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ABSTRACT 
 

ANALYSIS OF EVOLUTIONARY ALGORITHMS  
FOR CONSTRAINED ROUTING PROBLEMS 

 
 

Demir, Erdem 
M.S., Industrial Engineering 

Supervisor : Asst. Prof. Dr. Haldun Süral 

 
June 2004, 149 pages 

 
 
 

This study focuses on two types of routing problems based on standard 

Traveling Salesman Problem, which are TSP with pickup and delivery (TSPPD) and 

TSP with backhauls (TSPB).  In both of these problems, there are two types of 

customers, i.e. “delivery customers” demanding goods from depot and “pickup 

customers” sending goods to depot.  The objective is to minimize the cost of the tour 

that visits every customer once without violating the side constraints. In TSPB, 

delivery customers should precede the pickup customers, whereas the vehicle 

capacity should not be exceeded in TSPPD. 

The aim of the study is to propose good Evolutionary Algorithms (EA) for 

these two problems and also analyze the adaptability of an EA, originally designed 

for the standard TSP, to the problems with side constraints. This effort includes 

commenting on the importance of feasibility of the solutions in the population with 

respect to these side constraints. Having this in mind, different EA strategies 

involving feasible or infeasible solutions are designed. These strategies are compared 

by quantitative experiments realized over a set of problem instances and the results 

are given.  

 

Keywords: TSP with Pickup and Delivery, TSP with Backhauls, Evolutionary 

algorithms, Heuristics. 
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ÖZ 
 

EVRİMSEL ALGORİTMALARIN YAN KISITLI ROTALAMA 
PROBLEMLERİNDE İNCELENMESİ 

 
 

Demir, Erdem 
Yüksek Lisans., Industrial Engineering 

Tez Yöneticisi: Y. Doç. Dr. Haldun Süral 

 
Haziran 2004, 149 sayfa 

 
 
 

Bu çalışma Gezgin Satıcı Probleminin iki yan kısıtlı hali üzerinde yoğunlaşır. 

Bu problemler, Dağıtım ve Toplamalı Güzergah Bulma Problemi (DTGBP) ve Geri 

Yüklemeli Gezgin Satıcı Problemi (GYGSP)’dir. Problemlerde iki çeşit müşteri 

vardır: ana depodan ürün talep eden “dağıtım müşterileri” ve ana depoya ürün 

göndermek isteyen “toplama müşterileri”. Problemlerin amacı yan kısıtları sağlayan 

en az maliyetli turu bulmaktır. Uyulması gereken kısıtlar, birinci problemde araç 

kapasitesi, ikinci problemde ise sıralama kısıtıdır. 

Bu çalışmanın amacı, DTGBP ve GYGSP için iyi evrimsel algoritmalar (EA) 

geliştirmenin yanı sıra, kısıtsız problem için iyi işleyen bir EA’nın kıstlı problemlere 

uyarlanmasının incelenmesidir. Algoritma için toplumdaki bireylerin yan kısıtlara 

göre olurluğunun önemi üzerine yorum yapmak esastır. Bu bakış açısıyla, olurlu ve 

olursuz bireylerle çalışan değişik EA’lar önerdik. Bunlar bilgisiyar ortamında yapılan 

deneylerle karşılaştırıldı. Sonuçta önerilen EA’ların iyi işlediği görüldü. 

 

Anahtar Kelimeler: Dağıtım ve Toplama Güzergahı Bulma Problemi (DTGBP), Geri 

Toplamalı Gezgin Satıcı Problemi (GTGSP), Evrimsel Algoritmalar, Sezgisel 

Yöntemler 
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CHAPTER 1 
 
 

INTRODUCTION 

 

  

Due to very large costs associated with physical distribution in logistics 

systems, the routing problems have been attracting attention of transportation 

scientists as well as operational researchers. In past 30 years, many papers have been 

devoted to introducing and defining various routing problems, which have different 

objectives and constraints, and to developing efficient solution techniques that can be 

implemented in real life easily. Bodin and Golden (1981) summarize benefits of 

designing and managing the routing systems efficiently and point on significant 

savings that can be achieved.  

The distribution systems cannot simply be considered as a delivery system. 

Generally, distribution of goods involves also collection of some other related goods 

such as empty bottles for a brewery distribution company. Further efficiency can be 

achieved by integrating these delivery and pickup activities in the same routes. In 

literature, this option is commonly called “backhauling”. The term backhaul is also 

used interchangeably by “pickup and delivery” in some references. Bodin et al. 

(1983) discuss the importance of delivering and picking up in the same routes, 

providing its real life applications. Goetschalckx and Jacobs-Blecha (1986) referring 

to the report of Kearney, point on the large annual distribution costs for US, and 

report potential savings that can be achieved by integrating pickups and deliveries. 

They provide an example from the grocery store industry, where the saving due to 

this integration is $165 million.  

In this study, we have narrowed our attention to the single vehicle routing 

problems with pickup and delivery, where only one route is to be designed. Single 

vehicle problems constitute a basis for multi-vehicle cases, which are harder to deal 

with. Specifically, we have selected the traveling salesman problem with pickup and 

delivery (TSPPD) and the traveling salesman problem with backhauls (TSPB). In 

both problems, a single vehicle visits two customer sets, namely, delivery and pickup 



 
 
 

2

customers, and it satisfies the demands of all customers. The vehicle capacity is the 

main constraint in TSPPD. When there is no free capacity on the vehicle, it cannot 

visit a pickup customer to collect the goods. The two problems differ from each other 

in the sense that in TSPB, pickup customers can only be visited after visiting all 

delivery customers. These precedence relations among customers are the main 

constraints in TSPB. 

The traveling salesman problem (TSP), where a set of customers is to be 

visited by a single vehicle, constitutes a natural basis for these problems. We can 

refer to this problem as the unconstrained case of our problems, since the vehicle 

capacity constraint and the precedence constraint are relaxed and the differentiation 

between customer sets is removed. TSP is known to be NP-hard. Since the problems 

under consideration are generalization of it, they are also NP-hard, which implies 

that they will resist, like TSP, all efforts to find a good optimization algorithm.  

 Exact solution algorithms for TSP can solve instances with size up to 3000 

customers. However, Rego and Glover (2002) point on the impractical times required 

for solving instances of size larger than 1000 at optimality. Even for modest size 

problems, exact methods require substantially greater computation time than leading 

heuristic methods. Heuristics are capable of finding optimal or very-close to-optimal 

solutions for instances larger than those reasonably attempted by exact methods. 

Even when the optimal solutions are sought for real life problems despite the large 

time requirements, the implementation requires extensive OR and computing 

expertise, which consolidate the impracticality of these methods. When side 

constraints accompany the standard TSP, like in backhauling case, heuristics gain 

importance. The exact methods attempting to solve these constrained cases may not 

deal with very large instances at all.  

Among the approximation techniques, metaheuristics are gaining popularity. 

In both Computer Science and Operations Research literatures, there are many 

successful metaheuristic applications for solving TSP. In the second domain, 

metaheuristics were also used for the constrained cases of this problem. These 

modern methods can provide solutions where the conventional heuristics cannot find, 

but they require more time. Specifically, Evolutionary Algorithms (EA), which 

incorporate continuous improvement of a population of solutions, proved to give 
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successful results for TSP. However, the literature lacks EA applications for TSP 

with side constraints. 

Actually, applying EAs to the problems with side constraints is not a trivial 

task regarding feasibility. Even for TSP, such algorithms should be modified in order 

to eliminate subtours. By the help of problem specific encoding and reproduction 

schemes, this problem has been overcame at the expense of the original binary 

structure and the initial “Genetic Algorithms” name. For the constrained cases, the 

feasibility with respect to these additional constraints makes the problem harder. In 

the literature, several constraint handling techniques are reported. Unfortunately, to 

our knowledge, no work on comparing these techniques for generalizations of TSP 

exists.  

In this regard, we tried to analyze and compare these different constraint 

handling techniques in the domain of single vehicle routing problems with pickup 

and deliveries. Initially, we select an EA that has been proved to work well for the 

unconstrained case, i.e., the “naked” TSP. To deal with additional constraints (i.e., 

the capacity constraint for TSPPD and the precedence constraint for TSPB), we 

implement several different constraint handling techniques. Our techniques can be 

grouped into two. The first group works with feasible solutions only: specifically, 

simply rejecting infeasibility, modifying the crossover for ensuring feasibility, and 

repairing the infeasible solutions. In the second group infeasible solutions are 

permitted to exist in the population, however, the chance for them to pass their 

genetic code to a new solution is reduced. This later technique is known as 

penalizing infeasible solutions. 

 Although we specifically work on TSPPD and TSPB, the work aims at 

providing a general insight for the performance of the specific constraint handling 

techniques on the routing problems with side constraints. In the solution procedures 

proposed, we simply try to find good solutions for the constrained cases while 

realizing the search in the solution space of the unconstrained problem. In this 

respect, these two problems differ in hardness to find feasible solutions during the 

search. The solution space of TSPB is a subset of the solution space of TSPPD, and 

therefore, feasibility is harder to maintain for TSPB. Problem focusing on problems 

differing in “hardness” of the associated constraints provides a better insight for 
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generalization. Nevertheless, we also want to propose good EAs for these specific 

problems at the end. 

 In this study, we basically adapt an EA that works well for TSP to solve the 

constrained TSP problems. In this adaptation, five versions of the algorithm by 

utilizing the constraint handling techniques mentioned above are proposed. In the 

first version, the algorithm keeps producing new solutions until a feasible child is 

produced. The infeasible solutions are simply discarded. The second version uses a 

modified crossover operator, which produces solutions that are feasible with respect 

to side constraints. The third one repairs any infeasible solution produced. Fourth and 

fifth versions permit infeasible solutions to enter the population, however, penalize 

their fitness values with different penalizing schemes. In order to measure the 

performance of these strategies, we conduct computational experiments on test beds 

taken from the literature. Promising results are obtained for some of the algorithms.  

 This study is organized as follows. In Chapter 2, our specific problems, 

namely, TSPPD and TSPB, are defined and their related literature is reviewed. 

Chapter 3 presents the EA algorithms proposed. Firstly, the features of the general 

algorithm are explained and then the specific strategies differing in utilized constraint 

handling techniques are explained. The experimental results of these algorithms for 

TSPPD and TSPB are provided in Chapter 4. The study is finalized by the conclusive 

remarks in Chapter 5.  
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CHAPTER 2 
 
 

LITERATURE SURVEY 

 

 

 The traveling salesman problem (TSP) is a well known combinatorial 

optimization problem, where n customers are to be visited on a tour of a single 

vehicle. The tour should start at the depot. After visiting all of the customers once it 

should end at the depot. The objective is to minimize the length of this tour. The 

problem can be defined on an undirected complete graph G = (V, E), where V 

represents the nodes located at the customer points and the depot, and E represents 

the edges between the nodes. For every edge {i,j}∈  E, there is a cost cij associated 

with it. 

This chapter, focusing on the constrained cases of TSP, provides a literature 

survey of related problems and solution approaches. Specifically, the problems 

studied are the traveling salesman problem with pickup and delivery (TSPPD) and 

the traveling salesman problem with backhauls (TSPB). The main difference 

between them and TSP is that there are two sets of customers in these variants: D, the 

set of delivery customers, and P, the set of pickup customers.  

 In the following sections, the relation of TSPPD and TSPB with the other 

constrained routing problems is discussed. The examples of applications are provided 

from industry. The chapter also includes the solution approaches proposed in the 

literature. The chapter is finalized by a brief overview of metaheuristic applications 

for routing problems. 

  

2.1 The Traveling Salesman Problem with Pickup and Delivery 

 
 In the traveling salesman problem with pickup and delivery, each delivery 

customer demands di (i∈D) units of load from the central depot; whereas the pickup 

customers are required to send pj (j∈P) units of load to the depot. In this problem, a 

single vehicle with a capacity Q has to visit every customer once while satisfying the 
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requirements. The main difference from TSP is due to the additional constraint on 

vehicle capacity that can not be exceeded. For feasibility, Q should be greater than or 

equal to the maximum of total delivery load and total pickup load; otherwise, the 

problem is immediately infeasible. 

 In the literature, there are two different environments referring to this 

problem (Nagy and Salhi 2004). In the first one, each customer is either a delivery 

customer or pickup customer (i.e., mixed version). In the other environment, at each 

customer the vehicle should leave some amount of load and pick some other amount 

at the same visit (i.e., simultaneous version). In fact, the second environment can be 

treated as the first one by computing the net demand ti of the customer i as the 

difference between the quantity to be picked up from and the quantity to be delivered 

to. If the net demand of a customer is negative, then it can be regarded as a delivery 

customer, otherwise the customer turns out to be a pickup customer. Note that a 

customer with “0” net demand does not influence the vehicle capacity, but still has to 

be included in the tour. 

 The problem gets harder to solve when the total amount of delivery loads 

equals to the total amount of pickup loads and to vehicle capacity. In this case the 

vehicle starts the tour with full delivery load, visits every customer, and returns to the 

depot with full of pickup loads. In our study, we focused on this setting of the 

problem. 

 Süral and Bookbinder (2003) proposed a mathematical formulation for the 

single vehicle routing problems with backhauls. This formulation can be easily 

modified for TSPPD. Let n be the total number of customers, n = |D| + |P|. Let TD 

and TP denote the total delivery load and the total pickup load, respectively.  

 

Let xij = 1 if the customer i immediately precedes customer j (i≠ j); 0 otherwise, 

 yi = total load on the vehicle to be delivered after serving customer i,  

zi = total load picked-up just before serving customer i, 
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Minimize ij ij
i j

c x∑∑        (2.1) 

st. 

 
0

1,
=

=∑
n

ij
i

x     j∀     (2.2) 

0,ij ki
j k

x x− =∑ ∑    i∀     (2.3) 

j i ij jy y TDx TD d− + ≤ −    , ( , 0)i j i j∀ ≠    (2.4) 

 i j ij iz z TPx TP p− + ≤ −    , ( , 0)i j i j∀ ≠    (2.5) 

i i i iy z Q d p+ ≤ − −     ( 0)i i∀ ≠    (2.6) 

, 0;i i ijy z x≥ = 0 or 1   ,i j∀     (2.7) 

 

The objective function (2.1) gives the total cost of traversed edges. The 

constraints (2.2) and (2.3) are the assignment constraints. (2.4) and (2.5) are 

adaptations of the Miller Tucker Zemlin subtour elimination constraints for TSP. The 

first one updates the delivery load on the vehicle whereas the second updates the 

pickup load. Constraints (2.6) restrict the solution to be feasible with respect to 

vehicle capacity. Constraints (2.7) are the nonnegativity and integrality constraints. 

 

2.2 The Traveling Salesman Problem with Backhauls 

 
 The traveling salesman problem with backhauls resembles TSPPD in 

customer differentiation aspect. However, there is an additional precedence 

constraint, which forces any pickup customer to be visited only after all of the 

delivery customers are visited. Here, the vehicle capacity is not a restricting factor as 

long as the total amount of load to be delivered and picked up does not exceed 

vehicle capacity. 

 The formulation given for TSPPD can be used for TSPB also. However, an 

additional constraint should be introduced into the formulation, which rejects any 

tour including an edge from a pickup node to a delivery node. Therefore, the model 

should include (2.1) - (2.5), (2.7), and the following additional constraint. 
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ijx = 0    , ( , )i j i P j D∀ ∈ ∈    (2.8) 

 TSPB can also be formulated as an asymmetric TSP by updating the cost 

matrix (Gendreau et al. 1997). When the costs of edges directed from any pickup 

node to any delivery node are penalized by adding a sufficiently large number to the 

initial costs of these edges, the optimal TSP tour will surely be free from these 

unattractive edges, and will make the resulting tour feasible with respect to 

precedence constraints. 

