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AUGUST 2003



BOUNDARY VALUE PROBLEMS FOR HIGHER ORDER LINEAR IMPULSIVE

DIFFERENTIAL EQUATIONS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY
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Abstract

BOUNDARY VALUE PROBLEMS FOR HIGHER ORDER LINEAR

IMPULSIVE DIFFERENTIAL EQUATIONS

Uğur, Ömür

Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Marat AKHMET

Co-Supervisor: Prof. Dr. Hasan TAŞELİ

August 2003, 81 pages

The theory of impulsive differential equations has become an important area of

research in recent years. Linear equations, meanwhile, are fundamental in most

branches of applied mathematics, science, and technology. The theory of higher

order linear impulsive equations, however, has not been studied as much as the cor-

responding theory of ordinary differential equations.

In this work, higher order linear impulsive equations at fixed moments of impulses

together with certain boundary conditions are investigated by making use of a Green’s

formula, constructed for piecewise differentiable functions. Existence and uniqueness

of solutions of such boundary value problems are also addressed.

Properties of Green’s functions for higher order impulsive boundary value prob-

lems are introduced, showing a striking difference when compared to classical bound-

ary value problems of ordinary differential equations. Necessarily, instead of an or-

dinary Green’s function there corresponds a sequence of Green’s functions due to

impulses.

Finally, as a by-product of boundary value problems, eigenvalue problems for

higher order linear impulsive differential equations are studied. The conditions for

the existence of eigenvalues of linear impulsive operators are presented. Basic prop-
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erties of eigensolutions of self-adjoint operators are also investigated. In particular,

a necessary and sufficient condition for the self-adjointness of Sturm-Liouville opera-

tors is given. The corresponding integral equations for boundary value and eigenvalue

problems are also demonstrated in the present work.

Keywords: Theory of Differential Equations, Impulsive Differential Equations, Bound-

ary Value Problems, Eigenvalue Problems, Green’s Functions, Linear Operators, Ad-

joint Operators, Sturm-Liouville Systems.
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Öz

YÜKSEK MERTEBEDEN LİNEER İMPALSİF DİFERANSİYEL

DENKLEMLER İÇİN SINIR DEĞER PROBLEMLERİ

Uğur, Ömür

Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Marat AKHMET

Ortak Tez Yöneticisi: Prof. Dr. Hasan TAŞELİ

Ağustos 2003, 81 sayfa

İmpalsif diferansiyel denklemler teorisi son yıllarda önemli bir araştırma alanı olarak

ortaya çıkmaktadır. Öte yandan, lineer denklemler, teknoloji, bilim ve uygulamalı

matematiğin birçok dalında temel konulardan biridir. Fakat, yüksek mertebeden

impalsif denklemler teorisi sıradan diferansiyel denklemler teorisinde olduğu kadar

araştırılmamıştır.

Bu çalışmada, belirli sınır koşullarıyla birlikte impals anları sabit zamanlı yüksek

mertebeden lineer impalsif denklemler, parça parça türevlenebilir fonksiyonlar için

yapılandırılan Green formülü yardımıyla incelenmiştir. Bu türdeki sınır değer prob-

lemlerinin çözümünün varlığı ve tekliği de belirtilmiştir.

Klasik sınır değer problemleriyle karşılaştırıldığında şaşırtıcı farklılıklar gösteren

yüksek mertebeden impalsif sınır değer problemleri için Green fonksiyonlarının özel-

likleri verilmiştir. İmpals etkileri sonucu, alışılagelen Green fonksiyonu yerine, Green

fonksiyonlarından oluşan bir sisteme ihtiyaç duyulmaktadır.

Son olarak, bir tür sınır değer problemi olarak ele alabileceğimiz yüksek mer-

tebeden lineer impalsif diferansiyel denklemler için özdeğer problemleri çalışılmıştır.

Yüksek mertebeden lineer impalsif operatörlerin özdeğerlerinin varlığı için gerekli

koşullar gösterilmiştir. Bu arada, kendine-eş operatörlerin özdeğer ve özfonksiyonla-
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rının temel özellikleri de araştırılmıştır. Özel olarak, Sturm-Liouville operatörlerinin

kendine-eşliği için gerek ve yeter koşulu belirtilmiştir. Yine bu çalışmada, sınır değer

ve özdeğer problemlerine karşılık gelen integral denklemler de sunulmuştur.

Anahtar Kelimeler: Diferansiyel Denklemler Teorisi, İmpalsif Diferansiyel Denklem-

ler, Sınır Değer Problemleri, Özdeğer Problemleri, Green Fonksiyonları, Lineer Ope-

ratörler, Eş Operatörler, Sturm-Liouville Sistemleri.
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Hüseyin BEREKETOĞLU, and Assoc. Prof. Dr. Tanıl ERGENÇ.
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Öz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Linear Homogeneous Equations . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Linear Nonhomogeneous Equations . . . . . . . . . . . . . . . . . . . . 7

2 Higher Order Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Linear Impulsive Equations . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Homogeneous Equations . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Nonhomogeneous Equations . . . . . . . . . . . . . . . . . . . . 20

3 Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Green’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Boundary Forms and Impulse Actions . . . . . . . . . . . . . . . . . . 31

3.3 Homogeneous Boundary Value Problems . . . . . . . . . . . . . . . . . 34

ix



3.4 Nonhomogeneous Boundary Value Problems . . . . . . . . . . . . . . . 40

3.5 Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 Properties of Green’s Function G . . . . . . . . . . . . . . . . . 46

3.5.2 Properties of Green’s Function H . . . . . . . . . . . . . . . . . 52

4 Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Eigenvalues and Eigenfunctions . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Adjoint Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Nonhomogeneous Problems Containing a Parameter . . . . . . . . . . 68

4.4 Sturm-Liouville Operators . . . . . . . . . . . . . . . . . . . . . . . . . 71

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

x



Chapter 1

Introduction

Many evolution process are characterized by the fact that they are subject to short-

time perturbation whose duration is negligible in comparison with the duration of

the process. This results with a sudden change of the state of the process. For

example, when a hammer hits a string which is already oscillating, it experiences

a rapid change of velocity; a pendulum of a clock, meanwhile, undergoes a sudden

change of momentum when it crosses its equilibrium position; and so on.

For the description of the continuous change of such processes, ordinary differ-

ential equations are used, while the short-time perturbations of those processes are

described by sudden changes of their states at certain times. It becomes, therefore,

necessary to study dynamical systems with discontinuous trajectories, or with im-

pulse effect, for the sake of brevity as they called, impulsive differential equations, or

sometimes, differential equations with impulse actions.

The theory of impulsive differential equations has become an important area of

research in recent years because of the needs of modern technology, engineering and

physics. Moreover, impulsive differential equations is richer in applications compared

to the corresponding theory of ordinary differential equations. Many of the mathe-

matical problems encountered in the study of impulsive differential equations cannot

be treated with the usual techniques within the standard framework of ordinary dif-

ferential equations [10, 13, 15, 42, 45]. A basic peculiarity of the impulsive differential

equations occurs when the impulses are not at fixed moments of time, but satisfying

a certain space-time relation. In the presence of unfixed moments of impulse actions,

the possibility of appearance of the so-called beating of solutions is one peculiarity of

the theory of impulsive differential equations, for instance, see [7].

However, the basic principles of solutions of higher order impulsive differential
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equations have not yet been sufficiently elaborated when compared to that of first

order equations, even in the linear case. Especially, boundary value problems for

higher order impulsive differential equations have been studied by some authors in

some special cases, see [1, 2, 16, 20, 22]. Among them there are also some studies on

the eigenvalue problems [32, 50, 51] and construction of Green’s functions for some

higher order linear impulsive differential equations [20, 21].

The main aim of the present work, however, is to study the theory of higher

order linear impulsive differential equations together with the boundary value and

eigenvalue problems, and to emphasize some of the distinguishing properties of such

problems from the ones of ordinary differential equations.

In this chapter, meanwhile, we shall state some basic theory of first order impul-

sive differential equations with fixed moments of impulse actions. The theory and

auxiliary assertions within this chapter, will be used in the subsequent chapters to

develop the theory of boundary value and eigenvalue problems for higher order linear

impulsive differential equations.

1.1 Linear Homogeneous Equations

The theory of linear equations are fundamental in most branches of applied math-

ematics, as well as in science and technology. Very often, complicated nonlinear

problems are studied through linearization in order to understand the basic proper-

ties of the dynamical systems.

In this section, we will establish some basic properties of linear system of impulsive

differential equations of homogeneous type. These results, and the results in the

following section, are mostly based on the studies in [18, 43].

Let J be an interval of R, and {θi} be the given strictly increasing sequence

of impulse points in J , such that it has no finite accumulation point. Then, it

follows that {θi} is a finite sequence of isolated points such that θi < θi+1 in the

case when J is a bounded interval of R. However, the sequence {θi} may be an

infinite sequence of such points having no finite accumulation point when J is an

infinite interval. Throughout the present work, therefore, we will always assume the

following assumption.

Assumption 1. Any compact interval J ⊂ R contains only a finite number of impulse

points θi.
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Later, in the development of the theory of linear impulsive differential equations

we will impose other conditions, mainly to simplify the argument therein.

Let F denote either the complex field C or the real numbers R. We will denote by

PLC(J, {θi} ;Fn) the set of all functions ϕ : J → Fn that are continuous for t 6= θi,

left continuous and having discontinuities of the first kind at the points t = θi of J .

A linear impulsive differential equation on J is an equation of the form
{

x′ = A(t)x + f(t), t 6= θi,

∆x|t=θi
= Bix + ai,

(1.1)

where A(t) is an n × n matrix with aij ∈ PLC(J, {θi} ;F), f(t) ∈ PLC(J, {θi} ;Fn),

and Bi is an n× n and ai is an n× 1 constant matrices for every i. Also, ∆x|t=θi
=

x(θ+
i )− x(θ−i ) denotes the jumps of x at the points of impulses θi.

When f(t) 6= 0 for some t ∈ J , or ai 6= 0 = [0, . . . , 0]T for some i such that θi ∈ J ,

(1.1) is called a nonhomogeneous impulsive differential equation. On the other hand,

the equation {
x′ = A(t)x, t 6= θi,

∆x|t=θi
= Bix,

(1.2)

is called the corresponding homogeneous impulsive differential equation.

The zero function, x(t) = 0 for all t ∈ J , is obviously a solution of (1.2); this

function is called the trivial solution of the homogeneous linear impulsive differential

equation. It is worth nothing that any solution x(t, t0, x0), passing through the point

(t0, x0) ∈ J × Fn, of (1.1) or (1.2) is uniquely continuable to the right of t0, if t0 is

not the right end point of J . In particular, if J = R, the whole real line, then for any

t0 ∈ R, a solution of a linear impulsive equation is defined for all t ≥ t0. However,

for any given interval J we will define J+
t0

to be J+
t0

= J ∩ [t0,∞). Similarly, we will

denote by J−t0 the interval J ∩ (−∞, t0]. Clearly, J = J+
t0
∪ J−t0 .

Unlike the classical ordinary differential equations, a solution of linear impulsive

differential equation is not necessarily continuable to the left of an impulse point, say

θj , for some j. Even if, it is continuable to the left of θj this continuation need not

be unique. This is because of the impulse condition in (1.1): If det(E + Bj) = 0 at

that point of impulse action then either the solution is not continuable to the left

of θj , or if continuable then this continuation is not unique. In the latter case the

solution splits into an infinite set of solutions to pass left of impulse point θj . See,

for instance [43].

One of the main results of the theory of linear impulsive differential equation is

3



the existence and uniqueness of solutions, defined in the interval J . In other words,

at every point (t0, x0) ∈ J×Fn, there passes one and only one solution. This is stated

in the following theorem.

Theorem 1.1 (Existence and Uniqueness). Let A(t) ∈ PLC(J, {θi} ;Fn×n) and

Bi ∈ Fn×n. Then, for any (t0, x0) ∈ J × Fn, there exists a unique solution x(t) =

x(t, t0, x0) of (1.2) such that

x(t0) = x(t0, t0, x0) = x0,

and this solution is uniquely defined for all t ∈ J+
t0

.

If, moreover, det(E + Bi) 6= 0 for every i, then the solution x(t) = x(t, t0, x0) is

uniquely defined for all t ∈ J .

Proof. Proof is trivial, however, we refer to [43] for a complete discussion. ¤

Because of the existence and uniqueness theorem, namely Theorem 1.1, and the

discussions preceding it, we will always assume the following condition holds in order

to have unique solution that is defined for all t ∈ J . For a given linear impulsive

differential equation of the form (1.1), the following assumption is satisfied, unless

otherwise stated explicitly.

Assumption 2. For every i such that θi ∈ J , the matrices E + Bi are all nonsingular.

Therefore, if x = x(t) is any solution of (1.2) such that x(t0) = 0 for some t0 ∈ J

or x(θ+
i ) = 0 for some i, then the uniqueness requires that x(t) = 0 for all t ∈ J .

Namely, x(t) is the trivial solution. This observation, however, leads to the following

fact about the structure of the set Ω of all solutions of a linear homogeneous impulsive

equation on an interval J .

Theorem 1.2. The set Ω of all solutions of (1.2), which are defined on the interval

J , is an n-dimensional vector space over F.

Recall that, in any finite dimensional vector space of dimension n, any set of n

linearly independent vectors forms a basis. If {φ1, . . . , φn} is any set of n linearly

independent solutions of (1.2) on J , then this set is said to form a basis, or a fun-

damental set of solutions for the linear homogeneous impulsive equation (1.2). The

linearly independent solutions φ1, . . . , φn of (1.2) are called fundamental solutions.

Also, a matrix Φ(t) will be called a solution matrix for (1.2) if its n columns are

solutions of the equation.
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On the other hand, if Φ(t) is a matrix solution whose columns are n linearly

independent solutions of (1.2), for all t ∈ J , then Φ(t) is called a fundamental matrix

of the homogenous equation (1.2), and the inverse, Φ−1(t), exists for all t ∈ J .

Moreover, Φ(θ+
i ) is invertible for all i. Hence, any solution x(t) of (1.2) can be

written as

x(t) = Φ(t) c,

where c is an arbitrary column vector in Fn.

In fact, a fundamental matrix Φ(t) of the linear homogeneous impulsive differen-

tial equation (1.2) satisfying the condition that Φ(t0) = E is called the matriciant for

(1.2), and denoted by Φ(t, t0). Moreover, the matriciant, Φ(t, t0) for (1.2) is unique

and satisfies the equality

Φ(t, t0) = Φ(t)Φ−1(t0)

for all t0 and t in J , and for any fundamental matrix Φ(t). In other words, the

matriciant for a linear homogeneous impulsive equation is independent of the choice

of a basis for the space Ω of solutions. The solution of (1.2) passing through the

point (t0, x0) ∈ J × Fn is the function x = x(t), given by

x(t) = Φ(t, t0) x0.

Therefore, if one chooses the fundamental solutions φ1, . . . , φn of (1.2) in such a

way that they satisfy the initial conditions φj(t0) = ej , where ej is the column vector

whose components are zero except the jth, which is 1, then the matrix [φ1, . . . , φn]

becomes the matriciant for (1.2).

Using the theory of ordinary differential equations it is possible to determine,

explicitly, the fundamental matrices as well as the matriciant for an impulsive dif-

ferential equation. Let X(t, s) be the solution of the matrix initial value problem,

formally defined by

X ′ = A(t)X, X(s, s) = E, (1.3)

then a fundamental matrix Φ(t) of (1.2) can be expressed in terms of the matrix

X(t, s) as follows:

Φ(t) = X(t, θj+k)(E + Bj+k)
1∏

ν=k

X(θj+ν , θj+ν−1)(E + Bj+ν−1)X(θj , t0)X(t0) (1.4)

for θj−1 < t0 ≤ θj < θj+k < t ≤ θj+k+1, where X(t) is any fundamental matrix of

the ordinary differential equation

x′ = A(t) x, θj−1 < t ≤ θj .

5



Hence, the matriciant Φ(t, t0) for (1.2) can be expressed similarly, namely

Φ(t, t0) = X(t, θj+k)(E + Bj+k)
1∏

ν=k

X(θj+ν , θj+ν−1)(E + Bj+ν−1)X(θj , t0)

provided that θj−1 < t0 ≤ θj < θj+k < t ≤ θj+k+1 holds. In particular,

• Φ(t, t0) = X(t, t0), for θj−1 < t0 ≤ t ≤ θj ,

• Φ(t, t0) = X(t, θj)(E + Bj)X(θj , t0), for θj−1 < t0 ≤ θj < t ≤ θj+1.

Equation (1.4) describing a fundamental matrix Φ(t) of (1.2), and the fact that

Φ(t0) = X(t0) follows the Abel’s formula,

detΦ(t) = det Φ(t0) exp
(∫ t

t0

trA(s) ds

) k+1∏

ν=1

det(E + Bj+ν−1)

for θj−1 < t0 ≤ θj < θj+k < t ≤ θj+k+1, and hence, Φ(t) is nonsingular if and only if

Φ(t0) is nonsingular as required, because (E + Bi) are assumed to be nonsingular by

the Assumption 2 for every i. Hence, the following theorem for fundamental matrix,

Φ(t), of (1.2) is valid.

Theorem 1.3. Suppose Φ(t) is any fundamental matrix of the (1.2). Then Ψ(t) =

Φ(t) C is a solution matrix of the corresponding matrix equation to (1.2) for every

constant n× n matrix C.

Conversely, for any solution matrix Ψ(t) of (1.2), there exists a unique constant

n × n matrix C such that Ψ(t) = Φ(t)C holds. Moreover, the solution matrix Ψ(t)

is a fundamental matrix of (1.2) if and only if C is nonsingular.

For some other basic properties of fundamental matrices and the matriciants of

linear homogeneous systems of impulsive differential equations, we refer to [18, 43].

We conclude this section by defining the adjoint equation to the linear homoge-

neous equation (1.2), and stating a theorem about the properties of the solutions.

The linear homogeneous impulsive differential equation
{

y′ = −A∗(t)y, t 6= θi,

∆y|t=θi
= −(E + B∗

i )−1B∗
i y

(1.5)

is called the adjoint equation to (1.2), where “∗” represents the complex conjugate

transpose of a matrix in the case when F = C; however, if F = R, then it represents

only the transpose of a matrix.
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Theorem 1.4. Any fundamental matrices Φ(t) and Ψ(t) of the equations (1.2) and

(1.5), respectively, satisfy the identity

Ψ∗(t)Φ(t) = C (1.6)

for all t ∈ J , where C is a constant n× n matrix.

If (1.6) holds, where Φ(t) is a fundamental matrix of (1.2) and C is nonsingular,

then Ψ(t) is a fundamental matrix of the adjoint equation (1.5).

