

DEVELOPMENT OF A WEB-BASED
DYNAMIC SCHEDULING METHODOLOGY

FOR
A FLEXIBLE MANUFACTURING CELL

USING AGENT BASED DISTRIBUTED INTERNET APPLICATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

BORAN ALATA�

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF MECHANICAL ENGINEERING

JANUARY 2004

Approval of the Graduate School of Natural and Applied Sciences.

 Prof. Dr. Canan ÖZGEN
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. Kemal �DER
 Head of the Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Ömer ANLA�AN
 Supervisor

Examining Committee Members

Prof. Dr. S. Engin KILIÇ (Chairman)

Prof. Dr. Ömer ANLA�AN

Prof. Dr. Sahir ARIKAN

Prof. Dr. Mustafa �. GÖKLER

Assoc. Prof. Dr. Tayyar �EN

 iii

ABSTRACT

DEVELOPMENT OF A WEB-BASED
DYNAMIC SCHEDULING METHODOLOGY

FOR
A FLEXIBLE MANUFACTURING CELL

USING AGENT BASED DISTRIBUTED INTERNET APPLICATIONS

Alata�, Boran

M. Sc., Department of Mechanical Engineering

Supervisor: Prof. Dr. Ömer Anla�an

January 2004, 134 pages

 The increasing importance of computer leads to develop new

manufacturing methods. One of the most important example; “unmanned shop

floor” model aims, the mankind can work in jobs that they can be more efficient

and more comfortable. As the base of this model, in Middle East Technical

University Computer Integrated Manufacturing Laboratory (METUCIM) “Agent

Version 1.1” system is developed. Windows Distributed Internet Applications

(DNA) modeling technique is used for the software development. In the

developed system, by using web pages, one can give work orders to the flexible

manufacturing cell in METUCIM. The manufacturing capabilities of the cell are

limited by the capabilities of CNC Lathe and CNC Milling machine that exist in

the system.

 By the developed agent based dynamic scheduling method, it is prevented

to be only an experimental system for the manufacturing cell. The real

manufacturing environment is adapted to the cell that it is possible to give

 iv

unlimited number of work orders. The work orders can be queued and

manufactured according to their “priorities”. By the “web-cam” application the

given work orders can be watched from the web site so the system reliability is

increased for the engineer. In the real manufacturing environment it is very

frequent that the “urgent part” is needed to manufacture. In this system it is

possible to give “urgent orders” for these situations.

Keywords: Shop Floor Control, Agent, Distributed Internet Applications, DNA

for Manufacturing, Priority, Urgent Order, Manufacturing Execution Systems.

 v

ÖZ

AJAN TEMELL� ÇOK MERKEZL� �NTERNET UYGULAMALARI

KULLANILARAK ESNEK ÜRET�M HÜCRES� �Ç�N

WEB TABANLI D�NAM�K PLANLAMA METODU GEL��T�R�LMES�

Alata�, Boran

Yüksek Lisans, Makina Mühendisli�i Bölümü

Tez Yöneticisi: Prof. Dr. Ömer Anla�an

Ocak 2004, 134 sayfa

�malatta bilgisayarın öneminin giderek artması yeni üretim modellerinin

geli�tirilmesine yol açmı�tır. Bunun önemli bir örne�ini olan “insansız atölye”

tasarımı, insanların daha verimli olabilecekleri alanlarda ve daha konforlu

ko�ullarda çalı�abilmesini sa�lamayı amaçlamaktadır. Bu tasarımın temeli olarak

Windows Çok Merkezli �nernet Uygulaması kullanılmak suretiyle Orta Do�u

Teknik Üniversitesi Bilgisayar Tümle�ik �malat Laboratuvarı’nda “Agent Version

1.1” sistemi geli�tirilmi�tir. Bu sistemde internet web sayfaları üzerinden

laboratuvarımızdaki esnek üretim hücresine i� emri verilebilmekte, sistem

içerisindeki torna ve frezenin yetilerinin sınırları içerisinde “insansız” üretim

yapılabilmektedir.

Yeni geli�tirilen ajan temelli dinamik planlama metodu sayesinde mevcut

üretim hücresinin sadece deneysel bir sisem olmasının önene geçilmi�, gerçek

imalat ko�ulları sisteme adapte edilmi�tir. Bu adaptasyonla web üzerinden sınırsız

i� emri verilebilmekte ve bu i� emirleri kendi içerisinde “önem sırası” na göre

sıralanıp, üretim yapılabilmektedir. Web kamerası uygulaması ile web

 vi

sayfasından, verilen i� emirleri canlı olarak izlenebilmekte, böylece kullanıcı için

sistemin güvenirli�i artmaktadır. Bu sistemde, gerçek imalat endüstrisinde sık sık

kar�ımıza çıkan “acil parça” gereksinimi, “acil i� emri” uygulaması ile

kar�ılanabilmektedir.

Anahtar kelimeler: Atölye denetimi, Ajan teknolojisi, Da�ıtık �nternet

Uygulamaları, Da�ıtık �malat Uygulamaları, Önem Sırası Uygulaması, Acil ��

Emri, �malat Sistemleri Uygulamaları.

 vii

To My Family

 viii

ACKNOWLEDGMENTS

I would like to express my gratefulness and appreciation to my supervisor

Prof. Dr. Ömer Anla�an for his guidance throughout the completion of this thesis.

Also thanks go to Prof. Dr. S. Engin Kılıç for his encouragement about the study.

I would like to thank Tolga Cangar and Özgür Ünver for the design of the

system model, on which this development process is based.

I am also indebted to my colleagues Yusuf Ba�ıbüyük, Burak Sarı, Erhan

Özsüer, Fatih Sarı in Integrated Manufacturing Technologies Research Group

(IMTRG) for their endless support all through this hard work.

 Finally, my greatest thanks go to my parents who shaped me with their

never ending patience.

 ix

TABLE OF CONTENTS

ABSTRACT ...iii

ÖZ.. v

ACKNOWLEDGMENTS..viii

TABLE OF CONTENTS ... ix

LIST OF TABLES ..xii

LIST OF FIGURES..xiii

CHAPTER

1. INTRODUCTION... 1

1.1 CIM Concepts.. 1

1.2 Software Technology .. 3

1.3 Scope ... 5

1.4 Outline ... 6

2. LITERATURE SURVEY ... 7

2.1 Flexible Manufacturing Systems... 7

2.1.1 Requirements for Next Generation Manufacturing

Systems.. 8

2.1.2 Manufacturing Cell Control 10

2.1.2.1 Traditional (centralized) approach 11

2.1.2.2 The agent based approach 12

2.1.3 Agent Based Task Allocation and Dispatching........ 14

2.1.3.1 Hierarchical Task Allocation and

Dispatching Structure .. 14

2.1.3.2 Heterarchical Task Allocation and

Dispatching Structure .. 16

2.2 Scheduling ... 21

2.2.1 Dynamic Scheduling .. 22

 x

2.3 FMS Control Software .. 24

2.3.1 Object-oriented modeling, design, and programming

... 25

2.3.1.1 Transactions... 26

2.4 Modeling Techniques .. 27

2.4.1 IDEF0 and IDEF1X.. 27

2.4.2 UML ... 31

2.5 Windows Distributed Internet Applications (DNA)

Architecture ... 37

2.5.1 Windows DNA Design Objectives........................... 40

3. SYSTEM MODEL.. 42

3.1 An Overview ... 42

3.2 METUCIM Test-bed ... 43

3.3 Software Model ... 49

3.3.1 Previous Software and Configuration.......................50

3.3.2 Modifications Done.. 51

3.3.2.1 Manufacturing in Batches 53

3.3.2.2 “Priority” Application 54

3.3.2.3 “Urgent Order” Application 54

3.3.3 Communication Between Agents............................. 55

3.3.3.1 Bidding Mechanism 57

3.3.3.2 Bid preparation algorithm..........................59

3.4 Data Model .. 61

3.4.1 Objects and Inheritance .. 65

3.4.2 Messaging... 68

4. SYSTEM DEVELOPMENT... 73

4.1 Business Services .. 74

4.1.1 Agent Base Class.. 74

4.1.2 OCX Objects .. 75

4.1.3 Device Agent.. 76

4.2 Data Services... 78

4.2.1 Database ... 78

 xi

4.2.2 DB Objects ... 79

4.3 Presentation Services... 81

5. TEST RUNS.. 85

5.1 First Test Run (“Priority” and “Urgent Order” Application) . 85

5.2 Second Test Run (“Manufacturing in Batches” Application) . 92

6. CONCLUSION AND FUTURE WORK.. 96

REFERENCES.. 101

APPENDICES

A. USERS MANUAL ... 108

A.1 Hardware Boot Up.. 108

A.2 Software Boot Up ... 109

A.3 Installation .. 110

A.4 Agent Explorer ... 111

A.5 Device Controllers.. 112

A.6 Web Site ... 114

B. G CODES OF TEST RUNS... 115

C. PROCESS DIAGRAM... 125

D. KEYS & IDS .. 130

E. SAMPLE CODE... 133

 xii

LIST OF TABLES

TABLE

3.1 Sample database entry of the Task_List table 60

3.2 Identifying relationships in IDEF1X notation..................................... 62

3.3 Queues and message parameters ... 67

3.4 Agent Events ... 69

4.1 Events of the Agent base class .. 75

5.1 First test run work order details... 87

5.2 Work orders statistics of the first test run.. 90

5.3 Work order operations statistics of the first test run 90

5.4 Task statistics of the first test run.. 91

5.5 Device statistics of the first test run .. 92

5.6 Second test run work order details .. 93

5.7 Work orders statistics of the second test run....................................... 93

5.8 Work order operations statistics of the second test run....................... 93

5.9 Task statistics of the second test run ... 94

5.10 Device statistics of the second test run (agents 1001 and 1002) 94

5.11 Device statistics of the second test run (agents 2001 to 5001).......... 95

B.1 Test runs and corresponding G-Code Listings 116

D.1 Agent IDs.. 130

D.2 Database entry ranges... 131

D.3 Generic Task IDs.. 131

 xiii

LIST OF FIGURES

FIGURE

1.1 CIM Integration... 2

1.2 Client Server Relationship [3]..4

2.1 Manufacturing Cell Controlling using a Traditional Approach [7] 11

2.2 Hierarchical Task Allocation and Dispatching Structure [7] 15

2.3 Communication Between Agents in the Hierarchical Structure[7]..... 16

2.4 Heterarchical Organizational Structure [7] ... 17

2.5 Communication Between Agents in the Heterachical Structure [7] ... 18

2.6 Function representation in IDEF0 ... 28

2.7 Attribute and primary key syntax in IDEF1X 30

2.8 Identifying Relationship Syntax in IDEF1X 31

2.9 Circle Class.. 34

2.10 Types and Their Instances... 35

2.11 Three-tiered application...38

2.12 Two-tiered application .. 40

3.1 General view of METUCIM ... 44

3.2 A closer look at the static buffer, CNC Turning machine and conveyor

... 47

3.3 A closer look at the CNC Milling machine... 47

3.4 Complete Layout of METUCIM with computers 49

3.5 Front view of the system, agent and robot host computers, left to right

... 53

3.6 Customer-server relationship between machine agents [38]............... 56

3.7 Bidding of the customer and server agents [38].................................. 57

3.8 Message queues of the customer and server agents [38]..................... 58

 xiv

3.9 IDEF1X Data Structure [49] ... 64

3.10 DB Objects and Messenger ... 66

3.11 Sub-contraction model [50]... 72

4.1 Communication between system components 74

4.2 Visual Modeler view of the AGV_Agent [40] 77

4.3 Design view of the SQL Server database.. 79

4.4 Methods of the DB.Part Object... 80

4.5 MTS Components.. 80

4.6 Login to the system ... 81

4.7 Root page of the web site .. 83

4.8 Live Cam screen.. 84

4.9 Work Order Create screen... 84

5.1 Part 10001.. 87

5.2 Part 10002.. 88

5.3 Part 10003.. 88

5.4 Part 10004.. 89

5.5 Part 10005.. 89

A.1 Agent Explorer main screen, Part_Agent_Operations 112

A.2 CNC Turning Machines Agent Properties Screen............................ 113

A.3 Help page of the published web ... 114

B.1 Turning operation G-Code of part 10001 ... 116

B.2 Milling operation G Code of part 10001 .. 118

B.3 Turning operation G Code of part 10002 ... 118

B.4 Milling operation G Code of part 10002 .. 119

B.5 Turning operation G Code of part 10003 ... 120

B.6 Milling operation G Code of part 10003 .. 121

B.7 Turning operation G Code of part 10004 ... 122

B.8 Milling operation G Code of part 10004 .. 123

B.9 Turning operation G Code of part 10005 ... 123

B.10 Milling operation G Code of part 10005 .. 124

C.1 Key for the process diagram ... 125

C.2 Process flow of the “Create Work Order” Function......................... 126

 xv

C.3 Process flow of the “Perform Pre-Task” function 127

C.4 Process flow of the “Bid Construction” function 128

C.5 Process flow of the “Perform Own-Task” function.......................... 129

 1

CHAPTER 1

INTRODUCTION

1.1 CIM Concepts

 The manufacturing industries have become the most important

contributors to prosperity for the industrialized nations. However, it becomes

increasingly difficult to meet customers’ demands and compete on the

international market. Thus, manufacturing industries must be able to react quickly

to prevailing market conditions and to maximize the utilization of resources.

 The industry is going through a period of rapid change, accompanied by

record growth. To meet the challenge of selling products into a competitive global

economy, while continuously reducing costs, manufacturing companies have to

increase the efficiency of existing plants. Integration is the key to the success of

deploying a modern Computer Integrated Manufacturing (CIM) system, but

wiring the components together to produce such a system requires skills in full

system model design and Information Technology [1].

 The manufacturing systems of the future have to be flexible, and for this

reason they must be reprogrammable. But any increase in flexibility will entail

higher installation costs. Thus, it is necessary to provide a streamlined and

uninterrupted production process, which is highly efficient and reliable.

Information processing plays a major role in obtaining these goals. Information is

considered an important resource whose true value is often difficult and

impossible to estimate.

 2

 CIM conveys the concept of a semi- or totally automated factory in which

all processes leading to the manufacture of a product are integrated and controlled

by computer. It includes Computer-Aided Design (CAD), Computer-Aided

Process planning (CAP), Production Planning and Control (PP&C), Computer-

Aided Quality control (CAQ) and Computer-Aided Manufacturing (CAM). A

summary of concepts through the integration of CIM is given in Figure 1.1

Figure 1.1 CIM Integration

Thus, the integrated definition of CIM includes both design and

manufacturing data to be processed uniquely to obtain the optimum solution:

• Design human user interfaces which make complex reconfiguration

more manageable,

• Write code in an object oriented language that is modular, re-

configurable and fast,

• Use standard and well accepted communication protocols,

• Distribute the processes to as many workstations as possible.

 Throughout the last few years, the design of distributed systems of

autonomous agents, so called multi-agent systems (MASs) for use in

 3

manufacturing gained attention in the robotics and automation research

community. Due to their distributed nature, MASs promise, at least theoretically,

some advantages that make them attractive structures for control and execution of

manufacturing processes. Agents are modular system elements having robustness

and fault tolerance and are easily maintainable and extendible. These features of

MASs hold the potential of building manufacturing systems with greater

flexibility then the currently used monolithic ones [2].

 The concepts of CIM include a broad range of definitions from

manufacturing to control and computer technology. It cannot be interpreted

without a basic knowledge of software terms and philosophies. Section 1.2

discusses the technology of CIM from the programmer's perspective.

 1.2 Software Technology

 Constant innovation in computing hardware and software have made a

multitude of powerful and sophisticated applications available to users at their

desktops and across their networks. Yet, with such sophistication have come many

problems for developers, software vendors, and users. For one, such large and

complex software is difficult and time-consuming to develop, maintain, and

revise. Revision is a major problem for monolithic applications, even operating

systems, in which features are so intertwined that they cannot be individually and

independently updated or replaced. Furthermore, software is not easily integrated

when written using different programming languages and when running in

separate processes or on separate machines.

 Object-oriented programming has long been advanced as a solution to the

problems at hand. However, while object-oriented programming is powerful, it

has yet to reach its full potential because, in part, no standard framework exists

through which software created by different vendors can interact within the same

address space and across network and machine architecture boundaries.

 4

 The Microsoft's solution to the object-oriented paradigm is represented by

Object Linking and Embedding (OLE) components. OLE offers a solution and a

future extensible standards and mechanisms to enable software developers to

package their functionality, and content, into reusable components, like an

integrated circuit. Instead of worrying about how to build functions, developers

can simply acquire or purchase that function without having to care about its

internal implementation

 Client/server computing is moving into the mainstream of corporate

information systems. With this move comes the need for client/server applications

that can access enterprise-wide data. Much of this data is stored in databases,

which are accessible for the clients, which will then process the information and

perform individually. The common interface architecture is Open Database

Connectivity (ODBC), a gateway to manage the communication with multiple

back-end databases. Single or multiple servers act as file or information storage,

and interface suppliers responding to client drivers on client's Application

Program Interfaces (API's) [3]. Figure 1.2 depicts a typical client server

relationship between client drivers and server interfaces.

Figure 1.2 Client Server Relationship [3]

DNA architecture maps out the framework for building scaleable, three-

tier distributed applications that can run over any network, including the web. The

 5

term “three-tiered” defines the computers on which the application/service is

running, which are:

• Client tier: a local computer on which either a Web browser

displays a Web page that can display and manipulate data from a remote data

source, or (in non–Web-based applications) a stand-alone compiled front-end

application.

• Middle tier: a server computer that hosts components that

encapsulate an organization's business rules. Middle-tier components can be

either Active Server Page scripts executed on Internet Information Server, or

(in non–Web-based applications) compiled executables.

• Data source tier: a computer hosting a database management

system (DBMS), such as a SQL Server database. (In a two-tier application, the

middle tier and data source tier are combined.)

 Many technologies under the DNA umbrella can help developers to create

applications for all three tiers: navigation and user interface, business processes,

and data storage. The user interface might be a DNA client application that runs in

a Web browser. The business process might be a DNA application that runs on a

Web server. Data storage could be handled by a DNA application running on

almost any type of computer, from PC server to mainframe.

1.3 Scope

 The first scope of this study is to develop a scheduling methodology which

includes “priority” in job dispatching with an “urgent order” application, and

realize it in the test-bed of Middle East Technical University Mechanical

Engineering Department Computer Integrated Manufacturing Laboratory

(METUCIM). The second scope is to develop a new control method to make the

production in batches for ordered parts. The shop-floor is to be modeled as a

distributed multi-agent system with typical agents of machines such as CNC,

Robot, Pneumatic Linear Robot Drive (PLRD), Buffer, and AGV; and parts with

 6

all the operational information located on the main database. The whole system is

controlled by the end user (client-tier), which has the necessary access password

to the web site. While Internet Information Server (IIS) and Microsoft Transaction

Server (MTS) are running on the main server computer (business-tier), SQL

server is working on the back up computer (data source-tier).

The developed methodology is based on an object-oriented modeling

approach where particular agents and their inheritances are assigned to classes.

The developed software is generally written in Visual Basic 6.0, the web site is

designed with Visual InterDev 6.0, and the database is constructed on SQL Server

7.0. This multi language, n-tier structure also reveals the advantages of DNA and

Component Object Model (COM) technology.

1.4 Outline

 Chapter 2 consists of a survey related to flexible manufacturing systems,

their control, scheduling methods, modeling techniques and related software

technology. Chapter 3 describes the system and data model of the developed

method “Agent Version 1.1”. Chapter 4 gives the description about development

of three-tiered system model. Chapter 5 describes how the “Agent v1.1” system

works by the test runs. Chapter 6 includes the concluding remarks and possible

future work plans. Appendices A, B, C, D and E gives the detailed information on

User’s Manual, G-Codes of test runs, Key and Ids and sample code respectively.

 7

CHAPTER 2

LITERATURE SURVEY

2.1Flexible Manufacturing System (FMS):

 An FMS can be defined as a computer-controlled configuration of semi-

dependent workstations and material-handling systems designed to efficiently

manufacture various part types with low to medium volume. It combines high

levels of flexibility with high productivity and low level of work-in-process

inventory. The need for flexibility, efficiency, and quality has imposed a major

change in manufacturing industries. An FMS can be considered flexible if it is

able to process parts as and when they arrive into the system. Use of flexible

manufacturing systems lead to:

• Increased product variety to satisfy customer needs.

