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ABSTRACT

CONTROLLED GENETIC PROGRAMMING SEARCH FOR SOLVING
DECEPTIVE PROBLEMS

Korkmagz, Emin Erkan
Ph.D., Department of Computer Engineering
Supervisor: Assoc. Prof. Dr. Goktiirk Ugoluk

March 2003, 77 pages

Traditional Genetic Programming randomly combines subtrees by applying crossover.
There is a growing interest in methods that can control such recombination operations.
In this thesis, a new approach is presented for guiding the recombination process for
Genetic Programming. The method is based on extracting the global information
of the promising solutions that appear during the genetic search. The aim is to use
this information to control the crossover operation afterwards. A separate control
module is used to process the collected information. This module guides the search
process by sending feedback to the genetic engine about the consequences of possible

recombination alternatives.

Keywords: genetic programming, recombination, epistasis, deception
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OZ

ALDATICI PROBLEMLERI COZEBILMEK ICIN KONTROLLU EVRIMSEL
PROGRAMLAMA

Korkmaz, Emin Erkan
Doktora, Bilgisayar Mithendisligi B6liimii
Tez Yoneticisi: Dog. Dr. Goktiirk Ugoluk

Mart 2003, 77 sayfa

Geleneksel Evrimsel Programlama kromozom parcalarimi ¢aprazlama iglemi sirasinda
rastgele degigtirir. Bu tiir rastgele gerceklegtirilen iglemleri kontrol altina alabilecek
yontemlere artan bir ilgi vardir. Bu tez ¢aligmasinda sézedilen iglemleri yonlendirecek
yeni bir yaklagim sunulmaktadir. One siirillen metod, genetik arama sirasmda or-
taya cikan umut vadeden kromozomlarin biitiinsel yapisini incelemeye dayanmak-
tadir. Amac elde edilen bilgiyi daha sonra gaprazlama islemini yonlendirmekte kul-
lanmaktir. Toplanilan bilgiyi iglemek igin ayri bir kontrol modiilii tasarlanmigtir.
Bu modiil genetik motoruna gergeklestirilecek iglemlerin olasi sonuglarmi bildirerek

genetik arama iglemini kontrol etmektedir.

Anahtar Kelimeler: evrimsel programlama, yeniden birlegtirim, i¢sel baginti, aldaticilik
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CHAPTER 1

INTRODUCTION

Evolutionary computation is the general name used for the group of search algorithms
which use Darwinian-like evolutionary processes to solve problems. The Darwinian
principle of survival and reproduction of the fittest is the underlying approach of these
algorithms. Genetic Programming (GP) is an important evolutionary method where
the process is based on the adaptation of structured-trees. The adaptation is carried
out by various recombination operators.

A population of chromosomes is used for the search process. Each chromosome
represents a point in the search space. The search proceeds in a parallel manner
by transforming different chromosomes simultaneously. The chromosomes of GP are
constructed by using the elements of specific terminal and function sets. The search
space includes all possible trees that can be built by using the elements of the specified
sets. Hence, GP provides a mechanism to carry out the search among hierarchical
structures with varying length and sizes.

The reason why genetic programming works is based on the notion of Building
Block. The performance of a chromosome might depend on the existence of some
critical terminal-functional elements and their configuration in the chromosome. The
schemata formed by these critical elements is named as a building block. Note that
chromosomes with higher fitness values have more chance to survive and to be chosen
for the recombination process. Hence, it is more probable for the high performance
building blocks to be spread among the population and combine with each other.

The Building Block Hypothesis denotes that the genetic search seeks for the solution



through the juxtaposition of small and high performance building blocks [21].

There is a class of problems where the genetic search is easily misled to a local
optimum by the building blocks. These are called deceptive problems. The interaction
among the partial solutions is high for these problems. In other words the contribu-
tion of a subpart of a chromosome to the overall fitness depends on the configuration
of other parts. Such a strong relation among the subparts of a chromosome is de-
noted with the term FEpistasis. Hence, considering only small building blocks turns
out to be a deceptive choice. The global meaning of finding a possible solution goes
beyond determining isolated, non-interacting building blocks and bringing them to-
gether. This is the underlying reason why genetic programming becomes inefficient

and unsuccessful for deceptive problems.

The focus of the thesis is to control recombination process in GP in order to
improve the performance for deceptive problems. In order to achieve this goal, a
genetic search system which can deduce beneficial knowledge from its own experience,
is designéd. This is named as a Self-Referential Genetic System. The system would

use the collected information to control recombination afterwards.

There are other researchers trying to control the recombination operation [26, 66].
Their focus is usually on determining the beneficial building blocks and preventing
them to be disturbed during the recombination process. However, as mentioned above
it is difficult to base the solution on building blocks for deceptive class of problems.
Therefore, this study focuses on a new kind of abstraction on the structure of the chro-
mosomes. A new representation is used for this scheme. The proposed representation
reflects the important characteristics which would denote the overall organization of
a chromosome. The information obtained by using the new representation is named

as Global Information.

The self referential information collected during the search is based on the global
information of the chromosomes. The aim is to built prototypes of the promising solu-
tions by extracting the knowledge of what it is to be good globally. These prototypes
are used to perform the right crossover operations which would keep the search among
the localization of well-fit elements afterwards. The proposed representation holds two
important characteristics of the chromosomes. These are the frequency information

of the elements used and their position in the chromosome. These two characteristics



are used to trace the critical global aspects of the high-fit chromosomes. The details
of the representation used can be found in Chapter 3.

The proposed system has a dual character. The genetic engine performs the stan-
dard genetic search. On the other side, a control module has been used in order to
observe the génetic search. This module collects information about the consequences
of various recombination operations and performs a meta-level learning at certain pe-
riods to determine what it is to be good globally. Once the first learning process takes
place, the control module starts guiding the search process by sending feedback to the
genetic engine about the consequences of possible crossover operations.

The proposed method has been applied to two different real-world domains namely
the Context-Free Grammar Induction and the N-Parity Problem. Both domains can
be considered as highly deceptive. Their search spaces are discontinuous and the
interdependency among the subparts of a possible solution is high. Traditional GP
has exhibited quite a low performance for both of the problems. Hence, they are quite
suitable for the research purposes of the thesis. Furthermore, a tunable benchmark
problem is defined and our approach is tested on different instances of this problem.
The aim is to show that the significance of the method increases as the problem is
made more deceptive. Furthermore, statistical tests are carried out for the verification

of the performance increase obtained.

1.1 Scope of the Thesis

Chapter 2 starts with an overview of GP and the Schemata theorem. Then, exam-
ples for various application areas of GP are presented. The significant attempts to
increase the performance of GP and the previous attempts to control recombination
operation are analyzed in this chapter. Also, the philosophical base of our work has
been presented in the light of the ideas and discussions of various philosophers and
scientists in the history.

In Chapter 3, our approach is presented. The new representation used to capture
the global information of the chromosomes and the details of the control module
designed are given in this chapter.

In Chapter 4, the application of our approach on CFG induction is given. The

description of the experimental setup used and the results obtained for the problem



are presented in this chapter.

In Chapter 5, the N-Parity problem is analyzed in the light of our approach. Again
the experimental results are given for the problem.

In Chapter 6, the learning period which is an important parameter of our ap-
proach is analyzed in detail. Then the performance of our approach is compared with
traditional genetic programming by using real CPU time sta,tiétics of the two methods.

In Chapter 7, a new benchmark problem is designed for genetic programming.
Then the proposed method is tested on different instances of this benchmark problem.

In Chapter 8, statistical tests are carried out in order to verify the performance
increase obtained.

In Chapter 9, the dissertation is summarized and conclusions are presented.



CHAPTER 2

BACKGROUND

Evolutionary computation can be considered as a part of a general movement aim-
ing to use biological ideas in computer science. The pioneers of this movement are
scientists such as Von Neumann [60, 61], Alan Turing [59] and Nobert Wiener [65].
The movement still continues today with the research on evolutionary computation,
Neural Networks, artificial life and other methods inspired by the biological systems.

A wide range of methods have been proposed by the researchers in the area of
evblutionary computation. All of these methods share some common features. As
mentioned in the previous chapter, the usage of Darwinian-like evolutionary processes
forms the core of an evolutionary method. Also some basic elements like a popu-
lation of individuals, a birth-death cycle and the notions of fitness and inheritance
can be considered as other common features shared by the evolutionary computation
methods.

EBvolutionary Programming(EP) and Evolutionary Strategies(ES) form the histori-
cal roots of evolutionary computation. EP was developed by Fogel in 1960s [16]. The
aim is to evolve intelligent behavior by the adaptation of finite state machines. Only
mutation is used for the adaptation process. On the other side ES was developed again
in 1960s by Rechenberg and Schwefel [54]. The method is used for the optimization
of real-valued parameters. Hence, the individuals of the population are parameter
vectors and the search is carried out by mutating the parameters.

Genetic Algorithms(GA) is the most well-known and widely used method in the
area. Holland [24] developed the approach with the aim of achieving a robust, adaptive



system. Holland used a genetic encoding for the points in the search space and the
adaptation is carried out by using different genetic operations like mutation, crossover

and reproduction.

Genetic Programming is the latest method that appeared in the area. The ap-
proach can be considered as a variant of genetic algorithms where the search is carried
out on hierarchical structures. Koza is the researcher who developed the method in

the 1980s [33].

2.1 Overview of Genetic Programming

Representation is an important issue in traditional genetic algorithms. Genetic algo-
rithms work on fixed-length encoded character strings. It is possible to solve various
problems with the representation used. However drawbacks exist. Encoding and de-
coding processes give rise to the separation of the search and the solution spaces. This
is a situation where issues like validity, coherence and diversity become more critical.
On the other hand, fixed string length necessitates the predetermination of the shape

and the size of the solutions.

It can be claimed that the natural solution for many problems is structured com-
position of functions. Genetic programming provides a framework to carry out the

search by adapting hierarchical structures with varying Iengfh and sizes.

The chromosomes in genetic programming are structured-trees. These trees are
constructed by using the elements of specific terminal and function sets. Thus, the
search space includes all possible trees that can be built by the elements of the specified

sets.

The general life-cycle of a genetic programming search can be summarized as

follows [32].



1 Create an initial random population by using the function and the terminal

set elements.

2 Breed new populations from the existing population by using the following

steps, until termination criteria is met.
2.1 Assign a fitness value to each chromosome in the population. This fitness value
would be a measure of how well the chromosome solves the problem.

2.2 Use a selection criteria to select chromosomes from the population and create

the individuals of the next population by using the following operations.

2.2.1 Directly copy the individual to the next generation.

2.2.2 Create offsprings by using recombination or mutation.

The termination criteria mentioned in item (2) can either be finding the solution
or reaching a predetermined limit on the number of generations. The selection criteria
mentioned in item (2.2) could vary. The most widely used criteria are fitness propor-
tional selection and tournament selection. As the name implies, chromosomes have
chance to be selected propoftional to their fitness values when fitness proportional
selection is used. With tournament selection, two chromosomes are chosen randomly
and the one with better fitness value is selected. The tournament may be repeated

more than once to achieve a more elitist selection method.

Parent—1 Parent—-2

Figure 2.1: A sample crossover operation. Crossover fragments are denoted with
dashed lines.



New populations are bred by either using reproduction (2.2.1) or recombination.
The most widely used recombination operation is crossover. Crossover is carried out
by exchanging randomly chosen subtrees of two parents. Two offsprings are obtained
after the operation. In Figure 2.1 an example for the operation is given. Also, mutation
causes random changes on the chromosomes. This is obtained by replacing a randomly

chosen subtree of a chromosome by a new randomly created subtree.

2.2 Why Genetic Programming Works: Schema Theorem

Different approaches have been proposed in order to explain the theoretical founda-
tions of evolutionary computation. Defining the general laws that would describe the
behavior of evolutionary computation, explaining the affect of genetic operations on
the search process and determining the set of suitable problems for the evolutionary
approach can be considered as the core of this research area.

The schema theorem developed by John Holland [24] in mid seventies is often
used to explain why genetic algorithms work. Schema can be defined as a similarity
template representing a group of chromosomes. However, it is not straightforward
to propose a definition of schema for genetic programming. Hence, the research car-
ried out to explain the theoretical foundations of genetic programming can not be
considered as complete yet.

Several definitions are proposed for GP schema in the literature. The research
carried out by [32, 44, 45] and [63] can be considered as the initial attempts in the
area. The common feature of the definitions proposed by these researchers is that
their schemata are mon-rooted. Thus, a schema can appear more than once in the
same chromosome. This leads to some complications in calculating the probabilities
of schema-disruption.

The approach proposed by [49] can be considered as the most comprehensive analy-
sis of the problem. In [49], the difficulty of formulating the affect of standard crossover
and mutation in GP is admitted. However, a schema theorem for one-point crossover
and point mutation is proposed by [49]. These operations can be considered as re-
stricted versions of standard crossover and mutation in GP. Point-mutation is the
analogue of bit-flip mutation where a function can be substituted only with an other

function of the same arity and a terminal can be substituted with an other terminal.



In order to carry out one-point crossover, the parents are traversed starting from the
root and the parts with the same shape and arity are identified. Then, a random
crossover point is determined in the parts shared by both of the parents and the
subtrees are swapped as in standard crossover.

In the following paragraphs an overview of the schema theorem, developed in [49]

a8
® & C >>
S & ®

Chramosome-1 Chromosome-2

‘ is presented.

x) \@)

Schema

Figure 2.2: Two chromosomes and the schema preserved by them.

The schema theorem for GAs introduces a don’t care symbol “#” in the schema
vectors in addition to the binary alphabet {0, 1}. Hence it is possible to obtain
a schema vector contained in a string by replacing the necessary symbols with the
“don’t care” symbol. Similarly, a schema contained in a program can be obtained by
replacing the nodes with the “don’t care” node denoted by the symbol “=” [49]. The
“don’t care” symbol would represent a single function or terminal. In Figure 2.2 the
schema preserved in two different chromosomes is presented.

The necessary definitions needed for the theory are as follows.

