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ABSTRACT 

 

 

QUANTAL EFFECTS ON GROWTH OF INSTABILITIES IN NUCLEAR 

MATTER 

 
Kaya,  Dilan 

M.S., Department of Physics 

Supervisor: Prof. Dr. Ahmet Gökalp 

Co-Supervisor: Prof. Dr. �akir Ayık 

January 2004, 41 pages 

 
The quantal Boltzmann–Langevin equation is used to obtain a dispersion relation 

for the growth rates of instabilities in infinite nuclear matter. The dispersion 

relation is solved numerically for three different potentials. The quantal results are 

compared with the semi-classical solutions. It is seen that with the inclusion of the 

quantal effects the growth rates of the fastest growing modes in the system are 

reduced and these modes have the tendency to occur at longer wavelengths for all 

the potentials considered. Furthermore, the boundaries of the spinodal region is 

determined by the phase diagrams using the same three potentials and it is observed 

that the expanding nuclear matter undergoes liquid-gas phase transition at reduced 

temperatures when the quantum effects are included. 

Keywords: Dispersion Relation, Spinodal Region. 
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ÖZ 

 

NÜKLEER  MADDE  �Ç�  KARARSIZLIKLARIN  OLU�UMUNDA 

KUANTAL  ETK�LER 

 

Kaya,  Dilan 

M.S., Department of Physics 

Tez Yöneticisi: Prof. Dr. Ahmet Gökalp 

Ortak Tez Yöneticisi: Prof. Dr. �akir Ayık 

Ocak 2004, 41 sayfa 

Sonsuz nükleer madde içindeki kararsızlıkların olu�um oranı için bir da�ılım 

ba�ıntısı elde etmek üzere kuantal Boltzmann–Langevin denklemi kullanıldı. 

Da�ılım ba�ıntısı üç farklı potansiyel için nümerik olarak çözüldü. Kuantal 

sonuçlar yarı-klasik çözümlerle kar�ıla�tırıldı. Uygulanan bütün potansiyeller için 

kuantal etkilerin dahil edilmesiyle sistemdeki en hızlı geli�en modların olu�um 

oranlarının azaldı�ı ve bu modların daha uzun dalga boylarında bulunma e�ilimine 

sahip oldu�u görüldü. Aynı üç potansiyel için faz dönü�üm bölgesinin sınırları faz 

diyagramları yardımıyla belirlendi ve kuantal etkilerin dahil edilmesiyle geni�leyen 

nükleer maddenin sıvı-gaz faz dönü�ümüne daha dü�ük sıcaklıklarda ula�tı�ı 

gözlendi. 

Anahtar Kelimeler: Da�ılım Ba�ıntısı, Faz Dönü�üm Bölgesi. 
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CHAPTER 1 

 

INTRODUCTION 

 

Nuclear collisions provide opportunities to study the nuclear systems far from 

equilibrium. Due to the collisions, the nuclear system may develop into widely 

different configurations. The spinodal (volume) instabilities may appear and 

decomposition of the system may take place. The boundary that the system changes 

phase is called the spinodal boundary. In recent years, the feasibility of making 

detailed experimental studies at intermediate energies aroused the theoretical 

interest in developing the formal treatment of nuclear dynamics like the density 

fluctuations and spinodal instabilities. 

 

The investigation of the decay properties of very hot nuclei is currently one of 

the most challenging topics of nuclear physics. The excitation energy of the hot 

nuclei is comparable with the total binding energy. They disintegrate via a new 

multi-body decay mode, thermal multifragmentation, which is characterized by the 

copious emission of intermediate mass fragments (2<Z�20). The development of 

this field has been strongly stimulated by the idea that this process is related to the 

liquid-gas phase transition, which was predicted on the basis of the similarity 

between van der Waals and nucleon-nucleon interactions. For both systems there is 
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a spinodal region characterized by phase instability. The density here is reduced as 

compared to the liquid phase. One can imagine that a hot nucleus at temperatures 

about T = 5-7 MeV expands due to thermal pressure and enters the unstable region. 

Due to density fluctuations, a homogeneous system converts into a mixed phase 

state consisting of droplets surrounded by nuclear gas. The final state of this 

transition is a nuclear fog, which explodes due to Coulomb repulsion and is 

detected as multifragmentation. The disintegration time is very short. This is the 

scenario of spinodal decomposition. It was proven experimentally that thermal 

multifragmentation occurs at reduced densities, and the disintegration time is less 

than 100 fm/c. The spinodal decomposition is, in fact, the liquid-fog phase 

transition in a nuclear system [1]. 