To give an example, the following cost matrix is provided in Table 2.1 for a 

TSPB instance. Node 0 represents the depot. Nodes 1, 2, and 3 stand for the delivery 

customers while nodes 4 and 5 stand for the pickup customers. Table 2.2 shows the 

updated cost matrix where entries indicate that the edges directed from pickups to 

deliveries are penalized by a constant M. M should be large enough in order to make 

any solution violating “the precedence constraint” worse than the optimal solution to 

TSPB. An immediate value for M is the sum of row maximums of the matrix. A 

looser value for M can be defined as the sum of all nonnegative edge costs. 

 

Table 2.1 The original cost matrix for a TSPB instance  
 

 0 1 2 3 4 5 

0 - 12 6 4 3 5 

1 9 - 8 7 12 4 

2 16 7 - 3 13 8 

3 12 3 11 - 9 12 

4 11 8 4 9 - 11 

5 2 13 17 6 6 - 
 

Table 2.2 The updated cost matrix for the TSPB instance  
 

 0 1 2 3 4 5 

0 - 12 6 4 3 5 

1 9 - 8 7 12 4 

2 16 7 - 3 13 8 

3 12 3 11 - 9 12 

4 11 8+M 4+M 9+M - 11 
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5 2 13+M 17+M 6+M 6 - 

 If the updated cost matrix is solved by an exact TSP solver, any solution that 

uses a penalized edge ceases to be optimal TSP tour. The solutions that do not use 

these edges will surely be feasible with respect to the TSPB constraints. Therefore, 

the optimal TSP tour for this cost matrix equals the optimal TSPB tour. 

In Figure 2.1, tours for TSPPD and TSPB are provided for an example 

problem instance involving 10 customers. White nodes and black nodes represent 

delivery and pickup customers, respectively. The white box represents the depot. The 

black numbers around nodes represent the net quantity demanded. The gray numbers 

on arcs represent the total load on vehicle while traversing that edge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1 (a) A feasible route for TSPPD; (b) a feasible route for TSPB 
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2.3 Relation to Other Routing Problems 

 

 TSPPD and TSPB are important sub-problems for multi-vehicle routing 

applications. If a cluster first-route second approach is considered to solve the multi-

vehicle case, the routing problem in each cluster can be regarded as a TSPPD or 

TSPB.  

 Süral and Bookbinder (2003) provide a classification of the routing problems 

with backhaul options. In their α/β/γ representation, α stands for the number of 

vehicles associated, β refers to backhaul service options and γ identifies whether a 

precedence restriction between pickup and delivery customers exists or not. The 

problems under consideration for our work are of “α=1 and β=must” type, which 

implies that only one vehicle is utilized and all of the pickup customers are to be 

serviced. Other than these problems, the authors also investigated “β=free” problems, 

referring to the cases where visiting pickup nodes is optional. The vehicle collects 

revenue from each pickup customer and only the profitable pickup nodes are 

included in the tour. The assumption beneath this type of environments is that 

discarded nodes are to be served by common carriers. In “γ=any” problems, there is 

no precedence relationship between delivery and pickup customers. However, in 

“γ=prec” type problems, the delivery customers should precede pickup customers. 

Following this notation, TSPPD and TSPB can be referred as 1/must/any and 

1/must/prec, respectively. 

 In their work, Süral and Bookbinder (2003) also investigate the relationship 

between these variants and TSP. Figure 2.2 provides a schematic representation of 

the relationship between these problems. In this figure, an arrow means that the 

problem which it emanates from is a special case of the problem that the arrow 

points. Therefore, any algorithm that can be used to solve the pointed problem can 

also solve the pointing problem. In this sense, TSP can be regarded as a special case 

of TSPPD and TSPB, where one of customer sets is empty. Hence any algorithm that 

solves these problems in linear time can also solve TSP, which proves that both 

problems are NP-hard problems. 1/must/any problems can be transformed to 

1/must/prec problems by adding a large constant M on the cost of between delivery 
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and pickup nodes and of arcs from depot to pickup nodes. Any algorithm that can 

solve 1/free/any problem can also solve 1/must/any as the former problem can be 

transformed to the later one by adding sufficiently large constant M to the revenues 

of the pickup customers.  

 

 

 

 

 

 

 

 

 

Figure 2.2 Relationships among 1/β/γ problems and TSP  

 

 1/free/prec is not discussed in Süral and Bookbinder (2003). For the sake of 

completeness, we introduce the 1/free/prec problem and relate it to the other variants 

in this work. 1/must/prec is a special case of 1/free/prec where the revenues to be 

gathered from pickup customers are irresistibly large. In this case, any algorithm that 

can solve 1/free/prec can also solve 1/must/prec. Therefore, we add a new arrow 

(shown in gray) pointing 1/free/prec from 1/must/prec. One can also transform 

1/free/any into 1/free/prec by adding a sufficiently large M value to the costs of those 

arcs from pickup nodes to delivery nodes and also to those from depot to pickup 

nodes. The arrow between 1/free/any and 1/free/prec represents the possibility of 

such a transformation. 

 The TSPPD can find fairly short tours but visiting pickup customers at any 

order along the tour may create inefficiencies regarding loading/unloading activities. 

On the other extreme, when pickups constrained to be visited after finishing all 

deliveries, loading and unloading can be realized easily, However, this time tour 

length increases considerably. Wade and Salhi (2002) introduce a problem between 

TSPPD and TSPB, where a vehicle can start to visit pickups only after visiting some 

deliveries. By this way it is possible to obtain a tour not as inefficient as a TSPPD 

TSP

1/free/any

1/must/prec 

1/must/any 

1/free/prec
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tour can be regarding loading and unloading, and not as poor as a TSPB tour 

regarding the tour length. Another variant of these problems is studied by Daganzo 

and Hall (1993), where a vehicle can not visit more than a particular number of 

deliveries but pickups. 

 Both TSPPD and TSPB can be related to the general pickup and delivery 

problem. The general framework provided by Savelsbergh and Sol (1995) is capable 

of handling various problems including the pickup and delivery problem, the dial-a-

ride problem, and the vehicle routing problem. The first two problems can also be 

referred as one-to-one type problems, However, the third one is an one-to-many (or 

many-to-one) type problem. If TSPPD and TSPB are problems where two 

commodities are to be transported, then they can be classified as one-to-many/many-

to-one type problems. The central depot represents the first commodity’s supplier 

and delivery customers are “demanders”, whereas pickup customers are the suppliers 

for the second commodity and only demand point is located on the depot.  

 Anily and Bramel (1999) study the capacitated TSPPD to transport a 

commodity from a set of suppliers to a set of demand points. At each supplier one 

unit of commodity is supplied while the requirement amount is one unit at demand 

points. In Moon et al. (2002), the traveling salesman problem with precedence 

constraints is defined. In the problem for a node to be visited, all of its predecessors 

should be visited in advance. A looser version of this problem is clustered TSP 

(Jongens and Volgenant 1985), where precedence relations are not defined on 

individual nodes but on clusters. TSPB can be seen as a clustered TSP having only 

two clusters.  

  

2.4 Applications in Industry 

 

The routing problems with pickup and delivery or with backhauls are highly 

important for distribution systems (Bodin et al. 1983). In practice, if vehicles do not 

permit loading/unloading to be realized quickly and efficiently, it is more appropriate 

to design a route in which its total load is delivered first and then the goods are 

picked up. However, if a vehicle with side-loading capabilities is utilized, the pickup 

customers can well be visited along any order, without consuming too much time for 
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loading and unloading (Süral and Bookbinder 2003). So, both problems can be 

observed in the same distribution system differing according to the vehicles used. 

These type of problems can be observed in supply chains like grocery store 

chains, retail department store chains, quality stores, where the vehicles transporting 

goods to customers can be also used for gathering materials or inbound products 

from suppliers (Yano et al. 1987, Goetschalckx and Jacobs-Blecha 1989, Potvin et al. 

1996, Toth and Vigo 1997, Ghaziri and Osman 2003). Gendreau et al. (1999) 

mention a similar example for beer and soft drinks delivery system. In this example, 

full bottles should be delivered to customers and empty bottles should be collected 

from customers.  

As a specific example of TSPPD, Mosheiov (1994) discusses an application 

for the transportation of under-privileged children. In his example, the aim of a non-

profit organization is to provide under privileged children two-week long vacation 

opportunities. Since the visiting dates are determined in advance, it is possible to 

carry back the children finishing their vacations and to pickup the ones who are just 

starting their vacation with the same vehicle. In this TSPPD, the depot is the main 

vacation site, the delivery customers are the families of the children ending their 

vacation and pick up customers are the families of the other children. Anily and 

Mosheiov (1994) provide another application from mailing parcel systems, such as 

UPS, where the mail processed at the depot is to be delivered to recipients, while 

picking up the mail from senders for processing at the depot. Anily and Bramel 

(1999) mention about the importance of TSPPD in the context of inventory 

repositioning. The specific examples of TSPB can be seen in automated warehouse 

routing and in operation sequencing on numerically controlled machines (Gendreau 

et al. 1996). 

 

2.5 Solution Procedures 

 

Due to the complexity of TSPPD and TSPB problems, studies in the literature 

generally focused on the approximation algorithms. However, there also exist some 

exact solution procedures for each problem. Since TSPB appears before in literature, 

the related works are more compared to those of TSPPD. Amount of works on 
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TSPPD has increased with introduction of trucks with side-loading capabilities. In 

the following section, the solution algorithms for TSPPD, TSPB, and multi-vehicle 

cases of these problems are summarized. 

 

Solution procedures for TSPPD 

 The works intending to solve TSPPD at optimality are infrequent in the 

literature. One can refer to the commodity flow formulation of Mosheiov (1994) or 

general MIP formulation of Süral and Bookbinder (2003) for solving the problems 

with modest sizes by commercial MIP solvers. However, as problem sizes get larger, 

these formulations are not very successful. Baldacci et al. (2003) introduce of new 

valid inequalities namely, flow, subtour, and capacity inequalities, and propose lower 

bounds for the problem. The tightness of the lower bounds reported are comparable 

with that of TSP lower bounds. These lower bounds are used in their exact algorithm 

based on branch and cut. For Euclidean instances, they could solve problems with 

199 customers within one hour, whereas the solvable size decreases to 100 customers 

for randomly generated problems. In this work, the authors also mention about a 

genetic algorithm that is used to find good upper bounds for the exact method. 

However, no algorithmic details are presented in the paper. In personal contact, the 

authors stated that the heuristic was designed just for obtaining bounds and it should 

not be considered as a practical solution method.  

The first example of heuristic methods for TSPPD comes from Mosheiov 

(1994). Considering the similarities between TSP and TSPPD, Mosheiov adapts TSP 

heuristics for TSPPD. Pickup and delivery along optimal tour (PDOT) heuristic starts 

with constructing the optimal TSP tour along customer nodes. The depot is then 

inserted to any location that makes the resulting tour feasible. The worst case bound 

of this heuristic was stated to be 2. For the cases in which it is very hard to find an 

optimal subtour, the author proposes PαDT, where the subtour is obtained by a TSP 

heuristic. The worst case bound “α” of the heuristic used for finding the initial 

subtour would also be valid for the resulting TSPPD tour.  

Cheapest Feasible Insertion (CFI), another heuristic proposed in the same 

work, starts with construction of an α-optimal tour visiting every delivery customers 

and depot. At the next step, pickup nodes are inserted into the tour. At each iteration, 
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the node increasing the total cost least while not disturbing the feasibility is selected. 

Although the worst case bound was reported to be infinity for CFI, the computational 

experiments revealed that there is no significant dominance between PαDT and CFI 

for problems of size varying between 60 and 200 customers. 

Anily and Mosheiov (1994), with a motivation to reduce these worst case 

bounds, adapt the Christofides heuristic of TSP for this problem. Their heuristic first 

finds the minimum-spanning tree rooted at the depot node. After doubling all of the 

arcs, a Hamiltonian cycle starting and finishing at the root node is constructed. The 

algorithm gives priority for the subtrees with smaller total net demand for visiting. In 

such a subtree a delivery customer is satisfied immediately. A pickup customer 

should be a leaf node or all nodes along its subtree should be satisfied before this 

customer is satisfied. Although this heuristic has a worst case bound of 2, the 

computational results showed that it is not better than CFI in terms of solution 

quality. 

Gendreau et al. (1999) propose a linear time algorithm for finding the optimal 

TSPPD on a cycle. Their heuristic firstly finds a TSP cycle using the Christofides 

heuristic, and then uses this linear time algorithm to find the optimal TSPPD tour on 

this cycle. A feasible 2-edge exchange procedure is utilized for improvement 

purposes. The heuristic outperformed PαDT and CFI, regarding the solution quality 

and time, for Euclidean instances. The authors also propose a tabu search procedure 

in this work. The tabu search produced slightly better results than all heuristics in 

term of solution quality at the expense of significantly more time.  

Demirel (2001) proposes efficient improvements on the PDOT algorithm of 

Mosheiov. After a tour for all customers is constructed, it is improved by 2-edge 

exchange heuristic and then the depot is inserted into the best feasible location. The 

results showed that the improvement steps improved the solutions by 10.7% on the 

average. In this work, the adaptations of TSP heuristics are introduced, called 

Nearest Feasible Insertion and Farthest Feasible Insertion. A delivery tour is 

constructed via Nearest Neighborhood (or Farthest Insertion) heuristic. Then pickup 

customers are inserted into the tour as it is realized in CFI. Modified versions of 

insertion heuristics are also experimented for which the entire tour is constructed at 

once inserting all customers one by one without violating the feasibility. The farthest 
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insertion heuristic performed better than cheapest insertion in construction of the 

initial delivery tour. 

 
Solution Procedures for TSPB 

 Since TSPB can be transformed to an asymmetric TSP, any algorithm that 

can be used to solve TSP solves TSPB. 

 In Gendreau et al. (1996) a TSP heuristic, GENIUS, is introduced. At the first 

part of the heuristic (GENI) a tour is constructed by inserting nodes one at a time. 

GENI differs from regular insertion schemes as it performs a local optimization 

scheme at each iteration. First, it selects an unvisited node v arbitrarily, and then 

evaluates several insertion moves. These moves involve deletion of three edges from 

the tour and addition of four new edges. Two of the new edges are introduced due to 

connecting v to two nodes in the tour, vr and vs. The other two nodes vr+1 and vs+1 

previously incident to vr and vs are connected to nodes vk and vk+1, which are already 

on the tour. Due to time considerations, the possible moves are restricted with the 

notion of p-neighborhood. That is to say, vr and vs are selected from the closest p 

nodes to v. Likely vk should be among the closest p nodes to vs+1. For different 

selections of vr, vs, and vk, alternative moves can be obtained. From the possible 

moves the best one is selected, and the algorithm continues until a complete tour is 

obtained. GENI is succeeded by the improvement step, US. Here, each node is in 

turn removed from the complete tour using reverse GENI algorithm and reinserted in 

the tour using GENI. The algorithm halts when no further improvement can be 

obtained. 

Gendreau et al. (1996), having previously satisfied by the performance of 

GENIUS for TSP, develop its six different versions for TSPB. H1 solves the 

corresponding TSP instance of TSPB with updated cost matrix. H2 constructs two 

cycles for delivery nodes and pickup nodes separately using GENIUS algorithm. 

These two cycles and the depot are combined by the best possible way. H3 slightly 

differs from H2 so that the initial cycles include the depot this time. One edge 

connected to the depot is removed from each cycle and the resulting paths are 

combined into a tour by introducing an edge between end nodes of the paths. H4 

utilizes cheapest feasible insertion scheme for tour construction and US for tour 
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improvement. The authors also propose a feasible Or-opt improvement algorithm. 