Definition 1 (GP Schema). A GP schema is a rooted tree composed from the
elements of the set FUT U {=}. F is the function and T is the terminal set used.
The element = is a polymorphic function which has as many arities as the number of
different arities of the function and terminal set elements.

Definition 2 (Order). The order O(H) of a schema H is the number of non-=
symbols in H.

Definition 3 (Length). The length N(H) of a schema H is the number of nodes
in H.

Definition 4 (Defining Length). The defining length L(H) of a schema H is



the number of links in the minimum fragment including all the non-= symbols in H.

Definition 5 (Hyperspaces and Hyperplanes). A schema H is a hyperspace
if O(H) = 0 and hyperplane otherwise. The hyperspace corresponding to a hyperplane
H can be obtained by replacing all the non-= symbols of H with the “don’t care”
symbol =.

Having the above definitions it is possible to formulate how a certain schema H
would propagate throughout the generations. This propagation is in fact effected by
three factors; selection process, crossover and mutation operations. The formulation
is based on determining the probability that a schema H will not be disrupted at a
certain generation. The expectéd number of chromosomes sampling a schema H at

generation t + 1 can be calculated with the following equation

Em(H,t+1)] = MPr{h € HY(1 — Pr{Dm(H)})(1 — p.Pr{D(H)}).  (2.1)

In the above equation, m(H,t 4 1) is the number of chromosomes having schema
H at generation ¢+ 1 and M is the population size. The expected number is cal-
culated by multiplying the population size with three probabilities. These are, the
probability that a chromosome ~ sampling a schema H is selected for the mating
pool (Pr{h € H}), the probability that H is not disrupted when a chromosome A
sampling H is mutated (1 — Pr{D,,(H)}) and the probability that H is not dis-
rupted when a chromosome A sampling I is crossed over with another chromosome
(1 — p.Pr{D.(H)}). Note that Dp, and D, denote the events that H is disrupted
during mutation or crossover and p. is the crossover probability.

Assuming that fitness proportionate selection is used, the selection probability can

be formulated as

m(H,t)f(H,1)
MF@)
where f(H,t) is the mean fitness of the chromosomes holding schema H and f(t) is

Prihe H} = (2.2)

the mean fitness of the whole population.
Note that, point mutation changes the label of a node into a different one with
a certain probability pp,. A schema H will survive during mutation only if all of its

O(H) non-= symbols are unchanged. Hence, a schema can be disrupted by mutation

10



with the following probability

Pr{Dm(H)} =1~ (1 - pm)°*). (2.3)

Proposing the formulation for crossover is not straightforward. There are two ways
H can be disrupted. The first case, denoted by D.;(H), is when h is crossed over with
h having a different structure. If G(H) is the hyperspace associated to H, then the
probability of the event D.; would be as follows

Pr{Dq(H)} = Pr{D.(H) | h ¢ G(H)}Pr{h ¢ G(H)}. (2.4)

In this equation, Pr{h ¢ G(H )} denotes the probability of selecting a chromosome
with different structure. Again assuming fitness proportionate selection is used, this

probability can be formulated as

m(G(H), 1)f(G(H), 8
M (1)

However, it is difficult to determine the probability Pr{D.(H) | A ¢ G(H)} since

Pr{h g G(H)} =1— (2.5)

not all crossovers between parents of different structure would produce offsprings which
do not sample H. However it is possible to make a simplistic assumption and consider
this probability to be equal to one.

The second case where H can be disrupted is when h is crossed over with a chro-
mosome £ having the same structure with A but which does not sample H. This can
be expressed as the event Dyo(H) = {D.(H),h ¢ H,h € G(H)}. Note that the neces-
sary condition for H to be disrupted is that crossover point should be chosen between
the non-= nodes of H. The probability for such a case would be NLHH_I . Since this
is only the necessary condition, the actual probability would be lower than this value.
This time the selection probability would be based on the number and mean fitness
of the elements which have the same structure with A, (iz ¢ H), but which do not
sample h, (h € G(H)). Hence, the probability for the event D¢y can be formulated as

L(H) m(G(H)at)f(G(H)7t) - m(Ha t)f(Hv t) .

Pr{De(H)} < NH) -1 Mf(t)

(2.6)

By considering all of the three effects discussed we can write

11



Blm(H, ¢+ 1)] 2 m(H,8) 8. (1 — pm) 0.

{1 ~ pe. [(1 _ m(G(H%;_}ﬁ)G(H)ﬁ) n (NLHH_l m(G(H),t)f(G(ZIWJJ)T,g)—m(@f(H,t) )]

(2.7
The above equation provides a theoxetical explanation for the schema propagation
during a GP search. Considering the formulation, it can be claimed that a schema H

with above average fitness and short defining length will tend to survive better.

2.3 Research on GP

The idea of inducing computer programs using evolutionary techniques is not new.
Even in the early days of genetic algorithms attempts have been carried out to evolve
computer programs. However, the focus was more on production languages, rather
then traditional computer languages [37]. The research carried out by [17, 9, 19]
are the initial attempts in the area. John Koza [32] is the first researcher who has
been able to come up with a convenient method to evolve computer programs. The
technique proposed by Koza was named as Genetic Programming.

The technique have been successfully applied to a variety of real world domains.
Prediction, classification, image and signal processing, optimization, financial trading,
robots and autonomous agents, artificial life, neural networks and art seem to be
the main areas where genetic programming applications draw attention [37]. For
instance, [23] uses GP on protein geometry problems. A successful application of the
method on optical character recognition is presented in [2]. [57] extracts objects from
noisy pictures with the help of GP. The standard metrics are extracted by using the
image processing techniques and then a genetic program is used to find out further
details. [35] proposes a method to combine hand-codiag and genetic programming to
create control code for modular robots. It is possible to encounter even some artistic
applications of the method. [L0] uses genetic programming to create virtual reality
environment. The genetic programs are used to produce sounds and three dimensjonal
shapes. Certainly these are presented to a user and a manual fitness function is used
for the evolution process.

The main concern of the researchers mentioned above is the application of the GP

method. Certainly research on GP techniques and theory also exists in the area. In
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section 2.2 a summary of the research on GP theory is presented. The research on
GP techniques is mostly based on the critical decision points that would effect the
GP search. Deciding on the breeding policy, choosing a suitable fitness function and
the usage of genetic operations are such critical points in solving a problem with GP.
Thus, it is possible to encounter intensive research for proposing different breeding
policies, fitness functions and new genetic operations. Also a group of researchers
have focussed on the syntax of GP since representation is an important phenomena
for all evolutionary methods. This has resulted obtaining different variations of the
standard GP method like Pedestrian GP [5], Strongly Typed GP [40], Stack Based
GP [30] and Machine Code GP [42].

Note that abstraction is an important phenomena for solving complex problems.
However, standard GP has no mechanism to support data abstraction for the control
of growing complexity and to facilitate code reuse. Hence research on the notion of
abstraction exists in the area. For instance [3] and [53] focussed on module acquisition
during the GP search. The aim is to convert beneficial building blocks into modules
so that the complexity of the evolving programs would be under control. However,
the most notable work on abstraction in GP is certainly the Automatically Defined
Functions(ADFs) of John Koza [32]. ADFs are functions which can be called by the
evolved genetic programs. The recombination operations rearrange the use of ADFs in
the main routine. ADF's can also be evolved but in order to preserve the overall format
of the program, the recombination operators are allowed to operate only within each
ADF. Hence code exchange between the ADFs and the main program is prevented.
This abstraction method has successfully been applied to many difficult problems and
the new approach has improved the performance of GP significantly.

2.4 Controlling Genetic Programming

Various techniques have been proposed in order to increase the performance of GP. But
a significant group of researchers focus on controlling and guiding the search process
in GP. Note that recombination in traditional GP is random. Therefore, researchers
have been mainly interested in controlling this operation. The aim is to perform more
intelligent recombination that would increase the performance.

The approach proposed by [25] tries to dynamically determine the appropriate type
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and ratio of the recombination operators for the problem at hand. In traditional GP,
the type of the operations and their usage ratios are predetermined. The researcher is
expected to make the suitable decision based on her personal experience. In [25], it is
tried to embed this task in the search process with an unsupervised approach. Their
method is based on tracking the average progress values of different recombination
operations during the search and adjusting the ratios of the candidate operators de-
pending on their performance. Hence appropriate operators turn out to be dominant

throughout the search process.

The method mentioned above is based on the determination of proper recombina-
tion operators. There are other researchers which directly focus on the application of
the operators. For instance [26] proposes a method called Recombinative Guidance for
GP. [26] states that traditional GP blindly combines subtrees and this can disrupt the
beneficial building blocks. It is claimed that randomly chosen crossover points ignore
the semantics of the parents. The fitness of a GP-tree is denoted as a representative
value for the semantics of the tree. The proposed method is based on calculating
the performance values for subtrees of a GP tree during evolution and then applying

recombination operators so that the subtrees with high performance are not disturbed.

[66] focuses on the automatic extraction of knowledge from the GP programming
process, too. The aim is again to increase efficiency by focusing the search. In order
to achieve this goal, a knowledge repository which is expected to guide the search
towards better solutions, is used. The knowledge repository collects code segments
from the genetic population together with some associated information like fitness,
number of occurrences, depth and so on. [66] proposes a method to calculate a single
score for each segment that would reflect its overall contribution for the current task.
The evolution proceeds by adding new code segments with high performance to thev

knowledge repository and excluding the ones which are subject to performance loss.

It is possible to find other studies where the aim is to control recombination. [63]
uses a context free grammar to control crossover and mutation and [12] proposes a
method which tries to preserve the context in which subtrees appeared in the parent

trees before the crossover operation.

Similar approaches could be found in the area of Genetic Algorithms too. In

[4, 41, 48], the focus is on extracting information from the promising solutions in order
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to generate new solutions. On the other side, [21] and [29] use new representations for
the chromosomes so that the building blocks are grouped together and the defining
length of the schemata is kept as small as possible.

2.5 Parts versus Whole

An important characteristics of the mentioned methods on controlling GP is to track
the good solutions found so far and construct a model on these examples which would
guide the rest of the search. This is a new approach where the genetic search gains
a self-referential character. The genetic search is started as usual. However, a second
meta-level module exists which observes the search process. Omnce sufficient data
is collected to construct the model, the meta-module starts supervising the search.
The importance of this approach is explicitly noted by [15]. Natural phenomena is
analyzed in relation with the notions of computability and incomputability in [15]. It is
stated that recursion, parallelism and adaptation are interesting attributes of complex
systems. An adaptive system which also receives feedback from itself is denoted as
the final level in the hierarchy of computational systems [15].

On the other side, the attempts presented are mostly based on determining the
important building blocks and preventing them to be disturbed by the recombination
operations. However, [47] states that for some functions, even if it is possible to
decompose the function into some components, the subfunctions could interact. In
such a case it becomes impossible to consider each subfunction independently, optimize
it and then obtain the optimum by combining the partial solutions. In fact this
statement points out the underlying reason why genetic approach fails for a certain
class of problems. Genetic approach too, aims to solve the problem by dividing it
into smaller components. Note that the chromosomes with higher fitness values are
chosen for recombination. Having a high fitness value would mean holding a subpart
of the solution. Different subsolutions that appear in different chromosomes of the
population are expected to combine by the recombination operations. This can be
considered as an intelligent way of implementing the “Divide and Conguer” method.
This is a very dominant approach in science for hundreds of years. However, as
stated by [47] the approach is obliged to fail for a certain class of problems. It is

impossible to consider some problems as a combination of subsolutions. It is the case
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that a subpart of the problem gains meaning only in relation with other parts of the
problem. Therefore, it becomes difficult to trace isolated building blocks that might
appear in the population. It can be claimed that the degree of the interrelationship
among the subparts would determine the success level of the genetic approach on the
problem.

For the deceptive problems, it is clear that an attempt based on determining
building blocks is not expected to increase the performance a lot. However, an analysis
of the global information of well-fit elements might give clues to represent dependencies
of subparts in a GP-tree. Hence a new approach which would increase the performance

for deceptive problems can be based on such an analysis.

2.5.1 Philosophical Base of Our Work: Prototype Theory

It is clear that a new formalization is needed for the representation of global informa-
tion. This representation problem is in fact related to a philosophical debate which
is unsolved for thousands of years. This debate is based on the relation between the

whole and its parts. The Divide and Conguer method implicitly implies that the

whole equals to the sum of its parts. However a significant amount of scientists and N
philosophers have found this statement questionable and have tried to develop dif- § @z\

ferent approaches for the formalization of the whole. Even Plato was aware of the

whole [13]. Hegel can be accepted as the first philosopher who deeply focussed on the § ' !

B
&
N
¢
P

the notion about two thousands years ago. He clearly pointed out the priority of the §

problem and tried to formalize an alternative approach. Hegel considers the relation

of the whole and the parts as a unity of contradictions. He notes that whole ca.nno%& .
exist without the parts and the parts cannot exist without the whole. According i;%h
his approach this fact forms the essence of the relation between the WthQ and the
parts. He also offers a methodology to overcome the contradiction between the parts
and the whole [58]
The problem is also noted explicitly in the following quote of famous physicist

David Bohm.

Indeed, to some extent it has always been necessary and proper for man,

in his thinking, to divide things up, if we tried to deal with the whole of

reality at once, we would be swamped. However when this mode of thought
is applied more broadly to man’s notion of himself and the whole world
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in which he lives, (i.e. in his world-view) then man ceases to regard the
resultant divisions as merely useful or convenient and begins to see and
experience himself and this world as- actually constituted of separately
existing fragments. What is needed is a relativistic theory, to give up
altogether the notion that the world is constituted of basic objects or
building blocks. Rather one has to view the world in terms of universal
flux of events and processes.

The problem is still a hot topic for today’s science. [22] criticizes the classic
approach to the problem. [22] gives examples from chemistry and biology in order
to denote that the combination of parts is not only a quantitative collection. It is
claimed that the combination would result a qualitative leap in terms of the whole.
On the other side, Waldrop [62] discusses the problem in his book on order and chaos.
A connection between mathematics and the formalization of the whole is proposed in
[62]. It is stated that the whole always equals to a good deal more than sum of its
parts and this property can be described by mathematics as a non-linear equation.