 

The decay of highly excited nuclear systems through a simultaneous 

disassembly into fragments and particles, what we call multifragmentation, is a 

subject of great interest. The process of multifragmentation following the collision 

of heavy nuclei in the region of medium energies displays several features 

analogous to usual liquid-gas phase transitions of water. However, in this analogy 

one should be aware of differences due to nucleon-nucleon interactions, finite size 

and quantum effects as well as binary, i.e. two-component, character of  nuclear 

matter. Indeed after a fast compression and expansion we expect the system to be 

quenched into an unstable state either inside the coexistence curve in the 

metastability region where the phase is unstable against short wavelength but large 

amplitude of fluctuations, which means small sizes of nucleon groups or in the 

instability (spinodal) region where the system becomes unstable against long 
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wavelength but small amplitude fluctuations, that results in larger sizes of 

fragments. Then the system will evolve toward a stable thermodynamical state of 

two coexisting phases either through nucleation in the former case or through 

spinodal decomposition in the latter case [2, 3]. 

 

A precise way to understand the features of instabilities in two-component 

systems such as nuclear matter is to consider the equilibrium phase transition 

together with the nuclear collisions driving such phase transition at intermediate 

energies. In this work we are interested in the quantal effects on the growth of 

instabilities in infinite nuclear matter around the equilibrium. The relation to 

thermodynamic properties of infinite nuclear matter is obtained by discarding the 

Coulomb interactions. Thus the equilibrium phase transition and the characteristics 

of the collective modes will be discussed including the quantum effects. 

 

In the previous years, several theoretical models have been used in order to 

study the nuclear dynamics at intermediate energies. Especially the much employed 

Boltzmann-Uehling-Uhlenbeck (BUU) model provides a good basis for describing 

dynamics of small density fluctuations around the equilibrium [4]. The BUU 

equation includes the mean-field and the hard collisions. Under certain kinematic 

conditions, a nuclear collision can produce physical situations in which bulk or 

surface instabilities take place [5, 6]. In Ref. [5], the central heavy-ion collisions at 

intermediate energy are simulated using the nuclear BUU transport theory and it is 

shown that the nuclear bubbles and the disks formed during the collision break up 

into several fragments due to the surface instabilities. A sheet of liquid, stable in 



 4 

the limit of non-interacting surfaces, becomes unstable due to surface-surface 

interactions. In Ref. [6], the intermediate energy heavy ion collisions are studied 

again by the means of BUU equation and it is seen that the intermediate-mass 

fragments occur through the entire nuclear volume.  

 

Semi-classical kinetic equations for the one–body phase–space density 

provide a powerful tool for studying the dynamics of complex processes occurring 

in nuclear collisions [4]. However, these equations in their original version give a 

deterministic description for the evolution of the one–body phase–space density 

and their solution represents the mean value of this density at each time. These 

semi-classical transport theories account for the residual interactions in only an 

average manner and they are only well suited for small density fluctuations. 

Therefore such a description is inadequate for the processes such as nuclear 

collisions in which the fluctuations about the phase-space density are believed to 

play an important role. In the last decade, an extension of the transport theory has 

been proposed [7, 8]. In Ref. [7], the BUU approach is extended in order to 

incorporate the fluctuations. The evolution of the single-particle density is 

considered as a “generalized Langevin process” in which the correlated part of the 

collision term acts as a “random force” generating the fluctuations. The correlation 

function of the random force is calculated in the semi-classical approximation. The 

result is a “stochastic transport equation” for the fluctuating single-particle density. 

In Ref [8], even though the starting point is identical with that of Ref. [7], the 

methods are different. In both studies, the fluctuations induced by the two-body 

collisions is treated as a Langevin process. The correlation function associated with 
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the one-particle distribution may then be deduced from the properties of the 

fluctuating force. This approach, that incorporates a fluctuating stochastic term into 

the kinetic equation, is usually known as the Boltzmann–Langevin equation, and it 

was originally applied to the treatment of hydrodynamic fluctuations in the theory 

of classical fluids [9]. While an explicit expression for the correlation of the 

fluctuating force is derived and this is defined as the source term for the 

fluctuations in Ref. [7], this term appears as the diffusion coefficient in the 

equations of Ref. [8]. In addition to this term, a degradation term is derived, using 

the stochastic properties of the basic two-body collision term. This restoring term 

acts to saturate the growth of the fluctuations and is responsible for establishing 

equilibrium. 

 

The nuclear Boltzmann-Langevin model gives a semi-classical description of 

the nuclear system in terms of its reduced one particle phase-space density whose 

evolution in time is governed by the combined action of the effective one-body 

field [ ]ρh  and the residual two-body collisions between individual nucleons, [ ]ρ0I   

[10]. 