H5 and H6 use this algorithm for improvement. In H5 tour is constructed by GENI, 

while it is constructed by cheapest feasible insertion in H6.  

In their computational studies, GENI turned out to be a better construction 

heuristic than cheapest feasible insertion, and also US is indicated to dominate 

feasible Or-opt procedure. In overall H1 is performed well in terms of solution 

quality and time for problems of size 100 and 200 customers. As problem size 

increases H2, H3, and H4 show more or less the same performance. 

 Gendreau et al. (1997) present an adaptation of the Christofides TSP heuristic 

to TSPB with the worst case bound of 3/2. No metaheuristic application is reported 

in the literature for TSPB. In the work of Ghaziri and Osman (2003), a neural 

network algorithm is adapted to TSPB. Its performance is compared with the 

heuristic proposed in Gendreau et al. (1996). The results show that the proposed 

algorithm produces competitive results with these algorithms but require much more 

time. 

 
Solution Procedures for VRPPD 

 In vehicle routing problem with pickup and delivery (VRPPD), instead of one 

vehicle, a fleet of vehicles are to satisfy the requirements of pickup and delivery 

customers. VRPPD is an extremely hard problem to solve. Tzoreff et al. (2002) study 

the VRPPD problem on special graphs such as path, tree, cycle and so on. Using 

graph theoretical properties of these structures, the authors propose exact algorithms 

for these special cases.  

Dethloff (2002) proposes an insertion heuristic for the VRPPD. The heuristic 

differs from the traditional saving based insertion heuristics in determining the 

saving value. Here, aside from the traditional criterion based on increase of the tour 

length, excess vehicle capacity after the insertion of the candidate node, and its 

distance to the depot are also taken into account while determining the node to be 

inserted.  

A thorough review for the multi-vehicle routing with pickup and delivery is 

provided by Nagy and Salhi (2004). They first classify the problems into three main 

categories: simultaneous pickup and deliveries, mixed pickup and deliveries, which 
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correspond to VRPPD according to the nomenclature used in our work, and delivery-

first pickup second VRPPD, which we call VRPB. Their work is primarily related 

with the first two types. They proposed a route first-cluster second algorithm. Firstly 

a giant tour including every customer node and depot is constructed via TSP 

heuristics. Then, with the help of a direct cost network representing the length of the 

paths on this giant tour, the clustering, is achieved in best possible way. During this 

clustering the maximum of total pickup load and delivery load is sought to be less 

than the vehicle capacity. Nevertheless the resulting tours may result in a weakly 

feasible tour. Therefore, the authors propose several improvement procedures with 

feasibility maintaining, such as 2-opt, 3-opt, node shift, node exchange, etc. They 

also adapt the heuristic to be capable of handling the multi depot case. The results of 

the heuristic integrated with different improvement modules prove to dominate the 

previously proposed algorithms for VRPPD both for single depot and for multi depot 

case. 

 

Solution Procedures for VRPB 

 For the multi-vehicle case of TSPB, there are a number of exact methods 

proposed in the literature. Toth and Vigo (1997) propose a branch and bound 

algorithm for both symmetric and asymmetric cases of the problem. With variable 

reduction and feasibility check the algorithm’s performance is enhanced. It is 

reported that the algorithm solves instances with 100 customers at optimality.  

 In the work of Mingozzi et al. (1999), a new BIP model for VRPB is 

developed. The model is based on defining feasible path sets. Two heuristics for 

finding a feasible solution to the dual problem are proposed and the solutions found 

are used in variable reduction in the exact solution method. Their method was able to 

solve problems up to 100 customers within a time limit of 25,000 seconds. 

Very first example of heuristic methods for this problem is given in 

Goetschalckx and Jacobs-Blecha (1989). The authors use a space filling curve 

methodology for both clustering and routing decisions. The algorithm provides initial 

solutions efficiently. The routing subproblems in clusters are improved with 2-opt 

and 3-opt, and the resulting tours are within 1% of optimal tour values. 
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Toth and Vigo (1999) propose a cluster first-route second algorithm for the 

problem. K delivery clusters and K linehaul clusters are formed at the end of the 

clustering phase based on Lagrangian relaxation. Afterwards, the delivery and pickup 

clusters are merged according to the edges included in the Lagrangian solution or the 

results of an assignment problem. At the last phase, a TSPB for each cluster is solved 

using the farthest insertion heuristic. The results of heuristics were better than those 

of Goetschalckx and Jacobs-Blecha. 

There are also metaheuristic applications for VRPB in the literature. Genetic 

algorithm of Potvin et al. (1996) and Tabu search of Osman and Wassan (2002) can 

be mentioned as examples. In Potvin et al., VRPB with time windows is studied. An 

algorithm is proposed to construct a VRPB tour by inserting the nodes one by one 

according to a specified order. This algorithm is incorporated into a GA scheme 

where “order of insertion” is evolved throughout generations. The results provided 

were 1% of the optimum. In reactive tabu search of Osman and Wassan (2002), there 

are mainly two types of moves. The 1-interchange mechanism shifts one single 

customer from one route to another or exchanges two nodes, whereas the 2-

consecutive-node interchange mechanism shifts or exchanges two-consecutive nodes 

between the route pairs. The initial tours are constructed using saving insertion 

heuristic and saving assignment heuristic.  

 

2.6 Metaheuristics and Complex Routing Problems 

 

 There is a vast literature about the metaheuristics proposed for the standard 

routing problems, TSP and VRP. The most commonly used metaheuristics are 

Simulated Annealing (SA), Tabu Search (TS), and Genetic Algorithms (GA). The 

reader is referred to Johnson and McGeoch (1997), Rego and Glover (2002) for 

general discussions about metaheuristics for TSP, and Golden et al. (1998) for VRP. 

For a detailed discussion of GAs that work well for the TSP, the reader can refer 

Sönmez (2003). In general, SA and TS work better than GA for VRP ( Golden et al. 

1998). For TSP, good genetic algorithms are also reported by many works ( Johnson 

and McGeoch 1997, Nagata and Kobayashi 1997, Sönmez 2003).  
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The literature lacks a general reference for metaheuristics for constrained 

routing problems, including our problems. The work of Van Breedam (2001) 

provides a general comparison scheme for improvement heuristics. The author 

compares several metaheuristics, specifically TS and SA, with conventional 

improvement heuristics based on descent methods (DH), for VRP. All heuristics 

analyzed use the same basic moves, which are string cross, string exchange, string 

relocation and string mix. Extensive experiments are performed with different 

parameters on general characteristics (i.e., geometry of node locations, side 

constraints on the problem, etc.), and on algorithmic characteristics (i.e., move type, 

initial solutions, etc.). According to the experimental results, it is reported that DH 

halts execution more quickly than SA and TS and the best solution of DH is better 

than the intermediate solutions that are produced with more or less the same effort. 

However, TS and SA produce better results as they proceed. No superiority is 

reported for one over the other among these two metaheuristics. Although VRPPD is 

included in the experiments as a problem type variant, no specific results are 

provided for it.  

 When we narrowed our attention to the realm of GAs, we see that a need 

exists for a general analysis of GAs for constrained problems. The main difficulty in 

applying GAs to even standard combinatorial optimization problems, like TSP, is the 

problem of feasibility of produced solutions. The generic crossover operators are 

incapable of handling the constraints of combinatorial optimization problems. 

Reeves (1997) summarizes major strategies to handle constraints in GAs. By 

modifying operators, repairing or penalizing infeasible solutions, using multiple 

objectives or modifying the formulation, GAs can tackle the feasibility problems. For 

TSP a common approach is to modify crossover operators while using proper 

solution representation schemes (Michalewicz and Fogel 1998). The solution 

representation schemes alienating to the original schemes proposed of Holland 

(1975) and crossover operators getting more complex, caused the algorithms to be 

differentiated as Evolutionary Algorithms (EA) by conservative GA theorists.  

The feasibility issue for constrained routing problems gains more importance. 

If we adapt EAs originally designed for standard routing problems to constrained 

routing problems, the additional constraints will probably be violated even the basic 
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subtour elimination constraints are satisfied. Fortunately the strategies summarized 

by Reeves (1997) can be applied here also. In the literature, there are some EA 

applications on the specific constrained routing problems such as Potvin et al. 

(1996), Moon et al. (2002), preserving feasibility of the solutions by using one of the 

formerly stated ways. However, the author could not note any work comparing the 

performance of feasibility maintaining methods in EAs for constrained routing 

problems. This deficiency of literature constitutes the core motivation of our study. 

 

 

 



 
 
 

22

 
 

CHAPTER 3 
 
 

PROPOSED ALGORITHMS 

 

 

 As it is mentioned before, EA, when designed appropriately, is a dependable 

tool for solving TSP. There are various successful EA algorithms proposed for this 

problem in the literature. However, the problem is defined with inevitable 

accompanying constraints in many real life applications and the algorithms that are 

specialized in solving the standard case is of limited use for industry. Kilby et al. 

(2000) mention about the necessity for the standard procedures for handling the 

additional constraints on routing problems. They also note the unstable and 

unpredictable nature of these side constraints. We believe that the standard 

procedures provide a natural base for the constrained cases. Through this respect, in 

our study, we adapt an EA that works well for TSP to the constrained cases.  

In the previous section, the main handicaps of this adaptation and overcoming 

efforts are stated briefly. The feasibility regarding the side constraints are the main 

difficulties during this process. From now on, both of the terms of “feasibility” and 

“infeasibility” will be referred with respect to these side constraints instead of the 

regular tour constraints of TSP.  

Michalewicz and Fogel (2000) provide a broad investigation of constraint 

handling techniques in EA. The methods can be classified in two classes: feasibility 

seeking methods and infeasibility penalizing methods. The most common feasibility 

seeking methods are rejecting infeasible solutions, repairing infeasible solutions and 

maintaining a feasible population using special representations and variation 

operators. The authors note that the global optimum may generally occur at the 

boundaries of the solution space and to accept some attractive infeasible solutions in 

the population may be a good method for some problems. In this context, the 

problem of evaluating the attractiveness of infeasible solutions arises. The general 

evaluation method is to utilize the penalty functions to decrease the attractiveness of 

these individuals. The most attractive penalizing functions are the adaptive ones 
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(Reeves 1997). These functions update the penalizing coefficients throughout 

generations considering the difference between best infeasible and best feasible 

solutions found so far. In this study, we restrict ourselves to deal with only these 

most common infeasibility handling strategies. In order to provide a fair comparison 

basis, we apply these strategies in the simplest and the basic form.  

In the following subsections, the algorithms are defined for the two 

constrained routing problems, namely TSPPD and TSPB. The chapter starts with 

identifying the general EA components and providing the algorithm for the 

unconstrained problem. Then, this algorithm is modified to the constrained problems 

for each constraint handling strategy in the following sections. In each section, we 

first outline the implementation of the specific strategy and then give the general 

algorithm that provides basic structures that can be adapted to different side 

constraints without too much effort. Each section includes specific modification of 

general algorithms for TSPPD and TSPB also.  

 

3.1 General EA components 

 

 The main components of EAs can be itemized as coding scheme, fitness 

function, initial population, selection strategy, reproduction operators, replacement 

strategy, and stopping criteria. Beasley et al. (1993) provide a summary for these 

general components. Sönmez (2003) proposes an EA for TSP, which finds high 

quality solutions in reasonably small time. This study constitutes the basis of ours. 

Most of the components of our EA are decided according to the findings and 

discussions in Sönmez (2003).  

  

Coding Scheme 

 Sönmez (2003) provides a thorough listing of representation schemes for 

TSP. These representation schemes are grouped into two major categories: Vector 

and matrix representations. Binary, path, adjacency, ordinal, and rank representations 

are mentioned under the vector representations group. Among the listed alternatives 

the path representation is the most natural and logical one for TSP. A feasible TSP 

tour is represented by a sequence of numbers indicating the sites to be visited. Many 
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successful EAs utilize this scheme (Nagata and Kobayashi 1997). Therefore, the path 

representation is selected in our study. 

 

Fitness Function 

 The core of EAs is providing reproduction chances for the good solutions, 

which are expected to yield better ones. For this purpose one should evaluate the 

goodness of the solutions, which are generally realized by fitness functions. 

Although there are examples of works questioning the benefits of using fitness 

functions (Chen et al. 1999), commonly they are among the key features of EAs. We 

used the length of the tour as the fitness value of a solution, as it is the most sensible 

alternative. 

 

Initial Population 

 One of the main components of an EA is the initial population that is 

composed of a certain number of solutions, which are produced in advance with any 

procedure. Two characteristics regarding the initial population should be decided in 

the very beginning. The first one is the population size, which generally remains 

constant throughout the generations. The second one is the nature of starting 

solutions, i.e., the procedure used to produce these solutions. Sönmez (2003) 

experimented with different population sizes varying from 50 to 200 for the 

algorithm she proposed. The finding was that a population size of 50 was appropriate 

for the problems with sizes up to 250 customers. Sönmez uses a population of 100 

individuals for the larger problems. As we utilized a different reproduction scheme, 

namely, steady-state reproduction scheme, we did not use a population size as it is 

suggested in Sönmez (2003). We have realized a preliminary experiment about the 

influence of the population size on the solution quality for TSP instances. According 

to this experiment, the larger number is set as the size of population in our study. The 

results are provided in Section 4.3. 

 The solutions in initial population may be produced as the good starting 

solutions or they can simply be produced randomly. For the sake of simplicity in this 

study the initial solutions are produced randomly. By this way, we can focus on the 

core of the study and compare the performances of the proposed constraint handling 
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strategies without any other effect. When good solutions are also included in the 

population, it can be quite complex to identify the underlying reason for superiority 

of one strategy over another. We proposed three methods to generate initial 

solutions, each of which is differing in the treatment of feasibility.  

In method 1 only the feasible solutions are produced. It first constructs 

random solutions and then the resulting solutions are repaired if necessary. The 

general method is provided in Figure 3.1. Please refer to Section 3.2.3 for the repair 

algorithms utilized for TSPPD and TSPB.  

 

 

 

 

 

 

Figure 3.1 The pseudo code of method 1 for initial population generation  

 

Method 2 produces feasible solutions also. However, this time, the feasibility is 

sought during construction of the tour. In order to explain the steps of this algorithm 

let’s turn back to network definition of the problem, where the customers and the 

depot are represented by the nodes. The algorithm starts with the depot node. Among 

the customer nodes whose additions do not violate feasibility, one is randomly 

selected to place at the end of the path. The procedure is repeated until no node is 

left. The algorithms of this method for TSPPD and TSPB are provided in Figure 3.2. 

In the figure, the variable, vehicle_load keeps the amount of the load on vehicle. 

Method 3 constructs the tour by randomly selecting the nodes. As it can be 

guessed, this method does not guarantee feasibility. For tightly constrained cases 

such as in TSPB, a great portion of the solutions produced are expected to be 

infeasible because solution space of the constrained problem is much smaller than 

the standard case. 

 

 

 

(a) Procedure_method1 

 Start with the depot node 

 Repeat until all nodes are visited 

 Pick an unvisited node randomly add it to the end of the chain 

 Repair the resulting tour if necessary 
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Figure 3.2 The pseudo code of method 2 for initial population generation  

 

 

 

 

 

 

Figure 3.3 The pseudo code of method 3 for initial population generation 

 

In our experiments, we investigate three initial population settings. In the first 

setting, all solutions are feasible ones: half of the population is produced by method 1 

and the remainder is produced by method 2. In the second setting, each of method 1 

and method 2 produces a quarter of the population. The remaining half is produced 

by method 3. This type is expected to have infeasible solutions in the initial 

population. The third setting, in which the number of infeasible solutions is expected 

to be larger than the former two settings, is produced by method 3 only.  