In the above paragraphs a summary of alternative approaches are presented. How-
ever it can be claimed that the proposed ideas are far away from providing a compu-
tational approach for the formalization of the whole. On the other side there is an
interesting debate in cognitive science about category formation. Although the discus-
sion is not directly related to the problem, it is helpful to give clues about the needed
formalization. The classical theory on category formation in cognitive science states
that concepts are atomistic, that is they can be broken down into smaller building
blocks. However the classical view is not shared by all of the cognitive scientists. There
are researchers claiming that concept formation is based on more complex processes
rather than simple building blocks. The new approach is called prototype theory. This
theory visualizes concepts as atomic structures and focuses on the overall structures
of them. [36]. The comparison of the classical and the new approach in cognitive
science provides a strong analogy for the decomposable and deceptive problems. The
tree representation used holds different sub-solutions and how they are connected to
each other. The representation used can help to solve certain amount of problems.
However, when the interaction between different sub-solutions of a problem is high,
the genetic approach fails together with the classical theory of concept formation.

This new approach which visualizes concepts as atomic structures has provided us

the idea of mapping the chromosomes to single points in a n-dimensional space. It is
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this mapping which reflects what is considered as global to a tree. Our new approach

has been based on this vector representation.

2.6 Decision Tree Learning by C4.5

Decision tree learning forms the core of the meta-level module mentioned in Chapter
1. The decision tree generator C4.5 have been used in this module. Therefore
an overview of decision tree learning and some implementation details on C4.5 are

presented in this section.

High

No Yes Yes No

Figure 2.3: En example decision tree.

ID3 and C4.5 are algorithms introduced by Quinlan [52]. ID3 is the original
algorithm proposed for the induction of decision trees. C4.5 proposes a number of ex-
tensions on this original algorithm. Decision tree learning can be defined as a method
for approximating discrete-valued target functions where the function is represented
in the form of a decision tree. Each node in the tree performs a test on a certain at-
tribute. Each branch of a node corresponds to a possible value of the attribute. Given
a decision tree, a new instance can be classified by starting at the root and traversing
the tree depending on the attribute values of the instance until a leaf node is reached.
In Figure 2.3 an example decision tree is presented. The decision tree represents a
function which decides whether to eat in a restaurant or not. The decision is based
on three attributes; food, price and service.

The training data needed to induce a decision tree would consist of records which
have the same structure. Each record would consist of a number of attribute-value
pairs. One of the attributes denotes the class of the record. In Table 2.1 example
records which can be used for the induction of the “Eat Decision Tree” are given.

Note that the first three columns in the table are reserved for the attribute values and
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Table 2.1: Example records for restaurant training data.

Food | Service | Price | Eat
Good Bad High | No
Bad Good Low No
Bad Bad High | No
Normal | Good Low | Yes
Normal Bad High | No :
Normal Bad Low No
Normal | Good High | Yes
Good Bad Low | Yes

the last column denotes the class of each record.

The basic algorithm of ID3 is given below [39].

I D3(Ezamples, Target_Attribute, Attributes)

e Create a root node for the tree.

If all Ezamples are positive, return the single node with label=+

e If all Exzamples are negative, return the single node with label=-

If Attributes is empty, return the single node with label= most common value

of Target_Attribute in Ezamples.

Otherwise begin

— A + the attribute from A#tribuies that best classifies Fxzamples.

— The decision attribute for Root < A
— For possible value, v; of A,
# Add a new tree branch below Root which would test if A = v;.
» Let Ezamplesy; be the subset of Examples that have value v; for A.

» If Ezamples,,i is empty, then add a new branch below this node with label =most common value of

Target-Attribute in Examples.
% Else below this new branch add the subtree ID3(Ezamples, Target.Atiribute, Attributes — A)

e Return Root.

In the presented algorithm Tartget_Attribute is the atiribute which denotes the
class of the record. Certainly Fzamples is the training set and Attributes is the set of
attributes. The core part of the above algorithm is the determination of the attribute
that best classifies the examples. The process is based on a statistical property named

information gaein. This property denotes how well an attribute separates the training

19



examples according to their target class. The definition of information gain is based
on the notion of entropy. Informally entropy can be considered as the unpredictability
of a stochastic experiment.

Let S be the set of training examples. If the target atiribute can take c¢ different
values, then this attribute would divide S into ¢ different subsets. The entropy of S

related to the mentioned classification is defined as

C

Entropy(S) = ) _ —pilog, p; (2.8)

i=1
In Equation 2.8 p; is the ratio of the elements in S belonging to class 7 to | S |.
The entropy of S would denote the minimum number of bits of information needed
to encode the classification of an arbitrary member of S. Having the definition of

entropy, the information gain of an attribute A based on § is defined as

Gain(S, A) = Entropy(S) — Z '?lEntropy(S,,) (2.9)
v€Values(A) I l

In Equation 2.9 Values(A) is the set of all possible values for attribute A and S, is
the set of elements which have value v for attribute A. The second term in the equation
is the expected entropy after S is partitioned using attribute A. Therefore Gain(S, A)
is the expected reduction in entropy when the value of A is known. In other words
Gain(S, A) is the amount of information obtained about the target function value,
when the value of attribute A is known [39].

To illustrate the application of the algorithm, consider the training data presented
in Table 2.1. Note that the records have three different attributes; Service, Price, Food.
The first step would be to determine which of these three attributes would classify
the training set best. Hence the Gain value for each attribute has to be calculated.
Note that the training set S consists of 8 records three of which belong to the positive
class and five to the negative. According to Equation 2.8 the entropy of S would be

Entropy(S) = (——g log, g) + (—g log, g) =0.53 +0.42 =0.95 (2.10)

Now lets consider the information gain of Food attribute. Note that this attribute
has the value Good twice, Bad twice and Normal four times. Hence | Sgooq |= 2,

| SBeg |= 2 and | Snormat |= 4. Note that when Food is Good or Normal half of
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the examples belong to the positive class and the other half to the negative and when
Food is Bad all of the examples are from the negative class. Hence using Equation

2.9 the information gain of Food attribute would be

Gain(S, Food) = 0.95—

2 1 1 1 1 2 4 1 1 1 1

2(-= = —Zlog, = Z(=1logo D+ = { (== 1og, = —Zlog, =

8(( 210g22)+( 3 °g22))+3( g2 )+8(( 5 og22)+( 5 0g22)>
Good Bod Na;;nal

=0.95-025—-0-0.5=0.2
(2.11)

It is possible to determine the information gain for the attributes Service and
Price using the same procedure and the results turn out to be Gain(S, Service) = 0.16
and Gain(S, Price) = 0.05. Certainly the attribute Food is the one to be chosen as
the root of the decision tree presented in Figure 2.3. Note that all of the records
with attribute Food = Bad belong to the negative class. Hence it is not necessary to
carry out further testing on this branch connected to the root. When Food is Good
or Normal, still it is not possible to decide on the class of the record. Therefore
new decision nodes has to be added based on the information gain of the attributes
Service and Price for the set of records having Food = Good and Food = Normal
this time. After the necessary calculations it turns out to be the case that Price is
more informative when Food = Good and Service is more informative when Food =
Normal. Hence two new decision nodes are added under Good and Normal branches
of the root node in Figure 2.3.

In the above paragraphs the basic definitions of the ID3 algorithm are presented.
C4.5 introduces the following extensions on the original ID3 algorithm.

e Training sets that have elements with unknown attribute values can be used

while building a decision tree.

e Records that have unknown attribute values can be classified. Certainly the

result is presented as a set of possibilities with corresponding probabilities.

o Attributes with continues ranges can be used.
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CHAPTER 3

CONTROLLING GENETIC PROGRAMMING BASED
ON THE GLOBAL INFORMATION OF
CHROMOSOMES

The focus of this thesis is to propose a mechanism to control the search process
during a GP run. It is possible to activate such a control mechanism at different
stages of the search. Various random processes take place throughout the GP run.
For instance, an initial random population is created at the beginning of the search.
This can be considered as the first stage where a control mechanism can come into
play. The randomness of this process aims to achieve a good distribution for the
initial chromosomes. On the other hand, starting the search at some certain location
of the space could be advantageous in terms of reaching to a solution. However, it
is not always possible to propose assumptions about the space to be explored before
the search starts. Using a random method can be considered to be the most eligible
approach for the creation of the initial population unless domain specific knowledge

is used for the process.

Genetic operations like crossover and mutation are other processes where random
choices are carried out. The crossover and mutation points are randomly chosen in
traditional GP. Also, mutation introduces random changes in some randomly selected
part of the chromosome. The important difference between the characteristics of the
two operations is based on their affect on the chromosome. Note that mutation is the

operator that transfers the chromosomes to different parts of the search spac€ in a
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random manner. This is a critical operation which enables the search process to es-
cape from local minima. Hence, it becomes possible to proceed with the exploration of
other parts of the space. It can be claimed that randomness in mutation is a necessary
aspect for accomplishing the considered mission. Qualitatively speaking, GP search
is crossover driven. Mutation is only serving to escape local minima traps. On the
other hand, crossover is the operation that is used for the exploitation of the search
space. It is aimed to obtain fitter elements by exchanging the genetic material in dif-
ferent chromosomes. Therefore it is meaningful to attempt controlling this operation.
Aiming to perform more intelligent crossover operations, which would keep the search
away from low-fit elements, can enhance the performance of the process. Therefore,
crossover is selected as the operation that the aimed control mechanism would focus

on.

3.1 Extracting the Global Information

3.1.1 General Framework

Figure 3.1: The dual structure proposed.

The method that will be used for the control of the crossover operation is based
on the global information of the chromosomes. In order to process this information,
we have designed a new module called Control Module. Figure 3.1 displays the dual
structure of our system. The genetic engine which can be considered as the base
structure, performs the standard genetic search. The control module as a super struc-
ture, keeps an eye on the search carried out by the genetic engine. It focuses on the
global information of the chromosomes and performs a meta-level learning at certain

periods to determine what it is to be good globally. Once the first learning process has
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taken place, the control module starts sending feedback to the genetic engine about
the consequences of possible crossover operations. Then, the genetic engine chooses

the most appropriate crossover points by using the feedback it receives.

As mentioned in the previous chapter, vectors that would be obtained throughout
a mapping process have been chosen as the new representation for this scheme. The
mapping process would determine what is considered as global to a tree. It is con-
sidered that the frequency of the elements used and the knowledge of how they are
distributed in the chromosome might contribute to the global picture of the structure
at hand. It can be claimed that these two forms of information are quite critical in
terms of forming the global solution. What is more, the traditional GP is not capable
of analyzing such information. The frequency information is important since using
an element more or less than a certain number of times might be critical in terms
of building the global solution. Using this information during the mapping process
provides a mechanism to trace such situations. The position of the elements on the
tree is an another critical factor in terms of the solution. The contribution of an ele-
ment in the tree might depend on the distribution of the other elements. So, it can be
claimed that by using these two forms of information it becomes possible to analyze

the dependencies that might exist in different parts of the solution.

In order to comprehend why such a mapping process is used, it is important to
focus on the underlying characteristics of the genetic search. Note that genetic search
is based on the idea of stepping from one structure to another that is similar to
the previous one by modifying a subpart of the chromosome throughout a genetic
operation. Crossover is the critical operation that carries out this exploitation. Fitter
(as well as less fit) chromosomes are expected to appear as an output of this operation.
Among these new borns, the GP process will favor fitter elements. However, in order
to achieve an efficient exploitation, the search space should be continuous. That is
to say similar chromosomes in terms of shape and size should have fitness values
mostly close to each other. In such a case, it becomes easier to proceed towards better
solutions throughout the crossover operation. However, for the deceptive problems
the picture is quite different. Note that the interdependency among the subparts of
a chromosome is the most important aspect of these problems. This property makes

the fitness of recombined chromosomes fragile during crossover. A small change on
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the chromosome might be hazardous or beneficial in terms of the global dependencies
that should exist in the chromosome. Hence, the fitness value can change dramatically
during recombination. If we could have used a function to denote the similarity
of chromosomes, we could observe the following situation for the majority of the

chromosomes in the search space.

Structually Similar(Cy, Cs) #= Fitness_Alike(Ci, Cs), (3.1)

where C; and Cj are two chromosomes. Structually_Similar is a boolean function
that would determine if two given chromosomes are similar in terms of shape and
size. Fitness_Alike is a boolean function that would check if the fitnesses of two
chromosomes are alike or not. With the increasing number of chromosomes, that does
not preserve the mentioned regularity, it becomes more difficult to obtain an efficient
genetic search. On the other side, even for the deceptive problems, still some similar
chromosomes would have a regularity in terms of their fitness values, too. However, the
similarity in terms of shape and size is not the sufficient condition for such a regularity
in the deceptive domain. Hence, there should be other aspects to be considered in
order to achieve the alikeness for the fitness values. The situation can be described as

follows

Structually _Similar(Cy, C2) A 9(C1, Cs) = Fitness_Alike(Ci, Ca). (3.2)

In this implication ¥(Ci, Cs) is the function that denotes the missing aspects,
which were not taken into consideration by the standard procedure. The main proposal
of this thesis is that an approximation for fhese extra aspects can be formulated by
focusing on the global structure of the chromosomes. The needed information is
extracted from the chromosomes by a mapping process from the set of chromosomes
to a set of vectors.

In general, this mapping can be defined as

fiC F, (3.3)

where C is the set of chromosomes and F = X1 @ %,Q®...8X,. Here, X; € {Z,Q, R, &},

where Z is the set of integers, Q is the set of rational numbers, R is the set of real
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numbers and &; is an ordered set of features.
Then, by using a learning algorithm, the aim is to induce a boolean function ¢

which would perform the following mapping.

¢ : F v {T'rue, False}. (3.4)

The learning algorithm would use a training set consisting of elements in 7 and
the induced function ¢ would divide the space into two parts. The points having the
value T'rue would correspond to chromosomes with high fitness values and the ones

with value False to low fitness elements. Hence we can write

$(C1,Co) £ [p(F(C)) £ 0(£(C2))] (35)

where 1 is the boolean function in Formula 3.2. The above formula denotes that if
the points corresponding to C; and Cy are in the same region of F according to the
induced function , then we can conclude that the other necessary condition needed
to achieve the fitness alikeness is satisfied. This is the general framework which can
be used to increase the performance of the genetic search in a deceptive domain.