• Shorter product development cycle.

• Flexibility to adapt to changes in the market.

• Improved capital/equipment utilization.

• Increased productivity and decreased costs of goods and services to

maintain the market share.

• Reduced set up time and work-in-process (WIP).

• Quick cell creation for a new product family by simply re-

programming the FMS.

 One of the objectives of an FMS is to achieve the flexibility of low volume

production while retaining the efficiency of high-volume mass production. To

achieve this efficiency, various decisions must be made. Some of these decisions

 8

are the selection of manufacturing control type, selection of scheduling type and

choosing the right software tools. [4]

2.1.1 Requirements for Next Generation Manufacturing Systems

 The manufacturing enterprises of the 21st century will be in an

environment where markets are frequently shifting, new technologies are

continuously emerging, and competitors are multiplying globally. Manufacturing

strategies should therefore shift to support global competitiveness, new product

innovation and introduction, and rapid market responsiveness. The next

generation manufacturing systems will thus be more strongly time-oriented, while

still focusing on cost and quality. Such manufacturing systems will need to satisfy

the following fundamental requirements:

• Enterprise Integration: In order to support global competitiveness

and rapid market responsiveness, an individual or collective

manufacturing enterprise will have to be integrated with its related

management systems (e.g., purchasing, orders, design, production,

planning & scheduling, control, transport, resources, personnel,

materials, quality, etc.) and its partners via networks.

• Distributed Organization: For effective enterprise integration

across distributed organizations, distributed knowledge-based systems

will be needed so as to link demand management directly to resource

and capacity planning and scheduling.

• Heterogeneous Environments: Such manufacturing systems will

need to accommodate heterogeneous software and hardware in both

their manufacturing and information environments.

• Interoperability: Heterogeneous information environments may

use different programming languages, represent data with different

representation languages and models, and operate in different

computing platforms. The sub-systems and components in such

 9

heterogeneous environments should interoperate in an efficient manner.

Translation and other capabilities will be needed to enable such

interoperation or interaction.

• Open and Dynamic Structure: It must be possible to dynamically

integrate new subsystems (software, hardware, or manufacturing

devices) into or remove existing subsystems from the system without

stopping and reinitializing the working environment. This will require

an open and dynamic system architecture.

• Cooperation: Manufacturing enterprises will have to fully

cooperate with their suppliers, partners, and customers for material

supply, parts fabrication, final product commercialization, and so on.

Such cooperation should be in an efficient and quick-response manner.

• Integration of humans with software and hardware: People and

computers need to be integrated to work collectively at various stages

of the product development and even the whole product life cycle, with

rapid access to required knowledge and information. Heterogeneous

sources of information must be integrated to support these needs and to

enhance the decision capabilities of the system. Bi-directional

communication environments are required to allow effective, quick

communication between human and computers to facilitate their

interaction.

• Agility: Considerable attention must be given to reducing product

cycle time to be able to respond to customer desires more quickly.

Agile manufacturing is the ability to adapt quickly in a manufacturing

environment of continuous and unanticipated change and thus is a key

component in manufacturing strategies for global competition. To

achieve agility, manufacturing facilities must be able to rapidly

reconfigure and interact with heterogeneous systems and partners.

• Scalability: Scalability means that additional resources can be

incorporated into the organization as required. This capability should be

available at any working node in the system and at any level within the

 10

nodes. Expansion of resources should be possible without disrupting

organizational links previously established.

• Fault Tolerance: The system should be fault tolerant both at the

system level and at the subsystem level so as to detect and recover from

system failures at any level and minimize their impacts on the working

environment.

 Global competition and rapidly changing customer requirements are

forcing major changes in the production styles and configuration of manufacturing

organizations. Increasingly, traditional centralized and sequential manufacturing

planning, scheduling, and control mechanisms are being found insufficiently

flexible to respond to changing production styles and highly dynamic variations in

product requirements. The traditional approaches limit the expandability and

reconfiguration capabilities of the manufacturing systems. The traditional

centralized hierarchical organization may also result in much of the system being

shut down by a single point of failure, as well as plan fragility and increased

response overheads. Agent technology provides a natural way to overcome such

problems, and to design and implement distributed intelligent manufacturing

environments. [5]

2.1.2 Manufacturing Cell Control

 There are three principal types of shop-floor control architecture; the

centralized, hierarchical and heterarchical. Okuba et al. (2000) compared the

performance of a distributed control system against that of a centralized scheme

using software modules (analogous to autonomous agents) to represent each job,

transporter, and work cell. Unlike the system in this study, the communication

between modules (agents) was not specific between entities of the system, but

instead messages were broadcast to all entities. The decision as to what resource

to use in processing was made using the completion time estimates provided by

each work cell. The findings showed that the performance of the distributed

system in terms of system lead times was better than a centralized system.

 11

2.1.2.1 Traditional (centralized) approach

 The traditional Manufacturing Cell Controller, developed and

implemented for the Flexible Manufacturing Cell, uses a modified hierarchical

architecture approach [6].

 The Cell Controller architecture is a set of several modules, whose “brain”

is the Manager Module, which is responsible for the control and the supervision of

the production process of the manufacturing cell and also for the management of

cell resources. Each physical device has an module, designated by Device

Controller, which is customized to the industrial machine, such as production or

handling equipment, and it has the responsibility for the local control of the

machine, and for the execution of the jobs requested by the high level module.

Figure 2.1 Manufacturing Cell Controlling using a Traditional Approach [7]

 12

 The interface between the Cell Controller and each of the industrial

machines is implemented using the MMS (Manufacturing Message Specification)

communication protocol. MMS define a standardized message system for

exchanging real-time data and supervisory control information between

networked devices and/or computer applications in such a manner that it is

independent from the application function to be performed and from the developer

of the device or application. [7]

The traditional approach presents the following main problems:

• Reconfiguration: It fits very well for applications that present a

rigid organizational structure. However, it falls down when it is necessary

to change. (for example, new shop floor layout, new strategies for the

hierarchy, etc.).

• Learning and disturbance management: It is hard and complex

to introduce intelligence in the application, in order to optimize its

execution and to manage the disturbances and warnings.

• Distribution and decentralization: Doesn’t support efficiently the

distribution and decentralization of functions and entities.

• Code re-usability: The development of this type of applications

based on this traditional approach has the advantage of its simplicity, when

compared with other advanced approaches, but the code developed cannot

be re-used.

2.1.2.2 The agent based approach

 The multi-agent systems are defined as sets of agents, which represent the

objects of the systems and through cooperation mechanisms perform complex

tasks [8, 9]. In the automation and manufacturing domain, an agent is a software

object that represents automation and manufacturing system objects, such as tasks,

CNC machines, robots, AGVs, buffers, PLC devices and sensors.

 13

 The multi-agent technology is suitable for the distributed manufacturing

environment. The automation and manufacturing applications characteristics like

modular, decentralized, changeable, ill-structured and complex, are best suited for

agents to solve [10].

 Analyzing the benefits of multi-agent technology it is possible to conclude

that they overcome problems presented by traditional approaches:

• Autonomy : An agent can operate without the direct intervention

of external entities, and has some kind of control over their behavior

• Cooperation: The agents interact with other agents, in order to

achieve a common goal.

• Reactivity: The agents perceive their environment and response

quickly to changes that occur on it.

• Proactivity: The agents do not simply act in response to their

environment, but are able to taking the initiative, controlling its

behavior.

• Adaptation and Decentralization: The agents can be organized in

a decentralized structure, and easily be reorganized into different

organizational structures.

 Using agent-based cell controllers have some more advantages. These are:

• Platform independency: The use of Object Oriented programming

language and distributed communications platforms, such as CORBA,

to develop control applications, allows the use of the same application

in different operating systems environments (such as Windows, Linux

and Unix), being platform independent.

• Application development: Using the agent-based approach, the

software necessary to develop the application is shorter and simpler to

write, to debug and to maintain.

 14

• Code re-usability: The multi-agent technology concept allows an

easy and modular development of control applications. Additionally,

some components of the developed control application can be re-used

for other applications.

• Distribution and Autonomy: Each agent has autonomy, has

control about its behavior and has local and community knowledge. By

this way, it is possible to build distinct and independent agents that can

be placed transparently in a distributed environment.

• Plugging Intelligence: The addition of intelligence to an agent, for

example to take decisions, manage disturbances or learning, is a

transparent process for the agent and can be viewed as a plug-in of an

intelligence module, which takes easier the development of control

applications.

2.1.3 Agent Based Task Allocation and Dispatching

 The allocation of operations that belongs to a task, the dispatching and

their execution, is a crucial aspect in the control application. As a scenario the

operations are announced individually, being the task agent responsible for the

analysis and allocation of the operations. An important issue to be considered is

the precedence between operations, which affects mainly the start date for each

operation.

2.1.3.1 Hierarchical Task Allocation and Dispatching Structure

 In the hierarchical structure, there is a supervisor agent, which takes the

name of cell controller, and which is responsible for the coordination of the

operational agents that represent the cell resources. Those operational agents are

not visible from the exterior, and the task agents can only interact with the

supervisor agents.

 15

Figure 2.2 Hierarchical Task Allocation and Dispatching Structure [7]

 In this structure, the task agent decomposes the task in operations and

announces them to the supervisor agents available in the system. Each supervisor

agent (cell controller) verifies the availability to execute the operation and

elaborates a proposal to the task agent. The supervisor agent can ask for additional

information to the operational agents that coordinate, in case of don’t have enough

information to elaborate a proposal.

 After the expiration time, the task agent takes a decision and allocates the

operation to the supervisor agent that had presented the best proposal. The

supervisor agent should manage the execution of the operation, through the

dispatch of the operation to the operational agent that represents the resource that

will execute the operation. When the operation is finished, the supervisor agent

should notify the task agent.

 16

Figure 2.3 Communication Between Agents in the Hierarchical Structure[7]

2.1.3.2 Heterarchical Task Allocation and Dispatching Structure

 In the heterarchical structure, there isn’t a supervisor agent that represents

the cell controller, being the cell controller replaced by the several operational

agents that represents the cell resources.

 17

Figure 2.4 Heterarchical Organizational Structure [7]

 Initially, the task agent announces the first operation to all operational

agents available in the system. After the compilation of all proposals, the task

agent evaluates and allocates the operation to the best proposal.

 The next step is the announcement of the second operation, using the same

procedure and indicating a start date based in the end date of the previous

operation. This procedure is repeated until all operations are allocated.

 18

Figure 2.5 Communication Between Agents in the Heterachical Structure [7]

 The operational agents can start the execution of the operation after the

reception of the Inform-about message, indicating the availability to start the

operation and the position of the material. The task agent gives this indication

after the allocation and execution of the handling operations.

 The application of multi-agent systems based on the concept of distributed

artificial intelligence is believed to be one of the most promising control

architectures for next-generation manufacturing [11]. Such systems are composed

of distributed heterogeneous agents and make use of flexible control mechanisms

for creating and coordinating the resulting society of agents. This society of agents

provides the foundation for the creation of an architecture that possesses the

 19

capability to benefit manufacturing by enhancing a system's reliability,

maintainability, flexibility, fault recovery, and stability, as well as providing a

means for real-time planning and scheduling. [12]

 It is viewed control systems as "arrangements of decision-making and

decision-execution entities" whose job is to accomplish the goals of the system.

[13]. This view fits well with the idea of employing intelligent agents in these

roles. In such roles an agent can be defined as "A software program that can

perform specific tasks for a user and possesses a degree of intelligence that

permits it to perform parts of its tasks autonomously and to interact with its

environment in a useful manner" [14]. This definition implies that an agent must

be capable of interacting with its environment in a flexible goal-directed way.

This interaction would involve gathering information on its environment

(machines, orders, etc. and including other agents), recognizing important states

of the environment, making decisions based on this information, and then

affecting the environment by executing specific actions as a result of the decisions

it has made[15].

 Manufacturing control involves the coordination of the flow of both

physical items, as well as information. Therefore, the agents within agent-based

systems applied to this area are found to represent either the physical or

informational entities that are required by the system [16]. The agents of the

system are said to behave intelligently as noted by their ability to process and

react to information they receive from their environment in the form of

communication from other system agents or possibly directly from sensory input.

An agent operates by using its knowledge about the world in concert with

information received from external sources to reason about what actions to take in

order to satisfy local and global objectives.

 Hatvany (1985) [17] was one of the first to propose a heterarchical control

system. Duffie and Piper (1987) [18] then made use of agents to represent the

parts and workstations in such a production system with the part agent negotiating

 20

with workstations for its processing needs. Shaw (1988) [19] implemented the

contract net protocol for negotiation to support scheduling in his cellular

manufacturing systems. In his case, the best bidder was selected based on the

earliest finishing time. Lin and Solberg (1992) [16] made use of a market-like

model that combined objective and price mechanisms. The job orders are given

currency based on criteria such as priority and then use this currency as the basis

of negotiation with resources who are each responsible for determining their own

pricing based on such factors as utilization and queue size. Saad et al. (1997) [20]

also made use of a contract-net approach for heterarchical scheduling of a flexible

manufacturing system. Their system employed what they refer to as a production

reservation (PR) approach where the job agent schedules all the operations prior

to its release to the shop. A problem with the PR approach is that it doesn't handle

the need to reschedule jobs when machine breakdowns occur or there is a need to

modify an order. Saad et al. (1997) also proposed a single step production

reservation (SSPR) approach that schedules one operation at a time as the job

moves through the system. In terms of average tardiness, they found that SSPR

outperformed PR.

 Sousa and Ramos (1999) [21] proposed a negotiation protocol for

scheduling that is based on the contract-net but extends the concept to permit the

system to handle temporal constraints. However, it appears that the system uses a

PR approach sacrificing some of the advantage offered by the use of the SSPR

method. The bids submitted by the resources offer the time windows during which

they are free. Bid selection is then based on finding a resource that is able to finish

the part before the due date and has more free time. Recently, Lui and Yih (2001)

[11] explored applying an agent-based scheme to heterarchical control for a make-

to-order production system where each of five products make use of a dedicated

line with a predefined process plan offering no alternatives. They made use of

collaborative agents to make possible the determination of the release timing of

jobs to the system and the priority ordering of the jobs in machine cell buffers.

 21

2.2 Scheduling

 Scheduling of job shops and FMSs has received immense attention over

the last three decades and there is an extensive body of literature on job shop and

FMS scheduling research. In a production system, the scheduling problem is to

synchronize resources, which are connected by a material transport system such as

automatic guided vehicle (AGV), and parts in order to produce a variety of

products in a predetermined period of time. Scheduling rules are used to select the

next part to be processed from a set of parts awaiting service. These rules can also

be used to introduce work pieces into the system, to route parts in the system, and

to assign parts to facilities like workstations and AGVs. [22]

 Because of the complexity of an FMS, it is not very useful to find the

optimal solution in a scheduling problem since changes often occur with the

system status (e.g., arrival of urgent parts, machine breakdown, and so on).

Therefore, it is not desirable to design an optimal scheduler and spend lots of

computer time, but rather to develop a flexible scheduling tool to monitor the

system and make decisions in order to achieve the best effect by taking all

performance measures into consideration. [23] The developed tool has to be easy

to use and to react to changes in real time. It has to be expressed in terms of

parameters that have to be chosen in accordance with the system objectives, which

depend on the production situation.

 In short term scheduling, dispatching rules are usually used for

dynamically control part movement. However, no single dispatching rule has been

shown to consistently produce better results than other rules under a variety of

shop configurations and operating controls [24]. Many attempts have been made

to combine simple dispatching rules to improve their efficiency. It has been

recognized that a combination of simple dispatching rules or a combination of

heuristics including simple dispatching rules, in most cases, could lead to better

results than using individual dispatching rules.

 22

 Wen et al. (1996) [25] proposed a dynamic routing method using a fuzzy

part-family formation approach, which was combined with a certainty factor

procedure, to suggest the favorable route in a multi-cell FMS. A simulation model

was constructed to compare the performance of the proposed dynamic routing

method with the performance of the fixed routing method. The only dispatching

rule used in the model was FCFS (first come first serve). In summary, the fuzzy

clustering algorithm provided extra information that was not available in

conventional algorithms. Yu et al. (1999) [26] proposed a fuzzy inference-based

scheduling decision approach for FMS with multiple objectives, which consisted

of different and dynamic preference levels. The preference levels were dynamic

because the priority given to different objectives might change depending on the

conditions of the production environment, such as urgent part orders. A multiple

criteria scheduling decision was then made, using the partitioned combination of

the preference levels.

2.2.1 Dynamic scheduling

 Approaches to production scheduling and rescheduling in a dynamic

environment can be classified into three main categories [27]:

• Completely reactive approaches

• Predictive-reactive approaches

• Robust scheduling.

 In completely reactive approaches, no firm schedule is generated in

advance and decisions are made locally in real-time. The dynamic scheduling

problem is viewed as a queuing system by considering each machine as a server.

In the queuing system the scheduling decisions are made as events occur, thus the

system cannot be used to create predictive schedules, and so cannot benefit from

advances in optimization technologies. In this situation, simulation has been found

to be a desirable technique.

 23

 In predictive-reactive scheduling, a predictive schedule is generated in

advance of execution using available information in the shop floor. When

disruptions occur during execution, the predictive schedule needs to be modified

in order to take into account the new events. These scheduling/ rescheduling

methods implicitly treat a dynamic scheduling problem as a series of static

problems, which are resolved on a rolling horizon basis. Predictive and reactive

scheduling may thus be seen as complementary activities. An important issue in

which this complementary relationship between predictive and reactive

scheduling is highlighted is that of schedule robustness. [28]

 In the robust scheduling approach, the predictive schedule is built using

available information on the disruptions that are likely to occur during execution

of the schedule to minimize deviation between the performance measure values of

the realized and predictive schedules. Robustness is a desirable attribute of a

predictive schedule as it focuses on minimizing the effects of disruptions on the

performance measures.

 The scheduling objective is to maximize shop efficiency (minimizing

makespan), and at the same time minimize system impact caused by schedule

changes. Cowling and Johansson (2001) [28] proposed two measures, utility and

stability, to decide whether to repair a schedule or reschedule from scratch, and

surveyed rescheduling and schedule-repair techniques. Utility is the improvement

of the objective function resulting from repair, and stability measures the

deviation from the original schedule.

 In today’s business environment, due to highly competitive and dynamic

market conditions, it has become necessary for manufacturing systems to have

quick response times and high flexibility. Flexible manufacturing systems

(FMS’s) have gained attention in response to this challenge. In FMS’s to improve

delivery performance, companies often resort to rescheduling jobs on the shop

floor, selectively expediting the more urgent ones while de-expediting others. The

intention to obtain better delivery performance is not the only reason for

 24

rescheduling. This policy is sometimes inevitable because of the rush jobs, lack of

raw material, the unavailability of components for assembly, staffing problems,

etc.

 During the last few years, successful results have been achieved in using

multi-agents to solve complex dynamic scheduling problems. Multi-agents are

distributed and autonomous systems that support reactivity, and are robust against

failures locally and globally. Agents can locally react to local changes faster than

a centralized system could in an ever-changing environment, and have the ability

to cooperate to define a global feasible schedule. The application of multi-agents

leads to dynamic scheduling systems that are emergent rather than planned, and

concurrent rather than sequential. [29]

 The fundamental objective of multi-agent based-scheduling systems is to

provide robustness to disturbances, adaptability and flexibility to rapid changes,

and an efficient use of resources.

2.3 FMS Control Software

 Monitoring and controlling an FMS is a complex and important task. In

fact, modern computerized manufacturing systems have lagged far behind what

could be achieved with existing technology [30]. The cost of such systems is often

too high and it should be justified by a return on investment, which can be gained

only if the required system flexibility is assured. Flexibility is the capability to

react to the continuous market changes through easy production adaptability.

 A number of authors have stated many crucial needs for the success of

FMS control software. Joshi and Smith (1994) [30] define, as key factors for the

success are, reduction in costs of the software systems, increase in flexibility and

the ability of using it, seamless integration, and reusability. Zhang et al. (1999)

[31] assert that the minimum desirable characteristics for flexible manufacturing

systems are reusability, reconfigurability, and scalability. Venkatesh and Zhou

 25

(1998) [32] consider that the functional objective of FMS control software is to

maintain high system utilization and throughput. In addition, reusable, modifiable,

and extendible control software need to be designed. Aguirre, Weston, Martin,

and Ajuria (1999) [33] believe that major obstacles arise because of difficulties

associated with generating manufacturing control systems. Finally, it is agreed

that software architecture for FMS should embed standard usage, object-

orientation, and inherent support for flexibility.

