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ABSTRACT

A COMPARATIVE STUDY OF EVOLUTIONARY NETWORK DESIGN

KALKAN, SİNAN

M.Sc., Department of Computer Engineering

Supervisor: Dr. Onur T. Ş ehito g̃lu

Co-Supervisor: Assoc. Prof. Dr. G ökt ürkÜç oluk

DECEMBER 2003, 41 pages

In network design, a communication network is optimized for a given set of parameters

like cost, reliability and delay. This study analyzes network design problem using Genetic

Algorithms in detail and makes comparison of different approaches and representations.

Encoding of a problem is one of the most crucial design choices in Genetic Algorithms.

For network design problem, this study compares adjacency matrix representation with list

of edges representation. Also, another problem is defining a fair fitness function that will not

favor one optimization parameter to the other. Multi-objective optimization is a recommended

solution for such problems. This study describes and compares some of those approaches for

different combinations in network design problem.

Keywords: genetic algorithms, multiobjective optimization, network design, network repre-

sentations, adjacency representation, edge representation
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ÖZ

EVRİMSEL AG̃ TASARIMI PROBLEMİNİN KARŞ ILAŞ TIRMALI Ç ALIŞ MASI

KALKAN, SİNAN

Y üksek Lisans, Bilgisayar M ühendisliği B öl üm ü

Tez Y öneticisi: Dr. Onur T. Ş ehito g̃lu

Ortak Tez Y öneticisi: Assoc. Prof. Dr. G ökt ürk̈Uç oluk

ARALIK 2003, 41 sayfa

Bir ağ tasarımı probleminde iletiş im ağı, fiyat, sağlamlık ve gecikme gibi verilen parame-

trelere g öre optimize edilir. Bu ç alış ma, ağ tasarımı problemini Genetik Algoritmalar kulla-

narak detaylı bir ş ekilde inceler ve farklı yaklaş ımları ve g österimleri karş ılaş tırır.

Bir problemin g österimi, Genetik Algoritmalar iç in en önemli tasarım seç eneklerinden

biridir. Bu ç alış ma, ağ tasarımı problemi iç in, bitiş iklik matrisi g österimini bağlantı listesi

g österimi ile karş ılaş tırmaktır. Ayrıca, diğer bir sorun, bir optimizasyon parametresini bir

diğerine g öre kayırmayacak adil bir değer fonksiyonu tanımlamaktır. Ç ok amaç lı optimiza-

syon, bu problemler iç in önerilen bir ç öz ümd ür. Bu ç alış ma, ağ tasarım probleminde, farklı

kombinasyonlar iç in, bu yaklaş ımlardan bazılarını tarif eder ve karş ılaş tırır.

Anahtar Kelimeler: genetik algoritmalar, ç ok amaç lı optimizasyon, ağ tasarımı, ağ g österimi,

bitiş iklik matrisi g österimi, bağlantı g österimi
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CHAPTER 1

INTRODUCTION

Design of communication networks has been very important for users due to high perfor-

mance demanding characteristics of inter and intra net traffics. The design phase involves the

optimization of several parameters under some pre-specified constraints, and this process is

known to be an NP-complete problem [13]. If the network under consideration has � differ-

ent computers (or nodes) and � different possible bandwidths, then the size of the space of

potential topologies would be �������	��
��

��
����������� 1. For the values ��� ��� and � ��� , the size

of the search space would be ���! #"$���%��& . Even for this small problem, search space is very

huge, which makes the problem intractable for search strategies that use basic enumeration

techniques.

Both non-evolutionary and evolutionary methods have been attempted in the literature.

Non-evolutionary studies include [16, 30, 17, 32, 10, 21]. These are mainly variations of

the branch-and-bound algorithm, which tries to get the optimal solution by adding and/or

deleting some edges. Naive search techniquies such as simulated annealing and tabu search

have also been adapted in network optimization [3, 28, 18, 4]. Hybrids of evolutionary and

non-evolutionary approaches are also studied. Such methods mainly use non-evolutionary

approaches as a sub-step of genetic algorithms [26, 29].

The encoding of a problem in a chromosome is critical for the performance of an evolu-

tionary algorithm. Due to the huge search space of the network design problem, this impor-

tance even increases and becomes one of the key aspects of the overall performance of the ge-

'
The term (*),+.-�/ includes an exra bandwidth because two nodes in the network may not have a link in

between

1



netic algorithm. Nevertheless, existing genetic network design studies have not investigated

alternative representations much, and mainly variations of adjacency matrix representation

have been exercised [12, 31, 24, 22, 1, 25, 11, 13, 15, 14, 2, 27]. The variations include ap-

pending routing tables to the chromosome [31], storing link types for existing links [12], etc.

An alternative representation, list of edges representation (also called edge representation), is

used in a few works [15, 5]. [5] is known to be the first study to use edge representation in a

network design problem.

In [15], a GA that used edge representation with repair of unreliable networks has been

implemented and it is compared with adjacency matrix representation that didn’t have re-

pair mechanisms for unreliable networks. [5] implemented edge representation as tuples and

compared it with non-evolutionary approaches. They also applied repair mechanisms for un-

reliable networks.

Network design by definition is a multi-objective optimization problem because it in-

volves optimization of several objectives. However, evolutionary approaches in the literature

have dealt with the problem mostly in the form of aggregate optimization [11, 13, 31, 27, 1].