The critical decision about the formalization is the choice of the mapping function
f. Different alternatives would exist depending on the structure of the chromosomes
used or the feature set aimed to be extracted throughout the process.

Note that the chromosomes of GP are structured-trees. The mapping function
to be proposed in this domain should focus on this structure. The mapping process
described at the beginning of this section, focuses on two different characteristics that
implicitly exists in the GP chromosomes. These are frequency of the elements used and
their position in the chromosome. Hence, the transformation enables us to consider
a different kind of similarity which we call the (statistical-spatial) SS_Similarity. In
this domain, the SS_Similarity of chromosomes is considered to be the function
mentioned in implication 3.2. For the GP domain of interest, the claim of the thesis

turns out to be

Structually Similar(Ci, Ca) A 88 _Similar(Ci, Cy) => Fitness_Alike(C1, Cs).
(3.6)
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By this implication, it is claimed that, for the deceptive problems, if the chromo-
somes are similar in terms of their statistical and spatial characteristics in addition
to their shapes and sizes, than it is possible to expect an alikeness between their fitness
values too. Note that crossover operation itself takes care of Structually Similar(Cy, Ca)
(based on the size and shape of a chromosome). So, an extra testing mechanism is
needed to clarify if the SS_Similarity is destroyed or not during the genetic process.
The mapping process used to extract the statistical and spatial characteristics of the
chromosomes is defined in the following paragraphs.

The chromosomes of GP are structured trees which can be defined as a tuple
T(V,&) where V is a set of vertices and £ is a set of edges with some special constraints.

These constraints are
i) Any two vertices in 7 are connected by a unique simple path.
ii) 7 is acyclic.

We propose the following choice for f and will call this choice as f .

F:TW,E - Q. - (3.7)

Note that the vector space F defined in Formula 3.3 has been chosen as Q™ for

this study. The dimension of this space denoted by = is set as

n =| Terminal _Set | + | Function_Set |, (3.8)

where Terminal_Set and Function_Set are the two sets consisting of the terminal
and non-terminal elements used for the GP search. Given a tree T'(V, E), where V is

the set of vertices and F is the set of edges, if

[f@w,B)| == (3.9)

i
where 1 = 1..n and z; € @, then there is a terminal or a function element in tree
T which would have the frequency and position information denoted by z;. The
integer part of z; specifies how many times this element is used in the tree, namely

the frequency of that element. This can be formally expressed as
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3S[S CV AVE,Vz[(k € SAz € S) = (Label(k) = Label(2))]] A [|S| = |z:i]]],
(3.10)
The function Label is assumed to return the label (or data) of a vertex. On the other
hand, the fractional part of z; holds the position information of the element. This is
defined to be the sum of the depth values of all occurrences of the element in the tree.
This depth summation is transformed into a fractional value by using a multiplicative

constant. This can be formally expressed as

v [U C EAVZ3k|z € UMk € SAz€ Path(k, Root(T))] A [I Ul= (—x%ﬁﬂ]] ,
(3.11)
where S is the set of vertices specified in Formula 3.10. Also, ¢ is the constant used
to transform the depth summation into a fractional value. The function Path returns
the set of edges which form the path between the given two vertices.
The presented f has a simple formalization about the global organization of the
tree and does not have a heavy computational load. The following can be mentioned

about f .
e Each terminal and function element is mapped to a base vector.

e By using a bottom up construction, it is possible to obtain a single vector for

the whole GP-tree.

A leaf node is only mapped to its base vector while the vector for an internal node
is obtained by adding the vectors of its children plus the base vector corresponding to
it. By this procedure, the frequency information of each element is hold in a different
component of the formed vector, as of the form of an integer. The depth information
of the same element is stored as the fractional value of that rational.

Mathematically speaking, let P(C),Cs,...,Cr) be a subpart of a chromosome,
where P is an internal node and C; is a child node connected to this parent. The

vector that would correspond to P can be obtained using the following formula.

k
Ve =Va,,[1+ ¢ - depth(P)] + > Ve, (3.12)

i=1
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where Vg, is the vector corresponding to child C; and ¢y is the constant used to
transform the depth summation into a fractional value. Here, ¢g << 1 and the

constant has to be chosen such that

e - l)/éz%%( ( Z depth(node) | | <1, (3.13)
Vnode3 Label (node)=l

where TF = Terminal_Set U Function_Set. The inequality states that the multipli-
cation of ¢, with the maximum possible depth summation should stay below 1 so that

the position information would not interfere with the frequency information.
For instance, consider the function and terminal sets; F = {+,—,%,/} and T =
{z}. The base vectors would be:

e V. =1[0,0,0,0,1]

e V. =[0,0,0,1,0]

Vv, =[0,0,1,0,0]
« V. =[0,1,0,0,0].
o V; =[1,0,0,0,0].

Note that the dimension of the vectors is determined as the total number of func-

tion and terminal elements.

Figure 3.2: A sample chromosome.

For the tree in Figure 3.2, the vector construction mechanism will be as follows.
The base vectors are as specified above. The three different occurrences of the terminal
element X are labeled as X7, X5 and X3. Since X7 and X, have the same depth value,
their vectors will be the same. This vector would be [1.02,0,0,0,0]. On the other
side, the vector corresponding to X3 will be [1.01,0,0,0,0] due to the depth value of
1. According to Equation 3.12, the vector of '+’ will be [2.04,0,0,0,1.01]. Finally,
the vector corresponding to /*’ which would be the vector of the whole tree, can be
obtained by using the vectors of '+’ and X3 this time. Hence, V, = [3.05,1,0,0,1.01).

Note that, each dimension of this vector provides information about the usage of a
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terminal or a function element. For instance the first dimension is reserved for the
terminal element X. The value in this dimension denotes that the terminal element
occurs three times and the sum of the depths of these three different occurrences is
five. On the other side, the second dimension denotes that '+’ operation is only used
for once as the root of the tree.

Note that the constant value that is used to transform the depth value into a
fractional one is 0.01. However, if the sum of the depths exceeds 100, depth and
frequency information will interfere with each other. If this is possible, a smaller
constant has to be used. At least, it should be guaranteed that the number of such ill
formed vectors are kept small enough that the learning process does not get affected.

Also note that different chromosomes can be mapped to the same vector. However,
this is not contradictory with our assumption since different elements in the base

structure could be similar in terms of the super structure.

3.1.2 Implementation of the idea

The interaction between the genetic engine and the control module is as follows. For
each chromosome in the population, the corresponding vector is formed and sent to the
control module together with its fitness value. The control module collects the vectors
and fitness values for a certain period of generations, which we call the learning period.
Then the average and the standard deviation of the fitness values are calculated.

The control module forms the training set using the elements with fitness values
deviating from the average more than the standard deviation. The ones with positive
deviation are marked as positive examples and the others as negative. The “C4.5,
Decision Tree Generator” is used to generate the abstraction over the training set.
Then for each crossover operation to be performed, the genetic engine sends to the
control module three different alternative crossover points. The control module pre-
dicts if the alternative offsprings will be in the positive or the negative class by using
the decision tree generated by C4.5. The best alternative is chosen by the genetic en-
gine and the learning process is repeated periodically. Note that the using specifically
three alternatives is an empirical choice.

Using a certain percentage of the best and the worst elements could be another

method to form the training set. However, it is observed that using standard deviation
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Figure 3.3: Interaction between the Control Module and the Genetic search.

provides a flexibility to the control module. Sometimes it is possible for the control
module to guide the genetic search to a local minimum. In such a case, the standard
deviation decreases a lot and no positive examples could be found for the training
set. Since nothing could be learned, crossover becomes random again. This makes it
more probable to escape from the local minima since recombination is not controlled.
However, determining a percentage of the examples as positive always, looks like

insisting on the mistake that the control module has made.
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CHAPTER 4

TESTBED,: CONTEXT FREE GRAMMAR
INDUCTION

Grammars are necessary and useful tools for many applications. Therefore there has

been a big interest in inducing classes of grammars in the area of machine learning.

Various attempts have been carried out for automatically inferring different gram-
mar classes. A significant amount of research has been devoted to the induction of
context free grammars. CFGs can be used for processing natural languages, too. Au-
tomatic induction of a natural language grammar by only using example sentences

draws attention.

Although statistical approaches form the main stream among the researchers [7,
6, 8], several attempts have been carried out to attack the problem with evolutionary

techniques, too.

For instance, [55] proposes a method based on genetic algorithms. The authors
claim that although statistical methods offer a possible solution to the problem, draw-
backs exist. It is quite difficult to escape from problems like the “zero-frequency” by
using a statistical approach. They propose their evolutionary approach where each
chromosome in the population represents a CFG. The fitness is measured by the abil-
ity of the grammar to parse a set of sample strings. The crossover operation used for
the process only combines subsets of two different grammars. Hence, the operation
does not create new rules, but just makes new combinations of the existing rules dis-

tributed to different chromosomes. On the other side mutation is allowed to modify
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any symbol in the grammar. Hence, it is the operation used to introduce new rules
that may have not appeared in earlier generations. The proposed approach is able to
infer simple natural language grammars over a small set of training examples. The
example grammar given as an output of the experiments covers simple sentences con-
sisting of a noun and a verb phrase. The noun phrase contains a single determiner and
a set of nouns. The verb phrase contains a single verb and the noun phrase recursively. -

The work proposed by [38] is very similar to [55]. However, it is stressed that
straight forward application of genetic algorithms is not very effective at grammar
induction. Thus modifications are proposed to increase the success of the method.
An example to the proposed modifications is to enlarge the definition of mutation.
The newly proposed operation both mixes the sub-components of a grammar and

modifies certain symbols.

4.1 Genetic Programming for CFG induction

GP is appropriate for solving symbolic tasks. Induction of context-free grammars can
be visualized as a symbolic task too. The left-hand side of a rewrite rule in a grammar
can be treated as a function which is composed of the nght-hand side elements of the
same rule. Thus, it is possible to represent context-free grammars as structured trees.
The problem can be formulated as a search problem among the possible tree structures
that can be formed using a set of terminal and nonterminal symbols.

Different normal forms have been proposed for context-free grammars. A normal
form can be described as a set of conditions that the rules of the grammar must satisfy
[56]. Chomsky Normal Form provides a simple representation for the grammars and
it is possible to express any CFG in this form [56]. Therefore it has been decided to

use this form for the evolution process.
A CFG is accepted to be in Chomsky Normal Form if the rules of the grammar

are in one of the following forms.
(i) A- BC
() A—a
(i) S— A

The S symbol in item (i4¢) is the start symbol. Note that the evolved grammar

rules can have at most two symbols on the right-hand side due to the length constraint
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in Chomsky Normal form. The first form denoted in item (3) points out that if
there are two elements on the right-hand side of a rule, then both of them should
be non-terminals. However, this form could easily be disrupted by recombination.
Terminal elements can appear on the right-hand side after crossover or mutation.
Two alternatives exist to tackle with the problem. Either special constraints should
be defined on the recombination process to keep the offsprings in this form or the
definition can be loosened for the genetic search. The second alternative is chosen and
it has been decided not to use the form directly. Terminal elements are allowed to
appear in the first form too. Hence, no constraint has been used for recombination,
but the search is carried out in a larger space. Note that the search space still includes

grammars in Chomsky normal form.

Also any evolved grammar can be converted to Chomsky Normal Form with a
slight modification. For instance assume that a grammar has a rule X — ¢,Y which
disturbs the first form. The grammar can be converted to Chomsky Normal Form
by replacing the rule with two new rules; X — Z,Y and Z — o where Z is a new

nonterminal that does not exist in the grammar.

The problem can be considered as a highly deceptive one. It is possible to divide
a grammar into subparts like noun phrase (INP), verb phrase (V P) or prepositional
phrase (PP). However, these subparts do not have clear borders. Overlapping exists
due to the fact that (NP) is a part of (VP) and (PP). On the other side the success
of a candidate grammar is fragile during the recombination process. Even a single
modification on a well-fit element may be hazardous. For instance every sentence has
a single verb. This makes the usage of the symbol V' very critical. A modification
on the configuration of this element might heavily effect the fitness of the offspring.
Such factors and the interdependency among the subparts of a grammar makes the
search space discontinuous. Very similar grammars might have totally different fitness
values. Hence, the genetic search is expected to have difficulties about a satisfactory

convergence.

Natural language sentences have been used in order to form the training set for
the CFG-induction problem. The training set consists of 21 positive examples and 17
negative examples. The sentences formalize a subset of English including sentences

consisting of structures like NP,V P and PP. The Noun phrase (N P) is quite simple
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and consists of a determiner (D) followed by a noun (V) or compound noun. On the
other hand, the verb phrase (V P) can be intransitive, transitive or ditransitive and
the prepositional phrase (PP) could be attached to VP or NP. The prepositional
phrase consists of a preposition (P) followed by a NP. “DNNVPDN.”, “DNV.”
and “DNNV™ are examples from the positive set and “VN.” , “DV N.” from the
negative set. The aim is to induce a CFG that can parse the positive examples and
reject the negative ones. Each chromosome in the population is a candidate grammar.
Note that crossover would exchange subtrees of selected parents and mutation would
replace a subpart of a chromosome with a randomly created tree. Hence, both of the
operations can create new rules. What is more crossover can also exchange rules of
existing grammars.

An example grammar that would cover the positive and the negative set is given

below. Note that this is a simple grammar which covers only a small subset of English.
e« §S— NPVP
e« NP NP,PP
.NP%QN
e N N,N
e NN
e VP VP PP

e VPV

VP V,NP
e VP>V, NP NP

e PP P,NP

4.1.1 Shift-Reduce Parsing

In order to determine if the sentences in the training set are derivable from the rules of
an evolved grammar, a shift-reduce parser has been used. This is a bottom-up parser
which works in a depth-first manner. The parses uses a stack for holding the grammar
symbols and an input buffer for the string to be parsed. Initially the stack is empty
and the parser operates by shifting zero or more symbols onto the stack until a string

of grammar symbols that represents the expansion of a non-terminal appears on the
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stack. Then the string on the stack is reduced to the left side of the appropriate rule
of the grammar. The cycle is repeated by the parser until an error is detected or until

the stack contains the start symbol and the input is empty.