(a) Procedure_method2_for_TSPPD 

 Start with the depot node 

 Assign the vehicle_load as the total delivery load 

 Repeat until all nodes are visited 

 Pick an unvisited node if its addition does not violate capacity randomly and add it to

the end of the chain 

 Update the load on the vehicle 

 

 

(b) Procedure_method2_for_TSPB 

 Start with the depot 

 Repeat until all nodes are visited 

 If all delivery nodes are not visited  

Pick an unvisited delivery node randomly  

Else 

Pick an unvisited pickup node randomly 

Add the node at the end of the chain

(a) Procedure_method3 

 Start with the depot node 

 Repeat until all nodes are visited 

 Pick an unvisited node randomly and add it to the end of the chain 
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Selection Strategy  

In each iteration, EAs select parents from which new solutions are to be 

generated. The basic consideration in selection is to favor the good solutions in 

providing chance to reproduction; therefore the common approach selects parents 

from the population according to their fitness. However, there are examples of 

random selection strategies in literature.  

The selection methods mentioned in Sönmez (2003) were roulette selection, 

tournament selection, and GENIE selection. The comparisons between these 

selection schemes yield that ranking and tournament schemes give better results than 

the regular roulette scheme. In fact, both of these schemes are appreciable as they do 

not require any rescaling procedures to overcome the effect of the fairly good 

solutions to dominate the populations, which is a problem in roulette selection. The 

examples of good algorithms using ranking schemes are available in literature, such 

as Whitley’s GENITOR (1989). The GENIE selection strategy of Chen is given as an 

example for random selection in Sönmez (2003). Due to the improvement capability 

of the crossover operator, the fitness information is disregarded for selection in this 

heuristic.  

Among the selection strategies summarized here, ranking based strategies can 

be implemented easily. We use the linear fitness function scheme as proposed in 

Reeves (1995). All solutions in the population are ordered according to the fitness 

function values (i.e., in non-decreasing order of the tour length). The probability of 

selecting a solution is assigned a value, inversely proportional to the rank of the 

solution, where the probability mass function follows a decreasing trend for 

increasing ranks. Specifically, let pi be the probability of selecting the solution of 

rank i as a parent, and let n be the size of candidate population. The value of pi can 

be computed as: 
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After the first parent is selected, the corresponding solution is taken out of 

consideration, the size of the candidate population is decreased by one, and the 

probabilities are computed again in the same fashion for selecting the second parent. 

 

Reproduction Operators 

The reproduction operators can be analyzed under two main classes: 

crossover operators and mutation operators. Crossover operators basically generate 

combinations of two solutions (named as parents). Usually, applying the crossover 

operator to selected two parents, two new solutions (named as offspring or children) 

are produced. In the literature there is a vast source on crossover operators for TSP. 

Sönmez (2003) provides a classification of these operators according to the 

preservation characteristics of operators. These groups are stated as position, order, 

and edge preserving crossover operators. Edge preserving operators are found more 

appropriate as the edges are agents directly affecting the solution quality. The order 

and position are of little use in speaking of the goodness of a solution. 

In Sönmez (2003), the idea of using conventional heuristics as the crossover 

operators is proposed. The crossover proposed mainly constructs a union graph of 

selected parent solutions and applies the nearest neighbor (NN), the greedy and the 

insertion type TSP heuristics on that union graph. The experiments of Sönmez 

revealed that the NN works better than the others regarding solution quality and time; 

therefore it is taken as the crossover operator of our algorithm.  

The NN operator firstly selects a random starting node from the union graph. 

At each iteration the nearest reachable unvisited node is added to the tour. Whenever 

the partial graph cannot yield to an unvisited node, the nearest unvisited node is 

selected using the edges of the complete graph. The algorithm halts if all nodes are 

visited. This is the deterministic version of NN. The stochastic version uses a 

probability scheme to decide which node to visit next. The probability figures are 

inversely proportional to the distance of the unvisited nodes to the current one on the 

tour. As it is noted in Sönmez, the initial edges traversed in this operator are 

relatively shorter ones. As the algorithm goes on, since the number of alternative 

routes to proceed decreases, the edges added may get worse. In fact, the two edges 

that connect the last node to be added to the tour do not involve any distance 
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consideration. If the parent solutions are the same solutions, the operator cannot 

produce a solution different from these parents. 

In this work, from two parents, two children are produced by applying the NN 

crossover operator twice. The first child is produced starting with a random point. 

The last node added to this tour is used as the starting node in the production of the 

second child. To illustrate we provide an example with the following symmetric cost 

matrix in Table 3.1.  

 

Table 3.1 The cost matrix for a symmetric TSP problem 

 

Nodes 0 1 2 3 4 5 

0 - 6 9 7 5 6 

1   - 12 4 5 9 

2     - 8 11 14 

3       - 3 13 

4         - 15 

5           - 

 

 

Example: 

Parent 1:  0 1 2 3 4 5 

Parent 2:  0 2 1 3 5 4 

Let node 1 be the starting node for the procedure 

Offspring 1: 1 3 4 0 5 2, where edge 5-2 is taken from the complete 

graph.  

Since node 2 is the last node, it will be the starting node in offspring 2. 

Offspring 2: 2 3 4 0 1 5, where edges 1-5 and 2-5 are taken from the 

complete graph. 

  

 If two parents are the same, the union graph constructed cannot allow any 

other solution to be produced. Only the direction of the resulting tour may change. 

This case is illustrated in Figure 3.4. In the construction of the first child, the 
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algorithm starts with node 1. In a case where node 0 is closer to node 1 than node 2, 

the resulting child follows the sequence of the parents in the opposite direction. In 

construction of child 2, obtaining a tour same as the parents is exemplified. Here the 

starting node is node 4. If node 5 is closer to node 4 than the other alternative (i.e., 

node 3), the same tour as the parent tours is obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Illustration of reproduction when two parents are the same 

 

In general, mutation operators that alter the genes of the solution randomly can 

be seen as operators that produce a new solution from an initial solution. They are 

essential in maintaining variability in population and in preventing premature 

convergence to a sub-optimal solution (Beasley et al. 1993). It is very convenient and 

common way of using mutation operators for improvement purposes (Jog et al. 

1989). The results of Sönmez (2003) reveal that when EA starts with random 

population it is possible to improve the solution by 4% with a proper mutation 

operator. Although the results will most probably get better due to usage of a good 
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mutation operator, in our study no such operator is used, as the main purpose of this 

study is to compare the raw strategies. 

 

Replacement Strategy 

 Beasley et al. (1993) define the concept of “generational gap” corresponding 

to “the proportion of individuals in the population which are replaced in each 

generation”. The traditional algorithms, which are called “generational algorithms”, 

use a generational gap of 1. A new population is produced and this new population 

replaces the old one, in these algorithms. In a relatively newer scheme, at each 

generation only two solutions are produced per generation and new solutions replace 

two solutions of the population. This strategy, which is called “Steady State” 

replacement strategy, is proved to work well by many examples (Whitley 1989, 

Davis 1991). 

 There are many replacement strategies proposed for steady state algorithms. 

Beasley et al. (1993) summarizes the two of them: (i) selecting the leaving 

individuals randomly, or (ii) considering their fitness values. In GENITOR of 

Whitley (1989), which is a steady state algorithm, the worst two individuals of the 

population are dismissed from population, and the offspring directly enter to the 

population. 

 In our study, we use a steady-state replacement strategy, where only two 

children are produced from two parents at each generation. When we applied the 

replacement strategy as applied in GENITOR our preliminary results were 

unimpressive. Then we revised it. In the revised case, we select the solutions to be 

removed from the population among the parent pair and the children. The solutions 

are basically sorted and the best two solutions enter the population. The other two are 

deleted. To slow down the convergence, we try to delete the parents that are the same 

as either one of the children. In this stage, we assumed that two solutions having the 

same tour length are the same, which may not be the case. Actually, this strategy 

may dismiss a parent solution of same length with the child, despite the difference 

between the two. This drawback may be overcome by devoting additional effort for 

identifying the sameness. However, as this scheme provided fairly good results in the 

preliminary experiments, we gave up the additional effort of identifying sameness. 
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Note that after deleting these parents directly, there may be less than four solutions to 

be sorted. This replacement scheme may cause population average to get worse; if 

two fairly good parents, both having a fitness value F, produce one child with the 

same fitness value and one child with the poorer fitness value K (K > F), both 

parents are removed and both children enter into the population and finally 

population average gets worse. 

 

Stopping Criteria 

 Sönmez (2003) provides a list of stopping conditions. These conditions are 

number of generations, computation time, fitness threshold, and population 

convergence. There are various ways to decide on the population convergence. Some 

of these are differences between population best and population worst or population 

average.  

 In this work, we used several stopping conditions. In one group of 

experiments the number of generations is fixed. In the other group, the algorithms 

halt when the population best does not change for a fixed number of generations. 

Both of the stopping conditions are equipped with an additional criterion examining 

the population convergence. The algorithm terminates whenever the value of the 

population average deviates from the value of the population best by no more than 

0.1%.  

 

General algorithm 

 In Figure 3.5, the flowchart of the general structure of our EA is provided. 

The iterations start just after the generation of initial population 

(INITIALIZATION). At every iteration, two parents are selected from the population 

(SELECTION), crossover operator is applied and two children are produced 

(REPRODUCTION). The parents and the children are sorted. While the worst two 

leave the population, the good ones enter the population (REPLACEMENT). In this 

step, if a child has the same tour value with a parent (i.e., if a tie occurs), the parent is 

removed from the population. The resultant population is ordered and the algorithm 

proceeds to the next iteration, unless the one of the stopping criteria is met. 
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INITIALIZATION 

0. Generate initial population P 

using method 1, 2 or 3 

 

SELECTION 

1. Select two parents using 

linear fitness ranking scheme 

 

REPRODUCTION 

2. Apply crossover operator to 

produce two offspring 

 

REPLACEMENT 

3. Sort parents and offspring. 

Keep the best two of these four 

in the population 

 

 

 

 

 

 

 

 

 

Figure 3.5 The flowchart of the general EA 
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3.2 Feasibility Seeking Algorithms 

 

In this section, our algorithms proceeding with feasible populations are 

proposed. The problems for which the feasible solutions are hard to obtain from 

infeasible solutions, spending time with infeasible solutions may not be worthwhile. 

The strategies that insist on producing feasible solutions may be a proper way of 

treating these problems. Unfortunately, for many cases, it is not known in advance 

whether keeping only feasible solutions in the population should be forced or not. In 

addition, to our knowledge, there is no work discussing the benefits of dealing with 

only feasible solutions for the constrained routing problems in literature. Therefore, 

three main feasibility seeking approaches are proposed in the study: namely, 

rejecting the infeasible solutions until finding a feasible solution, using a modified 

crossover operator approaches, and repairing the infeasible solutions to make them 

feasible. Note that the second and third approaches produce feasible offspring 

directly even if the parent solutions are infeasible. Following subsections discuss 

these approaches in detail. 

 

3.2.1 Rejecting Infeasible Solutions (REJECT) 

 

 Rejecting infeasible solutions, as “death penalty” (Michalewicz and Fogel 

2000), is the simplest and easiest approach that can be used for handling constraints. 

This strategy can be adapted to a variety of side constraints by just changing the 

feasibility checking procedures. Hence, it provides a common ground for all of the 

side constraint classes. However, this strategy works well when the feasible solution 

space is convex and constitutes a larger portion of the solution space without side 

constraints. Convex feasible solution space exists when it is guaranteed to produce 

feasible solutions provided that the parents are feasible. The approach is not very 

beneficial for which the solution spaces of the standard and the constrained problems 

rarely coincide. 

 The algorithm, called REJECT, enumerates all possible starting points and 

parent combinations in order to find two new feasible solutions. If a parent 

combination yields less than two feasible solutions after trying every node as the 



 
 
 

35

starting node, the other parent combinations are tried until two solutions are found. 

The algorithm iterates if more than one solution is found, otherwise it terminates. 

The general structure given in Figure 3.5 can be updated for this strategy by simply 

implementing SELECTION and REPRODUCTION routines recursively and in a 

combined fashion, until finding two feasible solutions. Let starting_node denote the 

random node used as the starting node in the crossover operator and feas_child keep 

the number of feasible children found in an iteration. Also let not_mated be the set of 

individuals that are not tried before. Define parent1 and parent2 as the individuals 

selected to be first and second parents respectively. Figure 3.6 provides the combined 

SELECTION and REPRODUCTION routines for adapting the general EA for 

REJECT. The complete REJECT algorithm can be obtained by replacing 

SELECTION and REPRODUCTION routines in Figure 3.5 with the one provided in 

this figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Combined SELECTION and REPRODUCTION routines for REJECT 

 

 Initialization: not_mated = P, feas_child = 0  

 Repeat until () or (not_mated = { })  

 Choose parent1 from not_mated according to linear fitness ranking, update

not_mated  

 Repeat until ( feas_child = 2) or all other parents are tried with parent1 

 Choose parent2 from not_mated according to linear fitness ranking, so that

parent2 is not mated with parent1 previously 

 Construct the union graph 

 Choose starting_node which is not tried before  

 Repeat until (feas_child = 2) or all nodes are used as a starting point 

 Apply standard NN crossover operator 

 If the solution is feasible with respect to the side constraint then  
 feas_child = feas_child + 1 

 If (feas_child < 2) then choose a random starting_node which is not

tried before 
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 In this strategy, the reproduction is more complex than it is in general EA and 

can result in one of three cases. The regular case occurs when two feasible children 

are found from the same parent pair. The second case occurs when a specific pair can 

yield only one feasible child. If this is the case, the algorithm tries to mate the first 

parent (parent1) with other individuals. If the algorithm finds another feasible 

solution in these trials then there will be three parents and two children. The last case 

may occur when the children are produced from different parent pairs. All of these 

cases are shown in Figure 3.7.  

 

*Pi denotes parent i and Cj denotes child j. 

Figure 3.7 Alternative reproduction schemes in REJECT 

 

 For case (a) the replacement scheme is already discussed in page 30. In case 

(b) is realized, if the fitness value of a parent is equal to that of either children, this 

parent is removed from the population. However, if all three parents have the same 

value as the child, then only two of them are removed. After removing these parents, 

if there exist at all, the remaining parents and children are ordered and best three are 

selected to join the population. In the overall two of five solutions are dismissed. For 

case (c), as there are two separate groups ordering is realized separately. The best 

two of each group join the population.  

The sole modification required in the combined SELECTION and 

REPRODUCTION routine to apply the algorithm for TSPPD and TSPB is related 

with determining the feas_child value. Actually, when a child is produced its 

feasibility is checked regarding the side constraints associated. If it is found feasible 

feas_child is increased by one. For TSPPD, a feasible child is recognized by 
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checking the vehicle load after visiting each node along the tour. Whenever, this 

quantity exceeds vehicle capacity, the algorithm marks the solution as “infeasible”. 

Whereas for TSPB, detection of a pickup node to be visited before all of the delivery 

nodes are visited is sufficient to deem the solution infeasible.  

 Let ΩTSP, ΩTSPPD, and ΩTSPB be solution spaces of TSP, TSPPD, and 

TSPB respectively. In an environment where both pickup load and delivery load do 

not exceed the vehicle capacity we can set the following relationship: 

ΩTSP ⊇  ΩTSPPD ⊇  ΩTSPB 

 

 Therefore, considering the time consumed for the infeasible solutions, we can 

say that REJECT algorithm will surely work faster for TSPPD than it works for 

TSPB, as the solution space of TSPB is a subset of TSPPD. For a TSP where there 

are p + d many customer nodes, there are (p + d)!/ 2 solutions in the solution space. 

Whereas the solution space of TSPB consists of p!*d! many solutions.  

