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abstract

STUDIES ON THE PERTURBATION PROBLEMS IN

QUANTUM MECHANICS

Koca, Burcu

M.Sc., Department of Mathematics

Supervisor: Prof. Dr. Hasan Taşeli

April 2004, 66 pages

In this thesis, the main perturbation problems encountered in quantum mec-

hanics have been studied. Since the special functions and orthogonal polynomials

appear very extensively in such problems, we emphasize on those topics as well. In

this context, the classical quantum mechanical anharmonic oscillators described

mathematically by the one-dimensional Schrödinger equation have been treated

perturbatively in both finite and infinite intervals, corresponding to confined and

non-confined systems, respectively.

Keywords: Schrödinger Equation, Anharmonic Oscillators, Perturbation Theory,

Special Functions, Orthogonal Polynomials.
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öz

KUANTUM MEKANİKTEKİ PERTÜRBASYON

PROBLEMLERİ

Koca, Burcu

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Hasan Taşeli

Nisan 2004, 66 sayfa

Bu tezde, kuantum mekaniğinde karşılaşılan belli başlı pertürbasyon problem-

leri ele alınmıştır. Bu tür problemler geniş ölçüde özel fonksiyonlar ve ortogo-

nal polinomları kullandığı için, ayrıca bu konular üzerinde de durulmuştur. Bu

çerçevede, tek boyutlu Schrödinger denklemi ile tanımlanan kuantum mekaniksel

anharmonik salınıcılar hem sonlu hem de sonsuz aralıklarda pertürbatif olarak

incelenmiştir.

Anahtar Kelimeler: Schrödinger Denklemi, Anharmonik Salınıcılar, Pertürbasyon

Teorisi, Özel Fonksiyonlar, Ortogonal Polinomlar.
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öz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

list of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The nature of Perturbation Theory . . . . . . . . . . . . . . . . . 1

1.2 The methods to solve the Quantum Mechanical problems (Sch-

rödinger Equation) . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 a review of special functions . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Theory of Special Functions . . . . . . . . . . . . . . . . . . . . . 8

2.2 The Classical Orthogonal Polynomials . . . . . . . . . . . . . . . 10

2.2.1 Jacobi Polynomials . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Laguerre Polynomials . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Confluent Hypergeometric Series; relation between Jacobi

and Laguerre Polynomials; second solution . . . . . . . . . 14

2.2.4 Hermite Polynomials . . . . . . . . . . . . . . . . . . . . . 15

2.2.5 Relation of Hermite Polynomials to those of Laguerre . . . 16

vii



2.3 Eigenvalue problems in Quantum Mechanics that can be solved

by means of the Classical Orthogonal Polynomials . . . . . . . . . 17

2.3.1 Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . 21
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chapter 1

introduction

1.1 The nature of Perturbation Theory

Perturbation theory first appeared in one of the oldest branches of applied

mathematics; celestial mechanics, the study of the motions of the planets. From

antiquity, various mathematical methods were used to describe these motions (as

seen from earth), usually with no attempt to state their causes. After Newton’s

formulation of the law of gravity, it became possible to deduce the planetary

motions from physical laws which were considered to be more fundamental. If

only the sun and one planet are considered, the result is elliptical motion with

the sun at a focus. However, this does not quite correspond to the actually

observed motion. The explanation is that the planets exert gravitational forces on

each other, and therefore “perturb”, that is, modify, their motions. Perturbation

theory in its original sence refers to various ways of taking these modifications

into account. In essence, one begins with the “unperturbed solution”, that is with

purely elliptical motion, as a first approximation, then computes the forces which

the planets would exert on each other if this unperturbed motion were correct,

and then corrects the unperturbed solution accordingly. The first corrections

are still not accurate, since their construction depended upon the unperturbed

solution, and so a second set of corrections can be computed, and so on. The sum

of the unperturbed solution and the sequence of corrections forms a series, and

one hopes that a partial sum of a reasonable number of terms gives an adequate

approximation to the motion for perhaps a few hundred years.

The scope of perturbation theory [2], [11], [21], [23] at the present time is much

broader than its applications to celestial mechanics, but the main idea is the same.

One begins with a solvable problem, called the unperturbed or reduced problem,
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and uses the solution of this problem as an approximation to the solution of a

more complicated problem that differs from the reduced problem only by some

small terms in the equations. Then one looks for a series of successive corrections

to this initial approximation, most often in the form of a power series in a small

quantity called “perturbation parameter”. Finally one attempts to show that the

use of only a few of these correction terms (usually one or two) provides a useful

approximate solution to the actual problem at hand.

The simplest problem which can be addressed by perturbation theory is that

of finding roots of polynomials. This problem illustrates many of the important

ideas: proper formulation of perturbation families; degenerate and nondegen-

erate cases; uniform and nonuniform solutions; rescaling coordinates; rescaling

parameters.

The problem is purely mathematical, so it is not necessary to address physical

and mathematical issues simultaneously. There are no differential equations in-

volved, so the only mathematical diffuculties are those coming from perturbation

theory itself.

What does it mean to solve a polynomial equation by a perturbation method?

Suppose the problem is

x2 − 3.99x+ 3.02 = 0. (1.1.1)

Of course, this can be solved easily by the quadratic formula. But to approach

it by perturbation theory, there are four steps:

1. The first is to notice that since −3.99 = −4 + 0.01 and 3.02 = 3 + 0.02,

equation (1.1.1) is almost the same as x2−4x+3 = 0, which can be solved easily

by factoring: (x− 1)(x− 3) = 0, giving two roots x1 = 1, x2 = 3.

2. The second step is to create a family of problems intermediate between the

easy, factorable problem and the original problem (1.1.1). This can be done by

letting ε denote the small quantity 0.01, so that −3.99 = −4+ε and 3.02 = 3+2ε;

then (1.1.1) can be written

x2 + (ε− 4)x+ (3 + 2ε) = 0. (1.1.2)

2



Now allow ε to vary. Then (1.1.2) is no longer a single equation, but a family

of equations, one equation for each value of ε. When ε = 0, (1.1.2) reduces to

the factorable problem, and when ε = 0.01, it is the “target problem” (1.1.1).

For 0 < ε < 0.01, it is midway between the two. Equation (1.1.2) is an example

of a perturbation family, a family of problems depending on a small parameter ε

which is easily solvable when ε = 0.

3. The third step is to find approximate solutions of (1.1.2), in the form of

polynomials (truncated power series) in the small parameter ε. In this example

suitable solutions turn out to be

x1
∼= 1 +

3

2
ε+

15

8
ε2,

(1.1.3)

x2
∼= 3− 5

2
ε− 15

8
ε2.

Evaluating these solutions at ε = 0.01 gives an approximate solution of the ori-

ginal problem (1.1.1) namely x1
∼= 1.0151875, x2

∼= 2.9748125.

4. The fourth step is, whenever possible, to say something about the amount

of error in these approximations.

This brief example already reveals a good deal about perturbation theory.

First of all, the method can only be applied when the “target” problem is close to

a solvable problem (that is, close to a problem solvable exactly or approximately

by some method other than perturbation theory). A polynomial equation chosen

at random can probably not be solved by perturbation theory, since it is unlikely

to be close to a factorable polynomial.

Next, the example shows that in solving a problem by perturbation theory,

one solves not only a single target problem such as (1.1.1), but every problem

belonging to the perturbation family (1.1.2), as long as ε is “sufficiently small”.

The meaning of “sufficiently small” is not clear until the error analysis has been

completed.

Often a physical problem is stated at first in terms suited to the application,

and rescaled several times in the course of analysis; then the solutions must be

3



interpreted carefully to see how they apply to the original problem. The easy

example of finding roots is a good introduction to those ideas.

1.2 The methods to solve the Quantum Mecha-

nical problems (Schrödinger Equation)

Let y = y(x) be a solution of the equation

σ(x)y′′ + τ(x)y′ + λy = 0 (1.2.4)

of hypergeometric type, and let ρ(x), a solution of (σρ)′ = τρ, be bounded on

(a, b) and satisfy the conditions that τ(x) has to vanish at some point of (a, b)

and has a negative derivative, τ ′ < 0. Then nontrivial solutions of the equation

of hypergeometric type for which y(x)
√
ρ(x) is bounded and square integrable

on (a,b), exist only when

λ = λn = −nτ ′ − 1

2
n(n− 1)σ′′, (n = 0, 1, 2, · · · ) (1.2.5)

and they have the form

y(x, λn) = yn(x) =
Bn

ρ(x)

dn

dxn
[σn(x)ρ(x)] , (1.2.6)

i.e. they are the classical polynomials that are orthogonal with weight ρ(x) on

(a, b).

This property is used in quantum mechanics [6], [9], [18], [20] for solving

problems about the energy levels and wave functions of a particle in a potential

field. To find the wave functions ψ(r) and corresponding enegy levels E, one

solves the time-independent Schrödinger equation

−h2

2µ
∆ψ + Uψ = Eψ (1.2.7)

4



where h is Planck’s constant, µ is the mass of the particle, U = U(r) is the

potential and r is the radius-vector.

For many problems of quantum mechanics [25], the Schrödinger equation re-

duces to a generalized equation of hypergeometric type;

u′′ +
τ̃(x)

σ(x)
u′ +

σ̃(x)

σ2(x)
u = 0 (a < x < b). (1.2.8)

Equation (1.2.8) can be transformed by the substitution u = φ(x)y into an equa-

tion of hypergeometric type

d

dx

[
σρ
dy

dx

]
+ λρy = 0, (1.2.9)

where (σρ)′ = τρ, τ = τ̃ + 2(φ′/φ)σ and y(x)
√
ρ(x) is bounded and square

integrable on (a,b).

The values of λ for which our problem has non-trivial solutions are the eigen-

values and the corresponding functions y(x, λ) are the eigenfunctions.

Exactly solvable models have played a relevant role in the development of

quantum mechanics [8]. Sometimes they provide simple explanations of the most

relevant features of actual physical phenomena and also they become the start-

ing point for more or less accurate aproximations based, for instance, on the

variational method, perturbation theory or both [27].

Perturbation theory is a large collection of iterative methods for obtaining

approximate solutions to problems involving a small parameter ε. When ε = 0,

the problem becomes solvable.

Perturbation methods attempt to solve a given problem by approximating

it by simpler problems whose solutions are more or less explicitly known. For

example, the differential equation,

y′′ = [1 + ε/(1 + x2)]y (1.2.10)

can only be solved in terms of elementary functions when ε = 0. A perturbative

5



solution is written as a series of powers of ε:

y(x) = y0(x) + εy1(x) + ε2y2(x) + · · · .

This series is called perturbation series. If ε is very small, y(x) will be well

approximated by only a few terms of perturbation series.

By using the methods of perturbation theory it is possible to approximate the

eigenvalues and eigenfunctions of the Schrödinger equation [1], [12], [24] of the

form,

(H0 + εH1)ψ = Eψ (1.2.11)

where H0 and H1 are operators and ε is the perturbation parameter. We remark,

at this point, that if the Hamiltonion can be written as a convergent power series

in a certain parameter ε, with H1 being a bounded operator, then the perturbed

eigenvalues and eigenfunctions are analytic functions of ε, and their power series

are convergent power series in a neighbourhood of ε = 0. So, we formally expand

the eigenfunctions and the energy eigenvalues in the form of power series in ε [41].

Then, our task is the determination of the serial expansions of E(ε) and ψ(ξ, ε)

in nonnegative powers of ε, i.e.

