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ABSTRACT
RARE Z DECAYS AND NONCOMMUTATIVE THEORIES

Yiice, Cem
Ph.D., Department of Physics

Supervisor: Prof. Dr. Tahmasib Aliev

June 2004, 80 pages.

Leptonic decay modes of Z-boson constitute one of the important class of
the decays for checking predictions and improving parameters of the standard
model. In next generation of the accelerators, it will be produced more than
10® Z-boson pear year. Therefore, It appears real possibility to analyze the
rare decays of Z, which are absent at tree level in standard model. Moreover,
the rare decays are quite sensitive to the existence of new physics beyond the
standard model. One of the possible source for the new physics is noncommu-
tative theories (NC).

Noncommutative theories have rich phenomenological implications due to the
appearance of new interactions, which are forbidden in standard model.

In this thesis, we examine the Z — v~y decay in noncommutative standard
model. We study the sensitivity of the decay width on the noncommutative
scale parameter A and parameters Cp; and Cj;, which defines the direction of

background electric and magnetic fields.

Keywords: Noncommutative theories, Z Decays
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OZ
NADIR Z BOZUNUMLARI VE KOMUTATIF OLMAYAN TEORI LER

Yiice, Cem
Doktora, Fizik Bolimu
Tez Yoneticisi: Prof. Dr. Tahmasib Aliev

Haziran 2004, 80 sayfa.

Z bozonlarinin leptonik bozunumlari standard model parametrelerinin tahmin-
leri ve geligtirilmesi agisindan bozunumlarin 6nemli bir sinifin1 olugturur. Yeni
nesil hizlandiricilar, yilda 108 den fazla Z bozonu iiretecektir. Bununla birlikte,
standard modelin aga¢ seviyesinde olmayan Z bozonlariin nadir bozunum-
larmin analizi miimkiin géziitkmektedir. Ustelik, bu nadir bozunumlar stan-
dard model oOtesi yeni fizik i¢in oldukca hassastir. Yeni fizik i¢cin muhtemel bir
kaynak komutatif olmayan teorilerdir.

Komutatif olmayan teoriler standard modelde yasaklanan yeni etkilesimler se-
bebiyle zengin fenomolojik bit yapiya sahiptir.

Bu tezde, Z7 — vvy bozunumunu komutatif olmayan standard modelde in-
celedik. Bozunum sabitinin komutatif olmayan biiyiikliik parametresi A ve
elektrik ve manyetik alanlarini tarifleyen Cp; and C;; parametrelerine olan

hasasiyetini caligtik.

Anahtar Kelimeler: Komutatif olmayan teoriler, Z bozunumlari
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CHAPTER 1

INTRODUCTION

Standard model describe all known interactions except for the gravitational
force. At present, the standard model successfully describes all the experi-
mental results in the energy range available in experiments.

The underlying gauge group of the standard model is SU(3)c®SU (2) ,@U (1)y .
The particle spectrum of the standard model consists of the eight gluons, which
are gauge bosons of SU(3)s and mediate the strong interaction, the photon
~ which is responsible for the electromagnetic interaction and the three weak
bosons WT, Z, which are the intermediate vector bosons.

Despite the success of standard model, it is obvious that the standard model
is the effective theory of more fundamental theory and it has many unsolved
problems, such as the number of fermion family, the origin of C'P violation
and mass of fermions etc.

There are various models proposed to solve at least part of the problems of
standard model. One of the promising extension of SM is the noncommutative
theories. Noncommutative theories has the potential to provide an attractive
and motivated theory beyond the standard model. The possibility of noncom-

mutative space-time is an intriguing one which arises naturally in string theory



and give rise to a rich phenomenology. One of the distinguished property of
noncommutative theories is the existence of the new interactions absent in
standard model. This give us the possibility to calculate the decay rate and
cross section for some processes which are forbidden in standard model. The
particle spectrum of the noncommutative theory is assumed to be the same as
the standard model.

In this thesis, we study the Z — vy decay in noncommutative standard
model, which is strictly forbidden in SM at tree level. The thesis is structured
as follows:

In the second chapter, we give the basic formulas for the noncommutative theo-
ries. The x-product formalism which plays vital role in noncommutative space
is explained. Then, the noncommutative quantum mechanics and non-Abelian
gauge theory is studied via x-product. Lastly, the action in noncommutative
space is computed.

In the third chapter, noncommutative field theory is studied deeply by us-
ing the Seiberg-Witten map. The contribution to the fields coming from the
noncommutativity of space-time is calculated. Then, the actions of the non-
commutative electro-weak and noncommutative quantum chromodynamics are
computed up to the first order in noncommutative parameter ©*”. The Feyn-
mann rules for noncommutative quantum chromodynamics are given. As an
application of noncommutative quantum electrodynamics, Moller scattering is

studied.



In the final chapter of this thesis, we study the rare Z — vy decay in noncom-
mutative theories. Firstly, we find the relevant Feynman rules for this decay as
well as the other triple and quarter gauge boson vertices in above mentioned
theories, which are absent in standard model. Moreover, the analytic form of
the Z — vv7y decay rate is calculated. At the end of this chapter, we present

our numerical analysis of the decay with.



CHAPTER 2

NONCOMMUTATIVITY

2.1 Introduction

In quantum mechanics, the phase space is defined by replacing the canonical
position and momentum variables with the Hermitian operators which obeys
the well-known Heisenberg commutation relations [Z;,p;] = ihd;;. Later, in-
spired by the quantum mechanics, it was suggested that one could use the
idea of space-time noncommutativity at very small length scales to introduce

an effective ultraviolet cutoff.

[z, "] = 10", (2.1)

where O is an antisymmetric tensor describing the strength of the noncom-
mutative effects and plays an analogous role to A in usual quantum mechanics.
This idea replaced the space-time point by the the Planck cell of dimension

given by the Planck area.

Azt Az” > —|0*]. (2.2)

DO | —

Later on, the ideas noncommutative geometry were revieved in 1980’s by the
Mathematician A. Connes, who generalized the notion of differential structure
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to the noncommutative setting [1, 2]. One concrete example of physics in non-
commutative space-time is Yang-Mills theory on a noncommutative torus [3].
The quantized motion of a particle in magnetic field is described by the non-
commuting coordinates on the plane perpendicular to the magnetic field. We
will now illustrate how noncommutativity emerges in a simple quantum me-
chanical example, the Landau-level problem. The Lagrangian of a particle of
mass m moving in the plane in the presence of constant perpendicular magnetic

field B is given as

1 - -
L= §mf2 — 74, (2.3)
B . . e 2
where A; = —Eeijxj is the vector potential. The Hamiltonian is H = 5

where 7 = p'+ A. From the canonical commutation relations, it follows that

the momentum operators have the non-vanishing quantum commutators
[#,77] = iBeyj, (2.4)

so the momentum space in the presence of a background magnetic field be-
comes noncommutative.
Spatial noncommutativity arises when m — 0. The Landau Lagrangian be-

comes
B . .
L= —El‘zeijl‘]. (25)

It is a first order Lagrangian which is already expressed in phase space with

the spatial coordinates !, 22 being canonically conjugate variables, so that

[i’i,[ﬁj} = Eﬁij. (26)



More concrete example comes from the string theory, at present the best can-
didate for the quantum theory of gravity. Noncommutative geometry have
been extensively studied in connection with string theory [4, 5, 6, 7] and M
theory [8].

Although the noncommutativity of space-time was suggested in 1947 by
Synder [9], the physical theories with space-time noncommutativity have not
been studied seriously until recently. Perhaps the main reason for this is that
postulating an uncertainty relation between position measurements will lead
to nonlocal theory. The other reason is that space-time noncommutativity
breaks the Lorentz invariance.

One of the motivation for considering space-time commutativity seriously
is the belief that in the quantum theories of gravity, space-time should change
it’s nature at distances comparable to Planck scale. In the quantum theory
of gravity, one can not measure the position better accuracies than Planck
length.

Now, the physicist have constructed many noncommutative theories. Those
theories are made from the standard theories just by replacing the usual mul-

tiplication with the x product.

(0% ®)(z) = 377" 57 W(z) B(y)],—. (2.7)

Noncommutative quantum field theories (NCQFT) [10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36|,
gauge theories [37, 38, 39, 40, 41, 42, 43, 44] and noncommutative quantum
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mechanics [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57] have recently received
great interests. The solitonic structures [58, 59|, and the experimental points
(64, 65] of the noncommutative field theories have also been studied. The non-
commutative field theory from the phenomenological point of view have been
also discussed by various authors [70, 71, 72, 73, 74, 75, 76, 77].
Noncommutative field theories are also constructed from the standard field
theories just by replacing the usual multiplication with the x product in the
Lagrangian density. Such a replacement in field theory leads to the number of
unusual phenomena. The field theory with the space-time noncommutativity
are nonlocal and contain infinitely many time derivative interactions which
would appear to lead to non-renormalizability problems in a full quantum the-
ory. Unfortunately, answering such questions for a noncommutative theory is
complicated by the mixing of low and high momentum modes in loop diagrams
which ruin the conventional Wilsonian renormalization scheme that requires
distinct separation of energy scales. This effect is commonly known as UV/IR
mixing. [t appears to make the renormalization of these theories a complete
disaster.

The nonlocality of noncommutative field theories leads to many interesting
phenomena which makes these models interesting in their own right as poten-
tially well defined, nonlocal quantum field theories.

There is a problem about the unitarity of the theory. For example, the scalar
noncommutative field theory at one loop level unitary if ©% = 0 and not uni-

tary ©% #£ 0. The other problem is that the noncommutativity of coordinates
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breaks the Lorentz invariance of the quantum field theory.
There are many reason which motivate the search for models in noncommuta-

tive space.

2.2 Theoretical Background for the Noncommutative Theories

In this section, we will give the theoretical background for the noncommu-
tative theories. Firstly, the x-product will be introduced and then it will be

applied to the quantum mechanics and non-Abelian gauge theory.

2.2.1 Star Product

As it was noted before that the noncommutative theories are constructed
from the usual theories just by replacing the usual product with the star prod-
uct. In this section, we will study the properties of star product.

The star product plays a vital role in the theory, because it gives us, to-
gether with the Seiberg-Witten map, a possibility to express the noncommuta-
tive fields in terms of the well-known commutative fields. In other words, with
the help of associative star product, the study of noncommutative theories can
be mapped into that of ordinary theories where ordinary product is replaced
by the star product.

Let f(2), §(#) be two noncommutative fields. Hence, in general, fields f and
g don’t commute, not because of canonical commutation relations between the

fields and canonical momentum densities, but because of the & themselves. We



can relate the fields (i) to the ordinary function f(x) of ordinary variables.
Poa d4p —ip#
fo) = [ 5. (2.9

where f(p) is an ordinary function. The multiplication of the two fields is

given as

ﬂ@m@=i/iﬁawvw>/9fe%%%>. (2.9)

274 274
The two exponentials don’t commute. So we use the Baker-Campbell-Hausdorff

theorem.

1
eApB — pA+BHAB..

For A = —ipt, B = —ik& and if [z/, 2] = 1©"”, the series terminates and it
is found that

atp 'k
24 274
= [ Srigmiggignic et f(2)g(y)

PRIl 00 ] () g k)

d'p d'qd'z d"y i i ita—p)y [Lomg o
= | SagoignagaaC e TITITH f(2)g(y)

= [ gt [ S gty (210)

Looking at the Fourier transform in the last equation, the star product of the

functions are defined as follows

9 ot

(f % g)(@) = €287 507 F(2)g(y)]y 0 (2.11)

From now on, we omit the hat sign. The star product is also known as Moyal
product. We can write some theorems about the star product.

9



1-)f * g * h is associative
2-)[dxf*g= [dxfg

3-)[dafxgxh= [dafxgh= [dufgxh

2.2.2  Application of Star product to Quantum Mechanics

In this section, the star product is applied to the usual quantum mechanics.
The Schrodinger equation on for a particle under the influence of a potential
V() in noncommutative two dimensions is given just by replacing the ordinary
product with the star product.
oV [ p?

= = |am + V(X):| * WU, (2.12)

As it is well-known, under the star operation the terms containing time deriva-

tive and p? are unchanged, however the potential term changes
V0«0 = V) + S~ ()a,..0, V(e e, 0, v (213)
—(5)"0i--0;, iy -..0;, W :
Now replace 9;, by p;, and introduce p;, = ©%Jkp,
Oiy .05, V(X)p .. om0 = " / dle™ XV (k) (kp)" . (2.14)
Summing over n gives
Vix)« U = / dlee™®XesPRY (1) (2.15)

If we use kk = 0, we find

Vix)* ¥ = V(x — g)xp. (2.16)

It is concluded that the noncommutativity replaces the potential V' (x) to the
potential V(x — p/2) on the Schrodinger equation.