 

3.2.2 Modified Crossover Operator (CONSTRUCT) 

 

This strategy is a problem specific approach of handling side constraints, which 

exploits the problem’s side constraint characteristics. The solution is constructed 

from scratch without violating the side constraints. The crossover operator includes a 

feasibility-check procedure in which at each step a node is included into the tour. For 

different constraints the feasibility check in this procedure should be updated. 

The algorithm CONSTRUCT is the general EA algorithm provided in Figure 

3.5 with the modified crossover operator. The crossover operator, called Nearest 

Feasible Neighbor (NFN), searches for the nearest unvisited feasible nodes on the 

union graph. If there are multiple nodes that can be added to the tour without 

violating feasibility, then the nearest one is selected. When no such node can be 

reached through the edges of union graph, the edges of complete graph are used. The 

algorithm starts with the depot, than a feasible node is picked depending on the 

distance of the nodes to the depot. The probability of picking a node among all 

possible nodes is the inverse distance of this node to the depot over the sum of 
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inverse distances of all feasible nodes. The pseudo code of the updated 

REPRODUCTION routine for this strategy is provided in Figure 3.8. 

 

 

 

 

 

 

 

 

Figure 3.8 NFN crossover operator routine 

 

 In the preliminary experiments, several settings are tried for selecting the 

starting_node. One of them was pure random selection among the possible nodes. 

The other was selection depending on the square of the inverse distance. However, 

these alternatives turned out to give results worse than the previously stated setting. 

  Another thing to mention here is the construction of two different children. 

For the first child the algorithm executes in a forward fashion, i.e., the later a node is 

added to the partial tour in the construction phase, the later it is visited in the 

resulting tour. Whereas the second child is constructed by the backward execution of 

the crossover operator, i.e., the later a node is added in construction, the earlier it is 

visited in the final tour.  

 The feasibility checking procedure should be updated in order to adapt this 

general operator for TSPPD. Generally, the algorithm should keep the vehicle load 

information at each iteration and the load should never be more than the vehicle 

capacity. The procedure differs among the children construction. For the first child, 

the nodes are added in a forward fashion. The feasible nodes to be added at the end 

of the chain satisfy the following inequality:  

 

Vload_a [i] ≤  Q 

 

 Construct the union graph of parent1 and parent2 

 Select a feasible starting_node considering the distance, connect this node to the depot, 

 Repeat until all nodes are visited 

 If there is an unvisited feasible node that can be reached from the current via the

edges of the union graph go to this node  

Else go to the nearest unvisited feasible node by using complete graph edges 

 Connect the lastly added node and the depot
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where Vload_a [i] denotes the load on the vehicle after visiting node i. Vload_a [0] 

is the total delivery load. If node i is visited just after node j, Vload_a [i] is 

computed as follows:  

 

Vload_a [i] = Vload_a [j] + load [i]  

 

where load[i] keeps the demand information for customer i. Note that for delivery 

customer i, load[i] ≤ 0. 

 During the construction of the first child the delivery customers can be visited 

at any step. Provided that Vload_a is currently less than Q, it can never exceed Q 

after adding any delivery node because load entries are nonpositive for these nodes. 

 In the construction of the second child, the algorithm proceeds backward. 

Hence, Vload_b keeps the load on the vehicle before visiting the nodes. 

Consequently, the inequality restricting the feasible nodes is updated similarly:  

 

Vload_b [i] ≤  Q 

 

The inequality ensures the capacity feasibility on the edge just before visiting 

any candidate node. Vload_b [0] keeps the total pickup load. If node j is currently 

the first node of the chain, Vload_b value or candidate node i can be computed as 

follows: 

 

Vload_b [i] = Vload_b [j] - load [i] 

 

  Here the pickup nodes can be visited any time, however, the delivery loads 

should be less than the excess capacity on vehicle.  

 TSPB requires a simpler feasibility check procedure. For the first child, the 

feasible nodes are the delivery nodes unless all delivery nodes are included in the 

chain. When all delivery nodes are visited, all pickup nodes become feasible to add 

in the tour. For the second child, the pickup nodes are initially feasible and whenever 

there is no pickup node left to add, all delivery nodes become feasible. 
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3.2.3 Repairing Infeasible Solutions (REPAIR) 

 

Repairing is a commonly used method for handling constraints. In this strategy 

the infeasible solutions are replaced by their repaired versions. This approach relates 

to Lamarckian evolution, which states that improvements gained during lifetime of 

an individual are coded back into genetics of that individual. In literature, there are 

examples of successful EAs for individual problems which utilize repairing (Ulusoy 

et al. 1997, Erdem and Özdemirel 2003). However, it is almost impossible to design 

a general repair algorithm that can handle different constraint types. In some cases 

like nonlinear transportation problems, repairing itself is a complex task 

(Michaelwicz and Fogel 2000).  

Although there are some applications where only a portion of repaired 

individuals replace their infeasible origins, we replaced all infeasible solutions in this 

work. Michaelwicz and Fogel (2000) state a 5-percent rule which works well for 

many combinatorial optimization problems. However, the authors also state that this 

cannot be generalized to the realm of combinatorial optimization. Reeves (1997) 

reports the algorithm of Orvosh and Davis (1993), where the repaired version 

replaces the infeasible solution with a probability.  

 A repairing procedure is needed in the 

REPRODUCTION routine of the general EA algorithm of Figure 3.5 in order to 

adapt the algorithm to this strategy. After two children are constructed by the 

standard crossover operator, if necessary, they are repaired. 

The repair algorithm of TSPPD is based on a result due to Mosheiov (1994). 

The author showed that for every tour, there is at least one specific starting node and 

direction to follow, which makes the tour feasible with respect to capacity 

constraints. That is to say, any tour can be made feasible by deleting the depot from 

its current location and inserting it to this specific location. An example is provided 

in Figure 3.9. In this example, white and black nodes represent delivery and pickup 

customers, respectively. The black numbers around nodes represent the net quantity 

supplied in the node and the the gray numbers on arcs represent the total load on 

vehicle while traversing that edge. The vehicle capacity is 10. In Figure 3.9 (a), the 

bold black numbers represent the vehicle load on the edges causing infeasibility. The 
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load on vehicle exceeds capacity if the pickup customer with a supply of 3 is visited 

at the second place. Also after visiting the pickup customer visited in sixth order, the 

load exceeds the capacity. In Figure 3.9 (b), a repaired version for this tour is 

presented. By simply changing two incident nodes of the depot, all of these 

infeasibilities are avoided.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 An infeasible TSPPD tour (a) and the repaired TSPPD tour (b) 

 

 Actually in the above example, there is more than one possible location to 

insert the depot. The illustrated repaired tour in (b) is just one of them. In our 

application the depot is inserted into the best location, if more than one alternative 

exists. By this way, this strategy is made comparable with the other alternatives. As 

the lastly added two edges do not consider any distance information, the repaired 
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solutions may be very poor. To prevent this bias and to get the approach closer to the 

nearest neighbor notion, the best possible location is taken.  

 In TSPB, a repair algorithm, which is expected to work well on the Euclidean 

instances, is proposed. The basis of the algorithm is to preserve the relative order of 

delivery (pickup) nodes on the initial tour. The underlying assumption is that if two 

nodes are visited consecutively in a good solution then probably they are close to 

each other. The algorithm mainly constructs two separate chains: delivery chain and 

pickup chain. It starts from the depot, adds nodes one by one to the chain of their 

type in the order of the initial tour. Then these two chains and the depot are 

combined. Among four alternatives the one yielding the minimum tour length is 

taken. In Figure 3.10, the result of the TSPB repair algorithm is illustrated on an 

example in (b). Again white and black nodes represent the delivery and pickup 

customers, respectively. In this example, firstly, a white chain and a black chain are 

produced regarding the order of the nodes in (a). Then these two chains and the depot 

are connected in best possible way. For the example, this best alternative requires 

reversing of the pickup chain originally produced by following the order of (b). 

 

3.3 Infeasibility Penalizing Algorithms 

 

 In penalizing strategies, infeasible solutions are allowed to exist in the 

population. However, by manipulating fitness values, their probability of survival in 

the coming generations is decreased. This strategy, different from rejecting strategy, 

may take advantage of keeping several infeasible solutions in population as they can 

yield good feasible offspring through little modification. For the problems where the 

optimal solution is at the boundaries of the feasible solution space, this method may 

yield good results (Reeves 1997). In order to benefit from these infeasible solutions 

the penalizing scheme should be designed carefully. If the penalty coefficients are 

selected to be insufficiently small, the search may get far from the feasible solution 

space. In these cases, the algorithm may even cease to find a feasible solution at the 

end. On the other hand, if the coefficients are unnecessarily large, the boundaries of 

feasible solution space may be left unexplored. Generally, these coefficients are set 
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regarding the closeness of the solution to the feasible region, which requires a 

feasibility distance metric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3.10 An infeasible TSPB tour (a) and the repaired TSPB tour (b) 
 

 

  

Two examples in the literature use the amount of violation of the constraints or 

the number of violated constraints as the distance metric. (Beasley and Chu 1996, 

Coit et al. 1996). These penalizing schemes are general schemes and can be adapted 

to different side constraints with little effort. The general structure of the EA will not 

change, only the procedures computing the amount of infeasibility should be added. 

Hence, like rejecting strategy this scheme provides a general basis for solving the 

problems with side constraints.  

Michalewicz and Fogel (2000) consider the effort required to repair an 

infeasible individual as penalizing basis. Although this infeasibility metric is intuitive 
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and logical as it requires specific repairing procedures for each side constraint type, it 

cannot be considered as a general approach for problems with different side 

constraints. 

According to Michalewicz and Fogel (2000), the appropriate penalizing 

method should consider the problem specific properties like the solution space 

topology (i.e., convexity of the feasible solution space) and the ratio between sizes of 

the feasible and the whole search space. If a distance metric based on constraint 

violation is to be used, the modeling related properties of the problem (i.e., the 

number of variables and constraints) and type of the constraints should also be 

considered in order to come up with a proper penalizing function. 

The general EA algorithm that is using penalizing schemes does not differ from 

the one given in Figure 3.2. The REPRODUCTION routine is enlarged by feasibility 

checking and penalizing procedures. Then, the penalized fitness values are used for 

selection and replacement.  

 In our work two penalizing methods are proposed for TSPPD and TSPB. The 

first method uses the effort to repair the infeasible solution as the penalizing basis as 

in Michalewicz and Fogel (2000). The value of the repaired infeasible solution is set 

as the penalized fitness value. The second method is an adaptation of the penalizing 

scheme proposed by Coit et al. (1996) to our problems.  

  

3.3.1 Penalizing by Repairing (PEN_REPAIR) 

 

It utilizes a direct infeasibility metric. The distance of the infeasible solution to 

the feasible solution space is taken as the difference between the original infeasible 

solution value and the value of the repaired value solution. Hence, the penalized 

fitness value of a solution is 

 

Fp(x) = REP(F(x)) 

 

where Fp(x) is the penalized value of an infeasible solution, F(x) is the original 

solution value and REP function returns the value of the repaired solution. If the 

solution is feasible the function returns the original solution value. 
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 Using the repair algorithms explained in Section 3.2.3, the penalizing 

function repairs any infeasible solution produced. The repaired solution replaces the 

original solution if it is shorter than the original solution. 

 

3.3.2 Penalizing by Adaptive Penalizing Scheme (PEN_ADAPT) 

 

 As it is noted by Reeves (1997), static and naive penalty schemes are capable 

of finding good results. Coit et al. (1996) provide the example of Siedlecki and 

Sklansky (1989) of dynamic updating scheme for the penalty coefficients. In the 

earlier stages of evolution, the infeasible solutions are penalized less. However, as 

the algorithm proceeds the coefficients are increased in order to shift the population 

to the feasible solution space.  

 The more sensitive approach is to use adaptive penalizing schemes in which 

the history and the current state of the evolution are incorporated in deciding 

penalizing coefficients. Coit et al. (1996) proposed a general adaptive penalty 

method for constrained combinatorial problems; The infeasible solutions are 

penalized considering the difference between best feasible and best overall solution 

found so far, and the remoteness of the infeasible solution to the feasible solution 

space.  

Using their terminology, an adaptive penalizing method is designed here. The 

penalized values are computed as follows: 

  

Fp(x) = F(x) + (Ffeas - Fall)
( )

1

, iK
n

i

i i

d x B
NFT=

 
  
 

∑  

  

where Ffeas is the value of the best feasible solution value found so far , and Fall is the 

value of the best solution, not necessarily feasible, found so far. The distance of the 

solution to the feasible area is kept with di(x,B) considering the ith constraint of type 

B. This metric should be defined separately for different constraint types. NFTi is the 

Near Feasible Threshold value for the ith constraint, which sets the boundary for the 

acceptable feasible solutions. And Ki is the severity index for the ith constraint. Note 

that if Ki >1 then the “near” infeasible solutions are penalized less than the distant 
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ones. If the current best solution is feasible, the infeasible solutions are not penalized 

at all. When the search finds some better infeasible values, the function begins to 

penalize them. 

 NFT can be used as a static parameter where it is possible. However, in most 

cases, there is not a standard, well-defined NFT value that can be set in advance. In 

such cases, it can be initialized to a reasonably large value, and can be decreased 

through the generations. Coit et al. (1996) provided the following equation for this 

dynamic setting of NFT. 

 

0

1
NFT

NFT
gλ

=
+

 

 

where g stands for the generation number, and NFT0 is the initial value. In this 

setting NFT is a monotonically decreasing function of the generation number for the 

positive values of λ . In our work, this dynamic approach is used for NFT. This 

penalizing setting is originally used for the Unequal Area Shape Constrained Layout 

Problem and Redundancy Allocation Problem. In the first one, the objective is to 

minimize the total cost of flow among the rectangular facilities located on a 

rectangular area. For any facility, the proportion of width to length should be in some 

predetermined range. The facilities with the proportion value out of this range are 

deemed infeasible. Here the distance metric is based on the number of facilities 

violating the shape constraints. The authors used a static NFT value of 2. In the 

second problem, where the reliability of a system is to be maximized using parallel 

components, there are two restrictions regarding cost and weight. For this problem, 

the distance of the solution to the feasible space is exceeded the amount of 

constraints. Since the appropriate NFT value cannot be foreseen, the authors used a 

dynamic NFT for this case. Large NFT0 values such as 70% of the constraints, and 

slow cooling schemes such as λ =0.04 found to give better results. 

 The algorithm for this strategy for specific side constraints is as provided in 

Figure 3.5. The children are produced and penalized using Ffeas and Fall values of the 

previous generation. Also Ffeas and Fall values are not updated until the solutions that 

are better than these values enter the population. That is to say, if an infeasible 
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solution with a value better than Fall is penalized highly and dismissed directly, we 

do not update the value of Fall. When an update of these values occurs with the 

introduction of new solutions to the population, the penalized values, which are 

computed using the previous values of Ffeas and Fall, are recomputed using the 

updated values. Therefore all of the infeasible solutions in the population should be 

penalized again before proceeding to the next generation.  

