterson (1998, pp.425-426):

1. The demand rate of each item is constant and deterministic.

2. The replenishment quantities of the items need not be integer.

3. The unit variable cost does not depend on the number of units included in the
replenishment; that is, there are no quantity discounts in the purchase cost
and the unit shipping costs.

4. The lead time is known.

5. No shortages are allowed.

6. The entire order quantity is delivered at the same time.

Notation:

k: index for items

K:  total number of items

A: major ordering cost per order
@, . minor ordering cost for item &

Dy: demand rate of item %
Jo unit variable cost of item &
I: the inventory carrying charge
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T: basic cycle time

my,:  the integer number indicating the frequency (number of cycles, 7) at which

item k is ordered

TRC: total cost of replenishment, composed of ordering and holding costs

In the deterministic JRP, the major ordering cost (4) is assumed to be charged at a
basic cycle time (7), and the ordering cycle of each item is some integer multiple of
this basic cycle. In this policy, item k& will be included in every m™ replenishment,
just as its inventory hits the zero level. The selection of the values of T and mys is
the aim of the deferministic JRP. The inventory behaviour of three items that are
jointly replenished is illustrated in Figure 3.4. According to the figure, item 1 is
included every time an order is placed, while items 2 and 3 are included in the

replenishment every other time.

— 1tEM 1

my=2 - = jtem 2
ms=2

. 3 .
\Q * \. IR E— .
] s, 1 N, item 3
[ . .
™S . . .

Inventory level

Figure 3.4: Inventory Behaviour of Three Items Jointly Replenished

For the deterministic JRP total cost per unit time is given by:

A4 1&q T&
TRC(T,my,'s)=—+=Y —E+=>"(Dymyc,I) (3.1)
I Tiome 25
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In this total cost function, there are (K+1) decision variables. One of them is the

continuous variable, T, and the other K variables (m;'s) are integers.

As mentioned before, our aim in this study is to integrate inventory decisions with
strategic location/allocation decisions for this multi-item distribution system.
However, although we simplify the JRP by assuming that the demand is
deterministic, incorporating this joint replenishment policy in the location/allocation
problem would make the integrated location/inventory model still difficult to handle
in terms of the number of decision variables and the cost structure. Note that, the
number of decision variables related to JRP increases with the increase in the
number of distribution centers, since the inventory policy followed at each
distribution center may be different depending on the composition of demand
assigned to the distribution center and the values of major and minor ordering costs
specific to a distribution center. Moreover, in order to evaluate the joint
replenishment policy at the distribution centers, we have to know the number and
location of the distribution centers, as well as how much demand of each item is
assigned to a specific distribution center. In other words, the inventory allocation
decisions depend on the location/allocation decisions. Also, we aim to solve the
location/allocation problem by considering the effects of the joint replenishment
policy; therefore, location allocation decisions are also dependent on the inventory

policy followed at the distribution centers.

Considering the strategic nature of the location decisions and the tactical and
operational characteristic of inventory allocation decisions, it is wise to use some
approximations/simplifications to represent the inventory policies to be followed at
the distribution centers. Therefore, we are only interested in the cost implications of
the joint replenishment policy addressing a strategic problem in the supply chain;

therefore, we are not solving for the exact inventory control parameters.
Fortunately, using the following heuristic procedure for the JRP, which is presented
in Silver, Pyke and Peterson (1998, pp.427-428), a lower bound (LB) for the cost of

the best (7, my's) policy can be found.
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Heuristic for the 1.B for the Cost of JRP:

S1. Rank the items such that

is smallest for item 1. Set m; =1.
Dyey

D
my = |k G k=2,3...,K (3.2)
Dka A+a1

rounded to the nearest integer greater than zero.

S2. Evaluate

S3. Using the my, 's found in S2, evaluate T* (best T for a particular set of my, 's ).

2(A+Z%k—)
k

F s 3.3)
I kachk

T*(mk 'S) =

S4. Determine replenishment quantity of each item by evaluating

Op =m D, T* k=1.2,..,K

In order to obtain the LB for the cost of the best (T, my's) policy, the following
algebra is applied (See Silver, Pyke and Peterson (1998, pp.453-457) for the details):

Equation 3.3 is substituted into equation 3.1 to obtain the best cost for a given set of

my's:

TRC*(my,'s) = \/2 A+3 2 1Y mDyey (3.4)
My
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Then we substitute m; = 1 and the generally noninteger my's of equation 3.2 into
equation 3.4. This leads, after considerable algebra, to the following LB for the best
possible total cost of JRP:

K
TRCbound = \/2 (4+ ) )chll + Z \lzakaCk] 3.5)
k=2

The first term of the lower bound is the total cost per unit time of an EOQ strategy
when item 1 considered alone, if we associate the major ordering cost (4) with each
replenishment of item 1. Item 1 is included in every replenishment in the optimal
policy; that is, the ordering interval for item 1 is the basic cycle time, 7. From now
on, item 1 will be referred as the base item. The second term represents a summation
of the total cost per unit time of an EOQ strategy for each of the other items, where
only minor ordering cost is associated with the replenishment of these items.
Allocation of the major ordering cost among the items was also suggested by Atkins
and Iyogun (1987, 1988). Their method partitions the items into two groups: base
items and nonbase items. The base items are those for which my; = 1, hence are
replenished every time any of the K items is replenished. This scheme is also used
by Qu, Bookbinder, and Iyogun (1999) in their heuristic algorithm to solve an

integrated inventory-transportation problem.

As noted, the base item is determined in the first step of the heuristic procedure

ar

described above. The items are ranked by their ratio of ( j, and the item, which

Dka
makes this ratio smallest, is chosen as the base item. We should note that, setup-to-

holding cost ratio was frequently used by the authors who developed heuristic

. A .
procedures to solve JRP. For instance, ( i ) and /- ratios were used for
Dyhy, Dyhy,

the determination of the base items by Silver (1976), and Goyal and Belton (1979),

respectively, where k; represents the unit holding cost for item %.
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Assuming that the results provided by the deterministic joint replenishment policy
are implemented at the DCs, the “modified” (R,S,s) type periodic review inventory
policy for multiple items is realized in practice in the following way. The base
review interval (R) is set to basic cycle time (7) found in equation (3.3). Then review
interval of each item (Ry) is determined as an integer multiple, my, of the basic cycle
time (7). That is, item £ is reviewed every myT periods of time and replenished up to
its order-up-to-level, S, if its inventory position is less than or equal to s;. The
average order size found as Or =mDyT* | which is an approximation for the
amount of replenishment for item %. That is, it approximates the difference between
the order-up-to level of item £, S;, and the inventory position of item £, if an order is

given for the item at its review time.

3.3. Mathematical Model for the Multi-Item Integrated

Location/Inventory Problem
The following notation is used in the model formulation:

Indices:

k: index for the set of items (k= 1,...,K)

i index for the set of retailers (i = 1,...,])

J: index for the set of candidate DC locations (f = 1,...,J)

Parameters:

f;+  fixed annualized cost of locating a DC at candidate location j, for each jeJ
dy ©  unit cost to ship item & from the DC located at candidate location j to retailer

i, foreachiel, jeJand keK
unit cost to ship item % from the supplier to the DC located at candidate

location j, for each jeJ and ke K

M- mean annual demand of item k at retailer i, for each ie/ and keK
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oy . variance of annual demand of item £ at retailer i, for each ie/ and keK

L;:  lead time (in years) from the supplier to the DC located at candidate location
J, for each jeJ

hy: inventory holding cost per unit of item % per year, for each keK

4;:  major ordering cost at the DC located at candidate location j, for each jeJ

ai;©  minor ordering cost of item £ at the DC located at candidate location j, for

eachjeJ and keK
a, . desired probability of not stocking out at a DC for item £, for each keX

«,:  Standard normal deviate such that P(z <z, ) =qy , for each ke K

Decision variables:

1, ifaDC islocated at candidate location j
0, otherwise

{ 1, ifretailer i is served by a DC located at candidate location j
ij -

0, otherwise

The mathematical model representing the multi-item integrated location/inventory

problem is as follows:
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J J I K J 1 K
Minimize ZfJXJ+ZZZdyk/‘zk +ZZchk,u,k
j= j=li=1 k=1 j=li=1k=1
J K 1 ) J K /
Z Z hkzak Z LiopY; + Z Z 2Rkjhk Z Yy (3.6)
j=lk=1 i=1 j=lk=1 i=1
subject to J
>y, =1 Vi 3.7
j=1
Y, <X, Vi, (3.8)
X. {0, vj (3.9)
e {0, Vi, j (3.10)
where Ry =4;+ay ,ifkisbaseitem for DC candidatej (3.11)
Ry =ay

, if not

(3.12)

In the notation and the model above, the time horizon of the model is assumed to be

one year. The objective function (3.6) minimizes the sum of fixed cost of locating

distribution centers, inbound and outbound transportation costs, safety stock costs

and the joint ordering and average inventory costs. The first term in the objective

function represents the annualized fixed cost of locating distribution centers. The

second and third terms represent the variable shipment costs of transporting the

items from the distribution centers to the retailers, and from the supplier to the

distribution centers, respectively. The fourth term in the objective function

represents the cost of safety stock inventory held at the distribution centers to
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maintain a fill rate of oy for item k. Finally, the last term represents the joint
ordering and average inventory costs. This includes the fixed cost of placing an
order at the DCs from the supplier and cost of holding inventory at the DCs. The
joint cost of ordering for multiple items is represented by the inclusion of the
conditions on the Ry; variable to the model (Equations 3.11 and 3.12). Ry; is equal to
the sum of major and minor costs for the base item while it is equal to the minor cost

only for all the other (nonbase) items.