10



2.2.3 Application of Star Product to the Gauge Theory

Gauge theories are very important for the understanding of the fundamental
forces of nature. The standard model made a unification electromagnetism,
the weak, the strong force possible. Therefore a generalization of the gauge
invariant principle to the noncommutative space is of particular interest. The
star product formalism plays a crucial role in this theory because it gives us a
possibility to express the noncommutative fields entering the theory in terms of
the well known commutative fields. It makes it possible to read off explicitly the
corrections to the noncommutative theory predicted by the noncommutative
one. In the following subsections, the non-Abelian gauge theory will be studied

as an application of the star product.

2.2.4 Non-Abelian Gauge Theory on Noncommutative Space

Noncommutative spaces, especially in the case of canonical noncommuta-
tivity, have been intensively studied in recent years. For example, a gauge
theory has been developed on such a noncommutative space [37, 38].

Let us recall the non-Abelian gauge theory on the commutative space. A

non-Abelian gauge theory is based on a Lie algebra

[T T = if*®T° (2.17)

where T are hermitian traceless matrices generating the unitary group and

f are real totally antisymmetric coefficients called the structure constants

11



of the algebra. Some celebrated examples are
T =1/20" T =1/2)\% (2.18)

where 0%, A% are the Pauli spin SU(2) and Gell-Mann matrices, respectively.
Note that the successive transformations matters for non-Abelian theories.
Whenever the order of the transformations matters, they are called non-Abelian
transformations.

Infinitesimal transformation for matter field is given by
5.00(@) = ia(@)’(z),  alx) = au(z)T™ (2.19)
(6a03 — 0500)0° (1) = icta () By(x) [, TU° () = Ganpt’(2), (2.20)
and for the gauge field
0:(7) = aa(@)T" (2.21)
Saas(@) = Balz) +ilalz), ai(z)).

Here, 9°, a; denote the field and the gauge potential in the commutative
case, respectively. In a gauge theory on noncommutative coordinates, (1.19)
is replaced by

dath(x) = iAy[a] x (). (2.22)

The variations d,
i0a\gla] —idgAa[a] + Aufa] x Agla] — Agla] * Anfa] = iAaxs(a). (2.23)

The variation dgA,[a] refers to the a;-dependence of A,[a] and the transfor-
mation property of a;.

12



It is natural to expand the star product in its “noncommutativity” and to solve
the above equation in a power series expansion. For this purpose we introduce

a parameter h:

ip 9 gij 9

(fxg)(z) = e? o= 0 f(2)g(y)ly—a (2.24)

= f(x)o(x) + SO0 f()Dy9(x) - %h?@ijeklaiak F(@)0:09(x) + ..

0 is used as an expansion parameter.

It is assumed that A,[a] can be expanded in the parameter h:
Aula) = o+ hAL[a] + h*A2[a] + - . (2.25)
Now, the equation (2.22) is expanded in h. To first order we obtain

idaAgla] — 10575 a] + [a, Aglal] = [B, Agal] — iAg.gla] = —%Qij{ﬁia, 0;8}.
(2.26)
The equation (2.26) can be solved with an ansatz linear in 6, because the
inhomogeneous part is linear in §. For dimensional reasons there is only a finite
number of terms that can be used in such an ansatz. The proper combination

of such terms is
1 L i L . arb .
Aa[a] = 10 {@a,aj} = 59 @aaajﬁ ST (227)
Similarly, to second order in h, A? gives

Aila] = 3—12@ij9kl< — Moo, {ar, Oa;}} — i{Oia, {an, [aj, al}} — i{ay, {a, [Oicv, ai]}}
+2z[828ka, 8jal] — 2[8jal, [@a, ak]] + Qi[[aj, al], [@a, (Ik]]> . (228)

13



The solution (2.27) and (2.28) are such that they are first and second order in 6,
respectively. Having obtained the A, [al, let us study the first order and second
order contributions to the matter field and gauge field on noncommutative

space.

2.2.5 Fields

In the standard non-Abelian gauge theory, fields have the transformation
property (2.19). The noncommutative non-Abelian gauge theory is supposed
to transform as in (2.22). The *-product plays vital role in such a transforma-
tion. With the expansion property of any two fields under x-product (2.24),
we can write the noncommutative field v in terms of the usual field ¢° and
gauge field a;.

In the similar way, the fields can be expanded in powers of h
vla] = v+ htfa) + K22+ (2.29)
To first order in h:
5utb'[a] = it [a] + iAL [a]u)® — %eijaiaajw (2.30)
If the solution for Al [a] (1.27) is substituted, it is found that
Yta) = —%Qijaﬁjwo - %9ijaiaj¢0. (2.31)
One can proceed to the next order,

Suv?la] = iow?la] + AL faly'a] + iA2[aly® — J690ALfaloyu" (2:32)
—%Qijaiaﬁjwl[a] - %Hijekl&@kac‘)jc‘)lwo,

14



substituting for A2 [a] gives us ¥?|a]
1 ..
V2 a) = 3_29199“( — 4i0;a1,0;0° + 4a;a,0;,00" + 8a;0;a,00°  (2.33)
—4ai8kaj8ﬂ/10 — 4iaiajakal¢0 + 4mkaja,0ﬂ/10 — 4iajakaial¢0

+48jaka7;8ﬂ/10 — 28iak(9jalz/10 + 4iaia18kajw0 + 4iai(9kajaﬂ/10

—4iai8jakalw0 + 3aiajalakw0 + 4aiakajal¢o + 2aialakajw0>.

2.2.6 Gauge potentials and field strengths

Finally, the x-product (2.24) expansion enables us to obtain the contribu-
tions to the gauge field. The transformation property of the noncommutative

gauge field A; is given by
daA; = 0;\o[a] + 1[As]al,” A;l. (2.34)
In the similar way, we expand A; in h.
Aila] = a; + hA[[a] + W*AP[a] + -+ . (2.35)
To first order we obtain the following
SaAfla) = O;AL[a] + i[AL[a], a;] + i[a, A}la]] — %Hkl{ﬁka, Oa;}. (2.36)

If we substitute the solution for Al[a], we find the first order contribution to

the gauge field as follows
1 L 0
A;la] = —10 {ag, Oa; + F};}, (2.37)
where Fg is the field strength of the ordinary Lie algebra-valued gauge theory

F‘z(; = @-aj — 8jai — i[ai, aj]. (238)

15



To second order in A

6o A2[a] = O;A:[a] +ila, AZ[a]] +i[AL[a], Af[a]] + i[A2[a], a;] — (2.39)

—%ekl{aka, O A a]} — %ekl{akA;[a], da;} — %eklem"[akama, 00 ati].

If we use A?[a], it has the following solution

1
32

+2H8kam7 ai], alan] - 4{81611', {amalw CLn}} + 4{ak> {Fl?m Fr?z}}

A%a] = leem”<4i[8k8mai,8lan] 2[4k, Dyt + A ag, {am, D, FO}}2.40)

—i{&-an, {(Il, [(Im, akz]}} - Z‘{ama {ak7 [81'&”7 al]}}
+il[am, ai], [ak, Bnai]] — 2il[am, ail, [ax, ian]] — {am, {ax, lai, [an, a;]]}}

+{a’k’ {[alv am]’ [am CLZ]}} + Hama al]? [a’kv [am azm)

The x-product enables us to write the first order and second order contribution
to the matter field and gauge field in noncommutative space. One can find the
higher order contribution to these fields. Note that the calculations get length

when trying to find those in higher order.

2.2.7 Actions

In this subsection, we shall study the action in x-product. It was shown

before that the integral has the trace property for the x-product:
/f*g dx:/g*f da::/fg dz. (2.41)
Thus we find an invariant action for the gauge potential
1 -
S = _ZTr/Fij * FY duz, (2.42)

16



as well as for the matter fields

S = /1/1 *x (Y'D; — m)y du. (2.43)

Our aim is to expand these actions in the fields a; and 1° and to treat them
as conventional field theories depending on a coupling constant 6. We only do
this here to first order in A and construct the Lagrangian from our previous

results:
mi =m0+ ShomD Dy
— . s 7 . 1 s
,(/} *’YZDW — wO,Yszin 4 §h¢9kl’Dk¢0’)/l’Dl,Di’(/JO o §h6klw071Fwi%rDlw0
Fij * [ = Fi[J)'FUJ + §h9k1DkFi(;'DlFoj + Ehekl{{E%7FJ%}’FOJ}
1 . ) .
—MOLER, FSF™) — ho (o {an, F )

For the action we use partial integration and the cyclicity of the trace and

obtain to first order in h:

/1/_) *x (YD —m)Ydr = /@Z_Jo(viDi —m)y® de — ih@kl /@EOFISZ (Y'D; — m)y° da

1 .
—éhekl / YOy FO D0 da (2.44)
1 i 1 0 1025 1 kl 0 7,70 17035
—ZTr FjxFYdx = _ZTI FiF de+§h0 Tr [ F b FPY dr
1 3
—§h9ler / FoF FY da (2.45)
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CHAPTER 3

NONCOMMUTATIVE FIELD THEORY

3.1 The Standard Model on Non-Commutative Space-Time

In the previous section, the non-Abelian gauge transformation on the non-
commutative space was studied by using the x-product. Now we want to apply
this method to construct the Standard model in noncommutative space. Cal-
met, Jurco, Schupp, Wess, Wohlgenannt [45] constructed the Standard Model
on a non-commutative space up to first order in the non-commutativity param-
eter ©*. The symmetry group is SU(3) x SU(2) x U(1). Obviously, at zeroth
order the action must be coincides with the ordinary Standard Model. At the
first order in ©*” it is found new vertices which are absent in the Standard

Model on commutative space-time.

3.1.1 Gauge fields on non-commutative space-time

In an analogous way of the Standard model, we can hope to infer the
structure of the noncommutative Standard model from local gauge invariance.
The present belief is that all particle interactions may be dictated by so-called
local gauge symmetries. This is connected with the idea that the conserved
physical quantities such as electric charge, color, etc. are conserved in local
regions of space, and not just globally. It is assumed that this is also true in
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noncommutative space. So, our aim is to construct the local gauge invariance
for the noncommutative field theory.

In this subsection, we will briefly study the gauge fields on noncommuta-
tive space and expand the action over the noncommutative parameter ©*".
We will derive the formulas up to the first order of ©#”. At zeroth order, the
fields and the action coincide with those of the Standard model. There is no
new particles introduced in this theory. We will show that there exists some
new vertices.

Before going further, let us recall the transformation of the field ¥ in commu-

tative space
OV = ia(x)V,

where a(z) is a gauge parameter. As we said earlier, the ordinary product
is replaced with the x-product when doing transition to the noncommutative
space. But, here a little care should be taken. The gauge parameter « is also
replaced with a new parameter A. This is because the gauge parameter A in
noncommutative theories does not satisfy the Lie algebra (2.17). A depends
in general on «a(x) and the gauge field A, (x).

In an analogous way, we can write an infinitesimal non-commutative local

gauge transformation 6 of a fundamental matter field as follows
00 = iA » . (3.1)

In the non-Abelian case V¥ is a vector, A a matrix whose entries are functions

~

on non-commutative space-time and * includes matrix multiplication, i.e., [A
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\If]a = Zb[A]ab * \I/b.
The transformation properties of the products of a field and a coordinate,

U % 2 and 2 x U are equal. If we use the equation (2.24), we see that

U % ot = Uk + %@U@Z-\Ifﬁjx“ + ...

2P U = Tgh — %@ij@qf@jx“ + ..

In the last relation, we used the antisymmetry of ©Y (0% = —@7%).
In an analogy to the covariant derivatives of ordinary gauge theory, the co-
variant coordinates X* = z# + @“”121\1, is introduced, where 121\,, is a non-

commutative analog of the gauge potential with the following transformation

property:
0A, = Ouh +i[A, A,). (3.2)

In the similar way, we can define the noncommutative field strength as in the

following way

~ -~

Fu = 0,A, —0,A, —ilA,, A),  6F,, =i\ F,) (3.3)
Further, we can write down the covariant derivative as follows
D,V =09,V —iA,«V. (3.4)

Up to now, what we have done is just to write the local gauge transforma-
tions of the fields, covariant derivative and field strength in noncommutative
space with the help of x-product. The only changes comparing to the usual

20



gauge theory come from the replacement of the ordinary product with the %-
product and from the new gauge parameter A instead of a. Now, the next
questions arise. How do we deal with x-product? Can we somehow find some
transformations relating the noncommutative fields and gauge parameters A
to the usual fields and gauge parameters o with which we are familiar? In the

followings, we will answer these questions.