 

 Among microscopic approaches, the Boltzmann-Langevin (BL) equation is 

one of the most suitable to describe the large density fluctuations in a nuclear 

system. This approach incorporates a stochastic term into the kinetic equation and 

includes fluctuations in the evolution of density [7, 8].  
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Many studies have been carried out by the means of the semi-classical BL 

model to understand the early development of the spinodal instabilities in nuclear 

matter [11-13]. A simple transport equation determines the dynamics of the 

collective modes associated with density fluctuations. This equation includes the 

source term arising from the stochastic part of the collision integral. This term 

causes the collective modes of the system. Also the mean field that gives rise to 

propagation of the modes is included in the transport equation. Ref. [11] shows that 

the application of linear response treatment to the Boltzmann-Langevin theory 

provides a relatively simple and complete understanding of the early development 

of the one-body phase-space density in nuclear matter, including its correlation 

function. Within such an approach it is possible to describe the time evolution of 

the correlated fluctuations created by the stochastic two-body collisions in the 

system. It is seen that two-time correlation function contains no information on the 

spontaneous creation of the fluctuations but for stable matter it exhibits the effects 

of both Landau damping, due to the effective field, and the collisional damping. 

Also it reflects the characteristic times for the amplification of existing fluctuations 

for the unstable systems. The evolution of equal-time correlation function is used to 

determine the source term governing the growth rate of the unstable modes in the 

system. This has been illustrated in the case of spinodal instabilities in idealized 

two-dimensional matter [11].  

 

In this study we will investigate the collective modes in infinite nuclear 

matter by solving the BL equation. Since it is known that the fastest growing and 

the predominant collective modes have wave numbers comparable to the Fermi 
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momentum [11], the quantal effects are said to have an important influence on the 

growth of spinodal instabilities in nuclear matter. So, we will be interested in the 

quantal determination of the dynamics of the density fluctuations. Therefore, we 

will neglect the stochastic part of the BL equation which arises from the collision 

effects. 

 

We will start with the quantal BL equation for the single density matrix ρ̂  

and use the linearization to investigate the small density fluctuations of the single 

particle density matrix around a finite temperature. Mean-field evolution will be 

determined in terms of an effective one-body Hamiltonian [ ]ρh  which includes a 

density dependent mean-field potential [ ]ρU .  

 

Then, in a quantal description we will obtain a dispersion relation for the 

frequency of the collective mode corresponding to the wave number k . For three 

types of Skyrme potentials, the dispersion relation will be evaluated. And the 

results of the quantal description and the semi-classical approach will be compared 

for three types of Skyrme potentials. 

 

After the investigation of the effects of quantal description on the collective 

modes, we will look at the spinodal boundary for three mean-field potentials and 

we observe the quantal effects on the phase diagrams. 
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CHAPTER 2 

 

FORMALISM 

 

In infinite nuclear matter, the collective modes are characterized by a wave 

number k . The characteristic frequency of the collective mode corresponding to a 

given wave number is determined by a semi-classical dispersion relation. It is 

known that the fastest developing modes are approximately characterized by wave 

numbers comparable to the Fermi momentum [11]. Therefore, the quantal effects 

associated with the mean field evolution can have important influence on the 

growth of instabilities.  

 

The quantal BL equation for the single particle density matrix provides a 

suitable framework for studying the dynamics of density fluctuations in nuclear 

systems which is given as [14] 

 

[ ][ ] [ ] )(ˆˆˆ)(ˆ,ˆˆ)(ˆ
tKKth

t
t

i ����
� +=−
∂

∂
�                                (2.1) 

 
where [ ]ρ̂ĥ  is an effective one-body Hamiltonian operator 

[ ] [ ]ρρ ˆˆˆ
2

ˆˆ 2
2

U
m

h +∇−= �
                                          (2.2) 
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and [ ]ρ̂Û  is density dependent mean-field potential. The additional field will 

induce density fluctuations with respect to the mean density. At time t=0, the 

system has a density fluctuation )0( =t�� , with 0)()( ���� −= tt  where 0ρ  is the 

density of the reference homogeneous state towards which the system relaxes. With 

the substitution 

        ρδρρ ˆˆˆ 0 +→   

we obtain 

        [ ] [ ] UUU ˆˆˆˆˆ
0 δρρ +→   

and 

[ ] [ ] UhUU
m

U
m

h ˆˆˆ)ˆ(ˆˆ
2

ˆˆˆˆ
2

ˆˆ
00

2
2

2
2

������� +=++∇−=++∇−→ ��
 .     (2.3) 

 

Within a linear approximation for the stochastic mean-field, the small density 

fluctuations ρδ ˆ  of the single particle density matrix around a finite temperature 

equilibrium density matrix 0ρ̂  are determined by the quantal BL equation 

 

[ ] [ ] [ ] )(ˆˆˆˆˆ,ˆˆˆˆ 0000 tKKUh
t

i ����������� ++=++−+
∂
∂
�  .                (2.4) 

 