Constraints are the same as those of a classical uncapacitated fixed charge facility
location problem. Constraint (3.7) requires each retailer to be assigned to exactly
one DC. Constraint (3.8) prevents a retailer from being assigned to a DC unless it is

opened. Finally, constraints (3.9) and (3.10) are standard binary constraints.

The model above (3.6-3.10) is a non-linear integer programming model. Our aim is
to make location/allocation decisions simultaneously with inventory decisions by
using this model. The first two terms of the objective function and the constraints
are structurally identical to those of the uncapacitated fixed charge facility location
model. However, the non-linear terms, which represent the safety stock inventory
and joint ordering and average inventory costs, increase the difficulty associated
with solving this model. Despite the difficulties imposed by the nonlinear inventory
costs, Daskin, Coullard and Shen (2002) develop an efficient Lagrangian-based
solution procedure for their single-item integrated location/inventory model by
further simplifying their model with the assumption that the variance-to-mean ratio
of demand at each retailer is the same. In fact, the model formulated above is very
similar in structure to the integrated location/inventory model presented by Daskin,
Coullard and Shen (2002); however, the joint replenishment policy that is used to
represent the inventory costs for multiple items in this study results in some
structural differences between the two models. The addition of the implications of
the joint replenishment policy in the model brings the requirement of the
determination of the base items for each DC to be located. In order to find which
item is a base item for a DC, we should evaluate the ratio that is used to find the

base items, according to the JRP heuristic explained in section 3.2.2. In order to
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evaluate this ratio, we need to know the amount of demand assigned to each DC for
each type of item, which is dependent on the selected DCs and the assignments of
the retailers to these DCs. It would be possible to find the base items endogenously
by revising the model with the addition of some binary variables and constraints;
however, this would result in a more sophisticated model, which would be very hard

to solve.

These complications necessitate the development of a solution algorithm, which
allows the evaluation of the joint replenishment policy at the DCs. Some heuristic
based solution procedures are used to solve this problem, which is explained in the

following chapter.
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CHAPTER 4

SOLUTION APPROACH

The difference between the multi-item location/inventory model and the traditional
uncapacitated fixed charge facility location model stems from the inclusion of
inventory cost terms into the former. The nonlinear terms in the objective function
of the non-linear integer programming model that we formulate for the multi-item
integrated location/inventory problem increase the difficulty in developing an
optimal-seeking approach for this model. One of the difficulties stems from the fact
that, the demand that is seen by each DC is a function of the demand at the retailers
that will be assigned to that DC. Also, the multi-item inventory policy to be
implemented at a DC is dependent on the demand seen at the DC, and therefore on
the retailer assignments to the DC. In order to solve the integrated model by taking
into account the cost implications of a joint replenishment policy at the DCs, we
need to apply the JRP heuristic, and determine the base items at each DC candidate
site. The determination of the base items through the JRP heuristic requires us to
know the demand covered by each DC for each type of item. Therefore, in order to
evaluate the cost terms related to the joint ordering policy, the solution approach
should allow for the application of the JRP heuristic to specify the base items at each
DC candidate.

As an alternative solution methodology, a sequential approach could be developed to
solve the integrated location/inventory model. In this approach, the number and the
location of the distribution centers and the retailer assignments could be determined
first using a multi-item location/allocation model, without considering the inventory

costs. Then the rest of the problem is reduced to finding the optimal joint
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replenishment inventory policy to be adopted at the distribution centers given the
distribution of the demand at the distribution centers. Also, the amount of safety
stock inventory to be maintained at the distribution centers could be easily
determined. However, this approach does not find a solution in an integrated way
and ignores the effect of inventory costs in determining the number and location of

distribution centers.

In order to solve this location/allocation model in an integrated way by accounting
for the inventory costs, we looked for the solution algorithms that can accommodate
the complications caused by the type of the cost function and the structure of our
model. In fact, our model is similar in structure to the single-item integrated
location/inventory model presented by Daskin, Coullard and Shen (2002). They
develop an efficient Lagrangian-based solution procedure, which finds the optimal
or near-optimal solutions in reasonable times. However, multi-item characteristic of
our problem results in some structural differences between our model and the single-
item integrated location/inventory model. The inclusion of the joint replenishfnent
policy to our model brings the requirement of distinguishing the items as the base
items and nonbase items for each DC to be located. As explained before, the
determination of the base items requires us to know the amount of demand assigned
to each DC for each type of item, which is dependent on the located DCs and the
assignments of the retailers to these DCs. Since we can not find any exact
optimization procedure that allows us to evaluate the joint replenishment policy
included in our model, we resort to heuristics and develop two heuristic procedures:
improvement type and constructive type heuristics, which are based on some
traditional heuristic algorithms developed for location/allocation problems (Kuehn
and Hamburger, 1963; Maranzana, 1964; Teitz and Bart, 1968; Whitaker, 1985).
Both of the heuristic approaches can handle the difficulties that our model brings
forth. For example, the evaluation of JRP heuristic to find out the base items
becomes possible by defining a demand coverage area around each distribution
center candidate; that is, by forming clusters. The heuristics will be explained in the

following sections in detail.
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4.1. Improvement Type Algorithm

Improvement type heuristic algorithms generally start with a feasible solution and
iterate to obtain a better solution. Our improvement type algorithm has some
similarities with the neighborhood search algorithm developed for the classical p-
median problem by Maranzana (1964). In that neighborhood search algorithm, any
feasible solution or specifically a set of p facility sites is chosen and the demand
nodes are assigned to their nearest facility. Set of nodes assigned to a facility forms a
cluster around that facility. Then, 1-median problem is solved optimally within each
cluster by enumeration. Afterwards the procedure is iterated with the new location of

the facilities and clusters until no more changes in the assignments occur.

Our improvement type algorithm starts with a feasible solution in which a number of
distribution centers are located and retailers are assigned to these distribution

centers. Each distribution center with the retailers assigned to itself form a cluster.

Initial clusters are obtained using two methods in our improvement type algorithm.
One of them is solving a p-median problem for the overall network. Then the
facilities located by the p-median problem and the retailers assigned to the located
facilities form p clusters. In this way, the initial clusters are formed considering only
the transportation costs between the distribution centers and the retailers and
ignoring the other costs. Since the initial allocation, obtained by p-median solution,
defines the amount and the composition of the demand covered at each of the p
clusters, the inventory costs under the joint replenishment policy and all other costs
can be easily computed for a distribution center to be located in a specific cluster.
Then, a single facility location/inventory problem is solved in each cluster by
enumerating for all the candidates of distribution centers in the cluster. The solution
given by the single facility location/inventory problem is expected to be different
from the initial one obtained by the p-median problem, since the former considers all

logistics costs while the latter accounts for only the outbound transportation costs.
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The other method that is used to initialize the algorithm is using a series of randomly
generated set of clusters. The solution procedure followed after the generation of the
initial clusters is the same for the randomly generated clusters as in the cluster
formation by the p-median problem. The only difference between using the p-
median solution and random clusters is that the overall algorithm is run only once
when it is initialized by using the clusters generated by the p-median problem. On
the other hand, using the randomized set of clusters requires the algorithm to be
applied for each random set, and the best objective function value obtained by any of

these initial random clusters is selected as the solution.

After forming the initial clusters and then solving a single facility inventory/location
problem in each cluster, a series of improvement procedures, namely remove and
exchange procedures, are implemented to improve on this initial solution. By using
these procedures, the solution is improved by reallocating the retailers to different
clusters and updating the solution when an improvement in total cost is obtained.
Remove and exchange procedures are implemented until there is no improvement
opportunity in total cost. Then, the location of facilities and the retailer assignments
in each of the p clusters that result in minimum cost is determined at the end of these

improvement procedures.

Since the number of distribution centers to be located is indeterminate at the
beginning in this problem, like in the uncapacitated facility location problem this
overall procedure should be implemented for each possible number of facility
locations until the best objective function value is achieved. That is, the algorithm
starts with forming only one cluster at the beginning and continues by increasing the
number of clusters by one at each iteration. The minimum objective function value
attained at each iteration is compared to that of the previous iteration, and the
algorithm terminates after the iteration when the objective function value starts to

increase.
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The flowchart of the improvement type algorithm showing the main steps of the
algorithm is provided in Figure 4.1.

Set z, to a very large number
Set p=1

—> v

Initialization-0: Generate p clusters
(p-median/randomized)

v

Initialization-1: Solve one-facility problem in each
cluster considering all relevant costs

- Choose the DC that minimizes total cost for the cluster

- Obtain initial objective function value (z,)

v

Remove procedure
(Perform until no improvement)

Increase the number of ‘
clusters (p) by 1

Exchange procedure
(Perform until no improvement)

Check-1:
Any improvement in z, or
any change in the set of
distribution centers?

YES

STOP

Figure 4.1: Flowchart of the Improvement Type Algorithm

After this introduction for the improvement type algorithm, the main steps of the

algorithm will be explained in detail below:
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Step 0.
The number of clusters (p) is set to 1 and the objective function value, z,.1, is set to a

very large number at the beginning of the algorithm.