Proof. See [18, 43]. ¤

1.2 Linear Nonhomogeneous Equations

In this section we will consider the following linear nonhomogeneous impulsive dif-

ferential equation {
x′ = A(t)x + f(t), t 6= θi,

∆x|t=θi
= Bix + ai,

(1.7)

where f ∈ PLC(J, {θi} ;Fn) and ai ∈ Fn for every i. Here, we also remark that

A ∈ PLC(J, {θi} ;Fn×n) and Bi ∈ Fn×n are such that det(E + Bi) 6= 0 for every i.

The relationship between nonhomogeneous equation (1.1) and the corresponding

homogeneous one {
x′ = A(t)x, t 6= θi,

∆x|t=θi
= Bix

(1.8)

is the following: if ϕ(t) is a solution of (1.8) and ψ(t) is a solution of (1.7), then

the function ϕ(t) + ψ(t) is again a solution of (1.7). Conversely, if ϕ1(t) and ϕ2(t)

are two solutions of (1.7), then the difference ϕ1(t) − ϕ2(t) is a solution of (1.8).

Hence the following theorem on the space Ω′ of solutions of linear nonhomogeneous

equation (1.7) can easily be proved.

Theorem 1.5. Let Ω be the set of solutions of (1.8) on J , then the set Ω′ of all

solutions of (1.7) on J is the affine space

Ω′ = {x : x(t) = ψ(t) + u(t), u ∈ Ω}

where ψ(t) is a particular solution of (1.7).

As in the classical theory of ordinary differential equations it is possible to define a

particular solution of the nonhomogeneous equation (1.7) by the help of the linearly

7



independent solutions of the corresponding homogeneous equation. The following

theorem, however, is known as the variation of parameters or variation of constants

formula for linear impulsive differential equations. Moreover, it implicitly gives such

particular solutions of (1.7) in terms of the fundamental solutions of the corresponding

homogeneous equation. For the proof of this theorem, however, we refer [43].

Theorem 1.6 (Variation of Parameters). Let Φ(t) be a fundamental matrix of

(1.8). Then every solutions x = x(t) of the associated nonhomogeneous equation (1.7)

is given by the formula

x(t) =





Φ(t)
(
c +

∫ t

t0

Φ−1(s)f(s) ds +
∑

t0≤θi<t

Φ−1(θ+
i )ai

)
, t0 ≤ t

Φ(t)
(
c +

∫ t

t0

Φ−1(s)f(s) ds−
∑

t≤θi<t0

Φ−1(θ+
i )ai

)
, t ≤ t0

(1.9)

In particular, if Φ(t, t0) is the matriciant for the homogeneous equation (1.8),

then the solution x(t) = x(t, t0, x0) such that x(t0) = x0 is given by the formula

x(t) =





Φ(t, t0)x0 +
∫ t

t0

Φ−1(t, s)f(s) ds +
∑

t0≤θi<t

Φ−1(t, θ+
i )ai, t0 ≤ t

Φ(t, t0)x0 +
∫ t

t0

Φ−1(t, s)f(s) ds−
∑

t≤θi<t0

Φ−1(t, θ+
i )ai, t ≤ t0

(1.10)

Here, we remark that the summations are taken to be zero when t = t0 in the

variation of parameters formulas above. One may see [18] for variation parameters

formula for nonlinear impulsive equations.
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Chapter 2

Higher Order Linear

Equations

In most areas of applied sciences there arise the higher order differential equations

which govern the behavior of the state of an observable. In some cases, however,

these observable quantities undergo sudden change of their state depending on the

nature of the problems that they characterize. For example, when a hammer hits a

string that is oscillating, it experiences a rapid change, only of its velocity. However,

consider a fish population in a pool, and every week some fish, male or female, are

taken out to be sold. This action will affect not only the number of population of fish

in the pool, but it will also affect the rate of change of the population, depending on

the number of male or female fish remained within the pool for reproduction.

Therefore, it is of great importance to investigate higher order impulsive differ-

ential equations not only to characterize such problems in applied sciences and tech-

nology, but also it is interesting in mathematical point of view. In fact, there are re-

searches on the higher order impulsive differential equations such as [20, 32, 48, 50, 51]

among which the boundary value and eigenvalue problems are also studied to some

extent. However, the theory of higher order linear impulsive differential equations

has not yet been fully studied as much as the corresponding theory of linear ordi-

nary differential equations. In contrast, the theory of first order impulsive differential

equations has been studied to a great extent in recent years, and has proved to be

much richer than the theory of first order ordinary differential equations.

In this chapter of the present work we will see that with some simple modifications,

the theory of higher order impulsive differential equations become very similar to

that of first order system equations with impulse actions, and it can be extended in
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parallel to the theory of higher order ordinary differential equations. However, we

should always keep in mind that the trajectories of impulsive differential equations

are in general discontinuous.

However, it is important how to define a higher order impulsive differential equa-

tion and construct its corresponding system of first order equations, since the solution,

if any, is not necessarily continuous at the points of impulse actions. In the following

introductory section, therefore, we will introduce some basics of such construction.

2.1 Introduction

The problem of defining a higher order impulsive differential equation is mainly, due

to the fact that a function having a discontinuity of the first kind at an impulse point

will not possess a derivative at that point. Moreover, there is no way to define it unless

the jump is zero. Hence, to talk about the jumps of the derivatives of such functions

at impulse points is ambiguous. However, as some researches [18, 39] suggest one

may consider the jumps of the limits of the derivatives at the impulse points. Similar

arguments, hence, can be made for higher order derivatives. Moreover, one might

consider functions which are not even defined at the impulse points, but have limits

from the left and the right at the points of impulse actions. In this case, unfortunately,

one needs to redefine the concept of a solution to an impulsive differential equation

on an interval.

Logically, it is important, however, to keep the property that a solution to an

impulsive differential equation is left continuous at the points of discontinuities. This,

being defined at the points of discontinuities, also preserves the uniqueness concept

of a solution. Otherwise, one can define the values of such solutions (if we can call

them as solutions!) in an arbitrary way at the points of impulses.

Fortunately, if a function is left continuous at a point one may consider the

left derivative at that point. Similarly, the right derivative can be considered when

the function is right continuous. To be consistent with the natural development

of impulsive differential equations we will, mainly, deal with functions that are left

continuous at the points of their discontinuities.

Let C([a, b]) = C([a, b];F) denotes the set of all functions f : [a, b] → F that are

continuous on the closed interval [a, b], and let C1([a, b]) = C1([a, b];F) be the set

of all functions f ∈ C([a, b]) that are continuously differentiable in the open interval

10



(a, b) and the left and the right derivatives, respectively,

f ′−(b) = lim
h→0−

f(b + h)− f(b)
h

,

f ′+(a) = lim
h→0+

f(a + h)− f(a)
h

,

exist. We define, similarly the higher order left and right derivatives of such functions,

respectively, as follows:

f
(n)
− (b) = lim

h→0−

f (n−1)(b + h)− f
(n−1)
− (b)

h
,

f
(n)
+ (a) = lim

h→0+

f (n−1)(a + h)− f
(n−1)
+ (a)

h
,

recursively for every n ≥ 1.

Therefore, let Cn([a, b]) = Cn([a, b];F) denotes the set of all functions f ∈ C([a, b])

that are continuously differentiable in (a, b) and f
(n)
− (b) and f

(n)
+ (a) exist. Recall

that the existence of the left (respectively, right derivative) of a function f at a point

implies that the function itself is left (respectively, right continuous) at that point.

Conversely, if a function f ∈ C([a, b]) is continuously differentiable in (a, b) and

is such that

f ′(b−) = lim
h→0−

f ′(b + h)

exists, then by the Mean Value Theorem, there exists a ξ ∈ (b + h, b), h < 0, such

that
f ′−(b) = lim

h→0−

f(b + h)− f(b)
h

= lim
ξ→b−

f ′(ξ)

= f ′(b−)

holds. Namely, f ′−(b) = f ′(b−). Similarly the existence of f ′(a+) implies the existence

of the right derivative f ′+(a) and f ′+(a) = f ′(a+).

These observations leads us to the following discussion. Let J be any interval of

R, and {θi} ⊂ J be any sequence of points θi such that θi < θi+1, and have no finite

accumulation point. As in Chapter 1, let PLC = PLC(J, {θi} ;F) denote the set of

all functions f : J → F that are left continuous for all t ∈ J , with discontinuities of

the first kind at t = θi. In other words,

PLC =
{
f : J → F | f ∈ C(J \ {θi}) is left continuous on J and ∆f |t=θi

< ∞}
,
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where ∆f |t=θi
= f(θ+

i ) − f(θ−i ) is the difference of the right and left limits at the

point t = θi, with f(θ−i ) = f(θi).

Similarly, for a function f : J → F that is jth times continuously differentiable for

t 6= θi we define the jumps ∆f (j)|t=θi
= f (j)(θ+

i )− f (j)(θ−i ) at the points of impulses

t = θi for every i. Then, PLCn = PLCn(J, {θi} ;F) will denote the following set of

functions:

PLCn =
{

f ∈ PLC : f ∈ Cn(J \ {θi}) such that ∆f (n)|t=θi
< ∞

}
.

It should be remarked that we will not distinguish between f
(j)
− (θi) and f (j)(θ−i ) for

any j = 0, 1, . . . , n, provided that f is left continuous at the point θi. The existence

of f
(n)
− (θi) for a function f ∈ Cn(J \ {θi}) for n ≥ 1 implies that f

(j)
− (θi) = f (j)(θ−i )

for all j ≤ n, and hence f is continuous from the left at t = θi for every i. The

converse is also true by the arguments above, if the function is left continuous at the

points t = θi. Within this work, we will prefer limits rather than left derivatives, to

be consistent with the conventions.

So, an impulsive differential equation on J of order n ≥ 1, with fixed impulses at

t = θi, is of the following form
{

x(n) = f(t, x, x′, . . . , x(n−1)), t 6= θi,

∆x(j−1)|t=θi
= Ii,j(x(θ−i ), x′(θ−i ), . . . , x(n−1)(θ−i )), j = 1, . . . , n

(2.1)

where f is a function of (n + 1) variables, defined for all t ∈ J \ {θi}, and Ii,j is a

function of n variables for each i and j. Moreover, the jumps

∆x(j−1)|t=θi
= x(j−1)(θ+

i )− x(j−1)(θ−i ), j = 1, . . . , n

are defined by the differences of the right and the left limits of x(j−1)(t) at the point

t = θi. By a solution of an impulsive differential equation (2.1), of order n, we mean

the following definition.

Definition 2.1. The function ϕ : J → F is said to be a solution of an nth order

impulsive differential equation (2.1) on J if it satisfies the following conditions:

1. The function ϕ ∈ PLCn−1 and ϕ(n)(t) exists at every point t 6= θi on J .

2. The function ϕ satisfies the following equalities

(a) ϕ(n)(t) = f(t, ϕ(t), . . . , ϕ(n−1)(t)), for all t ∈ J \ {θi},
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(b) ϕ(j−1)(θ+
i ) = ϕ(j−1)(θ−i ) + Ii,j(ϕ(θ−i ), . . . , ϕ(n−1)(θ−i )), for all 1 ≤ j ≤ n,

and for all i.

Now, as is done in ordinary differential equations, [26, 27], let ~x = [x1, . . . , xn]T

with components formally defined by xj(t) = x(j−1)(t) for all j = 1, . . . , n, in such a

way that

~x(t) =




x1(t)

x2(t)
...

xn(t)




=




x(t)

x′(t)
...

x(n−1)(t)




, for t 6= θi, (2.2)

and without loss of generality

~x(θi) =




x1(θi)

x2(θi)
...

xn(θi)




=




x(θi)

x′(θ−i )
...

x(n−1)(θ−i )




, for t = θi (2.3)

for every i. Then, one can transform an nth order impulsive differential equation (2.1)

to a first order impulsive differential equation of the form
{

~x′ = ~f(t, ~x), t 6= θi,

∆~x|t=θi
= ~Ii(~x(θi))

(2.4)

where the functions ~f(t, ~x) and ~Ii(~x) are defined by

~f(t, ~x) =




x2

x3

...

xn

f(t, x1, . . . , xn)




and ~Ii(~x) =




Ii,1(x1, . . . , xn)

Ii,2(x1, . . . , xn)
...

Ii,n(x1, . . . , xn)




for all t 6= θi and for all i, respectively.

It should be noted, however, if ~x is a solution of (2.4), then the first component

of it, x1(t), is a solution of the nth order impulsive differential equation (2.1). Con-

versely, if x(t) is a solution of (2.1), then ~x(t), defined by (2.2) and (2.3), is a solution

of the corresponding first order equation (2.4).

Therefore, it is possible to investigate the basic properties of higher order impul-

sive differential equations, as well as their solutions, by the help of the properties of

the corresponding first order system of impulsive equations. However, in the next
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section will consider higher order linear impulsive differential equations, and establish

only some of their basic features.

2.2 Linear Impulsive Equations

The theory of linear equations are fundamentals in most branches of applied mathe-

matics, as well as engineering and other natural sciences. Very often, one deals with

linearization of nonlinear complicated problems in order to understand basic struc-

ture, and properties of the systems which are governed by some nonlinear equations.

In the present section of the current work, we will study the fundamental proper-

ties of higher order linear equations with impulse actions at fixed moments of time.

In order to simplify the discussion throughout this section, and within the rest

of the work, we will fix the interval J = [α, β], and the sequences {θi}p
i=1 of impulse

points θi ∈ (α, β) in such a way that the following assumption holds.

Assumption 3. Let J = [α, β] and {θi} satisfy the following condition

θ0 = α < θ1 < θ2 < · · · < θp < β = θp+1. (2.5)

An nth order linear impulsive differential equation on J is an equation of the form




p0(t)x(n) + p1(t)x(n−1) + · · ·+ pn(t)x = f(t), t 6= θi,

∆x(j−1)|t=θi
−

n∑

k=1

bijkx
(k−1)(θ−i ) = aij ,

j = 1, . . . , n

i = 1, . . . , p

(2.6)

where the functions p0, p1, . . . , pn and f are assumed to be at least left continuous on

J with discontinuities of the first kind at t = θi; and the scalars bijk and aij are in F
for every i = 1, . . . , p; j = 1, . . . , n; k = 1, . . . , n. The jumps ∆x(j−1)|t=θi

at θi, for

each j = 1, . . . , n are, defined by

∆x(j−1)|t=θi
= x(j−1)(θ+

i )− x(j−1)(θ−i ), j = 1, . . . , n

for every i = 1, . . . , p.

If f(t) 6= 0 for some t ∈ J , or aij 6= 0 for some 1 ≤ i ≤ p and 1 ≤ j ≤ n, then the

linear equation (2.6) is called a nonhomogeneous linear impulsive differential equation.

While, the equation of the form




p0(t)x(n) + p1(t)x(n−1) + · · ·+ pn(t)x = 0, t 6= θi,

∆x(j−1)|t=θi
−

n∑

k=1

bijkx
(k−1)(θ−i ) = 0,

j = 1, . . . , n

i = 1, . . . , p

(2.7)
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is called the corresponding homogeneous impulsive differential equation.

It should be noted, however, that in (2.6) we have n number of impulse conditions,

apart from the nth order linear differential equation. So, it is helpful to rewrite

the impulse conditions in (2.6) using matrices and column vectors. As is done in

the first section of this chapter, let x̂ denotes the column vector with components

x, x′, . . . , x(n−1). Namely,

x̂(t) =




x(t)

x′(t)
...

x(n−1)(t)




for t 6= θi, (2.8)

and

x̂(θ±i ) = lim
h→0±

x̂(θi + h), for i = 1, . . . , p. (2.9)

Then, the impulse conditions in (2.6) can be written simply,

∆x̂|t=θi
−Bix̂(θ−i ) = ai, i = 1, . . . , p,

where Bi are n × n constant matrices, and ai are n × 1 column vectors defined,

respectively, by

Bi =




bi11 bi12 · · · bi1n

bi21 bi22 · · · bi2n

...
...

. . .
...

bin1 bi12 · · · binn




, ai =




ai1

ai2

...

ain




for i = 1, . . . , p. Hence an nth order linear impulsive differential equation on J can

be written equivalently in the form
{

p0(t)x(n) + p1(t)x(n−1) + · · ·+ pn(t)x = f(t), t 6= θi,

∆x̂|t=θi
−Bix̂(θ−i ) = ai, i = 1, . . . , p,

(2.10)

where x̂(t) = [x(t), x′(t), . . . , x(n−1)(t)]T , for t 6= θi, Bi are n × n constant matrices

and ai are constant n × 1 column vectors. Throughout the work, by x̂, we mean,

for a function x ∈ Cn−1(J \ {θi} ;F), the vector valued function defined by (2.8),

and x̂(θ±i ) will denote the limits in (2.9). Of course, in the case when the function

x ∈ PLCn−1 and has left derivatives at t = θi, we have the following equality,

x̂(θi) =




x(θi)

x′−(θi)
...

x
(n−1)
− (θi)




= x̂(θ−i ).
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Moreover, it is also possible and helpful to rewrite the ordinary differential equa-

tion

p0(t)x(n) + p1(t)x(n−1) + · · ·+ pn(t)x = f(t), t 6= θi

in its corresponding first order form, provided that p0(t) 6= 0 for all t ∈ J , as follows

x̂′ = A(t)x̂ +
f(t)
p0(t)

en, t 6= θi,

where en = [0, . . . , 0, 1]T . The n× n matrix A(t), defined by,

A(t) =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−pn(t)
p0(t) −pn−1(t)

p0(t) −pn−2(t)
p0(t) · · · −p1(t)

p0(t)




(2.11)

is the so-called [27] companion matrix for the nth order linear differential equation.

We should note that this matrix A(t) is, in general, piecewise left continuous with

discontinuities of the first kind at t = θi.

Therefore, the first order linear impulsive differential equation corresponding to

an nth order linear impulsive equation (2.10) or (2.6), can be written as follows
{

x̂′ = A(t)x̂ + f(t)
p0(t) en, t 6= θi,

∆x̂|t=θi
−Bix̂(θ−i ) = ai, i = 1, . . . , p.

(2.12)

The corresponding homogeneous equation is given by
{

x̂′ = A(t)x̂, t 6= θi,

∆x̂|t=θi
−Bix̂(θ−i ) = 0, i = 1, . . . , p.

(2.13)

It is easy to investigate the existence and uniqueness of solutions of a linear nth

order impulsive differential equations that is written in the form (2.12). Since a

function x = x(t) is a solution of (2.10) if and only if y = x̂(t) is a solution of the

associated first order impulsive equation (2.12).

Theorem 2.1. Let 1
p0

, p1, . . . , pn and f be functions in PLC. For any t0 ∈ J , and

ξ = [ξ1, . . . , ξn]T ∈ Fn, there exists a unique solution x(t) = x(t, t0, ξ) of (2.10) on J ,

satisfying the initial condition

x(j−1)(t0) = ξj , j = 1, . . . , n, (2.14)

provided that det(E + Bi) 6= 0 for all i = 1, . . . , p
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Proof. The proof of this theorem is similar to the proof of the existence and unique-

ness theorem for systems of first order equations. Using the equivalent form (2.12),

the proof follows. ¤

Example 2.1. Consider the following initial value problem




−x′′ = 0, t 6= 1,

∆x̂|t=1 −Bx̂(1−) = 0,

x(0) = x′(0) = 1,

B =

(
0 0

1 1

)
.