 Actually, the modeling phase plays a crucial role during Flexible

Manufacturing Control System design. In the literature several modeling

methodologies can be found. Among them, the most relevant are queuing

networks (Buzacott and Shanthikumar, 1980) [34], IDEF0 (Gong and Lin, 1994)

[35], Petri nets (D’Souza and Khator, 1994) [36], discrete event simulation

(Haddock, 1995) [37], and object-oriented techniques (Booth, 1998;Venkatesh

and Zhou, 1998) [38].

 In fact, in the last ten years the supremacy of object-oriented (OO)

approaches with respect to reusability, extendibility, and modifiability in control

software design has been largely proven.

2.3.1 Object-oriented modeling, design, and programming

 One main activity in software development is the achievement of a

conceptual model of it. Furthermore, for the maintenance and modification of

such software, the comprehension of its global organization, the relationships

among its components and their response to external changes are essential phases.

For these reasons, in the object-oriented paradigm the design, modeling, and

analysis phases of the software system development play a crucial role. Object-

modeling techniques (OMT) are widely recognized as powerful instruments in

preliminary phases of software design. This is also because of the existing

commercial tools, which aid the designer through visual modeling, code

generation, and reverse engineering.

 26

 The OO paradigm for software development allows the designer to

achieve three main advantages. The first concerns software maintenance; the

program results are simpler and easier to understand. The programmer can view

only the detail degree he retains to be important. The second is relative to code

modifications; often it is sufficient to insert a new class into the system without

otherwise changing anything. In fact, a new class inherits characteristics of its

parent class and the designer must only add the new characteristics of the class.

The third advantage is regarding class reutilizing; once a class has been defined, it

can be reused in other programs with no relevant code changes [39].

2.3.1.1 Transactions

 A transaction is a unit of work that is done as a single, atomic operation,

in which the operation succeeds or fails as a whole. For example, consider

transferring money from one bank account to another, which involves two steps:

withdrawing the money from the first account and depositing it in the second. It is

important that both steps succeed; it is not acceptable for one step to succeed and

the other to fail. A database that supports transactions is able to guarantee this.

[40]

 Either being committed or being rolled back can complete transactions.

When a transaction is committed, the changes made in that transaction are made

permanent. When a transaction is rolled back, the affected rows are returned to the

state they were in before the transaction was started. To extend the account

transfer example, an application executes one SQL statement to debit the first

account and a different SQL statement to credit the second account. If both

statements succeed, the application then commits the transaction. But if either

statement fails for any reason, the application rolls back the transaction. In either

case, the application guarantees a consistent state at the end of the transaction

[41].

 27

 Microsoft Transaction Server (MTS) is a component-based transaction

processing system for developing, deploying, and managing high performance,

scalable, and robust enterprise, Internet, and Intranet server applications.

Transaction Server defines an application-programming model for developing

distributed component-based applications.

 Using MTS in database transactions provides additional safety in mission-

critical modules. A distributed system with a number of COM objects running in

several PCs requires an error-free execution, the effort in searching for the error

may be great and time consuming. Transaction Server provides safe data

communication between business objects.

2.4 Modeling Techniques

 As the object oriented programming languages and HTML/ASP based web

browsers tend to become the common platform in software development and

internet, the need of modeling manufacturing components to the standards has

arisen. Also the complexity of solutions has so increased that without a modeled

start it is almost impossible to create a well functioning application. There are a

number of software modeling techniques such as IDEF0, IDEF1X, and UML

(Unified Modeling Language) available in the literature. The following sub-

sections are intended to give a brief description of these. [40]

2.4.1 IDEF0 and IDEF1X

 Integration Definition Function Modeling (IDEF0) is announced as a

Federal Information Processing Standard of United States on 1981, and is based

on the Air Force Wright Aeronautical Laboratories Integrated Computer-Aided

Manufacturing Architecture [42]. It describes the IDEF0 modeling language

(semantics and syntax), and associated rules and techniques, for developing

structured graphical representations of a system or enterprise. Use of this standard

permits the construction of models comprising system functions (activities,

 28

actions, processes, operations), functional relationships, and data (information or

objects) that support systems integration. IDEF0 models are composed of three

types of information: graphic diagrams, text, and glossary. These diagram types

are cross-referenced to each other. The graphic diagram is the major component of

an IDEF0 model, containing boxes, arrows, box/arrow interconnections and

associated relationships. Boxes represent each major function of a subject.

 Integration Definition for Function Modeling standard is used to model a

wide variety of automated and non-automated systems. For new systems, IDEF0

may be used first to define the requirements and specify the functions, and then to

design an implementation that meets the requirements and performs the functions.

For existing systems, IDEF0 can be used to analyze the functions the system that

performs and to record the mechanisms (means) by which these are done.

 Function box representation is the core of IDEF0 model. Each side of the

function box has a standard meaning in terms of box/arrow relationships. The side

of the box with which an arrow interfaces reflects the arrow's role. Arrows

entering the left side of the box are inputs. Inputs are transformed or consumed by

the function to produce outputs. Arrows entering the box on the top are controls.

Controls specify the conditions required for the function to produce correct

outputs. Arrows leaving a box on the right side are outputs. Outputs are the data or

objects produced by the function. Figure 2.6 shows a typical function

representation in IDEF0 [43].

Figure 2.6 Function representation in IDEF0

FUNCTION
NAME

Control

Input

Mechanism Call

Output

 29

 One of the most important features of IDEF0 as a modeling concept is that

it gradually introduces greater and greater levels of detail through the diagram

structure comprising the model. In this way, communication is enhanced by

providing the reader with a well-bounded topic with a manageable amount of

detail to learn from each diagram. IDEF0 allows defining the functions and

relationships of program modules through a systematic manner early in the design

phase. IDEF0 may be combined with the IDEF1X to build the information model

as well.

 The Integration Definition for Information Modeling (IDEF1X) is

announced as a Federal Information Processing Standard of United States on

November 1985 [44]. It describes the IDEF1X modeling language (semantics and

syntax) and associated rules and techniques, for developing a logical model of

data. IDEF1X is used to produce a graphical information model, which represents

the structure and semantics of information within an environment or system. Use

of the standard permits the construction of semantic data models, which may serve

to support the management of data as a resource, the integration of information

systems, and especially the building of computer databases. In an IDEF1X view,

an “attribute” represents a type of characteristic or property associated with a set

of real or abstract things (people, objects, places, events, ideas, combinations of

things, etc.). An entity must have an attribute or combination of attributes whose

values uniquely identify every instance of the entity. These attributes form the

“primary-key” of the entity. In this way, the primary key or the combination of

primary keys define a unique entity through which the attributes of its own and

related entities can be reached. Figure 2.7 depicts the attribute and primary key

syntax in IDEF1X [43].

 30

Figure 2.7 Attribute and primary key syntax in IDEF1X

 In an IDEF1X view, connection relationships are used to represent

associations between entities. A “connection relationship” (also referred as a

“parent-child relationship”) is an association or connection between entities in

which each instance of one entity, referred to as the parent entity, is associated

with zero, one, or more instances of the second entity, referred to as the child

entity, and each instance of the child entity is associated with zero or one instance

of the parent entity. A solid line depicts an identifying relationship between the

parent and child entities as in Figure 2.8 [43]. If an identifying relationship exists,

the child entity is always an identifier-dependent entity, represented by a rounded

corner box, and the primary key attributes of the parent entity are also migrated

primary key attributes of the child entity.

 31

Figure 2.8 Identifying Relationship Syntax in IDEF1X

 IDEF0 and IDEF1X are powerful tools in modeling functionality,

information flow and structure of an enterprise. If used together they form a full

picture of working modules and their communication.

2.4.2. UML

 The Unified Modeling Language (UML) is an international standard

notation for object-oriented analysis and design. UML is probably the most

widely known and used notation for object-oriented analysis and design. It is the

result of the merger of several early contributions to object-oriented methods.

UML is the product of a long history of ideas in the computer science and

software engineering area. The development of UML began in October of 1994

when Grady Booch and Jim Rumbaugh of Rational Software Corporation started

their work on unifying the Booch and OMT (Object Modeling Technique)

methods [45].

 A key motivation behind the development of the UML has been to

integrate the best practices in the industry, encompassing widely varying views

 32

based on levels of abstraction, domains, architectures, life cycle stages,

implementation technologies, etc.

 The primary design goals of the UML are as follows:

• Provide users with a ready-to-use, expressive visual modeling

language to develop and exchange meaningful models.

• Furnish extensibility and specialization mechanisms to extend the

core concepts.

• Support specifications that are independent of particular

programming languages and development processes.

• Provide a formal basis for understanding the modeling language.

• Encourage the growth of the object tools market.

• Support higher-level development concepts such as components,

collaborations, frameworks and patterns.

• Advance the state of the industry by enabling object visual

modeling tool interoperability.

 There are several new concepts included in UML, containing:

• Extensibility mechanisms (stereotypes, tagged values, and

constraints), threads and processes

• Distribution and concurrency (e.g., for modeling ActiveX/DCOM

and CORBA)

• Patterns/collaborations

• Activity diagrams (for business process modeling)

• Refinement (to handle relationships between levels of abstraction)

• Interfaces and components

• A constraint language.

 33

 Many of these ideas mentioned above were present in various individual

methods and theories but UML brings them together into a coherent whole.

 In its current form UML is comprised of two major components: a meta-

model and a notation. UML is unique in that it has a standard data representation,

which is called the meta-model. It describes the objects, attributes, and

relationships necessary to represent the concepts of UML within a software

application. The UML notation is rich and full bodied. It is comprised of two

major subdivisions.

 There is a notation for modeling the static elements of a design such as

classes, attributes, and relationships. There is also a notation for modeling the

dynamic elements of a design such as objects, messages, and finite state machines.

Static models are presented in class diagrams. The purpose of a class diagram is to

depict the classes within a model. In an object-oriented application, classes have

attributes (member variables), operations (member functions) and relationships

with other classes. A class icon is simply a rectangle divided into three

compartments. The topmost compartment contains the name of the class. The

middle compartment contains a list of attributes (member variables), and the

bottom compartment contains a list of operations (member functions). Figure 2.9

shows a typical UML description of a class that represents a circle [45].

 34

 Figure 2.9 Circle Class

 Also, Figure 2.10 shows how classes and instances are represented [45],

however unfortunately, UML does not distinguish adequately between types and

classes notationally; but the stereotype «type» can be added to the class icon to

show the difference. Stereotypes are tags that can be added to objects to classify

them in various ways. Stereotypes can be added to classes, associations,

operations, use cases, packages, and so on. Stereotypes make the language

extensible, adding extra meaning to the basic pieces of syntax. Notice that

instance names are always underlined; otherwise the notation for an instance is

exactly the same as that for a class (type).

 35

Figure 2.10 Types and Their Instances.

 The operations and attributes of an object are called its features. The

features (and possibly the name) constitute the signature of the object. It is often

useful to think of the features of an object as responsibilities. Attributes and

associations are responsibilities for knowing. Operations are responsibilities for

doing. With an object-oriented approach to data management it seems reasonable

to adopt the view that there are two kinds of object, called domain objects and

application objects. Domain objects represent those aspects of the system

 36

relatively stable or generic (in supplying services to many applications).

Application objects are those, which can be expected to vary from installation to

installation or from time to time quite rapidly.

 There are some types of attributes that objects posses. Variable attributes

are the opposite of fixed attributes and they are the default. Common attributes

require that all instances have the same value, again without necessarily knowing

what it is. Unique attributes are the opposite of common ones; each instance has a

different value. A well-known example is a primary key in a database table. The

default is neither common nor unique. The notation is one of the following:

{variable}, {fixed}, {common}, {unique}, {fixed, common}, {fixed, unique},

{variable, common}, {variable, unique}.

 The Unified Modeling Language (UML) provides system architects

working on object analysis and design with one consistent language for

specifying, visualizing, constructing, and documenting the artifacts of software

systems, as well as for business modeling. Also, in terms of the views of a model,

it defines some graphical diagrams such as use case diagrams, class diagrams,

collaboration diagrams, component diagrams, etc. As a whole, UML provides the

following:

• Semantics and notation to address a wide variety of contemporary

modeling issues in a direct and economical fashion.

• Semantics to address certain expected future modeling issues,

specifically related to component technology, distributed computing,

frameworks, and executability.

• Extensibility mechanisms so individual projects can extend the

metamodel for their application at low cost.

• Extensibility mechanisms so that future modeling approaches could

be grown on top of the UML.

• Semantics to facilitate model interchange among a variety of tools.

 37

• Semantics to specify the interface to repositories for the sharing

and storage of model artifacts.

2.5 Distributed Internet Applications (DNA) Architecture:

 Microsoft® Windows® Distributed InterNet Applications architecture for

Manufacturing (Windows DNA for Manufacturing) is a framework that allows

manufacturing software applications to integrate seamlessly with one another

[46]. It enables functional Plug and Play interchange between applications, from

Enterprise Resources Planning (ERP) to the shop floor. Windows DNA for

Manufacturing can be delivered over any network as well as link to legacy

computer systems. Windows DNA also allows to build scaleable client/server

systems that leverage new and existing Enterprise Resources Planning (ERP), and

Manufacturing Execution (MES) systems; DCS and SCADA based applications,

as well as the new breed of PC-based, shop-floor control systems[47].

 The goal of Windows® Distributed interNet Applications (DNA)

architecture is to create a framework for building applications based on the

Windows platform that unifies and integrates the personal computer and the

Internet. Windows DNA enables a computing model that fully capitalizes on the

capabilities of both the personal computer and the Internet.

 At the highest level, Windows DNA integrates these two worlds by

enabling computers to interoperate and cooperate equally well across both

corporate and public networks and by deeply integrating the core services into the

operating system. This allows developers to more easily create sophisticated

network-aware applications that can support large numbers of users. More

important, Windows DNA provides an interoperability framework based on open

protocols and published interfaces that allow customers to extend existing systems

with new functionality such as the Web. This same open model provides

extensibility "hooks," so third parties can realize new business opportunities by

creating compatible products that extend the architecture. Windows DNA

 38

applications use a standard set of Windows-based services that address the

requirements of all tiers of modern distributed applications: user interface and

navigation, business processes, and storage.

 The heart of Windows DNA is the integration of Web and client/server

application development models through a Common Object Model (COM).

Windows DNA uses a common set of services such as components, Dynamic

HTML, Web browser and server, scripting, transactions, message queuing,

security, directory, database and data access, systems management, and user

interface. These services are exposed in a unified way at all tiers for applications

to use.

 Windows Distributed interNet Application (DNA) is a general architecture

that describes how to build three-tiered applications for the Windows platform.

The purpose of this introduction is to provide developers with a general

methodology for designing and building Windows DNA applications.

Figure 2.11 Three-tiered application

 39

 A three-tiered application is an application whose functionality can be

segmented into three logical tiers of functionality: presentation services, business

services, and data services.

 The presentation services tier is responsible for:

• Gathering information from the user.

• Sending the user information to the business services for

processing.

• Receiving the results of the business services processing.

• Presenting those results to the user.

• The business services tier is responsible for:

• Receiving input from the presentation tier.

• Interacting with the data services to perform the business

operations that the application was designed to automate (for example,

order processing).

• Sending the processed results to the presentation tier.

 The data services tier is responsible for the:

• Storage of data.

• Retrieval of data.

• Maintenance of data.

• Integrity of data.

 Data services come in a variety of shapes and sizes, including relational

database management systems (RDBMSs) like Microsoft SQL Server, e-mail

servers like Microsoft Exchange Server, and file systems like the NTFS File

System.

 By contrast, a two-tiered application is an application whose functionality

can only be segmented into two logical tiers, presentation services and data

services, and while the responsibilities of the data services are the same for two-

 40

tiered and three-tiered systems, the responsibilities of the presentation services are

not. In a three-tiered application, the presentation services are responsible for

gathering information from the user, sending the user information to the business

services for processing, receiving the results of the business services processing,

and presenting those results to the user. However, the presentation services of a

two-tiered application are slightly different. The presentation services of a two-

tiered application are responsible for gathering information from the user,

interacting with the data services to perform the application's business operations,

and presenting the results of those operations to the user.

 A two-tiered application is an application whose functionality can only be

segmented into two logical tiers of functionality: presentation services and data

services.

Figure 2.12 Two-tiered application

2.5.1 Windows DNA Design Objectives

 Windows DNA is a general application architecture that describes how to

build three-tiered applications for the Windows platform. There are a number of

factors to consider when designing and building Windows DNA applications.

However, generally speaking, developers should concentrate on maximizing

overall application autonomy, reliability, availability, scalability, and

interoperability.

 41

• Autonomy: Use emissaries, executants, and MTS role-based

security to prevent clients from accessing critical resources directly.

• Reliability: Use MTS transactions to ensure accurate results in a

multi-user environment.

• Availability: Eliminate single points of failure by implementing

redundant hardware and software systems, which include using MSCS

for redundancy solutions involving clustering. Use MSMQ's store and

forward, guaranteed delivery, and dynamic routing features to

simulate increased network availability.

• Scalability: Minimize resource acquisition times by using MTS to

share resources among users and to pool resources in short supply.

Minimize resource usage times by avoiding network interaction as

part of a transaction, avoiding user input as part of the transaction, and

acquiring resources late and releasing them early. For increased

throughput and truly dynamic load balancing, use MSMQ for

emissary-to-executant and executant-to-executant communication.

• Interoperability: Use ADO or OLE DB for universal data access;

XML to share information with other applications; DCOM to access

application on UNIX and MVS; MSMQ to access message queuing

systems on other platforms; and COM Transaction Integrator

(COMTI) to execute CICS or IMS transactions on MVS systems.

 42

CHAPTER 3

SYSTEM MODEL

3.1 An Overview

 A new model for an agent-based dynamic scheduling methodology for

controlling manufacturing cells using Windows DNA, will be discussed in this

chapter. In the previous studies the framework and detailed design model of this

approach has been developed by Özgür Ünver during his Ph.D. studies “Rapid

Development Methodology for Control of Manufacturing Systems Using

Windows DNA” and Tolga Cangar during his M.S. studies “Development of an

Agent Based Flexible Manufacturing Cell Controller Using Windows DNA”.

 The agent-based dynamic scheduling method for manufacturing execution

system software has been implemented in Integrated Manufacturing Technologies

Research Group (IMTRG), Middle East Technical University Mechanical

Engineering Department Computer Integrated Manufacturing (METUCIM)

laboratory. User, Business, and Data Services of the “Agent Version 1.1” has been

mostly written under Visual Basic 6.0. For the communication and event driven

messaging of agents, Microsoft Message Queue Server (MSMQ) is used, stateless

objects for database search and update has been deployed in Microsoft

Transaction Server (MTS). The common database of the “Agent Version 1.1” has

been constructed using SQL Server 7.0. Internet Information Server (IIS) has been

used to grant access to the web sites ASP and HTML pages, which are designed in

Visual InterDev 6.0, a product of Microsoft Visual Studio. In summary, the

“Agent Version 1.1” package includes:

 43

• 7 agent controller EXE programs to drive the hardware components

accompanying 48 channels I/O card, RS 232 serial communications,

MSMQ services and MTS components,

• 18 MTS components for database search, update, addition and

modification, 1 stateless part agent component, and 1 messenger for

MSMQ services,

• 1 SQL Server Database on Internet Information Server with 21 tables

and 70 stored procedures,

• 1 complete web-site with 21 ASP and 8 HTML pages including a “live

cam” link to control, monitor, and manage the enterprise including

detailed help and information sources.

Before proceeding with the software modules, it is necessary to give

information about the hardware of the manufacturing system, namely the

METUCIM.

3.2 METUCIM Test-bed

The flexible manufacturing system at the Mechanical Engineering

Department basically consists of a single manufacturing cell. The main material

handling system is the closed loop buffer and the 6 axis robot. Also there is a

static buffer for loading and unloading parts to the system. The movement of the

robot between the CNC Turning- and CNC Milling Machine is accomplished by

the Pneumatic Linear Robot Drive (PLRD). A general view of the system is given

in Figure 3.1.