In order to adapt the general strategy for TSPPD, first of all, a suitable distance 

metric should be defined. The distance metric used is the total exceeding of the 

capacity constraint. It can be computed by using the positive difference between the 

vehicle load and the capacity after visiting each node. But this can cause unfair 

penalization of the solutions. Let us think of an instance in which there is only one 

pickup customer with load m, and m delivery customers with unity demands. When 

the vehicle visits the pickup customer first, the vehicle capacity is exceeded along 

every node of the tour. Hence the solution is penalized highly although it can be 

repaired with small modifications on its structure. In order to cope with this 

cumulative effect, the individual effects of the nodes are considered in computing the 

distance of the solution to feasibility. Since visiting a delivery node decreases the 

capacity violation this node is excluded in computing di(x,B). If visiting a pickup 

node causes the load on vehicle to exceed capacity, then the exceeded amount is 

taken as the constraint violation for this node. When we come to a pickup node, 

having already exceeded the capacity, after visiting this pickup node, the exceeding 

will increase. Instead of considering the total violation, we take only the contribution 

of this node to the total violation in computing di(x,B). The general formulation for 

di(x,B) can be generalized as follows: 

  

  0,      if i ∈ D 

  di(x,B) = load[i]     if i ∈ P and Vloadb[i] ≥ Q 

  max(0,Vloadb[i] + load[i] - Q)  if i ∈ P and Vloadb[i] ≤ Q 

    

where B denotes the capacity exceeding constraint. Here Vloadb[i] keeps the 

quantity of load on vehicle just before visiting node i. 
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The following example illustrates the computation of d(x,B). For the instance 

provided in Figure 3.11, the encircled pickup nodes cause infeasibility. Let the first 

encircled node be indexed as a and the second one be indexed as b. After visiting 

these nodes, the vehicle capacity is exceeded by 2 for a and by 1 for b. Therefore 

da(x,B) = 2 and db(x,B) = 1 and di(x,B) = 0 for every other nodes.  

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Example for computing di(x,B)’s for TSPPD 

 

A dynamic NFT is used for this strategy. In the preliminary experiments, NFT0 

and λ settings of Coit et al. (1996) are found inappropriate for our problem. The 

reason may arise due to the difference in the number of iterations to termination, or 

the difference due to the type of crossover operators. The authors terminated the 

algorithm after 750,000 iterations, but in our work the algorithm is ended earlier. The 

crossover operator used in Coit et al. is a variant of the uniform crossover operator. 

In our work, the crossover used is based on a conventional heuristic. Therefore, the 

probability of having a feasible child from an infeasible parent may vary. Finally, we 

set NFT0 and λ very tightly regarding the preliminary experiments: NFT0 = Q / n 

and λ = n / (2 * iternum) where n is the number of customers and iternum is the 

termination generation. When the generation number equals to iternum, NFT will be 

equalized to (2 * Q / n) / (n + 2). The numerator represents the load for a pickup 

customer when there are an equal number of pickup and delivery customers with 

equal demands. It is mentioned before that the capacity is assumed to be equal to the 

total delivery load. When the infeasibility occurs due to the location of just one 
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pickup customer, d(x,B) value becomes equal to (2 * Q / n). K parameter is set as 1, 

as suggested in Coit et al. (1996).  

For TSPB the distance metric can be designed more easily. d(x,B) simply holds 

the number of the pickup chains visited before than all delivery customers. Note that 

a chain may also be composed of only one customer if it is preceded and appended 

by a delivery node. In Figure 3.12, there are three pickup chains, two of which are 

visited before than all delivery customers. Chains violating the precedence 

constraints of TSPB are encircled on the figure and d(x , B) is equal to 2.  

For TSPB the preliminary experiments yielded tight values for the penalizing 

function parameters. NFT0 is set to 1 and λ = n / (2 * iternum) as it is in TSPPD. 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Example for computing di(x,B)’s for TSPB 

 

 In this chapter, five EAs differing in the strategy for handling infeasibility are 

proposed for constrained routing problems. These algorithms are then adapted for 

TSPPD and TSPB. The following chapter reveals the performance of these 

algorithms for TSPPD and TSPB.  
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CHAPTER 4 
 
 

EXPERIMENTAL RESULTS 

 

 

The core of this study is to analyze the performance of the EAs proposed in 

the previous chapter. “Performance” of a heuristic procedure is generally defined by 

the quality of the solutions it provides and its computational time requirement. 

However, additional measures can be defined in order to point at specific 

considerations. 

In order to comment on the performance of our algorithms, several 

experiments were designed and carried on computer environment. We first 

determined performance measures and identified related statistics, which are 

appropriate for our purposes. The related algorithms were then coded using C 

programming language. These codes were run on a HP computer with a Pentium 4, 

1.6 GHz processor, and 256 MB RAM. 

This chapter presents our results and findings of this computational 

experiment study. We clarify the experiment environment in Section 4.1. The 

performance measures utilized and the problem set are presented. After revealing the 

experiment parameters in Section 4.2, the results of our experiments and the analyses 

of the algorithms are provided in Section 4.3. The chapter ends with the concluding 

remarks given in Section 4.4. 

 

4.1 Experiment Settings 

 

This section explains the setting of our experimental study. First, the 

performance measures that are used to analyze the algorithms and the related 

statistics that should be collected in these experiments are identified. The section 

continues with explanation of the test instances utilized in the study. Then, how the 

optimal solutions and bounds for these instances are found is discussed in the last 

part of this section.  
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Performance Measures  

 As usual, the most important measure is related with the solution quality. The 

best solution found by the algorithm is generally present in the final population. 

However, in penalizing schemes it may be needed to keep the best feasible solution 

separately due to poor penalizing schemes. In such cases, insufficiently penalized 

infeasible solutions may dominate the population, which may cause deletion of the 

best feasible solution from the population. In either case, it is essential to keep the 

best solution information. We also defined several other measures. A complete list of 

these measures and statistics are provided in Table 4.1. 

DEVopt keeps the percent deviation of the best feasible solution from the 

optimal value of the constrained problem. This measure is used for TSPB 

experiments, where we could obtain optimal tours for all of the instances. Since it is 

not the case in TSPPD, we have used DEVb, the percent deviation of the best feasible 

solution from the lower bound value. For the lower bound value optimal TSP tours 

are used. FB, Value of the best solution in the final population (FB), and the 

population average in the final population (FA) are recorded for analyzing 

convergence of algorithms. As the decision on convergence is given depending on 

the difference between FB and FA, it is found appropriate to consider the 

unpenalized fitness values of infeasible solutions while computing FB and FA in the 

penalizing strategies. Therefore it is necessary to keep the value of the best feasible 

solution in the final population, which is kept by FFEAS in the penalizing 

algorithms.  

Another performance measure, which is as important as solution quality, is 

the computation time. In our study, average computation time in seconds is given as 

CPU. CPU excludes generation of initial population, inputting and outputting times. 

The time elapsed for generating initial population is kept by CPUini, in seconds.  

Initial population type is one of the experiment parameters in our study. The 

performance of the algorithms may differ regarding the population type used. 

Although, for all types, the initial populations are generated randomly, the number of 

feasible solutions in the population may differ. Hence the probability of including 

feasible solutions differs among these types. 
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Table 4.1 Performance measures and statistics used 
 

DEVopt Percent deviation of population best from optimal  

DEVb Percent deviation of population best from optimal TSP tour 

FB The value of best solution at termination 

FA The value of population average at termination 

FFEAS1 The value of best feasible solution at termination 

IMPb  Percent improvement in best solution compared to the best solution 

IMPavg 
Percent improvement in population average compared to the initial population 
average 

IMPfeas
1 Percent improvement in best feasible solution compared to the initial best feasible 

solution  

CPU Computation time for main algorithm (sec.) 

CPUini Computation time for generating initial population (sec.) 

GEN Number of generations at termination 

Cdel Number of deleted children per generation 

EP Percent of edges taken from complete graph per child 

ENUM2 Number of infeasible solutions produced per feasible child divided by problem size 

TOTREP3 Number of total repaired children  

EDGErep
3 Percent of edges added due to repairing 

LOC3 Percent of depot locations tried per repaired child to problem size 

Favg
1 Number of feasible solutions per generation 

Fall
4 Value of best solution at termination 

1 defined for penalizing strategies, 2 defined for REJECT, 3 defined for REPAIR, 4 defined for PEN_ADAPT, 

  

 Therefore we defined IMPb and IMPavg to keep the percent improvement of 

the population best and the population average relative to initial population values, 

respectively. When the initial population lacks feasible solutions, which can be the 

case when we generate the entire initial population randomly, the improvement value 

is not computed. For the penalizing strategies, the former measures include infeasible 

solutions and IMPfeas is the percent improvement of the best feasible solution relative 

to initial population value.  
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Stopping condition is one of the key features of an EA. For the proposed 

algorithms, the difference between population best and population average is used 

for determining when to stop, as well as an upper bound on the number of 

generations. Since this bound is difficult to set in advance, several numbers of 

generations to terminate are experimented in the study. Thus, the number of 

generations at termination (GEN) is recorded during the experiments.  

In the replacement strategy, the children produced may be deleted directly 

when they are poorer than their parents. The effort used for producing children that 

are deleted directly is unbeneficial. Therefore, the portion of the children that are 

directly deleted from the population is selected as a performance measure to compare 

the proposed algorithms. Cdel keeps the number of deleted children per generation. 

The total number of solutions produced is typically two times the number of 

generations until termination. The number of children that are included in the 

population can be computed by subtracting Cdel times the number of generations at 

termination from two times the number of generations at termination. 

The resemblance of the children to their parents is an important issue in 

analyzing the crossover operator. By keeping the percent of edges taken from the 

complete graph per child, EP, the resemblance can be measured. This quantity is 

expected to vary among strategies. Since the crossover operator itself in 

CONSTRUCT checks feasibility, the edges taken from the complete graph is 

expected to be more for the other strategies. For the algorithms utilizing repairing, 

the edges added to the solution due to this operation are excluded in computing this 

measure. 

 Apart from general measures, some strategy specific measures were also 

computed in the study. The number of infeasible solutions generated until obtaining a 

feasible solution is an important indicator for measuring the computational effort to 

obtain a feasible solution in REJECT. However, the number of infeasible solutions 

produced may be vary with respect to the size of the instance. To provide a general 

measure the average number of infeasible solutions per feasible solution is divided 

by the size of the instance. ENUM keeps this value for REJECT.  

In REPAIR strategy, we are interested in behavior of repairing procedures 

utilized. For example, the number of edges added by the repair algorithms should be 
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computed in order to comment on the resemblance of the children to their parents. In 

fact, for TSPPD, the repair algorithm introduces at most three new edges and this 

quantity does not change the solution much, especially, when the problem size gets 

larger. On the other hand, the number of edges added is not fixed and may be very 

large for TSPB. Therefore, EDGErep, which keeps the number of edges changed due 

to repair operation, is defined for REPAIR strategy for TSPB only. For this strategy, 

the total number of children repaired, TOTREP, is also kept. In addition, the repair 

algorithm for TSPPD searches for new locations for depot, making the resulting tour 

feasible and selects the location, ensuring feasibility at minimum cost. We are 

interested in the question of how many such locations exist on the average. If there 

are too many alternatives for depot location, instead of picking the best location, 

picking the first location may be advisable. For that purpose, LOC keeps the average 

number of feasible locations per repaired solution.  

The average number of feasible solutions in the population is an important 

quantity for penalizing strategies in order to analyze the behavior of the penalizing 

schemes and the distance metric. Therefore, during the experiments Favg, keeping this 

quantity, is computed for penalizing schemes.  

For PEN_ADAPT the value of the best solution found so far should be kept. 

Fall is defined for that purpose. 

 

Test Problem Set  

 A test bed of 20 small-sized problems is utilized for the first part of our 

experiments. These problems are taken from the VRP literature. The sizes of the 

problems vary from 20 to 151. Six problems are uniformly generated, two of them 

are clustered problems, and the remaining problems are adapted from the real life 

problems, which do not have any pattern. The distances between the locations are 

made integer by rounding the real valued distance to the next integer. The sources 

and sizes of these problems are provided in Table 4.2.  

Half of the nodes are selected to be pickup customers randomly for TSPPD. 

In cases where there are an odd number of customers, the number of delivery nodes 

is larger by one. The total loads are equated by adding the difference between the 

initial loads of two sets of customers to the load of customer set with fewer loads. 
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Table 4.2 The test problems 

 

Name Authors Source Size 

P00 Christofides, Eilon http://neo.lcc.uma.es/radi-aeb/WebVRP/ 22 

P01 Christofides, Eilon http://neo.lcc.uma.es/radi-aeb/WebVRP/ 33 

P02 Christofides, Mingozzi, Toth http://neo.lcc.uma.es/radi-aeb/WebVRP/ 51 

P03 Christofides, Mingozzi, Toth http://neo.lcc.uma.es/radi-aeb/WebVRP/ 101 

P04 Fisher Operations Research 42, (1994) 626-642 45 

P05 Christofides, Mingozzi, Toth http://neo.lcc.uma.es/radi-aeb/WebVRP/ 121 

P06 Tsigilirides Journal of the Operational Research Society 
35, (1984) 797-809 30 

P07 Tsigilirides Journal of the Operational Research Society 
35, (1984) 797-809 20 

P08 Tsigilirides Journal of the Operational Research Society 
35, (1984) 797-809 30 

P09 Mosheiov European Journal of Operational Research 
79, (1994) 299-310 25 

P10 Christofides, Eilon http://neo.lcc.uma.es/radi-aeb/WebVRP/ 23 

P11 Christofides, Eilon http://neo.lcc.uma.es/radi-aeb/WebVRP/ 30 

P12 Christofides, Mingozzi ,Toth http://neo.lcc.uma.es/radi-aeb/WebVRP/ 151 

P13 Christofides, Eilon http://neo.lcc.uma.es/radi-aeb/WebVRP/ 76 

P14 Fisher http://neo.lcc.uma.es/radi-aeb/WebVRP/ 72 

P15 Fisher http://neo.lcc.uma.es/radi-aeb/WebVRP/ 135 

P16 Christofides, Mingozzi, Toth http://neo.lcc.uma.es/radi-aeb/WebVRP/ 101 

P17 Rinaldi, Yallow http://neo.lcc.uma.es/radi-aeb/WebVRP/ 48 

P18 Augerat http://neo.lcc.uma.es/radi-aeb/WebVRP/ 34 

P19 Hadjiconstantinou, Christofides, 
Mingozzi  

www.or.deis.unibo.it/research_pages/Orinsta
nces/VRPLIB/VRP.html 36 

 
 

 

 

 

 

 

 



 
 
 

56

Finding the Optimal Solutions and Bounds  

 For finding the optimal TSP tours on these problem data, CONCORDE 

symmetric TSP solver of Applegate et al. (1998) is utilized and optimal tours are 

obtained within seconds by this software. Finding optimal TSPPD tours were not that 

easy. Formulations of Mosheiov (1994) and Süral and Bookbinder (2003) were run 

in CPLEX 8.1. Unfortunately, within a time limit of 24 hours, only ten problems 

with smaller sizes could be solved to optimality. When we compared the optimal 

values for TSP and TSPPD for these 10 problems, the average deviation of the 

optimal TSPPD values from optimal TSP values turned out to be 2.33%.  

TSPB instances of the problems are transformed to asymmetric TSP (ATSP). 

And then these instances are transformed to symmetric TSP (STSP) instances. The 

resulting instances are solved by CONCORDE again. Transforming a TSPB to STSP 

is illustrated on example provided in Appendix A. 

Values of the optimal TSP and TSPB tours for the entire test bed, and the 

optimal TSPPD tours for the smaller 10 instance are provided in Appendix B. 

 

4.2 Experimental Factors 

 

 The main parameters of the experiment are five strategies utilized in handling 

the additional constraints, namely, REJECT, CONSTRUCT, REPAIR, 

PEN_REPAIR, and PEN_ADAPT. The second parameter is the type of initial 

population. Three different initial population types are utilized in this experiment, 

which are called inifeas, inihalf and inirand. Entire population is composed of feasible 

solutions in inifeas, whereas only half of the population is guaranteed to be feasible in 

inihalf, the other half is produced randomly. In inirand, all of the solutions are produced 

randomly. The detailed discussion on these initial types was provided in Chapter 3.  

 The last experiment parameter is the bound on the stopping condition. 