The unique solution x = x(t) of this problem can easily be computed as

x(t) =

{
1 + t, t ≤ 1

2 + 4(t− 1), t > 1

♦

In this work, beside the basic assumptions on the interval J and the sequence of

impulse points θi, explicitly stated in (2.5), we will always assume that for a given

nth order linear impulsive differential equation of the form (2.12) the hypothesis of

the existence and uniqueness theorem 2.1 holds, unless otherwise stated explicitly.

Namely, all the functions 1
p0

, p1, . . . , pn and f are of class PLC. Note that since
1
p0
∈ PLC the following two conditions hold for p0(t) automatically:

p0(t) 6= 0, t ∈ J,

p0(θ+
i ) 6= 0, i = 1, . . . , p.

2.2.1 Homogeneous Equations

In this subsection, we will establish some simple properties of higher order linear

homogeneous impulsive differential equations given by (2.7), which could be written

more simply as
{

p0(t)x(n) + p1(t)x(n−1) + · · ·+ pn(t)x = 0, t 6= θi,

∆x̂|t=θi
−Bix̂(θ−i ) = 0, i = 1, . . . , p,

(2.15)

where 1
p0

, p1, . . . , pn are assumed to functions in PLC, J = [α, β], and the sequence

{θi} are such that

θ0 = α < θ1 < · · · < θp < β = θp+1.

Furthermore, the matrices Bi are n×n with det(E +Bi) 6= 0 for every i = 1, . . . , p to

ensure the existence, uniqueness, and continuability of solutions throughout J . The

first order equivalent for (2.15) is given by (2.13) in the previous section.
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Clearly, x(t) = 0 for all t ∈ J is a solution of (2.15). The solution x(t) ≡ 0 is

called the trivial solution of the homogeneous equation. Moreover, if x(t) is a solution

of (2.15) with the initial data x̂(t0) = 0 for some t0 ∈ J or x̂(θ+
i ) = 0 for some i,

then it follows from the uniqueness of solutions that x(t) = 0 for all t ∈ J , since

det(E +Bi) 6= 0 for all i = 1, . . . , p. This leads to the following theorem on the space

of solutions of homogeneous impulsive equations.

Theorem 2.2. The set Ωn of solutions of an nth order linear homogeneous impulsive

differential equation (2.15) on J is an n-dimensional vector space over F.

In view of the theorem above, we may identify n linearly independent solutions

φ1, . . . , φn of the homogeneous impulsive differential equation as fundamental so-

lutions. The set {φ1, . . . , φn} of fundamental solutions, therefore, will be called a

fundamental set of solutions, or simply a basis for Ωn.

Let {φ1, . . . , φn} be any set of n solutions of linear homogeneous equation (2.15).

Then, we define a vector valued function Φ = Φ(t) as follows

Φ(t) = [φ1(t), . . . , φn(t)], (2.16)

whose components are fundamental solutions, and a associated matrix valued func-

tion Φ̂ = Φ̂(t) defined by

Φ̂(t) = [φ̂1(t), . . . , φ̂n(t)]. (2.17)

Hence, the columns of Φ̂(t) becomes solutions of the corresponding first order equa-

tion (2.13). The determinant, det Φ̂(t), is called the Wronskian of solutions of higher

order linear homogeneous equation (2.15).

Moreover, the matrix Φ̂(t) defined by (2.17) is a fundamental matrix of (2.13) if

and only if its first row Φ(t) consists of n linearly independent solutions of (2.15).

For brevity, if {φ1, . . . , φn} is a fundamental set of solutions of linear homoge-

neous equation (2.15), then we will call the row vector, Φ(t), defined by (2.16), as

a fundamental row vector or a row vector of fundamental solutions, and the n × n

matrix, Φ̂(t), defined by (2.17), as a fundamental matrix for (2.15), see [27].

Hence, by the above theorem, any solution x = x(t) of a linear homogeneous

impulsive differential equation (2.15) is of the form

x(t) = Φ(t) c = c1φ1(t) + · · ·+ cnφn(t),

where c = [c1, . . . , cn]T is any column vector, and the functions φ1, . . . , φn are any

fundamental solutions of (2.15).
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Moreover, since Φ̂(t) is a matrix solution of the corresponding first order equa-

tion (2.13), the Wronskian, det Φ̂(t), satisfies the following equality

det Φ̂(t) = det Φ̂(t0) exp
(
−

∫ t

t0

p1(s)
p0(s)

ds

) k+1∏

ν=1

det(E + Bj−ν−1)

for θj−1 < t0 ≤ θj < θj+k < t ≤ θj+k+1, which follows from the discussion in

Section 1.1 and the fact that the companion matrix A(t) satisfies

trA(t) =
p1(t)
p0(t)

for all t ∈ J . Therefore, we proved the following theorem.

Theorem 2.3. The vector valued function Φ(t) = [φ1(t), . . . , φn(t)] is a row vector

of fundamental solutions of linear homogeneous impulsive differential equation (2.15)

if and only if det Φ̂(t0) 6= 0 for some t0 ∈ J .

Example 2.2. Consider the following impulsive differential equation with a single

impulse point θ ∈ R,
{
−x′′ = 0, t 6= θ,

∆x̂|t=θ −Bx̂(θ−) = 0,
B =

(
0 0

a b

)
, 1 + b 6= 0.

The fundamental solutions x = φ1(t) and x = φ2(t) can be calculated as,

φ1(t) =

{
1, t ≤ θ

1 + a(t− θ), t > θ
φ2(t) =

{
t, t ≤ θ

θ + (aθ + 1 + b)(t− θ), t > θ

In general, we can construct the row vector, Φ(t), of fundamental solutions and the

fundamental matrix, Φ̂(t), for this problem as follows

Φ(t) =





(
1, t

)
, t ≤ θ(

1 + a(t− θ), θ + (aθ + 1 + b)(t− θ)
)

, t > θ

and

Φ̂(t) =





(
1 t

0 1

)
, t ≤ θ

(
1 + a(t− θ) θ + (aθ + 1 + b)(t− θ)

a (aθ + 1 + b)

)
, t > θ

Notice that det Φ̂(t) 6= 0 for all t ∈ R. So, the general solution of the problem can

be written as a linear combination of these fundamental solutions φ1(t) and φ2(t),

namely any solution x = x(t) is of the form,

x(t) = c1φ1(t) + c2φ2(t).
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In particular, when θ = a = b = 1, we have the unique solution in Example 2.1, that

is,

x(t) =

{
1 + t, t ≤ 1

2 + 4(t− 1), t > 1

which satisfies the initial conditions x(0) = x′(0) = 1. ♦

Finally, in this subsection, we remark that it is possible to construct an adjoint of

the nth order homogeneous impulsive equation (2.15), using its corresponding first

order system (2.13), as in the Section 1.1 of Chapter 1. However, in the next chapter

we will establish such adjoint problems for nth order linear boundary value problems

by constructing a Green’s formula [27, 41] for functions which have discontinuities of

the first kind at the impulse points t = θi of the interval J = [α, β]. So, we postpone

the discussion of adjoint equations to Chapter 3.

2.2.2 Nonhomogeneous Equations

In this subsection, we will consider an higher order linear nonhomogeneous impulsive

differential equations of the form
{

p0(t)x(n) + p1(t)x(n−1) + · · ·+ pn(t)x = f(t), t 6= θi,

∆x̂|t=θi
−Bix̂(θ−i ) = ai, i = 1, . . . , p,

(2.18)

together with the relationship between its corresponding homogeneous equation (2.15),

which has been studied in the previous subsection to some extent.

Because of linearity of (2.18) it follows immediately that if ϕ(t) is a solution of

the corresponding homogeneous equation (2.15) and ψ(t) is a solution of (2.18), then

the sum ϕ(t) + ψ(t) of the functions ϕ(t) and ψ(t) is again a solution of (2.18). Con-

versely, if ϕ1(t) and ϕ2(t) are two solutions of the nonhomogeneous equation (2.18),

then the difference ϕ1(t) − ϕ2(t) is a solution of the corresponding homogeneous

equation (2.15).

By the above observation, therefore, the following theorem about of the solutions

of a nonhomogeneous impulsive differential equations can easily be proved.

Theorem 2.4. The set Ω′n of solutions of an nth order linear nonhomogeneous im-

pulsive equation (2.18) on J is the affine space

Ω′n = {x : x(t) = ϕ(t) + u(t), u ∈ Ω} ,

where ϕ is a particular solution of (2.18).
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As in the theory of differential equations, it is possible and helpful in many ap-

plications, to define a particular solution of an nth order nonhomogeneous equa-

tion (2.18) by means of the fundamental solutions of the corresponding homogeneous

equation (2.15). To see this, we prove the following theorem; known as the variation

of parameters formula.

Theorem 2.5 (Variation of Parameters). Let Φ(t) = [φ1(t), . . . , φn(t)] be row

vector of fundamental solutions of (2.15), then there is a solution ψ(t) of the nonho-

mogeneous impulsive differential equation (2.18) of the form

ψ(t) = Φ(t)




∫ t

t0

Φ̂−1(s)
f(s)
p0(s)

en ds +
∑

t0≤θi<t

Φ̂−1(θ+
i )ai




for t0 and t in J , such that t0 ≤ t.

Similarly,

ψ(t) = Φ(t)




∫ t

t0

Φ̂−1(s)
f(s)
p0(s)

en ds−
∑

t≤θi<t0

Φ̂−1(θ+
i )ai




for t < t0.

Proof. Let us consider the case when t0 ≤ t, first. Since φ1, . . . , φn are fundamental

solutions of (2.15), it follows that Φ̂(t)Φ̂−1(t) = E so that

Φ(j−1)(t)Φ̂−1(t) = eT
j = [0, . . . , 0, 1, 0, . . . , 0], j = 1, . . . n

for t 6= θi, therefore, we have

ψ′(t) = Φ′(t)




∫ t

t0

Φ̂−1(s)
f(s)
p0(s)

en ds +
∑

t0≤θi<t

Φ̂−1(θ+
i )ai




+ Φ(t)Φ̂−1(t)
f(s)
p0(s)

en

= Φ′(t)




∫ t

t0

Φ̂−1(s)
f(s)
p0(s)

en ds +
∑

t0≤θi<t

Φ̂−1(θ+
i )ai




and hence, similarly we get

ψ(j−1)(t) = Φ(j−1)(t)




∫ t

t0

Φ̂−1(s)
f(s)
p0(s)

en ds +
∑

t0≤θi<t

Φ̂−1(θ+
i )ai



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for all j = 1, . . . , n. However,

ψ(n)(t) = Φ(n)(t)




∫ t

t0

Φ̂−1(s)
f(s)
p0(s)

en ds +
∑

t0≤θi<t

Φ̂−1(θ+
i )ai




+ Φ(n−1)(t)Φ̂−1(t)
f(s)
p0(s)

en

= Φ(n)(t)




∫ t

t0

Φ̂−1(s)
f(s)
p0(s)

en ds +
∑

t0≤θi<t

Φ̂−1(θ+
i )ai




+
f(s)
p0(s)

.

Substituting the functions ψ(t) into (2.18) we see that ψ(t) satisfies the differential

equation.

On the other hand, by the above calculations we have

ψ̂(t) = Φ̂(t)




∫ t

t0

Φ̂−1(s)
f(s)
p0(s)

en ds +
∑

t0≤θi<t

Φ̂−1(θ+
i )ai




for t 6= θi, and hence it follows, remembering that θi are isolated points in J ,

ψ̂(θ−k ) = lim
h→0−

ψ̂(θk + h)

= Φ̂(θ−k )




∫ θk

t0

Φ̂−1(s)
f(s)
p0(s)

en ds +
∑

t0≤θi<θk

Φ̂−1(θ+
i )ai


 ,

but
ψ̂(θ+

k ) = lim
h→0+

ψ̂(θk + h)

= Φ̂(θ+
k )

(∫ θk

t0

Φ̂−1(s)
f(s)
p0(s)

en ds

+
∑

t0≤θi<θk

Φ̂−1(θ+
i )ai + Φ̂−1(θ+

k )ak




for all k = 1, . . . , p. Therefore,

∆ψ̂|t=θk
−Bkψ̂(θ−k ) = ak

holds. That is, ψ(t) also satisfies the impulse condition in (2.15).

The case t < t0 is similar. ¤

The following corollary of the variation of parameters formula proves helpful in

investigation of the general solutions of an nth order linear impulsive differential

equations.
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Corollary 2.1. Any solution x = x(t) of (2.18) is of the form

x(t) = Φ(t)


c +

∫ t

t0

Φ̂−1(s)
f(s)
p0(s)

en ds +
∑

t0≤θi<t

Φ̂−1(θ+
i )ai




for t0 ≤ t, where Φ(t) is any row vector of fundamental solutions of the corresponding

homogeneous equation (2.15).

In particular,

x(t) = Φ(t)


Φ̂−1(t0) ξ +

∫ t

t0

Φ̂−1(s)
f(s)
p0(s)

en ds +
∑

t0≤θi<t

Φ̂−1(θ+
i )ai




for t0 ≤ t satisfies the initial conditions

x(j−1)(t0) = ξj , j = 1, . . . , n,

where the column vector ξ is ξ = [ξ1, . . . , ξn]T .

A similar result holds for t0 > t.

Example 2.3. A particular solution, x = ψ(t), of the following problem,




−x′′ = 2, t 6= θ, θ ∈ R,

∆x̂|t=1 −Bx̂(1−) = −2

(
0

a + b

)
,

B =

(
0 0

a b

)
, 1 + b 6= 0

can be written as follows,

ψ(t) =

{
−t2, t ≤ θ

2(a + b)θ + 2θ2 + aθ3 − (2(a + b) + 2θ + aθ2)t− t2, t > θ

Hence, the general solution, x = x(t), of the impulsive differential equation can be

given as

x(t) = c1φ1(t) + c2φ2(t) + ψ(t),

where c1, c2 are arbitrary constants and φ1(t) and φ2(t) are the fundamental solutions

and given in Example 2.2. In particular, therefore, if a = b = θ = 1 the general

solution of the nonhomogeneous problem can be given as

x(t) =

{
c1 + c2t− t2, t ≤ 1

c1t + c2(3t− 2) + 7− 7t− t2, t > 1

Hence, the solution satisfying the initial conditions

x(0) = x′(0) = 1
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becomes

x(t) =

{
1 + t− t2, t ≤ 1

2 + 4(t− 1) + 7− 7t− t2, t > 1

♦

Finally, in this section we will establish an integral representation for the solutions

of nonhomogeneous impulsive differential equations, using the variation of parameters

formula.

Let s ∈ J be fixed, and let

xs(t) =
Φ(t)Φ̂−1(s)

p0(s)
en, t ∈ J,

where Φ(t) is a row vector of fundamental solutions of (2.15). Then, clearly, xs(t)

satisfies the corresponding homogeneous equation (2.15) and

x̂s(s) =
1

p0(s)
en

holds. Denoting xs(t) by g(t, s), namely

g(t, s) = xs(t) (2.19)

for all t and s in the interval J , it follows that the function g(t, s) is independent of

the choice of a fundamental solutions of (2.15). For, if Φ1(t) is another row vector

of fundamental solutions, then there would exists a nonsingular constant matrix C

such that

Φ1(t) = Φ(t)C, and Φ̂1(t) = Φ̂(t)C

hold for all t ∈ J . Thus,

Φ1(t)Φ̂−1
1 (s) = Φ(t)C(Φ̂(s)C)−1 = Φ(t)Φ−1(s)

for all s and t in the interval J .

Similarly, we define, for each i = 1, . . . , p, the functions

xθ+
i
(t) = Φ(t)Φ̂−1(θ+

i ), and

h(t, θ+
i ) = xθ+

i
(t), i = 1, . . . , p.

(2.20)

The functions h(t, θ+
i ) for i = 1, . . . , p become solutions of (2.15), and they are also

independent of the fundamental solutions of (2.15). Also notice that, x̂θ+
i
(θ+

i ) = E,

and h(t, θ+
i ) for i = 1, . . . , p are 1× n matrices, say, of the following form,

h(t, θ+
i ) = [h1(t, θ+

i ), . . . , hn(t, θ+
i )], i = 1, . . . , p.
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Now, for any row vector, Φ(t), of fundamental solutions, the solution x = x(t) of

nonhomogeneous impulsive differential equation (2.18) can be written as

x(t) = Φ(t)


Φ̂−1(t0)ξ +

∫ t

t0

g(t, s)f(s) ds +
∑

t0≤θi<t

h(t, θ+
i )ai


 , (2.21)

where ξ = [ξ1, . . . , ξn]T , and this solution satisfies the initial condition

x(j−1)(t0) = ξj , j = 1, . . . , n.

The representation (2.21), of the solution of nonhomogeneous impulsive differen-

tial equation (2.18) will be significant in the study of Green’s functions for boundary

value problems for higher order impulsive equations in the next chapter.
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Chapter 3

Boundary Value Problems

In Chapter 2, we have been concerned with the existence and uniqueness, and proper-

ties of solutions of initial value problems for impulsive differential equations. However,

the study of physical problems, and applications of impulsive differential equations

also require consideration of boundary value problems for impulsive differential equa-

tions. Throughout this chapter, we will define boundary value problems for higher

order linear impulsive differential equations, and study the basic characteristic nature

of them, as well as their solutions, which are forced to satisfy mostly homogeneous

boundary conditions at the end points of an interval.

We will develop this chapter in parallel with the development of the corresponding

theory of boundary value problem for classical ordinary differential equations so that

the differences and similarities between them become much clearer.

Although the theory of boundary value problems for ordinary differential equa-

tions is widely known, the corresponding theory for impulsive differential equations

has not been studied as much, especially for higher order impulsive differential equa-

tions. The use of Green’s functions for first order periodic boundary value problems

is extensively studied by several authors (see [17, 20, 43] and references therein).

Also, there is some research on the construction of Green’s functions for specific

problems [44, 46], among which are the problems with nonlinear boundary con-

ditions, or nonlinear first order impulsive differential equations. As an output of

boundary value problems the inverse eigenvalue problems are also studied by several

authors [32, 50, 51]. However, the general theory for linear boundary value problems

for higher order impulsive differential equations has not been considered.

Our aim in the present chapter, which constitutes for the main part of the present

work, is to investigate linear boundary value problems for higher order impulsive dif-
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ferential equations. We note that a solution of an impulsive differential equation

has jump discontinuities at the impulse points. In the case of higher order impul-

sive differential equations not only solutions but their derivatives may possess jump

discontinuities at the impulse points.

3.1 Green’s Formula

Let J = [α, β] be an interval of R, and let {θi}p
i=1, θi ∈ J , be the sequence of impulse

points such that

θ0 = α < θ1 < · · · < θp < β = θp+1.