By employing Eq. 2.4 for 0ρ , i.e. at equilibrium and ignoring the multiplied 

fluctuations, we obtain 

[ ] [ ] 0000
ˆˆˆ,ˆˆ,ˆˆ

KIUh
t

i �������
�� +=−−

∂
∂
�                            (2.5) 
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where 0̂h  is the mean field Hamiltonian and 0ρ̂ is the single particle density matrix 

both at equilibrium state, Ûδ  is the fluctuating part of Hamiltonian, ��ˆ0I  is the 

linearized approximation to the two-body collision term, and 0K̂δ  describes the rate 

of fluctuations generated in the equilibrium state. This model provides a quantal 

basis to study the early evolution of the spinodal instabilities in nuclear matter. In 

this work, we are mainly interested in studying the quantal effect on the growth of 

instabilities in infinite nuclear matter, therefore we neglect the right-hand-side of  

Eq. 2.5, and obtain 

[ ] [ ]00 ˆ,ˆˆ,ˆ)(ˆ
����

��
Uh

t
t

i =−
∂

∂
�  .                                   (2.6) 

 

Since we assume that the equilibrium state is uniform, the equilibrium single 

particle density matrix is diagonal in the plane wave representation, 

)()(ˆ 1021201 ppppp ρδρ −= . After writing all the terms in Eq. 2.6 in plane 

wave representation in momentum space and performing a Fourier transform with 

respect to time, the details of which is presented in Appendix A, Eq. 2.6 becomes 

 

[ ] );,()()();,()( 2110202121
ωδρρωδρεεω pppppppp U−=+−�  ,          (2.7) 

 

where );,( 21 ωδρ pp  and );,( 21 ωδ ppU  denote the Fourier transform of the 

fluctuating part of the single particle density matrix and of the mean-field matrix, 

respectively, 

dtte ti ><= � 2121 |)(ˆ|);,( pppp ρδωδρ ω  ,                         (2.8.a) 
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  dttUeU ti ><= � 2121 |)(ˆ|);,( pppp δωδ ω  .                       (2.8.b) 

 
In order to evaluate the matrix element of the mean-field, we write the momenta in 

Eq. 2.7 as 2/1 kpp �+=  and 2/2 kpp �−= . When the effective mean-field is 

generated from the local density )(rn  with a finite range interaction |)(| rg , then 

the potential is given as [ ]� ′′−′=⊗= )(
~

|)(|
~

)( 3 rrr nUgrdUgnU  where [ ])(
~ rnU  is a 

function of local density and reg r
��

� 4/)(|)(| 2 −=r  is used as convolution 

function with 8.0=� fm-1. Then, the fluctuating part of the mean-field can be 

expressed as  

 

),(
)(

);
2

,
2

( ���� k
kkpkp n

n
U

U
∂

∂
=−+ ��

                               (2.9) 

where [ ]0
~

)()( nUkgkU =  and )/()2()( 2223 ��� += − kkg  is the Fourier transform 

of the convolution function )(rg . The details of the derivation is given in 

Appendix B.2. In the above equation  ),( ωδ kn  denotes the Fourier transform of the 

local density fluctuations in space and time as 

 

);
2

,
2

(
)2(

),(),(
3

���
�

��� � kpkpprrk rk ��

�
−+== ��

⋅− d
tnedtedn tii  ,    (2.10) 

 

where the  right-hand-side of this equation is obtained by calculating the matrix 

element of the fluctuating part of the density matrix between the single particle 

states with 2/1 kpp �+= , 2/2 kpp �−=  in Eq. 2.8.a, and integrating over p  
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after performing the Fourier transform with respect to time which is shown in detail 

in Appendix B.1. 

 

After writing Eq. 2.7 with  2/1 kpp �+=  , 2/2 kpp �−= , performing 

integration with respect to p  and using Eq. 2.9 and  Eq. 2.10 for the expressions in 

the momentum integral, we then obtain a quantal dispersion relation for the 

frequency of the collective mode corresponding to the wave number  k  as  

 

    
)(

)2/()2/(

)2(
)(

1
2/2/

00
3

kpkp

kpkppk

��
�

��

� −+ +−
+−−

∂
∂= � ���

��

� k

d
n

U
 .               (2.11) 

This quantal dispersion relation can be evaluated exactly at zero temperature. 

However, for finite temperature it must be studied numerically. The results are 

discussed in Chapter 3. 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

 

In this chapter we analyze the dispersion relation obtained in the previous 

chapter by considering three different finite range interactions. The characteristic 

frequencies of the collective modes are solved implicitly by using a numerical 

method. Finite temperature T= 3 MeV and a constant density value 05.00 =n  fm-3 

will be used to determine the characteristic frequencies for the unstable nuclear 

matter.  Then, the boundary of the spinodal region is determined in the ( T,ρ ) plane 

again using the three different effective interactions. For the phase diagrams the 

frequency is chosen to satisfy the spinodal boundary condition which is 0=kω . 

Both in the dispersion relation and in the phase diagram, the quantal and the semi-

classical results are compared and it is demonstrated that the inclusion of the 

quantal effects in the mean-field propagation changes significantly the nuclear 

dispersion relation and the boundary of the spinodal region. 