 44

Figure 3.1 General view of METUCIM

Functionality, properties and capabilities of the manufacturing, transport

and quality control hardware can be summarized as:

1. CNC Turning Machine: Mirac/Denford/UK. PC based, medium duty

lathe having 2 simultaneously controlled axes. Equipped with a turret

having 8 stations. Door and chuck are pneumatically powered. Can

handle typically bars up to 50 mm in diameter and 150 mm in length,

speeds up to 2500 rpm. Has a user-friendly built-in interface to

visualize and debug part programs. The control is via standard RS 232

serial communication port and I/O card at a single sensor channel.

Channel state OFF indicates that there is no part program running, or

the task is finished. Channel state is ON when there is an active

program running. “M63” and “M65” codes make the channel ON and

OFF respectively.

 45

2. CNC Milling Machine: Triac/Denford/UK. PC based, medium duty

milling machine having 3 simultaneously controlled axes. Equipped

with an automatic tool magazine with 6 stations. Door, chuck and tool

magazine are pneumatically powered. Can handle parts up to 200 mm

in width and 500 mm in length, speeds up to 2500 rpm. Has a user

friendly built-in interface to visualize and debug part programs. The

control is via standard RS 232 serial communication port and I/O card

at a single sensor channel. Channel state OFF indicates that there is no

part program running, or the task is finished. Channel state is ON when

there is an active program running. “M62” and “M64” codes make the

channel ON and OFF respectively.

3. Closed Loop Buffer: SKF/UK. Unidirectional, constant speed, closed

loop buffer having 14 cups. Typically, it can handle cylindrical parts

up to 50 mm in diameter. Makes a full rotation in 1.5 minutes

approximately. Driven by a motor with gearbox. The control is via 48

channel I/O card. Has one operate channel and one counter channel.

When the operate channel is ON, it starts to rotate and stops when the

channel is OFF, the counter channel is used to count the cups passed.

4. Robot: Movemaster EX/Mitsubishi/Japan. 6 axis controlled material

handling robot. Capable of handling bars of 50 mm in diameter, weight

of 3 kg approximately. The control is by storing positions taught by the

user in its EPROM and they can be executed by external triggering of

program commands through RS232 connection from the computer. A

DSR (data set ready) signal from the serial port indicates that there is

no active program running or the task is finished.

5. Pneumatic Linear Robot Drive (PLRD): FESTO/Germany.

Pneumatically powered linear drive for the robot. Has a movement

range of 2m. Has two stop positions at both ends only. In METUCIM

configuration it is used to move the robot from CNC Turning to CNC

 46

Milling neighborhood. The control is via 48 channel I/O card. Has two

operate- and two sensor channels. When the first operate channel is

triggered and immediately released it moves to right and vice versa for

the second. Sensor channels on the left- and right positions indicate

ON when the robot is at left and right ends of its range respectively.

6. Static Buffer (AGV): Buffer used for in and out loading to the cell.

Has 3 input stations which can handle bars of 70-90-100 mm, and has

3 output stations. Is not physically connected or driven by a computer,

but as the agent, status information is kept. Although it has no

computer control and moving capabilities, it is modeled as an AGV in

the system.

 47

Figure 3.2 A closer look at the static buffer, CNC Turning machine and conveyor

Figure 3.3 A closer look at the CNC Milling machine

 48

Computers are essential parts of the METUCIM. Their properties and

functions are summarized as:

1. Agent PC: Pentium III 450, 256 MB RAM, 6.2 GB hard-disk with 17”

monitor. Has 48 channels I/O card installed. Responsible from driving

all agents via MSMQ and MTS services and two serial ports. Running

under Windows NT 4.0.

2. Robot Host PC: Pentium 100, 32 MB RAM, 3.2 GB hard-disk drive

with 14” monitor. Responsible from driving the robot from its serial

port, connected to the Agent PC via Ethernet. Receives and sends task

status to the agent PC. Running under Windows 95.

3. Primary Backup Controller PC (SQL Server): Pentium III 450, 128

MB RAM, 6.2 GB hard-disk with 17” monitor. Serves as the backup

Enterprise Controller. Internet Information Server, Microsoft

Transaction Services (MTS) and Message Queue Services as the main

backup and FTP site. Running under Windows NT 4.0.

4. Enterprise Controller PC (IIS Server): Pentium III 450, 392 MB

RAM, 6.2 GB hard-disk with 17” monitor. The main server of

Enterprise Controller, Internet Information Server, Microsoft

Transaction Services (MTS) and Message Queue Services. Running

under Windows NT 4.0.

A complete layout of METUCIM with the hardware and computers is

given in Figure 3.4.

 49

Figure 3.4 Complete Layout of METUCIM with computers

METUCIM laboratory has a Programmable Logic Controller (PLC)

drilling and pressing station set with an additional Mitsubishi Movemaster EX

robot, and one additional buffer. It also has a new Image Processing unit for

educational purposes. This hardware is not related with the work discussed here,

so it is beyond the scope.

3.3 Software Model

 The previous software and the details of new developed software are given

in the following sections.

 50

3.3.1 Previous Software and Configuration

 The system in METUCIM was built in 1992 and lately developed in 2000.

It had designed for implementing the agent based shop floor control technology.

The system was having a simple scheduling method just for production of single

parts and it was lacking of a dynamic scheduling methodology for real

manufacturing environment. In the real manufacturing environment, there are

productions in batches, work orders have priorities (not always in a documented

way but in practical), and urgencies may occur that the manufacturer decides to

produce that order as soon as possible.

1. In the previous configuration work order can be given for only one

part. It was impossible to manufacture the parts in batches.

2. The queuing procedure was simply the First Come First Served

(FCFS) rule. The messages were automatically put in the first empty

compartment of the manufacturing queue. In the FCFS rule, if the

queue is open and event notification is enabled in that program

module, the message at the cursor location is retrieved. If there are any

remaining messages in the subsequent compartments, they move

automatically to the cursor location and wait to be processed.

3. There was no way to interfere to the manufacturing queue. It was

impossible to manufacture a part before the parts that had already

added to the manufacturing queue. Even if an order is urgent, it had to

wait.

4. There were bugs in programs of the system, so that unexpected errors

have occurring. The system was not reliable.

 51

5. There was no “live cam” application in web site of the system. The

user could not see the manufacturing processes of his order. The

system was lack of control.

6. The bidding was slow because of unnecessary messages between the

customer and server agents. The customer was sending messages to all

agents including irrelevant ones for that task.

7. The computers and the network hubs were old, so the processing and

communication was slow. The cable connections were not healthy.

3.3.2 Modifications Done

 “Dynamic scheduling” is the key word of today’s manufacturing strategy.

The SMEs must be dynamic for the demands of customers to have a portion in

manufacturing market. With this philosophy, the main developments that have

been made in this study are listed below:

1. By this program, it is possible to manufacture the parts in batches. A

single work order is enough to determine the number of parts in the

batch.

2. The queuing mechanism is changed. At the new application a

“Priority” is defined for each work order. The work orders are queued

according to their priority values so the more prior part (or batch) can

be manufactured before the others. The queuing list is dynamic that, it

is updated by a decreasing priority, each time a new work order is

added to the queuing list.

3. A new scheduling methodology is developed, including “Urgent order”

application. By this application the manufacturer or the engineer can

give a work order for an urgent part (or batch).

 52

4. Some of agent codes are added or changed in an object oriented

programming manner. Adding and compiling the new components

increased the system reliability and robustness.

5. “Live cam” is added to the web site that the user can see all the

activities in the system. After giving the order; while the

manufacturing occurs, the engineer can see and control the processes

simultaneously.

6. A new bidding procedure is developed to shorten the bidding time. In

this procedure the customer agent only sends the messages to the

agents that its probable server, not all the agents.

7. The computers are upgraded for faster processing and communication

and there is a new hub for faster data transfer in network. Connection

cables are renewed.

 53

Figure 3.5 Front view of the system, agent and robot host computers, left to right

It is aimed that the hardware architecture will support long-term flexibility

also for future modifications. All computers in the system have LAN connection

and are physically connected to each other. The FMS model of the METUCIM

reflects a distributed nature.

3.3.2.1 Manufacturing in Batches

 Today in SMEs, type of production is still not in large batches as mass

production factories but day by day, the volume is increasing by the help of new

technologies. CNC work stations, robots, AGVs are used to make the

manufacturing in larger volumes and flexible. In our system in METUCIM we

model job shops; in other words the developed agent based manufacturing control

system can be adapted to a job shop. In this situation our system must make

production in batches. The previous configuration did not allow this type of

production. Even if they are the same type of part or not, the manufacturing

engineer had had to give a work order for each part. In the new configuration, if

 54

an order includes same type of parts in batch, the manufacturing engineer gives to

system a single work order. He just gives the number of parts in the batch. The

batch size is limited to five parts because of the limited manufacturing capabilities

of the system in METUCIM, but can be increased easily if needed.

3.3.2.2 “Priority” Application

 In this study a priority based queuing methodology is used. While the

manufacturing continues, new work orders are accepted and added to the queue.

To make the production flexible, the scheduling must be dynamic for changes in

queue. A priority value is defined for each work order and recorded to the

database with this priority. Each time when the machine tool is idle, the program

part written for this agent dynamically updates the queue arranging in order

decreasing priority value, then searches for a part that has the highest priority

value to accept and carry out the manufacturing task. If the priority values are

same for two or more orders then the queuing procedure runs on the basic First

Come First Served (FCFS) rule. That, the early given work order is manufactured

earlier.

 Priority can be defined not only for a single part but also for a batch. The

parts in batches have all same priority values. In this method it is possible to

reorder the compartments of the queue by giving more prior batch orders to

manufacture.

3.3.2.3 “Urgent Order” Application

 By the developing industry and increased customer demands, today’s

manufacturing environment is very dynamic that the manufacturers must respond

very quickly. While there are many work orders in manufacturing queue, an

urgent order may be taken. If the manufacturing engineer (or the staff who decides

to accept or to reject manufacturing of an order) decides that it will be profitable,

 55

the job shop manufactures the urgent order as soon as possible. This is an ordinary

situation for SMEs, especially in Turkey.

 The first aim of this study is developing a program that can be applicable

to real manufacturing systems in job shops. From this point of view, this “Urgent

Order” situation is applied to the system in METUCIM. As in the case, if an

urgent order is taken, it is manufactured before the orders that had given already.

The urgent part is begun machining just after one part on buffer is machined. The

waiting for one part is for the simulation of time passing through row material is

carried by AGV.

3.3.3 Communication Between Agents

With the trend toward distributed computing in enterprise environments, it

is important to have flexible and reliable communication among agents.

Distributed Internet Applications (DNA) architecture is composed of independent

applications that are running on different systems to communicate with each other

and exchange messages even though the applications may not be running at the

same time. Message Queue Server technology enables these applications or

simply COM objects running at different times to communicate across

heterogeneous networks and systems that may be temporarily offline. Within an

enterprise, applications send messages to queues and read messages from queues.

 In the design of the software model of the “Agent Version 1.1” enterprise,

agent-based communication approach is applied. This allows using the

components of the software as stand-alone machines/parts as well as the elements

of a complete manufacturing system. The messaging procedure involves a

customer-server based negotiation mechanism in which the external input is given

by the user (manufacturing engineer) from a locally restricted Internet web site,

thus enhancing browsing and monitoring capabilities of online data and status.

The agent philosophy itself is an open architecture to implementation and

selection between alternatives.

 56

There is no preexisting hierarchy of some agents to others, a customer-

server relationship is adopted for the communication. A customer is simply the

agent giving some task to other, where a server is the one who accepts the task.

The heterarchy dictates that all are at the same level; that is, at some time a server

machine/part may be the customer to other machines/parts. In Figure 3.6, an agent

based relationship between a robot and a workstation is documented. To execute a

processing task coming from a part agent, CNC turning agent requests a raw

material from the server robot agent to load into its chuck, similarly the robot

agent -now a customer to the conveyor- requests from the conveyor to index the

required part. The messaging procedure continues until the acknowledgement

responses from all server agents are reached, meaning that all required pre- and

after tasks are finished.

Figure 3.6 Customer-server relationship between machine agents [38]

Status: Part Loaded

Task: Load a raw part

CNC Turning
Agent

Robot
Agent

Customer Server

Robot
Agent

Task: Index a raw part

Status: Part indexed

Conveyor
Agent

CNC Turning
Agent

Robot
Agent

 57

3.3.3.1 Bidding Mechanism

The bidding procedure involves a more complex structure including task

announcement, bid preparation, task offer, task commitment, task list and task

status queues for each agent in the system. The queuing mechanism provides

event driven function calling and program execution. It is the agent's

responsibility to search for available information and report online manufacturing

status on system database. A typical messaging procedure between two agents

(customer-server) can be described as follows (Figure 3.7): When an agent

receives a task in its task list queue, it may need to give a pre- or after-task to a

remote agent. For example, when a CNC lathe receives the task to manufacture a

part, initially some other robot agent has to load the part. So it sends

announcements to its server agents. Announcement receivers are now responsible

for preparing bids and sending them to the bids queue of the customer.

Customer
Agent

Agent_1

Agent_2

Agent_3

Agent_4
Announce Tasks

Prepare & Submit Bid

Figure 3.7 Bidding of the customer and server agents [38]

 58

After the customer receives all bids from its servers, it selects the agent

with the lowest bid value (or preferably the highest depending on the bidding

scheme) and sends it to the task offers queue of the server. The server reads the

task offer and sends an “Accept” or “Reject” acknowledgment to the customer. If

the result is “Accept”, that means that the server agent is selected, the bidding is

finished.

Customer
Agent

Server
Agent

Task Offer

Dispatch Task

Accept/Reject Task

Update Task Status

Figure 3.8 Message queues of the customer and server agents [38]

 The customer sends the task to the task list queue of the selected server

and waits for the status feedback. Any task dropped in the task list queue should

be either finished or given an error to the customer agent’s task status queue.

The message based queuing allows the agents to communicate and select

others to execute its own pre- and after-tasks. In actual manufacturing

environments most of the agents will have limited, probably single servers and/or

customers. For that case, the bidding algorithm is to be omitted. For example,

when a part agent at some sequence of its operations has only a single workstation

to produce itself, it would only send the task offer to that machine's task offers

 59

queue and wait for the “Accept” acknowledgement message. If the answer is

“Accept”, it sends the task to the servers task list and wait for task status to

complete its manufacturing. The relationship between the customer and server

provides a simplification to NP-hard scheduling problems.

3.3.3.2 Bid preparation algorithm

 There are a number of optimization approaches to the dynamic scheduling

of heterarchical multi agent systems. In contract net model, the customer agent

identifies and announces a task to be done and criteria for bids. The bidding

servers send bids for the announced task to the customer. The bid satisfying some

criteria is awarded and the task is given to the selected server. The preparation of

the bid value, in other terms, becomes the determinant scheduling approach to the

problem. In the contract net bidding algorithm, there is no pre-defined master

schedule to be followed, but any decision is made at the real time, looking at the

current situation. There are also alternate measurement criteria such as shortest

processing time (SPT), earliest due date (EDD), least slack (LS), maximum

utilization, and minimum waiting time.

 In this research the basic approach for the calculation of the minimum

expected completion time is preferred. In other words, the bid value of the server

is equal to the time required for the completion of the given task. The expected

completion time (C) is given by the formula:

(3.1)

where,

N: time left to finish the current task

Q: total processing time of the tasks in the queue

F: processing time of the task announced

FQNC ++=

 60

The queue time (Q) is decomposed of:

(3.2)

where,

C i: Expected completion time of the i'th task in the queue

n: Number of task in the queue

According to the algorithm mentioned, the bid value in response to a task

announcement would be the sum of the current, future, and expected tasks. Let's

demonstrate the preparation of the bid value by the following example:

Assume that there are two robots, which are both able to perform a

specific task with the Task_ID=30150. The Robot_Agent_1 and Robot_Agent_2 at

time t=0 receive a task announcement for task with the Task_ID=30150, at that

instance the Robot_1 is executing the task with the Task_ID=30147, whose

Task_Start_Time= -40. Also it has two more tasks in his Task_List queue with the

Task_ID=30148 and Task_ID=30149. Robot_2 is idle, and its task list queue is

empty. The tasks are their database entries are given in Table 3.1.

Table 3.1 Sample database entry of the Task_List table

Task_ID Task_Description Estimated_Time

30150 Load part from the Buffer to the WS1 50

30147 Load part from the AGV to Buffer 62

30148 Load part from the WS2 to the Buffer 48

30149 Load part from Buffer to AGV 105

In this case the bid value of the Robot_Agent_1 would be:

�
=

=
n

i
iCQ

1

22550)10548()4062(1 =+++−=C

 61

The bid value of the Robot_Agent_2 is simply the expected processing time of the

given task announcement:

As a result, at the given situation Robot_Agent_2 will receive the Task_Offer since

its bid value (expected completion time of the task announced) is smaller.

3.4 Data Model

 One of the objectives of “Agent Version 1.1” system design is to localize

data storage thus by distributing the information increase the robustness of the

system. Based on the current situation in manufacturing enterprises two main

features of database technology may be distinguished to overcome the integration

problem; integrated data and process modeling, and distributed data management

[48]. The following data model is based on the IDEF1X modeling technique.

 Even the system is of distributed nature; it is almost inevitable to store

global data in a centralized location, in a relational database. Relational databases

have gained wide acceptance especially in the area of business and administration

applications since they fulfill the demand of managing large amounts of simple-

structured and equal-structured data and providing some intuitive querying and

manipulation language. DNA provides to access almost any kind of data resource,

located anywhere, and to manage information structure according to the physical

needs of the system. One of the most commonly accepted data tools of DNA

family is the SQL Server which is a powerful, multi-user, relational database

management system designed to support high-volume transaction processing, as

well as less demanding decision-support applications. SQL Server provides data

processing capabilities (reliability, data integrity, performance, and security) that

meet or exceed those found in production-oriented minicomputer- and/or

mainframe-based database management systems. Because of its power and

502 =C

 62

stability, main “Agent Version 1.1” database has been constructed in SQL Server

7.0. Although the METUCIM system is physically a pilot shop floor consisting of

one cell and a limited number of devices (agents), there is the need of thinking the

data model for a generic system comprising the needs of a large-scale factory.

 The IDEF1X model is used to define “entities” and their “relationships”.

The concepts of this generalization and aggregation have to be extended by

cardinality constraints, i.e. the amount of relationships a single object may

participate in, and by constraints on the object's existence. Objects may be shared

by several objects or they may belong exclusively to one object. They may be

independent or dependent on the existence of other objects. To support the

consistent querying and manipulation of complex objects and their relationships,

cascading operations are necessary. Cascading operations ensure, for example, the

retrieval of dependent component objects if the corresponding complex object is

accessed. A summary of identifying relationships is given in Table 3.2.

Table 3.2 Identifying relationships in IDEF1X notation

Relationship Type One to One One to Many Many to Many

Representation
has

A B
one A has one B

is customer of

A B
one A is customer of

many B

is server of

A B
many A is server of

many B

The database model of the “Agent Version 1.1” system using IDEF1X

notation is given in Figure 3.9. It may be observed that the relational structure of

the database also represents the inheritance and hierarchy between entities. From

the figure one can inform that one part defined with a Part_ID may have one or

 63

many Process_Plan. A Process_Plan consists of one or many Operations, which

are associated with one or more WS_Agent_Operations. Each entry in

WS_Agent_Operations represents a physical connection of an operation to one or

many workstation, thereby defines alternative process plans and builds the

background of the bidding process, which is simply the self-selection between

agents.

 Part, Process_Plan and Operations entities store relatively long-term data

of the parts manufactured in a typical job-shop environment. They also give a way

to visualization with the Drawing_File_Name entry of the part and operations.

Process and operation time predictions of the part, and device agents are based on

the data stored in the Estimated_Process_Time entry of the Operations. In this

structure, the operation is defined as the task that is accomplished by a WS_Agent

only.

Each physical device, namely the Device_Agent in the environment occurs

as a table in the corresponding WS_Agent, Robot_Agent, AGV_Agent,

PLRD_Agent or Buffer_Agent tables of the database. The duplets in the WS_AGV,

WS_Robot, Robot_PLRD and Robot_Buffer tables are used to define the

customer-server relationship of the corresponding agents.