The algorithm adopted from [56] is given below.

o Input: A context-free grammar G = (V, ., P, S), a string p € >." and a
stack S

e The stack elements are triples [u,i,v] where w = wuv is the sentential
form that was reduced and i is the index of the rule that is used for the
reduction process. Hence, u is the substring whose suffixes are compared

with the right-hand side of the rules.
1 PUSH([A,0,p],5)
2 Repeat

2.1 [u,i,v] = POP(S)

2.2 dead-end=false
2.3 repeat

Find the rule with number j, (j > ¢) that satisfies
i) A > w with u =qw and A # S or
fi)Sswwithu=wandzv =X
2.3.1 If there is such a J
PUSH([u,],v],8), v = q4, i=0
2.3.2 If there is no such j and v # A
shift{u,v),i=0
2.3.3 If there is no such j and v = X then dead —end =0

until (v = S) or dead — end

until (u = S) or EMPTY (S)

3 If EMPTY(S) then reject else accept

In the above algorithm, note that the condition that detects dead—ends is specified
in step 2.3.3. Here the condition that string v is empty denotes that all reductions

have been examined and the parser is forced to backtrack.
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4.2 Experimental Results

Different alternatives exist for the formulation of fitness function. One possible way to
overcome the difficulty of deception is focusing on the formulation of a qualified fitness
function. However, such attempts usually result in providing domain knowledge for
the problem at hand. Note that our focus has been proposing a domain independent
approach by using a control module. Therefore, it has been decided to use a simple,
standard fitness function for the problem. The fitness function used can be defined as
follows. For grammar G, if S is the set of sentences consisting of the positive examples
that G cannot parse and the negative examples that G parses, then the fitness of G

is:

F(G)= ) SENTENCELENGTH(S;) (4.1)
SieS
So the aim is to minimize the fitness function. For the test data the worst fitness

for a grammar could be 243 which is the sum of the length of all sentences both in
the positive and the negative set. And the best fitness is certainly zero which can be
achieved when a grammar parses all of the examples in the positive set and rejects all
of the negative set.

The terminal and function sets are T = {D,N,V, P} and F = {X1, X3, ..., X10}.
Note that ten non-terminal elements are used for the search process. This number
is more than the minimum non-terminal elements needed to construct the grammar.
Cousidering the restriction specified in the previous section, each element of the func-
tion set could have one or two arguments.

The mapping process described in Chapter 3 is used to form the vectors for the
control module. Since the total number of elements in the function and the terminal
set is 14, the vectors will be formed in Q.

The genetic parameters are fixed for all of the experiments carried out. These

parameters are listed below.

» Population size = 100
e Crossover at function point fraction = 0.1
e Crossover at any point fraction = 0.7

e Reproduction fraction = 0.1
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e Mutation fraction = 0.1
o Number of Generations = 5000

e Selection Method: Fitness Proportional.

Bt Finess Valoo
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Generation Numbar

Figure 4.1: Performance of traditional GP on CFG-induction problem. Average of 20
runs are presented.

In Figure 4.1 the performance of traditional GP on CFG-induction problem is
presented. Note that a randomly created grammar can have a fitness value around
160. This is the average best fitness value observed in the initial random population.
It is not possible to claim that the performance of GP is satisfactory in the proceeding
generations. The decrease in the best fitness value is lost very quickly. The best fitness
value that can be obtained at the end of the search is around 90. Note that the worse
fitness value is 243. Therefore the best grammar found at the end of the search would
still fail on more than one third of the training set. This is quite a unsatisfactory
result. It is difficult to claim that the solution might be found if the limit on the
maximum number of generations is increased. The fitness curve already flattens in
the first 5000 generations. It is not probable to encounter a big leap in the fitness
values when such a situation occurs.

When the chromosomes that appear throughout the search are analyzed, it is ob-
served that they bloat so quickly. This is a situation observed frequently for deceptive
problems. When the search quickly converges to a local minima, it becomes difficult to
obtain better chromosomes throughout the recombination process. On the other side,

if the success of the well-fit elements in the population is fragile against recombination,
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this strange but rational process starts. Chromosomes start picking up unfunctional
code and get larger and larger [43]. This unfunctional parts do not have an affect
on the fitness of the chromosome. However, if a chromosome can get large enough
with such code, it can protect its functional parts to be attacked and damaged by the
recombination process. Hence, the aim of survival is achieved. Obviously once such a

situation occurs it becomes almost impossible to reach to a solution afterwards.

N 2 2 1 - " : . .
o S0 1000 1800 2000 2800 3000 3JIS00 4000 4500 S000
Geaneration Numbor

Figure 4.2: Comparison of controlled search and basic GP for the CFG-induction
problem. The dashed lines denote the performance of controlled search. Learning
period is 200.

Certainly experiments are carried out using the control module presented in the
previous chapter. Note that the learning period is an important parameter for our
approach. For the first trial the learning period has been set as 30. Both the controlled
search and the straightforward application of GP have been run using eight different
random seeds. Surprisingly it has been observed that the controlled search performed
worse than the straightforward application. It seems that the information sent by
the control module to the genetic engine was misleading and directed the search to
a local minima resulting a performance worse than random crossover. An increase
in the performance had been oﬁtained with simpler data and with smaller number of
function elements. The main difference with this initial attempt is the total number
of function and terminal elements used. This total number is 14 for this new setup.
Therefore it is thought that the data collected with the learning period of 30 might
be quite low for making a reasonable abstraction over vectors with this dimension.

On the other side, we have observed that the decision trees induced for this case are
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simple and contain less information. Therefore it has been decided to increase the

learning period.
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Figure 4.3: Comparison of controlled search and basic GP for the CFG-induction
problem. The dashed lines denote the performance of controlled search. Learning
period is 500.

Figure 4.2 presents the comparison with basic GP when the learning period is
increased to 200. Again the results denote the average of eight runs with different
random seeds. The performance of the controlled search clearly increased, compared
to the trial with a learning period of 30. However, still it is not the case that controlled
search can outperform the straightforward application.

However, the increase in the performance parallel to the increase in the learning
period is encouraging. Therefore another trial has been been carried out with a
learning period of 500 generations this time. Figure 4.3 presents this new trial. This
time the average of twenty different runs are used in order to increase the liability of the
performance increase obtained. As it can be seen in the figure, the desired performance
increase has been obtained. When the control module is used, at the end of the search
it is possible to obtain fitness values close to 80 on the average. Still this is a result
far away from the global optimum. However, the increase in the performance denotes
that the control module is capable of providing beneficial information by focusing on

the overall configuration of the well-fit elements that appear throughout the search.
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CHAPTER 5

TESTBED,: N-PARITY PROBLEM

The N-parity problem has been selected too in order to analyze our approach. The
aim is to induce a function which takes a binary sequence of length n and returns
true if the number of ones in the sequence is even and false otherwise. The function
would consist of internal operators AND,OR, NAND and NOR. Figure 5.1 shows
the solution for the 2-parity problem. Note that each leaf on the tree is an element of

the 2-bit sequence.

Figure 5.1: Solution for the 2-parity problem.

The problem is to our interest as it is highly deceptive. [11] states that the problem
quickly becomes more difficult with increasing order. He also denotes that flipping
any bit in the sequence inverts the outcome of the parity function and notes this as
a fact to denote the hardness of the problem. In Table 5.1 the length of the smallest
solutions for different instances of IV are presented [11]. Note that the size of the
smallest solution increases proportional to N2.

The 5-parity problem has been chosen for the test cases since [11] denotes that no
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Table 5.1: Length of the shortest solutions for the N-parity problem

n |1|2|3}|4|5 |67
Length [ 3 | 7|19 {31 |55 79 | 103

solutions is found by basic GP for the 5-parity. [20] states that N = 5 represents an
upper limit for traditional GP. It is denoted that N-parity is a very }ha.rd classification
problem for GP and even a large population size of 8000 is not enough to solve the
problem for N=5.

The function and the terminal sets are F = {AND,OR,NAND,NOR} and T =
{X1, X2, X3,X4,X5}. T represents the binary input sequence of length five. The
number of possible input binary sequences is 32 for the 5-parity problem. The fitness
function simply adds a penalty of one if the induced function returns the wrong answer
for an input sequence. Hence, the fitness value may range between 0 and 32.

Again the performance of traditional GP and the controlled search are compared
on the problem. The experiments are carried out using different learning periods.
The performance of traditional GP is unsatisfactory as expected. A randomly created
chromosome can have a fitness value around 15. However, the search carried out can
not decrease this initial value below 9 on the average. GP is again far away from
reaching to a solution for the problem.

Certainly the same set of genetic parameters are used for all the trials. These
parameters are listed below. Note that the number of generations has been increased to
20000. The initial trials on the problem have been carried out using 5000 generations.
However, it is observed that the search process still has tendency to decrease the fitness
value after 5000 generations. Therefore the generation number is increased until the
fitness curve flattens. This denotes that the convergence has stabilized.

The list of genetic parameters used is as follows

Population size = 100

o Crossover at function point fraction = 0.1

Crossover at any point fraction = 0.7

Reproduction fraction = 0.1

Mutation fraction = 0.1
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o Number of Generations = 20000

e Selection Method: Fitness Proportional.
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Figure 5.2: Comparison of controlled search and basic GP for the N-Parity problem.
The dashed lines denote the performance of controlled search. Learning period is 200.
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Figure 5.3: Comparison of controlled search and basic GP for the N-Parity problem.
The dashed lines denote the performance of controlled search. Learning period is 500.

The first test case has been carried out again using a learning period of 30. Sim-
ilarly eight different runs have been carried out with various random seeds both for
basic and controlied GP. The results obtained were consistent with the CFG-induction
problem. Again the controlled search exhibited a worse performance. Considering the
total number of terminal and function set elements which is 9,0btaining a similar
performance is not surprising. Therefore the second test case has been tried with a

period of 200 generations. The results of this test case are presented in Figure 5.2.
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Again the results are consistent with the results obtained for CFG-induction. The
controlled search can compete with the straightforward application but still cannot
outperform it. A test with a learning period of 500 generations has been carried out
and the results are presented in Figure 5.3. Again the average of twenty different runs
is used for this learning period. This period is sufficient for 5-parity problem too and
the performance increase is outstanding.

Note that the output obtained is very similar to the results in CFG-induction
domain. Uﬁfortunately the control search is not capable of finding the solution. How-
ever, the performance increase in this second domain clearly points out that the control

module is capable of providing self-referential knowledge to the search process.
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CHAPTER 6

OBSERVATIONS BASED ON TESTBED, &
TESTBED,: DETERMINING THE LIMITS OF THE
APPROACH

6.1 The Learning Period

The experiments carried out denote that there is a correlation between the total
number of terminal-functional elements used and the learning period. When this
total number is large, the learning period has to be increased. This is an expected
result since the total number of elements determines the dimension of the vectors
formed. Hence, C4.5 needs more training data to make a reasonable abstraction over
larger vectors.

However, there should be an upper limit for performance increase obtained. Note
that crossover is random until the end of the first learning period. Therefore, if the
learning period is too large, the genetic search may stuck in a local minimum before
the control module comes into play. In such a case it is not possible to expect a
performance increase.

It would be difficult to formally deduce the exact correlation between the total
number of terminal-functional elements used and the learning period. However, a
rough interval might be determined experimentally for the optimum period. Certainly,
an analysis of the change in performance based on the learning period is needed.
Up to now, the performance of the controlled search is tested with three different

learning periods. The performance has consistently improved as the learning period is
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Figure 6.1: Comparison of controlled search and basic GP for the CFG-induction
problem. The dashed lines denote the performance of controlled search. Learning
period is 1000.

increased. The period is to be increased more in order to determine the upper limit.
Hence, new experiments have been carried out in both of the domains with a learning

period of 1000.
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Figure 6.2: Comparison of controlled search and basic GP for the N-Parity problem.
The dashed lines denote the performance of controlled search. Learning period is
1000.

In Figures 6.1 and 6.2 the results obtained with this new learning period are
presented. The same genetic parameters are used and again the average of twenty
different runs are presented in the figures. As seen in Figure 6.1, the performance
increase has been lost with the new learning period for the grammar induction prob-

lem. In Figure 6.2 the outcome for the N-Parity problem is presented. As seen in the
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figure, the controlled search can still outperform basic GP, however the performance
increase is smaller compared to the increase obtained with the learning period of 500.

There is a difference between the results obtained with this new learning period. In
one of the domains the performance increase has been lost totally. In the other domain,
the new learning period results in only a small decrease in the performance of the
controlled search. In fact this difference can be considered to be quite legitimate. Note
that the search carried out in CFG-induction domain continues for 5000 generations.
The new learning period 1000 forms %20 of this search process. It is very probable for
the convergence to be already close to stabilization after such a large period. Hence, it
becomes difficult for the control module to provide beneficial information to improve
the process further. The controlled search totally becomes incompetent. On the other
side, the new learning period forms only %5 of the search process for the N-parity
problem. It can be claimed that the search would still be away from stabilization after
the first 1000 generations. Therefore the controlled search is capable of providing a
performance increase. However, there is a decrease in performance compared to the
period of 500. This denotes that 1000 generations is larger than the optimum learning
period for the N-parity problem, too. It can be claimed that 500 generations is roughly

close to the optimum learning period for both of the problems. -

6.2 Real Time Comparison

The extra processing time required for the control module is a critical issue for the
proposed method. The additional cost of the module can be divided into two parts.
The first part is the cost of the learning process which is repeated periodically.
Note that the learning period is 500 generations for the successful tests. Hence,
the decision tree generator C4.5 is called once in every 500 generation. Researchers
have investigated the time complexity of C4.5. [50] denotes that C4.5 produces good
classifiers quickly. It is stated that the asymptotic time complexity of C4.5 is O(ea?),
where e is the number of training set elements and a is the number of attributes.
The given complexity is for non-numeric data sets. It is denoted that numeric data
would require repetitive sorting and hence would add a loge factor at each node of
the induced decision tree. It is also stated that empirical determinations show that

C4.5’s practical time complexity is substantially better than quadratic.
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The generation of decision trees requires an additional processing cost at every
500 generations. On the other side, there is an other extra processing cost for every
crossover operation that takes place throughout the search. Note that during crossover
operation, the control module predicts if the offsprings will be in the positive or the
negative class. This procedure includes the formation of the vectors corresponding
to the offsprings and checking if the vectors are in the positive or negative class by
using the generated decision tree. If both of the offsprings are predicted to be in the
positive class at the first attempt, crossover operation is carried out directly. However,
if the prediction is negative, then new trials are carried out with new crossover points.
Note that the number of trials is limited to be three at most. Empirical analysis of
the crossover operation denotes that the average number of trials is about 2.1 for the

CFG-induction and 1.8 for the N-Parity problem.