Step 1. (Initialization-0)
Any p locations among retailers are chosen as distribution centers. Each distribution
center located and the retailers assigned to it form a cluster. As mentioned before,

the clusters are generated using two different methods:

o  Generating a set of random clusters: In this case, p clusters are generated

randomly by assigning each retailer in the system to one of the p clusters
arbitrarily. For a certain p, one can choose the number of different random
cluster sets to be generated in the algorithm by considering the tradeoff
between the solution quality and the computation time. Since the
improvement algorithm should be implemented for each of the random set of
clusters, the solution time increases as the number of different random sets
generated is increased. However, it can be expected that the chance of
achieving a better solution increases when the algorithm is applied to as

many different random configurations as possible.

o Solving a p-median_problem: In this clustering method, the network is

divided into p clusters by solving the traditional p-median problem. The p-
median problem minimizes the sum of demand-weighted transportation costs
incurred between the distribution centers and the retailers. While solving the
p-median problem, we assume that the unit transportation cost does not
depend on the type of the item, and the demand for all items at each retailer
is expressed in terms of a unit such as kilograms or liters in order to adapt the

p-median problem to our multi-item environment.

Figure 4.2 shows an illustration for the configuration of a clustered network for p=5.
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W : Retailer that acts as DC : Retailer

Figure 4.2: An example for clustering of retailers for p=5

Step 2. (Initialization-1)

As explained in the previous step of the algorithm, one way of obtaining p initial
clusters is solving a p-median problem, which considers only the transportation costs
between DCs and retailers. However, our model also includes some additional costs:
safety stock, joint ordering and average inventory costs, and inbound transportation
costs. When the clusters are generated randomly, on the other hand, cost terms, even

the outbound transportation costs, are not taken into account.

In step 2, first, we solve a single facility multi-item integrated inventory/location
problem in each cluster, which considers all cost components. Since only one
distribution center is to be located in each cluster, the solution is obtained by
enumeration. That is, a distribution center is located at each candidate retailer site
one at a time, and all other retailers in the cluster are assigned to that distribution
center. Since the total amount of demand for each type of item is known and fixed
for each cluster, the ratio that is used to find the base item can be evaluated at each
candidate facility location. After computing the total cost incurred at each cluster
for each distribution center candidate, the candidate that gives the minimum cost is
selected as the distribution center of the corresponding cluster. The sum of the costs
incurred at each cluster gives us the initial objective function value (z,). The detailed

flow chart for Step 2 is provided in Figure 4.3.

54



Choose a cluster among p clusters

v

<

Find the total demand at the cluster for each type of item

v

Choose a candidate facility location in the cluster and set it as a DC <+—

v

Assign all the retailers in the cluster to the DC of the cluster

v

Compute the base-item ratio for each item and choose
the item with the smallest ratio as the base item

v

Calculate:

-Joint ordering and average inventory costs
-Safety stock costs
-Shipping cost between the DC and the other retailers in the cluster

-Shipping cost between the DC and the supplier

v

Calculate the total cost of opening a
DC at the chosen candidate location

ach candidate facility

NO

location in the cluster
onsidered as a DC?

Locate the DC at the candidate site with

the minimum total cost for the cluster

STOP

v

All clusters considered

NO

in the network?

Calculate the total cost and
set it as the initial objective
function value (z;)

Figure 4.3: Flowchart of the 2" Step of the Improvement Algorithm
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Step 3. Remove Procedure

After obtaining the initial feasible solution and the objective function value for the
integrated location/inventory problem, the algorithm then follows a series of
improvement procedures. With the facility locations and their respective clusters

obtained in the previous step, the algorithm first carries out a removal procedure.

The removal procedure considers the removal of one retailer from one cluster and
addition of it to another cluster. Different ways of implementation (strategies) can be
applied for the removal procedure while determining the order of retailers to be
considered for removal and the order of clusters to be evaluated for the addition of
that removed retailer. In this algorithm, the clusters are considered sequentially for
the removal of a retailer, and the retailer is added to a new cluster at the first
instance when an improvement opportunity in the objective function is obtained.
That is, a ‘first improvement strategy" is applied in the remove procedure. The
process is carried out for every retailer in all the clusters until there is no room for
improvement in the objective function value by the reallocation of the retailers

among the clusters.

A new iteration for the removal procedure starts by considering the first cluster of
the network for the removal of its elements (retailers). Then a retailer is chosen and
removed from the cluster. Since the total cost of the cluster and the location of the
distribution center may change with the removal of the retailer, the single facility
location/inventory problem is solved for the cluster, and then both the total cost and
the location of the distribution center are updated. Then another cluster is considered
for the addition of the removed retailer and the retailer is assigned to the new cluster.
The single facility location/inventory problem is also solved at this new cluster to
account for the possible changes that can occur due to the addition of the new
retailer. Then the change in the objective function value due to the reassignment of
the retailer is calculated. If there is an improvement in the objective function value,
the reassignment of the retailer is realized and the process continues on this
improved solution. Otherwise, the reassignment of the retailer is not performed and

the retailer remains in the cluster it was assigned to at the beginning of the iteration.
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This procedure continues until all the retailers in the cluster are considered for
removal. After all the retailers in a cluster are evaluated for an improvement, the
next cluster in the network is considered for the removal of its elements. The
algorithm does not allow the removal of all the retailers of a cluster; that is, the
removals are performed subject to the constraint that each distribution center serves
at least its own local demand so that p distribution centers are maintained in the
solution. At the end of the first iteration, when all the clusters are evaluated for
removal of their elements, it is checked whether any change has occurred during the
last iteration in terms of the locations of the distribution centers at each cluster or the
objective function value. If one of these changes has occurred with respect to the
previous iteration, the algorithm starts a new iteration by considering the first cluster
in the network again for removal of its elements. If nothing has changed compared
to the previous iteration, the remove procedure is stopped. Then using the network
configuration obtained at the end of the remove procedure, the algorithm follows an
exchange procedure. The flowchart for the remove procedure is provided in Figure

4.4.

Step 4. Exchange Procedure

In the exchange procedure, each retailer in each cluster is considered for an
exchange with a retailer located in a different cluster. The exchange of the retailers
between clusters is realized, if the resultant configuration decreases the objective
function value. The strategy followed in the exchange procedure is the 'best
improvement strategy’. In the best improvement search strategy, all the possible
exchanges are evaluated for a particular retailer and the exchange that improves the
objective function most is performed. The algorithm continues until there is no

improvement opportunity by exchanging elements between clusters.

A new iteration for the exchange procedure starts with the first cluster of the
network for the exchange of its elements. Then a retailer, which will be considered
for an exchange with another retailer, is picked from the cluster. Now, we try to find
another retailer in a different cluster whose exchange with this chosen retailer

improves the objective function most. In order to find this retailer, we consider all
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Start a new remove iteration <<

v

> Consider a cluster for the removal of its retailers

v

v

Solve the single facility problem and update the cost
and the DC of the cluster whose retailer is removed

v

—pp| Consider another cluster for the addition of the removed retailer

v

Add the retailer to the cluster

v

Solve the single facility problem and update the cost
and the DC of the cluster to which the retailer is added

NO
Check the change in objective function

value (z,). Any improvement in z,?

YES

Choose a retailer in the cluster and remove it from the cluster 4—

Realize the removal and
the addition of the retailer

All clusters considered
for the addition of the

retailer?

All retailers of the cluster
considered for removal?

NO

All clusters
considered for the removal of
their elements?

NO

YES

‘Any improvement/change

during last iteration?

STOP
(end of the remove procedure)

Figure 4.4: Flowchart of the Remove Procedure
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the clusters of the network sequentially for the exchange of their elements. After
selecting the second cluster, each retailer in this cluster is considered for an
exchange with the retailer in the first cluster. While evaluating each of these possible
exchanges, the effect of the exchange on the total cost is computed. In order to do
that, a single facility location/inventory problem is solved in the clusters whose
elements are being exchanged. Then it is checked whether there would be any

improvement in the objective function value if the exchange were realized.

The exchange procedure continues in this way by considering every element of all
the clusters for an exchange with a particular retailer and calculating the cost of a
possible exchange. After all the possible exchanges for a retailer are evaluated, the
exchange, which improves the objective function value most, is realized. If any
improvement opportunity in the objective function value can not be recorded for a
particular retailer, next retailer in the cluster is considered in turn. When an
exchange is realized, the process continues by considering a new retailer on the
improved solution. The iteration is terminated when all the retailers have been
considered for an exchange. After the iteration is over, the algorithm checks whether
there exists any change in the network configuration or the objective function value
with respect to the previous iteration. If one of these changes has occurred, another

exchange iteration is started; otherwise, the exchange procedure is terminated.

The remove and the exchange procedures are iterated in our improvement type
algorithm. That is, if any exchange is realized during the exchange procedure, the
algorithm applies the remove procedure again to improve the objective function

further.

The flow chart of the exchange procedure is provided in Figure 4.5.