 64

Type
Brand
Status
Comp_name

CNC_ID

CNC_agent

Type
Brand
Status
Comp_name

Robot_ID

Robot_agent

Type
Brand
Status
Comp_name

AGV_ID

AGV_agent
Type
Brand
Status
Comp_name

PLRD_ID

PLRD_agent

Part_name
Revision
Rev_date
Drawing_File_Name

Part_ID

Part

Revision
Rev_date
Type

Process_Plan_ID
Part_ID(FK)

Process_plan has

G_code_no
Drawing_no
Estimed_process_time

Sequence_no
Process_plan_ID(FK)
Part_ID(FK)

Operations

consists of

CNC_ID(FK)
Robot_ID(FK)

CNC_robot

is customer of
is server of

Part_ID
Process_plan_ID
Issue_date
Completion_time
Order_status
Due_date
Priority

Work_order_no

Work_order

Start_time
End_time

Work_order_no(FK)
Sequence_no

Work_order_operations

Task_customer_agent_ID
Task_server_agent_ID
Bidding_start_time
Bidding_end_time
Queue_wait_start_time
Queue_wait_stop_time
Task_start_time
Task_end_time
Task_status

Work_order_no(FK)
Sequence_no(FK)
Task_ID(FK)

Tasks

consists of consists of

Sequence_no(FK)
Process_plan_ID(FK)
Part_ID(FK)
CNC_ID(FK)

CNC_agent_operations

is customer of

is server of

CNC_ID(FK)
AGV_ID(FK)

CNC_AGVis customer of

is server of

is customer of

Task_description

Task_ID

Task_list

consists of

Edit Date: 19.01.2004 10:53:32

Description: Agent_B

Target DB: SQLServer Rev: 1 Creator: Boran Alatas

Filename: Company: METU

IDEF 1/X Dia.

Robot_ID(FK)
PLRD_ID(FK)

Robot_PLRD

is server of

Figure 3.9 IDEF1X Data Structure [49]

 The general operational information and priority of the part is kept in the

Work_Order table. Work_Order_Operations and Tasks tables includes the details

of operations. A work order is the order given by the manufacturing engineer to

produce a part. The manufacturing sequence of the part with the selected process

plan consists of Work_Order_Operations, which is then composed of generic

Tasks selected from the Task_List table. Note that tasks are the actual working

units of the operation, an operation may be composed of many manufacturing,

transportation, and part agent tasks. Tasks are dynamic components of an active

work-order. They are very frequently added and updated following an event for

task status update in Task_Start_Time, Task_End_Time; queue status in

Queue_Wait_Start_Time, Queue_Wait_End_Time; bidding status in

Biding_Start_Time, Bidding_End_Time; and the Idle/Busy status in

Own_Task_Start_Time, Own_Task_End_Time. These information is then used for

 65

statistical data about the cell devices, work orders, part transport/manufacturing

times, lateness/tardiness values and utilization rates.

 The Config_String property is related with the controlling mechanism of

the device. For example, if the agent is controlled via serial port, the standard

communication properties such as Baud Rate, Data Bit, Parity Bid, and

Handshaking should be included in the Config_String. Device Agent tables,

namely WS_Agent, Robot_Agent, AGV_Agent, PLRD_Agent, Buffer_Agent and

duplets WS_AGV, WS_Robot, Robot_PLRD and Robot_Buffer contains data

related with the physical and relational structure of the shop-floor, which changes

only when there is a new device installed. However for a running system, Status

property is highly dynamic. It contains the current operational status of each

device and is of primary importance especially in the bidding mechanism.

3.4.1 Objects and Inheritance

When a class is derived based on another existing class, the existing

methods and properties are referenced for reuse with the new class. A subclass

uses all of the methods and properties defined in the super-classes above it within

the class hierarchy. Inheritance can be broken for individual methods and

properties when creating a subclass. Inheriting sub-classes gives the designer

programming flexibility to use some object properties, methods, and events

without rewriting the code. The nature of an agent-based system needs object-

oriented approach plus a hierarchical object design to exploit the reusability and

flexibility of the system for further modifications. It can be observed that

Part_Agent, and Device_Agents (WS_Agent, AGV_Agent, Robot_Agent,

PLRD_Agent, and Buffer_Agent) are all inherited from the abstract class Agent. So

they have common properties such as Agent_ID, State, Substate and methods

Create_Queues, Delete_Queues, Close_Queue etc. The base object Agent is

mainly responsible from the messaging and is susceptible to external events

through the incoming messages. The Part_Agent is almost identical to the

 66

Device_Agents, with a few exceptions. Part_Agent is an MTS DLL component, it

is stateless, so it has no external properties to retrieve.

Figure 3.10 DB Objects and Messenger

 The similarity between the data model and DB_Object is obvious. For

each table in the database there is a corresponding object in the collection of

database objects (Figure 3.10). The main functions are addition, deletion, and

modification of data, search and retrieval in different forms. DB.Messenger object

performs the basic functions related with the Microsoft Message Queue (MSMQ)

services, such as creating/deleting queues, peeking, retrieving and decoding

messages. Each agent has six queues, namely Task_List, Task_Announcement,

Bid, Task_Commitment, Task_Offer, and Task_Status. Message parameter is a

DB.AGV_Agent

Add
Delete
Modify
Retrieve
RetrieveAll
RetrieveServerRobot

DB.Buffer_Agent

Add
Delete
Modify
Retrieve
RetrieveAll
RetrieveCustomer
Robot

DB.Messenger

CreateQueue
DecodeToArray
DecodeToString
DeleteQueue
Download
PeekMessageAll
PeekMessageCurrent
PeekQueueAll
ReceiveMessageAll
ReceiveMessageCurrent
SendMessage
Upload
UploadText
Wait

DB.Operations

Add
Delete
Modify
Retrieve
RetrieveAll
RetrieveByPartID
RetrieveByPartIDProcessPlanID
RetrieveByProcessPlanID

DB.Part

Add
Delete
Modify
Retrieve
RetrieveAll

DB.PLRD_Agent

Add
Delete
Modify
Retrieve
RetrieveAll
RetrieveCustomer
Robot

DB.Process_Plan

Add
Delete
Modify
Retrieve
RetrieveAll
RetrieveByPartID
RetrieveByProcessPlanID

DB.Robot_Agent

Add
Delete
Modify
Retrieve
RetrieveAll
RetrieveCustomerWS
RetrieveServerBuffer
RetrieveServerPLRD

DB.Robot_AGV

Add
Delete
Modify
RetrieveByRobotID
RetrieveByAGVID

DB.Robot_PLRD

Add
Delete
Modify
RetrieveByRobotID
RetrieveByPLRDID

DB.Task_List

Add
Delete
Modify
Retrieve
RetrieveAll

DB.Tasks

Add
Delete
Modify
Retrieve
RetrieveAll
RetrieveByTaskCustomer
AgentID
RetrieveByTaskServer
AgentID
RetrieveByTaskStatus
RetrieveByWorkOrderNo

DB.Work_Order

Add
Delete
Modify
Retrieve
RetrieveAll
RetrieveByOrderStatus
RetrieveByPartID
RetrieveByProcess
PlanID
Priority

DB.Work_Order_Operations

Add
Delete
Modify
Retrieve
RetrieveAll
RetrieveBySequenceNo
RetrieveByWorkOrderNo

DB.WS_Agent

Add
Delete
Modify
Retrieve
RetrieveAll
RetrieveServerRobot

DB.WS_Agent_Operations

Add
Delete
Modify
Retrieve
RetrieveByAgentID

DB.WS_Robot

Add
Delete
Modify
Retrieve
RetrieveByRobotID
RetrieveByWSID

 67

string text, composed of items separated by semicolons. The parameters used in

message formats of these queues are given in Table 3.3.

Table 3.3 Queues and message parameters

Queue Parameters

Task_List Customer_Agent_ID, Work_Order_no, Sequence_No,

Task_ID,Sent_Time

Task_

Announcement

Customer_Agent_ID, Work_Order_No, Sequence_No,

Task_ID,Sent_Time

Bid Customer_Agent_ID, Work_Order_no, Sequence_No,

Task_ID, Bid_Value

Task_

Commitment

Customer_Agent_ID, Work_Order_no, Sequence_No,

Task_ID, Result {Accept, Reject}

Task_Offer Customer_Agent_ID, Work_Order_no, Sequence_No,

Task_ID, Result {Accept, Reject}

Task_Status Customer_Agent_ID, Work_Order_no, Sequence_no,

Task_ID, Status {0:Not Used, 1:Task_Started,

2:Task_Completed}

According to the contract-net bidding protocol, a customer, which requires

a service to be completed, announces a task at the Task_Announcement queue of

the server agents and waits for the bids to arrive at its Bid queue. After collection

of bids, it decides on the best candidate and sends a Task_Offer to the selected

agent. If the selected agent is ready to receive the task it sends its acceptance

message to the customers Task_Commitment queue. If the result is “Accept” the

customer sends the task to the receivers' Task_List queue and waits for the finish

at its Task_Status queue.

 68

3.4.2 Messaging

 Asynchronous and synchronous messaging types can be used between

applications. The asynchronous communication is like sending e-mail to a client.

The targets for messages are queues, not a specific application, hence no

dedicated session has to be established between the sending application and

receiving application. Furthermore, both applications do not need to be running,

or even connected, at the same time. On the receiving end, any number of

applications may read messages from a given queue, whenever it is convenient.

And the synchronous communication is creation of objects over the network, also

called as Remote Procedure Call (RPC). The RPC tools make it appear to users as

though a client directly calls a procedure located in a remote server program. The

client and server each have their own address spaces; that is, each has its own

memory resource that is allocated to data used by the procedure.

The basic deficiency of the synchronous messaging method is the overload

of network traffic and overhead agents' processing capabilities caused by locks of

synchronized calls. The first method provides the mechanism to preserve the

command even if the receiver is not connected or is not running at all. However,

the amount of asynchronous messages may saturate the receiver application event

notifications.

The behavioral model of the agents is based on asynchronous sub-

contractor approach. Each task is decomposed and forwarded to a server by the

customer agent whenever there is a need of pre- or after-task. The states of the

agent represent actually the state of their queues. When an MSMQ Queue is

opened, any existing or incoming message will fire the related event in the Agent

class. In any asynchronous communication model the use of states is necessary.

For example, a WS_Agent cannot physically process two manufacturing tasks at

the same time; whereas it may be an instance that two tasks are dispatched

successively. In that case, it should read and remove the initial one and close the

queue for further events. Note that, closing a queue is not removing any messages,

 69

only the receiver application disables that queue for events in its own scope. After

manufacturing, the queue is re-opened and the event Ev_Task_Received will fire

for the next message. A complete list of events related with the MSMQ Queues is

given in Table 3.4. Ev_Own_Task_Completed is not an external event but fired

internally indicating the end of the own task

Table 3.4 Agent Events

Event Name Mapped Sub at

Ev_1 Ev_Task_Received ETask_Received Agent

Ev_2 Ev_Bid_Received EBid_Received Agent

Ev_3 Ev_Task_Commitment ETask_Commitment_Received Agent

Ev_4 Ev_Service_Task_Completed ETask_Status_Received Agent

Ev_5 Ev_Own_Task_Completed Own_Task_Completed

(Internal)

Devic

e/Part

Agent

Ev_6 Ev_Task_Announced ETask_Announcement_-

Received

Agent

Ev_7 Ev_Task_Offered ETask_Offer_Received Agent

 Agents' state is divided into two groups, State and SubState. The State is

basically related with the operational status of the agent, whereas the SubState

relates to the bidding mechanism.

• St_Idle: The agent whether pre-, after-, or own task has nothing to do.

So its Task_Commitment, Task_Status, Bid are empty and closed.

• St_Waiting_Pre_Task: The agent has received a task, which requires

a pre-task to be accomplished by a server agent. The bidding process

of the pre-task has started.

 70

• St_Waiting_Own_Task: All pre tasks are finished, the own

processing (machining, transportation) of the agent has started.

• St_Waiting_After_Task: All pre tasks, and own task are finished, the

bidding process of the after-task has started.

In any state or substate the Task_Announcement and Task_Offer queues

are always open, since they do not require a physical action for completion.

Arrival of an Task_Announcement requires bid preparation, arrival of an

Task_Offer requires an “Accept/Reject” message to be sent to the customer. Both

are computed instantaneously, no state change is required.

 There are four main Substates:

• Ss_Idle: Either finished, or not completed there is no negotiation to do.

Similar to St_Idle, Task_Commitment, Task_Status, Bid are empty and

closed.

• Ss_Waiting_Bid: Task announcements are made to the server agents,

either no bid is received or the number of bids received is not equal to

the number of tasks announced or the pre-defined timeout value is not

reached.

• Ss_Waiting_Task_Commitment: The server agent is selected and the

task is offered, either the “Accept/Reject” acknowledgement is not

received or the pre-defined timeout value is not reached.

• Ss_Waiting_Service_Task: Task is sent to the Task_List queue of the

server, Either pre- or after- the service task is not yet finished.

 Initially the state and sub-state are St_Idle and Ss_Idle respectively. The

actual workflow begins with the arrival of the task at the task list queue. The task

is added to the database's Tasks table, Queue_Wait_Start_Time,

Queue_Wait_End_Time, Task_Start_Time entries are updated. ETask_Received

function evaluates and judges whether a pre-task is required. If so the agent

 71

becomes the state St_Waiting_Pre_Task and calls the function

Select_Service_Task. This function is responsible for making task announcements

to all servers for the specified task. When the first announcement is made, the

Bidding_Start_Time is updated on the database and the state Ss_Waiting_Bids is

resumed. If all bids are received, EBid_Received function selects the server agent

with the lowest bid value (shortest expected processing time), sends a task offer,

updates the database's Bidding_End_Time entry, and resumes the sub-state

Ss_Waiting_Task_Commitment. Following the arrival of the task commitment

message ETask_Commitment_Received function evaluates whether to commit or

abort the task. If the result is to commit, it sends the required pre-task to the task

list queue of the server and waits for the task status at Ss_Waiting_Service_Task

sub-state, otherwise the customer re-announces the service task and waits for the

bids at Ss_Waiting_Bids sub-state. Ev_Task_Status_Received event either will

receive a task finished message or an error. If error, then it waits until the error is

resolved and the service task is finished. A task finished message will be

evaluated at ETask_Status_Arrived function and checked whether all service tasks

are finished, if so, then the own task of the customer agent will be executed. Note

that the event Ev_Own_Task_Finished is not related with any incoming messages,

it is fired internally following an I/O state change related with the communication

of the device drivers. Start and end of the own task is recorded at the database's

Own_Task_Start_Time and Own_Task_Finish_Time. EOwn_Task_Finished

function is called after the own tasks' finish, it simply checks whether an after-task

is required, if so, an identical bidding procedure as in the pre-task will proceed, if

not, that means the current task is finished. The agent updates its Task_End_Time

and Status at the database resume idle state and re-checks its task list queue. Note

that the events Ev_Task_Announced and Ev_Task_Offered do not correspond to

any state change, they are answered instantaneously.

 The sub-contraction model between agents is given in Figure 3.11. The

part agent initially negotiates with the workstations, and sends the loading task of

the selected cell to the AGV. Robot serves to the workstation and AGV, whereas

Buffer and PLRD are servers of the robot. For the unloading task from the cell

 72

again the part agent negotiates with the AGV, which is the customer to the robot

and its servers.

Figure 3.11 Sub-contraction model [50]

Part_Agent

WS_Agent

AGV_Agent

Robot_Agent

Buffer_Agent

PLRD_Agent

1.
Bidding

2. Send Cell

Indexing Task

4.
Sen

d m
anufactu

rin
g

task
6. S

end In
dexing

Task

7. Send self-positioning

Task3.
Send C

ell

Load
ing Tas

k

5. Send Machine

Loading Task

 73

CHAPTER 4

SYSTEM DEVELOPMENT

 This chapter aims to explain the work done in building the software

components, extensions made to the present hardware, integration of the hardware

to the software, development of new control mechanisms for the equipment, and

to give a description on how to use and improve the existing package.

 Details of DNA based three-tiered architecture in “Agent Version 1.1”

system will be explained. The logical three-tiered model divides an application

into three components:

• Data services: These services join records and maintain database

integrity—for example, constraints on valid values for a work order

number and an enforced foreign-key relationship between the

Work_Order table and the Work_Order_Operations table.

• Business services: These services apply business rules and logic—for

example, adding a new task to the Work_Order table and updating the

Work_Order_Status.

• Presentation services: These services establish the user interface and

handle user input—for example, code to display the part number and

part drawing for a selected work order.

 74

Figure 4.1 Communication between system components

In this development process the work is categorized using the well-known

three-tiered model of computing in system components (business services),

database and messaging (data services), and user interface (presentation). The

overall relationship between system components is shown in Figure 4.1. Note that

besides HTML/ASP pages, which are reachable from anywhere in the world.

4.1 Business Services

4.1.1 Agent Base Class

 The core component of the agent system as its name reveals is the

“Agent.cls”. Device or Part agent classes inherit the base class agent. The agent

class is responsible from firing MSMQ related events, opening/closing queues,

and sending messages to other agents. The events of the base class Agent is given

in Table 4.1.

Machine_agents

Part_agents

SYSTEM
DATABASE

A
ct

iv
e

S
er

ve
r

P
ag

es
 h

os
te

d
by

In
te

rn
et

 In
fo

rm
at

io
n

S
er

ve
r

Internet based
WWW User

Interface
HTML/ASP Pages

ta
sk

ad
d/

up
da

te

task

m
es

sa
ge

add/update

add/update

 75

Table 4.1 Events of the Agent base class

Event Name Queue Object

ETaskAnnouncementReceived Task_Announcement

EBidReceived Bid

ETaskOfferReceived Task_Offer

ETaskCommitmentReceived Task_Commitment

ETaskReceived Task_List

ETaskStatusReceived Task_Status

An object is generally composed of properties, methods and events. Methods and

properties of an object is classified into two major categories:

• Public: The method or property can be seen from outside the module.

• Private: The method or property cannot be seen from outside, but the

internal functions can use it.

4.1.2 OCX Objects

 The user controls (OCXs) are actually standard development tools of

Visual languages; they have their own properties, methods, and events as well as

their User-Interface. A standard user control example is the textbox, which is

almost common in any development tool. The textbox is actually some piece of

existing code with the programming language built-in as a User-control.

In this model, the objects for digital I/O and serial communications related

with the control of the device are built as OCXs. The idea behind building the

controller mechanisms of the Device Agents as User Controls, is that they can

also be used later as individual tools. That is, if later in another model, the

messaging procedures or the interfaces of the Device Agents should be completely

 76

different, the programmer has still an object, which utilizes the driving mechanism

the machine.

Each device agent inherits also its related OCX object. The OCX object is

a User Control for digital I/O and serial communications related with the control

of the device. For the control of the “Agent Version 1.1” system 6 OCX user

controls have been implemented:

4.1.3 Device Agent

 Any device agent inherits the base class for its MSMQ messaging and its

OCX object for machine control. Note that, the functions of Device_Agent are

alone capable of controlling the individual machines but the inherited class Agent

is actually “the eyes of the device” open to the others. The functions of the

Automated Guided Vehicle (AGV) device agent (AGV_Agent_1) are summarized

in Figure 4.2 Also the other device agents share the identical methods but

different control mechanisms in terms of serial or I/O communications.

 77

Figure 4.2 Visual Modeler view of the AGV_Agent [40]

The user interface of the device agent is a tabbed form, and consists of:

Properties, Events, Queues, Task, and Config. The task tab can also be used to

dispatch individual tasks to the CNC Agent with a given or retrieved task

parameter.

 78

4.2 Data Services

4.2.1 Database

The database of the “Agent Version 1.1” system is built using SQL Server

7.0. SQL Server is a product in Windows DNA family, which helps construction

of SQL Server relational databases in a systematic and user-friendly environment.

The Structured Query Language (SQL) is a language used in querying, updating,

and managing relational databases. SQL can be used to retrieve, sort, and filter

specific data to be extracted from the database. SQL statements can be categorized

into ALTER, CREATE, DELETE, INSERT, SELECT and UPDATE statements.

These are used to change the structure of a table in the database, to create a new

table, to delete records from a table, to add records to a table, to perform a search

query from a database, and to change same values in the database respectively.