The process of vector formation has been defined in Chapter 3. This process is
linear in terms of the total number of nodes on a GP-tree. On the other side, the
process of predicting the class of the formed vector is linear in terms of the depth
of the decision tree used. The affect of this overhead on the total processing time is
related to the fitness function used. For problems with non-linear fitness functions,
this overhead could be negligible and the performance increase would probably be
more significant. CFG-induction problem is such an example as the fitness function

includes the procedure of parsing the training examples.

Note that both of the methods run for the same number of generations in the
previous experiments. Certainly the controlled search would in fact take more time
than traditional GP because of the the control module. Therefore new experiments are
carried out in order to compare the two methods in terms of real CPU time statistics.
The performance of traditional GP is observed when the search is allowed to also
use the extra time consumed by the control module. First, the real time statistics
of the controlled search is determined. The real time consumed by a search varies
based on the random seed used. The reason for this variation is due to the change
in average size of the chromosomes in different runs. If a chromosome is large then
certainly fitness calculation requires more time. If the sizes of the chromosomes in the
population tend to increase during a run, then the total running time of the search

increases, too. Therefore, the total running time of the controlled search for each
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Figure 6.3: Real time comparison of controlled search and basic GP for the grammar
induction problem. The dashed lines denote the performance of controlled search.
Learning period is 500. The controlled search completes 1 generation in each time
unit, whereas basic GP completes 1.04 generations on the average.

seed is determined. Then traditional GP is let to continue its search until the real
running time of the corresponding controlled search is exhausted. In these new trials,
traditional GP runs have lasted for about 5200 generations on the average, for the
CFG-induction problem. This means that the time consumed by the control module
corresponds to the time needed for the evaluation of 200 generations traditionaﬂy.
This can not be considered as an heavy cost. The situation denotes that the fitness
evaluation which is a non-linear process is dominant in the total running time for the
CFG-induction problem. The same procedure is repeated for N-parity problem, too.
Note that fitness evaluation is linear for the problem. Hence, the extra processing time
consumed by the control module should be more significant in this domain. It has
been observed that traditional GP lasts for about 28000 generations on the average
when the search is allowed to use the extra time.

In figures 6.3 and 6.4 the comparison of the obtained results on both of the domains
are presented. In this comparison, the x-axis denotes the time consumed by the search.
The time unit used in the figures is set as the total time that the controlled search needs
to complete a single generation. Obviously, traditional GP would complete more than
one generation in one unit. This is 1.04 generations in the CFG-induction domain and
1.4 generations in the N-parity domain. As seen in figure 6.3 the controlled search can
still outperform traditional GP. It is not possible for the traditional GP to converge to

the same level with the controlled search even it is allowed to use the extra processing
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Figure 6.4: Real time comparison of controlled search and basic GP for the N-Parity
problem. The dashed lines denote the performance of controlled search. Learning
period is 500. The controlled search completes 1 generation in each time unit, whereas
basic GP completes 1.4 generations on the average.

time used by the control module. On the other side, the situation is a bit different
for the N-parity problem. As seen in figure 6.4, traditional GP can converge to the
same level when the extra time is used. However, it can be claimed that, convergence

of the controlled search is still more efficient in general.

6.3 Maximum Generation Number

It is possible to consider the evolution in GP as an infinite process. However due to
practical needs, the search process has to be terminated at some point. The Termi-
nation Criterion specifies when a GP run will be stopped.

For some problems, this criterion can be defined as the satisfaction of a success
predicate. This predicate would obviously be either finding the optimum solution or
approaching to the solution more than a predetermined interval. However, it might
be impossible to define the optimal solution in some domains. Optimization problems
and model prediction using noisy data are examples for such a case. In these domains
an upper limit on the number of generations is set as the termination criterion and
the results are analyzed after GP run reaches this limit.

For some deceptive problems, it might be possible to define the global optimum.
However, the genetic search has quite a low performance in such domains and it is

impractical to let the GP run to continue its search until the solution is found. An
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upper limit has to be determined for the number of generations in this case too.
However no theoretical explanation exists which may be helpful to determine this
upper limit. Researchers empirically visualize the change of the best fitness value and
determine the upper limit based on convergence obtained throughout the search. The
search is stopped when no further significant improvement is obtained in a reasonable

period.'

Table 6.1: Performance of basic GP for CFG-induction problem in five different peri-
ods. Each period is 1000 generations.

Period # | Decrease in fitness | Percentage of the Decrease
Period 1 59.0 %36.2
Period 2 6.8 %4.2
Period 3 2.3 %1.4
Period 4 3.0 %1.8
Period 5 2.7 %1.7

The two testbed problems we have used are cases where it is possible to define the
optimum solution. In both of the domains, the GP search is far away from reaching
to the optimal solution in a practical amount of time. However, in the CFG-grammar
induction domain the maximum number of generations is set as 5000, whereas in
the N-parity domain this number is 20000. This difference depends on the empirical
observations on the best fitness change throughout different runs. In Table 6.1 the
change of the best fitness mean in five different periods of the GP search is presented
for the CFG-induction domain. Each period is 1000 generations. Hence, period 1
denotes the improvement obtained after the first 1000 generations, period 2 presents
the improvement between 1000tk and 2000tk generations and so on. The numbers in
the second column are the absolute decrease in the best fitness mean and the third
column denotes the percentage of this decrease compared to the best fitness mean
obtained in the initial random population. Note that in Table 6.1, there is a dramatic
decrease in the best fitness mean in the first period. However, after the second period
the convergence seems to have stabilized and the decrease in best fitness mean stays
below %2 in the last three periods. Similar low performance in three consecutive
periods denotes that the probability of obtaining a dramatic decrease in the following
generations would be quite low and it has been decided to use 5000 generations as the

as the upper limit in this domain.
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Table 6.2: Performance of basic GP for N-parity problem in four different periods.
Each period is 5000 generations.

Period # | Decrease in fitness | Percentage of the Decrease
Period 1 3.2 %23.4
Period 2 0.5 %3.6
Period 3 0.6 %4.4
Period 4 04 ‘ %2.9

In the N-parity domain, the maximum number of generations has been set as 5000
for the initial trials. However it has been observed that the convergence obtained
is quite low at the end of the search, compared to the CFG-induction domain, In
Table 6.2 the change in best fitness mean in four different periods are presented. Note
that each period is 5000 generations. The progress obtained in the first period is
even less than the performance in the first 1000 generations of the CFG-induction
domain. Therefore, it is decided to increase the maximum number of generations
for the N-parity problem. Three new periods of 5000 generations are added in this
domain reaching to the total number of 20000 generations. As seen in Table 6.2
the convergence obtained in the consecutive three periods is quite low compared to
the progress in the first period. Similar to the reasoning used in the CFG-induction
domain, low performance in three periods has led us to the idea of fixing the maximum

generation number as 20000 in the N-parity domain.
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CHAPTER 7

TESTBED; : DESIGN AND USAGE OF A NEW
BENCHMARK PROBLEM

The proposed approach aims to provide a mechanism to increase the performance of
GP. However, it is claimed that the method is expected to be significant for deceptive
problems. The reason underlying this claim depends on the characteristics of the
approach proposed. The control module gains experience about the regularities of the
search space and enables the GP search to keep away from the low-fit areas. Such an
experience would be meaningful when it is difficult to obtain a convergence. If the
search can quickly converge to a local or a global optima, the guidance of the control
module loses importance. The learning process that takes place in the control module
qualifies when the search process fluctuates in an discontinuous search space. Such an

uncontrolled wandering in the search space appears for deceptive problems.

In the previous chapters the method is tested on two-real world problems. Obvi-
ously obtaining performance increase in only two domains is not adequate to verify
the above claim. In order to get more insight about the contribution of the control
module, it is decided to use a tunable benchmark problem. By applying the method
on different instances of the same problem, it is aimed to verify that the significance

of the method increases as the problem is made more deceptive.
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Figure 7.1: Perfect trees of different levels.
7.1 Choosing a Benchmark Problem

Not so many benchmark problems have been proposed in the area of GP. The bench-
mark problem proposed in [51] is notable since their formalization shares some char-
acteristics of the royal road problem. Royal road problem is a commonly used bench-
mark problem for tuning the genetic parameters in GA field [27]. Their formalization
is based on the definition of “perfect tree” of some depth. For instance a level-a tree is
perfect when its root is the function a with a single child. Similarly a perfect level-b
tree’s root should be function b having two perfect level-a trees as children. Certainly
a perfect level-c three will have three perfect level-b trees connected to root ¢ and so
on. The terminal set consists of a single element z. Note that the series of functions
a,b,c,d... are defined with increasing arity. The perfect trees of levels a,b and c are

presented in Figure 7.1.

The raw fitness of a tree is defined as the score of its root. On the other side
the score of each function is calculated by adding the weighted scores of its children.
The weight is a constant larger than one (FullBonus) if a child is a perfect tree of
the appropriate level. When the child is not a perfect tree, the weight turns out to
be a constant smaller or equal to one (Penalty or Partialbonus) depending on the
child’s configuration. If the child has the correct root Partialbonus is used. However,
if the root of the child is incorrect too, Penalty is used as the weight. On the other
side, if the root itself is the correct root of a perfect tree, then the obtained score is
multiplied by CompleteBonus. It is stated that typical values that can be used are:
FullBonus = 2, PartialBonus = 1, Penalty = é-, and CompleteBonus = 2. It is
suggested tha;o perfect trees of different depths can be used as benchmark problems
for GP.
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The proposed definition is quite problematic in terms of our testing purposes. Our
main focus is to be able to control the degree of deception in the problem. Deception
usually appears as an outcome of epistasis. That is the interdependency among the
subparts of the chromosome should have an influence on the global fitness of the chro-
mosome. However, the formalization provided by [51] enables each child to contribute
to the global fitness independent of other children. What is more, since the functions
are defined with increasing arity, the search space increases rapidly for high levels.
The problem is too difficult after level d and e. On the other side levels g, b and ¢ are
too simple. It is possible for the solution to appear in the initial random population in
these levels. Lastly using more than one constant makes the definition unnecessarily
complicated. Therefore it has been decided to simplify and reorganize the definition
of perfect tree. The aim is to obtain a tunable benchmark problem where epistasis

can easily be controlled.

7.2 A New Benchmark Problem

The new perfect tree is defined to be a full binary tree of some depth. The function set
consists of n functions with arity two (F = {X1,Xs,..Xn}). The terminal set consists
of a single terminal element ¢, (T' = {¢}). The raw fitness of a tree is again defined as
the score of its root. The fitness of a terminal node is simply defined as 1. The fitness
of an internal node is defined as the sum of the fitnesses of its two children. The two
constraints used to create epistasis for the problem are the following.

When the children of an internal node are not terminal elements:
(i) The index of the parent function should be smaller than the index of its children.

(ii) The index of the right-hand child should be larger than the index of the left-hand
child.

The fitness function for an internal node is defined as:

([ £(C0) + £(Cy) [1]
£(P) = Cepis - f(C1) + f(C2) 2] 7)
f(Ol) + Cepis . f(CZ) [3

]
| Cepis : f(Ol) + Cepis . f(02) [4]
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In Equation 7.1, part [1] is chosen if both of the children are terminal elements or
none of the constraints are violated. If the first constraint is violated by any child,
the fitness of that child is multiplied with a constant smaller than one. This constant
is called the epistasis constant (Cepis). Parts [2] and [3] in Equation 7.1 reflect this
situation. Lastly part [4] is used when both of the children violate the first constraint

or when the second constraint cannot be achieved.

Note that these two constraints create interdependency among the subparts of a
chromosome. When the epistasis constant is decreased the interdependency increases.
It becomes impossible for a subpart of the chromosome to contribute to the global
fitness independent of other parts. A well-fit chromosome can easily be ruined when
a node that violates a constraint appears after a recombination operation. Hence,
fitnesses of similar chromosomes might differ remarkably and the search space becomes
discontinuous. What is more when the function set is kept small, it becomes more
probable to be stuck in a local minima. Note that the index of the functions should
increase as you go down in a chromosome. Therefore a wrong choice close to the root

might make it impossible to form a perfect tree.

e PT—s_
(xs) (xs) () (xs)

@ ® & O 6 ® & ®
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Figure 7.2: A possible solution of depth four.

For the testing phase the function set is fixed as F = {X1, X2,..., X3} and the
terminal set is 7" = {t}. Also the depth of the perfect tree to be searched is determined
as 4. In Figure 7.2 a possible solution is given for depth 4. Here the function X3 has
not been used, however other solutions exist that would include the eighth function
too.

Note that two parameters exist for controlling the difficulty of the problem. When
you enlarge the function set, the number of possible solutions increases. On the other
side when the epistasis constant is decreased the interdependency increases and the

problem turns out to be more deceptive. Our focus has been on the interdependency
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Figure 7.3: Comparison of controlled search and basic GP. The dashed lines denote
the performance of controlled search. Learning period is 500. Epistasis constant is 0.5
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Figure 7.4: Comparison of controlled search and basic GP. The dashed lines denote
the performance of controlled search. Learning period is 500. Epistasis constant is
0.35

among the subparts of a chromosome. Therefore the function set is kept the same and
our new approach is tested with different epistasis constants.