Step 5.
After the remove and exchange procedures are implemented, the improved objective
function value for the p clusters (z,) is obtained. This minimum objective function

value attained is then compared to that of the previous iteration (z,.1). If z; is greater
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Start a new exchange iteration k
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Consider a cluster for the exchange of its retailers
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Find the effect of the exchange
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NO All clusters
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Figure 4.5: Flowchart of the Exchange Procedure
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than z,.;, the algorithm is terminated, since this means that opening one more
distribution center increases the total cost of the distribution system. If we obtain a
smaller objective function value, the algorithm proceeds with a new iteration by
increasing the number of distribution centers (clusters) by one. Note that, if the
algorithm is initiated with the method of generating random set of clusters, the new
iteration starts after the improvement procedures are applied to all the initial random
clusters. That is, the objective function value for a particular p number of clusters is
obtained by implementing the algorithm (Step2 - Step 4) for each random cluster set,

and choosing the one that gives the best objective function value.

4.2. Constructive Type Algorithm

The constructive type algorithm that we develop to solve our problem takes its basic
idea from the heuristics developed for the location/allocation problems with
nonlinear warehousing costs. Although the range of previous work on location-
related problems is quite extensive, comparatively less attention has been paid to
warehouse location problems in which nonlinear warehousing costs are a significant
determinant of optimal warehousing configurations (Whitaker, 1985). Some of the
authors who propose heuristic procedures for solving warehouse location problems
with non-linear costs are Kuehn and Hamburger (1963), Feldman, Lehrer and Ray
(1966), Kelly and Khumwala (1974), and Whitaker (1985). These studies all assume
that the warehousing cost function is concave in the warchouse throughput; that is,
they use cost structures where the transportation rates and the marginal cost of
operating a warehouse decrease as the quantity of goods handled by the warehouse
increases. The heuristic type algorithms developed in these studies are said to
accommodate any type of warehouse operating function, but computational
experiments are reported on the problems where these costs are non-linear and
continuously concave over the range of warehouse sizes. Heuristic techniques can
generate near optimal solutions to large-scale warehouse location problems having

continuous concave warehousing cost functions (Feldman, Lehrer and Ray, 1966).
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In the problems with the concave warehousing costs, the trade-off is between the
warehouse operating costs and the transportation costs. Because big warehouses are
more efficient than small ones, total warehousing costs rise as the number of
warehouses is increased. Since shipping costs fall as the number of warehouses is
increased, the problem of minimizing total cost is to find the balance between
warehouse costs and transportation costs (Feldman, Lehrer and Ray, 1966). The
same trade-off exists in our problem; we are trying to find the optimal balance
between the transportation costs and the inventory and facility location costs. The
analysis of a variety of inventory policies suggests that inventory costs are also
generally approximately concave in demand (e.g., the basic EOQ model) or
throughput (Schwarz, 1981). Therefore, we can say that our problem is similar in
structure to the problems in the literature that include nonlinear warehousing

operating costs in their models.

Another characteristic of concave facility costs in location/allocation problems is
that, in the absence of constraints on capacity, the optimal allocation for fixed
locations is an extreme point. This implies that in a distribution setting all demand in
a given location should be served by a single source of supply (Feldman, Lehrer and
Ray, 1966). In our integrated location/inventory model, we also assume the
existence of the single source constraints such that a retailer should be entirely

serviced by one and only one distribution center.

The constructive type algorithm we develop to solve our problem shows similarities
with the efficient heuristics developed for the location/allocation problems with
nonlinear concave costs. We are particularly inspired by the algorithm developed for
the non-linear warchouse location problem by Whitaker (1985), which solved 27 of
the 48 problems with lower objective function values than those with the branch and
bound algorithm of Khumwala and Kelly (1974). Moreover, the solutions reported
for the remaining 21 problems were not worse off than the branch and bound
algorithm's optimal solution values. Although the algorithm of Whitaker (1985) is
stated to be flexible with respect to the kind of warehousing cost function allowed

and can accommodate widely varying cost structures and parameters among the
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different warchouse sites, the problems with more complex structures may cause the
same algorithm to terminate at some distant local minimum point in the total cost
curve. The location model in Whitaker (1985) has only one non-linear cost term
objective function. Our multi-item integrated location/inventory model can be
considered as more complex than that of the Whitaker (1985), since it has two non-
linear cost terms in the objective function. Therefore, we adopt a similar algorithm
but at the same time we implement different strategies at various levels to increase

the algorithm's performance.

Our constructive type heuristic algorithm builds a solution from scratch by locating
distribution centers one at a time until the cost of adding one more distribution
center increases the total cost of the system. The algorithm starts with zero open
facilities, and it adds one more facility to the solution set at each iteration. At the
beginning of the algorithm, a single facility location/inventory problem is solved for
the overall network by calculating the total cost of locating a distribution center at
cach candidate location and assigning all the retailers to that particular candidate,
that is, by using enumeration. Then the first distribution center is located in such a
way as to minimize the total distribution costs. In this way, the solution and the
objective function value (z;) for 1-cluster network are obtained. Afterwards the
algorithm proceeds by adding the second distribution center to the solution set. In
order to find the second facility whose addition to the solution set reduces the total
costs most, we have to evaluate each candidate location that is not currently in
solution. After this evaluation, the distribution center whose addition to the solution
set results in the lowest cost solution is chosen as the second site, thereby
incrementing the number of clusters and facilities (p) by one. After adding a new
distribution center to the open set and increasing the number of clusters by one, a
series of improvement procedures is implemented on the solution, namely
reallocation and interchange procedures, to improve on the initial solution set
obtained. Briefly, the reallocation procedure evaluates the total cost impact of
removing a retailer node from the distribution center to which it is already assigned

and transferring that retailer's demand to another open distribution center. The
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reallocation procedure has the same objective as the remove procedure in the
improvement type algorithm, but the algorithm proceeds in a different manner,
which will be explained in detail later. After the reallocation procedure is
terminated, the interchange procedure is implemented. At each iteration of the
interchange procedure, a distribution center candidate not currently in solution is
added to the open set, replacing a member of that set. The interchange procedure
used in our algorithm is not a simple pairwise exchange in which unopened
distribution center sites are systematically switched with opened facilities, as
described by Teitz and Bart (1968). During the course of interchange iteration, there

may be multiple additions to and deletions from the open set.

The reallocation and interchange procedures are iterated after the addition of a new
distribution center until there is no chance of improvement in the objective function
value. Then the improved objective function value attained for p clusters, (zp), is
compared to the one obtained in the previous iteration, (z,.1). If z, exceeds z,, the
algorithm is terminated. Otherwise, the algorithm starts a new iteration by increasing

the value of p by one.

There are two main differences between our constructive type algorithm and the
algorithm described by Whitaker (1985) for the non-linear warehouse location
problem. For a particular p number of clusters, Whitaker (1985) applies only the
reallocation procedure to improve the initial solution. Then after solving a series of
problems for the increasing value of p until the point where the total cost is started to
increase, he applies the interchange procedure to a range of solutions around this
point. In our algorithm, on the other hand, the interchange procedure is applied
systematically to each increasing value of p throughout the whole range of possible
median problems. Other difference between the two algorithms is related to the
search strategies used in the reallocation procedure. We use the 'best improvement

strategy' instead of the 'first improvement strategy' that is used by Whitaker (1985).

The flowchart showing the main steps of the constructive type algorithm is provided
in Figure 4.6.
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Step 1.

- Solve one-facility problem for the whole
network considering all relevant costs

- Choose the DC that minimizes the total cost
- Obtain objective function value for p=1

Step 2.

- Add a new DC to the solution set, whose
addition results in minimum total cost

- Increase p by 1

- Obtain initial objective function, z,

v

Improve z, by implementing
Reallocation procedure

v

Improve z, by implementing
Interchange procedure

YES

STOP

Figure 4.6: Flowchart of the Constructive Type Algorithm

The main steps of the algorithm are explained in detail below:

Step 1.

The algorithm is initialized by solving a single facility location/inventory problem
for the whole network. Each candidate facility is considered as a distribution center
one at a time, and all the retailers in the network are assigned to that candidate
facility. Then the cost implied by each of these configurations is calculated. The
initial distribution center chosen is the one that minimizes total logistics costs on the

network, which include transportation costs, fixed costs, safety stock inventory
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costs, and the joint ordering and average inventory costs. In this way, we obtain the

objective function value for having one distribution center in the system, z,.

Step 2.

In this step, the number of distribution centers (p) is incremented by one. The
distribution center to be added to the solution set is determined by executing the
following steps. Each candidate distribution center site, which is not currently in the
solution set, is considered in turn. Retailer demands are reassigned to the candidate
site from some member of the current solution set if closer on the basis of outbound
transportation costs alone and this reassignment process defines a demand coverage
area (cluster) of each distribution center. Therefore, total distribution costs,
including transportation, fixed, and inventory costs, can be computed in a cluster.
This step is repeated for each candidate facility location, and the facility whose
addition to the set results in the lowest total cost solution is initially chosen as the

new site.

Step 3. Reallocation Procedure

This step attempts a further allocation of customers among the open distribution
centers set. The clustering performed in the previous step of the algorithm is based
only on the outbound transportation costs. The reallocation mechanism tries to
improve the initial objective function value by evaluating the total cost impact of
removing each retailer from the facility to which it is already assigned and
transferring that retailer's demand to one of the other open facilities. 'Best
improvement strategy' is followed in the reallocation of the retailers. That is, the
reassignment, which reduces the objective function most, is realized for a particular

retailer after all the possible reassignments are evaluated.