En(ε) =
∞∑

k=0

wk(n)εk,

ψn(ξ, ε) =
∞∑

k=0

F
(k)
n (ξ)εk

(1.2.12)

By the substitution of (1.2.12) into (1.2.11), we have the sequence of equations

and by comparing the powers of ε, we have an iterative procedure for calculating

the coefficients in the perturbation series for En and ψn(ξ). Once the coefficients

w0(n), w1(n), · · · , wN−1(n); F
(0)
n , F

(1)
n , · · · , F (N−1)

n are known, wN(n) and F
(N)
n

can be calculated.

Although the evaluation of higher order terms seems to be, in principle, pos-

sible, the enormousness of the effort needed to handle the intermediate steps

6



without mistakes, has to be prevented from continuing further in this direction.

As a matter of fact, the scheme remains the same in higher order evaluations,

however the appearance of many dimensional integrations which are elementary

in concept, rapidly increases the number of manipulations.

The organization of this thesis is as follows: In Chapter 2, special functions

of applied mathematics are reviewed. Chapter 3 deals with perturbation theory

and its applications. Numerical applications are given in Chapter 4. Finally, we

discuss the results in Chapter 5.

7



chapter 2

a review of special functions

2.1 Theory of Special Functions

Consider

u′′ +
τ̃(x)

σ(x)
u′ +

σ̃(x)

σ2(x)
u = 0 (2.1.1)

where τ̃(x) is a polynomial of degree at most 1; σ(x) and σ̃(x) are the polynomials

of degree at most 2. We may reduce (2.1.1) to a simpler form by introducing the

transformation,

u = φ(x)y

Substituting of u, u′ and u′′ into (2.1.1) we obtain,

y′′ +

(
2
φ′

φ
+
τ̃

σ

)
y′ +

(
σ̃

σ2
+
τ̃

σ

φ′

φ
+
φ′′

φ

)
y = 0. (2.1.2)

Require that the coefficient of y′ is of the form,

τ(x)

σ(x)

where τ(x) is a polynomial of degree at most 1. This requirement leads to,

2
φ′

φ
=
τ(x)− τ̃(x)

σ(x)
,

φ′(x)

φ(x)
=
π(x)

σ(x)
(2.1.3)

where

π(x) =
1

2
[τ(x)− τ̃(x)] (2.1.4)

8



is also a polynomial of degree at most 1. Equation (2.1.2) takes the form,

y′′ +
τ(x)

σ(x)
y′ +

˜̃σ(x)

σ2(x)
y = 0. (2.1.5)

Here

τ(x) = 2π(x) + τ̃(x) (2.1.6)

and

˜̃σ(x) = π2(x) + [τ̃(x)− σ′(x)]π(x) + [σ̃(x) + π′(x)σ(x)]. (2.1.7)

We have derived a class of transformations induced by the substitution u = φ(x)y

that do not change the type of the differential equation under consideration.

Now, for simplicity, we shall choose π(x) so that ˜̃σ(x) in (2.1.7) is divisible by

σ(x), that is,

˜̃σ(x) = λσ(x), (2.1.8)

where λ is a constant. Then (2.1.5) can be written as,

y′′ +
τ(x)

σ(x)
y′ + λ

σ(x)

σ2(x)
y = 0

σ(x)y′′ + τ(x)y′ + λy = 0. (2.1.9)

Equation (2.1.9) is referred to as a differential equation of the hypergeometric

type and its solutions referred to as the functions of the hypergeometric type.

Then equation (2.1.1) may be called a generalized differential equation of the

hypergeometric type. Now, let us determine λ and π(x). From (2.1.8) and (2.1.7),

we write,

π2 + (τ̃ − σ′)π + (σ̃ − kσ) = 0 (2.1.10)

where k is a constant,

k = λ− π′(x). (2.1.11)

9



Assume that k is given for a moment, we have;

π(x) =
1

2
[σ′(x)− τ̃(x)]∓

√[
τ̃(x)− σ′(x)

2

]2

− [σ̃(x)− kσ(x)].

Notice that the expression, say P2(x), under the square root sign, is a quadratic

polynomial in x.

Notice also that it must be the square of a linear polynomial as π(x) is a linear

polynomial.

2.2 The Classical Orthogonal Polynomials

We know that the differential equation of hypergeometric type has the form;

σ(x)y′′ + τ(x)y′ + λy = 0

This equation has polynomial solutions given by Rodriguez formula,

yn(x) =
Bn

ρ(x)

dn

dxn
[σn(x)ρ(x)]

with Bn a normalization constant. The solutions are valid for the particular

values of λ = λn = −nτ ′− 1
2
n(n−1)σ′′, n = 0, 1, · · · . The function ρ(x) satisfies

the equation

[σ(x)ρ(x)]′ = τ(x)ρ(x)

and has the possible forms;

ρ(x) =


(1− x)α(1 + x)β for σ(x) = 1− x2

xαe−x for σ(x) = x

e−x2
for σ(x) = 1

depending on σ(x), where α and β are constants.

Now, we shall be concerned with the main properties of the classical polyno-

mials; Jacobi, Laguerre and Hermite respectively [26], [30], [31].

10



2.2.1 Jacobi Polynomials

Let σ(x) = 1−x2 and ρ(x) = (1−x)α(1+x)β. We find τ(x) and λn as follows;

τ(x) = −(α+ β + 2)x+ β − α

λn = n(n+ α+ β + 1), n = 0, 1, 2, · · · .

Then, the corresponding polynomials are defined by;

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β d

n

dxn
[(1− x)n+α(1 + x)n+β]. (2.2.12)

The Jacobi polynomials are orthogonal on [−1, 1] with the weight function ρ(x) =

(1 − x)α(1 + x)β. The orthogonal polynomials with the weight function on the

finite interval [a, b] can be expressed in the form

cP (α,β)
n

{
2
x− a

b− a
− 1

}
(2.2.13)

where c is a constant. The Rodriguez formula implies that;

P (α,β)
n (x) = (−1)nP (β,α)

n (−x) (2.2.14)

Theorem 2.2.1. The Jacobi polynomials y = P
(α,β)
n (x) satisfy the following lin-

ear homogeneous differential equation of the second order:

(1− x2)y′′ + [β − α− (α+ β + 2)x]y′ + n(n+ α+ β + 1)y = 0. (2.2.15)

Proof. Proof is given in [31]. 2

Theorem 2.2.2. Let α > −1, β > −1. The differential equation

(1− x2)y′′ + [β − α− (α+ β + 2)x]y′ + λy = 0, (2.2.16)

where λ is a parameter, has a polynomial solution not identically zero if and only

if λ has the form n(n + α + β + 1), n = 0, 1, 2, · · · . This solution is cP
(α,β)
n (x)

where c is a constant and no solution which is linearly independent of P
(α,β)
n (x),

11



can be a polynomial.

Proof. Proof is given in [31]. 2

Substitution of x = 1− 2x′ in (2.2.15) yields

x′(1− x′)
d2y

dx′2
+ [α+ 1− (α+ β + 2)x′]

dy

dx′
+ n(n+ α+ β + 1)y = 0, (2.2.17)

which is the hypergeometric equation of Gauss. For n ≥ 1, we obtain the impor-

tant representation:

P (α,β)
n (x) =

(
n+ α

n

)
2F1

(
−n, n+ α+ β + 1;α+ 1;

1− x

2

)
(2.2.18)

where

P (α,β)
n (1) =

(
n+ α

n

)
.

From the equation (2.2.14), we obtain an equivalent form of (2.2.18),

P (α,β)
n (x) = (−1)n

(
n+ β

n

)
2F1

(
−n, n+ α+ β + 1; β + 1;

1 + x

2

)
(2.2.19)

Another application of (2.2.18) is the useful formula;

d

dx
{P (α,β)

n (x)} =
1

2
(n+ α+ β + 1)P

(α+1,β+1)
n−1 (x). (2.2.20)

According to the theory of hypergeometric functions, a second solution of (2.2.15)

is given by

(1− x)−α
2F1(−n− α, n+ β + 1; 1− α;

1− x

2
), (2.2.21)

unless α is an integer.

Recurrence Formula:

Here P
(α,β)
n+1 (x) [or P

(α,β)
n−1 (x)] can be expressed in terms of xP

(α,β)
n (x), P

(α,β)
n (x),

P
(α,β)
n−1 (x) [or P

(α,β)
n+1 (x)]. This yields,

(2n+ α+ β)(1− x2)
d

dx
{P (α,β)

n (x)} = (2.2.22)

12



= −n{(2n+ α+ β)x+ β − α}P (α,β)
n (x) + 2(n+ α)(n+ β)P

(α,β)
n−1 (x),

(2n+ α+ β + 2)(1− x2)
d

dx
{P (α,β)

n (x)} = (2.2.23)

(n+ α+ β + 1){(2n+ α+ β + 2)x+ α− β}P (α,β)
n (x)−

2(n+ 1)(n+ α+ β + 1)P
(α,β)
n+1 (x).

For particular values of α and β in the Jacobi polynomials, we introduce some

very well known polynomials. For example, if α = β = 0 the Jacobi polynomials

P
(0,0)
n (x) := Pn(x) are known as the “Legendre polynomials” satisfying

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0, n = 0, 1, 2, · · · . (2.2.24)

2.2.2 Laguerre Polynomials

Let σ(x) = x and ρ(x) = xαe−x. We find τ(x) and λn as follows;

τ(x) = α+ 1− x and

λn = n, n = 0, 1, 2, · · · .

Then the corresponding polynomials are defined by ;

e−xxαL(α)
n (x) =

1

n!

dn

dxn
[e−xxn+α]· (2.2.25)

Also, we define the Laguerre polynomials {L(α)
n (x)}, for α > −1, by the following

conditions of orthogonality and normalization:∫ ∞

0

e−xxαL(α)
n (x)L(α)

m (x)dx = Γ(α+ 1)

(
n+ α

n

)
δnm;n,m = 0, 1, 2, · · · . (2.2.26)

We also write L
(0)
n (x) := Ln(x). We have the differential equation;

xy′′ + (α+ 1− x)y′ + λy = 0 (2.2.27)

which has a polynomial solution when λ = n. Also, L
(α)
n (x) is the only polynomial

13



solution. Further, we have the explicit representation

L(α)
n (x) =

n∑
ν=0

(
n+ α

n− ν

)
(−x)ν

ν!
, (2.2.28)

the formula

L(α)
n (0) =

(
n+ α

n

)
(2.2.29)

and the expression

`(α)
n =

(−1)n

n!
(2.2.30)

for the coefficient `
(α)
n of xn in L

(α)
n (x).

Recurrence Formula:

nL(α)
n (x) = (−x+ 2n+ α− 1)L

(α)
n−1(x)− (n+ α− 1)L

(α)
n−2(x), n = 2, 3, 4, · · · ,

(2.2.31)

L
(α)
0 (x) = 1, L

(α)
1 (x) = −x+ α+ 1.