Let ` be the differential operator of order n (n ≥ 1) defined by

`(x) = p0(t)x(n) + · · ·+ pn(t)x, t 6= θi, (3.1)

where pk : J → F are functions of class PLCn−k for k = 0, 1, . . . , n and p0(t) 6= 0 for

all t ∈ J , and p0(θ+
i ) 6= 0 for i = 1, . . . , p. In short, 1

p0
∈ PLC.

At the impulse points θi, we define the linear impulse actions, δi, formally by

δi(x) = ∆x̂|t=θi
−Bix̂(θ−i ), i = 1, . . . , p, (3.2)

where x̂ = [x, x′, . . . , x(n−1)]T is as defined in the previous chapter, and ∆x̂|t=θi
=

x̂(θ+
i ) − x̂(θ−i ). Furthermore, we will always assume that Bi are constant matrices

satisfying the conditions that

det(E + Bi) 6= 0

for all i = 1, . . . , p.

Moreover, at the end points α and β of the interval J we define linear boundary

forms Uν as follows

Uν(x) =
n∑

j=1

Mνjx
(j−1)(α) + Nνjx

(j−1)(β), ν = 1, . . . , m, (3.3)

where Mνj and Nνj are constants in F, and m is a positive integer. These boundary

forms may also be written as

U(x) = Mx̂(α) + Nx̂(β), (3.4)

where M and N are m× n matrices with entries Mνj and Nνj , respectively.
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It is worth noting here that when the impulse actions, δi, defined by (3.2), can

also be written in the form

δi(x) = x̂(θ+
i )− (E + Bi)x̂(θ−i ), i = 1, . . . , p,

which resembles, for each fixed i, the boundary form defined by (3.4). In the subse-

quent sections the differences and similarities will be more clearer.

In the theory of boundary value problems for ordinary differential equations,

the fundamental results follow from two important formulas: the Green’s formula

and the boundary form formula [27, 40, 41]. Unfortunately, these formulas require

continuously differentiable functions on an interval. In this section, we shall introduce

the Green’s formula for functions belonging to PLCn; in other words, continuously

differentiable functions up to of order n (inclusive) for t 6= θi, and whose derivatives

have discontinuities of the first kind at the impulse points t = θi.

Let u and v be functions of class PLCn, then k times integration by parts yields

∫ β

α
vpn−ku

(k) ds =
p∑

i=0

∫ θi+1

θi

vpn−ku
(k) ds

=
p∑

i=0

{[
vpn−ku

(k−1) − (vpn−k)′u(k−2) + · · ·+

+(−1)k−1(vpn−k)(k−1)u
]s=θ−i+1

s=θ+
i

+

+(−1)k

∫ θi+1

θi

(vpn−k)(k)u ds
}

(3.5)

for every k = 0, . . . , n. Here, v denotes the complex conjugate of the function v in

the case when F = C. Summing these integrals over k form 0 to n, it follows that

∫ β

α
v `(u) ds =

n∑

k=0

p∑

i=0

[
vpn−ku

(k−1) − (vpn−k)′u(k−2) + · · ·+

+(−1)k−1(vpn−k)(k−1)u
]s=θ−i+1

s=θ+
i

+
∫ β

α
`†(v) u ds,

(3.6)

where the formal adjoint differential operator `† denotes

`†(v) = (−1)n(p0v)(n) + (−1)n−1(p1v)(n−1) + · · ·+ pnv, t 6= θi

similar to the adjoint operator in ordinary differential equations [27, 41]. If we set

S(u, v) =
n∑

k=0

[
vpn−ku

(k−1) − · · ·+ (−1)k−1(vpn−k)(k−1)u
]

(3.7)
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then (3.6) becomes

∫ β

α
v `(u) ds−

∫ β

α
`†(v) u ds = S(u, v)

∣∣∣
t=β

t=α
−

p∑

i=1

∆S(u, v)|t=θi
. (3.8)

It is readily seen that the right hand side of (3.8) depends on the values of u and v

not only at the boundary points α, β, but also at the impulse points θi, i = 1, . . . , p

in the interval J = [α, β]. Similar results were obtained in [1, 13] for first order

equations.

The equality in (3.8) will be called the Green’s formula for functions u and v in

the space PLC of functions. The form S(u, v), however, is a bilinear form in the

variables (u, u′, . . . , u(n−1)) and (v, v′, . . . , v(n−1)), and is said to be the bilinear form

associated with the linear operator `. See, for instance [27]. Moreover, this S can be

written as follows

S(u, v) =
n∑

k=1

k−1∑

j=0

(−1)j(vpn−k)(j)u(k−j−1)

=
n∑

m=1

∑

j+k=m−1

(−1)j(vpn−m)(j)u(k)

(3.9)

and hence

S(u, v) =
n∑

j,k=1

v(j−1) Sjk u(k−1) = v̂∗ S û, (3.10)

where S is an n× n triangular matrix with entries Sjk, and it will be named as the

matrix of the bilinear form S. The form of the matrix S of the bilinear form S can

be given as follows

S =




S11 S12 · · · S1(n−1) p0

S21 S22 · · · −p0 0
...

...
...

...
...

S(n−1)1 (−1)n−2p0 · · · 0 0

(−1)n−1p0 0 · · · 0 0




. (3.11)

Since p0(t) 6= 0 for all t ∈ J , and p0(θ+
i ) 6= 0 for every i = 1, . . . , p, it follows that the

matrix S of the bilinear form S is nonsingular for all t ∈ J . To be specific, S satisfies

the following conditions,

det S(t) = (p0(t))n 6= 0, for all t ∈ J,

det S(θ+
i ) = (p0(θ+

i ))n 6= 0, for all i = 1, . . . , p.
(3.12)

The entries Sjk of the matrix S can be given in the following proposition:

29



Proposition 3.1. The entries Sjk, j + k ≤ n + 1, of the matrix S in (3.11) are

defined by

Sjk =
n−k∑

s=j−1

(−1)s

(
s

j − 1

)
p
(s−j+1)
n−s−k , j + k ≤ n + 1 (3.13)

for j = 1, . . . , n and k = 1, . . . , n− j + 1.

In particular,

Sjk = 0, if j + k > n + 1, and

Sjk = (−1)j−1p0, if j + k = n + 1.

Proof. By using (3.9), the result follows. ¤

Now we return (3.8) in which the summation contains the jumps, ∆S(u, v)|t=θi
, of

S(u, v) at the points θi of impulses. It is interesting to write these jumps, ∆S(u, v)|t=θi
,

in terms of the impulse actions, δi, defined by (3.2) and its adjoint actions, say δ†i ,

assuming they have the same form as δi. In other words, we write

δ†i (y) = ∆ŷ|t=θi
− Ciŷ(θ−i ), i = 1, . . . , p, (3.14)

where y ∈ PLCn−1 and Ci are n×n constant matrices to be determined. To find Ci,

we observe that

∆S(u, v)|t=θi
= S(u, v)(θ+

i )− S(u, v)(θ−i ).

In view of (3.10),

∆S(u, v)|t=θi
= v̂∗(θ+

i )S(θ+
i )û(θ+

i )− v̂∗(θ−i )S(θ−i )û(θ−i )

= v̂∗(θ+
i )S(θ+

i )
[
∆û|t=θi

−Biû(θ−i )
]

+
{

v̂∗(θ+
i )− v̂∗(θ−i )S(θ−i )

[
S(θ+

i )(E + Bi)
]−1

}

×S(θ+
i )(E + Bi)û(θ−i ),

from which it follows that the jumps of the bilinear form S(u, v) at the points of

impulses θi can be written as follows

∆S(u, v)|t=θi
= v̂∗S(θ+

i )δi(u)− (δ†i (v))∗
[−S(θ+

i )(E + Bi)û(θ−i )
]
, (3.15)

where

δ†i (y) = ∆ŷ|t=θi
−

{[
(E + B∗

i )S∗(θ+
i )

]−1
S∗(θ−i )− E

}
ŷ(θ−i ) (3.16)

for y ∈ PLCn−1 and for all i = 1, . . . , p.

When (3.16) is compared with (3.14), the n × n matrices Ci are uniquely deter-

mined by the matrices Bi and S as follows

Ci =
[
(E + B∗

i )S∗(θ+
i )

]−1
S∗(θ−i )−E.
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Moreover,

E + Ci =
[
(E + B∗

i )S∗(θ+
i )

]−1
S∗(θ−i ), i = 1, . . . , p

are nonsingular if and only if E + Bi are nonsingular for i = 1, . . . , p, because

detS∗(θ+
i ) 6= 0 and detS∗(θ−i ) 6= 0 for every i = 1, . . . , p.

Therefore, an equivalent form of Green’s formula (3.8) can be presented in the

following way

∫ β

α
v`(u) ds +

p∑

i=1

v̂∗(θ+
i )S(θ+

i )δi(u)

−
∫ β

α
`†(v)u ds−

p∑

i=1

(
δ†i (v)

)∗ [−S(θ+
i )(E + Bi)û(θ−i )

]

= v̂∗(t) S(t) û(t)
∣∣∣
t=β

t=α

(3.17)

so that the left hand side of (3.17) depends on the operators ` and δi, and their adjoint

operators `† and δ†i ; the right hand side of it, however, depends on the boundary points

α and β, respectively.

It should be noted that, (3.15) or the Green’s formula (3.17) uniquely determines

the adjoint impulse actions δ†i , but the calculation of ∆S(u, v)|t=θi
can be carried out

in different ways in order to find δ†i in a form other than (3.14). However, in the next

section we will show that those adjoint impulse actions are equivalent to δ†i , given in

(3.16), in some way. To be specific, if δ̃†i are other adjoint impulse actions, then

δ̃†i = Fiδ
†
i , i = 1, . . . , p

holds for some nonsingular n× n constant matrices Fi.

3.2 Boundary Forms and Impulse Actions

This section is about the properties of linear boundary forms

Uν(x) =
n∑

j=1

Mνjx
(j−1)(α) + Nνjx

(j−1)(β), ν = 1, . . . , m, (3.18)

where Mνj and Nνj are constant in F; and m is a positive integer, and α, β are the

left and right boundary points of the interval J = [α, β], respectively. The properties

of such boundary forms are extensively investigated in [27, 41], and within this work

we will restate those properties in order to make the work be self-contained.
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A set {U1, . . . , Um} of boundary forms (3.18) is said to be linearly independent if

and only if
m∑

ν=1

ciUν(x) = 0

for all x ∈ PLCn−1 on J implies that c1 = c2 = · · · = cm = 0.

It is helpful to write the boundary forms Uν defined by (3.18) in a vector form as

follows

U(x) = Mx̂(α) + Nx̂(β), (3.19)

where U = [U1, . . . , Um]T is a column vector with components U1, . . . , Um, and M,N

are m× n matrices with entries Mνj , Nνj , respectively. The vector boundary form U

is said to have rank m if Uν , ν = 1, . . . ,m are linearly independent boundary forms.

In other words, the vector boundary form U is of rank m if and only if

rank(M : N) = m,

where the matrix (M : N) is defined by

(M : N) =




M11 · · · M1n N11 · · · N1n

...
. . .

...
...

. . .
...

Mm1 · · · Mmn Nm1 · · · Nmn


 .

Unless stated otherwise, we assume that a set of boundary forms is a linearly inde-

pendent set.

For any given vector boundary form U of rank m with components U1, . . . , Um it is

always possible (in many ways) to construct a vector boundary form Uc of rank 2n−m

with components Um+1, . . . , U2n such that the combined boundary forms U1, . . . , U2n

constitutes a set of 2n linearly independent forms. If U is any vector form of rank

m, and Uc is any form of rank 2n − m such that the vector boundary form with

components U1, . . . , U2n has rank 2n, then U and Uc are said to be complementary

boundary forms [27].

The following theorem relates the bilinear form S(u, v), defined by (3.10), ap-

pearing in the Green’s formula, with the complementary boundary forms U and Uc

of ranks m and 2n −m respectively. Also, the theorem below states, explicitly, the

existence of adjoint vector boundary form U † of rank 2n − m for a given vector

boundary form U of rank m. The theorem and its proof can be found in [27]. For

determination of such adjoint boundary forms for higher order ordinary differential

equations, see also [41].
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Theorem 3.1 (Boundary Form Formula). Given any boundary form U of rank

m, and any complementary form Uc, there exist unique boundary forms U †
c and U †

of rank m and 2n−m, respectively, such that,

S(u, v)
∣∣∣
t=β

t=α
=

(
U †

c (v)
)∗

U(u) +
(
U †(v)

)∗
Uc(u) (3.20)

holds for any functions u, v of class PLCn−1.

If Ũc is any other complementary form to U , and Ũ †
c , Ũ † are the corresponding

forms of rank m and 2n−m, respectively, then

Ũ †(y) = C∗U †(y) (3.21)

holds for some nonsingular matrix C.

Since the impulse actions for each fixed i,

δi(x) = x̂(θ+
i )− (E + Bi)x̂(θ−i )

is similar to the boundary form U(x) = Mx̂(α) + Nx̂(β), and the jumps S(x, y)|t=θi

can be considered as a bilinear form in the variables

ξi =

(
x(θ−i )

x(θ+
i )

)
, ηi =

(
y(θ−i )

y(θ+
i )

)

with the nonsingular matrix S̃i defined by

S̃i =

(
−S(θ−i ) 0

0 S(θ+
i )

)
,

where 0’s in the above matrix are n× n zero matrices. Since δi is of rank n for each

fixed i, it follows that

δi(x) = [−(E + Bi) : E] ξi, with det(E + Bi) 6= 0

holds, and hence for a given complementary impulse action, say δc
i , of rank n, there

exist unique δc†
i and δ†i , each have rank n, for each fixed i, by Theorem 3.1. So, the

following theorem is true.

Theorem 3.2 (Impulse Form Formula). Let i ∈ {1, . . . , p} be fixed. Given any

impulse action δi of the form

δi(x) = ∆x̂|t=θi
−Bix̂(θ−i )
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with E+Bi being nonsingular, and let δc
i be its complementary impulse action, defined

by

δc
i (x) = −S(θ+

i )(E + Bi)x̂(θ−i )

where S is the matrix of the bilinear form S(x, y). Then there exist unique impulse

actions δc†
i and δ†i , with

δc†
i (y) = S∗(θ+

i )ŷ(θ−i ),

δ†i (y) = ∆ŷ|t=θi
−

{[
(E + B∗

i )S∗(θ+
i )

]−1
S∗(θ−i )− E

}
ŷ(θ−i )

such that

∆S(x, y)|t=θi
=

(
δc†
i (y)

)∗
δi(x)−

(
δ†i (y)

)∗
δc
i (x)

holds for all x, y in PLCn−1.

Recall that the adjoint impulse actions δ†i for i = 1, . . . , p were obtained already

by computation of ∆S(x, y)|t=θi
in Section 3.1, see the equations (3.15) and (3.15).

From (3.15), however, one can extract also the complementary impulse actions δc
i , as

well as the δc†
i , which are explicitly given in Theorem 3.2.

In the following section, we will define homogeneous boundary value problems for

higher order linear impulsive differential equations and establish some basic features

of such problems.

3.3 Homogeneous Boundary Value Problems

For any vector boundary form U of rank m, we consider the homogeneous boundary

condition

U(x) = 0 = Mx̂(α) + Nx̂(β)

for any function x in PLCn−1. Similarly, the homogeneous impulse conditions

δi(x) = 0 = ∆x̂|t=θi
−Bix̂(θ−i ), i = 1, . . . , p.

The problem of finding a function x ∈ PLCn which satisfies

(BVP)m





`(x) = 0, t 6= θi,

δi(x) = 0, i = 1, . . . , p,

U(x) = 0
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is called a homogeneous boundary value problem of rank m. The associated boundary

value problem,

(A-BVP)2n−m





`†(x) = 0, t 6= θi,

δ†i (x) = 0, i = 1, . . . , p,

U †(x) = 0

is called the adjoint boundary value problem of rank 2n−m, associated with (BVP)m.

Here,

`†(y) = (−1)n(p0y)(n) + (−1)n−1(p1y)(n−1) + · · ·+ pny, t 6= θi

and

δ†i (y) = ∆ŷ|t=θi
−

{[
(E + B∗

i )S∗(θ+
i )

]−1
S∗(θ−i )− E

}
ŷ(θ−i ) (3.22)

for i = 1, . . . , p, and the adjoint vector boundary for U † of rank 2n − m is defined

by the boundary form formula, Theorem 3.20. In fact, If U † is assumed to be of the

following form

U †(y) = P ∗ŷ(α) + Q∗ŷ(β),

where P and Q are matrices having n rows and 2n−m columns such that the matrix

(P ∗ : Q∗) is of rank 2n − m. It is possible to characterize the adjoint boundary

conditions U †(y) = 0 directly in terms of these matrices P and Q, as well as the

matrices M and N of the boundary condition U(x) = 0.

The following theorem, see [27], relates the boundary conditions U(x) = 0 and

U †(y) = 0.

Theorem 3.3. The boundary condition U(x) = 0 is adjoint to U †(y) = 0 if and only

if

MS−1(α)P = NS−1(β)Q (3.23)

where S is the matrix associated with the bilinear form S.

In view of the theorem above, it should be noted that from the impulse actions

δi and δ†i , when compared to the boundary forms U and U †, the relation similar to

(3.23) naturally holds, because

S−1(θ+
i ) = (E + Bi)S−1(θ−i )S(θ+

i )
[
S(θ+

i )(E + B∗
i )

]−1

= S−1(θ+
i )

holds for i = 1, . . . , p.

On the other hand, the theorem above yields the following corollary on the self-

adjoint boundary conditions U(x) = 0.
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Corollary 3.1. If m = n, the boundary condition U(x) = 0 is adjoint to itself if and

only if the equality

MS−1(α)M∗ = NS−1(β)N∗ (3.24)

holds.

In terms of the impulse actions, however, equality (3.24) can be replaced by

E + Bi =
[
(E + B∗

i )S∗(θ+
i )

]−1
S∗(θ−i )

for i = 1, . . . , p, which simply means that the impulse actions δi and δ†i are exactly

of the same forms. In the following corollary we state a necessary and sufficient

condition for an impulse action δi to be self-adjoint; that is, adjoint to itself.

Corollary 3.2. Let i ∈ {1, . . . , p} be fixed. An impulse action δi, defined by

δi(x) = ∆x̂|t=θi
−Bix̂(θ−i ), i = 1, . . . , p

is self-adjoint if and only if

S−1(θ+
i ) = (E + Bi)S−1(θ−i )(E + B∗

i ), (3.25)

where S is the matrix associated with the bilinear form S.

Proof. The adjoint impulse action δ†i is defined by (3.22), hence substituting the

condition (3.25) into (3.22) we obtain

[
(E + B∗

i )S∗(θ+
i )

]−1
S∗(θ−i )− E

= (E + Bi)S−1(θ−i )(E + B∗
i )(E + B∗

i )−1S−1(θ−i )−E

= Bi.