3.1.2  Seiberg-Witten map

Here, we will introduce so-called Seiberg-Witten map which enables us to
express the noncommutative variables in terms of the commutative variables.
Actually, there are two ways to do this. The first one is the *-product. We

studied the x-product in the previous chapter. Star product of f, g is defined,
Jrg=1-g+ 50" @)onf - ovg + O(6?)

with higher order terms chosen in such a way as to yield an associative product.
The star product is a local function of f, g, meaning that it is a formal series
that at each order in © depends on f, g and a finite number of derivatives of
f and g.

Secondly, the non-commutative fields ﬁ, ¥ and non-commutative gauge
parameter A can be expressed in a similar fashion by so-called Seiberg-Witten
maps in terms of the corresponding ordinary fields A, ¥ and ordinary gauge

parameter A.

. 1 1
AA] = Act 0"{A,. 0,40 + 10" (Fe. A} +0(07),  (35)
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~ 1 )
VU, A] = U OWAYT 4+ %@“”[AM, AT + 0(62), (3.6)

~

RAAl = A+ i@“V{Ay, DuA} + 0(6?), (3.7)

where F),, = OuA, — 0vA, —i[A,, A, is the ordinary field strength.

We can choose one of the method. If we can use the Seiberg-Witten map,

then we should forget about the x-product in all of the formulas written for the
noncommutative theory. Instead of it, we should directly write the transforma-
tions (3.5-3.7), whenever the noncommutative variables with hat is required.
The Seiberg-Witten map is easy to handle, since it enable us to make transi-
tion from the noncommutative variable to the commutative variables. So, we
don’t need to deal with the derivative terms in x-product.
We will henceforth omit the explicit dependence of the non-commutative fields
and parameters on their ordinary counterparts with the understanding, that
the hat denotes non-commutative quantities that can be expanded as local
functions of their classical counterparts via Seiberg-Witten maps.

The Seiberg-Witten maps have the remarkable property that ordinary gauge
transformations 0 A, = OuA+i[A, A,] and ¥ = ¢A- V¥ induce non-commutative

gauge transformations of the fields ﬁ, U with gauge parameter A as given

above:
§A, =04, 00 =04U. (3.8)
For consistency we have to require that any pair of non-commutative gauge

parameters K, 5 satisfy

—

[A, 5] + 0,5 — i0sA = [A, 3], (3.9)
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Since only the gauge parameters are involved for the the consistency condi-
tion, it is convenient to construct the Seiberg-Witten map on it. Then, the
remaining Seiberg-Witten maps can be calculated from the gauge equivalence
condition.

Before writing the action in noncommutative space, let us mention about
the algebra of the non-Abelian gauge theory in noncommutative space, since

there is a difference between the commutative and noncommutative theories.

3.1.3 Non-Abelian gauge groups

The gauge parameter in Standard non-Abelian gauge theory is based on
a Lie group (T T® = if®T¢), where f® are the antisymmetric structure
constants. However, the gauge parameter A in noncommutative Standard

model is not based on a Lie group. The commutator

R e R] = S{A(e) s AT, T + 5 M) $ AT, )

(3.10)

of two Lie algebra-valued non-commutative gauge parameters A = Ao(2)T
and A = Al (x)T* does not close in the Lie algebra. It is in general enveloping
algebra-valued [38]. If we try, to construct non-commutative SU(N) with
Lie algebra-valued gauge parameters, we immediately face the problem that a
tracelessness condition is incompatible with (3.10). We thus have to consider

enveloping algebra-valued noncommutative gauge parameters

A=A(a)T® + AL (2) : TOT" - +A2, () : T°T"T° : + ... (3.11)

abc

23



and fields. (The symbol : := %{ }.) We see that there are infinite number

2

2pe(), .. .; however, these are not independent.

of parameters A2(x), Al (z), A
In fact, they can be expressed in terms of the parameter a(z) and field A,(x)

via the Seiberg-Witten map.

3.2 The Standard Model on The Noncommutative Space

One of most profound insights in high energy physics is that the interactions
in nature are governed by the symmetry principles. Einstein, Salam-Weinberg
made use of this idea. Requiring the local gauge invariance, they were lead
to the general theory of relativity and electro-weak theory. We assume that
the interactions in noncommutative space is also governed by the local gauge
invariance. By Noether’s theorem, The Lagrangian plays vital role for the
gauge theories. In this section, after giving the necessary transformations for
the noncommutative fields, parameters and field strength, we will obtain the
action in noncommutative space.

Now, our aim is to construct the standard model on noncommutative space.
The structure group of the Standard Model is Ggyr = SU(3)e x SU(2)L X
U(1)y. There are several ways to do this in the noncommutative case since
there exists freedom in the choice of Seiberg-Witten map. We will follow the
method introduced by Calmet-Jurco-Schupp-Wess-Wohlgenannt [45]. In [45],
the whole gauge field V), of Gy as defined by

3 8
V, =g A (2)Y + 9 Bua()T} +gs Y _ Gupl(2)T8 (3.12)

a=1 b=1
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and the commutative gauge parameter A by

3 8
A=dgalx)Y +¢ Z ol ()8 + gg Z oy (2)T8, (3.13)
a=1 b=1

where Y, T%, T% are the generators of U(1)y, SU(2);, and SU(3)¢ respectively.
The non-commutative gauge parameter A is then given via the Seiberg-Witten

map by
~ 1
A=A+ Z@’“’{Vy, O, A} (3.14)

It is seen that the noncommutative gauge parameter A depends on the gauge
potential V,, in addition of the commutative gauge parameter A.

Before giving the Seiberg-Witten map for the field \TJ, let us briefly study the
particle spectrum. Note that there is no change of the particle spectrum of the
commutative and noncommutative theories. In other words, no new particles
are introduced in the noncommutative theories. So, we can copy of the particle

spectrum of the standard model. The particle spectrum is given as follows:

, Lt , o ¢F
v = Cu) = (s d)), e . (3.15)
Qy 3

where ¢ = {1,2,3} is the generation index and ¢ and ¢° are the complex
scalar Higgs fields. For more information about the particle spectrum can be
found in Table 3.1
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Table 3.1: The Standard Model fields. The electric charge is given by the
Gell-Mann-Nishijima relation @ = (T3 +Y).

SU@B)c | SU2), | U1y U(l)g
e 1 1 —1 —1
v 0
LL:<62) 1 2 ~1/2 (_1)
Ug 3 1 2/3 2/3
dn 3 1 —1/3 —1/3
QL = ( Zi > 3 2 1/6 ( _21/?3 )
—
oo () e e ()
B 1 3 0 (£1,0)
A 1 1 0 0
Ge 8 1 0 0

The noncommutative fermion fields W® corresponding to particles labelled

by (n) up to first order is given as in the equation (3.6)
) — g, Lo ) 4 L gnr O
T = 00 20 (V)0 + L0 oo (Vi) oy (VI (3.16)

where pg,)(V,) is defined Table 3.2. This formula is written in general case.

We can write it specifically just by looking at the Table 3.2. As an example,

/

—g—.A,,(x) + gB,(z), we find

if we take W = ZL, then pg,)(V,) = 5

vy, @/“’ / )
LL = = LL —|— 2 (ng/ — %Ay> a;LLL + %@“VBHIBVLL (317)

Note that ©*YA,A, = %[Am A =0.

Now, let us write the explicit form of the transformation for the gauge po-
tential. The Seiberg-Witten map for the noncommutative gauge potential \A/M
yields
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Table 3.2: The gauge fields. (The symbols T¢ and T% are here the Pauli and
Gell-Mann matrices respectively.)

‘ p () ‘ Py (Vo)
er —g' A (@)
14 ! 7
Up 39'Au(2) + 95Gup(x) T3
dn — 19" A, (@) + gsG(@) 1}
L= ( is ) £9' A (@) + gBua(2)Tf + g5Gunl(w) TS

. 1 1
Ve=Ve + Z@W{VV’ 0,Ve} + ZGw{F"f’ V,} 4+ 0(6?), (3.18)

where the ordinary field strength F* = 9*V" — 9"V#* — ¢[V#, V¥]. The non-

commutative field strength is
Fo =0V, —0,V,—ilV,:V,]. (3.19)

Having written the necessary definitions and the transformations, now we
can proceed. In studying gauge theories, the physicist use the Lagrangian for
their computations instead od writing the relativistic wave equation. This is
mainly because of the Noether’s theorem which dictates that an invariance
under a transformation leads to the conservation of a physical quantity. An-
other reason to study with the Lagrangian is that to each Lagrangian, there
corresponds a set of Feynman rules. Interactions are computed by evaluating a
perturbation series in iL;,;, the interaction terms in ¢L. So, writing the action
in noncommutative space is of great importance.

Now, we can write the action of the noncommutative Standard Model in a

27



very compact way just by replacing the ordinary product to the x-product.

Snesu = /d4xz\lf xiyr DB 4 /d‘*quf «ipr DB (3.20)

1 1
- / d4x2—g,tr1FW*FW — / d%ZtrzFW*FW

~

1 ~ ~ ~ ~
— / d4w%tr3FMV*F“”+ / d4x(p0(DM(I>)T* po(DH D)

~12p0(®)" 5 pol(®) = Apo(®)T 5 po(®) x po(®)" 5 po(®))
3 = (2 ~ . (s ~ o~
w [t = S WL pul®) w3+ 8 (@) <)
e - _—
=3 GI((Qr % pal®) + )+ * (g (@)« Q)
ij=1

3 =( —~ . =(7 —~ o~
=3 @@ % pa®) <8P + 5 * (@) +3P))).

ij=1
with ® = i7,®*. The matrices W%, G% and GY are the Yukawa couplings.
New vertices can be found from this action by expanding the *-product and
using the Seiberg-Witten map.

The gauge fields in the Seiberg-Witten map are also summarized in Ta-
ble 3.2.
The representation used in the trace of the kinetic terms for the gauge bosons
is not uniquely determined by gauge invariance of the action. The simplest
choice of a sum of traces over the U(1), SU(2) and SU(3) sectors is taken
into account, since we want to find the Standard Model on noncommutative

space-time with minimal modifications. In this spirit Y is chosen

Y == , (3.21)



in the definition of try. The traces try and trace trs are the usual SU(2),
respectively SU(3) traces. The representations pyr, pq, pg of the gauge poten-
tials V,,, V', that appear in the Seiberg-Witten map of the Higgs are those of
the fermions on the left and right of the Higgs in the Yukawa couplings,
pa(@10, Vi Vi) = Bl6, S0 Ay -+ gBITE +gsGLTS, — =g A, — gsGITE),
pa(@l0, Vi Vi) = Blo, <9 A+ gBLT] + gsGiTE, 29 A, — gsGiTS),
pu(B6.Vu V) = B0, — oA+ gBITE, g'ALL (322)
The representation py of these gauge potentials in the kinetic term of the Higgs

and in the Higgs potential is the simplest possible one

A / A 1 ’ arpa
po(@[p, V,,V,]) = Do, 59 A, +gBTt, 0]. (3.23)

3.3 The Electro-weak Noncommutative Standard Model

In this section the Seiberg-Witten map will be applied to the electro-weak
non-commutative Standard Model. The gauge group of the model is SU(3)¢ X
SU(2)p, x U(1)y. As before, there are no new particles introduced. That is,
the particle content is the same as the Standard Model. The matter fields and
gauge fields content is summarized in Table 3.1.

In the following, we will work in the leading order of the expansion in ©.
Fields with a hat mean noncommutative whereas those without a hat mean
ordinary fields. In particular, the following definitions will be used: A, is
the ordinary U(1)y field, B, = BT} are the ordinary SU(2); fields and
G, = G T are the ordinary SU(3)¢ fields. For the lepton field LYY of the ith
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generation which is in the fundamental representation of SU(2), and in the Y

representation of U(1)y, we have the following expansion
7(@) _ 7@ ()1 2
Ly’[A, Bl =L, +L;"[A B]+0(©%). (3.24)

If we use the equation (3.6) and Table 3.2, the first order contribution is

computed as

, 1 1
LA B] = —5g0"A0,LL — 590" B0, Ly (3.25)

i !
+1@“” (9 A, +9B,) (A, +gB,) Ly.