The reallocation procedure is composed of two sub-steps, which iterate to improve

the objective function:

Step 3.1. The reallocation procedure starts with selecting the first cluster of

the network for the removal of its elements. Then a retailer is chosen and removed

66



from its cluster. Afterwards another cluster is considered for the addition of the
removed retailer and the retailer is assigned to the distribution center located at this
cluster. In order to find the effect of the reallocation of the retailer from one cluster
to the other on the objective function value, the cost at both of the clusters is
recalculated. This process is repeated by considering the reassignment of the retailer
to all the clusters in the network and computing the effect of each reallocation. Then,
the most profitable reassignment is realized for the retailer and the process continues
on the improved solution by considering a new retailer for reallocation. After all the
retailers in a cluster are evaluated for the reallocation process, the next cluster is
considered in turn. This step is cycled until no further reassignments are possible, by
ensuring that each facility serves at least its own demand so that p facilities are

maintained in solution.

Step 3.2. The set of distribution centers located in each cluster is not
changed during the process explained in Step 3.1. However, since the content of a
cluster changes with the reassignment of retailers among clusters, the distribution
center of each cluster may also change. In this step, the open facility for each cluster
is updated to take the effect of the new configuration of the clusters into account. A
single facility location/inventory problem is solved in each cluster and the candidate
facility, which minimizes the total cost in a cluster, is chosen as the distribution
center. If there is any change in the open facility set, the algorithm returns to Step

3.1 to evaluate further possible adjustments to the current assignment of the retailers.

Steps 3.1 and 3.2 are cycled through to a stable solution, which terminates the
reallocation procedure. Figure 4.7 illustrates the reallocation procedure in detail. The
algorithm proceeds by applying the interchange procedure to improve on the

objective function value (z,) obtained after the reallocation procedure.

Step 4. Interchange Procedure
In the interchange procedure, each candidate site, which is not in the solution
set, replaces a distribution center, which is in the open set at the end of the

reallocation procedure. As stated before, the interchange procedure in this algorithm
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{
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‘
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v
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Find the change in objective function value

v
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NO All retailers of

the cluster considered
for removal?
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elements?

YES

NO

YES
facility location/inventory problem

Find the DC of each cluster by solving a single

NO

Any
change in the open
DC set?

STOP
(end of the reallocation procedure)

Figure 4.7: The Flowchart of the Reallocation Procedure
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does not proceed by interchanging the closed and open facilities after checking the
effect of their exchange on the objective function, one at a time. During the
algorithm, there may be multiple additions to and deletions from the open

distribution center set.

Each iteration of the interchange procedure aims to find the best removal of a
distribution center from the solution set, when the distribution center to be added to
the set is known. The following steps are implemented at each iteration of the

interchange procedure:

Step 4.1. An iteration of the interchange procedure starts with the addition of
a candidate location, call it k, which is not currently in the solution, to the open
distribution center set. Then the retailer nodes are reassigned to the distribution
center k from distribution centers, if they are closer to site k on the basis of outbound
transportation costs alone. In this way, the number of distribution centers (clusters)
in the network is increased to p+1. Since we know the amount and composition of
demand at each cluster after forming the clusters, we can calculate the sum of the
distribution costs at each cluster. Then, the initial objective function value for

locating (p+1) distribution centers is obtained.

Step 4.2. The reallocation procedure, explained in Step 3, is implemented in
this part of the interchange algorithm. That is, a test for possible nodal reallocations
among distribution centers in the open set is conducted, considering the total cost
impact of reassigning retailer demands (Step 3.1). Afterwards, the distribution center
of each cluster is updated to take the effect of the retailer assignments (Step 3.2). As
before in the reallocation procedure, these two steps are cycled to a stable solution,
except that an additional constraint is added preventing the distribution center £ from
dropping from solution, and maintaining it at all times as the facility of cluster k. For
cluster k, we only update the distribution cost due to the retailer reassignments by

fixing the open facility of this cluster.
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Step 4.3. Since there are (p+1) distribution centers in the open set, one
cluster must be eliminated and its retailers are distributed among the other facilities
in solution. For each cluster except cluster %, the sum of the difference in
transportation costs between the closest and second closest open distribution center
is computed over all the retailers in the cluster. Then the cluster with the minimum
such cost is eliminated from the solution, and the both retailers and the distribution
center of this cluster are reallocated to the next nearest distribution centers.
Afterwards the single facility location/inventory problem is solved in each of the p
clusters remaining in the solution, including cluster &, and the distribution center

located in each cluster is updated.

Step 4.4. For p clusters and their corresponding distribution centers, the
reallocation procedure is reapplied. This step proceeds in the same way as Step 4.2
does, except that the constraint on maintaining distribution center k£ as the open

facility for cluster £ is relaxed in this step.

Step 4.5. In this step, the total distribution cost for the new configuration is
compared to the current solution value, and if it is less, this open facility set of the
new configuration becomes the new distribution center set. Steps 4.1-4.4 constitute
an interchange iteration, and these steps are cycled through for each distribution
center candidate. If we assume that there are m retailers in the distribution network,
which are all distribution center candidates, the interchange algorithm is terminated
after (m-p) iterations have been completed consecutively without improvement to

the solution value. Figure 4.8 represents the flow of the interchange procedure.

We provide the computational results obtained by these algorithms for the multi-

item integrated location/inventory model in the following chapter.
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CHAPTER 5

COMPUTATIONAL RESULTS

In this chapter, we analyze our multi-item joint location/inventory model further by
performing some computations on the problem instances generated. In §5.1, we
introduce the data set we use in the computational experiments and explain how the
necessary parameters of the problem are generated. Then, in §5.2, the computational
results obtained by implementing the improvement and constructive type heuristics
on the generated problem are given and analyzed in detail. Also, we compare the
results obtained by these heuristics and examine their performances for different
cases. Finally, the results of the sensitivity analysis performed to investigate the
effects of inventory and shipping costs, joint order cost, and demand variance on the

results are presented in §5.3.

5.1. The Data Set

We test the heuristic algorithms developed to solve the multi-item integrated
location/inventory model for several problem instances obtained with the data set we
generate. While generating the data related to the problem instance that is used in the
computational testings, we try to do our best to reflect relatively more realistic
conditions. However, there are many parameters in our model that are difficult to
estimate without analyzing actual corporate data; for this reason, we have also
examined the data sets used by similar studies and checked the relations among the
various parameters used in their data sets in order to avoid the inconsistencies

among different parameters at least. Also, the sensitivity analysis performed on a
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variety of cost parameters may compensate for the errors of estimation for these
parameters and provide alternative solutions to account for the changes in

parameters.

For the computational experiments, an 81-node network is used where each node
represents one of the 81 cities in Turkey. The positions of these cities in Turkey map
and their respective codes used through the computations are provided in
APPENDIX A. We assume that there is an aggregated retailer (in terms of demand)
in each of these 81 cities, each of which is also a candidate distribution center. There

is a single supplier that is located in Ankara.

Associated with each of the retailers, random demand is assumed for four different
items. The data for demand mean and variation for the items at each retailer are
generated using the population data based on the 2000 Turkey census. The mean
annual demand for each type of item is obtained by dividing the population of each
city by a different constant and rounding the result to the nearest integer, as
illustrated in Table 5.1. Also, the demand for each type of item is assumed to occur

in kilograms at each demand point (retailer).

Table 5.1: Generation of the Mean Demand at each Retailer for each Type of

Item

Item 1 Item 2 Item 3 Item 4
(Population);/1000 | (Population);/1250 | (Population);/1500 | (Population);/2000

Mean demand
at retailer i

The items are assumed to have different levels of demand variances, which are
generated by defining a coefficient of variation (CV) level for each type of item. The
coefficient of variation is used to express the variation as a fraction of mean. The

CV levels assumed for each item is presented in Table 5.2.
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Table 5.2: CV Levels Set for each Item Type

Item1 | Item2 | Item3 | Item 4
CYV ratio (o/p) 0.2 04 0.4 0.5

We estimate the fixed cost of locating a distribution center in a city based on the
value of land in the city. The 81 cities are divided into three groups according to the
cost of unit square meter land in these cities. The cost of unit square meter land in
each city 1is approximated by arranging the data, published in
http:/fwww.gelirler.gov.tr for the declaration of Turkish property tax levels for the
year 2002. After arranging these data, three different intervals are determined to
estimate the annualized fixed cost of locating a distribution center at each city. Three
such intervals for the annualized fixed cost (in dollars) are generated using uniform

distribution:

e  U[30000, 50000] to represent the nodes with low values of fixed costs,

e U[60000, 90000] to represent the nodes with moderate values of fixed costs,
and

e U[100000, 150000] to represent the nodes with high values of fixed costs,

rounded to nearest integer values.

Unit shipment costs are assumed to be both item type and distance dependent while
formulating our model. However, the unit shipment costs are determined
considering only distances between the cities in our computations; that is,
transportation costs are not differentiated among the item types. Since the demand
for the items is defined in terms of kilograms, unit cost of shipping is obtained by
multiplying the distances between the nodes by unit cost of shipping one kilogram
of item per one kilometer. For purposes of illustration, shipping rates between the
supplier and the distribution centers are evaluated at $0.015 per kilometer per
kilogram whereas the sum of the shipping and delay costs from distribution centers

to retailers is considered to be $0.03 per kilometer per kilogram. The unit cost of
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transporting items from distribution centers to retailers is assumed to be larger than
that of transporting items from distribution centers to retailers in order to take into
account the cost of the shipments that occurs in each city. The distances between the
cities are based on the data provided in http://www.kgm.gov.tr. The distance matrix

used is provided in APPENDIX B.