The multi-objective nature of the problem is not adequately investigated although some initial

attempts exist in the area [24, 25, 26, 22].

In summary, this study makes the following contributions:

� Analysis of an alternative representation for reliable network design, i.e. list of edges

representation.

� Systematic comparison of two representations for reliable network design; namely, ad-

jacency representation and list of edges representation.

� A multi-objective implementation of network design problem.

� Analysis of multi-objective network design with respect to its aggregate counter-part.

This thesis is organized as follows. In chapter 2, background, namely, basics of Ge-

netic Algorithms, multiobjective optimization and evolutionary network design are presented.

Chapter 3 analyzes two different network representations. Chapter 4 presents and analyzes a

multi-objective algorithm for evolutionary network design. Finally, chapter 5 concludes the

thesis with discussions and possible future directions.

2



CHAPTER 2

BACKGROUND

2.1 GENETIC ALGORITHMS

Genetic Algorithms (GAs) are search algorithms that mimic natural evolutionary principles

to constitute search and optimization procedures. They use the mechanisms of the nature

such as mating, mutation and selection of the fittest individuals for finding solutions of op-

timization problems. They were first developed for continuous non-linear optimization and

later extended for combinatorial problems. Now, they are popular search mechanisms that

perform better than their non-evolutionary counterparts due to their balanced combination of

exploitation and exploration.

GAs were pioneered by Holland [20] and Goldberg [19]. Since then, there have been

many attempts to understand and outline the principles behind GAs to be able to use them

more effectively in the optimization and search problems.

A GA system holds a set of individuals (also called chromosomes), called the population.

At each step of the evolution, some subset of individuals are mated (also called crossover),

then some subset of individuals are mutated, and after these steps, some of them are selected

to survive and give their genes to the next generation. In order to guide the search in the direc-

tion that leads to optimal solutions, the selection process favors fitter individuals, mimicing

survival of the fittest phenomenon of the nature.

As the search space is represented by the individuals, effective encoding of the problem to

be optimized is critical for the success of GAs. A good encoding mechanism should include

all aspects of the domain that are relevant to the optimization problem.

3



A GA starts with an initial population, which is usually randomly constructed in practice.

The size and the distribution of the individuals of the initial population are very important for

the rest of the search.

The next step of GA assigns each individual a value which indicates its quality as a solu-

tion to the optimization problem at hand. This value is also called the fitness of the individual.

Then, some subset of the population is selected for crossover. The individuals are selected

with a probability distribution that favors individuals with higher fitness values. So, higher the

fitness values, higher the chances of giving the genes to the next generation in the crossover

step.

Crossover mates selected individuals from the previous step. The mating determines

which parent contributes which bits of the child. There are several approaches to this pro-

cess. Some of the mostly used crossover methods include:

� One-point crossover. Parents are divided into two at some random point, and the first

part of one parent is postfixed by the second part of the other parent.

� Multi-point crossover. Multiple random points are used instead of one. Corresponding

parts of parents are swapped to construct the child.

� Uniform crossover. Uniform crossover combines bits sampled uniformly from the two

parents. The crossover mask is generated as a random bit string with each bit chosen at

random from either parent and independent of other bits.

0 0 0 1 1  0 0 1 1 1

1 0 0 1 0  0 0 1 1 0

0 0 0 1 1  0 0 1 1 0

1 0 0 1 0  0 0 1 1 1

Figure 2.1: One-point crossover.

As the last step, random minor modifications on individuals are perfomed. This step is

called mutation and simulates unexpected change phenomenon of the nature.

With the last step, a new population with new solutions is constructed.

The above steps are repeated either for a fixed number of iterations or till a pre-defined

fitness value is reached.

In summary, a typical GA runs the following pseudo-code:

4



0 0 0 1 1  0 0 1 1 1 0 1 0 1 1  0 0 0 1 1

Figure 2.2: Mutation.

function GA
{

t = 0
initialize P(t) /* initial population */
evaluate P(t) /* fitness values assigned */
while ( not termination-condition )
{

t = t + 1
select P(t) from P(t-1)
alter P(t) /* crossover and mutation */
evaluate P(t)

}
}

2.2 MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization (MOO) is an optimization problem which involves optimization

of multiple objectives, or functions. In most cases, these functions are conflicting with each

other.

A MOO problem is formally defined as:

minimize/maximize
��� ��� � , � � ���  ���� � ���
	 ;

subject to �
� ������� � , � � ���  ���� � ����� ;��� ����� � � , � � ���  ���� � ����� ;

� 
�� �� � � � � � 
�� �� , � � ���  ���� � ��� � ;

where � is a solution representing a vector of � decision variables: � � ��� � ��� � ��� � ����� � �! ;

�"� ����� are the objective functions; � � �����#��� and
��� ��� � � � are the inequality and equality

constraints, respectively; and, the last set of constraints gives the bounds of the decision

variables.

A MOO problem does not have a global optimum in the case of conflicting objectives.

Rather, there are a set of solutions, called pareto optimal solutions. A set of solutions are

5



O2
DOMAIN

Front
Pareto

O1

Figure 2.3: Pareto front for two objectives O1 and O2 which are to be minimized.

pareto optimal if they are not dominated by any other solution in the search space. A solution �

dominates � if for all � , � � � � � , and there exists some � such that � ��� � � , where � � ���  ���� � � � .