Thus, δ†i = δi and the proof is complete. ¤

In view of the above discussion, we call the boundary value problem




`(x) = 0, t 6= θi,

δi(x) = 0, i = 1, . . . , p,

U(x) = 0

a self-adjoint boundary value problem if and only if

(a) ` = `†,

(b) S−1(θ+
i ) = (E + Bi)S−1(θ−i )(E + B∗

i ), for all i = 1, . . . , p,
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(c) MS−1(α)M∗ = NS−1(β)N∗,

where S is the matrix associated with the bilinear form S. It should be remarked

that for a self-adjoint boundary value problem, the rank m of the boundary form U

equals to the order n of the differential operator. Also, the adjoint impulse actions

δ†i are identical with the impulse actions δi for i = 1, . . . , p.

Let us define two linear subspaces D and D0 of PLC as follows:

D = {x ∈ PLC : U(x) = 0} , and

D0 = {x ∈ PLC : δi(x) = 0, i = 1, . . . , p} .

Clearly,

D ∩D0 = {x ∈ PLC : U(x) = 0 and δi(x) = 0, i = 1, . . . , p}

is again a linear subspace of PLC. Let L : D0 → PLC be a linear operator defined

on D0 by the differential operator `,

Lx = `(x),

then a homogeneous impulsive differential equations can simply be written as

Lx = 0.

Similarly, we define L† : D†
0 → PLC by

L†y = `†(y)

for y ∈ D†
0 where

D†
0 =

{
y ∈ PLC : δ†i (y) = 0, i = 1, . . . , p

}
.

The space D† is similarly defined.

Let the functions φ1, . . . , φn be fundamental solutions of Lx = 0, and let Φ̂ be a

fundamental matrix for Lx = 0. That is,

Φ̂ = [φ1, . . . , φn] =




φ1 · · · φn

φ′1 · · · φ′n
...

. . .
...

φ
(n−1)
1 · · · φ

(n−1)
n




.
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Similarly, if ψ1, . . . , ψn are the fundamental solutions of the corresponding adjoint

impulsive differential equation L†y = 0, then a fundamental matrix Ψ̂ for L†y = 0 is

given by

Ψ̂ = [ψ1, . . . , ψn] =




ψ1 · · · ψn

ψ′1 · · · ψ′n
...

. . .
...

ψ
(n−1)
1 · · · ψ

(n−1)
n




.

Thus, we may extend, (see [27]), the definitions of vector boundary forms U and U †

to matrices by defining

U Φ̂ = M Φ̂(α) + N Φ̂(β),

and

U †Ψ̂ = MΨ̂(α) + NΨ̂(β),

respectively. Similar extension is possible for the impulse actions δi and δ†i .

The following theorem ascertain a necessary and sufficient condition for the ex-

istence of nontrivial solutions of homogeneous boundary value problems for higher

order linear impulsive differential equations.

Theorem 3.4. The problem (BVP)m has exactly k, 0 ≤ k ≤ n, linearly independent

solutions if and only if UΦ̂ has rank n − k, where Φ̂ is any fundamental matrix for

Lx = 0.

Proof. The function ϕ satisfies Lx = 0 if and only if the corresponding vector ϕ̂ with

components ϕ, ϕ′, . . . , ϕ(n−1) is of the form ϕ̂ = Φ̂c, where c is a constant vector, and

Φ̂ is any fundamental matrix for Lx = 0. Thus, U(ϕ) = 0 if and only if

U(Φ̂c) = (UΦ̂)c = 0.

The number of linearly independent vectors c satisfying (U Φ̂)c = 0 is, however,

n− rank(U Φ̂),

On the other hand, if Φ1 is any other fundamental matrix for Lx = 0, then we

know that Φ̂1 = Φ̂C, for some nonsingular matrix C. Therefore,

rank(U Φ̂1) = rank(UΦ̂C) = rank(UΦ̂)

completes the proof. ¤
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If the boundary value problem (BVP)m has exactly k linearly independent solu-

tions, say ϕ1, . . . , ϕk, then any linear combination

ϕ =
k∑

i=1

ciϕi,

where ci are constants in F, is again a solution. Moreover, any solution of the problem

(BVP)m is of the form ϕ for some constants ci. That is, the solutions of linear

boundary value problem (BVP)m form a vector space over F with dimension k.

Example 3.1. Consider the following boundary value problem for an impulsive dif-

ferential equation,




−x′′ = 0, t 6= θ,

∆x̂|t=θ −Bx̂(θ−) = 0,

x(0) = x(π) = 0,

B =

(
0 0

a b

)
, 1 + b 6= 0

on the interval [0, π]. We may state the following:

(a) If θ + (aθ + 1 + b)(π − θ) 6= 0, then the problem has only the trivial solution,

x(t) = 0 for all t ∈ [0, π], and

(b) If θ + (aθ + 1 + b)(π − θ) = 0, then the problem has a nontrivial solution,

x(t) = c

{
t, t ≤ θ

θ + (aθ + 1 + b)(t− θ), t > θ
c ∈ F.

In particular, if θ = 1, and the matrix B is as follows

B =


 0 0

−1 − 1
π − 1


 ,

then we have 1− 1
π − 1

6= 0, and hence, the one-parameter family of solutions of the

given problem becomes

x(t) = c





t, t ≤ 1

1− t− 1
π − 1

, t > 1
c ∈ F.

♦
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There exists a certain duality between the number of nontrivial solutions of

(BVP)m and its corresponding adjoint problem (A-BVP)2n−m. We close this sec-

tion by presenting this duality in the following theorem.

Theorem 3.5. If (BVP)m has k linearly independent solutions, then the adjoint

problem (A-BVP)2n−m has k + m− n linearly independent solutions.

In particular, if m = n, they have the same number of linearly independent solu-

tions.

Proof. See [27]. ¤

3.4 Nonhomogeneous Boundary Value Problems

A nonhomogeneous boundary value problem associated with the problem (BVP)m is

the problem

(N-BVP)m





`(x) = f(t), t 6= θi,

δi(x) = ai, i = 1, . . . , p,

U(x) = γ,

where f ∈ PLC, and ai, γ are column vectors if Fn such that f(t) 6= 0 for some

t ∈ J = [α, β], or ai 6= 0 for some i = 1, . . . , p, or γ 6= 0. Here the vector boundary

form U is assumed to be of rank m.

Clearly, if ϕ and ψ are two solutions of the nonhomogeneous boundary value prob-

lem (N-BVP)m, the difference ϕ−ψ is a solution of the corresponding homogeneous

problem (BVP)m, namely

(BVP)m





`(x) = 0, t 6= θi,

δi(x) = 0, i = 1, . . . , p,

U(x) = 0.

Hence, if the homogeneous boundary value problem (BVP)m has k linearly indepen-

dent solutions, say ψ1, . . . , ψk then

ϕ = ψ +
k∑

j=1

cjψj

holds for some constants c1, . . . , ck.

It is well-known from the theory of boundary value problems for ordinary dif-

ferential equations that a nonhomogeneous boundary value problem does not always
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possess a solution, see for instance [27, 41, 47], which is of course the case in boundary

value problems for impulsive differential equations. The following theorem provides a

necessary and sufficient condition for the existence of a solution of (N-BVP)m. A sim-

ilar theorem for the existence of a periodic solution of periodic first order impulsive

equations can be found in [43].

Theorem 3.6. The nonhomogeneous boundary value problem (N-BVP)m has a so-

lution if and only if the condition,

∫ β

α
ψ(s)f(s) ds +

p∑

i=1

ψ̂∗(θ+
i )S(θ+

i )ai = (U †
c (ψ))∗ γ (3.26)

holds for every solution of the adjoint homogeneous problem (A-BVP)2n−m.

Proof. Let ϕ be a solution of problem (N-BVP)m and ψ be any solution of the adjoint

homogeneous problem (A-BVP)2n−m, then the Green’s formula (3.17), together with

the boundary form formula (3.20) gives (3.26) immediately, proving the necessity.

Conversely, suppose (3.26) holds for every ψ of the problem (A-BVP)2n−m. We

know that every solution ϕ of the nonhomogeneous impulsive differential equation
{

`(x) = f(t), t 6= θi,

δi(x) = ai, i = 1, . . . , p
(3.27)

is of the following form

ϕ =
n∑

i=1

ciφi + ϕp,

where φ1, . . . , φn are fundamental solutions of the corresponding homogeneous equa-

tion to (3.27), ci are constants, and ϕp is a particular solution of (3.27). Thus, the

problem (N-BVP)m has a solution only if there exists constants c1, . . . , cn such that

n∑

i=1

ci U(φi) + U(ϕp) = γ,

or equivalently,

(U Φ̂) c = γ − U(ϕp), (3.28)

where Φ̂ = [φ̂1, . . . , φ̂n] is the fundamental matrix corresponding to φ1, . . . , φn, and

c = [c1, . . . , cn]T is a column vector with components c1, . . . , cn. Since the sys-

tem (3.28) has a solution c if and only if γ −U(ϕp) is orthogonal to every solution u

of the corresponding adjoint homogeneous system, we have

u∗(γ − U(ϕp)) = 0 (3.29)
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for every u satisfying

(U Φ̂)∗u = 0. (3.30)

On the other hand, if (A-BVP)2n−m has exactly k̃ linearly independent solu-

tions ψ1, . . . , ψk̃. It can easily be shown, (see for instance [27]) that the vectors

U †
c (ψ1), . . . , U

†
c (ψk̃) are linearly independent column vectors in Fm, which are solu-

tions of (3.30). However, (3.30) has m−rank(UΦ̂) = m−(n−k) linearly independent

solutions, where k is the number of linearly independent solutions of (BVP)m. Thus,

Theorem 3.5 in the previous section implies that k̃ = m− n + k.

Hence, (3.29) holds for every u satisfying (3.30) if and only if

(U †
c (ψj))

∗ (γ − U(ϕp)) = 0

holds for every j = 1, . . . , k̃. Applying Green’s formula to the functions ϕp and ψj ,

we have ∫ β

α
ψj(s)f(s) ds +

p∑

i=1

ψ̂∗j (θ
+
i )S(θ+

i )ai = (U †
c (ψj))

∗ U(ϕp)

for each j = 1, . . . , k̃. But, condition (3.26) is assumed to be true for every solution

ψ of (A-BVP)2n−m. Thus, we obtain

(U †
c (ψj))

∗ U(ϕp) = (U †
c (ψ))∗ γ,

or

(U †
c (ψj))

∗ (γ − U(ϕp)) = 0

for every j = 1, . . . , k̃. Therefore, there exists a constant vector c = [c1, . . . , cn]T such

that the (3.28) holds. This completes the proof. ¤

The case m = n is of great interest in many applications of differential equations

in science, since well-posed problems require uniqueness of solutions as well as the

existence.

Corollary 3.3. If m = n and the only solution of (BVP)n is the trivial one, then

the nonhomogeneous boundary value problem (N-BVP)n has a unique solution.

Proof. Let m = n, and (BVP)n has only the trivial solution. Then, rank(UΦ̂) = n,

and hence (3.28) can be solved uniquely for c. This completes the proof. ¤
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Example 3.2. Consider the nonhomogeneous boundary value problem,




−x′′ = 0, t 6= θ,

∆x̂|t=θ =

(
0

−1

)
,

x(0) = x(π) = 0,

0 < θ < π.

This problem has a unique solution, since the corresponding homogeneous equation

has only the trivial solution. For,

θ + (aθ + 1 + b)(π − θ) = θ + (π − θ) = π 6= 0

by the previous Example 3.1, with a = b = 0. The unique solution, x = x(t), can be

written as follows,

x(t) =

{ (
1− θ

π

)
t, 0 ≤ t ≤ θ

θ
(
1− t

π

)
, θ < t ≤ π

♦

Example 3.3. Consider the nonhomogeneous boundary value problem,




−x′′ = 2, t 6= 1,

∆x̂|t=1 −Bx̂(1−) =

(
0

−4

)
,

x(0) = x(π) = 0,

B =

(
0 0

1 1

)

with homogeneous boundary conditions at t = 0 and t = π. This problem has also a

unique solution, x = x(t), and defined by

x(t) =





π2 + 7π − 7
3π − 2

t− t2, t ≤ 1

(7− 2π)π
3π − 2

+
3π2 − 7
3π − 2

t− t2, t > 1

which can be obtained by the use of Example 2.3. ♦

We will show, however, by the use of Green’s functions for impulsive differential

equations, the unique solution of the problem above, in Example 3.3, can be obtained

by taking an integral over the region [0, π]. This will be studied in the following

section.

3.5 Green’s Functions

Suppose that the rank m of the vector boundary form U is equal to the order n of

the differential operator `, that is m = n, and that the homogeneous boundary value
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problem (BVP)n has only the trivial solution. Then, it is possible to express the

unique solution of the nonhomogeneous boundary value problem




`(x) = f(t), t 6= θi,

δi(x) = ai, i = 1, . . . , p,

U(x) = 0,

(3.31)

with γ = 0, explicitly, in terms of the so-called Green’s Functions.

Clearly, because of the impulse conditions in (3.31) Green’s function for an im-

pulsive boundary value problem differs from the one for an ordinary boundary value

problem. The former becomes a function which is defined piecewise, at the least.

Moreover, within this section it will be shown that the name Green’s functions for an

impulsive boundary value problem will mean more than just a single function when

the order of the differential operator is more than unity.

Green’s function for a first order impulsive differential systems was studied,

mainly, in [43] for periodic equations. However, the theory constructed therein needs

some improvement.

If Φ(t) is any row vector of fundamental solutions of
{

`(x) = 0, t 6= θi,

δi(x) = 0, i = 1, . . . , p,
(3.32)

then the variation of parameters formula obtained in Chapter 2 yields that the so-

lution x = x(t) of the nonhomogeneous boundary value problem (3.31) is of the

form,

x(t) = Φ(t) c + Φ(t)




∫ t

α
Φ̂−1(s)

f(s)
p0(s)

en ds +
∑

α<θj<t

Φ̂−1(θ+
j ) aj


 , (3.33)

where c is a constant column vector that is to be determined from the boundary

conditions U(x) = 0 in (3.31). As it has already been computed in Section 2.2.2 we

have

x̂(t) = Φ̂(t) c + Φ̂(t)




∫ t

α
Φ̂−1(s)

f(s)
p0(s)

en ds +
∑

α<θj<t

Φ̂−1(θ+
j ) aj


 ,

and thus, by using the homogeneous boundary conditions we deduce that

[M Φ̂(α) + N Φ̂(β)] c = −N Φ̂(β)




∫ β

α
Φ̂−1(s)

f(s)
p0(s)

en ds +
∑

α<θj<β

Φ̂−1(θ+
j ) aj


 .
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Letting

K = −[M Φ̂(α) + N Φ̂(β)]−1N Φ̂(β)

we obtain

c = K




∫ β

α
Φ̂−1(s)

f(s)
p0(s)

en ds +
∑

α<θj<β

Φ̂−1(θ+
j ) aj


 ,

and hence,

x(t) = Φ(t)(E + K)




∫ t

α
Φ̂−1(s)

f(s)
p0(s)

en ds +
∑

α<θj<t

Φ̂−1(θ+
j ) aj




+Φ(t)K




∫ β

t
Φ̂−1(s)

f(s)
p0(s)

en ds +
∑

t≤θj<β

Φ̂−1(θ+
j ) aj


 .

Therefore, the solution x(t) of the nonhomogeneous boundary value problem (3.33)

can be written simply as

x(t) =
∫ β

α
G(t, s)f(s) ds +

p∑

j=1

H(t, θ+
j ) aj , (3.34)

where the functions G(t, s) and H(t, θ+
j ) are uniquely defined by the following equa-

tions.

G(t, s) =





Φ(t)(E + K)Φ̂−1(s) 1
p0(s) en, s < t

Φ(t)KΦ̂−1(s) 1
p0(s) en, s ≥ t

(3.35)

and

H(t, θ+
j ) =

{
Φ(t)(E + K)Φ̂−1(θ+

j ), θj < t

Φ(t)KΦ̂−1(θ+
j ), θj ≥ t

(3.36)

for all t ∈ [α, β] and θj for j = 1, . . . , p. Simply the couple {G,H} of functions G

and H is called Green’s couple, or each of the functions G(t, s) and H(t, θ+
j ) for any

j = 1, . . . , p is going to be called Green’s function for the homogeneous problem




`(x) = 0, t 6= θi,

δi(x) = 0, i = 1, . . . , p,

U(x) = 0.

It can also be shown that the functions G(t, s) and H(t, θ+
j ), j = 1, . . . , p, are indepen-

dent of the choice of the fundamental solutions of the linear homogeneous impulsive
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differential equation (3.32). For, if Φ1(t) is any other row vector of fundamental so-

lutions, then there exists a nonsingular matrix C such that Φ1(t) = Φ(t)C holds for

all t ∈ [α, β]. Hence, if

K̃ = −[M Φ̂1(α) + N Φ̂1(β)]−1N Φ̂1(β)

then

Φ̂1(t)K̃Φ̂−1
1 (s) = Φ(t)C

{
−C−1[M Φ̂(α) + N Φ̂(β)]−1N Φ̂(β)C

}
C−1Φ̂−1(s)

= Φ̂(t)KΦ̂−1(s)

for all t and s in [α, β]. Similarly,

Φ̂1(t)K̃Φ̂−1
1 (θ+

j ) = Φ̂(t)KΦ̂−1(θ+
j )

holds for j = 1, . . . , p.

It is readily seen from (3.35) that the function G(t, s) is a scalar function of

the variable (t, s) in the square J2 = [α, β] × [α, β]; and on the other hand, from

(3.36) it follows that the function H(t, θ+
j ) is a vector (1×n matrix) valued function

defined on [α, β] for each fixed j ∈ {1, . . . , p}. Indeed, the term θ+
j in H(t, θ+

j )

must be understood as an index (of summation). In other words, for each j ∈
{1, . . . , p} there corresponds a function H(t, θ+

j ), hence a finite sequence of functions

H(t, θ+
1 ), . . . , H(t, θ+

p ), each of which is a row vector.

Although the properties of the Green’s function G(t, s) is similar to that of cor-

responding Green’s function for ordinary differential equations, see for instance [27,

41, 47], we should remark that the functions G(t, s) and H(t, θ+
j ) for j = 1, . . . , p are

all piecewise continuous, and have discontinuities of the first kind at the points of

impulses.