The different epistasis constants used for the testing process are 0.5,0.35, 0.2, 0.05
and 0.002. The genetic parameters are set as follows

e Population size = 100
e Crossover at function point fraction = 0.1

Crossover at any point fraction = 0.7

e Reproduction fraction = 0.1

Mutation fraction = 0.1
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Figure 7.5: Comparison of controlled search and basic GP. The dashed lines denote
the performance of controlled search. Learning period is 500. Epistasis constant is 0.2
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Figure 7.6: Comparison of controlled search and basic GP. The dashed lines denote
the performance of controlled search. Learning period is 500. Epistasis constant is
0.05

o Number of Generations = 3000
e Selection Method: Fitness Proportional.

In Figures 7.3, 7.4, 7.5, 7.6, 7.7 the comparison of controlled search and basic
GP for each epistasis constant are presented. The results are obtained by using the
average of 100 different runs. Note that the largest value that can be obtained by the
fitness function proposed in Equation 7.1 is 16. The best fitness value is again set as

zero. Therefore the real fitness function used for the exf)eriments would be
F(T) = 16 — f(Root(T)), (7.2)
where f is the function in Equation 7.1, T' is a tree and Root returns the root node of
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Figure 7.7: Comparison of controlled search and basic GP. The dashed lines denote
the performance of controlled search. Learning period is 500. Epistasis constant is
0.002

a given tree. As seen in Figure 7.3, it is not possible to obtain an improvement when
the epistasis constant is 0.5. However, as the problem is made more deceptive by
decreasing the epistasis constant, the performance increase becomes more significant
as seen in Figures 7.4, 7.5, 7.6 and 7.7. The behavior of basic GP and the controlled
search can be best seen in Figure 7.8. In this figure the comparison of the best fitness

means obtained at the end of 3000 generations is presented for each epistasis constant.
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Figure 7.8: Best fitness means obtained at the end of 3000 generations.The dashed
lines denote the performance of the controlled search.

As seen in the figure, the controlled search is misleading for the epistasis constant
0.5. Basic GP can achieve a better average at the end of the search. However, as the

epistasis constant is decreased the performance of basic GP rapidly goes down. On the

89



ol Successh Rons

. N N N . s N . ——
o 0.08 o.1 Q.18 0.2 .25 0.3 0.28 0.4 0.45 o.8
Eplstasta Constant

Figure 7.9: Number of successful runs for each epistasis constant. The dashed lines
denote the performance of the controlled search.

other side the controlled search can compensate the deception and the performance
decrease is not dramatic as deception increases. It can be claimed that the results
obtained are consistent with our proposal and the significance of controlled search
becomes more apparent with high deception. Also in Figure 7.9 the number of suc-
cessful runs achieved are presented for each epistasis constant. Again the results are
as expected. For the epistasis constant 0.5 basic GP can find more solutions than the
controlled search and again as the epistasis constant decreases the controlled search

outperforms basic GP.
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CHAPTER 8

TESTING THE LIABILITY OF THE RESULTS
OBTAINED

The results presented in the previous chapters are the best fitness means obtained
by a certain number of sample runs. This is a common comparison method used in
GP community. Usually 20 — 30 runs are excepted to be enough for a satisfactory
comparison between two methods. However, this is quite Questiona.ble in terms of
statistics. Statistical significance between two means depends on two parameters.
These are population size (number of sample runs for our case) and the variance in
the population. Therefore it is not possible to determine a general lower limit for the
number of sample runs that would be satisfactory for all problems. This lower limit
would change depending on the standard deviation that would appear throughout the
runs. Therefore statistical tests are crucially needed to determine if the number of

runs used are enough for a satisfactory comparison between the methods.

Although this approach is not common in evolutionary computation community
yet, some researchers have started to highlight the importance of the subject. [46]
denotes that performance comparison is an important subject in GP research, since
many published research includes the comparison of one technique with another. [46]
also states that of the 22 papers examined, 16 used only visual comparison of the
graphs.

It is important to comprehend the notion of Statistical Significance. Consider the

two situations presented in Figure 8.1. The presented graphs denote the distribution
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Figure 8.1: Two different scenarios for the differences between the means.

of elements belonging to two different populations. The first thing to be noted about
the graphs is that the difference between the two means is the same in both of them.
However, the distribution of the elements are clearly different from each other. In the
first graph the variability of the elements is quite high and the two populations overlap
so much. In the second case variability is smaller. Clearly, it can be claimed that the
populations in the second graph seem to be more different or distinct. It is reasonable
to state that if population sizes are the same, then obtaining such a difference between
the two populations by chance would be more probable for the situation presented in
the first graph, rather than the situation in the second one. This leads us to the idea
that while judging the difference between two means, the variability of the elements
has to be taken into consideration, too. On the other side, the number of elements
used to determine the distribution is obviously another factor that would affect the
judgment on the difference between the two means. Hence, the statistical significance
between two means should be a measure based on the variability and the sizes of the

populations relative to the difference between the means.

T-test is offered as a. statistical method that can be used for comparing small

samples, [46]. The formulation for calculating the ¢ value is given in [18] as follows.

. My — My 1)
\/ (ra-Lag+ng—1)ef (1 | L
n1+ns—1 ‘\ng ng

In Equation 8.1, M; and M; are the two means to be compared, n; and ngy denote
the population sizes used to obtain the corresponding means and lastly s;, sy are the

standard deviations of the two populations. The t-value turns out to be a ratio of the
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difference between the means to some value calculated based on the population sizes
and the deviation in the populations. The value obtained by the equation corresponds
to a risk level depending on the degrees of freedom and the initial hypothesis used
for the testing. Our hypothesis is to determine if there is really a difference between
the means obtained by the two approaches. Therefore we have used the two-tailed
version of the test, [46]. rThe degrees of freedom is defined as the sum of the samples
in both populations minus two. The risk level denotes the prdbability of obtaining the
difference between the two means by chance. In statistics usually a risk level smaller
than 0.05 is considered to be statistically significant.

In order to apply the test on our method, the t-value for the difference between
the two means are calculated for each generation. Then using an automated tool
corresponding risk levels are obtained. Note that there is no difference between the
two means until the end of the first learning period. Therefore the risk level would be
1 before the controlled search starts. After the first learning period, the risk level is

expected to decrease below 0.05 in a certain amount of generations.

1 ~T T - —

o8 - -~

0.8 |~ -1

0.7 =

0.5 - -1

Fisk Lo

o4 - -
o.3 ]

o2 |- 4

a.1 -
r A,
o , N .

o 800 1000 1800 2000 2800 3000
Genaration Number

Figure 8.2: The t-test for the benchmark problem. Epiétasis constant is 0.002.

The test is first applied on the instances of the benchmark problem except the
instance with epistasis constant 0.5. Note that no improvement has been obtained for
that case. The number of sample runs that have been used for this problem is 100.
This can be considered as quite a big population for the test and as expected all of
the four instances of the problem was able to pass the test. It has been possible to
obtain risk levels smaller than 0.01 towards the end of the search. This denotes that

the performance increase obtained is statistically significant with probability larger
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than 0.99.

In Figure 8.2 the change of the risk level for the instance with epistasis constant
0.002 is presented. As the two means start to differ after generation 500, the risk
level dramatically decreases. The statistical significance is obtained after about 1000

generations.
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Figure 8.3: The t-test for the N-Parity problem. Learning Period is 500 and number
of sample runs is 20.
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Figure 8.4: The t-test for the CFG induction problem. Learning Period is 500 and
number of sample runs is 20.

The test has also been applied to the two real world domains. Note that the
number of sample runs used in these domains is 20. This can be considered as a small
population in terms of statistics. So it is more probable to encounter problems with
such a population size. In Figures 8.3 and 8.4 the results of the test are presented.
For the N-Parity problem the risk level goes below the critical value 0.05 around
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generation 4000. However, the statistical significance is lost around generation 9000.
This is due to the increase in standard deviation in the second part of the search. The
situation for the CFG-induction problem is even worse. The risk level stays above 0.2
all through the search. This is again due to the high standard deviation all through
the search.
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Figure 8.5: Comparison of the means when number of sample runs are increased to
80 for the CFG induction problem. Learning Period is 500.
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Figure 8.6: The t-test for the CFG induction problem. Learning Period is 500 and
number of sample runs is 80.

The results-obtained for the two real world domains denote that the number of
sample runs used is not enough to statistically prove that a performance increase has
really been achieved. It should be noted that the results obtained do not point out
that the controlled search cannot lead to a performance increase. It is the case that

the number of sample trials used are not enough for a definite decision and there is
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the risk of losing the performance increase when larger number of trials are carried
out. More sample trials have to be included for a definite judgment about the method.
Certainly, the number of extra sample runs needed depends on the standard deviation

that appears during the runs.
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Figure 8.7: Comparison of the means when number of sample runs are increased to
45 for the N-parity problem. Learning Period is 500.
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Figure 8.8: The t-test for the N-Parity problem. Learning Period is 500 and number
of sample runs is 45.

For instance for the grammar induction problem the number of sample runs has
been increased to 40 as a first step. However, still the desired significance has not
been obtained. The results of the test were not satisfactory until the number of
sample runs has reached to 80. On the other side 45 sample runs have been enough
to obtain statistical significance for the N-parity problem. In Figures 8.5 and 8.7

the comparison of the means obtained with the new population sizes are presented
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for the two problems. It should be noted that the performance increase obtained by
the controlled search is similar to the ones presented in the previous sections. The
difference between the two means has not altered significantly compared to the mean
differences obtained by less number of runs. However, this time statistical significance
has been obtained as seen in Figures 8.6 and 8.8. Hence, it can be concluded the
controlled search can provide a performance increase in the two real world domains,

too.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

Genetic programming is a convenient search algorithm for symbolic problems. How-
ever the method easily becomes impractical for a certain class of problems. The focus
of this thesis was proposing a method to increase the performance of GP on such
problems. An important aspect of the study is the attempt to design a self referential
system, which can deduce beneficial knowledge from its own experience. It is aimed
to use this information to control recombination afterwards.

The second important aspect of the study is based on the fact that GP is only
an effective way of implementing the Divide and Conquer method. This approach is
questionable for deceptive problems. The global meaning of finding a possible solution
goes beyond determining the sub solutions and bringing them together. Therefore, the
self referential information collected during the search is based on the global structure
of the chromosomes. A simple formalization is proposed for the representation of this
global information. The proposed method does not have a heavy computational load.
This is one of the reasons for choosing a simple formalization. What is more, the repre-
sentation presented has the capability of holding two important global characteristics
of a chromosome; the frequency information of the elements and their position in the
chromosome. Certainly other attempts can be carried out with different variations
of the proposed representation. On the other side, note that decision tree generator
C4.5 is the only machine learning tool used for inducing the models for the well-fit
chromosomes. It is possible to replace decision tree learning with other machine learn-

ing methods like Neural Networks. It is open to discussion if decision tree learning
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is the best choice for the current task. However, the thesis can be seen as an initial
attempt aiming to improve the performance of GP by using a self referential system,
which focuses on the global information of chromosomes. Hence, our main concern has
been providing detailed empirical evidence for the success of the proposed approach.

Therefore, the subjects mentioned above still remain as open research points.

The proposed approach has been applied to two real world-domains. Both of the
selected domains are highly deceptive. The search spaces are discontinuous and the
partial success of a chromosome is fragile during recombination in both domains. The
selected problems are quite suitable for the research purposes of the study. It is a fact
that the proposed approach cannot provide a total solution for the problems at hand.
However, the performance increase obtained in two different domains provides strong
evidence about the success of extracting beneficial self-referential knowledge from the
search process. It can be claimed that the proposed approach is on the right track

and open to further improvement.

Certainly, the performance increase obtained in only two domains is not sufficient
to claim a general improvement for GP. However, the experiments carried out on
the benchmark problem provides an insight about the contribution of the approach.
The different instances of the problem has made it possible to carry out a controlled
experiment to trace the behavior of the new approach. The results obtained clearly
denote that the performance decrease that occurs due to epistasis can be blocked by
the control module. The contribution of the module becomes significant when the
interdependency among the subparts of chromosomes is increased. It can be claimed
that the results are consistent with the initial ideas deduced from the results obtained

in the two real-world domains.

An important notion about the proposed method is determining the optimum
learning period for the problem at-hand. Providing a theoretical proof for determining
this optimum point would be outside the limits of this thesis. However, a rough
interval has been proposed empirically for both of the problems. Another critical
question about the method proposed is about the extra processing time required for
the control module. The performance of traditional GP is also analyzed, when the
search is allowed to also use the extra time consumed by the control module. It has

been observed that the overhead of the control module depends on the fitness function
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used. For the CFG-induction problem, this overhead is almost negligible as the fitness
function is non-linear. For the N-parity problem the overhead is significant. However
the control module is still capable of providing a more efficient search.

The statistical tests form an important part of the thesis. Verification of the results
statistically is not a common approach in evolutionary computation community yet.
However, it is obvious that visual comparison of means is not sufficient for a sound
conclusion about the results obtained.

Our initial question was, if it could be possible to extract information during the
genetic evolution and use this information to control the search process afterwards.
Although the proposed approach is open to further research and development, the
content of the research carried out clearly points out that the aimed approach is

possible.

70



REFERENCES

[1] Ricardo Aler, Daniel Borrajo, and Pedro Isasi. Genetic programming and
deductive-inductive learning: A multistrategy approach. In Jude Shavlik, edi-
tor, Proceedings of the Fifteenth International Conference on Machine Learning,
ICML’98, pages 10-18, Madison, Wisconsin, USA, July 1998. Morgan Kaufmann.

[2] David Andre. Automatically defined features: The simultaneous evolution of 2-
dimensional feature detectors and an algorithm for using them. In Kenneth E.
Kinnear, Jr., editor, Advances in Genetic Programming, chapter 23, pages 477-
494. MIT Press, 1994.