The lead time from the supplier to each candidate distribution center is determined
according to the distance between the two nodes. The lead time is set to 48 hours for
distances greater than 600 kilometers, and 24 hours for distances less than 600

kilometers.

The level of major ordering cost is assumed to be different among the distribution
center candidates. Major ordering cost at each candidate distribution center location
(A)) is set to a random number drawn from uniform distribution. Also, an amount
proportional to the distance between the supplier and the candidate distribution
center j (distance;) 1s added to these generated values to account for the fixed part of
the shipment cost. The A; values (in dollars) are obtained by computing U[450, 550]
+0.1*(distance;) and rounding the result to the nearest integer. Minor cost of
ordering item type k at a distribution center candidate j, (ay;), is also generated using
uniform distribution and assumed to be dependent on the values of major ordering
cost at a particular candidate. Then, a variables are generated by rounding the

number given by U[A;/20, A;/10] to the nearest integer.

The unit cost (cx) and unit inventory holding cost (hy) parameters for the items are

provided in Table 5.3.

Table 5.3: Unit Cost and Unit Inventory Holding Cost of the Items (in dollars)

Item 1 Item 2 Item 3 Item 4
Unit cost of item 83 116 150 200

Unit inventory holding cost 5 7 9 12
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The unit cost of an item is assumed to be the same at all the retailers. Inventory
holding cost represents all the storage and inventory keeping costs for a particular
type of item, and is dependent on the value of the item. It is computed by using the
equation A=c;*I, and assuming that, the cost in dollars of carrying one dollar of
inventory for one year (I) is equal to 0.06. Also, the inventory holding cost is
assumed to be identical for all the distribution center candidates for the same type of

item.

Lastly, the desired probability of not stocking out at a distribution center, fill rate, is
assumed to be identical for each type of item and is set to 0.975. Then the

corresponding z,, value for this service level is 1.96.

Marse and Roberts (1983) random number generator is used for the generation of all
the random parameters in this problem. Pascal code for this generator is provided by

Law and Kelton (1991).

The problem instance that is generated in this section will be referred to as the ‘base
case’ from this point on. Other problem instances are obtained by modifying the

parameters that are used in the base case.

5.2. Implementation of the Heuristic Algorithms for the Base Case

In order to solve the problem instances created, the improvement and constructive
type heuristic algorithms are both coded in Pascal, and computational tests are
performed on a Compaq Prosignia computer with a 550 Mhz Pentium III processor
and 128MB memory.

5.2.1. The Improvement Type Algorithm

5.2.1.1. Preliminary Results for Initialization
As explained before, the improvement type algorithm is initiated by using the

clusters generated using two methods:
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P-median problem: The p-median problem is solved using SITATION,
which is facility location software that accompanies Daskin (1995). Among
several solution methods offered by SITATION to solve the p-median
problem, we choose the Lagrangian relaxation approach as the solution
method.

Random generation: Marse and Roberts (1983) random number generator is

used for assigning the retailers to p clusters arbitrarily, and forming
randomized clusters. As stated before, the number of the random cluster sets
may affect both computation times and solution quality. Therefore, some
preliminary runs are performed in order to decide on the number of random
sets to be generated and used in the improvement type algorithm

computations to solve the multi-item location/inventory problem.

The initial results obtained for the base case by implementing the improvement type

algorithm, which is initialized by using the clusters generated by the p-median

problem and also randomly, are provided in Table 5.4.

Table 5.4: Some Preliminary Results Obtained by the Improvement Type

Algorithm
clustering by p-median
p initial obj. func. obj. func. (last) rand (50) rand (200) difference(50&200)
1 3,049,318.525 3,049,318.525 3,048,318.525 3,049,318.525 0.000%
2 2,963,248.887 2,904,335.032 2,878,728.838 2,878,728.838 0.000%
3 2,838,092.511 2,768,547.666 2,752,651.622 2,743,029.411 0.350%
4 2,714,194.855 2,667,121.307 2,639,629.141 2,639,629.141 0.000%
5* 2,675,368.875 2,553,300.023 2,553,300.023 2,553,300.023 0.000%
6 2,678,427.079 2,557,337.551 2,557,337.551 2,557,337.551 0.000%
7 2,676,800.023 2,568,799.707 2,568,799.707 2,568,799.707 0.000%
8 2,647,764.362 2,589,165.899 2,590,094.593 2,590,049.878 0.002%
9 2,716,500.417 2,618,814.864 2,614,170.312 2,600,386.504 0.527%
10 2,717,875.663 2,631,232.117 2,632,040.900 2,614,837.160 0.654%
11 2,755,924.438 2,673,692.370 2,641,593.525 2,641,548.810 0.002%
12 2,795,366.582 2,700,332.423 2,674,921.372 2,663,809.727 0.415%
13 2,841,316.718 2,728,642.416 2,695,400.564 2,687,406.591 0.297%
14 2,863,434.727 2,747,583.327 2,730,039.875 2,722,793.928 0.265%
15 2,917,834.425 2,775,176.910 2,752,285.819 2,751,208.598 0.039%
computation time (in seconds) | 25 [ 1657 6598 |
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In order to test the algorithm's performance with respect to the sample size of the
randomly generated clusters, two different sets consisting of 50 and 200 random

initial solutions are used.

The first column of Table 5.4 represents the number of clusters or the number of
distribution centers located in the network (p). The second column includes the total
cost values, which are calculated by using the solutions of the p-median problem for
each value of p. In other words, the values in the second column corresponds to the
total logistics costs, if one makes the strategic location/allocation decisions for the
base case according to the solutions of the p-median problem, which considers only
local delivery costs. The objective function values achieved after the implementation
of the improvement procedures on the initial solutions of the p-median problem are
represented in the third column. Finally, the fourth and fifth columns include the
minimum objective function values obtained after implementing the improvement
procedures to different random initial cluster sets with samples sizes 50 and 200,

respectively.

As explained before, the algorithm is designed to terminate at the point where the
objective function value starts to increase. According to the results presented in
Table 5.4, it is seen that there is an increase in the objective function value when the
value of p is incremented from S to 6. That is, the results obtained for each of the
starting solutions suggest that we open 5 DCs with a cost of approximately $2.5
million. Although the algorithm must be terminated after seeing that the objective
function starts to increase when the number of DCs is increased to 6, we run the
algorithm for the p values up to 15. The main reason for the additional runs is to
observe the progress of the objective function value after the point it starts to
increase, and to be sure that the best objective function value we achieved is the
minimum value we can achieve during the course of the algorithm. According to the
results presented at the table above, we have not ever come up with a situation in
which the objective function value decreases again after attaining the minimum

point. We should note that the computation time declared in the table corresponds to
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time that is recorded at the point where the objective function starts to increase for

all three cases.

The preliminary results indicate that using randomized clusters as the initial solution
to start the improvement type algorithm gives lower objective function values most
of the time when compared to the improved values obtained from p-median initial
solutions. Also, it is observed that better solutions are obtained as the sample size of
the random clusters is increased from 50 to 200. However, the results obtained by
running the algorithm with 200 random clusters are better than the results obtained
by 50 random clusters at most 0.654%, which has occurred at p=10. Considering the
time and quality trade-off, we choose to use 50 randomly generated clusters and p-
median clusters to initiate the improvement type algorithm for further runs

performed in this study.

5.2.1.2. Evaluation of the Results

After determining the number of the random set of clusters to be generated as 50, we
apply the improvement type algorithm for the base case. The summary of the results
obtained is in Table 5.5. The table includes the objective function values achieved
by applying the improvement procedures to the initial feasible solutions obtained by
the random and p-median clusters as well as the total cost of a p-median solution for

each value of p.

The minimum of the objective function values achieved by applying the
improvement algorithm for randomized and p-median clusters are highlighted. It is
observed that the values obtained by applying the algorithm to randomized clusters
are better than the values achieved through p-median clusters for 14 of the 15 values
of p. However, when we examine the solution times, we see that the application of
improvement procedures to the p-median initial solution resulted in much less time.
This is not surprising; since the improvement algorithm is iterated 50 times when it
is applied to the randomly generated clusters and the best objective function value
ever achieved is selected as the solution. On the other hand, we apply the algorithm

only once when we start the algorithm with the clusters obtained by the p-median
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problem. We should note that, in all the computations we perform, we ignore the
minimal amount of time that passes in solving the p-median problem by SITATION

and generating randomized clusters.

The minimum objective function values obtained by the improvement algorithm
initiated with either randomized or p-median clusters are used to compute the
amount of improvement obtained with respect to the initial p-median solution for
each value of p. The fifth column of the Table 5.5 represents the amount of

improvement in percentages for each p and calculated as follows:

obj. func. value of the min. obj. func. value obtained
( J - [by the improvement algorithmj
obj. func. value of the

p-median solution ]

-medi luti
Improvement percentage (for p) = p-median S0l Eon

Although most of the results for different values of p generated by different
clustering methods are different, the best solution suggested by both methods is
identical. That is, the minimum objective function value attained through two
different clustering methods for the base case is the same. Both results suggest that
we open 5 DCs, namely at Adana (1), Afyon (3), Bing6l (12), Sakarya (54), and
Kirikkale (71). Also, the retailer assignments to the located DCs are the same
according to the results of two solutions obtained. As also observed in Table 5.5, for
the p values less than 5, the solutions for the p-median and random clusters suggest
locating DCs at different locations. Also, the smaller set of opened DCs is not a
subset of the set of opened DCs at the best solution according to the results obtained

by both of the clustering methods.