We can do the same calculations for the right handed lepton field of the ith

generation. We get
WA = el + Al + 0(0?), (3.26)
with
A = —%g'@“”Au&,eg). (3.27)

We found the first order contribution for the leptonic parts. The quarks are
also fell the electro-weak interaction. The expansion for a left-handed quark

doublet @(LZ) of the ith generation is written as
QYA B,G] = QY + Q'[A, B.G] + 0(©”) (3.28)

Then, the first order contribution is found by using the Seiberg-Witten map

(3.6) and Table 3.2.

i 1, . 1 ,
Q'[A B, G] = ~390" 4,0,Q1 ~ 590" B,d, Qs (3.29)
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1 i ,
—égg@‘“’GuayQL + ZGW (¢"A, + 9B, + gsG,.)
(g/Au + 9B, + gSGu) Qr.

For a right-handed quark e.g., ﬂ%), we have

W7 A, G] = uf -+ ui"[4,G] + O(6?), (3.30)

In the similar way, we obtain

; 1, o
ugz)l["éh G] = _5,9 o AMaVuR - 5956# GuauuR

7: / /
+Z@W (¢ A, + 9sGL) (" Av + 9sG) ug. (3.31)

The same expansion is obtained for a right-handed down type quark dg).

In constructing the noncommutative electro-weak Standard model, we have
obtained the first order contribution to the fields. The action (3.20) also in-
cludes the field strength F),,. To finish our work, we should also calculate the
contribution to the field strength due to the noncommutativity of space-time.

The field strength r = @JA/V — (L‘ZL — Z[‘/}M * XA/V] has the following expansion:

~

Fn = Fu+F,, +0(0%, (3.32)
with
o / L S
F/ux = gfuu—l—ngy_’_gSpr (333)

where f,, is the field strength corresponding to the group U(1)y, F}l,, that to
SU(2) and F HSV that to SU(3)c. The coupling constants of the gauge groups
U(1l)y, SU(2), and SU(3)c are respectively denoted by ¢', g and gs. The
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leading order in © is given by
1 1 af 1 afB
FNV = 5@ {FHOU Fyﬁ} - Z@ {Va, (85 + Dﬁ)Fp,l/}y (334)
with
DgF,, = 0gF,, —i[Vs, F,u). (3.35)

As a final step, we will compute the noncommutative gauge potential in
terms of the commutative gauge potential, since the action (3.20) includes it
in covariant derivative D,,.

The leading order expansion for the mathematical vector field V' is given by
V, =V, +il, + 0(8?). (3.36)
If we look at the equation (3.5), we see that
1 aﬁ 1 Oéﬁ
FN = Z@ {Vg@aVM} + Z@ {Fauvﬁ}a (337)
where V,, = ¢’ Ay + 9B, + gsGa. Then, it is found
1
P# = ZZ@aﬁ{g/Aa + 9B + 9sGa, g’@gA# -+ ga,gB“ + gsagG“ (3.38)
/ L S
+9'fou + 9F5, + 9sF35,}-

Having found the necessary transformations of the field from the noncom-
mutative space to the commutative space, now we can write the action in
noncommutative space. The action of the noncommutative electro-weak Stan-

dard Model reads

SNCSM = SMatter,leptons + SMatter,quarks + SGauge + SHiggs + SYuk(339)
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The action is written separately for simplicity. Firstly, we will consider the

fermions (leptons and quarks). The fermionic matter part is

SMatter,ferm. = /d4ZL‘ (Z {I\/fL * Z"}/MDM{I\/JIL + Z \/I}fR *i’yuDu{I\’fR> (340)
! f

where \TJ(Lf ) denotes the left-handed SU(2) doublets \T/g) the right-handed

SU(2) singlets and the index f runs over the three flavors. We thus have:
vr

er

U = (ens uly diy; ul; diy; uby d%) (3.41)

for the first generation.
If we rewrite the equation (3.40) in terms of the left-handed and right-

handed fields up to the leading order, we get

SMatter,ferm. = /d4$<z <L( 2 —+ L(z)l) (ry“(DiM + F,u)) * (L( i) + L(l)l)
+3° (gjé') N égn) wi (DS £ T,) + <€§2> e ) ) (3.42)
Now, we can make use of the equations (3.25), (3.28) and (3.37) to evaluate

the action. The above action becomes

SMatter,ferm, _ /d4:v Z I 1)Z,YMDSML(Z /d4x Z eR Z,yuDSM (@)
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L o 4 —(i) L\: SM (i)
—Z@“ /d x E L9 fuw + 9F 0 )in" Dy Ly
1 ... . i
—5©" / d4x§ "L fap + gFL)iDSM LY

—1@’“’/d4x26 g fuin" DEMe%)
1
@’“’/d‘leé Vg faniDEM ) + 0O(0?). (3.43)

Because of the quark contamination of the electro-weak theory, let us write

the matter-quark interaction part of the theory. It is given by

SMatter quarks = /d%(Z( + Q. )1) i (VDM +T,)) *( o Q(Li)l)
+ ) xi (1D 4 T,) x () + "))

30 (A + ) «i (H(DEM 1)) () + ) + O(8?)
- / d'z > Qi DI QY
1 = (1 -« 7
30" [ @'Y QP+ 9F L + 9sFS)iv DY)
1

50" [ @'Y Q" o+ gL, + 95 FS)IDFQY

—i—/dA‘zZﬂg)i’y“DiMug)

1 .. _(i) SN ;. apsSM, ()
—Z@# /d4xZuR g,ful/"i_gSFuy) vy DaM Up

1 v 1) o . i
—5@“ /d%Zu ) gfau—l—gsty) szMug%)

+ / d'z " dyiy" DM Y

Low [ 1,57 g0 S 5@ ySM (D)
o | TS0 (9 951 17D

1 D . i
_§®W / d' Z J(R)’Y (glfau + gSFuSu) ZDfMdgz)
+0(0?). (3.44)
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In the last step, we used the equations (3.29), (3.31) and (3.37).

The commutative Standard Model is recovered at zeroth order, but some new
interactions appear in the theory.

The most striking feature comes from the gauge part. In the standard theory,
nothing contributes to the Feynman rules in the gauge part of the action.
But, this is not the case in noncommutative Standard theory as can be seen in
the following. There are point-like interactions between gluons, electro-weak

bosons and quarks. The gauge part of the action reads

1 n v
Spauge = — / d4x2—g/tr1FW*F“

1 = o ]_ ~ ~
— / d'r—traF,, x F" — / d'r—trgF,, « "
29 29s
1

1
— Tr / d'z F, F"™ — g ©" Tr / d'z F Fl F*

pp*t vo

puv= po

1 1
-5 Tr / d'z Fo, Fo" 4 S gs O Tr / d'z F, Fy F5°

—gs O" Tr / d'z F; Fo F57 4 0(0°). (3.45)

p- Vo

The coefficients of the triple vertex in the U(1) sector are also different from
plain NCQED with a single electron. These coefficients depend on the repre-
sentation we are choosing for the Y in the kinetic terms. For the simple choice

that we have taken tr1Y? = 0 and this coefficient is zero. Note that a term

v’ po

1
+9 0 Tr / d'x L pL pleo (3.46)

abc

vanishes, the trace over the three Pauli matrices yields 2ie®* and the sum

e ;,’fF cLpo vanishes. Note that because the trace over (73)® vanishes, there
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is also no cubic self-interaction term for the electromagnetic photon coming
from the SU(2) sector. Limits on noncommutative QED found from triple pho-
ton self-interactions do therefore not apply for the minimal noncommutative
Standard Model.

As in the usual commutative Standard Model, the Higgs mechanism can
be applied to break the SU(2), x U(1)y gauge symmetry and thus to generate
masses for the electro-weak gauge bosons. The noncommutative action for
a scalar field ¢ in the fundamental representation of SU(2), and with the

hypercharge Y = 1/2 reads:

~\ T ~
SHiggs = /d4x<p0 (Dmb) * 0o (D“@) —u?
po(®)1 5 po(®) = Apo(®)! + po(®)) % (po(@)1  po(®)) ) (3.47)
In the leading order of the expansion in ©, we obtain:
S = [ (D20 D¥0 — 2016 - NoI)010) )
+ / d'z ((Df%)* (DSM“po(gbl) + %@“ﬂaawaggb - F“gb)
1 T
+ (DfMpowl) +50%0aV,050 + Fm) DMt
1 / - (e
+Zu2®“”¢*(g fuv + 9F )¢ — Ni© %%(DiMW(DEMcb))
+0(6?), (3.48)
with
. . ]- 1e% / / /
Ty = =iV, = i50"{g' A0 + gBa, g0 Au + 903Bu + g fou + 9F3,} (3.49)
and
po(®) = 6 + po(!) + O(xE), (3.50)
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o 107
P()(le) = - 2 (g -Aoz + gBa)aﬂ¢ + 4

(g,-Aa + gBa)(g,Aﬂ + gBﬁ)d) (351)

The Yukawa couplings can then generate masses for the fermions, one has:

3
. =(7) —~ —~
Syutame = / da( = 3o WI((Ly % pn(®) %20 + 37 (pe(®) < 1Y)

ij=1
~ i (B0, BN L) A PP
_ZGZ]((QL *po(®)) *Up’ +up * (PQ(@)T*QLJ ))
Z] 1
- ZG”( Q1 % pa(®) +3(;)*(pcz(<f>)**@(£)))). (3.52)
i,7=1

The sum runs over the different generations. The leading order expansion is

Stutewa = Sfhawa— [ (Z W ((Lio)e] + (Lion(e)eh

+ (LY¢)el, + %@aﬂaaLgange{Q + &L (o' Ly)
+ eRlpn(9")L]) +ex(0'L]) + %@aﬁaaeil%aﬁw%)

— Y Ci((@ud)ui + (Qupo(@)uh + Qo)
b i3070,Q} 060 + H(F'QY) + (g (6)1Q])
() + 507 00,02} )

- Z G ((Quo)y + (Qioo(d")d + (QF o)
+ %@aﬁaa@gamdg + dp(1QY) + di(pa(0")' Q1))
bR + 15070, 00:0Q})) + O6). (35)

where L} stands for a left-handed leptonic doublet of the ith generation, €%, for

a leptonic singlet of the ith generation, Q% for a left-handed quark doublet of
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the ith generation, u’, for a right-handed up-type quark singlet of the ith and
*. stands for a right-handed down-type quark singlet of the ith generation.

We used

p(®) = ¢+ p(¢') + O(x), (3.54)

where p stands for pr, pg and pg, respectively. Once again we recover the
Standard Model, but some new interactions arise. The Yukawa coupling ma-
trices can be diagonalized using biunitary transformations. We thus obtain a
Cabibbo Kobayashi Maskawa matrix in the charged currents, as in the Stan-
dard Model and as long as right-handed neutrinos are absent, we do not predict
lepton flavor changing currents. In the next paragraph, we will present the La-
grangian for the charged and the neutral currents. Clearly, flavor physics is

much richer than in the Standard Model on a commutative space.

3.4 Currents

In this section, the electro-weak currents in the leading order of the expan-

sion in © is studied.

3.4.1 Charged Currents

Firstly, let us study the electro-weak charged currents. Let

U d
Ly = c Ly = S
t b

L L
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The Lagrangian density

with

J1 =

and

J

L = Ly Vexmh L2+ Ly Vi, Jo L1, (3.55)
1 + 1 1175 Vol
%gW —|—(§@ ¥ 4+ ©VH) (3.56)
( \/§Y ! : : +
- g'g(cos Ow 0, A, — cosOw0, A, —sinOw0,Z, + sinOw0o,Z,)W, >
V2
9~ (0. — 0w

~2ig (cos O Z,W;} + sin O AW, — cos Oy W, Z, — sin OV A,) ) -
(—2i04 + 2Y ¢ sin O Z,, — 2Y ¢' cos Oy A, + g cos O Z, + gsin Oy Ay,
—292 cos Ow 0,72, — cos Ow 0,7, + sin Oy 0, A, —sin Oy d, A

3 u p u m

—2ig(Wi W, — W;W;))W;>

1 1
—gW ™ + (=M~ + YA 3.57
Nk (50" 7") (3.57)
V2., . . _
( — TYg g(cos ©Ow0,A, — cosOwd, A, —sinOwd,Z, +sinOw0d,Z,)W, )

2
—l—g% <8MW; - oW,

—2ig (COS @WWM—ZV + sin @WW;AV —cos OwZ,W, —sin @WAMWV_) ) )
(—2i0y +2Y ¢ sin Oy Z,, — 2Y ¢' cos Oy A, — g cos O Z, — gsin Oy A,
—@92 cos Ow 0,7, — cos Ow 0,7, + sin Oy 0, A, — sin Oy 0, A

3 " I 1 p

—2ig(W W, — iju))wa)

Note that ¢’ cos Oy = ¢ sin Oyy.
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3.4.2 Neutral currents

In this subsection, the neutral current in the leading order of the expansion

in O is studied.