[3] Peter Jobn Angeline. Genetic programming and emergent intelligence. In Ken-
neth E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 4, pages
75-98. MIT Press, 1994.

[4] Shumeet Baluja and Scott Davies. Using optimal dependency-trees for combi-
natorial optimization: Learning the structure of the search space. In Proc. 14th
International Conference on Machine Learning, pages 30-38. Morgan Kaufmann,
1997.

[5] Wolfgang Banzhaf. Genetic programming for pedestrians. In Stephanie Forrest,
editor, Proceedings of the §th International Conference on Genetic Algorithms,
ICGA-93, page 628, University of Illinois at Urbana-Champaign, 17-21 July 1993.
Morgan Kaufmann.

[6] Eugene Charniak. Statistical techniques for natural language parsing. A1 Maga-
zine, 18(4):33-44, 1997.

[7] Eugene Charniak. A maximum-entropy-inspired parser. Technical Report CS-
99-12, Department of Computer Science, Brown University, August 1999. Wed,
4 Aug 1999 17:39:56 GMT.

[8] Michael John Collins. A new statistical parser based on bigram lexical depen-
dencies. In Arivind Joshi and Martha Palmer, editors, Proceedings of the Thirty-
Fourth Annual Meeting of the Association for Computational Linguistics, pages
184-191, San Francisco, 1996. Morgan Kaufmann Publishers.

[9] Nichael Lynn Cramer. A representation for the adaptive generation of simple
sequential programs. In John J. Grefenstette, editor, Proceedings of an Interna-
tional Conference on Genetic Algorithms and the Applications, pages 183-187,
Carnegie-Mellon University, Pittsburgh, PA, USA, 24-26 July 1985.

71



[10)

[11]

[12]

[13]

(14]

[15]

[16]

[17]

[18]

[19]

[20]

Sumit Das, Terry Franguidakis, Michael Papka, Thomas A. DeFanti, and
Daniel J. Sandin. A genetic programming application in virtual reality. In Pro-
ceedings of the first IEEE Conference on Ewvolutionary Computation, volume 1,
pages 480-484, Orlando, Florida, USA, 27-29 June 1994. IEEE Press. Part of
1994 IEEE World Congress on Computational Intelligence, Orlando, Florida.

Edwin D. de Jong, Richard A. Watson, and Jordan B. Pollack. Reducing bloat
and promoting diversity using multi-objective methods. In Lee Spector, Erik D.
Goodman, Annie Wu, W. B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip
Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke,
editors, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), pages 11-18, San Francisco, California, USA, 7-11 July 2001.
Morgan Kaufmann.

Patrik D’haeseleer. Context preserving crossover in genetic programming. In
Proceedings of the 1994 IEEE World Congress on Computational Intelligence,
volume 1, pages 256-261, Orlando, Florida, USA, 27-29 June 1994. IEEE Press.

Huntington Cairns (Editor) Edith Hamilton (Editor). The Collected Dialogues
of Plato. Princeton University Press, 1961.

J. Eggermont and J. I. van Hemert. Stepwise adaptation of weights for sym-
bolic regression with genetic programming. In Proceedings of the Twelveth Bel-
gium/Netherlands Conference on Artificial Intelligence (BNAIC’00), 2000.

Gary William Flake. The Computational Beauty of Nature. The MIT Press,
Cambridge, Massachusetts, 1998.

Lawrence J. Fogel, Alvin J. Owens, and Michael J. Walsh. Artificial intelligence
through a simulation of evolution. In M. Maxfield, A. Callahan, and L. J. Fogel,
editors, Biophysics and Cybernetic Systems: Proc. of the 2nd Cybernetic Sciences
Symposium, pages 131-155, Washington, D.C., 1965. Spartan Books.

Richard Forsyth. BEAGLE A Darwinian approach to pattern recognition. Ky-
bernetes, 10:159-166, 1981.

Gary A. Freund, John E. Simon. Modern Elementary Statistics. Prentice Hall,
1992.

Cory Fujiki and John Dickinson. Using the genetic algorithm to generate lisp
source code to solve the prisoner’s dilemma. In John J. Grefenstette, editor, Ge-
netic Algorithms and their Applications: Proceedings of the second international
conference on Genetic Algorithms, pages 236-240, MIT, Cambridge, MA, USA,
28-31 July 1987. Lawrence Erlbaum Associates.

Chris Gathercole and Peter Ross. Tackling the boolean even N parity problem
with genetic programming and limited-error fitness. In John R. Koza, Kalyan-
moy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L.
Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual
Conference, pages 119-127, Stanford University, CA, USA, 13-16 1997. Morgan
Kaufmann.

72



[21] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Lear-
ing. Addison Weslay, 1989.

[22] Alan Woods & Ted Grant. Reason in Revolt - Marzist Philosophy and Modern
Science. Wellred Publications, 1995.

[23] Simon Handley. Automatic learning of a detector for alpha-helices in protein se-
quences via genetic programming. In Stephanie Forrest, editor, Proceedings of the
5th International Conference on Genetic Algorithms, ICGA-93, pages 271-278,
University of Illinois at Urbana-Champaign, 17-21 July 1993. Morgan Kaufmann.

[24] John Holland. Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, 1975.

[25] Tzung-Pei Hong. Evolution of appropriate crossover and mutation operators in
a genetic process. Applied Intelligence, 16(1):7-17, 2002.

[26] Hitoshi Iba and Hugo de Garis. Extending genetic programming with recombi-
native guidance. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances
in Genetic Programming 2, chapter 4, pages 69-88. MIT Press, Cambridge, MA,
USA, 1996.

[27] Terry Jones. A description of holland’s royal road function. Ewolutionary Com-
putation, 2(4):409-415, 1995.

[28] Hugues Juille and Jordan B. Pollack. A sampling-based heuristic for tree search
applied to grammar induction. In Proceedings of the Fifteenth National Confer-
ence on Artificial Intelligence (AAAI-98) Tenth Conference on Innovative Ap-
plications of Artificial Intelligence (IAAI-98), Madison, Wisconsin, USA, 26-30
1998. AAAI Press Books.

[29] H. Kargupta. Revisiting the gemga: Scalable evolutionary optimization through
linkage learning. In Proceedings of 1998 IEEE International Conference on Evo-
lutionary Computation, pages 603—608. IEEE Press, 1998.

[30] Mike J. Keith and Martin C. Martin. Genetic programming in C++: Implemen-
tation issues. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Program-
ming, chapter 13, pages 285-310. MIT Press, 1994.

[31] B. Keller and R. Lutz. Evolving stochastic context-free grammars from examples
using a minimum description length principle. In Proceedings of the Workshop on
Automata, Inductive Grammatical Inference and Language Acquisition. ICML-97,
1997.

[32] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, 1992.

[33] John R. Koza. The genetic programming paradigm: Genetically breeding pop-
ulations of computer programs to solve problems. In Branko Soucek and the
IRIS Group, editors, Dynamic, Genetic, and Chaotic Programming, pages 203—
321. John Wiley, New York, 1992.

73



[34] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. MIT Press, Cambridge Massachusetts, May 1994.

[35] Jeremy Kubica and Eleanor Rieffel. Collaborating with A genetic programming
system to generate modular robotic code. In W. B. Langdon, E. Cantd-Paz,
K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph,
J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and
N. Jonoska, editors, GECCO 2002: Proceedings of the Genetic and Evolutionary
Computation Conference, pages 804-811, New York, 9-13 July 2002. Morgan
Kaufmann Publishers.

[36] George Lakoff. Women, Fire, and Dangerous Things. Chicago University Press,
Chicago, Mi, 1987. )

[37] William B. Langdon and Adil Qureshi. Genetic programming — computers using
“patural selection” to generate programs. Research Note RN/95/76, University
College London, Gower Street, London WCI1E 6BT, UK, October 1995.

[38] Lucas. Structuring chromosomes for context-free grammar evolution. In IEEE-
CEP: Proceedings of The IEEE Conference on Evolutionary Computation, IEEE
World Congress on Computational Intelligence, 1994.

[39] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[40] David J. Montana. Strongly typed genetic programming. Techuical Report
#7866, 10 Moulton Street, Cambridge, MA 02138, USA, 7 1993.

[41] Heinz Muhlenbein and Gerhard PaaB. From recombination of genes to the es-
timation of distributions: I. binary parameters. In Hans-Michael Voigt, Werner
Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Parallel Problem
Solving From Nature-PPSN IV, volume 1141 of Lecture Notes in Computer Sci-
ence, pages 178-187. Springer-Verlag, Berlin, 1996.

[42] Peter Nordin. A compiling genetic programming system that directly manipulates
the machine code. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic
Programming, chapter 14, pages 311-331. MIT Press, 1994.

[43] Peter Nordin and Wolfgang Banzhaf. Complexity compression and evolution. In
L. Eshelman, editor, Genetic Algorithms: Proceedings of the Sizth International
Conference (ICGA95), pages 310-317, Pittsburgh, PA, USA, 15-19 July 1995.
Morgan Kaufmann.

[44] Una-May O'Reilly. An Analysis of Genetic Programming. PhD thesis, Carleton
University, Ottawa-Carleton Institute for Computer Science, Ottawa, Ontario,
Canada, 22 September 1995.

[45] Una-May O’Reilly and Franz Oppacher. The troubling aspects of a building block

~ hypothesis for genetic programming. In L. Darrell Whitley and Michael D. Vose,
editors, Foundations of Genetic Algorithms 3, pages 73-88, Estes Park, Colorado,
USA, 31 July-2 August 1994 1995. Morgan Kaufmann.

74



[46] Norman Paterson and Michael Livesey. Performance comparison in genetic pro-
gramming. In Darrell Whitley, editor, Late Breaking Papers ot the 2000 Genetic
and Evolutionary Computation Conference, pages 253-260, Las Vegas, Nevada,
USA, 8 July 2000.

[47] Martin Pelikan, David E. Goldberg, and Erick Cantt-Paz. Linkage problem,
distribution estimation, and Bayesian networks. Evolutionary Computation,
9(4):311-340, 2000. SRS .

[48] Martin Pelikan and Heinz Miihlenbein. The bivariate marginal distribution algo-
rithm. In R. Roy, T. Furuhashi, and P. K. Chawdhry, editors, Advances in Soft
Computing - Engineering Design and Manufacturing, pages 521-535, London,
1999. Springer-Verlag.

[49] Riccardo Poli and William B. Langdon. Schema theory for genetic program-
ming with one-point crossover and point mutation. Fvolutionary Computation,
6(3):231-252, 1998.

[50] F. Provost and V. Kolluri. A survey of methods for scaling up inductive algo-
rithms. Data Mining and Knowledge Discovery, 3, 1999.

[61] William F. Punch, Douglas Zongker, and Erik D. Goodman. The royal tree prob-
lem, a benchmark for single and multiple population genetic programming. In
Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Program-
ming 2, chapter 15, pages 299-316. MIT Press, Cambridge, MA, USA, 1996.

[52] J. R. Quinlan. C4. 5: Programs for Machine Learning. MK, San Mateo, CA,
1993. -

[563] J. P. Rosca and D. H. Ballard. Learning by adapting representations in genetic
programming. In Proceedings of the 1994 IEEE World Congress on Computa-
tional Intelligence, Orlando, Florida, USA, Orlando, Florida, USA, 27-29 June
1994. IEEE Press.

[64] Hans-Paul Schwefel. Evolutionsstrategie und numerische Optimierung. PhD the-
sis, Technische Universitdt Berlin, Berlin, Germany, 1975. German.

[65] T.C. Smith and I.H. Witten. A genetic algorithm for the induction of natural
language grammars. In Proceedings of IJCAI-95 Workshop on New Approaches
to Learning for Natural Language Processing, pages 17-24, Montreal, Canada,
1995.

[56] Thomas A. Sudkamp. Languages and Machines. Addison-Wesley, Reading, MA,
1988.

[57] Walter Alden Tackett. Genetic programming for feature discovery and image
discrimination. In Stephanie Forrest, editor, Proceedings of the 5th International
Conference on Genetic Algorithms, ICGA-93, pages 303-309, University of Illi-
nois at Urbana-Champaign, 17-21 July 1993. Morgan Kaufmann.

[68] George Allen & Unwin. Translated by A. V. Miller. Hegel’s Science of Logic.
1969.

75



[59] A. M. Turing. Computing Machinery and Intelligence. McGraw-Hill, 1963.

[60] J. Von Neumann. The Computer and the Brain, Silliman Lectures. Yale Univer-
sity Press, New Haven, CT, 1958.

[61] J.von Neumann. A system of 29 states with a general transition rule. In A. Burks,
editor, Theory of Self-Reproducing Automata, pages 305-317. University of Illinois
Press, 1966.

[62] M. Mitchell Waldorp. Complezity: The Emerging Science at the Edge of Order
and Chaos. Simon and Shuster/Viking., 1992.

[63] P. A. Whigham. Grammatically-based genetic programming. In Justinian P.
Rosca, editor, Proceedings of the Workshop on Genetic Programming: From The-
ory to Real-World Applications, pages 33—41, Tahoe City, California, USA, 9 July
1995.

[64] P. A. Whigham. A schema theorem for context-free grammars. In 1995 IEEE
Conference on Evolutionary Computation, volume 1, pages 178-181, Perth, Aus-
tralia, 29 November - 1 December 1995. IEEE Press.

[65] N. Wiener. Cybernetics, or Control and Communication in the Animal and the
Machine. John Wiley, New York, 1948.
Wiener’s classic book on cybernetics. Second edition with additions published in
1961.

[66] Elena Zannoni and Robert G. Reynolds. Learning to control the program evolu-
" tion process with cultural algorithms. Ewvolutionary Computation, 5(2):181-211,
summer 1997.

76



VITA

Emin Erkan Korkmaz was born in Merzifon on November 23, 1972. He received his
B.S. degree in Computer Engineering from Bilkent University in July 1994. He re-
ceived his M.S. degree from Middle East Technical University in September 1997.
He worked as a teaching assistant in the Computer Engineering Department of the
Hacettepe University between 1994 and 1996 and in the Computer Engineering De-
partment of the Middle East Technical University between 1996 and 2002.

77