The location of the opened DCs and retailer assignments are also represented in
Figure 5.1. The retailer assignments to the opened DCs for the base case are
summarized in Table 5.6. Also, the percentage of the total demand covered by each

facility over all four items can be seen in Table 5.7.
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Table 5.6: Retailer Assignments for the Base Case

Facility Assigned Retailers
1 1,2,27,31, 33, 44, 46, 63, 79, 80
3 3,7,9,10, 15, 20, 26, 32, 35, 43, 45, 48, 64
12 4,8, 12, 13,21, 23, 25, 30, 36, 47, 49, 56, 62, 65, 72, 73, 75, 76
54 11, 14,16, 17,22, 34,39, 41, 54, 59, 67, 77, 81
71 5,6, 18, 19, 24, 28, 29, 37, 38, 40, 42, 50, 51, 52, 53, 55, 57, 58, 60, 61, 66, 68, 69, 70, 71, 74, 78

Table 5.7: Percentage Demand Covered by each Facility for the Base Case

Facility Demand Covered
1 12.59%
3 20.13%
12 13.42%
54 27.85%
71 26.01%

The solution that suggests opening 5 DCs corresponds to the point where the total
cost is minimized. When the composition of the costs for each value of p is
examined, the trade-off between different cost components can be defined clearly.
As observed in Table 5.5 and illustrated in Figure 5.2, as the number of DCs located
is increased, the total cost first decreases to some point and then starts to increase.
The convexity of the total cost curve is the result of the behaviors of the cost
components with respect to the number of DCs located. As we locate more DCs, the
outbound transportation costs that occur between the DCs and retailers decrease,
while the inbound transportation costs between the supplier and the DCs increase.
The shipping cost represented in Table 5.5 and Figure 5.2 is the sum of the outbound
and inbound transportation costs. It is observed that when the number of DCs
located is increased, the shipping costs decline as long as the decrease in outbound
transportation costs is more than the increase in inbound transportation costs. On the
other hand, there is an increase in the fixed costs, safety stock costs, and joint
ordering and average inventory costs, as the number of DCs located is increased.
Opening new DCs implies an increase of inventory costs, since larger total inventory

1s held at the DCs.
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Cost vs Number of DCs
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Figure 5.2: Representation of the Costs as a Function of the Number of DCs for

the Improvement Type Heuristic

Figure 5.3 breaks down the total cost of approximately $2.5 million, which
corresponds to opening 5 DCs for the base case, into its constituent parts. According

to the figure, the safety stock inventory and joint ordering and average inventory

Composition of the Costs (Base Case)

Htotal shipping cost

[Ifixed cost

H safety stock cost

Ojoint ordering and average
inventory cost

Figure 5.3: Distribution of the Costs for the Base Case
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costs constitute 1% and 3% of the total cost, respectively. The larger part of the
costs is comprised by the transportation costs and fixed cost of locating distribution

centers.

Solving the p-median problem to generate the initial clusters also gives us the
chance of comparing the solution of our model with the p-median solution.
Comparison of the results of the multi-item integrated location/inventory problem to
the total cost implied by the p-median problem justifies the introduction of the
additional cost terms in our integrated location/inventory model. The results
obtained through p-median solutions suggest opening 8 DCs with a cost of
approximately $2.65 million. Then the overall cost improvement we obtain through
the improvement procedures is 3.57% for the base case. Also, when the retailer
assignments corresponding to the improved solutions are examined, it is seen that it
is better to assign some of the retailers to the non-closest DCs. It means that when
the inventory costs are taken into account, assignment of the retailers to the closest
facility is not always optimal due to the risk pooling effects. For example, 11 of the
81 retailers are assigned to a DC that is not the closest DC for the retailer among the
other open DCs. Assigning these 11 retailers to DCs by only considering local
delivery costs would increase the total costs about 3.5%. Table 5.8 shows the

retailers, which are assigned to non-closest DCs for the base case.

Table 5.8: Retailers Assigned to Non-closest DCs

Retailer Closest DC | DC Assigned
63 12 1
10 54 3
42 3 71
51,70 1 71
24, 28,29, 53, 61, 69 12 71
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5.2.2. The Constructive Type Algorithm

The results obtained for the multi item location/inventory problem by implementing
the constructive type algorithm for the base case is presented in Table 5.9. The
objective function values achieved by the constructive type algorithm for each value
of p is given in the third column of the table. In fact, the constructive type algorithm
could be terminated at the point where the objective function starts to increase.
However, we do not stop the algorithm at that minimum point on purpose in order to
check the changes in the objective function value after attaining the minimum point,
as we also did for the improvement type algorithm. Observing the results of the
constructive type algorithm for the base case, no such instance is observed, in which
the objective function value decreases again after the minimum point. The
computation time of the algorithm presented in the table corresponds to the point

where the objective function value starts to increase.

The total cost of the solution, which is obtained by solving the p-median problem to
initiate the improvement type algorithm, is also presented in the second column of
the Table 5.9 in order to realize the improvement obtained by the constructive type
algorithm and compare the solution qualities of the two heuristic algorithms. When
we examine the results obtained by the constructive type algorithm, it is observed
that the solutions from the two heuristics are similar but not identical for the base
case. The constructive type algorithm also suggests opening 5 DCs at the same
locations as the improvement type algorithm does. Moreover, there is no difference
between the two heuristics in the retailer assignments, and in the total cost values of
the best solution obtained. However, it is observed that there are differences between

the heuristics in terms of the solutions obtained for different values of p.

When we compare the performance of the two heuristics in the base case, we see
that the constructive type algorithm always gives better solutions than the
improvement type algorithm when it is initialized with p-median clusters. Also, it
gives either the same or better values than the randomly initialized improvement

type algorithm until p is increased to 11. The better objective function values
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obtained by the improvement type algorithm at the values of p being equal to 11,13,
and 15 do not affect our solution. Although it is risky to generalize from a single
problem instance, it can be said the constructive type heuristic dominates the
improvement type heuristic in solution quality when the latter is initialized with p-
median clusters. Also, the constructive type heuristic is superior in solution time
than the randomly initialized improvement type algorithm and not worse off in terms

of the solution quality.

Since the constructive type algorithm has achieved the same solution with 5 DCs,
the analysis performed for the improvement type algorithm on the best solution is
also agreeable for the constructive type algorithm. However, since the solutions
obtained for other values of p are generally different for the two heuristics, an
evaluation for the constructive type heuristic corresponding to these different values
of p is needed. As described before, the constructive type algorithm proceeds by
incrementing the number of DCs to be located by one at each iteration. When we
look at the results for the DCs opened at each iteration, it is observed that the set of
DCs located by the algorithm at various level of p is not an exact subset of the set of
DCs corresponding to the best objective function value achieved through the
algorithm. This means that our constructive type heuristic does not proceed by
fixing the DCs located at each iteration; the location of the DCs can change at any

point during the reallocate and interchange procedures applied by the heuristic.

Figure 5.4 represents the behaviour of the total cost and its components according to
the results obtained by the constructive type algorithm. Although the solutions of the
constructive and improvement type heuristics are not exactly the same for some
values of p, it is observed that the cost components follow the same trend as the
value of p is altered. The shipping costs decrease as the number of distribution
centers located increases while the fixed costs, safety stock costs, and joint order and
average inventory costs increase as more DCs are located. As explained before, the
total cost attains its minimum at the point where the balance between the decreasing

shipping costs and increasing fixed and inventory costs is achieved.
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Cost vs Number of DCs
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Figure 5.4: Representation of the Costs as a Function of the Number of DCs for

the Constructive Type Heuristic

5.3. Sensitivity Analysis

Sensitivity analysis is based on the idea of setting up a family of runs by altering a
single adjustable parameter for the selected component of the model. Geoffrion
(1979) gives some examples about the situations where the application of sensitivity
analysis is appropriate and beneficial. The reasons to apply sensitivity analysis,
which are also valid for our distribution design problem, can be stated as follows:

e When there is uncertainty for the estimates of the model data, sensitivity
analysis on these data may show that there is no significant dependence of
the model solution over the range of uncertainty.

e When there is possibility that certain data will change over time, sensitivity
analysis helps to determine how the solution would change in response.

e Sensitivity analysis helps to develop insights into the workings of a system;

that is, it is a tool with which "whys" behind the "whats" can be found out.

We choose to apply sensitivity analysis to the following parameters of our model by

considering the reasons above:
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e Inventory holding cost and transportation cost parameters
e The ordering cost parameters

e The demand variance of the items

5.3.1. Sensitivity Analysis Based on the Inventory and

Transportation Costs

In this section, sensitivity analysis is performed by altering the inventory and
transportation cost parameters. The reason for performing sensitivity analysis for
these cost terms is to understand the relation between them better, test the effects of
the changes on the results and to compensate for the inaccuracies in the estimation
of the related parameters.