3.5.1 Properties of Green’s Function G

Let us consider the regions

R11 = [α, θ1]× [α, θ1]

Ri1 = (θi−1, θi]× [α, θ1], i = 2, . . . , p + 1

R1j = [α, θ1]× (θj−1, θj ], j = 2, . . . , p + 1

Rij = (θi−1, θi]× (θj−1, θj ], i, j = 2, . . . , p + 1
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with θp+1 = β. Among these subregions Rij of J2 = [α, β] × [α, β] we have regions

Rii for i = 1, . . . , p+1 in the form of squares which are divided into two triangles T u
ii

and T l
ii by the line t = s defined by

T u
ii = {(t, s) ∈ Rii : s > t} , T l

ii = {(t, s) ∈ Rii : s < t} . (3.37)

Also, the line t = s divide the whole square J2 into two triangles that are similarly

defined as

T u =
{
(t, s) ∈ J2 : s > t

}
, T l =

{
(t, s) ∈ J2 : s < t

}
. (3.38)

Now, consider the case n ≥ 2, for convenience. The case n = 1 can be treated

similarly. In each of these rectangles Rij the function G(t, s) is continuous and n− 2

times differentiable with respect to t, and have jump discontinuity in its (n − 1)st

derivative with respect to t at t = s. That is, in each of the triangles T u
ii and T l

ii of

the squares Rii. In the rectangles Rij , i 6= j, however, the Green’s function G(t, s) is

differentiable up to of order n− 1 with respect to t. Moreover, the Green’s function,

G(t, s), for every fixed s ∈ J satisfies the homogeneous boundary conditions U(x) = 0.

The following proposition gives some of the properties of the Green’s function,

G(t, s), defined on the rectangle J2.

Proposition 3.2. Let G(t, s) be the Green’s function defined by (3.35). Then, the

following properties hold.

G1)
∂ν

∂tν
G(t, s), (ν = 0, 1, . . . , n − 2) are continuous and bounded for (t, s) on the

rectangles Rij, i, j = 1, . . . , p + 1.

G2)
∂ν

∂tν
G(t, s), (ν = n − 1, n) are continuous and bounded on the rectangles Rij

with i 6= j and the triangles T u
ii and T l

ii.

G3)
∂n−1

∂tn−1
G(s+, s)− ∂n−1

∂tn−1
G(s−, s) =

1
p0(s)

, s 6= θj , (3.39)

Ĝ(θ+
j , θj)− (E + Bj)Ĝ(θ−j , θj) = (E + Bj)

1
p0(θj)

en. (3.40)

G4) As a function of t, G(t, s) is left continuous and satisfies the following equations




`(x) = 0, t ∈ Js \ {θi} ,

δi(x) = 0, i ∈ {i : θi ∈ Js} ,

U(x) = 0,

where Js is any of the intervals [α, s) and (s, β].
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Proof. From (3.35), it follows that G(t, s) is continuous in each of the rectangles Rij

for i, j = 1, . . . , p + 1. So, let s ∈ [α, β] be fixed. Then from the definition of G(t, s),

considered as a function of t, we have

Ĝ(t, s) =





Φ̂(t)(E + K)Φ̂−1(s) 1
p0(s) en, s < t

Φ̂(t)KΦ̂−1(s) 1
p0(s) en, s ≥ t

So, using the continuity of the fundamental matrix Φ̂(t) at s 6= θj

Ĝ(s+, s)− Ĝ(s−, s) = Φ̂(s−)Φ̂−1(s)
1

p0(s)
en.

Hence,

Ĝ(s+, s)− Ĝ(s−, s) =
1

p0(s)
en, s 6= θj

proves the jump condition (3.39). Moreover, if s = θj for fixed j ∈ {1, . . . , p} we

consider the function

G(t, θj) =





Φ(t)(E + K)Φ̂−1(θj) 1
p0(θj)

en, θj < t

Φ(t)KΦ̂−1(θj) 1
p0(θj)

en, θj ≥ t
(3.41)

and direct calculation of the jump ∆Ĝ(t, θj)|t=θj
at t = θj gives

∆Ĝ(t, θj)|t=θj
= Ĝ(θ+

j , θj)− Ĝ(θ−j , θj)

= Φ(θ+
j )(E + K)Φ̂−1(θj) 1

p0(θj)
en

−Φ(θ−j )KΦ̂−1(θj) 1
p0(θj)

en

= (E + Bj) 1
p0(θj)

en + BjΦ(θ−j )KΦ̂−1(θj) 1
p0(θj)

en

= (E + Bj) 1
p0(θj)

en + BjĜ(θ−j , θj)

which proves (3.40). The rest of the proof can easily be treated using the definition

of the matrix K. ¤

In other words, the properties G1)–G4) determine G(t, s) uniquely, defined for all

(t, s) ∈ J2 = [α, β]× [α, β] and so can be taken as a definition of the Green’s function

G(t, s). That is, we have the following theorem.

Theorem 3.7. If the boundary value problem (BVP)n has only the trivial solution

then the properties G1)–G4) uniquely determine the Green’s function G(t, s).

Proof. The condition G4) directly implies that

G(t, s) =

{
Φ(t)c(s), s < t

Φ(t)d(s), s > t
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for every s ∈ [α, β], where Φ(t) is any row vector of fundamental solutions of
{

`(x) = 0, t 6= θi,

δi(x) = 0, i = 1, . . . , p,

and c(s) and d(s) are column vectors with n components.

It follows from G3) that if s 6= θj for any j = 1, . . . , p then,

1
p0(s)

en = Ĝ(s+, s)− Ĝ(s−, s)

= Φ̂(s+)c(s)− Φ̂(s−)d(s)

implies

c(s)− d(s) = Φ̂−1(s)
1

p0(s)
en, s 6= θj

On the other hand, however, if s = θj for some j ∈ {1, . . . , p}, then again the

property G3) yields

(E + Bj) 1
p0(θj)

= Ĝ(θ+
j , θj)− (E + Bj)Ĝ(θ−j , θj)

= Φ̂(θ+
j ) c(θj)− (E + Bj)Φ̂(θ−j ) d(θj)

= (E + Bj)Φ̂(θ−j ) c(θj)− (E + Bj)Φ̂(θ−j ) d(θj)

because Φ(t) is a row vector of fundamental solutions. Hence,

c(θj)− d(θj) = Φ̂−1(θj)
1

p0(θj)
en

holds for all j = 1, . . . , p. Therefore,

c(s)− d(s) = Φ̂−1(s)
1

p0(s)
en (3.42)

holds for ever s ∈ [α, β], and further (3.42) uniquely defines the difference c(s)−d(s).

Now, the boundary conditions U(x) = 0, that G(t, s) must satisfy as a function

of t, yields the relation,

0 = MĜ(α, s) + NĜ(β, s) = MΦ̂(α)d(s) + N Φ̂(β)c(s).

By using (3.42), we get

[M Φ̂(α) + N Φ̂(β)] d(s) = −N Φ̂(β)Φ̂−1(s)
1

p0(s)
en.

Since the homogeneous boundary value problem is assumed to have only the trivial

solution, we must have the rank of the matrix

UΦ̂ = M Φ̂(α) + N Φ̂(β)
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equal to n, exactly, and hence (U Φ̂)−1 exists. Letting

K = −(UΦ̂)−1N Φ̂(β)

we obtain uniquely that

d(s) = KΦ̂(s)
1

p0(s)
en,

and therefore,

c(s) = (E + K)Φ̂(s)
1

p0(s)
en

is uniquely determined for every s ∈ [α, β]. Thus,

G(t, s) =





Φ(t)(E + K)Φ̂−1(s) 1
p0(s) en, s < t

Φ(t)KΦ̂−1(s) 1
p0(s) en, s ≥ t

exists and uniquely determined. This completes the proof. ¤

The proof of the theorem, however, gives a practical approach for finding the

Green’s function G(t, s) in the form

G(t, s) =





n∑

i=1

ci(s)φi(t), s < t

n∑

i=1

di(s)φi(t), s > t

where φ1, . . . , φn are fundamental (piecewise) solutions of
{

`(x) = 0, t 6= θi,

δi(x) = 0, i = 1, . . . , p.

Also, the proof, suggests that it is enough to find the constants ci(s) and di(s) for all

s 6= θj for any j = 1, . . . , p. No need to consider the case, s = θj . This does not mean

that the properties G1)–G4) without the condition (3.40) can determine the Green’s

function G(t, s) uniquely. For, at s = θj the jump condition (3.39) in the property

G3) is no longer valid. Instead, we have (3.40).

Example 3.4. Consider the following boundary value problem,




−x′′ = 0, t 6= 1,

∆x̂|t=1 −Bx̂(1−) = 0,

x(0) = x(π) = 0,

B =

(
0 0

1 1

)
,
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which has been studied in Example 3.1. The Green’s function, G(t, s), for the problem

can be given as follows,

G(t, s) =





s + πs
2−3π t, 0 ≤ s < t ≤ 1

t + πt
2−3π s, 0 ≤ t ≤ s ≤ 1

−1
2

π(2−3s)
2−3π t + 1

2 st, 0 ≤ t ≤ 1 < s ≤ π

−π(2−3t)
2−3π s + ts, 0 ≤ s ≤ 1 < t ≤ π

−1
2

(
(2− 3s)t + π(2−3s)

2−3π (−2 + 3t)
)

, 1 < s < t ≤ π

−1
2

(
(2− 3t)s + π(2−3t)

2−3π (−2 + 3s)
)

, 1 < t ≤ s ≤ π

♦

Finally, we close this subsection by the following corollary of Theorem 3.7, that

relates the Green’s function G(t, s) with the solution of the homogeneous boundary

value problem of the form




`(x) = f(t), t 6= θi,

δi(x) = 0, i = 1, . . . , p,

U(x) = 0.

(3.43)

Corollary 3.4. Under the assumptions of Theorem 3.7, there exists a unique solution

x = x(t) of (3.43) defined by

x(t) =
∫ β

α
G(t, s)f(s) ds

Proof. We use the properties of the Green’s function G(t, s). Let R0
ij = (θi−1, θi) ×

(θj−1, θj) be the interior of the rectangles Rij . The following four steps will lead us

to the proof.

1. If (t, s) ∈ R0
ij with i 6= j, then

∂ν

∂tν

∫ θj

θj−1

G(t, s)f(s) ds =
∫ θj

θj−1

∂ν

∂tν
G(t, s)f(s) ds, ν = 0, 1, . . . , n.

2. If (t, s) ∈ R0
ii, then

∂ν

∂tν

∫ θi

θi−1

G(t, s)f(s) ds =
∫ θi

θi−1

∂ν

∂tν
G(t, s)f(s) ds, ν = 0, 1, . . . , n− 1,

and
∂n

∂tn

∫ θi

θi−1

G(t, s)f(s) ds =
∫ θi

θi−1

∂n

∂tn
G(t, s)f(s) ds +

f(t)
p0(t)

.
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3. Notice that for all t ∈ [α, β] = [θ0, θp+1], we have the following definition

∫ θk

θk−1

G(t, s)f(s) ds =





∫ θk

θk−1

G(t, s)f(s) ds, θ0 ≤ t ≤ θ1

...
...∫ θk

θk−1

G(t, s)f(s) ds, θk−1 < t ≤ θk

...
...∫ θk

θk−1

G(t, s)f(s) ds, θp < t ≤ θp+1

for every k = 1, . . . , p + 1. Therefore, we have

∂ν

∂tν

∫ θk

θk−1

G(t, s)f(s) ds =
∫ θk

θk−1

∂ν

∂tν
G(t, s)f(s) ds, ν = 0, 1, . . . , n− 1,

but for ν = n, we have the following equality,

∂n

∂tn

∫ θk

θk−1

G(t, s)f(s) ds =
∫ θk

θk−1

∂n

∂tn
G(t, s)f(s) ds + κk(t)

f(t)
p0(t)

,

where

κk(t) =

{
1, t ∈ (θk−1, θk)

0, otherwise

Finally,

4. The solution, x = x(t), is defined by

x(t) =
∫ β

α
G(t, s)f(s) ds =

p+1∑

k=1

∫ θk

θk−1

G(t, s)f(s) ds.

So

x(ν)(t) =
p+1∑

k=1

∫ θk

θk−1

∂ν

∂tν
G(t, s)f(s) ds, ν = 0, 1, . . . , n− 1, (3.44)

and

x(n)(t) =
p+1∑

k=1

[∫ θk

θk−1

∂n

∂tn
G(t, s)f(s) ds + κk(t)

f(t)
p0(t)

]
. (3.45)

Hence, the use of (3.44) and (3.45) will eventually complete the proof. ¤

3.5.2 Properties of Green’s Function H

As it is seen obviously from Corollary 3.4, the Green’s function G(t, s) is not suffi-

cient in order to represent the solutions of impulsive boundary value problems with

52



nonhomogeneous impulse actions. Namely, to represent the unique solution of the

boundary value problem




`(x) = f(t), t 6= θi,

δi(x) = ai, i = 1, . . . , p,

U(x) = 0,

(3.46)

provided that the corresponding homogeneous problem (BVP)n has only the trivial

solution, one needs the help of the Green’s functions H(t, θ+
j ) for each j = 1, . . . , p.

Recall that for each j ∈ {1, . . . , p}, the (row) vector valued function H(t, θ+
j ) is

defined by (3.36), that is,

H(t, θ+
j ) =

{
Φ(t)(E + K)Φ̂−1(θ+

j ), θj < t

Φ(t)KΦ̂−1(θ+
j ), θj ≥ t

(3.47)

for every t ∈ [α, β]. If we write the Green’s function H(t, θ+
j ) for each j in the

following form,

H(t, θ+
j ) = [H1(t, θ+

j ), . . . , Hn(t, θ+
j )]

with components H1(t, θ+
j ), . . . ,Hn(t, θ+

j ), then it is readily seen from the definition

of H(t, θ+
j ) that each component Hk(t, θ+

j ), for (1 ≤ k ≤ n) is a linear combinations

of the fundamental solutions of the homogeneous impulsive equation,
{

`(x) = 0, t 6= θi,

δi(x) = 0, i = 1, . . . , p,

and hence satisfies

`(Hk(t, θ+
j )) = 0, t 6= θi, and t 6= θj

δi(Hk(t, θ+
j )) = 0, i = 1, . . . , j − 1, j + 1, . . . , p

for k = 1, . . . , n Moreover, the functions Hk(t, θ+
j ), k = 1, . . . , n satisfy also the

boundary conditions, since

UĤ = MĤ(α, θ+
j ) + NĤ(β, θ+

j )

= M Φ̂(α)KΦ̂−1(θ+
j ) + N Φ̂(β)(E + K)Φ̂−1(θ+

j )

= Φ̂(β)Φ̂−1(θ+
j ) + [M Φ̂(α) + N Φ̂(β)]KΦ̂−1(θ+

j )

and hence, substituting K = −[M Φ̂(α) + N Φ̂(β)]−1N Φ̂(β) we deduce that

UĤ = 0.

An important property of the Green’s function H(t, θ+
j ) is its behavior at the

point t = θj . The following proposition characterizes the Green’s functions H(t, θ+
j )

for each j ∈ {1, . . . , p}.
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Proposition 3.3. Let j ∈ {1, . . . , p} be arbitrarily fixed, and let H(t, θ+
j ) be the

Green’s function defined by (3.47) with components H1(t, θ+
j ), . . . , Hn(t, θ+

j ). Then,

each Hk(t, θ+
j ) is of class PLCn and satisfies the following equation





`(x) = 0, t 6= θi,

δi(x) = 0, i = 1, . . . , j − 1, j + 1, . . . , p,

δj(x) = ek,

U(x) = 0.

Proof. Directly, from (3.47) it follows that

Ĥ(θ+
j , θ+

j )− (E + Bj)Ĥ(θ−j , θ+
j )

= Φ̂(θ+
j )(E + K)Φ̂−1(θ+

j )− (E + Bj)Φ̂(θ−j )KΦ̂−1(θ+
j )

= (E + Bj)Φ̂(θ−j )(E + K)Φ̂−1(θ+
j )− (E + Bj)Φ̂(θ−j )KΦ̂−1(θ+

j )

= (E + Bj)Φ̂(θ−j )Φ̂−1(θ+
j )

= Φ̂(θ+
j )Φ̂−1(θ+

j )

= E

since Φ̂ is a fundamental matrix. Hence, this proves the jump condition at t = θj .

The argument preceding the proposition completes the proof. ¤

We remark that the jump at t = θj of the Green’s function H(t, θ+
j ) is similar to

the property of the function G(t, θj) at the point t = θj in (3.40). Also, the jump at

t = θj can be written as

Ĥk(θ+
j , θ+

j )− (E + Bj)Ĥk(θ−j , θ+
j ) = ek, k = 1, . . . , n.

Moreover, Proposition 3.3 uniquely characterize the Green’s functions H(t, θ+
j ) for

each j ∈ {1, . . . , p}.

Theorem 3.8. If the boundary value problem (BVP)n has only the trivial solution,

then Proposition 3.3 uniquely determines the Green’s functions H(t, θ+
j ) for each

j ∈ {1, . . . , p}.

Proof. Let j ∈ {1, . . . , p} be arbitrary, and let Φ(t) be a fundamental row vector.

Then, it follows that

H(t, θ+
j ) =

{
Φ(t)C(j), θj < t

Φ(t)D(j), θj ≥ t

where C(j) and D(j) are n× n matrices for each j. The jump property of H(t, θ+
j ),

at t = θj , or equivalently in terms of matrices

Ĥ(θ+
j , θ+

j )− (E + Bj)Ĥ(θ−j , θ+
j ) = E
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leads to

Φ̂(θ+
j )C(j)− (E + Bj)Φ̂(θ−j )D(j) = E,

and hence,

C(j)−D(j) = Φ̂−1(θ+
j ), (3.48)

that is, the difference C(j) −D(j) is uniquely determined. On the other hand, the

boundary conditions U(x) = 0 implies that

M Φ̂(α)D(j) + N Φ̂(β)C(j) = 0,

and hence, using (3.48) we obtain

[M Φ̂(α) + N Φ̂(β)]D(j) = −N Φ̂(β)Φ̂−1(θ+
j ).

Since the homogeneous boundary value problem has only the trivial solution it follows

that

D(j) = KΦ̂−1(θ+
j ), C(j) = (E + K)Φ̂−1(θ+

j ).

Therefore, the Green’s functions H(t, θ+
j ) are uniquely defined as in (3.47). This

completes the proof. ¤

The above theorem suggests a method for constructing Green’s functions H(t, θ+
j )

for each j = 1, . . . , p: Let φ1, . . . , φn be fundamental solutions of
{

`(x) = 0, t 6= θi,

δi(x) = 0, i = 1, . . . , p.

Then, each Green’s function H(t, θ+
j ) can be represented by the equation,

H(t, θ+
j ) =





[ n∑

i=1

c1i(j)φi(t), . . . ,
n∑

i=1

cni(j)φi(t)
]
, θj < t

[ n∑

i=1

d1i(j)φi(t), . . . ,
n∑

i=1

dni(j)φi(t)
]
, θj ≥ t

However, this formula is not practical at all, in general. Instead, we prefer using

(3.36). Also, we note that for every fixed j ∈ {1, . . . , p}, the row vectors H(t, θ+
j ) are

piecewise continuous functions.

The following corollary gives the unique solution of the nonhomogeneous bound-

ary value problem, 



`(x) = 0, t 6= θi,

δi(x) = ai, i = 1, . . . , p,

U(x) = 0,

(3.49)

in terms of the Green’s functions H(t, θ+
j ) for every j = 1, . . . , p.
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Corollary 3.5. Under the assumptions of Theorem 3.8, there exists a unique solution

x = x(t) of (3.49). Namely,

x(t) =
p∑

j=1

H(t, θ+
j ) aj

for all t ∈ [α, β].