The set of non-dominated solutions forms a line (or a surface in the case of 3 or more

objectives) called Pareto Front in the solutions domain of the problem. The aim of a multi-

objective algorithm is basically to move the population towards to the Pareto Front. Figure

2.3 gives an example of Pareto front for an imaginary problem whose two objectives have to

be minimized (If both objectives were to be maximized, Pareto front would be on the upper

right corner of the domain. If O1 were to be minimized and O2 were to be maximized, Pareto

front would be upper left corner of the domain. If O1 were to be maximized and O2 were to

be minimized, Pareto front would be lower right corner of the domain.).

The simplest approach to a MOO problem is to construct a composite function out of

given objective functions (i.e. � ����� ��� � �
�
� ��� � � � � �

�
� ��� � � � � � � ��� � � � ����� ). The

construction process requires assignment of weights to each objective function. If the weights

are carefully chosen, this approach may reach to a solution. However, it is highly sensitive to

the weights chosen, and it converges to only one local optimum. To be able to find multiple

solutions and eliminate the bias of the weights, multiple iterations may be run with different

weight vectors. However, it is very difficult to find a weight vector in most of the problems.

So, a non-subjective method should be preferred.
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2.2.1 MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION

Evolutionary MOO approaches could be divided into three categories [6]:

� Approaches that use aggregating functions. A composite objective function is formed

using summation, multiplication, division etc. They are very simple to implement; how-

ever, they are unable to yield multiple solutions, and it is very difficult to find the right

combination in most of the cases.

� Approaches that use pareto optimality. The individuals of the population are sorted

according to the number of individuals that dominate them, and the fitness values are

assigned using this ranking (proposed by [19]). Some of the algorithms under this cate-

gory are Multi-Objective Genetic Algorithm (MOGA), Non-dominated Sorting Genetic

Algorithm and Niched Pareto Genetic Algorithm.

� Other approaches. They are mainly based on population policies or special handling

of objective functions. The following can be listed under this category: Vector Eval-

uated Genetic Algorithm, Lexiographic Ordering, Approaches that Use Game Theory,

Using Gender to Identify Objectives, Weighted Min-max Approach.

2.3 EVOLUTIONARY NETWORK DESIGN

Network design is a combinatorial optimization problem involving optimization of several

objectives such as cost, average delay and reliability of the network. The search space of the

problem is huge even for small number of computers and is intractable for non-evolutionary

approaches.

A network is basically a graph � of a set of nodes � and a set of links � . The links denote

the connections between the nodes and are assumed to be bi-directional. Networks could be

of two kinds: Backbone Networks and Local Area Networks (LAN). LANs involve the end-

users, and backbone networks are responsible for connecting LANs to each other. Network

7



design problem implicitly assumes backbone networks; however, the ideas are applicable to

both types.

Figure 2.4: A typical network.

Formal statement of the problem as generally adopted in the literature [13] is as follows:

Notation:

� � : Set of nodes (also called terminals, computers).

� � : Set of links (also called edges, connections, arcs).

� �����!�
� : Link between nodes � and � .

� � : Link reliability of the network.

� � � � : 1 if there is a link between nodes � and � ; 0, otherwise.

� x : A topology of � � � ��� � � ��� � � � � � ��� � ����� ��� .
��� � � : Cost of link �����!� � .

In order to simplify the problem, the following assumptions are usually made:

� The location of each node is given.

� The nodes are perfectly reliable.

� Capacity and reliability of each link are fixed and known.

� Each link is bi-directional.

� Only one link is possible between nodes � and � .

� The links are either operational or failed.

� The failure of links are independent.

8



� No repair for failures is considered.

With these assumptions, the network design problem may involve the optimization of the

following objectives:

� Network cost. Total cost of the network is:

� ����
��� �

��
� � ��� �

� � � � � �

� Average delay. Calculation of average delay is generally adapted from Queueing The-

ory:

�
�
��

��� � � �

� � �
��� � � �
	 � � �

where � denotes the total traffic,
� � � the flow of link �����!�
� and ��� � � � is the capacity of

link �����!� � . An approximate average delay can also be used. This approximation uses

average number of nodes (hops) on the path between nodes � and � .

� Routing. A route between two nodes is a path that connects these two nodes. Routing

optimization involves minimization of routes between every node pair in the network.

It tries to establish both effective use of bandwidths and a low average delay.

� Reliability. Reliability is the ability of the network to survive failures of components.

Basically three approaches exist for enforcing reliability:

– K-connectivity. K (link and/or node) disjoint paths between each pair of nodes

should exist in the network for it to be k-connected. Generally, 2 and 3 link-

disjoint-connected reliability are exercised [27, 1, 5, 22].

Figure 2.5: 1-connected and 2-connected networks.
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Figure 2.6: Articulation points. The black node is an articulation point. Because it divides the
network into two when removed.

– Overall (All-terminal) Reliability. Overall reliability of a network is defined as the

probability that every node can communicate with every other node. This proba-

bility is a measurable quantity [8]. However, calculation of this exact quantity is

itself an NP-complete problem.

– Articulation Points. An articulation point is any node whose removal results in a

disconnected network. It guarantees 2 node and link disjoint connectivity.