We obtain from the explicit representation of L
(α)
n (x) that :

n∑
ν=0

L(α)
ν (x) = L(α+1)

n (x), (2.2.32)

L(α)
n (x) = L(α+1)

n (x)− L
(α+1)
n−1 (x), (2.2.33)

d

dx
L(α)

n (x) = −L(α+1)
n−1 (x) = x−1{nL(α)

n (x)− (n+ α)L
(α)
n−1(x)}. (2.2.34)

2.2.3 Confluent Hypergeometric Series; relation between

Jacobi and Laguerre Polynomials; second solution

In the notation of Pochhammer - Barnes, the Confluent hypergeometric series
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is,

1F1(α; γ;x) = 1 +
∞∑

ν=1

α(α+ 1) · · · (α+ ν − 1)

γ(γ + 1) · · · (γ + ν − 1)

xν

ν!
. (2.2.35)

This is obtained from the ordinary hypergeometric series by the limiting process

lim
β→∞

2F1(α, β; γ; β−1x) (2.2.36)

we have,

L(α)
n (x) =

(
n+ α

n

)
1F1(−n;α+ 1; x) (2.2.37)

and using (2.2.18) we obtain the following important relation between Laguerre

and Jacobi polynomials:

L(α)
n (x) = lim

β→∞
P (α,β)

n (1− 2β−1x). (2.2.38)

This holds uniformly in every closed part of the complex x-plane.

2.2.4 Hermite Polynomials

Let σ(x) = 1 and ρ(x) = e−x2
. We find τ(x) and λn as follows;

τ(x) = −2x and

λn = 2n, n = 0, 1, 2, · · · .

Then, the corresponding polynomials are defined by;

Hn(x) = (−1)nex2 dn

dxn
[e−x2

]. (2.2.39)

Also, we define the Hermite polynomials by the conditions,∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx = π1/22nn!δnm, n,m = 0, 1, 2, · · · . (2.2.40)

The coefficient of xn in the n− th polynomial is positive. On the other hand, the
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Hermite polynomials are the solutions of the Hermite equation;

y′′ − 2xy′ + 2νy = 0 where ν = n = 0, 1, 2, · · · .

We know the following properties of Hermite polynomials:

Hn(x)

n!
=

[n/2]∑
ν=0

(−1)ν

ν!

(2x)n−2ν

(n− 2ν)!
, (2.2.41)

lim
x→∞

x−nHn(x) = 2n. (2.2.42)

Recurrence Formula:

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x), n = 2, 3, 4, · · · ; (2.2.43)

H0(x) = 1, H1(x) = 2x.

We notice the following “individual” properties:

H ′
n(x) = 2nHn−1(x), Hn(x) = 2xHn−1(x)−H ′

n−1(x). (2.2.44)

2.2.5 Relation of Hermite Polynomials to those of La-

guerre

(1) Hermite polynomials can be entirely reduced to Laguerre polynomials with

the parameters α = ∓1
2
, for we have

H2m(x) = (−1)m22mm!L
(− 1

2
)

m (x2),

(2.2.45)

H2m+1(x) = (−1)m22m+1m!xL
( 1
2
)

m (x2).

Combining above equations with (2.2.38), we obtain a representation of Hermite
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polynomials as limits of Jacobi;

e(2xw−w2) = lim
λ→∞

(1− 2
x

λ
w +

w2

λ
)−λ, (2.2.46)

so that
Hn(x)

n!
= lim

λ→∞
λ−n/2P (λ)

n (λ−1/2x). (2.2.47)

(2) Conversely, Laguerre polynomials can, to a certain extent, be reduced to

Hermite polynomials. We have,

L(α)
n (x) =

(−1)nπ−1/2

Γ(α+ 1
2
)

Γ(n+ α+ 1)

(2n)!

∫ +1

−1

(1− t2)α− 1
2H2n(x

1
2 t)dt, α > −1

2
. (2.2.48)

2.3 Eigenvalue problems in Quantum Mecha-

nics that can be solved by means of the

Classical Orthogonal Polynomials

Consider the solution of the equation

σ(x)y′′ + τ(x)y′ + λy = 0 (2.3.49)

of hypergeometric type for various values of λ, when ρ(x) satisfies the equation;

(σρ)′ = τρ, (2.3.50)

is bounded on an interval (a,b), and satisfies the conditions imposed on ρ(x) for

the classical orthogonal polynomials.

As we have seen, the simplest solutions of (2.3.49) are the classical orthogonal
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polynomials yn(x), which correspond to,

λ = λn = −nτ ′ − 1

2
n(n− 1)σ′′, n = 0, 1, · · · . (2.3.51)

It turns out that the classical orthogonal polynomials [29] are distinguished among

the solutions of (2.3.49) corresponding to various values of λ not only by their

simplicity, but also they are the only non-trivial solutions of (2.3.49) for which

y(x)
√
ρ(x) is both bounded and square integrable on (a,b).

This property is extensively used in quantum mechanics for solving problems

about the energy levels and wave functions of a particle in a potential field. If

external forces restrict the particle to a bounded part of space, so that it cannot

move off to infinity, one says that the particle is in a bound state. To find the wave

functions ψ(r) that describe these states, and the corresponding energy levels λ,

one solves the time - independent Schrödinger equation,

−h2

2µ
∆ψ + Uψ = λψ, (2.3.52)

where h is Planck’s constant, µ is the mass of the particle, U = U(r) is the

potential and r is the radius - vector.

Here the wave function ψ(r) must be bounded for all finite |r| and be normali-

zed by ∫
V

|ψ(r)|2dV = 1. (2.3.53)

For many problems of quantum mechanics that can be solved analytically

by the method of seperation of variables, the Schrödinger equation reduces to a

generalized equation of hypergeometric type:

u′′ +
τ̃(x)

σ(x)
u′ +

σ̃(x)

σ2(x)
u = 0 (a < x < b). (2.3.54)

We assume that σ(x) > 0 for x ∈ (a, b) and that σ(x) = 0 at the endpoints of

(a, b) if the endpoints are not at infinity. Since (2.3.54) has no singular points at

any x ∈ (a, b), the function u(x) is continuously differentiable on (a, b). Therefore

it can have singular points only as x→ a or x→ b. In order to state the additional
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restrictions that should be imposed on u(x) at the endpoints of (a, b), we rewrite

(2.3.54) in self adjoint form:

(σρ̃u′)′ + (σ̃/σ)ρ̃u = 0 (2.3.55)

here ρ̃(x) > 0 and ρ̃(x) satisfies

(σρ̃)′ = τ̃ ρ̃. (2.3.56)

The function ψ(r) will be bounded and satisfy the normalization condition

(2.3.53) if the problem is formulated in terms of (2.3.55) in the following way:

Find all values of λ for which (2.3.55) has a non-trivial solution on (a, b) s.t

u(x){ρ̃(x)}1/2 is bounded and square integrable on (a, b), i.e. |u(x)|{ρ̃(x)}1/2 < c

where c is a constant

and ∫ b

a

|u(x)|2ρ̃(x)dx <∞

(if a and b are finite, the last condition can be omitted. )

Equation (2.3.54) can be transformed by the substitution u = φ(x)y into an

equation of hypergeometric type

d

dx
[σρ

dy

dx
] + λρy = 0, (2.3.57)

where ρ(x) satisfies (σρ)′ = τρ and τ(x) is connected with τ̃(x) and φ(x) by

τ = τ̃ + 2(φ′/φ)σ.

It follows from this and (2.3.56) that

ρ(x) = ρ̃(x)φ2(x).

Hence the requirements on u(x){ρ̃(x)}1/2 become the requirements listed above

on y(x)
√
ρ(x).

The values of λ for which our problem has non-trivial solutions are the “eigen-
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values” and the corresponding functions y(x, λ) are the “eigenfunctions”.

For the majority of the problems of quantum mechanics that admit explicit

solutions, the transformation of the equation (2.3.54) to (2.3.57) can be done by

using a ρ(x) that is bounded on (a, b) and satisfies the conditions imposed on

ρ(x) for the classical orthogonal polynomials.

Remark 2.3.1 In order to satisfy the conditions imposed on ρ(x) for the

classical orthogonal polynomials, τ(x) has to vanish at some point of (a, b) and

has a negative derivative, τ ′ < 0.

Remark (2.3.1) lets us simplify the selection of a transformation of (2.3.54) to

(2.3.57).

Theorem 2.3.1. Let y = y(x) be a solution of the equation

σ(x)y′′ + τ(x)y′ + λy = 0

of hypergeometric type, and let ρ(x) a solution of (σρ)′ = τρ, be bounded on (a, b)

and satisfy the conditions imposed on ρ(x) for the classical orthogonal polynomi-

als. Then non-trivial solutions of the equation of hypergeometric type for which

y(x)
√
ρ(x) is bounded and square integrable on (a, b) exist only when

λ = λn = −nτ ′ − 1

2
n(n− 1)σ′′, n = 0, 1, · · · (2.3.58)

and they have the form

y(x, λn) = yn(x) =
Bn

ρ(x)

dn

dxn
[σn(x)ρ(x)], (2.3.59)

i.e., they are the classical polynomials that are orthogonal with weight ρ(x) on

(a, b), (if a and b are finite, the condition of quadratic integrability can be omitted).

We illustrate the applicability of the previous theorem by means of some

quantum mechanics problems in which the Schrödinger equation reduces to a

generalized equation of hypergeometric type.
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2.3.1 Harmonic Oscillator

We consider the problem of finding the eigenvalues and eigenfunctions for

the linear harmonic oscillator [38], i.e. for a particle in a field with potential

U = mw2x2/2 (m is the mass, x the displacement from equilibrium, w the angular

frequency). The problem of the harmonic oscillator plays an important role in the

foundations of quantum electrodynamics, and has applications to various types

of oscillations in crystals and molecules.

The Schrödinger equation for the wave function ψ(x) of the harmonic oscillator

has the form:

−h2

2m

d2ψ

dx2
+

1

2
mw2x2ψ = Eψ, −∞ < x <∞.

Here ψ(x) must be bounded and satisfy the normalization condition∫ ∞

−∞
ψ2(x)dx = 1.

In solving the problem it is convenient to replace x and E by dimensionless

variables ξ and ε:

x = ξ

√
h

mw
= αξ, E = hwε.

Then we obtain the equation

ψ′′ + (2ε− ξ2)ψ = 0 (2.3.60)

(Here primes denote differentiation w.r.t. ξ). This is a generalized equation of

hypergeometric type for which

σ(ξ) = 1, τ̃(ξ) = 0, σ̃(ξ) = 2ε− ξ2.

We now have a problem that can be solved by means of classical orthogonal

polynomials. The requirement that
√
ρ̃(ξ)ψ(ξ) is square integrable follows from

the normalization condition. We transform the equation for ψ to an equation of
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hypergeometric type,

σ(ξ)y′′ + τ(ξ)y′ + λy = 0, (2.3.61)

by putting ψ(ξ) = φ(ξ)y(ξ), where φ(ξ) satisfies the equation

φ′

φ
=
π(ξ)

σ(ξ)
.

Then the equation (2.3.60) takes the form

y′′ +
2φ′

φ
y′ +

(
φ′′

φ
+ 2ε− ξ2

)
y = 0. (2.3.62)

Following the same procedure in the section 2.1, we may transform the equa-

tion (2.3.62) to hypergeometric type in (2.3.61) such that,

y′′ +
τ

σ
y′ +

˜̃σ

σ2
y = 0 where ˜̃σ = λσ. (2.3.63)

The polynomial π(ξ) is of the form,

π(ξ) = ±
√
k − 2ε+ ξ2.