Proof. Obviously, x(t) satisfies the differential equation `(x) = 0 and the boundary

conditions U(x) = 0. In the case of impulse actions δi for i = 1, . . . , p, however, by

the properties of H(t, θ+
j ) = [H1(t, θ+

j ), . . . ,Hn(t, θ+
j )] we have

δi(Hk(t, θ+
j )) =

{
0, i 6= j

ek, i = j
k = 1, . . . , n,

and hence, the impulse actions

δi(x) = δi




p∑

j=1

H(t, θ+
j ) aj




=
p∑

j=1

(
∆Ĥ(t, θ+

j )|t=θi
−BiĤ(θ−i , θ+

j )
)

aj

= E ai = ai

for all i = 1, . . . , p. This completes the proof. ¤

Example 3.5. Consider the following boundary value problem,




−x′′ = 0, t 6= 1,

∆x̂|t=1 −Bx̂(1−) = 0,

x(0) = x(π) = 0,

B =

(
0 0

1 1

)
,

which has been studied in Example 3.1 and Example 3.4. The Green’s function,

G(t, s), in fact, was given in Example 3.4. Now, the Green’s function, H(t, 1+),

which is a row vector, can be given in the following form,

H(t, 1+) =





1
2

[
2

2−3π t, −2+2π
2−3π t

]
, 0 ≤ t ≤ 1

1
2

[
3t + 3π

2−3π (−2 + 3t), −t− π
2−3π (−2 + 3t)

]
, 1 < t ≤ π

♦
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Consider, finally, the problem of finding solutions of the nonhomogeneous bound-

ary value problem (3.46), namely,




`(x) = f(t), t 6= θi,

δi(x) = ai, i = 1, . . . , p,

U(x) = 0,

(3.50)

provided that the corresponding homogeneous boundary value problem (BVP)n has

only the trivial solution. Combining the properties of the Green’s functions G(t, s)

and H(t, θ+
j ) for j = 1, . . . , p the unique solution of the problem (3.50) can be given in

terms of these functions. We state this result without proof in the following theorem.

Theorem 3.9. If the homogeneous boundary value problem has only the trivial solu-

tion, then the solution x = x(t) of (3.50) exists and unique. Moreover, this solution

is expressed by

x(t) =
∫ β

α
G(t, s)f(s) ds +

p∑

j=1

H(t, θ+
j )aj , (3.51)

where G(t, s) and H(t, θ+
j ) for j = 1, . . . , p are the Green’s functions.

Example 3.6. The following nonhomogeneous boundary value problem,




−x′′ = 2, t 6= 1,

∆x̂|t=1 −Bx̂(1−) =

(
0

−4

)
,

x(0) = x(π) = 0,

B =

(
0 0

1 1

)
,

has a unique solution, x = x(t), that can be obtained by the help of the Green’s

functions G(t, s) and H(t, 1+) obtained in Example 3.4 and Example 3.4, respectively.

Specifically, we have

x(t) = 2
∫ π

0
G(t, s) ds + H(t, 1+)

(
0

−4

)

=





2
∫ π

0
G(t, s) ds + H(t, 1+)

(
0

−4

)
, 0 ≤ t ≤ 1

2
∫ π

0
G(t, s) ds + H(t, 1+)

(
0

−4

)
, 1 < t ≤ π

=





π2 + 7π − 7
3π − 2

t− t2, 0 ≤ t ≤ 1

(7− 2π)π
3π − 2

+
3π2 − 7
3π − 2

t− t2, 1 < t ≤ π

♦
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Chapter 4

Eigenvalue Problems

In some cases, especially when solving a partial differential equation by the method of

separation of variables one needs to deal with an ordinary differential equation con-

taining a parameter. That parameter stands, roughly speaking, for the eigenvalue

of that problem. However, it is of great importance to study, separately, the eigen-

value problems which mostly appear in many applications of differential equations in

science and technology.

This chapter, in fact, is a consequence of the previous chapters. Generally speak-

ing, eigenvalue problems for impulsive differential equations (or for classical ordinary

differential equations) are problems that are characterized by a boundary value prob-

lem containing a parameter, mostly a complex parameter λ. Since a boundary value

problem cannot have nontrivial solutions most of the time, nor even solutions at all,

the parameter λ plays an important role for the existence of such nontrivial solutions

of so-called eigenvalue problems.

However, in most of the theory of eigenvalue problems one encounters with the

theory of operators, see [41, 47]. Eigenvalues of the problems, therefore, correspond

to the eigenvalues of the operators, and the eigenfunctions corresponding to those

eigenvalues are nothing but nontrivial solutions of the boundary value problems, in

the domain of those operators.

In the first section of the present chapter, therefore, we define the eigenvalues and

eigenfunctions for impulsive boundary value problems as well as their representative

operators together with their domain of definitions.

Of course, the determination of these eigenvalues, as in the classical theory [27, 41,

47], depends mainly on the holomorphic solutions of impulsive differential equations
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with respect to parameters. See for instance [3, 10], for the investigation of the

analytic dependence on parameters. So, in the first section, we study holomorphic

solutions and their contribution to the determination of eigenvalues.

4.1 Eigenvalues and Eigenfunctions

In principal, one may consider the problem of finding the values of the parameter λ for

which the homogeneous boundary value problem for impulsive differential equation,




`(x) = λx, t 6= θi,

δi(x) = 0, i = 1, . . . , p,

U(x) = 0,

(4.1)

has nontrivial solutions. Each of these nontrivial solutions is called an eigenfunction

corresponding to the eigenvalue λ. Here, we remark that the differential operator `,

and the impulse actions δi are as previously defined, and the vector boundary for U

is of rank m unless otherwise stated, explicitly.

Generally speaking, a number λ is called an eigenvalue of an operator L0 if there

exists, in the domain of definition, D0, of the operator L0, a function x 6≡ 0 such that

L0x = λx

holds. The function x is called the eigenfunction, of the operator L0, corresponding

to that eigenvalue λ.

In our case of the eigenvalue problem (4.1) the operator L0 : D0 → PLC defined

by the differential operator `, on the linear subspace

D0 = {x ∈ PLCn : U(x) = 0, δi(x) = 0, i = 1, . . . , p} (4.2)

of the space PLC. In other words, if a function x ∈ PLC satisfies the boundary

conditions U(x) = 0 and the impulse conditions δi(x) = 0 for every i = 1, . . . , p, then

L0x = `(x). In general, `(x) 6∈ PLC, however, it can be continued from the left at

t = θi. Therefore, it is possible to rewrite the eigenvalue problem (4.1) in a simpler

form as follows,

L0x = λx, (4.3)

and hence, the eigenvalues of an operator L0 are those values of the parameter λ for

which the homogeneous boundary value problem (4.1) has nontrivial solution; each

of these nontrivial solutions is an eigenfunction of the operator L0 corresponding to
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the value of λ. If λ is an eigenvalue and x is the corresponding eigenfunction, then

the pair {λ, x} is called an eigensolution of L0.

Linearity of the differential operator `, and the fact that the D0 is a linear sub-

space implies that the operator L0 is a linear operator, which may be called a linear

impulsive differential operator. Linearity of the operator L0 implies that a linear

combination of eigenfunctions which correspond to one and the same eigenvalue is

itself an eigenfunction corresponding to the same eigenvalue.

Moreover, since the homogeneous boundary value problem (4.1) can have, for a

given value of λ, not more than n linearly independent solutions, it follows that the set

of all eigenfunctions which belong to one and the same eigenvalue of the operator L0

forms a finite dimensional vector space with dimension not more than the order, n, of

the impulsive differential equation. The dimension of this space is simply the number

of linearly independent solutions of the homogeneous boundary value problem (4.1),

for the given value of λ; and this number is called the multiplicity of the eigenvalue

λ.

The set σ(L0) of all eigenvalues of the impulsive differential operator L0 is called

the spectrum of L0, and if λ0 ∈ σ(L0) the eigenspace, E(L0, λ0) of L0 for the eigenvalue

λ0 is the set of all solutions of (4.3), including the zero function. In other words,

E(L0, λ0) is the null space of the operator L0 − λ01, where 1 is the identity operator

from PLCn to PLC.

In order to characterize the eigenvalues of the operator L0, we need to investigate

holomorphic properties of solutions with respect to the parameter λ. However, in [3]

it is presented that the holomorphic solutions with respect to the parameters of an

impulsive differential equations can be obtain by substitution of convergent power

series into another convergent power series with nonzero radii of convergence [38, 47].

In fact, this corresponds to the fact that the composition of holomorphic functions

is again a holomorphic one. More briefly, if f : Ωf → F and g : Ωg → F are two

holomorphic functions in their respective domains, and such that g(Ωg) ⊂ Ωf , then

(f ◦ g) : Ωg → F is holomorphic in its domain Ωg. Let us denote by H(Ω), the set of

holomorphic functions in a domain Ω.

In our discussion of eigenvalue problems (4.1) for an nth order impulsive differ-

ential equation, we may simplify the argument of holomorphic solutions. For, if we

60



transform the linear impulsive differential equation,
{

`(x) = λx, t 6= θi,

δi(x) = 0, i = 1, . . . , p,
(4.4)

into a first order system of equation of the form,
{

w′ = A(t, λ) w, t 6= θi

∆w|t=θi
= Bi w(θ−i ), i = 1, . . . , p,

(4.5)

where A(t, λ) satisfies the existence and uniqueness of solution w = w(t, ξ, λ), defined

for all t ∈ J = [α, β] and such that

w(t0, ξ, λ) = ξ, t0 ∈ J, ξ ∈ Cn (4.6)

provided that E + Bi are all nonsingular for i = 1, . . . , p. More precisely, A(t, λ) is

the companion matrix for the differential equation `(x) = λx and is defined by

A(t, λ) =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
λ−pn(t)

p0(t) −pn−1(t)
p0(t) −pn−2(t)

p0(t) · · · −p1(t)
p0(t)




,

and the vector w = [w1, . . . , wn]T is such that wj(t) = x(n−1)(t) for t 6= θi, and

wj(θi) = x(n−1)(θ−i ) = x
(n−1)
− (θi) for each j = 1, . . . , n.

The following lemma states the solution w = w(t, ξ, λ) of (4.5) satisfying the

initial condition (4.6) is holomorphic in the variables (ξ, λ) ∈ Cn × C for every fixed

t ∈ J .

Lemma 4.1. The solution w = w(t, ξ, λ) of (4.5) satisfying the initial condition (4.6)

is continuous for (t, ξ, λ) ∈ Ji×Cn×C, and for each fixed t ∈ J it is holomorphic in

the variable (ξ, λ) ∈ Cn × C, where J = [α, β] and the Ji are such that

J0 = [α, θ1], Ji = (θi, θi+1], i = 1, . . . , p,

provided that α = θ0 < θ1 < · · · < θp < θp+1 = β.

Proof. For simplicity, we will assume t0 = α.

Let ξ0 = ξ and consider the following system of initial value problems for ordinary

differential equations, {
w′ = A(t, λ) w, t ∈ Ji,

w(θi) = ξi, i = 0, 1, . . . , p,
(4.7)
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where ξi ∈ Fn. Let ϕi = ϕi(t, ξi, λ) be the solution of the (4.7) for each i = 0, 1, . . . , p.

These solutions ϕi(t, ξi, λ) are all continuous for (t, ξi, λ) ∈ Ji × Cn × C and are

holomorphic in the variable (ξi, λ) for fixed t ∈ Ji, by the general theory of ordinary

differential equations [27].

Now, let ϕ = ϕ(t, ξ0, λ), ϕ(t0, ξ0, λ) = ξ0, be the solution of (4.5). That is,
{

w′ = A(t, λ) w, t 6= θi

w(θ+
i ) = (E + Bi) w(θ−i ), i = 1, . . . , p.

(4.8)

Clearly the restriction, ϕ|J0
, of ϕ onto J0 is ϕ0(t, ξ0, λ), and hence holomorphic in

(ξ0, λ) fixed t ∈ J0. In particular, it is holomorphic in (ξ0, λ) for t = α, and t = θ1.

Moreover, at t = θ1 the function ζ1(ξ0, λ) defined by

ζ1(ξ0, λ) = (E + B1)ϕ0(θ−1 , ξ0, λ)

is holomorphic function for (ξ0, λ).

Now, if ξ1 is chosen to be ζ1 it follows from the composition of holomorphic

functions that

ϕ1(t, ξ0, λ) = ϕ1(t, ζ1(ξ0, λ), λ)

is holomorphic in (ξ0, λ), for fixed t ∈ J1; moreover,

ϕ|J1
= ϕ1

and hence, ϕ = ϕ(t, ξ0, λ) is holomorphic, for fixed t ∈ [α, θ2], in the variable (ξ0, λ).

In particular at t = θ2. Continuing this argument until

ϕ|Jp
= ϕp,

we conclude that the solution ϕ = ϕ(t, ξ0, λ) of (4.5) satisfying ϕ(t, ξ0, λ) = ξ0 = ξ is

holomorphic in (ξ, λ), for fixed t ∈ [α, β]. The proof is completed. ¤

An immediate corollary of Lemma 4.1, above is the following:

Corollary 4.1. The solution ϕ = ϕ(t, ξ, λ) of (4.5) satisfying ϕ(t, ξ, λ) = ξ is an

entire function of the parameter λ.

Proof. Proof directly follows from the fact that the companion matrix A(t, λ), for

fixed t ∈ [α, β], is an entire function of λ ∈ C. ¤
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The following theorem, however, states that the holomorphic solutions of linear

impulsive differential equations in the form (4.4) on an interval J = [α, β] are, in fact,

entire functions of the parameter λ.

Theorem 4.1. Any solution x = x(t, λ) of (4.4) is entire in the variable λ, for fixed

t ∈ [α, β]. Moreover, x(j)(t, λ) for fixed t 6= θi and x(j)(θ±i , λ), are entire in the

variable λ for every j = 1, . . . , n− 1, and i = 1, . . . , p.

Proof. Proof directly follows from Lemma (4.1) and Corollary (4.1), by writing (4.4)

in the form (4.5). ¤

We turn our attention to conditions for the determination of the eigenvalues of

linear impulsive differential equations. in other words, the eigenvalues of the operator

L0. In order to achieve this, let

x1(t, λ), . . . , xn(t, λ) (4.9)

denote the fundamental solutions of the linear homogeneous impulsive differential

equation, {
`(x) = λx, t 6= θi,

δi(x) = 0, i = 1, . . . , p,
(4.10)

satisfying, in particular, the following initial conditions

x
(ν−1)
j (α, λ) =

{
0, j 6= ν

1, j = ν
j, ν = 1, . . . , n

at the left end point t = α of the interval J = [α, β]. The fundamental solutions,

defined in (4.9), and their derivatives upto of order n − 1, inclusive, are all entire

functions of λ by Theorem 4.1. In order to have nontrivial solutions of the boundary

value problem (4.1) we use the results of Chapter 3. Namely, since the solutions

xj(t, λ) are linearly independent, the homogeneous boundary value problem (4.1)

has λ as an eigenvalue if and only if there exist constants cj , j = 1, . . . , n, not all

zero, such that

x(t, λ) =
n∑

j=1

cjxj(t, λ)

satisfies the boundary conditions U(x) = 0. However, this is the case if and only if

the system of equations

n∑

j=1

cjUν(xj) = 0, ν = 1, . . . , m (4.11)
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has nontrivial solutions, where Uν are the components of the vector boundary form

U , that is U = [U1, . . . , Um]T . When the system of equations is written in terms of a

matrix equation,



U1(x1) U1(x2) · · · U1(xn)

U2(x1) U2(x2) · · · U2(xn)
...

...
. . .

...

Um(x1) Um(x2) · · · Um(xn)







c1

c2

...

cn




=




0

0
...

0




, (4.12)

it turns out that (4.12) has nontrivial solutions for c = [c1, . . . , cn]T if and only if the

rank of the coefficient matrix,

Γ(λ) =




U1(x1) · · · U1(xn)
...

. . .
...

Um(x1) · · · Um(xn)


 (4.13)

is less than n. On the other hand however, this matrix Γ(λ) is an entire function of

λ. Therefore, we have the following immediate consequence.

Lemma 4.2. If m < n, then any value of λ is an eigenvalue of the operator L0.

Proof. If m < n then we have rank Γ(λ) ≤ m < n, which proves the lemma. ¤

Moreover, there can only be two possibilities for the values of λ. This is proved

in the following theorem.

Theorem 4.2. For any impulsive differential operator L0 only the following two

possibilities can occur.

1. Every number λ is an eigenvalue of L0, or

2. The operator L0 has at most enumerable eigenvalues (in particular, none at

all), and the these eigenvalues can have no finite accumulation point.

Proof. The case m < n is already proved in Lemma 4.2. So, let m ≥ n. Then, the

rank of the matrix Γ(λ) will be less than n if and only if all its minors of order n

vanish, See [41]. On the other hand, each of these minors are entire functions of

λ, and hence we have either (a) all the nth order minors of the matrix Γ(λ) vanish

identically, or (b) at least one nth order minor of Γ(λ) does not vanish identically. In

the case (a) we have, by Lemma 4.2, that any value of λ is an eigenvalue. However, in

the case (b), if there is an nth order minor which is not identically zero, then only the
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zeros of that minor can be eigenvalues of the operator L0. But, a zero of this minor

can be eigenvalue only if it makes all the other minors of Γ(λ) not identically zero,

and the minors of order n vanish. If the latter cannot happen, then the operator L0

has no eigenvalues. On the contrary, if those zeros are eigenvalues, then these zeros

(zeros of a non-vanishing entire function) are isolated. So that they cannot have an

accumulation point. Hence, the operator L0 has at most enumerable eigenvalues, and

these eigenvalues can have no finite accumulation point. This completes the proof.

¤

The case, when m = n is of particular interest in many applications of eigenvalue

problems. In the rest of the work we shall consider this case, unless nothing to the

contrary is stated, precisely.

Hence, instead of the rank of the square matrix Γ(λ), we deal with the determinant

of this matrix,

γ(λ) = det Γ(λ), (4.14)

which is called characteristic determinant of the operator L0, or of the boundary

value problem (4.1), simply written as L0x = λx. By the preceding discussion, the

characteristic determinant γ(λ) is an entire function of λ, and the eigenvalues of the

operator L0 are the zeros of the function γ(λ), if there is any such zeros. Therefore,

we have the following theorem.

Theorem 4.3. The eigenvalues of the operator L0 are the zeros of the characteristic

determinant γ(λ). If γ(λ) vanish identically, then any number λ is an eigenvalue.

However, if γ(λ) is not identically zero, then the operator has at most enumerable

eigenvalues, and these eigenvalues can have no finite accumulation point.

If, in particular, the characteristic determinant γ(λ) has no zeros at all, then the

operator L0 has no eigenvalues.