1 0 (1
Lo = LM _ i5 > ay) (59%6* + @”%“) (3.58)

(( cos Owd, A, — cos O, A, —sin Oy, 2, + sin @Wayzu>

/

1Yqg'g

(g'Y(?a — Y% cos O Ay + 1Y% ¢?sin Oy Z,, — cos Ow 7,

iYq'g

sin @WAQ> + % (cos Owo,Z, — cos Ow0,Z, + sinOwd, A,
— sin Oy 0, A, — 2ig(WHW, — W;W;)) (g@a — Y ¢'gcos Ow Ay
+1Y g'g cos Oy Z, — %ig2 cos Ow Z, — %z’g2 sin @WAQ>

—%gQ (@Wj — 0,W, — 2ig(cos Ow Z,W

-+ sin O AW — Wi cos Oz, — W sinOwA,))

_ i 1 (4 1 V.o va
w, )u(L) — i zi:ug%) (59“ v+ 0 7")
((cos Owd,A, — cos Owd, A, —sin Owd,Z, + sin @WE)VZH>
(g'Yaa —iY?g? cos O A, + 1Y ¢ sin @WZQ) > ug)
2471 \2
<< cos O 0, A, — cos Owd, A, —sinOwd,~Z, + sin @W(?,,ZM>
1
(g’Y@a —iY?¢? cos O Ay +iY?¢?sin Oy Z, — ZEYg'g cos Ow Z,,
. 1 / . 1 .
—ZEYg gsin @WAQ> ~ 3 ( cos Owd,Z, — cos Ow 0,7, + sin Oy 0, A,
—sinOw0o, A, — 2ig(W:Wl,_ - W:“W;)) (g@a —iY g gcos Oy A,
. / 1 . 2 1 . 2 .
+iY g'gcos Oy Z, + §zg cos Ow Z, + ézg sin @WAQ>
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—%f (@Wy‘ — 0,W; + 2ig

(cos OwZ,W, +sinOw AW, — Wu_ cos Ow 7, — W; sin @WA,,) )
- 1 Al

W;) d(g) — Z§ Z CZ(}? (5@'“”7& -+ @Uoz,#:,)

(( cos Oy 0, A, — cos Owd, A, —sinOwd,~Z, + sin @W&,ZN>

(470, ~ 1Y cos 0w Ay + V2P sin 0 2,) ) )

3.5 Noncommutative Quantum Chromodynamics

In this section, we will investigate the noncommutative quantum chrody-
namics, specifically. Here, we derive the new Feynman rules which absent in
the standard model. We will follow the method introduced by Carlson-Carone-

Lebed [36]. The noncommutative SU (N) gauge transformation is defined as
Soth = il % b, b (3.59)

Ay =0, Mo +i[Agt A, (3.60)

Here, A, is a U(N) matrix function that is associated with an element of
SU(N) corresponding to the gauge parameter . The appropriate consistency

condition is
(0005 — 0800) Y (x) = daxpt(x), (3.61)
where o x 3 represents a3, f2T¢, with f¢ and T the structure constants
and generators of SU(N), respectively. The above equations yield
1
AG[A%] = o + 1@“”{5u04 , A2+ 0(02). (3.62)
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Then the gauge field transform as

At = A% — i@py{Aof’, oY A% FOvi} (3.63)
and the matter field transform as

Y= — %@““Azaywo + %@“”AgAS 0 (3.64)

to linear order in ©. While A° and 1° have the usual transformation properties
of fields in an SU(N) gauge theory, the Lagrangian expressed in terms of these

fields is different. The action
- 1
S = /d4:c {w *x (iP —m) — FTrFW* Fr (3.65)
g
in which
D =0, —iA,x , Fu = 0,4, —0,A, —i[A, % A, (3.66)
one may expand the action in terms of 1°, Ag, and O:
0 - I .- . T - .
S = [P — m)u - § OVIELG D~ m)® — 5 @i Fy, D
LTy 50, pow L@ty 10 10 povr — L g y 0 g0 g (3,67
_2—ggr,uu +4—92 Lyt pe _? replt've ( )
This action is written up to order ©. D, and F),, are given as usual.

D)’ = 0" —iAW° | F), = 0,A) — 9,A) —i[A), A)]. (3.68)

Feynman rules may be extracted from the above action. The structure con-

stants for SU(N) are defined by
1
[T, T =if* T¢ and {T° T} = d"T° + Naab. (3.69)
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In addition, we will use the definition for the contractions: ©*-p = ©*"p, and
p-©-q = ©"p,q,, for any four-vectors p, ¢q. Finally, the totally antisymmetric

tensor is introduced
OMP = M ~P + O"PyF + OFPFAY. (3.70)

The Feynman rules for the O(6') contributions are found as [36]

qqg vertex (i):

gTa ©"-p (- m)—0"-p(p+ m)—p -0 -pr¥ (3.71)

qqgg vertex (ii):

2
% (T°T*[m O™ + & (p + q),] — T"T[m O + O"*(p+1),]}  (3.72)

ggg vertex (iii):

1

ngabc{r ©-q[lg—r)g”"+ (p—q)9" + (r —p)’g"].

+(@®g” = ¢"¢")O" -+ (rPg? — rPr)O - g + (P g™ — ¢"¢")O" - p
+(p29/w _ pupl/)@p q+ (r2gup _ Turp)@V p+ (pQQMP _ pupp)@V .y
Hg-pr'—r-qp )0+ (r-qp"—p-rq)0" +

(p-rq" —q-pr")0™} (3.73)

9999 vertex (iv):

2
—@'%f“bedc‘ie{@“”(gp”r -5 —178") + O (r’st —rts”)

—OM(g"r s —r7s") — O (¢"Pr - s —1rVsP) + O (g"r - s — r7s*)
+O (ghfr - s —rtsP) + OF -1 (s"gP7 — sPg"7) — ©F - s (1r7gP7 — 1r7g"P)
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+OY - r (stgP” — sPgh) + OV - s (rHg’” —r7g") + O° -1 (s"gH
—stg"?) +0° - s (r*g"? —rVg"?) + 07 -1 (stg"’ — sV g")

+O07 s (r'g"” —rg") +r-0-s (979" — g"g")} +

[(1,p,a) = (0,8, d)] + [(p,r,¢) = (1, p,a)] + [(0,5,d) < (v,4,b)]

+[(pr,¢) < (v, ¢, )]+ [(p,7,¢) < (v,¢,b)] [(0,5,d) < (11, p,a)](3.74)

It is immediately seen that there exists a new quark-quark-gluon-gluon inter-

action in the noncommutative QCD.

3.6 Application of Noncommutative QED

In terms of ordinary products, the noncommutative quantum electromag-
netic presents the following action from which the Feynman rules can be de-

rived
1 - _
S = /d4$(_EFWFW +iUy"0, ¥ — eexp(ip1Ope/2)v" A, — m¥V), (3.75)

where F' = ot AY — 0¥ A* + 2esin(p;Opy/2) AFAY.
The Feynman Rules of the noncommutative QED are as follows:

for the eey vertex;

I, =idey, exp (ip1 A p2/2). (3.76)

and vy~ vertex factor is given by

F;u/p(’)/’)/')/) =

2esin(py A pa/2)[(p1 = p2), Guw + (P2 = 3), Gup + (P3 = P1),, Gup) (3.77)
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In the following; as an application, we will apply the Feynman rules in non-

commutative quantum electrodynamics for Moller scattering.

3.6.1 Moller Scattering

We will use the same definition used by Hewett-Petriello-Rizzo [64] for the
momenta of the incoming, represented by p; 2, and outgoing, corresponding to

ki 2, particles in terms of the coordinates fixed in the laboratory as

plf = \/75(17_17070) pg - \/75(1’17070)
k' = ‘/75(1,—097—89%,—8@%) ky = %E(LC@aS@%aS@%)-

(3.78)

Note that the ordering of the co-ordinates is given by (¢, z,x,y), so that the

z-axis is along the beam direction as usual. ©,, = A%C’W
NC
0 sinacos 3 sinasinfj cos
—sinacos 8 0 cos 7y —sin~ysin (3
Cuw = . (3.79)
—sinasinf  —cosy 0 —sin~ycos 3
—cos sinysin (3 sin~ycos 3 0

Note that the matrix €, is not a tensor since its elements are identical in
all reference frames. It leads to the Lorentz violation. How «, (8 and v are
chosen in the matrix C,, determine the ways in which Lorentz violation may
be manifested in experiment.

The matrix elements Cy; are related to the NC space—time components and
are defined by the direction of the background electric field E. The remaining
elements C;; are related to the NC space-space components and are defined
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the direction of the background magnetic field B.
Using these definitions, the bilinear products of these momenta with the

matrix C), can be evaluated as

p1.Cpy = 2001

ki .Cky = g[C’mc@ + Coasecs + Cossoss]

p.Cki = 2[001(1 — ¢o) + (Cha — Coz)secs — (Cos + C1)se54]
p1.Cky = Z[Cgl(l +co) — (C12 — Co2)secy + (Cos + Cs1)s05¢]
p2.Cky = Z[—cmu +co) — (Chz + Coz)secs — (Coz — Cs1)se54)
p2.Clly = Z[—cma — co) + (Cha + Cia)secs + (Cos — C1)s054)(3.80)

Note that the term Cs3 vanishes in the above expressions since the z-axis is
defined to be along the direction of the initial beams and there is no B field
associated non-commutative asymmetry relative to this direction.

Addition to it, there is also possibilities of the Z-boson exchange. Interest-
ingly, if we find the photon self energy, we should take care of the noncommu-
tative Z~v~v coupling which does not exist in the standard model. This coupling
is discussed in the last chapter.

Following the Feynman rules (3.76) and (3.77), we see that the ¢- and u-

channel exchange graphs now pick up kinematic phases given by

1
O = i[pl'@'kl‘i‘pz'@'kﬂ
1
Oy = §[p1-@-k2+p2-@-k1]. (3.81)

Clearly, only the interference terms between the t- and wu-channel diagrams
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pick up a relative phase when the full amplitude is squared. The phase is

defined as Apsoer and we find it to be given by

—Vut
Anrotter = Gu — ¢r = T[Clz% — C318¢)- (3.82)
NC

The Mandelstam variables are defined as usual: ¢,u = —s(1Fcos ©)/2. Hence
the resulting differential distributions for this process appear exactly as in the
SM except that the t,u-channel interference terms should be multiplied by
coS A proster- In the limit Ay — o0, cos A — 1 then the standard model is
recovered.

Hewett-Petriello-Rizzo take the case c¢15 # 0 for simplicity in the numerical
calculation. If instead c3; is non-zero, the results will be similar except for the
phase of the ¢ dependence. Since it is only consider one non-vanishing value
of ¢;; at a time, we set its magnitude to unity when obtaining our results.

The differential cross section for Moller scattering in the laboratory center

of mass frame can be written as [64]

2 t2 U/2
[(ez‘j + i) (Pi"+ P +2Pj cos Angonier)+(€5— fis) (gﬂ?%rgpff)] :

do «Q

dz dp  4s

(3.83)
where z = cos ©, a sum over the gauge boson indices is implied, e;; = (v;v; +
a;ia;)? and fi; = (v;a; + a;v5)* are combinations of the electron’s vector and

axial vector couplings and

(g —m3)(r — m?) + I ymym;

[(q =m3)? + (Timi)?][(r —m3)? + (Tjm;)?]”

qr 2
‘Pij_s

(3.84)
with m;(T;) being the mass (width) of the " gauge boson, where i=1(2)
corresponds to the photon(Z). The expression for the differential Left-Right
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Polarization asymmetry, Apr(z,¢), can be easily obtained from the above by

forming the ratio
ALR(Z7¢> = N(Za ¢)/D(Z,¢), (385)

where D(z, ¢) is the differential cross section expression above and N(z, ¢) can
be obtained from D(z, ¢) by the redefinition of the coupling combinations e;;
and f;; as

€ij = fij = (?}ﬂ)j + a,-aj)(viaj + (I{Uj). (386)

Note that the cross section is not actually invariant due to the presence of
A vronier, though it is expressed in an apparently covariant form using Mandel-
stam variables.