The constant k can be determined from the condition that the function under

the square root sign has a double zero, i.e. k = 2ε. There are two possible

polynomials π(ξ) = ±ξ; we select the one for which

τ(ξ) = τ̃(ξ) + 2π(ξ)

has a negative derivative. The conditions on τ(ξ) are satisfied if we take

τ(ξ) = −2ξ, in which case

π(ξ) = −ξ, φ(ξ) = e−
ξ2

2 ,

ρ(ξ) = e−ξ2

, λ = 2ε− 1.
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The equation (2.3.63) takes the form,

y′′ − 2ξy′ + λy = 0, where λ = 2ν. (2.3.64)

The differential equation (2.3.64) is the Hermite differential equation and it

has polynomial solutions only when ν = n, n = 0, 1, 2, · · · . Furthermore, the

energy eigenvalues are determined only when

λ+ nτ ′ +
n(n− 1)

τ
σ′′ = 0.

Hence, the square integrability condition is satisfied, since y(ξ) are polynomial

solutions, so, ∫ ∞

−∞
e−ξ2

y2(ξ)dξ <∞.

Then,

ε = εn = n+
1

2
, i.e.

E = En = hw(n+
1

2
), n = 0, 1, · · · .

We obtain the eigenfunctions in the form

yn(ξ) = Bne
ξ2 dn

dξn
(e−ξ2

).

These are, up to numerical factors, the Hermite polynomials Hn(ξ). The wave

functions ψ(x) are

ψn(x) = cne
−ξ2/2Hn(ξ), x = αξ, α = (h/(mw))1/2.

Here cn is a normalizing constant determined by∫ ∞

−∞
ψ2

n(x)dx = 1,

so

cn =
1

2n/2
√
n!π1/4

.
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2.3.2 Pöschl-Teller Potential

Consider the problem of finding the eigenvalues and eigenfunctions for the

one-dimensional Schrödinger equation [37]

−h2

2m
ψ′′ + U(x)ψ = Eψ, −∞ < x <∞

for a particle in the field

U(x) = − U0

cosh2αx
, where U0 > 0.

Here ψ(x) is to be bounded, and normalized by∫ ∞

−∞
ψ2(x)dx = 1.

Since U(x) < 0, only values of E < 0 are admissible. To simplify the form

of the equation we make the change of independent variable s = tanhαx. (In

many quantum mechanics problems that can be solved explicitly, the Schrödinger

equation can be reduced to an equation with rational coefficients by a natural

change of variable suggested by the form of U(x), where the transformation must

be one - to-one. In the present case the potential has a simple expression in terms

of hyperbolic functions, so it is natural to try sinhαx, tanhαx, or exp(±αx) as a

new variable. We chose the substitution s = tanhαx.)

We then obtain the generalized equation of hypergeometric type

Φ′′ +
τ̃(s)

σ(s)
Φ′ +

σ̃(s)

σ2(s)
Φ = 0, Φ(s) = ψ(x),

for which a = −1, b = 1,

σ(s) = 1− s2, τ̃(s) = −2s, σ̃(s) = −β2 + γ2(1− s2),

β2 = −2mE

h2α2
, γ2 =

2mU0

h2α2
, (β > 0, γ > 0).

This is again a problem of the kind we discussed. Here σ̃(s) = 1. Hence the
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square integrability of
√
ρ̃(s)Φ(s) follows from the normalization condition∫ ∞

−∞
ψ2(x)dx = 1. In fact,

∫ 1

−1

Φ2(s)ds = α

∫ ∞

−∞

ψ2(x)

cosh2αx
dx < α

∫ ∞

−∞
ψ2(x)dx = α.

The solution is obtained by the previous method. We transform the equation for

Φ(s) to the equation of hypergeometric type

σ(s)y′′ + τ(s)y′ + λy = 0

by putting Φ(s) = φ(s)y(s), where φ(s) satisfies

φ′/φ = π(s)/σ(s).

The polynomial π(s) is now given by

π(s) = ±
√
β2 − γ2(1− s2) + k(1− s2).

The constant k determined by the condition that the expression under the square

root sign has a double zero, that is k = γ2 or k = γ2 − β2. In the first case

π(s) = ±β; in the second, π(s) = ±βs. We choose the one for which

τ(s) = τ̃(s) + 2π(s) has a negative derivative and a zero on (−1,+1). These

conditions are satisfied by

τ(s) = −2(1 + β)s,

which correspond to

π(s) = −βs, φ(s) = (1− s2)β/2,

λ = γ2 − β2 − β, ρ(s) = (1− s2)β.
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The energy eigenvalues are determined by

λ+ nτ ′ +
1

2
n(n− 1)σ′′ = 0, n = 0, 1, · · · ,

which reduces to

γ2 − β2 − β = 2n(1 + β) + n(n− 1).

Hence the eigenvalues are

En = −h
2α2

2m
β2

n where βn = −n− 1

2
+

√
γ2 +

1

4
, βn > 0.

The condition βn > 0 can be satisfied only for

n <

√
γ2 +

1

4
− 1

2
,

i.e., there are only finitely many eigenvalues. In this case the eigenfunctions yn(s)

have the form

yn(s) = P (β,β)
n (s)

with

β = βn.

The wave functions ψn(x) are

ψn(x) = cn(1− s2)β/2P (β,β)
n (s),

with β = βn, s = tanhαx. Here cn is a normalizing constant determined by∫ ∞

−∞
ψ2

n(x)dx = 1.

So,

cn =

{
22β+1Γ2(n+ β + 1)

n!(2n+ 2β + 1)Γ(n+ 2β + 1)

}1/2

.

26



2.3.3 Particle-in-a-box

Consider the problem of finding the eigenvalues and eigenfunctions of the

equation,

−y′′ + V (x)y = λy, x ∈ [−L,L], y(−L) = y(L) = 0

where the potential is in the form

V (x) =


∞ , |x| ≥ L

0 , − L < x < L

So, the equation takes the form;

y′′ + λy = 0

whose solutions are given in terms of circular functions,

y(x) = A cos
√
λx+B sin

√
λx. (2.3.65)

If we substitute the boundary conditions in (2.3.65), we find

A cos
√
λL+B sin

√
λL = 0 (2.3.66)

A cos
√
λL−B sin

√
λL = 0 (2.3.67)

(2.3.66) + (2.3.67) gives the equation

√
λL = (n+

1

2
)π, n = 0, 1, 2, · · · .

We define the even eigenvalues (that is, the eigenvalues which correspond to the

even eigenfunctions) such that,

λ2n =
π2

L2
(n+

1

2
)2, n = 0, 1, 2, · · ·
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and find the even eigenfunctions using the equation (2.3.66),

y2n = A cos
π

L
(n+

1

2
)x, A : Arbitrary. (2.3.68)

In the same way (2.3.66) - (2.3.67) gives the equation

√
λL = (n+ 1)π, n = 0, 1, 2, · · · .

So, we may define the odd eigenvalues (that is, the eigenvalues which correspond

to the odd eigenfunctions) as follows;

λ2n+1 =
π2

L2
(n+ 1)2, n = 0, 1, 2, · · ·

and find the odd eigenfunctions such that;

y2n+1 = B sin
π

L
(n+ 1)x, B : Arbitrary. (2.3.69)

We may write the solutions in terms of the Chebyshev polynomials Vn(x) and

Wn(x) of the third and fourth kinds of degree n as follows: We have already

shown that the even eigenfunctions are in the form that,

y2n = A cos
π

L
(n+

1

2
)x, A : Arbitrary.

Let us define θ = π
L
x and take A = 1.

y2n = cos(n+
1

2
)θ

y2n = cos
θ

2
Vn(t) where

Vn(t) =
cos(n+ 1

2
)θ

cos 1
2
θ

, when t = cos θ. (2.3.70)

To justify the definition of Vn(t), we first observe that cos(n + 1
2
)θ is an odd

polynomial of degree 2n + 1 in cos 1
2
θ. Therefore the r.h.s. of (2.3.70) is an even

polynomial of degree 2n in cos 1
2
θ, which is equivalent to a polynomial of degree
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n in cos2 1
2
θ = 1

2
(1 + cos θ) and hence to a polynomial of degree n in cos θ. Thus

Vn(t) is indeed a polynomial of degree n in t. For example,

V1(t) =
cos(1 + 1

2
)θ

cos 1
2
θ

=
4 cos3 1

2
θ − 3 cos 1

2
θ

cos 1
2
θ

=

= 4 cos2 1

2
θ − 3 = 2 cos θ − 1 = 2t− 1.

We may readily show that,

V0(t) = 1, V1(t) = 2t− 1, V2(t) = 4t2 − 2t− 1, · · · .

In the same way, we may write the odd eigenfunctions by defining θ = π
L
x and

taking B = 1 in (2.3.69) such that;

y2n+1 = sin
θ

2
Wn(t) where

Wn(t) =
sin(n+ 1

2
)θ

sin 1
2
θ

when t = cos θ. (2.3.71)

Similarly, sin(n+ 1
2
)θ is an odd polynomial of degree 2n+1 in sin 1

2
θ. Therefore

the r.h.s. of (2.3.71) is an even polynomial of degree 2n in sin 1
2
θ, which is

equivalent to a polynomial of degree n in sin2 1
2
θ = 1

2
(1− cos θ) and hence again

to a polynomial of degree n in cos θ. For example,

W1(t) =
sin(1 + 1

2
)θ

sin 1
2
θ

=
3 sin 1

2
θ − 4 sin3 1

2
θ

sin 1
2
θ

=

= 3− 4 sin2 1

2
θ = 2 cos θ + 1 = 2t+ 1.

We may readily show that,

W0(t) = 1,W1(t) = 2t+ 1,W2(t) = 4t2 + 2t− 1, · · · .

The polynomials Vn(t) and Wn(t) are, in fact, rescalings of two particular Jacobi
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polynomials P
(α,β)
n (t) with α = −1

2
, β = 1

2
and vice versa. Explicitly,(

2n

n

)
Vn(t) = 22nP

(− 1
2
, 1
2
)

n (t),

(
2n

n

)
Wn(t) = 22nP

( 1
2
,− 1

2
)

n (t).

These polynomials may be efficiently generated by the use of a recurrence relation.

Since,

cos(n+
1

2
)θ + cos(n− 2 +

1

2
)θ = 2 cos θ cos(n− 1 +

1

2
)θ

and

sin(n+
1

2
)θ + sin(n− 2 +

1

2
)θ = 2 cos θ sin(n− 1 +

1

2
)θ,

it immediately follows that

Vn(t) = 2tVn−1(t)− Vn−2(t), n = 2, 3, · · · ,

and

Wn(t) = 2tWn−1(t)−Wn−2(t), n = 2, 3, · · · ,

with

V0(t) = 1, V1(t) = 2t− 1

and

W0(t) = 1, W1(t) = 2t+ 1.

•
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chapter 3

perturbation theory

3.1 Introduction

Perturbation theory is a large collection of iterative methods for obtaining

approximate solutions to problems involving a small parameter ε. These methods

are so powerful that sometimes it is actually advisable to introduce a parameter

ε temporarily into a difficult problem having no small parameter and then finally

to set ε = 1 to recover the original problem. This apparently artificial conversion

to a perturbation problem may be the only way to make progress.

The thematic approach of perturbation theory is to decompose a tough prob-

lem into an infinite number of relatively easy ones. Hence, perturbation theory is

most useful when the first few steps reveal the important features of the solution

and the remaining ones give small corrections.