Unfortunately there is not a single appropriate value for this bound. The bound value 

can be set according to the trade-off between the computational effort and the 

solution quality. If we stop early, we can generate solutions quickly, but these 

solutions may be poor in terms of the solution quality. If we wait too much to 

terminate, it may take long times to obtain the solutions. For different environments, 
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different measures may gain importance. Therefore, in this study we have tried 

several different bounds for stopping conditions.  

In order to take the first step in the analysis, a preliminary experiment 

revealing the convergence behavior and change of the solution quality through 

generations is performed. For this purpose, two TSPPD and TSPB instances were run 

for sufficiently large number of generations. A small sized problem, p00 (of size 22), 

and a larger sized problem, p15 (of size 135), were selected for the analysis. The next 

step was determining the length of this run. In Sönmez (2003), the convergence 

analysis has been performed by producing 50,000 new solutions for a TSP instance 

with 52 locations. Considering this, we have decided to run the problems 50,000 

generations, in which a total of 100,000 solutions was produced. For each strategy 

and problem combination, 30 replications were realized. The population bests and 

population averages were recorded at every 500 generations. After averaging these 

values for 30 replications, they are plotted on graph. These graphs are provided in 

Appendix C.  

For all of the strategies, the convergence cannot been achieved after 50,000 

generations for both problems. For the small problem, there is a constant gap 

between the population best and average. The reason of the constant gap and 

unnoticeably slow convergence may be the replacement scheme utilized in the 

algorithms. The population average may get worse and actually it gets worse for 

many cases, which may prevent the convergence. Although the best solution 

achieved before 8,000th generation did not improve until the end in general, in 

CONSTRUCT, the optimal solution has been found in every replication before 3000 

generations, and the population average was 7% higher than the optimal value at the 

termination. This example illustrates drawbacks of stopping the algorithm only when 

the convergence is obtained. The graphs for the related case are provided in Figure 

4.1. 

For the larger problem, the gap between population best and average is not 

constant and tends to decrease throughout the entire run in many replications. 

However, the best solutions at termination are within 1% of the population best at the 

8,000th generation. Considering the huge computational effort to achieve this 

improvement in solution quality, the solutions found until 8000 generations are 
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deemed good solutions. An example of the convergence behavior for the large 

problem is provided in Figure 4.2. 

Finally, 8000 is determined to be sufficient for the upper bound on the 

number of generations for stopping condition. However, the performance measures 

and statistics are recorded for 2000th and 5000th generations also. These three 

stopping conditions will be called by their generation number at termination in the 

following sections as, stopping condition 2000, stopping condition 5000 and 

stopping condition 8000. 

We also test another stopping condition, where the algorithm halts when the 

population best does not change for a number of generations. This stopping condition 

is designed mainly for larger problems where the population best is expected to 

improve after 8000 generations. It is set as 15,000 after analyzing convergence plots 

for the larger problem. This stopping condition is named as Fixedbest. 
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Figure 4.1 (a) FB and FA vs. number of generations and (b) CPU vs. number of 

generations for CONSTRUCT with inirand for the small problem instance 
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Figure 4.2 (a) FB and FA vs. number of generations and (b) CPU vs. number of 

generations for REPAIR with inirand for the large problem instance 

 

4.3 Results for TSP 

 

 Although the main purpose of this work is to analyze the performance of 

various constraint handling techniques for different side constraints on TSP, this 

effort would never be complete unless the performance of the EA is analyzed for the 

unconstrained case (“naked” TSP). Therefore our experimentation starts with TSP. 

When there is no side constraint associated with the problem, differences among the 

proposed strategies vanish as the crossover operator utilized assures feasibility 
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regarding TSP. Only computational time performances may vary among the 

algorithms, due to some algorithmic and coding differences. For example, if 

CONSTRUCT is to be used, the computational time will be more as a feasibility 

check is done at every node addition. Therefore, any proposed algorithm can be used 

for observing the performance of EA settings regarding the solution quality. We have 

chosen the algorithm based on REPAIR for this experimentation. The initial 

population is generated randomly.  

 Firstly, the influence of population size is investigated. Two population sizes 

experimented in Sönmez (2003), i.e., 50 and 100, are experimented for determining a 

proper population size. For the problems given in Table 4.2, 30 replications are 

realized for different stopping conditions. For each problem, average, minimum, and 

maximum values attained and standard deviation observed during replications are 

recorded. Then, these values are averaged for 20 problems. The results for population 

size 50 and for population size 100 are given in Table 4.3 and Table 4.4, 

respectively.  

 

Table 4.3 Performance of EA in TSP when population size is 50 
 

    GEN FB FA IMPb IMPavg CPU CPUini EP DEVopt 

avg 1990.66 2408.46 2441.21 72.01 72.68 0.32 0.00 1.26 2.06 
std 37.06 37.21 31.42 1.90 1.45 0.01 0.01 0.39 0.89 

min 1816.05 2327.05 2360.06 67.55 69.23 0.30 0.00 0.71 0.65 20
00

 

max 2000.00 2470.50 2499.60 75.40 75.29 0.34 0.02 2.30 4.13 
avg 4482.78 2407.15 2425.92 72.03 72.86 0.73 0.00 0.71 1.98 
std 765.26 37.95 31.89 1.90 1.42 0.12 0.01 0.31 0.90 

min 2500.70 2326.60 2355.95 67.57 69.48 0.42 0.00 0.33 0.58 50
00

 

max 5000.00 2470.25 2483.19 75.43 75.45 0.83 0.02 1.65 4.09 
avg 6233.11 2406.25 2423.37 72.03 72.89 1.01 0.00 0.60 1.97 
std 1769.24 38.37 32.48 1.90 1.42 0.29 0.01 0.30 0.90 

min 2650.70 2326.60 2353.54 67.57 69.54 0.43 0.00 0.23 0.58 80
00

 

max 8000.00 2470.00 2481.92 75.43 75.48 1.32 0.02 1.49 4.06 
avg 9925.13 2399.53 2415.60 72.04 72.95 1.68 0.00 0.53 1.93 
std 4534.58 36.66 34.21 2.01 1.49 0.80 0.00 0.31 0.85 

min 3168.40 2335.70 2343.35 67.42 69.44 0.51 0.00 0.13 0.62 

Fi
xe

db
es

t 

max 19214.80 2475.25 2479.16 75.73 75.81 3.40 0.02 1.40 3.89 
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Having noticed that the larger population size give better results, we decided 

to use a population composed of 100 solutions for analyzing the performance of our 

EAs on constrained problems. 

 

Table 4.4 The performance of EA in TSP when population size is 100 

   GEN FB FA IMPb IMPavg CPU CPUini EP DEVopt 
avg 2000.00 2398.93 2475.16 71.46 72.50 0.52 0.01 2.03 1.64 
std 0.00 32.00 42.43 1.76 1.12 0.01 0.00 0.34 0.54 

min 2000.00 2347.80 2397.26 67.47 70.00 0.51 0.01 1.39 0.79 20
00

 

max 2000.00 2453.40 2606.75 74.83 74.80 0.53 0.02 2.79 2.84 
avg 4985.54 2388.96 2424.69 71.50 72.89 1.28 0.01 1.09 1.42 
std 45.56 31.25 34.47 1.75 1.12 0.01 0.00 0.29 0.50 

min 4804.75 2346.95 2374.39 67.53 70.43 1.25 0.01 0.62 0.66 50
00

 

max 5000.00 2446.40 2542.97 74.85 75.21 1.30 0.02 1.77 2.49 
avg 7845.54 2388.31 2414.15 71.51 72.99 2.01 0.01 0.79 1.39 
std 363.45 31.58 26.77 1.75 1.10 0.07 0.00 0.26 0.50 

min 6559.85 2345.40 2369.48 67.53 70.56 1.71 0.01 0.42 0.64 80
00

 

max 8000.00 2446.15 2472.42 74.87 75.29 2.05 0.02 1.44 2.44 
avg 15186.93 2383.54 2401.62 71.43 73.02 4.01 0.01 0.53 1.33 
std 3398.09 27.87 24.77 1.85 1.10 0.92 0.00 0.26 0.54 

min 7688.65 2320.80 2348.86 67.24 70.47 1.95 0.01 0.21 0.40 

Fi
xe

db
es

t 

max 22980.65 2438.20 2449.13 75.01 75.29 6.27 0.02 1.27 2.55 
 

From the reproduction aspect, our algorithms are based on Sönmez (2003); 

the crossover operator utilized in the study is taken from her work. However, 

regarding selection, replacement, and generational gap aspects, the algorithms are 

different. Sönmez’s EA is an example of a generational GA. Specifically, it first 

generates a mating pool by replicating each solution in the population twice. Then, it 

selects random pairs from the population until all the individuals are mated with 

another. From each pair one solution is produced. In total, N new solutions are 

produced, where N is the original population size. The population size is doubled 

with the addition of these newborns to the population. In order to decrease the 

population size back to N, all new solutions and individuals in the current population 

are ordered and worst N individuals are deleted from the population.  

Sönmez (2003) reports an average deviation of 3.10% of the population best 

from the optimal value for the Nearest Neighbor crossover operator. The average 

computation time is reported to be 0.38 seconds. The experiment was carried on a set 
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of ten problems from TSP library, sizes of which are varying from 52 to 226. 

Although this result is not directly comparable with our results due to size difference 

in test beds, it shows that the performance of our EA is at least as good as her 

algorithm.  

Our EA produced better results even for the early stopping conditions: the 

average deviations of the population best from the optimal value are 1.64, 1.42, and 

1.39 for the stopping conditions of 2000 generations, 5000 generations and 8000 

generations, respectively. The algorithms of Sönmez converge after producing about 

2300 solutions on the average. However, even if we stop at 2000th generation, we 

produce 4000 solutions. The main reason for our algorithm to give better results may 

be that increase in the number of solutions produced. Moreover, the steady state 

replacement scheme, or specific selection and replacement schemes used in our study 

may be accounted for these better results also. Anyway, we will not concentrate on 

the goodness of our algorithm. We will just concentrate on the results. Having found 

that our EA performs well for TSP, we thought that it would be worthwhile to test 

the performance of handling side constraints on TSPs using our scheme. 

 

4.4 Results for TSPPD 

 

 In this section the performance of the algorithms are tested for TSPPD. 30 

replications for each problem in the problem set described in Section 4.1 are realized. 

For each algorithm (i.e., the algorithms based on different strategies), four different 

stopping conditions (2000, 5000, 8000, and Fixedbest) and three different initial 

population types (inifeas, inihalf, and inirand) are experimented. In the following 

subsections, we first give the performance measure values in tables for each strategy. 

Then the statistical analyses of the two experiment factors are performed for each 

algorithm separately. Afterwards the proposed algorithms are compared by again 

statistical means. The significance level is considered to be 0.05 for every statistical 

analysis. 

 We want to determine the effect of the initial population types and indicate 

the favorable types if any. Through this respect, Analysis of Variance (ANOVA) is 

conducted for the effect of the initial population types on solution quality and time. 
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This analysis is conducted once for the earliest stopping condition, 2000, and once 

for the latest stopping condition, Fixedbest, to point on the changes throughout the 

generations if any. 

 Having determined 8000 as the appropriate stopping condition, we want to 

check if there are significant differences among this stopping condition and the 

others regarding our main performance measures. The main question was “Can we 

stop earlier without a significant decrease in the solution quality?”. Therefore, we 

first look at the difference between 5000 and 8000 by conducting ANOVA. When 

we look at the average figures, the minimum difference between two stopping 

conditions is observed between 5000 and 8000. Hence, once the difference between 

5000 and 8000 is found significant, we assume that 8000 is significantly different 

from the others also. 

For both initial population and stopping condition analyses, ANOVA is 

conducted in the same manner. Normality and residual vs. fit plots are drawn in order 

to check the validity of the assumptions of ANOVA. The main responses used in the 

analyses are DEV, regarding solution quality, and CPU, regarding the computation 

time. However, when the plots are found inappropriate for these responses, 

logarithms and square roots of these measures are considered in order to conform the 

assumptions. For the analyses, General Linear Model option of MINITAB 13.32 is 

utilized. Main fixed factor is initial population type and stopping condition in the 

first and second analyses. All analyses are realized in randomized block design, 

where the instances are taken to be the random effects. The ANOVA tables and plots 

of initial population and stopping condition analyses are provided in Appendix D and 

Appendix E, respectively. 

 The main aim of this study is to compare the effect of different strategies. For 

that purpose another ANOVA with randomized block design is conducted. The 

algorithms are compared regarding solution quality and time for each stopping 

condition and for the initial population types determined before.  

Stating that algorithms are significantly “different” from each other is not 

sufficient. Therefore, Tamhane’s T2 test, a post-hoc multiple comparison test, which 

does not assume equal variances for different factor levels, is used for ordering the 

algorithms. The reader is referred to Toothaker (1993) for a discussion on this test. 
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After testing this assumption with Levene’s test, and observing that in all cases the 

hypothesis is rejected, we find this type of comparison test to be more appropriate. 

This comparison is realized in SPSS 12.0 for Windows. Results of the Levene’s and 

Tamhane’s tests are given in Appendix F.  

 

4.4.1 Results for REJECT (Strategy-1) 

 

 For this strategy, because of its large computation time requirements three 

stopping conditions and three initial population types are experimented here. 

Fixedbest stopping condition was not experimented. Results are given in Table 4.5. 

When we look at the effect of initial population for 2000 stopping condition, 

inirand seems to be worse than the others on the average. However, statistical 

significance could not be achieved. The p-value for the test (when the response was 

logarithm of DEVb) was 0.375, which is far from the standard p-value of 0.05. 

However, when the response was logarithm of CPU, the p-value decreased to 0.079. 

Nevertheless it is still more than 0.05. Therefore, the initial population type is 

deemed not influential on the performance for early termination. The p-values get 

worse for 8000. Hence, the former decision is valid for this condition too. Note that, 

the mentioned responses gave the most appropriate residual plots in the tests. 

As the initial population type is determined to be not influential to the 

performance of the algorithm, we combined the data coming from every initial 

population type for this strategy for comparing this strategy with others. However, 

we also realized a comparison using only the results of the experiment with inirand as 

it is the most basic and easy to generate type. 