For example to retrieve all part data for the part with the Part_ID=30001 from the

Parts table the following SQL statement is required:

SELECT * FROM Parts WHERE Part_ID=30150

Also parameters may be passed to a query to perform searches according to user

inputs. One can define a stored procedure to pass Part_ID as a parameter for the

previous case. The stored procedure can be called by passing a value to

@prmPart_ID parameter:

CREATE Procedure spRPart

@prmPart_ID as int

AS

SELECT *

FROM Part

WHERE (Part_ID=@prmPart_ID)

RETURN

 79

 A comprehensive model of the constructed “Agent Version 1.1” database

had been explained in the previous chapter. An SQL Server database is a complete

unit with its tables, primary keys, relationships, users, views and stored

procedures. The design view of the database in SQL Server 7.0 is shown in Figure

4.3.

Figure 4.3 Design view of the SQL Server database

4.2.2 DB Objects

 Database objects are used to add, delete, modify, and retrieve data from

the SQL Server database. The objects are created and destroyed almost

immediately once they complete their action. For every table in the database there

is a corresponding DB object. They use generally the stored procedures in order to

query data. The functions of the DB.Part object are given in Figure 4.4.

 80

Figure 4.4 Methods of the DB.Part Object

DB objects are Microsoft Transactions Server components. An overview

of the main MTS screen is shown in Figure 4.5.

Figure 4.5 MTS Components

 81

4.3 Presentation Services

The web-based interface of the system is implemented using the ASP

programming model. VB-Script is used throughout the pages. Visual tools such as

buttons, figures, combo- and textboxes are applied for a user-friendly interface.

 The “Agent Version 1.1” is an actual manufacturing system to control the

shop floor devices, retrieve information about parts, operations, and statistics, to

form layout and relationships. People may have different roles in a society. In that

manner the “Agent Version 1.1” system also represents a manufacturing company

in which there are Administrator, Engineer, Operator, and User roles. The users

are prompted to indicate a valid username and password to enter the web-site. By

that, the identity of the current person is detected and stored, also unattended

entries to the system has been prohibited. The “Login Page” is shown in Figure

4.6.

Figure 4.6 Login to the system

 82

User rights are based on:

1. Administrator: Represents users that can fully administer all

information contained in the database.

2. Engineer: Represents users that can add, remove, delete parts, process

plans, operations, give work orders but cannot change the shop floor

structure.

3. Operator: Represents users that cannot change part information or

system structure but they are allowed give work orders.

4. User: Represents users that cannot change any database entry, cannot

give any work orders but can browse all information.

The complete web site root is shown in Figure 4.7. The pages can be

classified into six categories:

1. AGV_Agent, WS_Agent, PLRD_Agent, Buffer_Agent, Robot_Agent

relate to the devices available on the shop floor. WS_Robot,

Robot_PLRD, Robot_AGV indicate the connections between the

indicated agents. The Task_List page contains information about the

generic tasks. Data in these pages can be altered by Administrators

only.

2. Part, Process_Plan, Operations, WS_Agent_Operations store the static

part information. Data in these pages can be altered by Administrators

and Engineers only.

3. Work_Order_Create is the starting point in execution of a work order

(manufacturing a part). Administrators, Engineers and Operators are

allowed to give work orders.

4. Work_Order_Browse, Work_Order_Operations_Browse, Tasks_

Browse, Shop-, Device-, and Part_Status pages are used to access to

all kind of online and statistical information. Everybody can browse

the data contained in these pages.

5. Help, Login, Logout, Root are auxiliary pages to direct the user and

give information.

 83

6. Live_Cam runs Windows Media Player and connects to the web-cam

in METUCIM. The user can watch all the activities live. A screen shot

of Live_Cam link is shown in Figure 4.8.

Figure 4.7 Root page of the web site

The web is published on Internet Information Server site at the address:

http://cimlabserver.me.metu.edu.tr/Agent Information about “how to use the

system” can be found at http://cimlabserver.me.metu.edu.tr/Agent/Help.htm.

Integrated Manufacturing technologies homepage can be reached from

http://www.imtrg.me.metu.edu.tr. A sample screen of Agent Explorer's “Work

Order Create” is given in Figure 4.9.

 84

Figure 4.8 Live Cam screen

Figure 4.9 Work Order Create screen

 85

CHAPTER 5

TEST RUNS

5.1 First Test Run (“Priority” and “Urgent Order” Application)

 In this test run the “Urgent Order” application is observed. First test run is

made with five parts with the part IDs 10001, 10002, 10003, 10004 and 10005

respectively; they have the corresponding Work_Order_Nos 30198, 30199,

30200,30201 and 30202. The operations for all work orders are given in Table

5.1. Photographs of the parts are given in Figures 5.1, 5.2, 5.3, 5.4 and 5.5

respectively. G-Codes of the operations in the first test-run are given in Appendix

B, Figures B.1 to B.10. The detailed manufacturing scenario is explained in this

section.

 In a job shop, the manufacturing engineer had taken an order for the part

30198, he decided to give a priority value “3” for that order because he thought it

has very low urgency. The customer wanted the part in a month. He gave the

manufacturing order of that part using the “Agent Version 1.1”. Now the rough

part 30198 is waiting for manufacturing. According to its process plan the first

operation is turning, when the work order is given the lathe was idle and it has

began to manufacture. The turning operation is long for that part and the company

has taken the orders very fast.

 A new work order had taken at that time for the part 30199, the

manufacturing engineer had decided to give a priority value “5” because the

customer wanted the part in a week. It has added to the manufacturing queue and

loaded to the conveyor waiting for the turning operation.

 86

 While the part 30198 was still in lathe, the orders for the part 30200 had

taken. The customer wanted the part in a week. The engineer thought that this

customer always gives orders and always work with them. So decided to

manufacture the part 30200 earlier then 30199. He gave priority value “7”. It has

loaded to the conveyor.

 A new work order has taken. The customer wanted the part in three days.

The priority value “8” is given for this new order 30201. The system has still

waiting for the part 30198. The part 30201 has loaded to the conveyor.

 Lastly a work order 30202 has taken and the customer said that this part

must be produced as soon as possible, it has urgency. The engineer decided to

manufacture this part first so using the software “Agent Version 1.1”, he clicked

on the “Urgent Order” checkbox in Work Order Create page. While the part

30202 has carrying by AGV and loading to the conveyor the lathe become idle.

The part that has the highest priority except the urgent one began to machine. The

priorities and manufacturing urgencies of the parts are same for all machine tools.

The manufacturing has finished in a sequence 30198, 30201, 30202, 30200 and

30199 respectively. The details are given that given in Table 5.2.

 It is obvious that the time values are not simulate this scenario because the

machining times are short and the work order giving procedure is faster. But the

values give an idea for manufacturing sequence.

 87

Table 5.1 First test run work order details

Work

Order

No

Part ID Part_Name

Process

Plan

ID

Opera-

tions

Alter-

native

Agent IDs

30198 10001 Sample_Part_1 20001 Turning,

Milling

1001,1004

1002

30199 10002 Sample_Part_2 20001 Turning,

Milling

1001,1004

1002

30200 10003 Sample_Part_2 20001 Turning,

Milling

1001,1004

1002

30201 10004 Sample_Part_2 20001 Turning,

Milling

1001,1004

1002

30202 10005 Sample_Part_3 20001 Turning,

Milling

1001,1004

1002

Figure 5.1 Part 10001

 88

Figure 5.2 Part 10002

Figure 5.3 Part 10003

 89

Figure 5.4 Part 10004

Figure 5.5 Part 10005

 90

 The statistics of the completed work orders, the priorities and its

operations are given in Table 5.2 and Table 5.3. The data has been deduced from

the Work_Order_Browse and Work_Order_Operations_Browse screen by

selecting the work orders 30198, 30199, 30200, 30201 and 30202.

Table 5.2 Work orders statistics of the first test run

Work Order

No
30198 30199 30200 30201 30202

Issue Date
3:07:42

PM

3:08:17

PM

3:08:49

PM

3:09:02

PM

3:10:39

PM

Completion

Time

3:30:38

PM

3:38:46

PM

3:38:04

PM

3:35:53

PM

3:32:50

PM

Priority 3 5 7 8 Urgent

Table 5.3 Work order operations statistics of the first test run

Work Order

No
30198 30199 30200 30201 30202

Op.1 Start

Time

3:07:51

PM

3:08:27

PM

3:08:59

PM

3:09:12

PM

3:10:48

PM

Op.1 End

Time

3:11:47

PM

3:28:02

PM

3:24:26

PM

3:16:13

PM

3:20:26

PM

Op.2 Start

Time

3:11:48

PM

3:28:03

PM

3:24:26

PM

3:16:14

PM

3:20:26

PM

Op.2 End

Time

3:30:37

PM

3:38:45

PM

3:38:04

PM

3:35:53

PM

3:32:52

PM

 91

Any operation is composed of several tasks, which are accomplished by

individual agents. These are classified in:

• Part Agent Task: The typical part agent task, which is dispatched

from the part coordinator, is to manufacture the part itself in a selected

WS. Logically, an operation will contain a single part agent task.

• Manufacturing Task: Manufacturing of the part in the selected

workstation.

• Transport Task: Any transportation task accomplished by an AGV,

Buffer, PLRD, Robot.

Task statistics of the first test run work orders are given in Table 5.4. For

information about the devices please refer to Appendix.

Table 5.4 Task statistics of the first test run

Work Order No 30198 30199 30200 30201 30202

Total Number of Tasks 21 21 21 21 21

Number of Manufacturing Tasks 2 2 2 2 2

Number of Part Agent Tasks 2 2 2 2 2

Number of Transport Tasks 17 17 17 17 17

Task Makespan Cmax 22m:47s 30m:18s 29m:5s 26m:41s 22m:2s

Queue Time 20m:37s 43m:20s 36m:32s 25m:37s 23m:51s

Bidding Time 1s 2s 1s 1s 2s

Transport Time 4m:12s 4m:44s 6m:12s 6m:16s 5m:54s

Manufacturing Time 4m:08s 3m:45s 4m:35s 3m:23s 3m:32s

Idle Time 18m:0s 24m:59s 22m:18s 19m:50s 15m:33s

 92

Device statistics and utilization rates are given in Table 5.5

Table 5.5 Device statistics of the first test run

Device ID 1001 1002 2001 3001 4001 5001

Number of Tasks 5 5 30 10 15 30

Utilization Time 7m:12s 6m:23s 15m:50s 7s 35s 10m:46s

Makespan 16m:1s 16m:13s 30m:48s 30m:50s 30m:12s 30m:16s

Device Utilisation in

spec. Interval

11% 8.8% 15% 0.1% 0.9% 10.5%

Search Interval: 3:07:00 PM-3:39:00 PM

5.2 Second Test Run (“Manufacturing in Batches” Application)

 The second test run is made with a batch with three parts. The part IDs are

10002 for all parts , they have the corresponding Work_Order_Nos 30203, 30204,

and 30205. Part- and work order information is given in Table 5.6. Part

photograph of 10002 is given in Figure 5.2. G-Codes of the operations in the

second test-run are given in Appendix B, in figures B.3 and B.4. The process plan

of parts is identical to the one in the first test run.

 93

Table 5.6 Second test run work order details

Work Order

No
Part ID Part_Name

Process

Plan

ID

Opera-

tions

Alter-

native

Agent IDs

30203 10002 Sample_Part_2 20001
Turning,

Milling

1001,1004

1002

30204 10002 Sample_Part_3 20001
Turning,

Milling

1001,1004

1002

30205 10002 Sample_Part_4 20001
Turning,

Milling

1001,1004

1002

 The statistics of the completed work orders and its operations are given in

Table 5.7 and Table 5.8.

Table 5.7 Work orders statistics of the second test run

Work Order No 30203 30204 30205

Issue Date 4:51:18 PM 4:51:18 PM 4:51:18 PM

Completion Time 4:57:27 PM 5:01:17 PM 5:03:25 PM

Due Date 4:57:30 AM 4:57:30 AM 4:57:30 AM

Table 5.8 Work order operations statistics of the second test run

Work Order No 30203 30204 30205

Op.1 Start Time 4:51:18 PM 4:53:38 PM 4:55:59 PM

Op.1 End Time 4:53:28 PM 4:55:48 PM 4:58:09 PM

Op.2 Start Time 4:53:28 PM 4:55:48 PM 4:58:09 PM

Op.2 End Time 4:54:18 PM 4:56:38 PM 4:59:10 PM

 94

Task statistics of the second test run work orders are given in Table 5.9.

For information about the devices please refer to Appendix.

Table 5.9 Task statistics of the second test run

Work Order No 30203 30204 30205

Total Number of Tasks 21 21 21

Number of Manufacturing Tasks 21 21 21

Number of Part Agent Tasks 2 2 2

Number of Transport Tasks 17 17 17

Number of Bids Received 1 1 1

Task Makespan Cmax 13m:21s 9m:31s 16m:14s

Queue Time 4m:12s 10m:42s 13m:48s

Bidding Time 2s 1s 2s

Transport Time 4m:35s 5m:02s 5m:07s

Manufacturing Time 3m:33s 2m:59s 3m:22s

Idle Time 14m:13s 10m:5s 5m:44s

Device Statistics and utilization rates are given in Table 5.10 and 5.11.

Table 5.10 Device statistics of the second test run (agents 1001 and 1002)

Device ID 1001 1002

Number of Tasks 2 2

Utilization Time 4m:31s 4m:13s

Makespan 11m:59s 12m:14s

Device Utilisation in

spec. Interval

5.1% 4.8%

Search Interval: 4:53:00 PM-5:02:00 PM

 95

Table 5.11 Device statistics of the second test run (agents 2001 to 5001)

Device ID 2001 3001 4001 5001

Number of Tasks 16 6 8 16

Utilization Time 8m43s 5s 33s 3m:22s

Makespan 18m:54s 22m:1s 20m:08s 18m:57s

Device Utilisation in

spec. Interval

9.2% 0.03% 1% 3.2%

Search Interval: 4:53:00 PM-5:02:00 PM

In these demonstrative test runs it is observed that the actual

manufacturing times come up around 8-32% of the makespan of the current work

order. Note that, the time required for bidding and selection (communication

between agents) is around 0-3 seconds which contributes negligibly to idle time.

The majority of the idle time lost occurs in serial and I/O card communications

and part program downloads, which can be enhanced by faster but increasingly

unreliable settings. Also faster transport speeds of the conveyor, PLRD, and robot

will result in increased effectiveness but may cause errors in positioning and

material handling. Since the “Agent Version 1.1” system aims a demonstrative

integrated automation, these settings are intentionally kept at a low level for

increased safety.

 96

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this study, a new model for an agent-based dynamic scheduling

methodology for controlling manufacturing cells developed in METUCIM.

Windows DNA is used for the application of agent-based strategy and for the

system reliability and robustness. Re-configurable and flexible systems have been

the main concern of the manufacturing industry. The ability to react changes in

the product demand and controller software technology has been the determining

factor in automation. Thus, the modeling of the information and control strategy;

not only for today, but also for tomorrow; has been the key success of the

manufacturing engineer

By the developing industry and increased customer demands, today’s

manufacturing environment is very dynamic that the manufacturers must respond

very quickly. The first aim of this study is making a program that can be

applicable to real manufacturing systems in job shops. From this point of view

“Urgent Order” application is developed. While there are many work orders in

manufacturing queue, an urgent order may be taken. If the manufacturing engineer

decides that it will be profitable, the job shop manufactures the urgent order as

soon as possible.

 Today in SMEs, the manufacturing volume is increased by the help of new

technologies. In our system in METUCIM we model job shops so the developed

agent based manufacturing control strategy can be adapted to a job shop. For a

control system, manufacturing in batches is a must. In the new configuration, it is

possible.

 97

 In the design of the software model of the “Agent Version 1.1” enterprise,

agent-based communication approach is applied. This allows using the

components of the software as stand-alone machines/parts as well as the elements

of a complete manufacturing system. The messaging procedure involves a

customer-server based negotiation mechanism in which the external input is given

by the user (manufacturing engineer) from a locally restricted Internet web site,

thus enhancing browsing and monitoring capabilities of online data and status.

The agent philosophy itself is an open architecture to implementation and

selection between alternatives. There is no preexisting hierarchy of some agents to

others; the customer-server relationship is adopted for the communication. A

customer is simply the agent giving some task to other, where a server is the one

who accepts the task. The heterarchy dictates that all are at the same level; that is,

at some time a server machine/part may be the customer to other machines/parts.

The messaging procedure continues until the acknowledgement responses from all

server agents are reached, meaning that all required pre- and after tasks are

finished. Agent based communication is among the newest approaches, supporting

“stand-alone” machines to behave as individuals, with own judgement, selection,

scheduling, and machine loading features. Each individual is visible to its own,

but also has a message based relationship with the other, connected to a main

information system.

 With the trend toward distributed computing in enterprise environments, it

is important to have flexible and reliable communication among agents.

Distributed Internet Applications (DNA) architecture is composed of independent

applications that are running on different systems to communicate with each other

and exchange messages even though the applications may not be running at the

same time. Message Queue Server technology enables these applications or

simply COM objects running at different times to communicate across

heterogeneous networks and systems that may be temporarily offline. Within an

enterprise, applications send messages to queues and read messages from queues.

 98

The machine/part agent is programmed to meet its objectives based on the

available data on the main “Agent” database.

This research on Computer Integrated Manufacturing is mainly focused on

the implementation of a flexible, re-configurable manufacturing and information

system. It focuses on realizing an Agent based manufacturing cell control system

with DNA technology by the use of the hardware in Middle East Technical

University, Mechanical Engineering Department, Computer Integrated

Manufacturing Laboratory (METUCIM), Ankara, Turkey. The result is an agent

system with reduced complexity in scheduling, manufacturing execution, part

routing, software generation and a well-defined communication model. The

modular architecture has open doors to rapid system integration and code reuse.

Browsing and visualization capabilities of the dynamic interfaces will provide

user satisfaction and real-time data processing. The research is not limited to pilot

systems but aims to develop a full system model and flexible software

components especially for Small and Medium Sized Enterprises (SMEs) in

industry.

 Developed software can be interpreted as “putting things in place”. Its

scope extends from scheduling to shop floor control with online monitoring and

dispatching capabilities from the widespread Internet environment, equipped with

a user-friendly interface. However, its has certain limitations and drawbacks.

These can be summarized as:

1. The existing Quality Control Software on CMM Host Computer is

hard to be modified. So the “quality aspects” and remote programming

and control cannot be possible via integration of CMM to the system.

2. The Live Cam application must run in a Microsoft environment.

Microsoft Internet Explorer must be used and also Windows Media

Player must be downloaded. Live Cam, Active Server Pages (ASP)

and VB-Script is not yet common in all browsers. For example,

 99

Netscape does not allow to correctly browsing the system pages

running the applications. The use of Internet Explorer 4.0 or higher

versions and the use of Windows Media Player 7.0 or higher versions

are expected.

3. At the shop floor level, Device Agents give indications and warnings

for error recovery; the watch from the Internet environment is not

currently implemented.

4. The system hardware is not fast enough. The conveyor speed is low so

the machine tools wait for the part too long.

5. The programming system based on Windows NT, that an old

technology operating system for servers.

The concepts of CIM are changing rapidly. Every technological

improvement adds a new word to the FMS dictionary. The developed Agent based

architecture and database system is itself an open system for future

reconfiguration and development. By the work done in the current research,

following possible future improvements can be deducted:

1. Quality control modules should be improved, for this; a quality control

cell can be implemented for integrated use with the CMM. Quality

Control cell can be equipped with an image-processing unit, for

example a digital camera for sensing and identifying manufactured

parts.

2. Error handling and recovery functions should be improved and

coordinated to the use on ASP pages.

3. Tooling and tool management modules can be implemented in the

database.

 100

4. A conveyor, which has a higher linear speed, can be added to the

system. That will decrease the idle time for manufacturing.

5. The Internet pages can be enhanced with Computer Aided Design

(CAD) and Computer Aided Process Planning (CAPP), and G-Code

Generation to form an integrated peripheral of (CAD/CAM).

6. The operating system may be upgraded for a more reliable agent

communication and messaging on network.