It is also possible to have λ as a multiple zero of the characteristic determinant

γ(λ). Recalling that the multiplicity of an eigenvalue is the number of linearly in-

dependent eigenfunctions corresponding to that eigenvalue, we state the following

theorem.

Theorem 4.4. If λ0 is a zero of the characteristic determinant γ(λ) with multiplicity

k, then the multiplicity of the eigenvalue λ0 cannot be greater than k.

Proof. Let r be the rank of the matrix Γ(λ0), corresponding to γ(λ0). Then, the

multiplicity of the eigenvalue λ0 is equal to n− r. On the other hand, differentiating
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the determinant γ(λ) shows that all derivatives of order less than n − r vanish for

λ = λ0. But, we know that λ0 is a zero of multiplicity k. Hence, n−r ≤ k completing

the proof. ¤

In the case of a zero of the characteristic determinant γ(λ), of multiplicity 1, that

is a simple zero of γ(λ), we may state the following corollary.

Corollary 4.2. An eigenvalue of the operator L0 is simple if it is a simple zero of

the characteristic determinant γ(λ).

Proof. Let λ0 be a simple zero of γ(λ). Then, n − r ≤ 1, follows from the above

theorem. On the other hand, n − r ≥ 1, because γ(λ0) = 0. Thus, the number of

linearly independent eigenfunctions corresponding to the eigenvalue λ0 is n− r = 1,

and completes the proof. ¤

4.2 Adjoint Eigenvalue Problems

Adjoint operator, say L†0, of the impulsive differential operator L0 is operator L†0 :

D†0 → PLC defined by the linear differential operator `†, in the domain

D†0 =
{

y ∈ PLCn : U †(y) = 0, δ†i (y) = 0, i = 1, . . . , p
}

,

which is a linear subspace of PLC. Namely, if y ∈ D†0 then L†0y = `†(y). Here, the U †

and δ†i for each i = 1, . . . , p are the corresponding adjoint vector boundary form to

U , and adjoint impulse actions to δi, respectively. We remark, again that the vector

boundary form U is of rank n, and hence the adjoint U † is of rank n. The adjoint

eigenvalue problem, therefore, can be written in the form




`†(y) = µy, t 6= θi,

δ†i (y) = 0, i = 1, . . . , p,

U †(y) = 0,

(4.15)

or simply

L†0y = µy, (4.16)

where µ is, in general, a complex parameter.

If λ is an eigenvalue of the operator L0, then it is easy to show that µ = λ is an

eigenvalue of the adjoint operator L†0. For, if `1(x) = `(x)− λx, then by the Green’s

formula obtained in Section 3.1 it follows that `†1 = `†(y) − λy, since the bilinear
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form S(x, y) does not explicitly depends on the coefficient pn(t) of x in `(x), and

the impulse actions δi does not depend on the parameter λ. Moreover, the following

theorem on the multiplicity of λ of the adjoint eigenvalue problem is valid.

Theorem 4.5. If λ is an eigenvalue of multiplicity k, of the operator L0, then λ is

an eigenvalue of the adjoint operator L†0, and has the same multiplicity k.

Proof. Let λ be an eigenvalue with multiplicity k, of the operator L0. Then, the

homogeneous boundary value problem,




`(x)− λx = 0, t 6= θi,

δi(x) = 0, i = 1, . . . , p,

U(x) = 0,

has exactly k linearly independent solutions. But, this means the corresponding

adjoint problem, 



`†(y)− λy = 0, t 6= θi,

δ†i (y) = 0, i = 1, . . . , p,

U †(y) = 0,

has the same number k linearly independent solutions, since the vector boundary form

U is assumed to be of rank n. This means that λ is an eigenvalue with multiplicity

k of the adjoint operator L†0. This completes the proof. ¤

Now, suppose that x is an eigenfunction of the operator L0 corresponding to an

eigenvalue λ and y is an eigenfunction corresponding to an eigenvalue µ of the adjoint

operator L†0. That is, L0x = λx and L†0y = µy. By Green’s formula we obtain,

0 =
∫ β

α
yL0x dt−

∫ β

α
(L†0y)x dt = (λ− µ)

∫ β

α
yx dt (4.17)

for x ∈ D0 and y ∈ D†0. If we further, denote the standard inner product, 〈f , g〉, of

functions f and g in PLC, by

〈f , g〉 =
∫ β

α
gf dt,

then (4.17) can be written simply as

0 = 〈L0x , y〉 −
〈
x , L†0y

〉
= (λ− µ) 〈x , y〉 . (4.18)

The following theorem is obvious.

Theorem 4.6. Eigenfunctions x and y of the operators L0 and L†0 corresponding

to the eigenvalues λ and µ, respectively, are orthogonal if λ 6= µ in the sense that

〈x , y〉 = 0.
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It is easy to see that (4.18), and hence Theorem 4.6 has particular corollaries

in the case when the operator L0 is self-adjoint. The operator L0 is self-adjoint,

however, if and only if `† = `, and U(x) = 0 and δi(x) = 0 for every i = 1, . . . , p are

self-adjoint boundary form and impulse actions, respectively. For, when the latter

holds, it follows by the boundary form and impulse action formulas, see Section 3.2,

that the domains of formally adjoint operators L0 and L†0 coincide. Since `† = `, it

follows that L†0 = L0. Hence we may state the following theorem, similar to the one

for self-adjoint differential operators without impulse effect.

Theorem 4.7. Eigenvalues of a self-adjoint operator L0 are real.

Proof. For a self-adjoint operator L0, we have immediately from (4.18) that

0 = 〈L0x , x〉 − 〈x , L0〉 = (λ− λ) 〈x , x〉 ,

where x is the eigenfunction corresponding to the eigenvalue λ of the self-adjoint

operator L0. Since 〈x , x〉 6= 0 for eigenfunctions, it follows λ = λ, in other words, λ

is real. ¤

Moreover, if x and y are eigenfunctions belonging to different eigenvalues λ and

µ, respectively, of a self-adjoint impulsive differential operator L0, (4.18) implies that

0 = (λ− µ) 〈x , y〉 .

This proves the following corollary.

Corollary 4.3. Eigenfunctions of a self-adjoint operator L0 corresponding to differ-

ent eigenvalues are orthogonal.

Since it is always possible to choose mutually orthogonal eigenfunctions corre-

sponding to one and the same eigenvalue (of an impulsive operator L0) by the Gram-

Schmidt orthogonalization process, it follows from the above corollary that (in the

case when L0 is self-adjoint) it is possible to obtain a set of mutually orthogonal

eigenfunctions of a self-adjoint operator L0.

4.3 Nonhomogeneous Problems Containing a Parameter

In the previous sections of this chapter we have studied the eigenvalue problems

L0x = λx, (4.19)
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where the domain of the operator is the linear subspace D0 of PLCn, defined by

D0 = {x ∈ PLCn : U(x) = 0, δi(x) = 0, i = 1, . . . , p} .

However, these types of eigenvalue problems correspond to the study of homogeneous

boundary value problems of the form




`(x) = λx, t 6= θi,

δi(x) = 0, i = 1, . . . , p,

U(x) = 0,

(4.20)

where λ is a certain parameter, and U is a boundary form of rank n.

On the other hand, we studied nonhomogeneous boundary value problems in Sec-

tion 3.4 of Chapter 3, and their solutions represented by the Green’s functions G(t, s)

and H(t, θ+
j ) for every j = 1, . . . , p. These nonhomogeneous problems, therefore,

necessarily force us to change the operator L0 to some other impulsive differential

operator, say La, defined in a domain, say Da. We make this in the following way.

Let a = {ai} = {ai}p
i=1 be a finite sequence of vectors ai ∈ Fn, then we define

La : Da → PLC to be an impulsive differential operator defined by `, on the domain

Da = {x ∈ PLCn : U(x) = 0, δi(x) = ai, i = 1, . . . , p}

where U is of rank n. Clearly Da is not a linear space.

We consider the following problem, containing a parameter λ:

Lax = λx + f(t), (4.21)

which corresponds to a nonhomogeneous boundary value problem of the form




`(x) = λx + f(t), t 6= θi,

δi(x) = ai, i = 1, . . . , p,

U(x) = 0.

(4.22)

The corresponding homogeneous problem for the problem in (4.21) is given by (4.19).

As in the classical theory of ordinary differential equations, the eigenvalues of the

operator L0 strongly effects the existence of solutions of (4.21). We recall that the

values of λ for which the homogeneous problem (4.20) has nontrivial solutions are

obviously the eigenvalues of the operator L0, and each nontrivial solution is a related

eigenfunction. Now, suppose λ is not an eigenvalue of the impulsive differential
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operator L0. This means the problem L0x = λx has only the trivial solution, and

hence, by the results of the homogeneous boundary value problems, it follows that

there exist unique Green’s functions G(t, s, λ) and H(t, θ+
j , λ) for each j = 1, . . . , p,

depending on λ. The unique solution x = x(t, λ) of (4.21) for every f ∈ PLC and

a = {ai} with ai ∈ Fn can be given as follows,

x(t, λ) =
∫ β

α
G(t, s, λ)f(s) ds +

p∑

j=1

H(t, θ+
j , λ) ai

in terms of the Green’s functions. Note that these functions, G(t, s, λ) and H(t, θ+
j , λ)

for each j = 1, . . . , p, satisfy the properties of Green’s functions for every λ, provided

that λ is not an eigenvalue of L0. So, we have the following theorem.

Theorem 4.8. If λ is not an eigenvalue of L0, then for any f ∈ PLC and a = {ai}
with ai ∈ Fn, the problem (4.21) has a unique solution x = x(t, λ) defined by

x(t, λ) =
∫ β

α
G(t, s, λ)f(s) ds +

p∑

j=1

H(t, θ+
j , λ) ai,

where G(t, s, λ) and H(t, θ+
j , λ) for each j = 1, . . . , p are the Green’s functions for

(4.19).

If λ of the operator L0, then we may rewrite the theorem 3.6 for the nonhomoge-

neous boundary value problems obtained in Section (3.4).

Theorem 4.9. If λ is an eigenvalue of L0, then the problem (4.21) has a solution if

and only if the equality

∫ β

α
ψ(s)f(s) ds +

p∑

i=1

ψ̂∗(θ+
i )S(θ+

i )ai = 0

holds for every solution ψ of the adjoint homogeneous problem L†0y = λy.

Now, suppose that λ = 0 is not an eigenvalue of the operator L0. In other

words, suppose that L0x = 0 has only the trivial solution. This implies, however, the

existence of unique Green’s functions

G(t, s) = G(t, s, 0)

and

H(t, θ+
j ) = H(t, θ+

j , 0)
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so that for any f ∈ PLC and a = {ai} with ai ∈ Fn the unique solution x = x(t) of the

nonhomogeneous problem (4.21) can be written, formally, in terms of the parameter

λ as follows

x(t) = λ

∫ β

α
G(t, s)x(s) ds +

∫ β

α
G(t, s)f(s) ds +

p∑

j=1

H(t, θ+
j ) ai,

and this yields the well-known Fredholm type integral equation,

x(t) = λ

∫ β

α
G(t, s)x(s) ds + g(t), (4.23)

where g(t) is a function of class PLC and defined by

g(t) =
∫ β

α
G(t, s)f(s) ds +

p∑

j=1

H(t, θ+
j ) ai.

Also notice that, the function g(t), nonhomogeneous part of the integral equation (4.23),

is identically zero function if and only if f(t) = 0 for all t ∈ [α, β] and ai = 0 for

every i = 1, . . . , p. Since g(t) satisfies Lax = f(t) whose corresponding homogeneous

problem is assumed to have only the trivial solution.

Our aim, here, is not to investigate the corresponding integral equation (4.23),

where G(t, s) stands for the kernel of some integral operator. However, we emphasize

that this kernel G(t, s) is of class PLC for fixed s or t in the interval J = [α, β]. Also,

the function g(t) is of class PLC. Moreover, G(t, s) and g(t) are square integrable

functions over the domains J2 and J , respectively. Hence, the general theorems

concerning the these types of integral equations, namely Fredholm second type, can

be applied to (4.23). We refer [37] for the study of integral equations with L2-kernels.

Also, [44, 46] includes such types of integral equations for functions with bounded

variations.

4.4 Sturm-Liouville Operators

In this section we shall investigate a special kind of impulsive operator L0, which is

defined by a particular second order differential operator ` of the form

`(x) = − d

dt

(
p0(t)

dx

dt

)
+ q(t) x, t 6= θi (4.24)

on the linear subspace

D0 = {x ∈ PLCn : U(x) = 0, δi(x) = 0, i = 1, . . . , p} (4.25)
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of PLC, where p0 ∈ PLC1, 1
p0
∈ PLC, and q ∈ PLC are real valued functions of

t ∈ [α, β]. Also, the boundary form U and impulse actions δi for i = 1, . . . , p are

defined in the general settings as follows,

U(x) = Mx̂(α) + Nx̂(β) (4.26)

and

δi(x) = ∆x̂|t=θi
−Bix̂(θ−i ), i = 1, . . . , p, (4.27)

where M = (Mij), and N = (Nij) are 2× 2 matrices such that the rank(M : N) = 2,

and Bi = (bjν(i)) are all 2× 2 matrices such that

Ci = E + Bi

are nonsingular for every i = 1, . . . , p.

Our aim, in this section, is to give necessary and sufficient conditions for L0 to be

self-adjoint. Then, we want to define Sturm-Liouville impulsive differential operator

in the case when F = R. We define

U1(x) = M11x(α) + M12x
′(α)

U2(x) = N21x(β) + N22x
′(β)

(4.28)

with M21 = M22 = N11 = N12 = 0, provided that

|M11 |+ |M12 | 6= 0

|N21 |+ |N22 | 6= 0.

In order to achieve our goal we need to concentrate mainly on the impulse actions

δi, since the rest will follows from the classical theory of Sturm-Liouville boundary

value problems. Of course, the impulse conditions δi(x) = 0 play an important role

in the self-adjointness of the impulsive differential operator L0.

In the case when p0(t) and q(t) are real valued functions on [α, β], it follows from

the Green’s formula that `† = `. Moreover, we know from the Section 3.3 that




`(x) = 0, t 6= θi,

δi(x) = 0, i = 1, . . . , p,

U(x) = 0

is self-adjoint if and only if the conditions

(a) S−1(θ+
i ) = (E + Bi)S−1(θ−i )(E + B∗

i ), i = 1, . . . , p,
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(b) MS−1(α)M∗ = NS−1(β)N∗

hold. Here, S is the matrix of the bilinear form associated with the operator `. An

immediate calculation shows that S is

S(t) =

(
0 −p0(t)

p0(t) 0

)

with detS(t) = (p0(t))
2 6= 0 for all t ∈ [α, β], and detS(θ+

i ) = (p0(θ+
i ))2 6= 0 for all

i = 1, . . . , p. Hence, a necessary condition for the operator L0 to be self-adjoint can

be obtained from (a) by taking the determinant of both sides, namely,

| det(E + Bi) |2 =
(p0(θ−i ))2

(p0(θ+
i ))2

. (4.29)

Of course the necessary condition (4.29) becomes

| det(E + Bi) |2 = 1

if p0(t) is continuous on [α, β].

On the other hand, if we calculate directly from condition (a), denoting Ci =

E + Bi with entries cjν(i), we see that

p0(θ−i )
p0(θ+

i )

(
0 1

−1 0

)
=

(
c11(i)c12(i)− c12(i)c11(i) c11(i)c22(i)− c12(i)c21(i)

c21(i)c12(i)− c22(i)c11(i) c21(i)c22(i)− c22(i)c21(i)

)

holds as a necessary and sufficient condition for δi to be self-adjoint. In other words,

the impulse actions δi are self-adjoint if and only if the following three conditions,

c11(i)c12(i)− c12(i)c11(i) = 0 (4.30)

c21(i)c22(i)− c22(i)c21(i) = 0 (4.31)

c11(i)c22(i)− c12(i)c21(i) =
p0(θ−i )
p0(θ+

i )
(4.32)

holds for all i = 1, . . . , p. If Bi for every i = 1, . . . , p are real matrices, then the

necessary and sufficient condition reduces to

det(E + Bi) =
p0(θ−i )
p0(θ+

i )
, i = 1, . . . , p. (4.33)

Similar calculations can be carried out for the boundary conditions U to obtain

necessary and sufficient conditions for U to be self-adjoint. We state the following

theorem for self-adjointness of the operator L0.
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Theorem 4.10. The impulsive operator L0 is self-adjoint if and only if the following

six conditions hold.

1. [1 + b11(i)]b12(i)− b12(i)[1 + b11(i)] = 0,

2. b21(i)[1 + b22(i)]− [1 + b22(i)]b21(i) = 0,

3. [1 + b11(i)][1 + b22(i)]− b12(i)b21(i) =
p0(θ−i )
p0(θ+

i )
, for all i = 1, . . . , p,

4.
M11M12 −M11M12

p0(α)
=

N11N12 −N11N12

p0(β)
,

5.
M21M22 −M21M22

p0(α)
=

N21N22 −N21N22

p0(β)
,

6.
M11M22 −M21M12

p0(α)
=

N11N22 −N21N12

p0(β)
.

If all those matrices M, N and Bi for every i = 1, . . . , p were real then we would

have only the conditions in (3) and (6). This is given in the following corollary.

Corollary 4.4. If M,N and Bi for i = 1, . . . , p are real then L0 is self-adjoint if

and only if

(a) det(E + Bi) =
p0(θ−i )
p0(θ+

i )
, i = 1, . . . , p,

(b)
M11M22 −M21M12

p0(α)
=

N11N22 −N21N12

p0(β)
.

Now, the following homogeneous boundary value problem for impulsive differen-

tial equation is called homogeneous Sturm-Liouville boundary value problem. Namely,





− d

dt

(
p0(t)

dx

dt

)
+ q(t) x = 0, t 6= θi,

∆x̂|t=θi
−Bix̂(θ−i ) = 0, i = 1, . . . , p,

a1x(α) + a2p0(α)x′(α) = 0,

b1x(β) + b2p0(β)x′(β) = 0,

(4.34)

provided that

i. p0 ∈ PLC1, 1
p0
∈ PLC, and q ∈ PLC are real valued functions of t ∈ [α, β],

ii. ai, bi are all real for i = 1, 2, such that a2
1 + a2

2 > 0 and b2
1 + b2

2 > 0,

74



iii. The matrices Bi are real 2× 2 with det(E + Bi) =
p0(θ−i )
p0(θ+

i )
, for all i = 1, . . . , p.

The corresponding nonhomogeneous Sturm-Liouville problem can be defined in

an obvious manner.

Under the above assumptions, the impulsive differential operator L0, defined by

`, on the domain prescribed by the homogeneous impulse and boundary conditions

is self-adjoint, and this operator is called Sturm-Liouville operator. Hence, all the

results obtained in Section 4.2 for self-adjoint operators are valid. In particular, all

eigenvalues of a Sturm-Liouville operator are real, and eigenfunctions corresponding

to different eigenvalues are orthogonal.
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