We now examine how the Moller cross section behaves as /s grows beyond
Ayc. In the SM for large s we expect the scaled cross section, ie, the product
S+ Opmou, to be roughly constant after a cut on |cos O] cut is performed. Ordi-
narily when new operators are introduced, the modified scaled cross section is
expected to grow rapidly near the appropriate scale beyond which the contact
interaction limit no longer applies. However, in the present case, the theory
above the scale Ay is a well-defined theory since it is not a low energy limit.
We would thus anticipate that the cos Ayouer factor leads to a modulation of
the scaled cross section that averages out rapidly with a period that depends

on the hardness of the |cos ©| cut as the value of /s increases.
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CHAPTER 4

THE Z — vy DECAY IN THE NONCOMMUTATIVE

STANDARD MODEL

Leptonic decay modes of Z-boson constitute one of the important class of
the decays for checking predictions and improving parameters of the standard
model. For example, one of the essential results of LEP experiments is de-
termination number of light neutrinos from Z — vv decay. With the Giga-Z
option of the Tesla project, it is possible to produce more Z bosons [60]. This
circumstance allows to determine the parameters of the standard model in
more refined way. At the same time, withe the increasing Z-boson, it appears
real possibility to analyze the rare decays of Z, which are absent in tree level at
standard model. Moreover, the rare decays are also quite sensitive to the ex-
istence of new physics beyond the standard model. One of the possible source
for the new physics is noncommutative theories.

In this chapter, we analyze the possibility of testing the noncommutative ef-
fects in rare Z — vy decay which is forbidden at tree level in the standard

model.

First of all, we derive the required Feynman rules for the rare 7 — v~y
decay as well as for the other three and four gauge boson interactions such as
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77, Zyy, ZZZZ and ZZ~vy etc. Then obtained Feynman rules are used for
doing calculation of the decay Z — vvy and the amplitude for this decay is
found. Then, the numerical calculations are performed to find the decay rate

of this decay.

As we already noted that a simple way to introduce a noncommutative
structure into space-time is to promote the usual space-time coordinates = to

noncommutative coordinates z with

i

[T, 2,] =10, = ——
wy v uv A?VC

Cuw, (4.1)

where 6, is the real antisymmetric matrix. Note that, ©* plays the same
role as h does in quantum mechanics.

In the last equality, we have parameterized the effect in terms of an overall
scale Anc, which characterizes the threshold where noncommutative effects
become relevant a real constant antisymmetric matrix C,,,, whose dimension-
less elements are presumably of order unity. One might expect the scale Ay
to be of the order of Planck scale. However in the large extra dimension theory,
where gravity becomes strong at scales of order a T'eV, it is possible that NC
effects could be of order a T'eV. For this reason in the present work we consider

the possibility that Ayc may lie not too far above the TeV scale [61, 62, 63].

In the present work we adopt Hewett—Petriello-Rizzo parametrization [64]
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for the matrix C),. The matrix C,,, is parameterized as [64]

0 sinacos 3 sinasinfj cos &
—sinacos 8 0 cos 7y —sin~ysin 3
Cuw = , (4.2)
—sinasin  —cosy 0 —sin~ycos 3
— Cos « sinysin (3 sin~ycosf3 0.

Note that the matrix C), is not a tensor since its elements are identical in
all reference frames. It leads to the Lorentz violation. How «, (8 and v are
chosen in the matrix ), determine the ways in which Lorentz violation may
be manifested in experiment.

The matrix elements Cy; are related to the NC space-time components and
are defined by the direction of the background electric field E. The remaining
elements C;; are related to the NC space-space components and are defined
the direction of the background magnetic field B.

NCQFT has rich phenomenological implications due to the appearance of
new interactions.

Experimental signatures of noncommutativity have been discussed by vari-
ous authors [64, 65, 66, 67]. The next-generation linear colliders (NLC) are
planned to operate in eTe™, vy and ye modes.

Here, we consider the possibility of testing the NC effects at NLC in the
7 — vy decay which is forbidden in standard model at tree level.

This chapter is structured as follows. Firstly, we will derive the Feynman
rules by starting with the action. Then, we will apply the required Feynman
rules for Z — vy decay. Having obtained the square of the amplitude, |M?|
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we will make numerical analysis to obtain the decay rate.

4.1 Feynman Rules

In this section, we present necessary theoretical background for the Z —
vy decay in noncommutative standard model. For calculating the matrix
element, we need relevant Feynman rules. Before giving details of calculation
of Feynman rules, few words are in order.

The decay processes which involve more than two vector particles are par-
ticularly interesting from the theoretical point of view in noncommutative the-
ories. It is the place where different models show the greatest difference. In
particular, there are models that do not require any triple gauge boson inter-
action. This depends on a choice of representation. There are, however, some
models which include triple boson interaction [68, 69]. We will, in particular,
follow the models introduced by Mocioiu, Pospelov and Roiban [69].

The action of the noncommutative electro-weak standard model reads

NC __ gNC NC
S - SMatter,leptons + SGauge? (43>
where
Sye — (e bwirD b, SNC = L [, . B
Matter,leptons ~— Z vy [ Gauge — 4 Tr .

The action is written separately for simplicity. Actually, SéVnge part is the
kinetic term. In Standard model, no Feynman rules are derived from the
kinetic terms. However; in noncommutative space, this is not the case as can
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be seen later. The neutral gauge boson interactions such as ZZ 7, Z~~ and ZZ
comes from the kinetic term whose order is determined by the noncommutative
parameter ©".

SNC

Matterquarks » the action which includes the quark field, terms are excluded

because these terms do not contribute the Z — v~y decay.

We will first consider leptonic part of the action.

she = / d'z W x iy D, 0. (4.4)

Matter,leptons

- - 1
Here V = U + €07 4,0,V and A, = A, + 0 A,(0,A, — 58ﬂAP) is the Abelian

noncommutative gauge potential expanded by the Seiberg-Witten map.

Matter,leptons

SNe =S+ e / d*x [ap\TJAgw“(?M\IJ — 9, WA~"0,V + \T/(?pAuw“&,\IIIZLB)
If we integrate the above equation by parts, we get

Matter,leptons

SN =S — e / d‘z VF,,0,V, (4.6)

where 0177 = 01P~7 + 0°74* + 0°F'~* and F),, = 0,A, — 0,A,, is the field strength.
From this equation, we extract the following Feynman rule for the gauge in-

variant y(k1)v(ke)v(ks) vertex in momentum space.
e -
't = EQW kiok2, (1 —7°) (4.7)

We obtained yvv vertex factor. Let us find the Feynman rules coming from

the kinetic term of the Lagrangian. Sgﬁge is given by
syo X [, 4.8
Gauge — _Z TLy * : ( : )
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Here F o denotes the noncommutative field given by

F,, = 0,8, — 0,B, — ¢'0""9,B,0,B,, (4.9)
where (¢' = — 60 ). Just as the electromagnetic current is coupled to the
Sin Oy

photon A, the weak hypercharge current is coupled to the vector boson B,
in Standard electro-weak theory [79].

Expanding the action (4.8) to first order in 6,,, we get

Sae =8+ % / d*z6°(9,B, — 0,B,)0,B"0,B". (4.10)

Gauge

The relation between B, and A,, Z, is given by
B, = cosOwA, —sinby Z, (4.11)

Expanding the action to first order gives the triple gauge boson interaction.
Going to the physical basis, we obtain the following interaction terms in the
noncommutative space.

the ZZ 7 interaction term

/

S35y = 5 sin’ b / d'z 67 (0,2, — 0,2,)0,2"0,2"].. (4.12)

the vy~ interaction term

/

SNC — g cos® Ow / d'z 677 [((%A,, B d,AM)@pA“(?UAV] ) (4'13)

Y9
the ZZ~ interaction term
Sy, = g'sin®Oy cosby x

/ d'z 00,2, — 8,2,)0,A*0, 2" + 0,A8,72"9,Z"].(4.14)
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the Zv~ interaction term

SNC

S = g sinfy cos® Oy X

/d4:1: 677 10,27 0,A 0, A" + (0,A, — 0,A,)0,2"0,A"] .(4.15)
If we expand the action equation (4.8) by using the equation (4.11), we also
obtain the four point interaction terms between the Z boson and . These are

given in the followings:

the vy~ interaction term

/

SNC = T gt O 0" / d'z 07 [0aA.03A,0,A" 0, A”] . (4.16)

VY T 9
the ZZZ 7 interaction term
g/
SN, = ) sin® Oy 07 / d*z 077 [002,052,0,2"0, 2" . (4.17)
the Z~~~ interaction term

SHC =24 cos® Oy sin Oy 07 / d'z 077 [0,2,05A,0,A"0,A"].  (4.18)

Zyyy
the ZZZ~ interaction term
S) 57y = 2g' cos by sin® Oy, 07 / d'z 077 [0,A,057,0,2"0,2"].  (4.19)
the ZZ~~ interaction term
S]ZVZCW = ¢’ cos? Oy sin? Oy 0P 0r° / d'r [0,2,032,0,A"0,A” +
00 A,032,(0,A*0,2" + 0,2"0,A")].  (4.20)
Now, we want to find the Feynman rules from those actions. In general, Feyn-

man rules are obtained by varying the corresponding action in the momentum
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space [78].
Note that the interactions are computed by evaluating a perturbation series
in L;,;, where S;,; = / d*x L.

Firstly, let us find the Feynman rule for ZZ+~ interaction. From now on,
the constants ¢’ and the functions sin 6y, cos 6y will be written at the end for
simplicity.

Let us vary the ZZ~ part. To do this, we firstly take the derivative of the fields

in the Lagrangian [0, A"(p) = —ip,A”(p)]. The variation formula is given by

53 gre
0 Ay (k1)0 Zo(k )0 Za (k)

[ P3,01,P2,A" (p3) 2" (p1) 2" (p2) + p3,02, A" (p3) Z" (p2)

(P12 (1) — P1,Zu(p1) ) |-

If we start to perform the calculation with respect to the photon field

Ap(k1), the above equation is simplified

52 gre
0Z(k2)dZy(ks)

(k101,020 2" (91) Z° (P2) + (1620 (P1) = D1, Z0(D1)) k1,020 2" (P2)]

Then, varying this equation with respect to one of the Z boson field yields:

0077

m [ klckaPQO-Zb(pQ) + klpplkaUZ“(pl)gbc + (k?2bguc - kQngC)klpPQUZV(pQ)

+(p1pZe(P1) = P1.26(P1)) K1 pR20 |-

Finally, we end up by varying the above equation with respect to the last

field Zy(ks)

077 [k1cka, ksoGoa + krakspkooGoe + (K2pgae — k2age) k1 ks + (KspGed — kscGoa) k1 pkas |
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Assuming ki + ko + k3 = 0 and using the antisymmetry of 877, we can simplify

the above equation

ko N ks [(kvn — k3).gba + (k2 — k1) g96c + (k3 — k2),9cd) -

Note that wedge product is defined as
ko N kg = ky,07 k3, (4.21)

Writing the constants in the ZZ~ action Eqn. (4.14) yields the ZZ~v vertex

factor

Laa(ZZy) =

g/ SiIl2 9W COS kag A\ kg[(k‘l — k‘g)c GJvd + (kz — kl)d Gbve -+ (/{33 — kg)b gcd] (422)

Secondly, let us find the Feynman rule for the ZZZ interaction. The calcu-
lations are the same as before. The corresponding variation formula is given
by

53
0Zp(k1)0Z(k2)d Zg(k3)

ore [(plﬂZ,,(pl) - p1,,Zu(P1))p2pp302“(p2)ZV(P3)} :

If we firstly take the variation with respect to the field Z,(k;), we find

52
0Zc(ka)0Zg(ks)

(P15Z0(p1) — 21, 2Z6(1)) + (01, Z6(P1) — P12 (P1))D2, k16 2" (p2) |-

077 [ (k1,906 — k10,9u)P2,P3, 2" (2) Z" (p3) + k1,03, 2" (p3) X

Let us perform the calculation for the field Z.(k2). Then, this equation is
reduced to the following equation with one field to be varyied.

o
0 Z4(k3)

077 [ (k1cGvb — klugcb)kapISgZV(p?)) + (klygcb - klcgub)prkQJZu(pZ) +
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(k2pGve — k2uGbe) k1,03, 2" (p3) + (P1pZe(P1) — P1c2b(D1))F1 k20 +

(K2 Gbc = kapGuc)p2,k10 2" (p2) + (p1.26(01) — P1pZe(P1) ) h2pk1s -

Now, there is only one field to be varied. If we vary the above equation to the

field Z4(k3), we obtain

077 [ (k1cgab — K1ageb)k2pkso + (K1ages — Ki1cgan)kspkae +
(k2pgac — k2agve)k1 k30 + (K3pged — kscgoa) k1 pkao +

(k2agee — kavgac)kspkis + (K3c9bd — k3pgea)R2pk1o -

If we assume ki + ko 4+ k3 = 0 and use the antisymmetry of 077 as before, it is

simplified

2k N ko [(k1 — k3),. gpa + (k2 — k1) 4 goe + (ks — k2), Ged] -

As a last step, if we write the constants in the ZZZ action (4.12) we find the

7 7 7 vertex factor

Cwa(ZZ27) =

g'sin’® Owky A ks [ (ky — ks), gea + (k2 — k1)y gee + (ks — k2), gea ](4.23)

In the similar way, we can calculate the Feynman rules for the yvyvy and Z~~
just by replacing Z* « A*. The corresponding Feynman rules are found for

¥y vertex

Copa(v77) =
q cos® Ok A ko [ (ky — ks)c Gba + (ko — kl)d Gve + (ks — /fz)b Ged ],(4.24)
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and for Zvy~ vertex

Loa(Zyy) =

g sin Oy cos” Oyky A ky (k1 — ks). goa + (k2 — k1) goe + (k3 — ka), gea) (4.25)

Note that the only change comes from the Weinberg angle.