 101

REFERENCES

[1] Platt; A. F., 1999, White Paper Draft, “Windows DNA for Manufacturing”,

Microsoft Corporation

[2] Friedrich, H., Rogalla, O., Dillmann, R., 1998, “Integrating skills into multi-

agent systems”, Journal of Intelligent Manufacturing, Vol. 9, pp 119-127

[3] Moffatt, C., 1992, “Designing Client/Server Applications for Enterprise

Database Connectivity”, Microsoft Press

[4] Luggen, W. W., 1991, Flexible Manufacturing Cells and Systems, Prentice

Hall, p. 19, 378

[5] Shen, W., Norrie, D.H., 1999, “Agent-Based Systems for Intelligent

Manufacturing: A State-of-the-Art Survey”, Knowledge and Information

Systems, an International Journal, Vol.1, No.2, pp 129-156

[6] A. Quintas and P. Leitão, 1997, “A Manufacturing Cell Controller

Architecture”, in Proceedings of Flexible Automation and Intelligent

Manufacturing Conference, Middlesbrough, pp 483-493.

[7] Paulo Leitão, Francisco Restivo, Goran Putnik, 2001, “A Multi-Agent Based

Cell Controller”

[8] J. Ferber Multi-Agent Systems, 1999, “An Introduction to Distributed

Artificial Intelligence”, Addison-Wesley.

 102

[9] Kim, Y. D., Yano, C. A., 1997, “Impact of throughput-based objectives and

machine grouping decisions on the short-term performance of flexible

manufacturing systems”, International Journal of Production Research, Vol.

33, No. 12, pp. 3303-3322

[10] H. Van Dyke Parunak, 1998, “What can Agents do in Industry, and Why? An

Overview of Industrially-Oriented R&D at CEC”, Industrial Technology

Institute.

[11] Lu, T.-P. and Yih, Y., 2001, “An agent-based production control framework

for multiple-line collaborative manufacturing”, International Journal of

Production Research, 39(10), pp. 2155-2176

[12] Maturana, F. P. and Norrie, D.H., 1996, “Multi agent mediator architecture

for distributed manufacturing”, Journal of Intelligent Manufacturing, 7, pp.

257-270

[13] Krishnamoorthy, B. and Kamath, M., 1999, “ A new approach to the design

of FMS control architectures”, Proceedings of the 8th Industrial Engineering

Research Conference, Phoenix, AZ, CD-ROM.

[14] Brenner, W., Zarnekow, R. and Hartmut, W., 1998, “Intelligent Software

Agents: Foundations and Applications”, Springer-Verlak, New York.

[15] Rosenschein, S. J., 1999, “ Intelligent agent architecture”, The MIT

Encyclopedia of the Cognitive Sciences, Wilson, R.A. and Keil, F. C. (eds.),

The MIT Press, Cambridge, MA, pp. 411-412

[16] Lin, G. Y.-J. and Solberg, J. J., 1992 “ Integrated shop floor control using

autonomous agents” IIE Transactions, 24(3), pp. 57-71

 103

[17] Hatvany, J., 1985, “Intelligence and cooperation in heterarchic manufacturing

systems”, Robotics and Computer-Integrated Manufacturing, 2, pp.101-104

[18] Duffie, N. A. and Piper, R. S., 1987, “Non-hierarchical control of a flexible

manufacturing cell” Robotics and Computer-Integrated Manufacturing, 3, pp.

175-179

[19] Shaw, M. J., 1988, “Dynamic scheduling in cellular manufacturing systems:

A framework for networked decision making” Journal of Manufacturing

Systems, 7(2), pp. 83-94

[20] Saad, A., Kawamura, K. and Biswas, G., 1997, “Performance evaluation of

contract net-based heterarchical scheduling for flexible manufacturing

systems” Intelligent Automation and Soft Computing, 3(3), pp. 229-248

[21] Sousa, P. and Ramos, C., 1999, “A distributed architecture and negotiation

protocol for scheduling in manufacturing systems”, Computer in Industry,

38(2), pp. 103-113

[22] Chan, T.S. Felix, Chan, H., K. and Kazerooni, A., 2003, ”Real time fuzzy

scheduling rules in FMS”, Journal of Intelligent Manufacturing, 14, pp. 341-

350

[23] Baid, N. K. and Nagarur, N. N., 1994, “An integrated decision support

system for FMS: Using intelligent simulation”, International Journal of

Production Research 32(4), pp. 951-965

[24] Ishii, N. and Talavage, J. J., 1994, “ A mixed dispatching rule approach in

FMS scheduling”, International Journal of Flexible Manufacturing Systems,

6, pp. 69-87

 104

[25] Wen, H. J., Smith, C. H. and Minr, E. D., 1996, “ Formation and dynamic

routing of part families among flexible manufacturing cells”, International

Journal of Production Research, 34(8), pp. 2229-2245

[26] Yu, L., Shih, H. M. and Sekiguchi, T., 1999, “Fuzzy interface-based multiple

criteria FMS scheduling”, International Journal of Production Research,

37(4), pp. 2315-2333

[27] Shafai, R. and Bruno, P., 1999, “Workshop on scheduling using practical

inaccurate date-Part2: An investigation of the robustness of scheduling rules

in a dynamic and stochastic environment” International Journal of Production

Research, 37, pp. 4105-4117

[28] Cowling, P. I. And Johansson, M., 2001, “Using real-time information for

effective dynamic scheduling”, European Journal of Operational Research,

139(2), pp. 230-244

[29] Dupon, A., Nieuwenhuyse, Van, I. and Vandaele, N., 2002, “The impact of

sequence changes on product lead time”, Robotics and Computer-Integrated

Manufacturing, 18, pp. 327-333

[30] Joshi, S. B. and Smith, J. S., 1994 “Computer control of flexible

manufacturing systems”, Chapman & Hall, New York, pp. 10-12

[31] Zhang, J., Gu, J., Li, P., Duan, Z., 1999 “Object-Oriented Modeling of

Control System for Agile Manufacturing Cells”, International Journal of

Production Economics, Vol. 62, pp.145-153

[32] Venkatesh, K. and Zhou, M., 1998, “Object-Oriented Design of FMS Control

Software Based on Object Modeling Technique Diagrams and Petri Nets” ,

Journal of Manufacturing Systems, Vol.17, No.2, pp. 118-136

 105

[33] Aguirre, O., Weston, R., Martin, F., and Ajuria, J. L., 1999, “MCSARCH: An

Architecture for the Development of Manufacturing Control Systems”,

International Journal of Production Economics, Vol.62, pp. 45-59

[34] Buzacott, J. A. and Shanthikumar, J. G., 1980, “Models for Understanding

Flexible Manufacturing Systems”, AIIE Transactions, Vol.12, pp. 339-350

[35] Gong, D. C. and Lin, K. F., 1994, “Conceptual Design of a Shop Floor

Control System from IDEF0”, Computers Industry Engineering, Vol.27, pp.

119-122

[36] D’Souza, K. A. and Khator, S. K., 1994, “A Survey of Petri Net Applications

in Modeling Controls for Automated Manufacturing Systems”, Computers in

Industry, Vol.24, pp. 5-16

[37] Haddock, J., 1995 “Automated Simulation Modeling and Analysis for

Manufacturing Systems”, Production Planning and Control, Vol.6, No.4, pp.

352-357

[38] Booth, A. W., 1998, “Object-Oriented Modeling for Flexible Manufacturing

System”, International Journal of Flexible Manufacturing Systems, Vol.10,

No.3, pp. 301-314

[39] Bruccoleri, M., Perrone, G. and Noto La Diega, S., 2000, “Object Oriented

Modeling for Concurrent Engineering Design”, in Proceedings of the 33rd

CIRP International Seminar on Manufacturing Systems, pp. 341-346

[40] Cangar, Tolga 2000, “Development of an Agent Based Flexible

Manufacturing Cell Controller Using Distributed Internet Applications”,

Master Thesis, Graduate School of Natural and Applied Sciences, Middle

East Technical University

 106

[41] MSDN Library Visual Studio 6.0, “Transactions”, ODBC Programmers

Reference, Part 2, Chapter 14

[42] Draft Federal Information, Processing Standards Publication 183, December

21, 1993, the Standard for Integration Definition for Function Modeling

(IDEF0).

[43] S. E. KILIÇ (1982) Scheduling of Cutting Conditions in Multi-Pass Turning

Operations, Post-Doctoral Thesis Middle East Technical University Ankara

Turkey

[44] Draft Federal Information, Processing Standards Publication 184, December

21, 1993, the Standard for Integration Definition for Information Modeling

(IDEF1X).

[45] H. ESKÌCÌOGLU, M. S. N��L�, and S. E. KILIÇ (1985) An Application of

Geometric Programming to Single-Pass Turning Operations, Proceeding of

the MTDR Conference.

[46] A. F. PLATT (1999), White Paper Draft, “Windows DNA for

Manufacturing”, Microsoft Corporation.

[47] K. HITOMI (1971) Analysis of Production Models-Part I The Schedal

Decision of Production Speeds, AIIE Transactions 8(1) 96.

[48] Kappel, G., Vieweg, S., 1994, “Database Requirements for CIM

Applications”, Integrated Manufacturing Systems, Vol. 5 No. 4/5, pp. 48-63

[49] Ünver, H. Ö., Anla�an, Ö., 2000, “Design and Implementation of an Agent

Based Shop Floor Control System using Windows DNA”, International

Journal of Computer Integrated Manufacturing, - submitted –

 107

[50] Ünver, H. Ö., Cangar, T., Anla�an, Ö., Kılıç, E., 2000, “A structured

methodology for development of heterarchical control software for

manufacturing cell using Windows DNA”, Intelligent Control Systems (ICS

2000), 14-17 August 2000, Honolulu, Hawaii, -accepted-

 108

APPENDIX A

USERS MANUAL

A.1 Hardware Boot Up

 The hardware used by the “Agent Version 1.1” system can be divided into

two groups: machines and computers. Initially, it is convenient to power up the

hardware before starting the programs. The machines' boot up sequence of

METUCIM, used by the “Agent v1.1” is listed below:

• Compressor: It is located at the floor level of the B-Block Building at

the entrance. Power up and wait until the steady state is reached.

• CNC Turning Machine (Mirac): Power up the lathe by the switch

located at the bottom of the machine. The serial port connection

(RS232) to the Agent PC and the auxiliary port connection to the relay

box should be established. By default CNC Turning Machine uses

COM2 for serial communication and Sensor Channel 2 for I/O Card.

Chuck and door are pneumatically powered, and require a pressure

level of 100-110 psi (7-7.5 bar). After turning on the editor screen will

appear. Move the axes to their end positions by pressing +X and +Z

keys. Press “Jog” and index the tool magazine to the Left Hand Side

Cutting tool by writing “T1<EOB>”. By default the “Agent v1.1”

system uses pre-defined tool offsets based on work pieces of 70 mm in

length. Load the tool offset file “70” from the “F9” menu. Leave the

chuck open by writing “M10” in the Jog screen.

 109

• CNC Milling Machine (Triac): Power up the milling machine by the

switch located at the left side of the control box. The serial port

connection (RS232) to the Agent PC and the auxiliary port connection

to the relay box should be established. By default CNC Milling

Machine uses COM1 for serial communication and Sensor Channel 5

for I/O Card. Chuck, door, and tool magazine are pneumatically

powered, and require a pressure level of 100-110 psi (7-7.5 bar). After

turning on the editor screen will appear. Move the axes to their end

positions by pressing +X, +Y and +Z keys. Position the chuck at the

most right, top and front position of the machine. By default the

“Agent v1.1” system uses pre-defined tool offsets based on work

pieces of 70 mm in length. Load the tool offset file “70” from the “F9”

menu. Leave the chuck open by writing “M10” in the Jog screen.

• Robot (Mitsubishi, Movemaster EX): Turn on the robot and by the

switches located the back of the control box. The serial port connection

(RS232) to the Robot Host PC and the LAN connection of the Host PC

to the network should be established. After turning on, move the

switch at the control box to “ON” and press “NST” and “ENT” to

move to the nest position. Leave the switch at the “OFF”.

• Pneumatic Linear Robot Drive (Festo): Connect the power supply,

note that PLRD shares the same relay box with the CNC Turning and

Milling Machines' sensor channels, located at its middle feet.

• Buffer (SKF): Connect the power supply. The correct initial position

of the cups is when the counter switch is at the OFF position (when the

cup just passes the switch).

A.2 Software Boot Up

Also computers and related software should be boot up properly for the

system to function. There are a total number of six computers and related software

in the system:

 110

• Primary Domain Controller: Its computer name is “cimlabserver”

and its IP address is “144.122.69.170”. The PDC hosts to the

Microsoft Message Queue (MSMQ) services, Internet Information

Server (IIS), and Microsoft Transaction Server (MTS). It is the main

storage of VB program source codes, and web ASP and HTML pages.

• Primary Backup Controller: Its computer name is “cimlabbackup”

and its IP address is “144.122.69.47”. The PBC also hosts to the

Microsoft Message Queue (MSMQ) services, Internet Information

Server (IIS), and Microsoft Transaction Server (MTS). The web site,

and SQL Server is hosted on the PBC. The IIS, SQL Server Service

Manager and Agent Explorer should be running during the service.

• Agent Controller: Its computer name is “cimlab-ws5” and its IP

address is “144.122.69.164”. The Agent Controller hosts to the

Microsoft Message Queue (MSMQ) services, Microsoft Transaction

Server (MTS), and all Agent Controllers. “Agent Starter” program can

be used to start/stop the agents and perform auxiliary clean up services

for the queues and database. A total number of 8 agent controllers

should be running on this computer: CNC_Agent_1, CNC_Agent_2,

CNC_Agent_3, CMM_Agent, Robot_Agent, Buffer_Agent,

PLRD_Agent, and AGV_Agent.

• Robot Controller: Its computer name is “METUCIM1” and its IP

address is “144.122.69.87”. The Robot Controller hosts to the “Robot

Server” program, which must be started initially.

A.3 Installation

 The work includes a complete web site, an SQL Server 7.0 Database, 8

device controllers and 18 DB objects including the Part_Agent, and an

Agent_Explorer. For a complete installation please follow the indicated steps:

 111

1. The primary domain controller, primary backup controller, and agent

controller PCs should run on Windows NT 4.0 or higher. At least 100

MB free hard disk space and 16 MB RAM is required.

2. PDC and PBC require Windows NT 4.0 Option Pack Setup Internet

Information Server, Message Queue Server, and Transaction Server

installed, PBC also requires Microsoft SQL Server 7.0 installed. Agent

Controllers require Message Queue and Transaction Servers installed.

3. Install the web site “Agent” on the IIS of the PBC by copying all pages

in “\WebSite” directory on the CD supplied.

4. Install the database “\Database” on the SQL Server 7.0 of the PBC by

selecting restore database command from the SQL Server menu.

5. Install the Agent Explorer to the PBC by double clicking the

“\AgentExplorer\Setup.exe”.

6. Install all agent controllers, CNC_Agent_1, CNC_Agent_2,

CNC_Agent_3, Robot_Agent, Buffer_Agent, PLRD_Agent_1,

AGV_Agent by clicking on the setup icon

“\DeviceController\[Controller_Name]\Setup.exe” on the related

Agent Controller PC from the CD supplied.

7. Install the host controller of robot by clicking on the setup icon

“\DeviceController\Robot_Agent\RobotServer\Setup.exe” on the robot

host PC.

8. Install the database drivers, Messenger and Part_Agent objects by

clicking on the setup icon in the “\MTSObject\Setup.exe” on every

computer in the system.

Note that the “Agent v1.1” system requires administrator assistance in

installation of numerous distributed program components.

A.4 Agent Explorer

 The Agent Explorer is designed to act as a server for externally sent work

orders from the web site. It should be running on the PBC which also hosts to web

 112

site and database system. It has an Browser like style to watch Computers,

installed Device Agents, created Part Agents, active/finished tasks of the active

work orders. There are also connections to the web site and database. A

screenshot from the Agent Explorer's main screen with the

Part_Agent_Operations selected is shown in Figure A1.

Figure A.1 Agent Explorer main screen, Part_Agent_Operations

A.5 Device Controllers

 Each Device Controller is responsible for utilizing the capabilities of the

manufacturing/transportation device. For this it may use parallel-, serial

communication, PLC control, Digital/Analog I/O. The agent controllers are

simple driver software for the individual machines, connected to a main database

and messaging system. Agent controllers are classified in 5 tabs:

 113

• Properties: Displays the static data about the name, type, brand,

computer name and configuration string, also the current status is

indicated (Figure A.2).

• Events: Displays both queue and task related events occurred.

• Queues: Displays the queues and current messages in the selected

queue.

Figure A.2 CNC Turning Machines Agent Properties Screen

• Task: Besides the automatic application integrated with the Agent

system, the user can also dispatch single tasks to the device. The

interface displays the task dispatching by the task parameter to the

CNC Turning machine.

• Config: The configuration screen gives a list of configuration

alternatives for the specified control mechanism of the device agent.

For example the robot agent should be configured at comport 2, with

the indicated serial port properties on the remote robot host machine

METUCIM1. The task timeout indicates the allowable time period of

the task to complete.

 114

A.6 Web Site

 The web site is published on http://cimlabserver.me.metu.edu.tr/Agent.

One can reach a detailed explanation about the use of the Agent at

http://cimlabserver.me.metu.edu.tr/Agent/Help.htm. The complete web site is also

on the “\website\” directory located on the CD. To publish these pages on an IIS

server create a new folder on IIS Web “Agent” directory for example

“C:\InetPub\wwwRoot\Agent” and simply copy all files here. Figure A.3 shows

the published Help page of the site.

Figure A.3 Help page of the published web

 115

APPENDIX B

G CODES OF TEST RUNS

In Chapter 5 two test runs have been demonstrated. The first run is based

on manufacturing of five parts each having two operations. The parts are brass

bars of 30 mm in diameter and 70 mm in length. Similarly in the second run there

is a single work order having three parts batch, but three work orders recorded to

database for every part produced. Work orders, process plan IDs and

corresponding G-Code Listings of the first and second test runs are given in Table

B1.