In perturbation theory it is convenient to have an asymptotic order relation

that expresses the relative magnitudes of two functions more precisely than <<

but less precisely than ∼. We define

f(x) = 0[g(x)], x→ x0

and say “f(x) is at most of order g(x) as x → x0” or “f(x) is big oh of g(x) as

x→ x0” if f(x)/g(x) is bounded for x near x0; that is |f(x)/g(x)| < M, for some

constant M , if x is sufficiently close to x0 [2].

In perturbation theory one may calculate just a few terms in a perturbation

series. Whether or not this series is convergent, the notation “0” is very useful

for expressing the order of magnitude of the first neglected term when that term

has not been calculated explicitly.
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3.2 Regular and Singular Perturbation Theory

The formal techniques of perturbation theory are a natural generalization

of the ideas of local analysis of differential equations. Local analysis involves

approximating the solution to a differential equation near the point x = a by

developing a series solution about a in powers of a smal parameter, either x− a

for finite a or 1
x

for a = ∞. Once the leading behaviour of the solution near

x = a (which we would now refer to as the zeroth-order solution) is known, the

remaning coefficients in the series can be computed recursively.

The strong analogy between local analysis of differential equations and formal

perturbation theory may be used to classify perturbation problems. Recall that

there are two different types of series solutions to differential equations. A series

solution about an ordinary point of a differential equation is always a Taylor series

having a non-vanishing radius of convergence. A series solution about a singular

point does not have this form. Instead, it may either be a convergent series not

in Taylor series form (such as a Frobenius series) or it may be a divergent series.

Series solutions about singular points often have the remakable property of being

meaningful near a singular point yet not existing at the singular point.

Perturbation series also occur in two variaties. We define a “regular” pertur-

bation problem as one whose perturbation series is a power series in ε having a

non-vanishing radius of convergence. A basic feature of all regular perturbation

problems is that the exact solution for small but nonzero |ε| smoothly approaches

the unperturbed or zeroth-order solution as ε→ 0.

We define a “singular” perturbation problem [2] as one whose perturbation

series either does not take the form of a power series or, if it does, the power

series has a vanishing radius of convergence. In singular perturbation theory

there is sometimes no solution to the unperturbed problem; when a solution to

the unperturbed problem does exist, its qualitative features are distincly different

from those of the exact solution for arbitrarily small but non-zero ε. In either

case, the exact solution for ε = 0 is fundamentally different in character from the

“neighbouring” solutions obtained in the limit ε→ 0. If there is no such abrupt

change in character, then we would have to classify the problem as a regular

32



perturbation problem.

When dealing with a singular perturbation problem, one must take care to

distinguish between the “zeroth - order” solution and the solution of the un-

perturbed problem, since the latter may not even exist. There is no difference

between these two in a regular perturbation theory, but in a singular perturbation

theory the zeroth-order solution may depend on ε and may exist only for nonzero

ε. Here is an example of singular perturbation problem:

Example 1: (Roots of a polynomial.) How does one determine the approxi-

mate root of

ε2x6 − εx4 − x3 + 8 = 0? (3.2.1)

We may begin by setting ε = 0 to obtain the unperturbed problem −x3 + 8 = 0,

which is easily solved:

x = 2, 2w, 2w2 (3.2.2)

where w = e2πi/3 is a complex root of unity. Note that the unperturbed equation

has only three roots while the original equation has six roots. This abrupt change

in the character of the solution, namely the disappearence of three roots when

ε = 0 implies that (3.2.1) is a “singular perturbation” problem. Part of the exact

solution ceases to exist when ε = 0.

The explanation for this behaviour is that the three missing roots tend to ∞
as ε→ 0. Thus, for those roots it is no longer valid to neglect ε2x6−εx4 compared

with −x3 + 8 in the limit ε → 0. Of course, for the three roots near 2, 2w and

2w2, the terms ε2x6 and εx4 are indeed small as ε → 0 and we may assume a

regular perturbation expansion for these roots of the form

xk(ε) = 2e2πik/3 +
∞∑

n=1

an,kε
n, k = 1, 2, 3. (3.2.3)

Substituting (3.2.3) into (3.2.1) and comparing powers of ε gives a sequence

of equations which determine the coefficients an,k.

To track down the three missing roots we first estimate their orders of magni-

tude as ε→ 0. We do this by considering all possible dominant balances between
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pairs of terms in (3.2.1). There are four terms in (3.2.1) so there are six pairs to

consider:

(a) Suppose ε2x6 ∼ εx4(ε→ 0) is the dominant balance. Then x = 0(ε−1/2)(ε→
0). It follows that the terms ε2x6 and εx4 are both 0(ε−1). But εx4 << x3 =

0(ε−3/2) as (ε→ 0), so x3 is the biggest term in the equation and is not balanced

by any other term. Thus, the assumption that ε2x6 and εx4 are the dominant

terms as (ε→ 0) is inconsistent.

(b) Suppose εx4 ∼ x3 as (ε → 0). Then x = 0(ε−1). It follows that εx4 ∼
x3 = 0(ε−3). But x3 << ε2x6 = 0(ε−4) as (ε→ 0). Thus ε2x6 is the largest term

in the equation. Hence, the original assumption is again inconsistent.

(c) Suppose ε2x6 ∼ 8 so that x = 0(ε−1/3) (ε → 0). Hence x3 = 0(ε−1) is the

largest term, which is again inconsistent.

(d) Suppose εx4 ∼ 8 so that x = 0(ε−1/4)(ε → 0). Then x3 = 0(ε−3/4) is the

biggest term, which is also inconsistent.

(e) Suppose x3 ∼ 8. Then x = 0(1). This is a consistent assumption because

the other two terms in the equation, ε2x6 and εx4, are negligible compared with

x3 and 8, and we recover the three roots of the unperturbed equation x = 2, 2w

and 2w2.

(f) Suppose ε2x6 ∼ x3(ε→ 0). Then x = 0(ε−2/3). This is consistent because

ε2x6 ∼ x3 = 0(ε−2) is bigger than εx4 = 0(ε−5/3) and 8 = 0(1) as ε→ 0.

Thus, the magnitudes of the three missing roots are 0(ε−2/3) as ε → 0. This

result is a clue to the structure of the perturbation series for the missing roots.

In particular, it suggests a scale transformation for the variable x:

x = ε−2/3y. (3.2.4)

Substituting (3.2.4) into (3.2.1) gives

y6 − y3 + 8ε2 − ε1/3y4 = 0. (3.2.5)

This is now a “regular perturbation” problem for y in the parameter ε1/3 because

the unperturbed problem y6 − y3 = 0 has six roots y = 1, w, w2, 0, 0, 0. Now, no
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roots disappear in the limit ε1/3 → 0. The perturbative corrections to these roots

may be found by assuming a regular perturbation expansion in powers of ε1/3:

y =
∞∑

n=0

yn(ε1/3)n (3.2.6)

Nevertheless, when y0 = 0 we find that y1 = 0 and y2 = 2, 2w, 2w2. Thus, since

the first two terms in the series vanish, x = ε−2/3y is not really 0(ε−2/3) but rather

0(1) and we have reproduced the three finite roots near x = 2, 2w, 2w2.

We may also apply perturbation theory to a differential equation [22]. Here

is an example of this kind:

Example 2:

The initial - value problem

y′′ + (1 + εx)y = 0, y(0) = 1, y′(0) = 0 (3.2.7)

is a regular perturbation problem in ε over the finite interval 0 ≤ x ≤ L.

We may begin by setting ε = 0 to obtain the “unperturbed problem”

y′′ + y = 0

with the boundary conditions y(0) = 1, y′(0) = 0. The solution is easily found

that,

y(x, 0) = A cosx+B sin x.

Substituting the associated boundary conditions , the exact solution is just y(x, ε) =

y(x, 0) = cos x.

Propose a perturbation series,

y(x, ε) =
∞∑

n=0

yn(x)εn at ε = 0

y(x, ε) = y0(x) + y1(x)ε+ y2(x)ε
2 + · · ·

The value at ε = 0 is y(x, 0) = y0(x) = cos x. If we take the first and second
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derivatives of the perturbation series and substitute into the equation (3.2.7), we

find that,

∞∑
n=0

y′′n(x)ε + (1 + εx)
∞∑

n=0

yn(x)εn = 0

y′′0(x) + y0(x) +
∞∑

n=0

[y′′n+1(x) + yn+1(x) + xyn(x)]εn+1 = 0

[y′′0(x) + y0(x)]ε
0 + [y′′1(x) + y1(x) + xy0(x)]ε

1

+[y′′2(x) + y2(x) + xy1(x)]ε
2 + · · · = 0

Then, equating each power of ε to zero, we get,

ε0 : y
′′
0 + y0 = 0; y0(x) = cosx; y0(0) = 1,

y′0(0) = 0

ε1 : y′′1(x) + y1(x) = −xy0(x); y1(0) = 0, y
′
1(0) = 0

ε2 : y′′2(x) + y2(x) = −xy1(x); y2(0) = 0, y
′
2(0) = 0

and so on.

First, examine the first-order perturbation problem,

y
′′

1 + y1 = −x cosx, y1(0) = y′1(0) = 0.

We may solve the problem by the method of variation of parameters. Define

y1(x) as folows;

y1(x) = A cosx+B sin x+ f1(x).

Propose a particular solution of the form,

f1(x) = u1(x) cos x+ u2(x) sinx.

We find the values of u1 and u2 by imposing the necessary conditions as follows:

u1(x) = −1

4
x cos 2x+

1

8
sin 2x
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and

u2(x) = −1

4
x2 − 1

4
x sin 2x− 1

8
cos 2x.

So, we write y1(x) such that,

y1(x) = A cosx+B sin x+
1

4
cosx{1

2
sin 2x− x cos 2x}

−1

4
sin x{x2 + x sin 2x+

1

2
cos 2x}.

By substituting the conditions, we find A = 0 and B = 1
8
. Then, y1(x) is written

in the form,

y1(x) = −1

4
[x2 sin x− sinx+ x cosx].

The solution of the differential equation (3.2.7) becomes,

y(x, ε) = cosx− 1

4
[x2 sin x− sin x+ x cosx]ε+ 0(ε2).

In the same way, we may solve the second - order perturbation problem,

y
′′

2 + y2(x) = −xy1(x), y2(0) = y
′

2(0) = 0.

Again using the method of variation of parameters, we write

y2(x) = A cosx+B sin x+ f2(x).

Then, propose a particular solution in the form,

f2(x) = u1(x) cos x+ u2(x) sinx.

We find the values of u1 and u2 such that,

u1(x) = −1

4

{
1

16
cos 2x(−10x2 + 7)− 1

4
sin 2x(x3 − 7

2
x) +

x4

8
− x2

4

}
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and

u2(x) =
1

4

{
1

4
x cos 2x

(
−x2 +

7

2

)
− 1

8
sin 2x

(
−5x2 +

7

2

)
+
x3

6

}
.

So, we write y2(x) as follows:

y2(x) =
1

32
x4 cosx− 5

48
x3 sin x− 7

16
x2 cosx+

7

16
x sin x.

We obtain the perturbation solution in the form,

y(x) = cosx+ ε

(
−1

4
x2 sin x− 1

4
x cosx+

1

4
sin x

)
+ ε2

(
1

32
x4 cosx− 5

48
x3 sin x− 7

16
x2 cosx+

7

16
x sinx

)
+ · · · ,

y(x) converges for all x and ε, with increasing rapidity as ε→ 0+ for fixed x.