 

In infinite nuclear matter, the collective modes are characterized by a wave 

number k and the corresponding frequencies occur in pairs as kω± . The 

characteristic frequencies are real for the stable modes and imaginary for the 
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unstable modes, in which case they are written as kk i �� /=  where  kτ±  is the 

characteristic growth or decay time of the mode. For the unstable modes, the plane 

wave representation of the system is denoted in terms of  tke )/1( ��  instead of  ti ke ω± .  

 

 

3.1.     Zero Temperature  

Before investigating the finite temperature condition we will first look at the 

zero temperature case. In the zero temperature limit, the Fermi distribution reduces 

to a step function [15] shown in Fig. 3.1. 

 

       

              

1

1
/)(0 +

= − TkBe µερ  

 

                     )(0 εεθρ −= F  

 

Figure 3.1: Schematic distribution functions )(ερ for an ideal Fermi gas at 
various temperatures. 

 
This limit can be expressed as 

)(

1

0

1
1

0/)(0 ��	

��

��

�
��

−=
�
�

�
�

�

�
�

�
�

�

<

>
→

+
=

→−

for

for

e TTkB
 .            (3.1) 

1

ρ 

ε 

0=T  

Fεµ =  

1

ρ 

ε 

0
0

>
>

µ
T  

)(Tµ  
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At zero temperature the chemical potential is equal to the Fermi energy Fεµ = . 

Therefore, the density term in the dispersion relation becomes )(0 εεθρ −= F , 

where  mpp 2/2=� , thus for zero temperature we have the relations 

 

)
22

()(
22

0 m
p

m
pF −= θρ p  ,                                          (3.2) 

)2/()
2

)2/(
2

()2/(
22

0 kpkpkp �
�

� −−=−−=− F
F p

mm
p θθρ  ,       (3.3) 

)2/()
2

)2/(
2

()2/(
22

0 kpkpkp �
�

� +−=+−=+ F
F p

mm
p θθρ  .       (3.4) 

 

Then, with these expressions in the integrand, Eq. 2.11 becomes 

	
	




�

�
�



�

−
+−

−
−

−−
∂

∂= � m

p

m

pd
n

U

k

F

k

F

/.

)2/(

/.

)2/(

)2(
)(

1
3 pk

kp
pk

kppk
��

�

��

�

� �

	

�

	

�
  ,      (3.5) 

which is discussed in detail in Appendix C.1. This integral is also evaluated in 

Appendix C.1 and the quantal dispersion relation in Eq. 2.11 can be written for 

0=T   as 

             

[ ]

[ ] ,
1

1
ln1)(

8
1

1

1
ln1)(

8
1

2
1

)2(

22)(
1

0

02
0

0

0

02
0

0
3

��

�
�
�

−−
+−

−−−

−+
++

−++
�
�
�−

∂
∂=

ss

ss
ss

s

ss

ss
ss

s

mp

n
kU F

��

�

 

 
 

 
(3.6) 

 

where Fk kpms /�=  and Fpks 2/0 �=  are dimensionless variables. This 

expression can further be rearranged as 
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2
1

)(
1

0

+
kF

 [ ]
1
1

ln1)(
8
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where [ ] )2/3(/)(=)( 00 FnnkUkF �∂∂  ,  23
0 3/2 �Fkn = and mpFF 2/2=ε . 

  

In the limit of  �  is going to zero, Eq. 3.7 reduces to the semi-classical 

dispersion relation at zero temperature in the form 

1
1

ln
2

1
)(

1

0 −
+=+

s
ss

kF
  ,                                            (3.8) 

the derivation of which is presented in Appendix C.1.1. 

 
 

3.2.     Finite Temperature 

At finite temperature the density term in the dispersion relation becomes 

1

1
/)(0 +

= − TkBe µερ                                          (3.9) 

which is a finite temperature Fermi-Dirac distribution function and the chemical 

potential is determined as [ ]22 )/)(12/(1 FBF Tk επεµ −=  in terms of Fermi 

energy [15]. The Fermi energy is calculated in terms of local density in 

AppendixaD. We take the equilibrium local density as 05.00 =n  fm-3 and 

3=T MeV in the dispersion relation to obtain the frequency growth rate graphs. 
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We determine the characteristic frequencies of the collective modes by 

solving the quantal dispersion relation Eq. 2.11 at finite temperatures. The angular 

part of the integral in the dispersion relation is evaluated in Appendix C.2. We take 

the frequency as kk i �� /=   for unstable modes and analytic calculation gives   

.)2/2/2()/(ln

)2/2/2()/(ln
2
2

)(
)2(

2
)(

1

2222

2222
03

�
�
�

++−

�
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∂= �

mkmpk

mkmpk
k

m
pp

dp
n
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k
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���

���
��

�

��
�

�

 

 

(3.10) 

 The remaining part of the integral is calculated numerically. For the quantal 

calculations the density is taken as in Eq. 3.9. For the semi-classical limit it is used 

as TkBe /)(
0

εµρ −= , which is the semi-classical or high-temperature limit of the 

Fermi distribution and known as Boltzmann distribution [15]. 