2.3.1 APPROACHES

2.3.1.1 NON-EVOLUTIONARY APPROACHES

Non-evolutionary algorithms can be summarized as follows:

� Branch X-Change (BXC) [16, 30]. The algorithm starts from an arbitrary configuration

and tries to get to a local minimum by means of local transformations, which include

adding new links, deleting some old links and correcting the resultant network (in the

sense of connectivity). This algorithm exhaustively searches the search space, and it is

not preferred.

� Concave Branch Elimination [17, 32]. The algorithm starts from fully connected net-

work and eliminates uneconomical links until a local minimum is reached.

� Cut-Saturation [10]. The algorithm extends BXC by choosing economical transforma-

tions rather than trying all transformations.

� Simulated Annealing [3, 28].

� Tabu Search [18, 4].

10



Non-evolutionary approaches perform bad for large N, return only one solution, and are

sensitive to local optima [15].

2.3.1.2 EVOLUTIONARY APPROACHES

There are two important points for evolutionary network design: Enforcement of network

reliability and representation of a network in a chromosome.

As previously mentioned, network reliability can be imposed using three different ways

(k-connectivity, exact calculation of reliability and articulation points). K-connectivity is used

in [27, 1, 5, 22]. Studies using k-connectivity generally adopt a k-corrector process as an

operator of GA. The job of this operator is to maintain k-connectivity of non-k-connected

individuals by adding appropriate links to the network. Calculation of exact reliability for each

individual in each generation is not practicle due to its computational complexity. There are

appoaches that avoid this complexity by using upper and lower bounds of this exact quantity

[9], estimations through Monte Carlo Simulation [33, 11] and neural networks [7]. [25] used

articulation points to impose network reliability; however, he also assumes that computers of

the network are reliable due to the requirements of the other parts of his algorithm.

� Adjacency Matrix Representation and Variations. For encoding a network in a chro-

mosome, the simplest approach is to use the upper triangular of the adjacency matrix

of the nodes of the network.

For example, the representation of the network in figure 2.7 is as follows:

� � � � ��� � � � � � � � ��� � � � � � � � �
� � �

� � � �

1 1 1 1 1 1 0 0 1 0

In a chromosome that uses this representation, first bits are occupied by the initial rows

of the adjacency matrix. These initial rows reserve more number of bits in the chro-

mosome than other rows of the adjacency matrix, which brings out a bias (initial-rows

bias) in which the bits of the initial rows have more chances of getting splitted by a

crossover operation. The ideal case should give equal chances to all rows of the adja-

cency matrix.

One variation of adjacency representation is to embed the types of the links in the

representation. This approach stores an integer � which denotes the type of the link if

11
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Figure 2.7: A network.

the link exists in the network; zero otherwise. [13] used bandwidth types of the links

in the representation. Another variation stores routing table, link bandwidths and the

adjacency matrix as three different segments of a chromosome [31].

Adjacency matrix representation seems to be weak because it is not likely to grow

or preserve building blocks in the encoding. Besides, it introduces the initial-rows

bias which causes the labelling and ordering of the nodes to have significance in the

performance of the genetic algorithm.

� Edge Representation. An alternative representation, called edge representation, stores

just the links that exist in the network, rather than enumerating all possible edges and

marking those that exist in the network. Hence, it is a variable-length encoding. For

example, the network in figure 2.7 can be represented using the following list (tuple

� � � � � denotes an edge between node � and
�
):

[ (1,5), (2,3), (1,4), (1,2), (1,3), (3,5), (2,4) ]

Note that the numbers in each tuple are ordered but the edges themselves have no spe-

cific ordering.

[15] assigned each edge a unique integer and stored these integers rather than node tu-

ples. The study compared a GA that used adjacency matrix representation with another

GA that used edge representation. Their study showed that the GA with edge represen-

tation is better than the one with adjacency matrix representation in terms of both speed

and solution quality. However, as the aim was not to compare the performances of the

representations, they used different parameters (the GA that used edge representation

employed repair mechanisms while the GA that used adjacency matrix representation

did not).
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[5] compared a non-evolutionary algorithm and a GA which used edge representation

with tuples.

One of the advantages of edge representation is that it does not have initial-rows bias;

so, it gives equal chances to all rows of the adjacency matrix. Another advantage is that

it allows building blocks as group of edges to grow.

Crossover and mutation operators of edge representation can produce duplicate edges

in an individual. One of the important design issues in edge representation is what to

do with these edges. There are three alternatives: To delete duplicate edges whenever

a duplicate edge is created from any operation of GA; to keep duplicate edges as they

are, but to give a penalty to the individual for each duplicate edge introduced; to keep

duplicate edges as they are without giving any penalties.

2.3.1.3 CRITICS OF THE LITERATURE

Most of the studies make the assumption that nodes are perfectly reliable. This assumption is

unrealistic because computers are vulnerable to failures as much as links are.

Network design, by definition, involves optimization of several objectives. However, the

literature has approached the problem mostly in the form of aggregate optimization except for

[24, 25, 26, 22, 23].

Another weakness of the existing studies comes from the representations used in GA.