This initial - value problem must be reclassified as a singular perturbation

problem over the semi-infinite interval 0 ≤ x <∞. While the exact solution does

approach the solution to the unperturbed problem as ε→ 0+ for fixed x, it does

not do so uniformly for all x.

Example 2 shows that the interval itself can determine whether a perturbation

problem is regular or singular. The feature that is common to all such examples

is that on nth-order perturbative approximation bears less and less resemblance

to the exact solution as x increases.

3.3 Perturbation methods for Linear Eigenvalue

problems

3.3.1 Introduction

Perturbation methods attempt to solve a given problem by approximating it

by simpler problems whose solutions are more or less explicitly known.
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In eigenvalue problems the perturbation method [10], [28] yields numerical

results comparatively quickly provided you are satisfied with approximations of

low order. However, even in problems which appear to be very simple, it might

be difficult to ascertain whether or not the method applied would converge or

to estimate the error incurred by stopping at a certain order of approximation.

Sometimes the method obviously does not converge-at least not in the usual sense;

then there is the problem of trying to interpret the results computed, if they have

any significance at all.

3.3.2 Perturbation of Schrödinger Equation

In this section, we shall show how the perturbation theory [39] can be used

to approximate the eigenvalues and eigenfunctions of the Schrödinger equation of

the form,

(−H0 + εH1)ψ = Eψ (3.3.8)

where H0 and H1 are operators and ε is the perturbation parameter. We remark,

at this point, that if the Hamiltonian can be written as a convergent power

series in a certain parameter ε, or particularly, as in equation (3.3.8) with H1

being a bounded operator, then the perturbed eigenvalues and eigenfunctions are

analytic functions of ε, and their power series are convergent power series in a

neighbourhood of ε = 0. Theorem (2.3.1) of Rellich [28].

Therefore, let λn, for a fixed index n, is a simple discrete eigenvalue of the

Hamiltonian operator H0, associated to the eigenfunction φn, namely,

−H0φn = λnφn (3.3.9)

is the unperturbed quantum mechanical system, the solutions of which are as-

sumed to be known completely. Since H0 is Hermitian, the set of eigenfunctions

{φi}∞i=0 forms a complete orthogonal set. Let λi, (i = 0, 1, 2, · · · ), be the corres-

ponding eigenvalues of the system. So, λn is just one of them, which is assumed

to be discrete and simple.

Hence, we formally expand the eigenfunctions and the energy eigenvalues in
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the form of power series in ε, for small, but nonzero |ε|,

ψn(ξ, ε) =
∞∑

k=0

F (k)
n (ξ)εk (3.3.10)

and

En(ε) =
∞∑

k=0

wk(n)εk, n = 0, 1, 2, · · · . (3.3.11)

Substituting the equations (3.3.10) and (3.3.11) into the perturbed Schrödinger

equation (3.3.8) it follows that,

−H0F
(0)
n = w0(n)F (0)

n (3.3.12)

and

−H0F
(k)
n +H1F

(k−1)
n =

k∑
s=0

ws(n)F (k−s)
n , k = 1, 2, · · · . (3.3.13)

Here, we know the solutions of the eigenvalue problem defined in (3.3.12), and

they are the eigenfunctions φj and associated eigenvalues λj for j = 0, 1, 2, · · · ,
where the set {φj}∞j=0 forms a complete orthogonal set of eigenfunctions. We

assume that the normalization condition,

〈
F (s)

n , F (0)
n

〉
= δso, s = 0, 1, · · · , k. (3.3.14)

Multiplying equation (3.3.13) through by F
(0)
n (ξ), integrating at the associated

boundary conditions, we find

k∑
s=0

ws(n)
〈
F (k−s)

n , F (0)
n

〉
= −

〈
H0F

(k)
n , F (0)

n

〉
+

〈
H1F

(k−1)
n F (0)

n

〉
. (3.3.15)

Since a global normalization is possible when (3.3.15) is solved for F
(k)
n and

from our assumption that the normalization condition (3.3.14) holds, we get

wk(n) =
〈
H1F

(k−1)
n , F (0)

n

〉
, k = 1, 2, · · · . (3.3.16)
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Thus, it is possible to define F
(k)
n and wk(n) from (3.3.15) and (3.3.16) which

give an iterative procedure for calculating the coefficients in the perturbation

series.

3.3.3 Enclosed Quantum Mechanical Systems

Consider the enclosed Schrödinger equation in one dimension,

Hψ = Eψ, H = − d2

dx2
+ V (x), x ∈ [−L,L], ψ(∓L) = 0 (3.3.17)

where the potential is in the form

V (x) =
K∑

i=1

v2ix
2i, v2K > 0. (3.3.18)

Making use of the scaling transformation

ξ =
π

L
x, ξ ∈ [−π, π] (3.3.19)

the problem is altered to[
− d2

dξ2
+

(
L

π

)2

V (ξ)

]
ψ(ξ) = Ωψ(ξ), ψ(∓π) = 0 (3.3.20)

where

Ω =

(
L

π

)2

E, V (ξ) =
K∑

i=1

c2iξ
2i, c2i =

(
L

π

)2i

v2i. (3.3.21)

Therefore the formulation in the previous section (3.3.2) can be considered with

H0 =
d2

dξ2
= D2, H1 = V (ξ), ε =

(
L

π

)2

, E =
Ω

ε
(3.3.22)

We may rewrite equation (3.3.20) as
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(−H0 + εH1)ψ(ξ, ε) = Ω(ε)ψ(ξ, ε), ψ(∓π, ε) = 0. (3.3.23)

Hence, our task will be the determination of the serial expansions of Ω(ε) and

ψ(ξ, ε) in nonnegative powers of ε, i.e.

Ωn(ε) =
∞∑

k=0

wk(n)εk, ψn(ξ, ε) =
∞∑

k=0

F (k)
n (ξ)εk, n = 0, 1, 2, · · · . (3.3.24)

Since the perturbation potential H1 can be made bounded, the perturbation

theory of linear operators dictates us that the resulting energy eigenvalue series

for Ω(ε) will be valid in some non-zero region of Ω complex plane. The radius of

such a convergence region depends clearly on L, and covers all Ω-complex plane as

L approaches zero, since perturbation series terminates at the zeroth order term.

As a result, we may expect that (3.3.24) are convergent as long as L remains

smaller than a finite number, ρ(L) say. Substitution of (3.3.24) into (3.3.23),

−
∞∑

k=0

H0F
(k)
n (ξ)εk +

∞∑
k=0

H1F
(k)
n (ξ)εk+1 =

∞∑
k=0

wk(n)εk
∞∑

k=0

F (k)
n (ξ)εk

we find that

∞∑
k=0

[−H0F
(k)
n (ξ) +H1F

(k−1)
n (ξ)]εk =

∞∑
k=0

[
k∑

s=0

wk−s(n)F (s)
n (ξ)

]
εk, F (−1)

n (ξ) ≡ 0

so that

−H0F
(k)
n (ξ) +H1F

(k−1)
n (ξ) =

k∑
s=0

wk−s(n)F (s)
n (ξ), k = 0, 1, · · · .

Then we obtain,

[
H0 + w0(n)I

]
F (0)

n (ξ) = 0 (3.3.25)[
H0 + w0(n)I

]
F (1)

n (ξ) =
[
H1 − w1(n)I

]
F (0)

n (ξ) (3.3.26)
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[
H0 + w0(n)I

]
F (k)

n (ξ) =
[
H1 − w1(n)I

]
F (k−1)

n (ξ)−
k−2∑
s=0

wk−s(n)F (s)
n (ξ), k ≥ 2

(3.3.27)

where I is unit operator in the operator space to which H0 and H1 belong. On

the other hand, the boundary conditions in (3.3.23) imply that

F (k)
n (∓π) = 0, k = 0, 1, · · · . (3.3.28)

As is shown, the original problem (3.3.20) has been reduced to solving F
(k)
n (ξ)

and wk(n) in (3.3.24) recursively. From (3.3.25), we see that the zeroth-order

wave functions F
(0)
n (ξ) satisfy the differential equation

d2F
(0)
n

dξ2
+ w0(n)F (0)

n = 0

whose solutions are given in terms of circular functions

F (0)
n (ξ) = a0 cos

√
w0(n)ξ + b0 sin

√
w0(n)ξ, a0, b0 : constants.

Using (3.3.28), we have,

a0 cos
√
w0(n)π + b0 sin

√
w0(n)π = 0

a0 cos
√
w0(n)π − b0 sin

√
w0(n)π = 0.

For non-trivial solutions for a0 and b0, we must have∣∣∣∣∣ cos
√
w0(n)π sin

√
w0(n)π

cos
√
w0(n)π − sin

√
w0(n)π

∣∣∣∣∣ = 0

which implies that either

w0(n) =

(
n+

1

2

)2

or w0(n) = (n+ 1)2, n = 0, 1, 2, · · · (3.3.29)
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corresponding to two different solutions

F (0)
n (ξ) = a0 cos

(
n+

1

2

)
ξ and F (0)

n (ξ) = b0 sin(n+ 1)ξ

respectively. These solutions represent symmetric and anti-symmetric states of

the problem owing to the fact that V (−ξ) = V (ξ). Therefore we have

F (0)
n (ξ) =


φ2n(ξ) = 1√

π
cos

(
n+ 1

2

)
ξ , for symmetric states

(3.3.30)

φ2n+1(ξ) = 1√
π

sin (n+ 1) ξ , for anti-symmetric states

where we have taken a0 = b0 = 1√
π

for normalization, i.e.

∫ π

−π

[
F (0)

n (ξ)
]2
dξ = 1.

Multiplying equation (3.3.27) through by F
(0)
n (ξ), integrating from −π to π,

〈
[H0 + w0(n)I]F (k)

n , F (0)
n

〉
=

〈
[H1 − w1(n)I]F (k−1)

n , F (0)
n

〉
−

−
k−2∑
s=0

wk−s(n)
〈
F (s)

n , F (0)
n

〉
and using the self -adjointness of H0 + w0(n)I, we find that

k−2∑
s=0

wk−s(n)
〈
F (s)

n , F (0)
n

〉
=

〈
H1F

(k−1)
n , F (0)

n

〉
− w1(n)

〈
F (k−1)

n , F (0)
n

〉
.

Since a global normalization is always possible when the differential equation

(3.3.27) is solved for F
(k)
n (ξ), we assume that the normalization condition

< F (s)
n , F (0)

n >= δs0, s = 0, 1, · · · , k (3.3.31)

holds, and hence obtain the formula
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wk(n) =< H1F
(k−1)
n , F (0)

n >, k = 1, 2, · · · . (3.3.32)

for the coefficients of the energy series in (3.3.24). The equation in (3.3.26) has

the same homogeneous part as (3.3.25) so that its complementary solutions is of

form F
(0)
n (ξ). Therefore, we should find a particular solution only. By the method

of the variation of parameters, we obtain

F (1)
n (ξ) = a1 cos

√
w0(n)ξ + b1 sin

√
w0(n)ξ − 1√

w0(n)
cos

√
w0(n)ξ∫ ξ

−π

sin
√
w0(n)u[V (u)− w1(n)]F (0)

n (u)du+

+
1√
w0(n)

sin
√
w0(n)ξ

∫ ξ

−π

cos
√
w0(n)u[V (u)− w1(n)]F (0)

n (u)du

or

F (1)
n (ξ) = [a1 + A0(ξ)] cos

√
w0(n)ξ + [b1 +B0(ξ)] sin

√
w0(n)ξ (3.3.33)

where

A0(ξ) = − 1√
w0(n)

∫ ξ

−π

sin
√
w0(n)u[V (u)− w1(n)]F (0)

n (u)du, A0(−π) = 0

(3.3.34)

and

B0(ξ) =
1√
w0(n)

∫ ξ

−π

cos
√
w0(n)u[V (u)− w1(n)]F (0)

n (u)du, B0(−π) = 0

(3.3.35)

a1 and b1 being some arbitrary constants. From the conditions (3.3.28), we have

a1 cos
√
w0(n)π − b1 sin

√
w0(n)π = 0 (3.3.36)
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a1 cos
√
w0(n)π + b1 sin

√
w0(n)π = −A0(π) cos

√
w0(n)π −B0(π) sin

√
w0(n)π.