Having obtained the Feynman rules for the triple gauge boson interaction, let
us find those for the four point interactions in noncommutative space. Let us
study firstly the four-gamma vertex. The Feynman rule for this vertex also
can be determined by varying the corresponding action in momentum space
as we did for the triple gauge boson interactions.

The equation which will be varied is given by

—i6?

aff npo o v
5Ab(k:1)5Ac(k2)6Ad(k3)5Ae(k4)0 0 [plap2ﬁp3pp4UAN(pl)Al/(p2)A (p3)A (p4)]

Note that there are two antisymmetric tensors here. This means that four
point interaction gives the second order contribution on the noncommutative
parameter. Let us perform the variation step by step. Doing the variation

firstly for the fields A.(k4) yields

. 5
—1
5 Ay (k1)0 A (k)0 Ay (k)

0°°07 [ kaap2sps,Daq Av(p2) Ac(ps) A" (pa) +
P1ak4gp3pp4gAu(p1)A”(p3)Ae (p4) + p1ap25k‘4pp4gz4e(p1)Au(p2)z4y(p4) +
plapQﬁp3pk4UAH(p1)A€(p2>Au(p3> J-

As a second step, let us vary the above equation for the field Ay4(k3). Then it

is reduced to the following equation

52
—1
5 Ay (k1 )0 A (k2)
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6767 [ k4ak3ﬁp3pp4gAe(p3)Ad(p4) + k4ap25k3pp4ggedx4u(Pz)AV(m) +
kiap2gps, ksoAa(p2)Ac(ps) +  ksakagps,pi,Aa(ps)Ac(ps)  +
Prakaghksppa, Aa(p1)Ac(Pa) +  P1okapps,ksegeaAu(pr) A (ps) +
Praksgkappa, Ac(P1)Aa(Ps) +  k3aP2skappaygeaAs(p2)A” (pa) +
PraP2gkapksoAc(p1)Aa(p2) + KsaPagPsphaocAe(p2)Aalps)  +
P1aP2gkspkagAa(p1)Ac(p2) + Prokagps,kaegeadn(pr) A" (ps) |-

Since, all of the fields are photon field, the number of the terms gets bigger

when performing variation. If we vary the last equation with respect to the

field A.(k2). There are now 24 terms.

o
0Ay(ky)

—i 0767

[ kaokspka,ppagGecAa(ps) + k4o¢k3ﬁp3pk20'gche(p3) + kaokogks,PaggeaAe(ps) +
kaaP25k3pk209cdAc(P2) + Kaakapps k3o GacAc(D3) + kaaP2gkepkssgecAd(p2) +
k3akagkapPayGacAe(pa) + k3akapps koo GecAa(ps) + kaakaghsppay,gacAe(pa) +
P1akaghkspkoegecAd(p1) + k2okapps kseGedAc(Ps) + PrakaghkspkssgeaAc(pr) +
KoaksskapPagGecAd(pa) + P1roksgkapkaegacAe(p1) + ksokopgkapPayGeaAc(pa) +
k3ap2skapkocgeaAe(p2) + k2aD2pkapksegecAd(P2) + P1akegkapkssgacAc(pr) +
k3akapps, kiegecAd(ps) + kzaD2pkepkacgacAc(P2) + k2aP2pkspkasgacAc(p2) +

P1ak2sk3pka0GecAd(P1) + K2ak3pps kasGedAc(ps) + PraksskapkasgeaAc(pr) |-

Finally, let us vary for the last photon field A,(k;). Note that there does not

exist the momentum p; at the end. In other words, the representations of the
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momentums should be k;.

—i0°P0°7 [ kaoks ko, k1o Gecan + kaaks sk pkooGacGes + kaakashs k1o Geagse +
kaakigks, koo Geagve + Kaakagki yk3oGdcGer + Kaakigka,pksoGecGan +
k3akagks,k1o9dacGes + k3akagki koo Gecgay + ka2akaghs,kio9decGer +
k1akagks kooGecgay + kaakagki phzogeadve + kiakaghka,ksogeaoe +
kaoksgkapkioGecgan + k1akspkapkaogacger + kzakzgkapkisgeadse +
ksok1gkapkosGeagne + kaokigkapksoGecGan + kiakagka, ksqgdcges +
ksakogkipkaoGecgan + k3akigkepkaogacger + kaakiakspkaqgacges +

k1akapks,kasGecgan + Kaaksghi pkaoGeaGoe + k1aksskapkioGeader |-

This equation seems to be very long. However, it can be rewritten in more
compact way by using the antisymmetry of the noncommutative parameter

o .

—4i] ky A ko ks A ka(GecGap — GacGen) + k1 A ks ko A ka(GeaGve — GacGeb) +

k1 A ka ko A k3(GeaGoe — GecGav) |-

Then, the Feynman rules for yyyy interaction is obtained if we write the

constants in the action (4.16).

Fbcde(’V’W’V) = Qig’ cos 9W[ ki N kg k3 A k4(gdcgeb - gecgdb) +

ki A ks ko A ka(GacGeb — Geagve) + k1 A ka ko A ks(GecGan  —  GeaGpe) 1(4.26)
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The Feynman rules for ZZ 7 Z interaction can also be obtained just by replac-

ing Z# — A*. Tt is given by;
Fbcde(ZZZZ> = 229/ sin4 ew[ l{?l A /{?2 k‘g A k4(gdcgeb — gecgdb> +
ki A ks ko A ka(GacGeb — Geagve) + k1 A ka ko A k3(GecGar —  Geagoe) 1(4.27)

It is interesting to note that Tyege(7yyY) includes cos Oy and Tyue(ZZZ27)
includes sin? @y, while the rest are the same for the two.

Now, let us calculate the Feynman rule for Zvv~ interaction similarly. Since
one of the field is Z boson, our task gets easier. The variational formula with

which we will deal is given by;

. 5t
5 Ay (k)0 A (k2)d Ag(ks)0 Zo (k)

070 [p1sD2,D35 P16 Av (D1) A" (p2) A" (p3) Z,u(p4)] -

To get rid of the Z field from the equation, we should firstly vary with respect
to that field Z.(k4). This equation is reduced to the following equation without

Z field

_ 5
—1
3 Ay (k1)0 A (k)0 Aq (k)

007 [p1sp2,P35K10 40 (1) Ac(p2) A" (p3)] -

It is time to deal with the photon field after getting rid of the Z field. If we

perform the variation for one of the field §A,(ks3), we obtain

—i4?
I Ap(k1)0Ac(k2)

eaﬂepﬂ [plﬁp2pk3ak4a/4d(pl)Ae(p2> + k3ﬁp2pp3ak4aA6(p2)Ad(p3)
+p1/3k3pp30k4o¢gedAV(pl)AV(p?)) J-

Note that, it doesn’t matter which of the fields is used firstly. As a second

step, let us use the field A.(k2). Then;

o
3 Ay(ky)

—i 0007 | koppa, ksokiaacAc(p2) + pr ke, ksokaagecAa(pr) +
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plﬁk3pk2ak4o¢gedAc(pl) + k?2,6k3pp3gk4a9edz4c(]?3) +
k3ﬁp2pkzak4a9dcf4e(p2) + k35k2pp3gk4agecf4d(p3) ]

Finally, the required formulation is obtained by varying the last equation with

respect to last photon field A,(k1). Then, it becomes
—i0*°077 [ kogki ks, kaaGacger + K1k, k30 ka0 Gecgan +
k1gkspkaokaaGeagoe + k2pkspkiokiageagse +
ksskipkookanGacGee + kagka,kiokanGecGoa |-
It can be rewritten in more compact way as before.
—il ki AN ks ko A k3(GeaGoe — GecGan) + ki A k3 ko A ks(GeaGve — JacGes) +
ki A kg k3 A ky(gecGba — GdeGe) |-
Putting the constants gives the Feynman rule for Zvvv interaction.
Cocae(Zyyy) = 2ig’ cos® Oy sin Oy [ ki A ks ko A k3(GeeGap — GeaGoe) +
ki A ks ko A ka(GacGeb — Geagve) + k1 A ko ks A ka(GacGve — GecGoa) |- (4.28)
The Feynman rule for ZZ Z~ interaction can be found by replacing A* — Z*.
It is given by:
Cocae(ZZ Z7y) = 2ig’ cos Oy sin® Oy [ ky A ks ko A k3(GecGas — GeaGbe) +
ki A k3 ko A ka(gaceb — Geagec) + ki Ak k3 A ka(GacGbe — GeeGba) |- (4.29)

Let us study the last four point interaction ZZvvy. The equation which we

vary is given by;

—i64
02y(k1)0 Ze(k2)0 Ad(k3)d Ac(ka)

0°°0° | P1ap26D3,P16 Zu(D1) Z (p2) A* (p3) A” (p4)
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+P1,026P30P10Au(P3) 2, (p2) (A (pa) 27 — Z"(p1) A” (pa)) (p1) |-

We will vary firstly with respect to the photon fields. The variation to A.(k4)

gives

—ifoPgre 5
32y (k1)0 Zo(k)d Ag(ks)

P1pP2sP3akao( Zy(p2)Z" (p1)Ac(ps) — 2" (p1) Ze(p2) Au(ps) ) +

[ P1pp2gksapie Zy(p2)( Ae(pa)Z¥ (p1) — Ze(p1) A (pa) ) +

plapZﬁp3pk4U Zu(pl)Ze(m)A“(pz) +plap25k4pp4gze(pl)Zl/(pQ)Ay(pll) ]
There is only one photon field now. The variation to this second photon field
Ay(ks3) yields

, 02
—1
6 Zy(k1)0 Ze(k2)

0°70% | p1,pagksakse( GeaZu(p2) Z" (p1) — Ze(p1) Za(p2) ) +
P1,P2gksakas( GeaZy(p2)Z” (1) — Za(p1)Ze(p2) ) +

PraP2sks,kae Za(p1) Ze(D2) + Prap2skapkse Ze(p1) Za(p2) |

Now, let us use the Z field. As we did for the photon field, if we vary to the

one of the Z field Z.(kz), we obtain

J

_iéZb(k;l)eaﬁepa [plpk2ﬁk4ak3ff GeaZe(p1) +  kopp2gkanksy geaZe(p2) —

kapp2skaakse geeZa(P2) — Dp1,k2gkaakss GacZe(p1) +
P1k2pk3akas GeaZe(p1) +  kopp2pksakis GeaZe(p2) —
P1pk2gksakas GeeZa(p1) —  k2pp2gksakas GacZe(p2) +
Prak2gkspkse GeeZa(P1) +  koaPoghkspkie gacZe(p2) +

Prakoskapkss gacZe(p1) +  FoaPaskapkss gecZa(p2) |
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The calculations end when performing the variation to the last field Z(k;).

The Feynman rules without the constants is obtained.

—i0°°07 [ k1, kogkanks, Geager + Kopkigkiakss Geaoe —
ko,kipkaakss GeeGva — Ki,k2pkaakss GacGee +
k1p,k2pksakae Geagoe +  kopkigksakis GeaGoe —
k1pkopksakae GecGva —  kopkigksakis GacGve +
kiakoghkspkao Gecgoa +  kaakigkspkas Jacgve +

kiakogkapkss gacgve +  Koakigkapkse GecGoa -

This equation looks very complicated. We can rewrite it by using the anti-

symmetry property of the noncommutative parameter as before.