Except for two studies mentioned in previous section, they have used adjacency matrix rep-

resentation which is vulnerable to initial-rows bias, and alternative representations have not

been analyzed.
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CHAPTER 3

NETWORK REPRESENTATIONS

As mentioned in section 2.3.1.2, there are several alternatives for representing a network in

a chromosome. In this chapter, two of these representations are analyzed; namely, adjacency

matrix representation (will be called adjacency representation, for simplicity) and edge repre-

sentation. Adjacency representation suffers from initial-rows bias. Edge representation does

not have this bias, and as possibly it can store useful edges in sequence, it may better represent

a network structure.

This chapter compares these two representations whose implementational details are out-

lined in the next section.

3.1 METHODOLOGY

In previous studies, it has been tried to optimize several aspects of network design problem:

reliability, delay, cost, routing, etc [1, 22, 27, 15]. In this chapter, we adopted the most usual

setting which involves optimization of reliability and cost.

3.1.1 NETWORK DESIGN PARAMETERS

Reliability:

In this work, 2-connectivity is used as the reliability criteria of the network with giving

penalties to non-2-connected individuals. However, in our experiments, no repair is consid-

ered in order to analyze the performances of the representations isolated from the effects of
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repairing.

Cost:

The cost of a network is simply taken to be the sum of the costs of existing links in the

network.

3.1.2 GENETIC ALGORITHM PARAMETERS

Initial Population:

The initial population in both representations are created randomly. To make the rep-

resentations have the same initial distribution, edge representation is made to use the initial

population creation scheme of adjacency representation.

Crossover:

Adjacency representation uses one-point crossover. The nature of edge representation

offers several alternatives for crossover operation. Some of the alternatives that we have

considered are:

� Choose two points in each individual and swap the post-segments.

� Choose one point along the smaller individual and swap post-segments around this

point.

� Choose one point along the longer individual. If the point lies inside the smaller indi-

vidual, swap post-segments around this point. Otherwise, append the post-segment of

the longer individual to the end of the smaller individual.

The alternative chosen is very important for the performance as the lengths of both indi-

viduals are severely affected by this operation. We have used the third alternative because it

turned out to give the best performance.

[5] used one-link crossover, which swaps two randomly selected edges from mating indi-

viduals. This alternative is weak because it only makes one change at a time, slowing down

the search process in the huge search space of network design problem. [15] uses a form of

uniform crossover. Both studies repair non-2-connected individuals.

Mutation:
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Figure 3.1: Crossover for edge representation.

Adjacency representation uses random bit mutation; a randomly selected bit is set to a

random binary value. In the case of a 1 chosen for mutation, random bit mutation either keeps

the bit (and the corresponding link) as it is, or makes it 0 (deleting the corresponding link).

In the case of a 0 chosen for mutation, random bit mutation either sets it to 1 (inserting a new

link), or keeps it the same. For edge representation, we adopted a mutation which corresponds

to this outline: For each edge chosen for mutation, the edge is deleted with 50% probability;

for each empty position (which corresponds to the 0s in adjacency representation) chosen for

mutation, a new edge is inserted with 50% probability. Insertion of a new edge should hold

the relation ��� �
for each new edge � � � � � .

[5] removes links while maintaining the reliability of the individual. [15] adds a new edge

or deletes an old edge based on the degrees of the nodes.

Fitness:

The fitness of an individual, which will be minimized, is defined as:

� ��� ������� �
	 � ��� �

���
�����
��

��� � ��� � ��� ����� �$�
	 �

where � �
	 � is zero for 2-connected individuals and one, otherwise; and, P is a constant

penalty value.

3.2 EXPERIMENTS

The experiments aim to compare the representations and analyze the effect of duplicate edges

in edge representation. In experiments that compare the representations, the expectation is to

see adjacency representation to perform worse due to the bias discussed in section 2.3.1.2.

We have used two different data sets of different sizes; one having 10 and the other having

15 computers.
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Table 3.1: Results for both representations using rank-based selection. As the cost is mini-
mized, small values are better.

Select.P. Data Set Adjacency Rep. (Best solution) Edge Rep. (Best solution)
1-2 1 919.15 921.03
1-2 2 102.53 257.19
1-5 1 1019.98 1033.72
1-5 2 102.28 237.26

1-10 1 1052.24 1016.98
1-10 2 241.03 236.48

The crossover and mutation rates are taken to be %60 and %0.2, respectively. The size of

the population is 100. The experiments are repeated 100 runs, 3000 generations each.

3.2.1 RANK-BASED SELECTION

In rank-based selection, individuals in the population are assigned selection probabilities

based on their fitness values. The highest rank individual is assigned probability ��� � � � ; the

lowest rank individual is assigned probability ������� ; and, the individuals in between are as-

signed probabilities depending on a linear (or sometimes quadratic) function. In the experi-

ments, we always assigned 1 to the lowest rank individual, and a numerical term like 1- ��� � � �
describes the selection pressures of the lowest and highest rank individuals. In other words,

the best individual will have �	� � � � times more chance to survive than the worst individual. A

high �
� � � � value means giving high chances of survival to higher rank individuals.

Our aim in this experiment is to control selection pressure (also called fitness pressure)

and see its effects. We have employed linear rank-based selection with 3 different selection

pressures; namely, 1-2, 1-5 and 1-10.