 116

Table B.1 Test runs and corresponding G-Code Listings

Part

ID

Process

Plan ID

Work

Order No

Seq. No In Test

Run

Machine G-Code

Listing

10001 20001 30198 1 1st Turning Fig. B1

'' '' '' 2 1st Milling Fig. B2

10002 20001 30199 1 1st Turning Fig. B3

'' '' '' 2 1st Milling Fig. B4

10003 20001 30200 1 1st Turning Fig. B5

'' '' '' 2 1st Milling Fig. B6

10004 20001 30201 1 1st Turning Fig. B7

'' '' '' 2 1st Milling Fig. B8

10005 20001 30202 1 1st Turning Fig. B9

'' '' '' 2 1st Milling Fig. B10

10002 20001

30203

30204

30205

1 2nd Turning Fig. B11

'' '' '' 2 2nd Milling Fig. B12

[BILLET Z80 X30
G21
M11
M39
G28 U0 W0
M06 T1
G99
G40
G97 S1500
M03
!FACING
G00 X32 Z2
G01 Z-0.1 F0.2
X-1 F0.1
X32 Z2

G00 X26.5
G01 Z-39.5 F0.1
X32 F0.2
G00 Z2
X25.5
G01 Z-39.5 F0.1
X32 F0.2
G00 Z2
X22
G01 Z-30 F0.1
X25.5 Z-35
X28 F0.2
G00 X32
Z2

Figure B.1 Cont’d

 117

X20.5
G01 Z-27.5 F0.1
X28 F0.2
G00 X32
Z2
!SURFACE FINISH OF UPPER
!SIDE
G00 X20
G01 Z-25 F0.1
X23 F0.2
G00 X32 Z0.2
!POCKET
G28 U0 W0
M05
M06 T3
M03
G00 Z-12
X22
G01 X15 F0.1
G00 X22
Z-13.9
G01 X15
G00 X22
Z-15.8
G01 X15
G00 X22
Z-17.7
G01 X15
G00 X22
Z-19.5
G01 X15
G00 X22
Z-20
G01 X15
G00 X22
X32 Z2
!AGAIN CUTTING INCLINED
!SURFACE
G28 U0 W0

M05
M06 T1
M03
G00 X25 Z3
Z-18
X17
G01 Z-20 F0.1
Z-30 X22
Z-28
G00 Z-18
X15.5
G01 X15 F0.1
Z-20
Z-35 X25
Z-40
G03 X30 Z-42.5 R2.5
G00 X32
Z2
!DRILLING
G28 U0 W0
M05
M06 T2
M03
G00 X0 Z2
G01 Z-4 F0.1
G00 Z2
G28 U0 W0
M05
M06 T8
M03
G00 X0 Z2
G01 Z-8
G00 Z2
G28 U0 W0
M05
M38
M10
M30

Figure B.1 Turning operation G-Code of part 10001

 118

[BILLET X40 Y40 Z80
G21
G94
G40
G97 S2000
M11
M39
G28
M06 T3
M03
G00 X0 Y0 Z2
G01 Z-10 F100
G01 X0 Y0 Z2 F400
G28
M05
M06 T1
M03

G00 X15 Y0 Z2
Z-2
G01 X-15 F100
G00 Z-4
G01 X15 F100
G00 Y15
X0
Z-2
G01 Y-15 F100
G00 Z-4
G01 Y15 F100
Z4
G28
M05
M38
M10
M30

Figure B.2 Milling operation G Code of part 10001

[BILLET Z80 X30
G21
M11
M39
G28 U0 W0
M06 T1
G99
G40
G97 S1500
M03
G00 X28 Z2
G01 X28 Z-43 F0.1
G01 X32 F0.2
G00 Z2
G00 X26
G01 Z-15 F0.1
G01 X28 F0.2
G00 Z2
G00 X20
!CREATING THE TIP IN TWO
!STEPS
G01 Z-10 F0.1
G00 X24

Z2
G00 X16
G01 Z-10 F0.1
G01 X18 F0.2
G00 Z2
G00 X10
G01 Z-10 F0.1
G01 X12 F0.1
Z2
!GIVING THE FINAL SHAPE TO
!THE TIP
G01 X5 Z0 F0.2
G01 X10 Z-10 F0.1
G00 Z2
G00 X0
G01 Z0 F0.2
G01 X10 Z-10 F0.1
G00 Z2
G00 X0
G01 Z-2.5 F0.1
!ROUNDING THE END OF THE
!TIP
G03 X4 Z-4 R3 F0.1

Figure B.3 Cont’d

 119

G00 X30
G00 Z-20
G01 X28 F0.2
!CREATING THE POCKET
G01 X20 Z-28 F0.1
G01 Z-40
G02 X30 Z-48 R17 F0.1

G00 Z2
!OPERATION IS COMPLETE
G28 U0 W0
M05
M38
M10
M30

Figure B.3 Turning operation G Code of part 10002

[BILLET X50 Y50 Z80
G21
G94
G40
G97 S2000
M11
M39
G28
M06 T2
M03
G00 X20 Y0
G00 Z2
G00 Z-15
!CREATING THE ARCS ON THE
FIRST STEP
G01 X16 F150
G01 X21
Y21
G01 X12
G01 X8 Y14
G01 X12 Y21
G00 X-12
G01 X-8 Y14
G01 X-12 Y21
G00 X-21
G00 Y0
G01 X-16
G00 X-21
G00 Y-21
G00 X-12
G01 X-8 Y-14
G01 X-12 Y-21
G00 X12

G01 X8 Y-14
G01 X12 Y-21
!CREATING THE HEXAGONAL
!SHAPE ON THE SECOND STEP
G00 X17.5 Z-25
G01 Y9.5 F150
G01 X0 Y19.5
G01 X-17.5 Y9.5
G01 Y-9.5
G01 X0 Y-19.5
G01 X17.5 Y-9.5
G00 X20 Y20
!CHANGE THE TOOL AND
CREATE THE SLOT AROUND
THE TIP
G28
M05
M06 T1
M03
G00 X7 Y0 Z0
G00 Z-9
G01 Z-11.5 F150
G03 X-7 Y0 R7 F150
G03 X7 Y0 R7
G01 Z2 F400
!MANUFACTURING OF THE
PART IS COMPLETE
G28
M05
M38
M10
M30

Figure B.4 Milling operation G Code of part 10002

 120

[BILLET Z80 X30
!PREPATORY
G21
M11
M39
G28 U0 W0
M06 T1
G99
G40
G97 S1500
M03
!FACING
G00 X32 Z2
G01 Z-0.2 F0.2
X-1 F0.1
G00 X32 Z2
!FINE CONTOURING
G00 X29.8
G01 Z-49.7 F0.1
G00 X32 Z2
!THINNING THE CYLINDER
!UNTIL 23.8 MM IN 2 TIMES
G00 X26.8
G01 Z-43.7 F0.1
X32 F0.2
G00 Z2
!SECOND PASS
G00 X23.8
G01 Z-43.7 F0.1
X32 F0.2
G00 X32 Z2
!MAKING CURVED SHAPE IN
!TWO PASS

G00 Z-14.2
G01 X23.8 F0.1
!FIRST PASS
G02 X23.8 Z-39.7 R39.5 F0.1
G00 Z-14.2
!SECOND PASS
G02 X23.8 Z-39.7 R21.4 F0.1
G00 X32 Z2
!CHANGE THE TOOL TO
!PARTING TOOL
M05
G28 U0 W0
M06 T3
M03
!OPENNING 4 SLOTS
G00 X32 Z-21.8
G01 X12 F0.1
G00 X32
G00 Z-27
G01 X12 F0.1
G00 X32
G00 Z-32.1
G01 X12 F0.1
G00 X32
G00 Z-37.7
G01 X12 F0.1
G00 X32
G00 Z2
!OPERATION COMPLETE
M05
M38
M10
M30

Figure B.5 Turning operation G Code of part 10003

 121

[BILLET X30 Y30 Z80
G21
G94
G97 S1500
M11
M39
G28
!CHANGING TOOL TO BALL
!MILLING
G28
M05
M06 T3
M03
!FIRST DRILL
G00 X9 Y0 Z4
G01 Z-14 F150
G00 Z4
!second DRILL
G00 X0 Y9 Z4
G01 Z-14 F150
G00 Z4
!THIRD DRILL
G00 X-9 Y0 Z4
G01 Z-14 F150
G00 Z4
!FOURTH DRILL
G00 X0 Y-9 Z4
G01 Z-14 F150
G00 Z4
M05 !changing tool
M06 T1
M03
!OPENNIG THE GROOVE WITH
TWO CIRCLE AND ONE PASS
!FIRST CIRCLE
G00 X7 Y0 Z4 !first pass
G01 Z-2 F150
G03 X-7 Y0 R7 F150
G03 X7 Y0 R7
G00 Z4
G00 X7 Y0 !second pass
G01 Z-4 F150
G03 X-7 Y0 R7 F150
G03 X7 Y0 R7

G00 Z4
G00 X7 Y0 !third pass
G01 Z-6 F150
G03 X-7 Y0 R7 F150
G03 X7 Y0 R7
G00 Z4
G00 X7 Y0 !fourth pass
G01 Z-8 F150
G03 X-7 Y0 R7 F150
G03 X7 Y0 R7
G00 Z4
!SECOND CIRCLE
G00 X5 Y0 !first pass
G01 Z-2 F150
G03 X-5 Y0 R5 F150
G03 X4 Y0 R5
G00 Z4
G00 X5 Y0 !second pass
G01 Z-4 F150
G03 X-5 Y0 R5 F150
G03 X4 Y0 R5
G00 Z4
G00 X5 Y0 !third pass
G01 Z-6 F150
G03 X-5 Y0 R5 F150
G03 X4 Y0 R5
G00 Z4
G00 X5 Y0 !fourth pass
G01 Z-8 F150
G03 X-5 Y0 R5 F150
G03 X4 Y0 R5
G00 Z4
!FINAL PASS
G00 X5 Y2 Z-8
G01 X-5 F150
G00 Z4
G00 X5 Y-2 Z-8
G01 X-5 F150
!FINISHING OPERATION
G28
M05
M38
M10
M30

Figure B.6 Milling operation G Code of part 10003

 122

[BILLET Z80 X30
G21
M11
M39
G28 U0 W0
M06 T1
G99
G40
G97 S2500
M03
G00 X32 Z2
G01 Z-0.1 F0.2
X-1 F0.1
G00 X32 Z2
X27
G01 Z-37 F0.1
X32 F0.2
G00 Z2
X24
G01 Z-37 F0.1
G01 Z-40 X30
X32 F0.2
G00 Z2
X21
G01 Z-37 F0.1
X32 F0.2
G00 Z2
X20
G01 Z-37 F0.1
X32 F0.2
G00 Z-10
G01 X20 F0.1
G02 X20 Z-37 R37.7 F0.1
G00 X32
G28 U0 W0
M05
M06 T3

M03
G00 Z-20.5 X20
G01 X10 F0.1
X20
G00 Z-24.5
G01 X10 F0.1
X20
Z-28.5
G01 X10 F0.1
X20
G28 U0 W0
M05
M06 T2
M03
G00 X0 Z2
G01 Z-4 F0.1
G00 Z2
G28 U0 W0
M05
M06 T8
M03
G00 X0 Z2
G01 Z-7 F0.1
G00 Z2
G28 U0 W0
M05
M06 T4
M03
G00 X0 Z2
G01 Z-7 F0.1
G00 Z2
G28 U0 W0
M05
M38
M10
M30

Figure B.7 Turning operation G Code of part 10004

 123

[BILLET X40 Y40 Z80
G21
G94
G40
G97 S1500
M11
M39
G28
M06 T1
M03
G00 X0 Y0 Z3
Z-2
G01 X14 F200
X0
Y14
Y0
X-14
X0
Y-14
Y0
Z-4

X14
X0
Y14
Y0
X-14
X0
Y-14
Y0
G00 Z3
G28
M05
M06 T3
M03
G00 X0 Y0 Z3
G01 Z-7 F400
G00 Z3
G28
M05
M38
M10
M30

Figure B.8 Milling operation G Code of part 10004

[BILLET Z80 X30
!PREPARATORY FUNCTIONS
G21
M11
M39
G28 U0 W0
M06 T1
G99
G97 S1500
M03
G00 X32 Z2
!FACING OPERATION
G01 Z-0.1 F0.2
X-1 F0.1
G00 X32 Z2
!ROUGH CUTTING (ONLY TWO
!PASSES ARE ENOUGH)
!1ST PASS
G00 X28
G01 Z-38 F0.1

X32 F0.2
G00 Z2
!2ND PASS
G00 X24.5
G01 Z-20 F0.2
X32 F0.2
G00 Z2
!3RD PASS
G00 X20
G01 Z-10 F0.2
X32 F0.2
G00 Z2
!4TH PASS
G00 X14.5
G01 Z-13 F0.2
X32 F0.2
G00 Z2
!FINE CONTOUR CUTTING
G00 X14
G01 Z-14 F0.1

Figure B.9 Cont’d

 124

X24 Z-15
Z-20
G02 X28 Z-22 R2 F0.1 C.
G01 X28 Z-38
G00 X32
Z2
!SLOT CUTTING
G28 U0 W0
M05
M06 T3

M03
G00 X32 Z-30
G01 X20 F0.1
G00 X32
Z2
!OPERATION IS COMPLETE
G28 U0 W0
M05
M38
M10

Figure B.9 Turning operation G Code of part 10005

[BILLET X30 Y30 Z70
!PREPARATORY FUNCTIONS
G21
G94
G40
G97 S1500
M11
M39
G28
M06 T1
M03
!SQUARE SLOT CUTTING
!OPERATION IN ONE CUT
G00 X0 Y0 Z4

G01 Z-5 F100
X2
Y2
X-2
Y-2
X2
Y2
G00 Z5
!OPERATION IS COMPLETE
G00 X-132 Y65 Z61
M05
M38
M10

Figure B.10 Milling operation G Code of part 10005

 125

APPENDIX C

PROCESS DIAGRAM

 The following process flow diagrams have been constructed using

IDEF1X modeling technique. They intend to summarize the process flow of the

sample functions in the agent system, namely the “Work order creation”,

“Performing a pre-task”, “Construction of a bid”, and “Performing the own task”.

The key for reading the diagrams is in Figure C.1.

Figure C.1 Key for the process diagram

User

ASP Page

Event

Table Name

Object

Changed Properties

Called internal methods

Call Call

(I) Insert

(U) Update

(D) Delete

(R) Retrieve

 126

Figure C.2 Process flow of the “Create Work Order” Function

NODE: TITLE: NO.:Create_Work_Order 1-

Admin or
Mfg. Eng.

or
Operator

Login Root Create Work Order
Send Task

DB.Work_Order

Add
I

2

Work_Order

DB.Users

Retrieve_Roles

Users

R1

Part_Coordinator

ETask_Received{
Add_Operations
Create_Part_Agent
Send_Task}

Ev_1

DB.Operations

Retrieve

Operations

R1

DB.Work_Order_
Operations

Add

2

Work_Order_Operations

I

 127

Figure C.3 Process flow of the “Perform Pre-Task” function

NODE: TITLE: NO.:Task Received perform pre-, after task completion 2-

Tasks

Device_Agent

St_Waiting_Pre_Task
Ss_Waiting_Bid

ETask_Received{
Send_Task_Started
Send_Queue_Wait_Started
Send_Queue_Wait_Finished
RequestPreTask (true)
Select ServiceTask{
Retrieve_Server
Send_Task_Announcement}}

I

DB.Tasks

Add

1

2

Ev_1

U

3

DB.Tasks

Modify(Queue_W
ait_Start_Time)

DB.Tasks

Modify(Queue_W
ait_End_Time)

U

R
Device_Agent

DB.Device_agent

RetrieveServers

4

Device_Agent
Ss_Waiting_Task_Commitment

E_Bid_Received { IsAllBidsReceived
(true) {Send Task Offer}}

Ev_2

Device_Agent

Ss_Waiting_Service_Task
E_Task_Commitment_Received{
(Accept){Send_Task}}

Ev_3

 128

Figure C.4 Process flow of the “Bid Construction” function

NODE: TITLE: NO.:Bid_Construction 3-

Work_Order

Device_Agent

ETask_Announce
mentReceived{
Send_Bid}

R

DB.Work_Order

Retrieve

2

Operations

Retrieve

3

Operations

R

Ev_6

R

DB.Work_Order

Retrieve

4

Operations

Retrieve

5

R

DB.Task_List

Retrieve

1

Task_List

R

 129

Figure C.5 Process flow of the “Perform Own-Task” function

NODE: TITLE: NO.:Perform_Own_Task 4-

Device_Agent

St_Waiting_Own_Task
E_Task_Status_Received
(Finished){Select_Own_Task{
Send_Own_Task_Started}

Ev_4

U

Device_Agent

DB.Device_Agent

Modify(Status)
1

U

Tasks

DB.Tasks

Modify(Own_Task
_Start_Time)

2

Device_Agent

St_Waiting_After_Task
Own_Task_Finished{
Send_Own_Task_Finished
RequestAfterTask(False)
SendTaskFinished}

Ev_5
U

Device_Agent

DB.Device_Agent

Modify(Own_Task
_End_Time)1

U

Tasks

DB.Tasks

Modify(Task_End
_ Time)

2

 130

APPENDIX D

KEYS & IDS

 Device Agent, Operation, Part, Process Plan, and Tasks are related with an

ID number, defining its primary key. It is more convenient to give them in tables

for further reference, Agent IDs are given in Table D.1, database entry ranges of

the Part, Process Plan, Sequence No, and Work Order are in Table D.2, and

generic tasks are given in Table D.3. METUCIM layouts with loading/unloading

positions are given in Figure D.1.

Table D.1 Agent IDs

Agent Name Agent_ID Range

WS_Agent 1001 :CNC Turning Machine

1002 :CNC Milling Machine

1003 :CMM

1004: Dummy CNC Turning

1000-1999

Robot_Agent 2001: Robot 2000-2999

AGV_Agent 3001: Static AGV 3000-3999

PLRD_Agent 4001: PLRD 4000-4999

Buffer_Agent 5001: Buffer 5000-5999

Part_Coordinator 6001: Part Coordinator (unique) 6001

Part_Agent 30001-39999: Becomes equal to created

work order no

30001-39999

User 8001: Generic ID for User (unique) 8001

 131

Table D.2 Database entry ranges

Table ID Range

Part 10001:Generic Part ID 10001-19999

Process_Plan 20001:Generic Process

Plan ID

20001-29999

Sequence_No 1:Generic Sequence No 1-999

Work_Order 30001:Generic Work

Order No

30001-39999

Table D.3 Generic Task IDs

Task ID Task Of Task Description

100001 CNC Turning Generic Task ID for the CNC Turning

100002 CNC Milling Generic Task ID for the CNC Milling

100003 CMM Generic Task ID for the CMM

100004 Dummy CNC

Turning

Generic Task ID for the Dummy CNC Turning

200001 Robot Generic Task ID for the Robot

201003 Robot from 1 to 10 (Cell loading sequence)

201004 Robot from 2 to 3 (Machine loading sequence of CNC Lathe)

201008 Robot from 3 to 2 (Machine unloading sequence of CNC Lathe)

201013 Robot from 7 to 8 (Machine unloading sequence of CNC

Milling)

201015 Robot from 8 to 7 (Machine loading sequence of CNC Milling)

201016 Robot from 8 to 9 (Machine loading sequence of CMM)

201017 Robot from 9 to 8 (Machine unloading sequence of CMM)

201020 Robot from 10 to 4 (Cell unloading sequence “Accept”)

201021 Robot from 10 to 5 (Cell unloading sequence “Reject”)

 132

Table D.3 Cont’d

201022 Robot from 10 to 6 (Cell unloading sequence “Rework”)

300001 AGV Generic Task ID for the AGV

301001 AGV Load a part into system

301002 AGV Unload part to Accept

301003 AGV Unload part to Reject

301004 AGV Unload part to Rework

400001 PLRD Generic Task ID for the PLRD

401001 PLRD Go left

401002 PLRD Go right

401003 PLRD Change Position

500001 Buffer Generic Task ID for the Conveyor

501001 Buffer Load a part into 2, take it from 2 to 8

501002 Buffer Load a part into 2, take it from 2 to 10

501003 Buffer Load a part into 8, take it from 8 to 2

501004 Buffer Load a part into 8, take it from 8 to 10

501005 Buffer Load a part into 10, take it from 10 to 2

501006 Buffer Load a part into 10, take it from 10 to 8

501007 Buffer Unload 2

501008 Buffer Unload 8

501009 Buffer Unload 10

501011 Buffer Take next empty buffer to 2, load with partID

501012 Buffer Take next empty buffer to 8, load with PartID

501013 Buffer Take next empty buffer to 10, load with PartID

501014 Buffer Take next full buffer to 2,unload it

501015 Buffer Take next full buffer to 8, unload it

501016 Buffer Take next full buffer to 10, unload it

600001 Part Coordinator Generic Task ID for the Part Coordinator

700001 Part Agent Generic Task ID for the Part Agent

800001 User Generic Task ID for the User Announcement

 133

APPENDIX E

SAMPLE CODE

The following code is taken from the Messenger objects SendMessage

method. It shows the basic use of MSMQ objects, MSMQ Queue, MSMQ

Message and its properties as well as using MTS functions of SETABORT and

SETCOMPLETE:

Option Explicit
Option Base 1
#Const usemts = True
Private mQueue As MSMQQueue

Public Function SendMessage(mPathName As String, Optional mMessageLabel
As String, Optional mMessageBody As String, Optional mAppSpecific As Long, _
Optional mQueue As MSMQQueue) As String

'---
' This function sends a message to the queue with the given parameters -
' Note that the queue must exist otherwise will give an error -
'---

On Error GoTo errhandler

#If usemts Then
 Dim objcontext As ObjectContext
 Set objcontext = GetObjectContext
#End If

Set mQueue = New MSMQQueue
Dim mInfo As New MSMQQueueInfo
Dim mMessage As New MSMQMessage

mInfo.PathName = mPathName
Set mQueue = mInfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

mMessage.Label = mMessageLabel

 134

mMessage.Body = mMessageBody
mMessage.AppSpecific = mAppSpecific
mMessage.Send mQueue

'ReOpen the Queue for ReceiveAccess
Set mQueue = mInfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)

SendMessage = "OK"
objcontext.SetComplete
Set objcontext = Nothing
Exit Function

errhandler:

#If usemts Then
 objcontext.SetAbort
 Set objcontext = Nothing
 SendMessage = "SETABORT"
#End If

'Destroy
Set mQueue = Nothing
Set mInfo = Nothing
Set mMessage = Nothing

SendMessage = Err.Number & "/" & Err.Source & "/" & Err.Description

End Function