 

In the calculations we employ three types of Skyrme interactions [16]: 

i) Full Skyrme potential for symmetric nuclear matter 
 

        
2

)
2
1

()
2
1

1()( 0000
ρρρ xtxtU +−+=  

             [ ]
2

)
2
1

(
2

)
2
1

(2)
2
1

1)(2(
12
1

3333

ραρραρα xxxt +−+−+++ , 

 

 
 
 
 

(3.11) 
 

where 91.24880 −=t MeV.fm3 , 137773 =t MeV.fm7/2, 834.00 =x  354.13 =x  

and 6/1=α . 

 
ii) Simplified Skyrme potential for symmetric nuclear matter 

 
2

00

))(5.70()124()(
�

�

�

�
� MeVMeVU +−=  ,  

 
 

(3.12) 
 

which is a repulsive potential of high compressibility κ = 380 MeV. 
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iii) Simplified  Skyrme potential for symmetric nuclear matter 
 

6/7

00

))(303()356()(
�

�

�

�
� MeVMeVU +−=  , 

 
 
 

(3.13) 
 

which is a less repulsive potential with κ = 200 MeV. 

In the above equations 0�  denotes the normal nuclear matter density which is 

0� =0.16 fm-3. 

The results are discussed in Section 3.3 and Section 3.4. 

 

3.3     Dispersion Relations 

We studied the dispersion relation at finite temperature by means of 

numerical integration techniques, and we obtained the growth rate of the unstable 

modes for three different Skyrme forces.  

 

Fig. 3.2 shows the growth rate of the unstable modes as a function of the 

wave number in the spinodal region, corresponding to 05.00 =n  fm-3 and 

3=T MeV, calculated with the effective interaction in Eq. 3.11. The solid line 

shows the quantal result with the finite range interaction. The dashed line shows the 

semi-classical result with the same finite range interaction. The dotted line is the 

quantal result obtained with a local mean field which does not include the 

convolution term. The distribution of the collective modes is between k=0-2 fm-1 

concentrated around 1 fm-1 in the quantal result. It corresponds to  6≈λ  fm, which 
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Figure 3.2: The dispersion relation for the unstable nuclear matter at 05.00 =n fm-3 
and 3=T MeV, with the full Skyrme force. 
 

is the wavelength of fastest growing collective modes as seen from the graph. 

These are the most important collective modes which characterizes the growth of 

the expanding nuclear system. While the growth rate of the fastest modes are 

around 0.035 c/fm in the quantal case, it is around 0.046 c/fm in the semi-classical 

result. The maximum of the dispersion relation is reduced by a factor of about 2/3, 

the modes grow slowly with the quantum effects. 
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Figure 3.3: The dispersion relation for the unstable nuclear matter at 05.00 =n fm-3 
and 3=T MeV, with the second type Skyrme force. 

 

Fig. 3.3 and Fig. 3.4 shows the same quantities calculated with the other 

two effective interactions given by Eq. 3.12 and Eq. 3.13, respectively. As it is seen 

from the figures, the dispersion relation does not depend very strongly on the 

employed effective interaction, but it is substantially modified by the quantal 

effect. The unstable modes are confined to a narrower range centered around a 

wavelength 108 −≈� fm, as compared to a broader range concentrated around 

6≈λ  fm, in the semi-classical case. The most unstable collective modes, which
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Figure 3.4: The dispersion relation for the unstable nuclear matter at 05.00 =n fm-3 
and 3=T MeV, with the third type Skyrme force. 

 

essentially determine the predominant size of the primary clusters, are shifted to 

longer wavelengths than those obtained in a semi-classical description with the 

same effective interaction. Since the larger wavelength means bigger sizes and 

fewer amounts of particles for a system, it is concluded that the system has 

tendency to break into larger sizes of clusters when the quantal effects are included. 

 

Also the maximum of the dispersion relation is reduced by the quantum 

effects about a factor of 2/3. Therefore fluctuations take more time to develop when 
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the quantum effects are introduced. So, the most unstable modes show up later in 

larger wavelengths with the inclusion of the quantum effects. 

 

3.4     Phase Diagrams 

 

Figure 3.5: Phase diagram. The boundaries of the spinodal region in the ( T,ρ ) 
plane associated with the wavelength  6=�  fm, obtained in the quantal (solid line) 
and in the semi-classical (dashed line) case, with the full Skyrme force. 