The relative importance of the inventory and transportation costs in the total cost is
modified by giving weights to the corresponding cost terms as follows:

a: Weight given to transportation costs

B: Weight given to the inventory holding costs

Four levels of o are used for the sensitivity analysis in our computations. Also, a set
of B is determined corresponding to each value of o. In this way, a total of 30
scenarios are created to question the robustness of the solutions for different
problem instances. The values of o and P that are used for the sensitivity analysis

are provided in Table 5.10.

Table 5.10: Weights Given to Transportation and Inventory Costs

75 [ 125 25
15 25 50
10 30 50 | 100
25 75 | 125 | 250

05 | 05 1

W W] | W

90



The base case problem corresponds to the situation when both transportation and
inventory parameters have a weight of 1, i.e. o and B are equal to 1. We have
analyzed the solutions obtained for the base case in the previous sections. In this
section, the problems created by different values of a and $3, and the results obtained
for these instances are analyzed. All of these problem instances that are generated
for the sensitivity analysis are solved using both improvement type and constructive
type algorithms. When applying the improvement type algorithm, the initial clusters
are generated by the two methods: the solution of the p-median problem and random
clusters. Also, as we did for the base case, we do not terminate the improvement
type and constructive algorithms at the point where the objective function value
starts to increase and we perform additional iterations for all the instances to check
whether there exists another local optima point or not. It is observed that there can
be such cases in which the objective function attains its minimum after the first local
optima point. All the results including the objective function values, the number and
location of the DCs, the composition of the total cost, and the solution times

obtained by each heuristic are presented in APPENDIX C.

According to the results it is observed that, the heuristics do not attain exactly the
same solution for some problem instances. Therefore, we make our analysis on the
solution of the heuristic, which gives the best result for each specific instance. In our
analysis, we question how the objective function value, the number and location of
DCs, the cost components, and the solution times of the algorithms respond to the

changes in the inventory and transportation cost weights.

First, when we analyze the changes in the objective function values as the inventory
and transportation cost parameters are modified, we observe the same trend in the
results obtained by each heuristic. Then, we combine the results of the heuristics by
choosing the best objective function value obtained by any one of the heuristics for
each value of o and B. Figure 5.5 shows the trend followed by these best values for
each scenario. According to the figure, the objective function increases when

weights given to the transportation and inventory costs are increased. When o is
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increased to a higher level, the total cost curve shifts upwards. Also, when we
increase the value of B for a particular level of o, we obtain a higher objective

function value on the same total cost curve.

Total cost vs Transportation and Inventory Weights
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Figure 5.5; The Sensitivity of the Objective Function Value to Inventory and

Transportation Cost Parameters

Next, the sensitivity of the number and location of the DCs to the transportation and
inventory cost parameters is questioned. Table 5.11 shows the number of DCs
located corresponding to minimum objective function values obtained by applying
the improvement and constructive type heuristics for each value of o and . In the
table, the heuristics, which give the minimum cost solution for a particular level of o
and B, are indicated by (**). Also, the heuristics, which suggest opening the same
number of DCs at a higher cost, are marked by (*). When we compare the
performance of the heuristics, we cannot conclude that one of them always gives
better objective function values than the others. However, it is observed that for the
set of problems in which a values are equal to 0.5, 1 or 2, the best solutions are
obtained most of the time by the constructive type heuristic or the improvement type
heuristic that is started with randomized clusters. On the other hand, when the
weight given to transportation weight,a., is increased to 5, the best objective function

values are obtained by the improvement type heuristic, which is initialized by the
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clusters obtained by the p-median solution, for each value of . Then we can say that
when the unit transportation costs are relatively higher and their dominance on the
inventory costs is increased, the chance of attaining the best solution by the
improvement heuristic initialized by the p-median clusters becomes also higher for
our problem. This result is intuitive since as the transportation costs become
dominant, the effect of inventory costs on the final solution may decrease, and the

solutions are then closer to the p-median problem's solutions.

Table 5.11: The Number of DCs Located for Different Values of o and 8

Improvement

o | B |Number of DCs|Constructive| p-med. | rand
0.5] 0.5 5 ** * *
05] 1 5 ** * *
05] 2 5 * * **
0.5 5 3 dek * ek
05|75 3 i * **
0.5]112.5 2 ** * <
0'5 25 1 *k *%k *%

105 6 -

1 1 5 sk % k&

1 2 5 a* *%k

1 5 5 * * %k

1 1 5 5 *% * *%

1125 3 * 3

1 50 1 *k *% Kk

2105 11 **

211 11 **

2| 2 11 **

2 5 8 * *R

210 8 * **

2 30 5 * * *%

2|50 4 ** **

2 1100 2 ** **

5105 20 **

5| 1 20 **

5| 2 20 * **

51 5 19 * **

5|25 16 **

5|75 8 **

51125 6 * ** *

5 | 250 2 * ** *
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Also, as observed in Table 5.11 we can conclude that the number of the DCs is
sensitive to both transportation and inventory weights. Figure 5.6 shows the
sensitivity of the number of the DCs to changes in both transportation and inventory
cost weights. It is seen that when the weight of the transportation costs is increased,
the number of DCs located also increases. Also, when the weight of inventory costs
is increased while fixing the transportation cost weight, the number of DCs
decreases. This is because when o is large, the transportation term becomes more
significant in the objective function, making it desirable to have more DCs.
Similarly as B increases, the number of DCs decrease because inventory becomes
more expensive and risk-pooling becomes more attractive. We also observe that
when we increase both o and B, the number of DCs located increases on the

average.

Number of DCs vs Transportation and Inventory Weights
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Transportation weights (o)

Figure 5.6: Sensitivity of the Number of the DCs to Inventory and

Transportation Cost Parameters

Also, the retailer locations that are chosen as DCs in different scenarios can be seen
in Table 5.12. The first column of the table represents the codes of the retailers,
where a DC is located in one of the scenarios. According to these results, it is seen

that for a given value of a the location of DCs may or may not change as the value
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Table 5.12: Results for the Location of the DCs for the Problems with Different

Values of o and 3
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of B is altered. For example, when a is equal to 1, we obtain the same DC locations
when the B values change between 1 and 15. Also, when all the results given by the
other o and P values are observed, it is seen that if the increases in the 3 values are
not very significant to affect the solution in terms of the number of DCs opened, the

DCs are opened at the same locations for this range of B values. However, if the
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importance of the inventory costs are increased significantly and there exists a
decrease in the number of DCs opened, we observe that the set of the DCs opened is
not necessarily a subset of the set of the DCs opened for lower values of 3. That is,
the set of DCs may change with the multiple deletion and addition of the new DCs.
Also, we see that the set of DCs is more sensitive to the changes that occur in the
transportation costs in our problem instances. Another observation is that when
theinventory weights are increased such that the solution favors opening only a
single DC, and that DC is located in Ankara (node 6), where the single supplier is
located. This can be interpreted as the tendency of the system to become completely

centralized when the inventory costs are very high.

In order to check the effects of the different inventory and transportation cost
parameters on the composition of the total cost, we consider some cases and make
comparisons among them. We analyze the base case (a=1, f=1), whose solution
suggests opening 5 DCs, as discussed in the previous section. For the base case,
shipping costs, fixed costs, joint ordering and average inventory costs, and safety
stock costs constitute 85%, 11%, 3%, and 1% of the total cost, respectively. When
the weight given to inventory cost parameter (P) is increased to 25, the number of
DCs located decreases to 3 and the composition of the costs occur as represented in

Figure 5.7. When the inventory cost parameter is increased, it is seen that the

Composition of the Costs

9%

E Total shipping cost

[ Fixed cost

O Safety stock cost

B Joint ordering and avg.
inventory cost

Figure 5.7: Distribution of the Costs for o =1, B =25

96



percentages of the total shipping costs and the fixed costs in total cost are decreased.
Moreover, it is observed that the safety stock cost and joint ordering and average

inventory costs constitute a higher percentage of the total cost value.

As mentioned before, when inventory considerations dominate (B is very large
relative to o), it is sometimes more economical to assign some retailers to a DC that
is other than the least cost DC in terms of local delivery costs. That is, when the
inventory costs are taken into account, assignment to the closest facility is not
always optimal due to the risk pooling effects. According to the solutions of the base
case, 11 retailers are assigned to DCs other than the one resulting in the smallest
local delivery costs. In order to check whether there exists a relation between the
number of such non-closest assignments and the level of the inventory cost
parameters, we consider some instances with varying levels of inventory and
transportation cost levels. When the weight given to inventory costs (B) is increased
to 25, the number of retailers, which are assigned to non-closest DCs, is 13.
Although the increase in the number of non-closest assignments as the inventory
costs become more dominating seems intuitive, we can find counterexamples in
which the number of non-closest assignments is decreased when the inventory costs
are significant. For example, we obtain 23 non-closest assignments according to the
solution of the problem with a=2 and $=2. When the inventory costs are increased
significantly for this problem by setting =100, the number of non-closest

assignments decreases to 13.

Also, we search whether computation time of the algorithms is sensitive to the
changing inventory and transportation cost parameters. As presented in Figure 5.8,
as the importance of the transportation costs is increased, the computation time of
the constructive heuristic gets longer on the average. Also, we observe a general fall
in the computation time when the weight of inventory costs is increased. On the
other hand, the computation times for the improvement heuristic seem not to follow

an order according to the increasing inventory weights. However, when we compute
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