(3.3.37)

For the symmetric states;

F (0)
n (ξ) = F (0)

n (−ξ) = φ2n(ξ) =
1√
π

cos

(
n+

1

2

)
ξ and w0(n) =

(
n+

1

2

)2

.

It can be easily shown that

A0(π) = B0(π) = 0.

Now, equations (3.3.36) and (3.3.37) give the results

a1 cos

(
n+

1

2

)
π − b1 sin

(
n+

1

2

)
π = 0

⇒ −b1(−1)n = 0 ⇒ b1 = 0 and

a1 remains arbitrary. Therefore,

F (1)
n (ξ) =

√
π[a1 + A0(ξ)]F

(0)
n (ξ) +B0(ξ) sin

(
n+

1

2

)
ξ (3.3.38)

in which a1 may be determined according to the normalization condition (3.3.31).

46



chapter 4

numerical applications

4.1 The Confined Harmonic Oscillator

We shall show how perturbation theory can be used to approximate the eigen-

values and eigenfunctions of the Confined Harmonic Oscillator, that is, we may

solve (3.3.17) for V (x) = x2,[
− d2

dx2
+ x2

]
ψ(x) = Eψ(x), ψ(∓L) = 0, x ∈ [−L,L]. (4.1.1)

Following the same procedure in (3.3.3) the problem is altered to[
− d2

dξ2
+ εV (ξ)

]
ψ(ξ) = Ωψ(ξ), V (ξ) = H1 = εξ2 (4.1.2)

where ε = (L
π
)2. From (3.3.30), we know the zeroth-order wave functions F

(0)
n (ξ)

and we will only consider the symmetric states, thus we take only the eigenfunc-

tions,

F (0)
n (ξ) =

1√
π

cos(n+
1

2
)ξ, n = 0, 1, 2, ... (4.1.3)

and the corresponding eigenvalues,

w0(n) = (n+
1

2
)2, n = 0, 1, 2, ... . (4.1.4)

Since we know the formula in (3.3.32) for the coefficients of the energy series in

(3.3.24), we may calculate w1(n) as follows:
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w1(n) =
〈
H1F

(0)
n , F (0)

n

〉
=
ε

π

∫ π

−π

ξ2 cos2(n+
1

2
)ξdξ = ε

[π2

3
− 1

2w0(n)

]
. (4.1.5)

From (3.3.38), we may calculate F
(1)
n (ξ) such that

F (1)
n (ξ) =

[
a1 −

4ε

16
√
πw2

0(n)
+
ε(ξ2 + π2)− 2w1(n)

4
√
πw0(n)

]
cos(n+

1

2
)ξ

+
1

2
√
πw0(n)

[
ε

3
(ξ3 + π3)− (ξ + π)(w1(n) +

2ε

4w0(n)
)

]
sin(n+

1

2
)ξ. (4.1.6)

The constant a1 may be determined from the normalization condition as follows

a1 =
L2

2w0(n)

[
− 1

3
+

1

2π2w0(n)

]
− 3

π
. (4.1.7)

When we use the formula in (3.3.32), we find the following value for the coefficient

w2(n);

w2(n) =
〈
H1F

(1)
n , F (0)

n

〉
=

〈
εξ2F (1)

n , F (0)
n

〉
=

L2

4w0(n)

[
1

4w0(n)π2

[
− 16L2 + 10w1(n)

]

+
1

15

[
13L2 − 25w1(n) + 10a1

√
π(2w0(n)− 3

π2
)
]

+
21L2

4w2
0(n)π4

]
. (4.1.8)

We may write

Ω(N)
n (ε) =

N∑
k=0

wk(n)εk

here N denotes the order perturbative contribution to the energy, where

E(N)
n =

1

ε
Ω(N)

n (ε)

may be written from (3.3.22).
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We have given the necessary and sufficient information to find the analytic

expressions for first three symmetric contributions to the perturbation series of

energy, E0, E2, E4. Here, we present some calculations based on these kinds of

formula in Tables 1-6. We have calculated the values not for E
(N)
n but for εE

(N)
n

in Tables 1, 3, 5 for not to deal with the big numbers coming from small values of

L. Hence it becomes possible to see that the convergence rate of the perturbation

series decreases as L increases. In Tables 2, 4, 6 we have given some values for

L ≥ 1. As can be easily seen, one can obtain quite high accuracy for sufficiently

small L values. As a basic feature of a regular perturbation problem, the exact

solution for small but nonzero ε smoothly approaches the unperturbed or zeroth

order solution as ε → 0. These observations imply that the perturbation series

presented in this example have limited convergence radius which depends on L

and n.

Table 4.1: The comparison of cumulative scaled eigenvalues for n = 0, as a
function of the boundary parameter L.

L εE
(0)
0 εE

(1)
0 εE

(2)
0

0.001 0.2500000000 0.250000000000013 0.250000000000013

0.01 0.2500000000 0.250000000132476 0.250000000132474

0.1 0.2500000000 0.250001324 0.250001322

0.2 0.2500000000 0.2500211 0.2500210

0.3 0.2500000000 0.250107 0.250105

0.5 0.2500000000 0.2508 0.2507

0.7 0.2500000000 0.253 0.252

0.8 0.2500000000 0.255 0.254
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Table 4.2: The comparison of cumulative perturbational energy eigenvalues for
n = 0, as a function of the boundary parameter L, L ≥ 1.

L E
(0)
0 E

(1)
0 E

(2)
0

1 2.4693 2.6002 2.5739

1.5 1.0975 1.3919 1.2339

2 0.6173 1.1407 0.5323

3 0.2743 1.4520 -3.2079

Table 4.3: The comparison of cumulative scaled eigenvalues for n = 1, as a
function of the boundary parameter L.

L εE
(0)
2 εE

(1)
2 εE

(2)
2

0.001 2.25000000 2.250000000000030 2.250000000000030

0.01 2.25000000 2.25000000031469 2.25000000031468

0.1 2.25000000 2.250003146 2.250003141

0.2 2.25000000 2.2500503 2.2500500

0.3 2.25000000 2.250254 2.250250

0.5 2.25000000 2.2519 2.2518

0.7 2.25000000 2.257 2.256

0.8 2.25000000 2.262 2.261
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Table 4.4: The comparison of cumulative perturbational energy eigenvalues for
n = 1, as a function of the boundary parameter L, L ≥ 1.

L E
(0)
2 E

(1)
2 E

(2)
2

1 22.2244 22.5353 22.4806

1.5 9.8775 10.5769 10.2908

2 5.5561 6.7994 5.8550

3 2.4693 5.2669 -0.0990

Table 4.5: The comparison of cumulative scaled eigenvalues for n = 2, as a
function of the boundary parameter L.

L εE
(0)
4 εE

(1)
4 εE

(2)
4

0.001 6.25000000 6.250000000000030 6.250000000000030

0.01 6.25000000 6.25000000032927 6.25000000032926

0.1 6.25000000 6.25000329 6.25000328

0.2 6.25000000 6.2500526 6.2500523

0.3 6.25000000 6.250266 6.250262

0.5 6.25000000 6.252 6.251

0.7 6.25000000 6.258 6.257

0.8 6.25000000 6.263 6.262
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Table 4.6: The comparison of cumulative perturbational energy eigenvalues for
n = 2, as a function of the boundary parameter L, L ≥ 1.

L E
(0)
4 E

(1)
4 E

(2)
4

1 61.7346 62.0599 62.0038

1.5 27.4376 28.1694 27.8826

2 15.4336 16.7346 15.8170

3 6.8594 9.7865 4.9760
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4.2 The Quartic Anharmonic Oscillator

We shall find the eigenvalues and eigenfunctions of the Schrödinger equation,[
− d2

dx2
+ V (x) + εH1(x)

]
ψ(x) = Ωψ(x), x ∈ (−∞,∞) (4.2.9)

where V (x) = x2 and H1(x) = x4. So, the equation (4.2.9) becomes,[
− d2

dx2
+ x2 + εx4

]
ψ(x) = Ωψ(x), x ∈ (−∞,∞). (4.2.10)

We assume that removing the term H1 from (4.2.9) makes the equation an exactly

soluable eigenvalue problem. This suggests using perturbation theory to solve the

family of eigenvalue problems in which H1 is replaced by εH1. We may seek a

perturbative solution to (4.2.10) of the form,

ψn(x, ε) =
∞∑

k=0

F (k)
n (x)εk, (4.2.11)

Ωn(ε) =
∞∑

k=0

wk(n)εk, n = 0, 1, 2, · · · . (4.2.12)

Substituting (4.2.11) and (4.2.12) into (4.2.10) and following the same proce-

dure we used in the section 3.3.3, we have the resulting sequence of equations, by

comparing the powers of ε, we get

[
− d2

dx2
+ x2 − w0(n)

]
F (k)

n (x) = −x4F (k−1)
n (x)+

k∑
j=1

wj(n)F (k−j)
n (x), k = 1, 2, 3, · · · ,

(4.2.13)

whose solutions must satisfy the boundary conditions,

lim
|x|→∞

F (k)
n (x) = 0, k = 1, 2, 3, · · · .

Equation (4.2.13) is linear and inhomogeneous. The associated homogeneous

equation is just the unperturbed problem which is the Schrödinger equation for
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the quantum mechanical harmonic oscillator,

d2

dx2
F (0)

n (x) + [w0(n)− x2]F (0)
n (x) = 0. (4.2.14)

The solution of the equation (4.2.14), which has already been found in the Ex-

ample (1) in section 2.3.1, is of the form,

F (0)
n (x) = cne

−x2/2Hn(x) where w0(n) = 2n+ 1 (4.2.15)

cn can easily be determined using the normalization condition so that

cn =
1

2n/2
√
n!π1/4

. (4.2.16)

However, only one of the two linearly independent solutions of the unper-

turbed problem (the one that satisfies the boundary conditions) is assumed

known. Therefore, we proceed by the method of reduction of order; to wit,

we substitute

F (k)
n (x) = F (0)

n (x)G(k)
n (x) (4.2.17)

where G
(0)
n (x) = 1, into (4.2.13). Simplifying the result using (4.2.14) and multip-

lying by the integrating factor F
(0)
n (x) gives,

2
[ d
dx
F (0)

n (x)
]
F (0)

n (x)
[ d
dx
G(k)

n (x)
]

+
[
F (0)

n (x)
]2[ d2

dx2
G(k)

n (x)
]

=
[
F (0)

n (x)
]2[

x4G(k−1)
n (x)−

k∑
j=1

wj(n)F (k−j)
n (x)

]
or

d

dx

[[
F (0)

n (x)
]2 d

dx
G(k)

n (x)

]
=

[
F (0)

n (x)
]2

[
x4G(k−1)

n (x)−
k∑

j=1

wj(n)F (k−j)
n (x)

]
.