 

Fig. 3.5, Fig. 3.6 and Fig. 3.7 show the boundary of spinodal region in the 

( T,ρ ) plain corresponding to a mode with a wavelength 6≈λ  fm. The solid and 

the dashed lines are the quantal and the semi classical results, respectively, 
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obtained with the three effective interactions introduced above. It is seen that the 

spinodal region shrinks to a smaller size in the quantal case, indicating that the 

mode is quite suppressed by quantal effects. Therefore, finite size effects should be 

more important when quantum effects are introduced. 

 

 

 

Figure 3.6: Phase diagram. The boundaries of the spinodal region in the ( T,ρ ) 
plane associated with the wavelength 6=�  fm, obtained in the quantal (solid line) 
and in the semi-classical (dashed line) case, the second type Skyrme force. 
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Figure 3.7: Phase diagram. The boundaries of the spinodal region in the ( T,ρ ) 
plane associated with the wavelength 6=�  fm, obtained in the quantal (solid line) 
and in the semi-classical (dashed line) case, the third type Skyrme force. 
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CHAPTER 4 

 

 CONCLUSIONS 

 

In this study, the instability of a hot infinite nuclear matter is considered. 

Quantal effects are observed within a linearized Boltzmann-Langevin transport 

model. The growth rates of the unstable modes in nuclear matter are investigated 

using a quantal dispersion relation. These results exhibit the characteristics of the 

collective modes and the range of spinodal region for infinite nuclear matter. It is 

seen that for a density around the 30% of normal nuclear matter density and for 

temperature around 3 MeV the relevant most important modes become unstable 

with similar growth rates around 0.04-0.06 c/fm, but these growth rates are reduced 

to the values around 0.03 c/fm by the quantal effects. The spinodal boundaries are 

also similar under different finite range interactions, but again reduced by inclusion 

of the quantum effects. 

 

If we compare our results with some studies carried out for finite nuclear 

matter including the surface effects [17, 18], we see that the bulk modes have a 

smaller spinodal region than the surface modes. That is, finite nuclear matter have 

larger spinodal region, reaching out to densities and temperatures way beyond the 

spinodal line for bulk instabilities. In [18], early development of the instabilities in 
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a dilute nuclear source is investigated using a finite temperature quantal approach 

for different systems. The growth rates of the unstable collective modes are 

determined by solving a dispersion relation, which is obtained by parametrizing the 

transition density in terms of its multipole moments. As a result, only a finite 

number of multipole moments becomes unstable, and the number of the unstable 

collective modes increases with the size of the source. Calculations indicate that for 

an expanding source, unstable modes show a transition from surface to volume 

character. 

 

Although multifragmentation has been observed for many years, its 

experimental knowledge was strongly improved only recently with the advent of 

powerful devices built in the last decade. The properties of highly excited nuclear 

sources which undergo a simultaneous disassembly into particles are found to sign 

the presence of a gas phase. For heavy nuclear sources produced in the Fermi 

energy domain, which undergo a simultaneous disassembly into particles and 

fragments, fragment size correlations bring out the origin of multifragmentation as 

the spinodal instabilities which develop in the unstable coexistence region of the 

phase diagram of nuclear matter [3]. 

 

The results of this study, together with the similar calculations carried out for 

finite nuclear matter [18], show that the inclusion of the quantal effect in the mean-

field propagation changes significantly the nuclear dispersion relation and the 

boundary of the k-dependent spinodal region. The characteristic growth rates of the 

unstable modes, in particular with wave numbers larger than the Fermi momentum, 



 27 

are strongly suppressed and the size of the spinodal zone corresponding to these 

modes is reduced by the quantal effect. As a result, the most unstable collective 

modes are shifted to longer wave lengths than in a semi-classical description with 

the same effective interaction. Therefore, the quantal effect in the mean-field 

evolution appears to be important for a quantitative description of the spinodal 

instabilities of an expanding nuclear system. 
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APPENDIX A 

 

DERIVATION OF DISPERSION RELATION 

 

Momentum space matrix elements in Eq. 2.6 can be obtained as 

( ) ( ) ><
∂
∂>=

∂
∂< 2121 |ˆ||

ˆ
| pppp t

t
i

t
t

i ρδρδ
��  (A.1) 

 
[ ] ><−>>=<< 200120012001 |ˆˆ||ˆˆ||ˆ,ˆ| pppppp hhh ρδρδρδ  
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                                 ><−= 201 |ˆ|)(
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After the combination of the terms, Eq. 2.5 becomes 

( ) ( ) ><−−><
∂
∂

2121 |ˆ|)(|ˆ|
21

pppp pp tt
t

i ρδεερδ�  

[ ] ><−= 211020 |ˆ|)()( pppp Uδρρ . 