2i[ k1 N kg ko A k3(GeaGve — Gec9an) + k1 A ks ko A ka(GeaGve — GacGen) +

]{1 A kg k?, A k4(gdcgbe - gecgbd) ]

If we substitute the constants in the corresponding Lagrangian, we get

Cpede(Z Z7y) = 2ig’ cos? Oy sin? Owl[ k1 AN ky ko A k3(Geagve — GecGan) +

k1 A ks ko A ka(Geagbe — GacGes) + +k1 A k2 ks A ka(GacGve — GecGpa) |- (4.30)

Up to now, we have obtained the Feynman rules after length calculations. As
a result, we can take these Feynman rules and proceed to investigate some
scattering and decay processes. Some decay processes are of great importance
because these decays are absent at least tree level in Standard model. One
of the such decays is Z — vvy decay. In the following section, we will apply
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Figure 4.1: Feynman diagrams for Z — vi~y.

the necessary Feynman rules obtained before for this decay and find the decay

rate.

4.2 7 — vvy Decay

Having obtained the Feynman rules in noncommutative space, let us apply
them for the decay Z — viy. The Feynman diagram for this decay is given in
figure (4.1). As can be seen from the relevant Feynman rules, such a decay is
possible at tree level. If we use equations (4.7) and (4.22), the amplitude for

this decay is found as follows:

000 = eln) LA R gk =)o)~

I
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w(p1)0"*7 proke (1 — 7°)es (k) % (@) (1 =" v(p2) ]
ie*(q N k)

~ 1R =y @ (= ) )lger = (0 = R)ala = K)u)/MZ]

en(B)[(k+q)"g™ + (¢ — 2k) " + (k — 29)"g""]e,(q),(4.31)

e

where g, = ——— . Here, q, k, p; and ps are the for momentum vectors
sin Oy cos Oy

of Z-boson, photon, neutrino and anti-neutrino, respectively. This can be seen

in figure 4.1.

After performing the summation over spins of final particles from the equa-

tion (4.31), we get

1 eg
MQ__ IR N2
’ ‘ (Mzkpg plk)

2
{kp1(2 ¢.pa(kpr prg n®* — g Apy kpy pr AR) = (kg +pig) (p AR)?) +
(k.p1 pr-p2 n* = pa Apy kpy pr Ak — (k.pa + prpa) (p1 A k)*)M3)

(k-p2)? + k.pa (k-pa #2(2p1-q q-p2 + p1-p2M3z) — k.ps (2¢ Apa prog +

p1 ApaM3) po ANk — (2p1.q (kg + q.p2) + (k-pr 4+ pr.p2) M3) (p2 A K)?)
(p1.k)? + k.pa pr. kM (=215 k.p1 k.pa p1.ps — p1 A pa k.pa(k.ps + 2p1.p2)
p1 ANk +p1 Aps kpi(kpy + 2p1.p2) pa Ak — p1.pa(3(k.pr + k.pa) + 4p1.p2)
LAk p2 NE)+2p2 Ak prg (kpr kpa g Apr+ (p1 Ap2 kpr —

2p1.p2 pr NK) k.q+2 k.po p1.g p1 AN k) +2(k.p1 kps g Ap2 pr Ak —

pL Ak (p1 Ape kps+ 2 p1.pe p2 N k) k.g— (2n.5 k.p1 k.ps + 2k.ps p1 A p2
pL Ak 4+ (=2p1 Ape k.pr + (kpr + k.pa +4 p1.p2) p1 A k) pa A k)p1.q)

1 ( e gNk

2
. ;) k) o +

qp2+4 kpr pr ANk pa A K (g.p2)?) + —
2 1 D1 2 (q-p2)°} MZ(q k)

(—2k.p2 1.+ 2p1.q D2.q +p1.p2]\/[§) - Qk-qM§(3k-P2 P1-q + 2p1.q q.p2 +
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2p1.paM3) + (k.q)*(—4pa.k p1.q — 4p1.q p2.q + 6p1.p2My) + 2k.py (k.¢°
(6k.p2 — 2q.p2) — k.q (2k.pa + 3q.p2) My — (4k.po + q.p2)M3)},  (4.32)
where n# = 0"py,,, K" = 0" py, and n* = ntn, = 0,0 p1, ;" K2 = KK, =
000" P2, p2”
It is very difficult to work with |M|?, since it includes wedge product between
the four momentum vectors. In the next calculation, we will set § = 7/2 in
equation (4.2), then « and v become the background electric and magnetic

fields relative to the z-axis. In this case, the matrix element become

Coe =sina; Cps = cos a,

Chls = cosy; (i3 =sinny.
To find the decay rate, we should specify the four vectors pf, ¢*, k*. In the
rest frame of Z boson, these are given as:

M =

Pl (p1, p1sinfsin ¢, py sin O cos ¢, py cos 6)

kju = (k’ O? 07 k:)

" = (Mg, 0,0,0), (4.33)
where p; is the momentum of neutrino and k, ¢ are that of the photon and
Z-boson, respectively. Here, we set the z-axis along the photon momentum.
The invariant quantity in [M|? is found as

pk = Mz(=Mz/2+pi+k), pi.ps=(—M3/2+ Mzk),
pak = Mz(=Mz/2+ p1), p1-q = Mzp,
p2q = Mz(=Mz+p1+Ek), k.q = Mzk. (4.34)
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Finding the decay rate includes the integration. So, we need the numerical
analysis from now on.
In the next section, we will perform the numerical analysis to obtain the decay

rate.

4.3 Numerical Analysis

In this section, we present the numerical analysis for the decay width of
Z — vy decay in the noncommutative standard model. The values of input

parameters are:

4
=1/ 7= Mz =91
€ 137, VA 91GeV

The decay rate is calculated in two cases. In the first case, it is found when
the spatial noncommutativity is taken into account. Then, it is calculated for
the temporal noncommutativity.

The decay rate is given by the Golden rule

. |M|2( d3p1 ) d3p2 )( dgkf
© 3My (27)32E, " (2m)32E, " (2m)32F;

dr )(2m)"6% (¢ — p1 — p2 — k) (4.35)

Now, let us perform the integrations. We will write the constants at the end
for simplicity.
For the spatial noncommutatvity, we assume that Cpy = Cy3 = 0. Then, |M|?

is reduced to the following

1 eg,
5(

D) MZ)280123152(M§ + Mz (4p1 — 2k) — 4p1k) (4.36)
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If we integrate the above equation with respect to p; from My /2 —k to Mz /2,

it is found
2
8CLKE*(2M?k — AMK* + gkf”) (4.37)

Finally, performing integration from 0 to My /2 over k yields

23M ,C%,

4.
360 (4.38)

Now, let us do the same calculations for the temporal noncommutativity Ci5 =

C13 = 0. Then, |[M|? is reduced to the following under this assumption.

2,12
e Cis

2
M3

(= 8Mzpi(—M3/2 + Mzpy) — 24pik (—=M3/2 + Mzpy) —
16 p1(—M2%/2 + Myp))k? /My + AMZ (—Mz2/2 + M k) —
16Mzk(—M32/2 + Myk) + 24k*(—M32 /2 + Mzk) +
16k3(—M2/2 + Mzk) /My + 8Mypy (—M% + Myp, + Mzk) —

16p1 k(M ypy + Mgk — M2) — 16p1k* (Mypy + Mzk — M2) /My —
32(Mzpy — M3 /2)(Mzpy + Mzk — M7/2) — 16k(Mzp, — M7 /2)
(Mzp1 + Mgk — Mz/2) /My + 48k*(—=M7z/2 + Mzp: + Mzk) /My
(Mzp1 — M3 /2) — 8(Mypy + Mzk — M) (—M3 /2 + Myzp, + Mzk)

—24k(Mgpy + Mzk — M2) (Mgp, + Mzk — M32/2)/ My — 16k*

1 egq,
(—M% + Myzpy + Mzk) (—M%/Z + Mzpy + Mzk‘)/Mé) + 5(1\5 )2
Z
1

My (Mz —2p,)

8 ( CooMz(Myz — 2p1) (Mz —y)* (M7 + My
(4py — 2k) — 4Ap1k) + Coy(2M 3 (5k — py) — M3 + 16p,k* (p1 + k)
(3p1 + k) + 2M3 (6pF + 2p1k — 17K?) + 4MZk (12p° + 31p2k —
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11pik? — 8k3) + 8Mzk* (—9p? — 15p2k + k3) + M3 (—8p% —

7202k + 24p. k* 4 50K%))) (4.39)

Let us perform the integration. Since there are massless particles in considering
the problem, we have an infrared divergence in lower bound on the integration
over the photon energy. More consistent way to remove the infrared diver-
gence is to consider bremstrahlung and radiative O(«) correction diagrams
together. Here, we consider more simple way for removing the infrared diver-
gence, namely we take the lower bound of a photon energy not zeo but some
finite value F,,;,, where E,,;, is the minimum energy measured in a detector.

Because of the infrared divergence, we shift the border of the integration from

M M
(TZ — k — Epin) to (TZ — Epnin) over py. Then, the integration gives
deg.
5175 (608 Mk — 6C3 Mk — 12C3, MEED, k4 12C3, MEE? .k —
Z

2403, Myk?* 4 48C32, M4k?* 4 12032, My Eppink® + 24Co, M2 E?, k* —

man

7202, M2 E?

min

k* + 3205, M3 k* — 137C3, Mk — 48C3; M5 E k™ —

208, M zk° — 96C2, M 4k® + 108CH M4 E2, k* — 16C5, MZk* +

min

+18003; MZk* + 360 Mz Eppink® + 1205, M4 E2, k* — T2C5L E2 . k* +

24C3 Brink® — 24C3, M2 k* Log[2 Eppin] — 2402 M 2k° Log[2Epnin] +
603 Myk> Log[2E nin] + 6Co Mok Log[2 Eppin + 2k] +

24C3 M zk® Log[2 Eppin, + 2Kk]) — 24C3 M2k* Log[2E i + 2k] +

gg 033
M3

(—4Myy + 24Myk* — (64MZK™) /3 + (16 M4k*)/3)(4.40)
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Finally, integrating this equation from 0 to My/2 over the photon energy k
gives

eg, MS(1490C2, — 187C2%, + 60C2,Log[Mz /(2E min)]) N e2C2 M
3600 .

(4.41)

In the calculation, we take the minimum energy of the photon E,,,;,, = 0.05GeV .
Using this value and My = 91GeV, we get

eg. ME(1490C2, + 297CZ,)
3600 '

(4.42)

Writing the constants in the differential decay rate and using the equations

give the total decay rates

(eg.)?> M3\ 23C%4
Uspatiane = (32(87?)3/\4 360 (4.43)
(eg.)?M35 Y\ 1490C3, + 297C3,
I empora = 4.44
TemporalNC (32(8w)3A4 3600 (444)

It is interesting to note that for the spatial noncommutativity, the decay rate
depends only on the parameter C3. However, in the case of the temporal non-
commutativity, the decay rate depends on Cy; and Cps. Figure 4.2 shows the
graph of the decay rate versus noncommutative scale Ao and the parameter
Ci3.

The dependence of the decay rate on A ¢ and on the noncommutative param-
eters Cpo, Coz and (43 have the same form, but the magnitude of the decay
width in Cy case is approximately six time larger than C}3 and Cyz cases due
to the factor in front of Cyy. The decay widths corresponding Ci3 and Cys
are nearly equal to each other. Branching ratio is predicted to be in order

Br(Z — vuy) ~ 10711
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GeV)

(

Figure 4.2: The decay rate versus noncommutative scale Ayc and the matrix

element Ci3
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CHAPTER 5

CONCLUSION

In this work, we study the rare Z — vy decay in the noncommutative Stan-
dard model. This decay is not allowed at tree level in Standard model, whereas
it is possible in noncommutative theories.

It is shown that for the temporal noncommutativity, the parameter Cys is dom-
inant in the decay rate. The contribution of the square of the parameter Cys
to the decay rate is 5 times less than that of the square of Cps.

As for the spatial noncommutativity, it is shown that the decay rate just de-
pend on the parameter C'3.

It is also observed that the new physics enters into the theory by the non-
commutative scale parameter A. The decay rate depends inversely on the
forth power of it. The range of A is obtained from low energy experiments
0.5TeV < A < 3TeV.

The noncommutative extension of the Standard model is of great importance
from the phenomenological point of view. Many other scattering and decay
processes of Z bosons which are absent at least tree level in Standard model
naturally come into the theory. One of such a scattering is ZZ — ~v. Note

that there is no coupling of Z boson and v photon in Standard model.
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