(4.2.18)
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If we integrate the equation (4.2.18) from −∞ to ∞ and use

[
F (0)

n (x)
]2 d

dx
G(k)

n (x) = F (0)
n (x)

d

dx
F (k)

n (x)− d

dx
F (0)

n (x)F (k)
n (x) → 0

as |x| → ∞, we obtain the formula for the coefficient wk(n):

wk(n) =

∫ ∞

−∞
F (0)

n (x)

[
x4F (k−1)

n (x)−
k−1∑
j=1

wj(n)F (k−j)
n (x)

]
dx∫ ∞

−∞

[
F (0)

n (x)
]2
dx

, k = 1, 2, 3, · · · .

(4.2.19)

Integrating (4.2.19) twice gives the formula for F
(k)
n (x):

F (k)
n (x) = F (0)

n (x)

∫ x

a

dt[
F

(0)
n (t)

]2

∫ t

−∞
dsF (0)

n (s)

[
s4F (k−1)

n (s)−
k∑

j=1

wj(n)F (k−j)
n (s)

]
,

k = 1, 2, 3, · · · .(4.2.20)

Observe that in (4.2.20), a is an arbitrary number at which we choose to

impose F
(k)
n (a) = 0. This means we have fixed the overall normalization of ψ(x) so

that Fn(a) = F
(0)
n (a). [Assuming that F

(0)
n (a) 6= 0]. If F

(0)
n (t) vanishes between a

and x, the integral in (4.2.20) seems formally divergent; however F
(k)
n (x) satisfies

a differential equation (4.2.13) which has no finite singular points. Thus, it is

possible to define F
(k)
n (x) everywhere as a finite expression.

For the ground state, i.e. n = 0, the differential equation (4.2.13) becomes,

(
− d2

dx2
+ x2 − 1

)
F

(k)
0 (x) = −x4F

(k−1)
0 (x) +

k∑
j=1

wj(0)F
(k−j)
0 (x), k = 1, 2.

(4.2.21)

Let F
(k)
0 (x) = F

(0)
0 (x)G

(k)
0 (x) = e−x2/2G

(k)
0 (x) where G

(0)
0 ≡ 1. Taking derivatives
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and substituting into the differential equation (4.2.21), we find

− d2

dx2
G

(k)
0 (x) + 2x

d

dx
G

(k)
0 (x) = −x4G

(k−1)
0 (x) +

k∑
j=1

wj(0)G
(k−j)
0 (x). (4.2.22)

For k = 1, the equation (4.2.22) takes the form,

− d2

dx2
G

(1)
0 (x) + 2x

d

dx
G

(1)
0 (x) = −x4 + w1(0).

If we take d
dx
G

(1)
0 = g0 and substitute into above equation then we get,

− d

dx
g0(x) + 2xg0(x) = −x4 + w1(0).

When we look for the series solutions of g0, from the help of the value of w1(0)

that we find from the equation (4.2.19), we see that g0 contains a finite number of

terms, namely we find polynomial solution and now it becomes possible to write

G
(1)
0 then F

(1)
0 . Therefore, we may find the value of w2(0) from (4.2.19) using the

properties of Hermite polynomials; recurrence and orthogonality relations. Then

following the same procedure, we find the value of w3(0) and all the values of

wk(0) for k = 1, 2, 3 are found as follows:

w1(0) =
3

4
, w2(0) = −21

16
, w3(0) =

333

64
.

Observe that in (4.2.19), if we know F
(k−1)
n it is possible to evaluate the value

of wk(n). Now, it is possible to write the perturbation series for the smallest

eigenvalue such that:

Ω0(ε) ∼ 1 +
3

4
ε− 21

16
ε2 +

333

64
ε3 + · · · . (4.2.23)
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For n = 1, the differential equation (4.2.13) becomes,

(
− d2

dx2
+ x2 − 3

)
F

(k)
1 (x) = −x4F

(k−1)
1 (x) +

k∑
j=1

wj(1)F
(k−j)
1 (x), k = 1, 2.

(4.2.24)

Let F
(k)
1 (x) = F

(0)
1 G

(k)
1 (x) = 2xe−x2/2G

(k)
1 (x) where G

(0)
1 ≡ 1. Then taking deriva-

tives and substituting into the differential equation (4.2.24), we obtain,

− d2

dx2
G

(k)
1 (x)+2(x− 1

x
)
d

dx
G

(k)
1 (x) = −x4G

(k−1)
1 (x)+

k∑
j=1

wj(1)G
(k−j)
1 (x). (4.2.25)

Following the same procedure we used for n = 0, performing the necessary cal-

culations for k = 1, 2 in (4.2.25) and by the help of the equation (4.2.19) for the

coefficient wk(n), it is possible to evaluate the values of wk(1) for k = 1, 2, 3 as

follows:

w1(1) =
15

4
, w2(1) = −165

16
, w3(1) =

3915

64
.

And now, we may write the perturbation series for n = 1 such that:

Ω1(ε) ∼ 3 +
15

14
ε− 165

16
ε2 +

3915

64
ε3 + · · · . (4.2.26)

For n = 2 , the differential equation (4.2.13) takes the form

(− d2

dx2
+ x2 − 5)F

(k)
2 (x) = −x4F

(k−1)
2 (x) +

k∑
j=1

wj(2)F
(k−j)
2 (x), k = 1, 2. (4.2.27)

Let F
(k)
2 (x) = F

(0)
2 (x)G

(k)
2 (x) = (4x2 − 2)e−x2/2G

(k)
2 (x) where G

(0)
2 ≡ 1.

Substituting into the differential equation (4.2.27), one can obtain

− d2

dx2
G

(k)
2 (x) +

4x3 − 10x

2x2 − 1
− d

dx
G

(k)
2 (x) = −x4G

(k−1)
2 (x)

+
k∑

j=1

wj(2)G
(k−j)
2 (x). (4.2.28)
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After performing the derivation for k = 1, 2 in equation (4.2.28), using the formula

for the coefficient wk(n) and by the same procedure we used for the ground-state

energy eigenvalue, we get the values for wk(2) for k = 1, 2, 3 as follows:

w1(2) = 9.75, w2(2) = 10716.52875 and

w3(2) = 20217003.01769532.

Now, it is possible to write the perturbation series for n = 2 as follows:

Ω2(ε) ∼ 5 + 9.75ε+ 10716.52875ε2 + 20217003.01769532ε3 + · · · . (4.2.29)

The terms in the perturbation series appear to be getting larger and series seem

to be divergent for all ε. This divergence indicates that the perturbation problem

is singular. There is an abrupt change in the nature of the solution when we pass

to the limit ε → 0. This occurs because the perturbing term εx4 is not small

compared with x2 when x is large.

In Tables 7−9 we report the ground-state and the first two excited-state ener-

gy levels of the quartic anharmonic oscillator as a function of the anharmonicity

constant, ε. And, in Tables 7 − 9, some results from [33] are given for the com-

parison of our successive approximations. It is appearent that the perturbation

method yields the most accurate numerical results for the ground-state eigenval-

ues. A slight slowing down of convergence is observed as the state number, n,

increases.

58



Table 4.7: Ground-state energy eigenvalues of the quartic anharmonic oscillator
as a function of the anharmonicity constant ε.

ε Ω0(ε) Ω?
0(ε)

0.00001 1.000 007 499 868 755 203 1.000 007 499 868 755 202

0.0001 1.000 074 986 880 203 1.000 074 986 880 200

0.001 1.000 748 692 703 1.000 748 692 673

0.01 1.000 373 95 1.000 373 672

0.1 1.067 1.065 285 509

1 5.140 1.392 351 641

Ω?
0(ε) are the exact values [33].

Table 4.8: n = 1 excited - state energy eigenvalues of the quartic anharmonic
oscillator as a function of the anharmonicity constant ε.

ε Ω1(ε) Ω?
1(ε)

0.00001 3.000 037 500 3.000 037 498

0.0001 3.000 374 897 3.000 374 896

0.001 3.003 739 749 3.003 739 748

0.01 3.036 529 3.036 525

0.1 3.333 3.306 872

1 57.609 4.648 812

Ω?
1(ε) are the exact values [33].
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Table 4.9: n = 2 excited - state energy eigenvalues of the quartic anharmonic
oscillator as a function of the anharmonicity constant ε.

ε Ω2(ε) Ω?
2(ε)

0.00001 5.000 098 5.000 097

0.0001 5.001 10 5.000 974

0.001 5.040 5.009 711

0.01 26.386 5.093 939

Ω?
2(ε) are the exact values [33].

60



chapter 5

Conclusion

In this thesis we deal with studies on the perturbation problems in quantum

mechanics. In Chapter 1, we give a general information about perturbation theory

as an introduction and some methods are presented to solve the Schrödinger

equation.

In Chapter 2, we review of special functions and give some eigenvalue problems

in quantum mechanics that can be solved by means of the classical orthogonal

polynomials. We obtain the eigenvalues of the harmonic oscillator in the form

of Hermite polynomials. The problem in the type of Pöschl-Teller potential has

the solutions in the form of Jacobi polynomials. And we write the solutions of

the problem in the type of Particle-in-a-box in terms of Chebyshev polynomials

of the third and fourth kinds of degree n.

In Chapter 3, we deal with perturbation theory and its applications. First

example is of singular perturbation problem to determine the approximate root

of a polynomial. We also apply the perturbation theory to a differential equation.

In Chapter 4, we give two different types of perturbation problems; regular

and singular. First, we deal with the confined harmonic oscillator. We give

the necessary and sufficient information to find the analytic expressions for first

three symmetric contributions to the perturbation series of energy, E0, E2, E4

and we present some calculations based on these kinds of formula in Tables 1-6.

As is seen that the convergence rate of the perturbation series decreases as L

increases. One can obtain quite high accuracy for sufficiently small L values. As

a basic feature of a regular perturbation problem, the exact solution for small

but nonzero ε smoothly approaches the unperturbed or zeroth order solution as

ε → 0. These observations imply that the perturbation series presented in that

example have limited convergence radius which depends on L and n. Second,
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we give an example as a singular perturbative eigenvalue problem, the quartic

anharmonic oscillator. In Tables 7 − 9 we report the ground-state and the first

two excited-state energy levels of the quartic anharmonic oscillator as a function

of the anharmonicity constant, ε. And, in those tables, some results from [33]

are given for the comparison of our successive approximations. It is appearent

that the perturbation method yields the most accurate numerical results for the

ground-state eigenvalues. A slight slowing down of convergence is observed as

the state number, n, increases. We calculate the coefficients in the perturbation

series in (4.2.23), (4.2.26), (4.2.29) and by the help of the formulas we find in

those equations, we observe that the terms in those series appear to be getting

larger and series seem to be divergent for all ε. This divergence indicates that the

perturbation problem is singular. There is an abrupt change in the nature of the

solution when we pass to the limit ε → 0. This occurs because the perturbing

term εx4 is not small compared with x2 when x is large. If the functions V (x) and

H1(x) in this example were interchanged, then the resulting eigenvalue problem

would be a regular perturbation problem because εx2 is a small perturbation of

x4 for all |x| <∞ .

We conclude that the perturbation theory yields the most encouraging numeri-

cal results for the ground-state eigenvalues and for sufficiently small ε values.
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