 
 
 

(A.4) 

 

Fourier transform with respect to time gives 

( ) dttedtet
t

i titi ><−−><
∂
∂

�� 2121 |)(ˆ|)(|ˆ|
21

pppp pp ρδεερδ ωω
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                          [ ] dtUe ti ><−= � 211020 |ˆ|)()( pppp ���� , 
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and finally 
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pppp ρδεεω ω
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                                               [ ] dttUe ti ><−= � 211020 |)(ˆ|)()( pppp δρρ ω  . 
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APPENDIX B 

 

FOURIER TRANSFORMATIONS 

 
In order to evaluate the Fourier transform of the fluctuating part of the density 

matrix and the mean-field potential, we use the position space and momentum 

space representations in which we have the relations 

rppr ⋅>=< )/(| �ie  , (B.1) 

rkprkp ⋅+−>=+< )2/)(/(|
2

��� ie  , (B.2) 

and 

rkpkpr ′⋅−>=−′< )2/)(/(

2
| ��� ie  . (B.3) 

 

 

B.1.     Fourier Transform of the fluctuating part of the density matrix 

By Fourier transforming with respect to time, from Eq. 2.8.a, we obtain  

);
2

,
2

( ωδρ kpkp �� −+ dte ti >−+<= � 2
|ˆ|

2
kpkp �� ρδω               

          dte ti >−+<= � 2
|ˆ|

2
kpkp �� ρδω   

          >−′><′><+<′= �� 2
||ˆ||

2
kprrrrkprr ��

��� dddte ti   

          ( ) ( ) rkprkp rrrr ′⋅−⋅+− >′<′= ��
)2/(/)2/(/ |ˆ| ���� iiti eedddte ���  . 
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Then, integration over p  gives 
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B.2.     Fourier Transform of the fluctuating part of the mean field matrix 

By Fourier transforming with respect to time, from Eq. 2.8.b, it follows 
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By writing the momenta in Eq. 2.7 as 
21
kpp �+= ,

22
kpp �−=  , we obtain 
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and integrating over p  results in 
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From Eq. 2.10 it then follows that 
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Therefore, Eq. 2.7 becomes 
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This is the quantal dispersion relation for the frequency of the collective mode 

corresponding to the wave number k . 
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APPENDIX C 

 

EVALUATION OF THE INTEGRAL IN THE DISPERSION RELATION 

 

C.1.     Dispersion Relation at Zero Temperature 

In order to evaluate the integral in the dispersion relation at T = 0, we note that with 

Eq. 3.3 and Eq. 3.4 the integrand in Eq. 2.11 becomes 
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(C.1) 

We integrate Eq. C.1 term by term as 
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For the evaluation of the term A we make the transformation  pkp →− 2/�  and 

we obtain 
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Measuring all momentum vectors in terms of Fp  ( ppp F →/ ), we obtain 
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For the evaluation of the term B we make the transformation  pkp →+ 2/�  

which results in 
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where Fk kpms /�=  and Fpks 2/0 �=  are  introduced as dimensionless variables. 

Combining our results gives us the final expression as 
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C.1.1.     Classical Limit  

In order to evaluate 0→�  limit of the zero temperature dispersion relation, we 

start with Eq. 3.7 
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In the limit of 00 →s  the third term goes to zero and we obtain 
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which is indeterminate. Applying L’Hospital’s Rule to the indeterminate term, the 

limit can be evaluated as 
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and Eq C.5 becomes 
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C.2.     Dispersion Relation at Finite Temperature 

For the evaluation of the integral in the dispersion relation at finite temperature we 

use the transformation pkp →− 2/�  

		



�
��


�

++−
+

−
++−

= � )()(/
)(

)()(/
)(

)2(
00

3 pkp
kp

pkp
pp

εετ
ρ

εετ
ρ

π ��

�

��� kk ii
d

I . (C.8) 

 

We can integrate Eq. C.8 term by term as 
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With the transformation pkp −→+ �  in the second term, we obtain 
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since )()( 00 pp −≡ ρρ  and )()( pp −≡ εε . If we write the energy terms explicitly 

Eq. C.10 becomes 
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The explicit form of the dot product gives rise to the angular terms in the integrand 

and the integral becomes  
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The angular part of this integral can be evaluated by using the spherical coordinates  
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and the result is found to be as 
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APPENDIX D 

 

FERMI WAVE NUMBER AND FERMI ENERGY 

 

For a uniform Fermi gas, the expectation value of the number operator in the 

normalized ground state F  is [15] 
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where λkn̂  is the number-density operator. 

 

Since the Pauli exclusion principle allows only two fermions in each momentum 

eigenstate, one with spin-up and one with spin-down, the normalized ground state 

F  is obtained by filling the momentum states up to a value, the Fermi momentum 

FF kp �=  , and we have a spin degeneracy factor of 2 for protons and 2 for 

neutrons.  In the limit that volume of the system becomes infinite, we can replace 

sums over states by integrals [15] as 
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Then the maximum wave number Fk  is found to be  
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where n0  is the local density and energy of the Fermi level is 
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