Figure 3.2 shows the performance of the representations on the first data set with selection

pressures 1-2 and 1-10. For convenience, only two graphs are shown, and all results are

summarized in table 3.1.

Figure 3.2 and table 3.1 show that edge representation performs better than (or at least

as well as) adjacency representation in cases where small data set is used and a high fitness

pressure is imposed. Table 3.1 shows that, when the selection strategy is made to have very

high selection pressure (selection pressure being 1-10), edge representation performs better

than adjacency representation even in the case of the large data set.
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Figure 3.2: Rank-based selection performance graphs on data set 1 using selection pressures
1-2 and 1-10.
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Table 3.2: Results for both representations using tournament selection. As the cost is mini-
mized, small values are better.

Tour Data Set Adjacency Rep. (Best solution) Edge Rep. (Best solution)
1 1 1117.00 1208.73
1 2 344.32 290.42
3 1 1209.03 1120.57
3 2 219.71 289.40

3.2.2 TOURNAMENT SELECTION

In tournament selection, one tour of the algorithm randomly selects � number of individuals

from the population and the fittest of these individuals is selected for survival to the next

tour of the selection algorithm (or, to the next generation of the GA if number of tours are

exhausted). In the experiments, we used � as 2.

Our aim in this experiment is to control the number of tours and see its effects on the

representations. The number of tours determines the fitness pressure of the algorithm. More

number of tours means higher fitness pressure. We have employed tournament selection with

2 different number of tours; namely, 1 and 3.

Figure 3.3 shows the performance of representations on data set one with 1 and 3 number

of tours. For convenience, only two graphs are shown, and all results are summarized in table

3.2.

Figure 3.3 and table 3.2 show that edge representation is better in cases where small data

set is used and a high elitism (i.e., with more number of tours) is imposed.

3.2.3 DUPLICATE EDGES

In the third experiment, we have analyzed the effect of duplicate edges in edge representation.

As outlined in section 2.3.1.2, there are three different ways to deal with duplicate edges in a

chromosome.

The experiments are performed on data set 1 using rank based selection with selection

pressures 1-2 and 1-5.
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Figure 3.3: Tournament selection performance graphs on data set 1 using 1 and 3 tours.
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Figure 3.4: Effect of duplicate edges in edge representation on data set 1 using rank-based
selection with selection pressures 1-2 and 1-5.
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The results are shown in figure 3.4. The best performance is observed when duplicates are

allowed with penalty. Next comes the case that uses duplicates without penalty. The worst

performance is shown by the case where duplicates are removed. The difference between

giving and not giving penalties in the case of keeping duplicates is small compared to the

difference between keeping and removing duplicates.

The two graphs in figure 3.4 show that the performance of edge representation in the case

where duplicates are removed is worse for selection pressure 1-2 than for selection pressure

1-5.

3.3 DISCUSSIONS

We have compared two main representations for network design problem. The problem that

we used in our experiments included 2-connected reliability. The individuals who are not

2-connected are not repaired after crossover or mutation operators.

In this context, we have shown that neither representation is dominant in all cases we have

considered. Edge representation performs better than adjacency representation in cases where

small data set is used and the selection strategy is elitist. Adjacency representation performs

better in cases where the data set is large and the selection strategy does not have high fitness

pressure.

The overall results favor adjacency representation because it performs better in larger

problems. But edge representation is very flexible (since the nature of its encoding offers

several alternatives for crossover and mutation) and it has tunable parameters that adjacency

representation does not have (like duplicate edges and possibble operations in mutation).

Besides, we have shown that duplicate edges in edge representation should be kept in the

context we have used. Our third experiment showed that there is a significant performance

difference between keeping and removing duplicate edges from individuals. Keeping dupli-

cate edges with penalties is observed to give the best performance among the alternatives.

However, the difference between giving and not giving penalties is not significant.

Duplicate edges in edge representation are beneficial for the diversity of the population.

Probably, it is this diversity that makes the representation with duplicates perform better than

the representation without duplicates.

The gap that this chapter fills in is the analysis of an alternative representation and a

comparison with the traditional representation, in detail. The work shows the aspects of edge
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representation that should be addressed and analyzes the performance for the most important

aspects, namely crossover and duplicate edges.

Further analysis could involve the performance difference in the case where both repre-

sentations have repair mechanisms and the case where both representations have continuous

reliability without a repair mechanism.
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CHAPTER 4

MULTI-OBJECTIVE NETWORK DESIGN

As mentioned in chapter 2, although network design problem is multi-objective, its multi-

objective behaviour has not been analyzed in detail, yet. In this chapter, a multi-objective

network design algorithm is implemented and compared with its aggregate counter-part.

As analyzed in detail in chapter 3, there are two possible representations. In this chapter,

we also compared their performances in multi-objective domain.

4.1 METHODOLOGY

In this analysis, we tried to optimize cost, reliability and delay of the network. Cost and delay

objectives are in conflict with the reliability objective.

4.1.1 NETWORK DESIGN PARAMETERS

Reliability:

In this work, 4 level reliability is used. The objective function is computed with the

following pseudo-code:

function Reliability(I)
{

if the number of articulation points in I is zero
{

result is TOP_RELIABLE;
}
else if the network I is 2-connected
{

result is TOP_RELIABLE / 2.0;
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}
else if the network I is 1-connected
{

result is TOP_RELIABLE / 4.0;
}
else
{

result is 0;
}

}

We used 4-level reliability because reliability function has to have multiple values in order

to have more precision in it as an objective function. Each value in this function provides a

level of reliability: the highest level is assigned to the most reliable networks that do not have

articulation points; the second level is assigned to networks which are two connected and have

some number of articulation points; the third level is assigned to the 1-connected networks;

and the lowest level is assigned to non-connected networks.

Cost:

The cost of a network is simply taken to be the sum of the costs of existing links in the

network.

Delay:

The delay of a network is approximated by the average number of hops between two pairs

of computers (see section 2.3). The definition of the delay of a network is as follows:

� ��� � � �
	 � � �
� � �

� � � ��� � ������	 
�
��
� � � � �����!� �

where � is the number of computers, and
� � � � �����!�
� is the number of hops between

computers � and � .

4.1.2 GENETIC ALGORITHM PARAMETERS

Initial Population, Crossover, Mutation:
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Creation of initial populations, the crossover and mutation operators we have used in this

chapter are the same as used in chapter 3 and outlined in section 3.1.2.

Fitness:

The definitions of the objectives for the multi-objective domain are defined in section

4.1.1.

The fitness function for the aggregate case is a summation of these objectives, as defined

below:

���������
	�	
������������	�������������� �"!#���%$&� '�(&)*�
�,+-��).�
/"0213'4��5���6879��5��:��;<�����=�>�@?A��5�6�;<�����CB*DFEFE>G

where the reliability value is inverted because fitness value is minimized. The delay function

is too small (between 1 and 10 depending on the network) and hence, multiplied by 500 to

make it comparable with other objectives. Note that 500 is not a weight but a normalization

constant. The weights of the objectives in this aggregation are chosen as 1 in order not to give

any priority to any objectives.

4.2 EXPERIMENTS

The experiments aim to analyze the behaviour of multi-objective network design problem.

We have used the same data sets and the same parameters for the GA as mentioned in

section 3.2.

Rank-based selection is used in all experiments.

For multi-objective optimization, a Pareto Optimality based algorithm, namely, Multi-

Objective Genetic Algorithm (MOGA), is used. MOGA assigns fitness values to individuals

based on the number of individuals that dominate them. So, a fitness value of 0 (zero) is better

and searched for.

4.2.1 PERFORMANCES OF REPRESENTATIONS

The aim of this experiment is to see which representation is better in multi-objective domain.

The result of this experiment would determine which representation to use in later analysis in

this chapter.
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Figure 4.1: Performances of Representations in Multi-Objective Network Domain. Rank-
based selection with selection pressure being 1-10 is used on data set 2.
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The final populations of edge and adjacency representation are shown in figure 4.1 for data

set 15 and selection pressure 1-10. For convenience only the results for one selection pressure

and data set is shown in this section, and all results for data set 1 are shown in appendix B.

The results show that edge representation significantly outperforms adjacency representa-

tion in all cases.

4.2.2 MULTI-OBJECTIVE OPTIMIZATION

As shown in previous section, edge representation is better than adjacency representation

in multi-objective domain. For this reason, edge representation is used for the rest of the

experiments.

The aim of this experiment is to see the performance of multi-objective evolutionary (will

be called MOO for simplicity) GA with respect to its aggregate counterpart. The aggregate

counterpart (will be called AG for simplicity) uses the same objective functions of MOO to

compose its fitness function. The performances of MOO and AG are shown in figure 4.2

for data set 2 and selection pressure 1-10. The figure shows that AG is better in optimizing

reliability/cost; however, it is poor in optimizing delay. When the dominance of all objectives

are considered, neither AG nor MOO is dominant in all cases.

In figure 4.2, MOO is observed to perform poor in optimizing cost of the network. This

is due to the fact that reliability and delay of a network work against the cost of the network.

Hence, MOO intuitively better optimizes reliability and delay. To analyze the performances

better, we run AG and MOO for optimization of only the cost and the reliability of the net-

work. The results are shown in figure 4.3. Although the figure shows that MOO is very poor

in optimization of reliability when compared to AG, the solutions returned by AG and MOO

do not dominate each other (MOO has lower cost, and AG has higher reliability).

4.3 DISCUSSIONS

In this chapter, edge representation and adjacency representation are compared in multi-

objective domain. As mentioned in chapter 3, edge representation and adjacency represen-

tation are not dominant over each other in all cases analyzed in section 3. Our results for

multi-objective network domain show that edge representation is superior than adjacency rep-

resentation in all cases.

We also compared multi-objective network design algorithm with its counter-part. We
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Figure 4.2: Performances of aggregate and multi-objective algorithms over cost, delay and
reliability objectives. Rank-based selection with selection pressure being 1-10 is used on data
set 2.
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Figure 4.3: Performances of aggregate and multi-objective algorithms over only cost and
reliability objectives. Rank-based selection with selection pressures being 1-2, 1-5 and 1-10
is used on data set 2.
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showed that the solutions returned by multi-objective and aggregate algorithms are not dom-

inant when all objectives are considered. However, aggregate case is better in optimization

of reliability/cost, while multi-objective case is better in optimization of delay and reliability.

Single-objective case is poor in optimization of delay, whereas multi-objective case is poor in

optimization of cost.

The delay and the reliability of a network work against the cost of the network. We an-

alyzed the performances of multi-objective and aggregate algorithms without this effect and

showed that although solutions returned by both algorithms do not dominate each other, the

solutions returned by aggregate algorithm are better in terms of solution quality (reliabil-

ity/cost). As mentioned in section 2.2, the choice of weights for aggregation of objectives is

important for the performance and in most cases it is very difficult to find the right combina-

tion (if there is any at all). In this study, we did not assign any weights.

In summary, the gap this chapter fills in is the comparison of representations for reliable

network design in multi-objective domain and analysis of multi-objective optimization for

reliable network design with its aggregate counterpart.

The future work for this chapter may include analysis of other multi-objective algorithm

approaches like VEGA, Lexiographic Ordering and Game Theory.
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CHAPTER 5

CONCLUSIONS

In this study, reliable network design problem is analyzed in detail using evolutionary algo-

rithms. Both aggregate and multi-objective algorithms are exercised, and their performances

are analyzed. An alternative representation, i.e. list of edges representation, is investigated in

detail, and its performance is compared with traditional representation, i.e. adjacency matrix

representation.

We showed in chapter 3 that no representation is dominant in all of the cases (i.e., data

sets and selection pressures) in the aggregate context we have adopted. However, in the multi-

objective domain of the problem, we showed that edge representation is significantly better

than adjacency representation in the context we have adopted.

We also analyzed the design issues of a GA that may use edge representation; namely,

crossover, mutation and duplicate edges. We showed that duplicate edges are mandatory for

the performance of the GA that uses edge representation.

Besides, we implemented a multi-objective evolutionary GA for reliable network design

problem (whose objectives to be optimized were cost, delay and reliability), and we tried to

understand its performance with respect to its aggregate counterpart. We showed that ag-

gregate case is better in optimization of reliability/cost and poor in optimization of delay.

Whereas, multi-objective algorithm was poor in optimization of cost. The poorness of multi-

objective algorithm in optimization of cost was supposed to be the fact that delay and reliabil-

ity of a network work against the cost of the network. To analyze the performances free from

this effect, we made experiments for optimization of only cost and reliability and showed

that although both algorithms returned non-dominating solutions, the solutions of aggregate
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optimization were better in terms of quality (reliability/cost).

In summary, the contributions of this study are:

� Analysis of an alternative representation (edge representation) for reliable network de-

sign problem.

� Comparison of two representations (edge representation and adjacency representation)

for both aggregate and multi-objective optimization.

� Analysis of multi-objective behaviour of reliable network design problem with its ag-

gregate counterpart.

5.1 FUTURE WORK

� The performance difference of representations for network design problem can be an-

alyzed for the case where both representations have repair mechanisms and the case

where both representations have continuous reliability without a repair mechanism.

� Multi-objective behaviour of network design problem can be analyzed using different

kinds of multi-objective algorithms like VEGA, Lexiographic Ordering and Game The-

ory.
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APPENDIX A

DATA SETS

First data set:

0 130 90 106 100 100 200 180 200 150
130 0 980 155 180 200 300 150 200 140
90 980 0 1 150 151 152 153 154 155
106 155 100 0 1 161 162 163 164 165
100 180 1 1 0 171 172 173 174 175
100 200 151 161 171 0 181 182 183 184
200 300 152 162 172 181 0 191 192 193
180 150 153 163 173 182 191 0 1 1
200 200 154 164 174 183 192 1 0 1
150 140 155 165 175 184 193 1 1 0

Second data set:

0 13 20 16 10 40 60 70 80 90 40 60 70 80 90
13 0 9 15 18 20 16 40 13 9 20 16 40 13 9
20 9 0 10 14 16 15 10 10 18 16 15 10 10 18
16 15 10 0 20 10 18 14 18 10 10 18 14 18 10
10 18 14 20 0 20 16 40 13 9 20 16 40 13 9
40 20 16 10 20 0 60 70 80 0 90 60 70 80 90
60 16 15 18 16 60 0 10 50 18 10 50 18 9 20
70 40 10 14 40 70 10 0 10 14 10 14 20 50 1
80 13 10 18 13 80 50 10 0 90 90 20 30 14 90
90 9 18 10 9 90 18 14 90 0 20 30 40 50 60
40 20 16 10 9 90 10 10 90 20 0 70 18 20 40
60 16 15 18 20 60 50 14 20 30 70 0 30 40 80
70 40 10 14 16 70 18 20 30 40 18 30 0 65 89
80 13 10 18 40 80 9 50 14 50 20 40 65 0 80
90 9 18 10 9 90 20 1 90 60 40 80 89 80 0
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APPENDIX B

PERFORMANCE GRAPHS OF REPRESENTATIONS IN

MULTI-OBJECTIVE DOMAIN

This appendix gives the graphs that show the performances of representations in Multi-objective

domain.

The figures are discussed in section 4.2.1.
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Figure B.1: Performances of Representations in Multi-Objective Network Domain. Rank-
based selection with rank being 2 is used on data set 1.
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Figure B.2: Performances of Representations in Multi-Objective Network Domain. Rank-
based selection with rank being 5 is used on data set 1.
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Figure B.3: Performances of Representations in Multi-Objective Network Domain. Rank-
based selection with rank being 10 is used on data set 1.
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