The difference between stopping conditions is tested for the inifeas. Logarithm 

of DEVb is the response in this test. The p-value of the test was 0.011, which implies 

statistical significance. However, the best normality and residual vs. fitted value plots 

that could be attained were not very dependable. Therefore, stopping earlier will 

cause a significant worsening in the solution quality by 0.30%, but this will decrease 

the computation time required by 5 seconds on the average. In cases where 

computational time is extremely important, stopping earlier may considered as 

feasible alternative for this strategy. 
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Table 4.5 Performance of REJECT for TSPPD 
 

  GEN FB FA IMPb IMPavg CPU CPUini EP ENUM Cdel DEVb

avg 2000.00 2412.50 2651.10 66.42 70.15 9.43 0.01 3.62 0.32 0.81 5.30inifeas std 0.00 1.33 72.96 1.27 0.79 3.27 0.01 0.84 0.13 0.17 1.30
avg 2000.00 2416.00 2579.80 67.01 70.72 9.33 0.01 3.71 0.33 0.82 5.30inihalf std 0.00 1.32 83.16 1.37 0.72 3.54 0.01 1.02 0.12 0.18 1.30
avg 2000.00 2412.80 2505.10 70.44 71.30 9.70 0.01 3.52 0.33 0.79 5.40

20
00

 

inirand std 0.00 1.33 44.30 1.81 1.22 3.09 0.01 0.89 0.13 0.19 1.30
avg 5000.00 2404.70 2500.10 66.47 71.41 15.14 0.01 2.31 0.25 0.69 5.00inifeas std 0.00 1.23 51.22 1.26 0.57 7.47 0.01 0.86 0.13 0.22 1.20
avg 5000.00 2408.70 2484.70 67.07 71.54 15.19 0.01 2.42 0.25 0.71 5.10inihalf std 0.00 1.28 49.97 1.36 0.54 8.03 0.01 1.06 0.12 0.23 1.30
avg 4996.44 2404.40 2466.20 70.49 71.65 15.00 0.01 2.25 0.25 0.68 5.20

50
00

 

inirand std 19.52 1.24 37.88 1.80 1.21 7.35 0.01 0.92 0.12 0.24 1.20
avg 7988.41 2404.00 2466.60 66.48 71.69 19.83 0.01 0.78 0.23 0.64 5.00inifeas std 52.15 1.23 41.15 1.26 0.43 11.32 0.01 0.33 0.13 0.24 1.20
avg 7997.44 2407.80 2461.70 67.08 71.72 20.48 0.01 0.82 0.23 0.65 5.10inihalf std 14.05 1.26 39.91 1.36 0.46 12.54 0.01 0.37 0.12 0.24 1.20
avg 7978.46 2403.90 2456.60 70.51 71.74 19.53 0.01 0.78 0.23 0.62 5.10

80
00

 

inirand std 118.01 1.24 35.70 1.80 1.21 11.39 0.01 0.36 0.12 0.26 1.20
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Observe that ENUM does not vary among the initial population types even 

when all of the solutions in the initial population are feasible. This case seems to be 

the indicator of domination of population by the solutions that can give feasible 

offspring when NN is applied. That is to say, in the initial steps, it is hard to produce 

feasible solutions from the random solutions in population. However, as we proceed, 

the solutions having short “feasible” edges begin to exist in the population, and it 

becomes easier to find feasible breed from these solutions with NN. The initial effort 

for generating solutions that can produce feasible solutions relatively easily, can be 

seen on CPU vs. number of generation graphs provided in Appendix C. As it is given 

in Figure 4.3, for p15 the rate of change in CPU decreases considerably around 

1000th generation. This indicates a decrease in the total infeasible solutions produced 

per feasible solution per generation. When we stop at 5000 and 8000, the number of 

infeasible solutions per feasible solution decreases for all of the population types. A 

similar pattern can be recognized in EP and Cdel. These measures also decrease as the 

algorithm runs more. This may indicate that, as we proceed, the children like their 

parents are produced in this strategy. Recall that if a child with the same value of its 

parent is produced it is accepted to enter the population. 
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Figure 4.3 CPU vs. number of generations for REJECT in inifeas for p15 

 



 
 
 

68

4.4.2 Results for CONSTRUCT (Strategy-2) 

 

 There is no statistical evidence that the initial population types differ in 

performance when the stopping condition is 2000 for CONSTRUCT. When we used 

Fixedbest as the stopping condition, a close to significant p-value of 0.060 is 

observed for DEVb. In this stopping condition inirand gives slightly better results 

regarding solution quality. However, at the end we state that the initial population 

type is insignificant for this algorithm. Results for CONSTRUCT algorithm is 

provided in Table 4.6. 

 

Table 4.6 Performance of CONSTRUCT for TSPPD 
 

  GEN FB FA IMPb IMPavg CPU EP Cdel DEVb

avg 2000 2435.9 2775.3 66.35 68.57 0.57 11.7 1.55 5.74inifeas std 0 34.44 86.83 1.33 0.76 0.01 0.34 0.02 1.04
avg 2000 2441.6 2715.7 67.01 69.24 0.57 11.7 1.55 5.75inihalf std 0 36.28 78.71 1.39 0.76 0.01 0.35 0.02 1.06
avg 2000 2442.2 2623.9 70.46 69.94 0.57 11.7 1.55 5.85

20
00

 

inirand std 0 25.35 35.91 1.87 1.26 0.01 0.33 0.02 1.01
avg 5000 2411.3 2607.2 66.59 70.09 1.42 11.62 1.67 4.7inifeas std 0 30.23 57.54 1.3 0.54 0.01 0.41 0.03 0.83
avg 5000 2420.1 2599.6 67.24 70.26 1.42 11.59 1.67 4.76inihalf 
std 0 26.64 45.61 1.37 0.5 0.01 0.44 0.03 0.77

avg 5000 2422.7 2578.9 70.67 70.42 1.42 11.6 1.67 4.77

50
00

 

inirand std 0 25.48 31.94 1.85 1.25 0.01 0.42 0.02 0.81
avg 8000 2406.4 2572 66.66 70.44 2.24 11.57 1.7 4.4inifeas std 0 29.16 34.42 1.29 0.41 0.01 0.44 0.03 0.77
avg 8000 2412.3 2576.3 67.31 70.48 2.24 11.53 1.7 4.43inihalf std 0 27.64 31.36 1.36 0.42 0.01 0.46 0.03 0.71
avg 8000 2417.7 2572.6 70.73 70.73 2.24 11.55 1.71 4.44

80
00

 

inirand 
std 0 25.5 21.44 1.85 1.6 0.01 0.45 0.03 0.72

avg 25246.2 2398.8 2556.4 66.74 70.63 8.59 11.37 1.74 3.91inifeas std 7236.59 25.37 27.59 1.36 0.31 2.73 0.46 0.03 0.66
avg 24776.7 2391.8 2544.6 67.37 70.64 8.3 11.39 1.74 3.86inihalf std 6849.74 29.25 30.42 1.31 0.36 2.59 0.48 0.03 0.67
avg 24951.1 2392.4 2555.4 70.94 70.68 8.19 11.37 1.75 3.82Fi

xe
db

es
t 

inirand std 6451.1 20.22 25.66 1.75 1.16 2.31 0.46 0.03 0.58
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The difference between the stopping conditions is tested for the inirand. If we 

decide to stop earlier, the solution quality gets worse by 0.3%, and this decrease is 

statistically significant. As the difference between 5000 and 8000 in computation 

time is only 1 second, waiting for additional generations is an appropriate way. In 

fact, when we stop with Fixedbest, we wait for 6 more seconds on the average, and 

achieve a decrease about 0.5-0.6%. Stopping with Fixedbest takes less than 10 

seconds for this strategy, which is equal to the time required by stopping with 2000 

at strategy-1. Therefore stopping with Fixedbest is also a feasible alternative. 

Differences between 5000 and 8000 are reported significant, but the best plots are 

doubtful about the validation of the assumptions.  

Looking at the overall, the algorithm produces competitive results. On the 

average, values deviate 4.4% from TSP optimal values. Recalling the difference 

between TSP and TSPPD optimal for 10 small problems (i.e., 2.33%) it can be 

assumed that the solutions deviate from optimal values around 2 and 2.5% on the 

average. 

There is a slight decrease in EP values and a considerable increase in Cdel, as 

the number of generations increases. The increase in EP is expected, since good 

solutions dominate the population as the number of generation increases. However, 

as the parents get better it is harder to find better children. Its reason could be the 

edge added between the first visited node (last visited for the second child) and the 

depot. Recall that this edge is necessary to be able to produce children different from 

their parents. 

 

4.4.3 Results for REPAIR (Strategy-3) 

 

Initial population type is not influential. For the stopping condition analysis, 

the results of inirand are utilized. There is no significant difference between 5000 and 

8000 as a result of the analysis. Although statistical tests could not differentiate the 

solution quality of these two stopping conditions, average falls by 0.2%. If we are 

looking for computational efficiency we can stop at 5000, which improves the time 

by 1 second on the average. However, Fixedbest produces better results than 5000. 

The results of our third strategy are provided in Table 4.7.  
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Table 4.7 Performance of REPAIR for TSPPD 
 

  GEN FB FA IMPb IMPavg CPU CPUini EP LOC TOTREP Cdel DEVb

avg 2000.00 2447.09 2754.32 66.49 69.11 0.55 0.01 3.08 2.91 2931.85 1.22 4.91inifeas std 0.00 33.61 95.14 1.39 1.44 0.01 0.01 0.38 0.1 189.34 0.09 0.94
avg 2000.00 2448.88 2668.51 67.22 69.75 0.55 0.01 3.04 2.91 2929.75 1.23 4.96inihalf std 0.00 35.61 72.00 1.47 0.76 0.01 0.01 0.38 0.1 187.32 0.09 0.94
avg 2000.00 2447.91 2601.47 70.53 70.34 0.55 0.01 3.05 2.91 2939.45 1.23 4.87

20
00

 

inirand std 0.00 31.63 39.27 1.74 1.22 0.01 0.01 0.36 0.09 187.27 0.08 0.85
avg 5000.00 2429.94 2600.30 66.47 70.36 1.34 0.01 2.15 2.9 6689.86 1.18 4.48inifeas std 0.00 32.82 52.03 1.43 1.17 0.01 0.01 0.33 0.08 500.71 0.12 0.82
avg 5000.00 2418.33 2562.94 67.26 70.55 1.34 0.01 2.13 2.9 6635.42 1.19 4.33inihalf std 0.00 34.89 41.30 1.35 0.54 0.01 0.01 0.35 0.1 504.53 0.13 0.87
avg 5000.00 2431.11 2562.94 70.75 70.68 1.34 0.01 2.13 2.9 6662.52 1.19 4.38

50
00

 

inirand std 0.00 35.52 36.70 1.74 1.22 0.01 0.01 0.35 0.09 501.19 0.12 0.85
avg 8000.00 2429.81 2567.41 66.79 70.67 2.12 0.01 1.87 2.89 10330.96 1.15 4.21inifeas std 0.00 32.4 45.16 1.26 1 0.02 0.01 0.34 0.08 829.35 0.13 0.79
avg 8000.00 2420.82 2549.41 67.38 70.71 2.12 0.01 1.87 2.89 10349.78 1.16 4.13inihalf std 0.00 31.53 35.81 1.28 0.45 0.02 0.01 0.35 0.1 885.56 0.14 0.85
avg 8000.00 2429.61 2558.23 70.52 70.56 2.12 0.01 1.84 2.89 10304.77 1.16 4.31

80
00

 

inirand std 0.00 28.03 31.04 1.78 1.3 0.02 0.01 0.32 0.09 815.82 0.12 0.76
avg 21610.23 2422.13 2542.03 66.78 70.78 6.42 0.01 1.58 2.87 28268.92 1.14 3.94inifeas std 5445.37 33.02 42.05 1.3 1.25 1.95 0.01 0.3 0.09 8923.4 0.14 0.71
avg 20983.85 2417.24 2523.15 67.29 70.79 6.2 0.01 1.57 2.87 27159.26 1.13 3.93inihalf std 5125 38.42 33.47 1.36 0.4 1.84 0.01 0.28 0.12 7678.23 0.14 0.67
avg 21097.46 2421.65 2534.78 70.87 70.81 6.32 0.01 1.57 2.87 27357.31 1.15 3.96Fi

xe
db

es
t 

inirand std 4871.88 32.36 34.98 1.74 1.19 1.72 0.01 0.31 0.11 7446.28 0.14 0.77
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The results of this strategy is promising like the previous one. On the average 

solutions deviate by 4.2% from the TSP optimal. The computation time is again 

reasonably less compared to REJECT strategy.  

  The average value for LOC is around 3, which shows that taking the best 

location is an appropriate repairment procedure. Referring to TOTREP we can say in 

general, 70% of the population is repaired at the early stages of the algorithm. This 

number decreases as the number of generations increases, which indicates that the 

probability of obtaining feasible solutions increases as the better feasible solutions 

increases in the population.  

 

4.4.4 Results for PEN_REPAIR (Strategy-4) 

 

 The effect of the initial population types resembles to REPAIR algorithm. No 

evidence could be obtained for stating that the initial population types differ widely 

for solution quality and CPU. Again the difference between the stopping conditions 

5000 and 8000 is significant with a p-value of 0.000 when the results of inirand are 

used. The time can be improved by approximately 2.5 second, giving up 0.15% of 

the solution quality on the average by stopping at 5000 instead of 8000. If we stop 

with Fixedbest condition, improvements around 0.2% - 0.3% can be obtained at the 

expense of approximately 3.5 seconds. This stopping condition can be utilized where 

solution quality is more important. The results of PEN_REPAIR are given in Table 

4.8. 

 As the number of generations increases EP and Cdel decrease. On the average, 

25% of the population is composed of the feasible solutions throughout the entire 

evolution. The number of the feasible solutions differs for initial population types for 

earlier stopping conditions. However, this quantity is equalized for all types in longer 

runs. 

 

4.4.5 Results for PEN_ADAPT (Strategy-5) 

 

 For all of the stopping conditions the iternum is taken as 8000. Therefore the 

cooling parameter λ equals to n/16000, which decreases NFT in a fairly slow rate. 
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The influence of the initial population type for PEN_ADAPT has the most 

interesting pattern. When we stop the algorithm early, the difference between the 

initial population types regarding both solution quality and computation time is 

significant. When we look at the averages, inirand gives the smallest deviation and the 

largest computation time. inifeas is the worst at solution quality and the best at the 

computation time.  

If we wait more and stop with Fixedbest criterion, the statistical significance 

vanishes regarding solution quality, but remains intact regarding the computation 

time. In this case, inirand gives the worst and inifeas gives the best average values 

indicating solution quality. The ordering in the computation time remains the same. 

For the analyses of stopping condition, the results of inirand were used. Like in many 

cases, the difference between the stopping conditions 5000 and 8000 regarding the 

solution quality is significant. Results of PEN_ADAPT are given in Table 4.9. 

 EP is relatively higher at the initial stopping condition, but decreases as the 

number of generations increases. The average number of feasible solutions is higher 

than the previous penalizing algorithm. For early stopping conditions, there is a 

considerable difference among the initial population types, which vanishes in the 

later stopping conditions, for this quantity. On the average, 70% of the population is 

feasible throughout the entire evolution process. In fact, this value is far from the 

value of the other algorithm.  

When we look at the solution qualities of these two strategies, the benefit that 

can be gained from these feasible individuals are questionable. The strategy give 

solutions deviating between 6.3% - 6.5% from the TSP optimal on the average even 

for the latest stopping condition. This point indicates that an inappropriate penalizing 

scheme is utilized. Most probably, the infeasible solutions, which are penalized 

according to the constraint violation values, are harshly penalized. However, milder 

penalizing schemes did not yield better results in preliminary experiments. 
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Table 4.8 Performance of PEN_REPAIR for TSPPD 
 

  GEN FB FA FFEAS IMPb IMPavg IMPfeas CPU CPUini EP Cdel Favg DEVb

avg 2000.00 2396.42 2654.60 2428.97 66.26 69.88 65.76 0.51 0.01 1.52 1.16 28.38 5.28inifeas 
std 0.00 33.47 74.14 44.77 1.25 0.79 1.38 0.01 0.01 0.20 0.11 6.55 1.23

avg 2000.00 2397.17 2636.74 2423.65 66.01 69.72 65.69 0.51 0.01 1.53 1.16 25.93 5.24
inihalf 

std 0.00 32.96 88.70 42.92 1.25 0.76 1.36 0.01 0.01 0.20 0.10 5.75 1.21
avg 2000.00 2387.08 2658.70 2413.51 65.94 69.58 65.74 0.51 0.01 1.52 1.15 23.78 5.17

20
00

 

inirand 
std 0.00 29.39 65.65 43.69 1.15 0.82 1.25 0.01 0.01 0.20 0.11 5.49 1.24

avg 5000.00 2386.20 2494.57 2414.58 66.33 71.28 65.88 1.23 0.01 0.99 1.10 25.73 4.76inifeas 
std 0.00 30.66 50.44 38.00 1.24 0.56 1.36 0.01 0.01 0.19 0.14 7.07 1.10

avg 4999.03 2382.88 2491.09 2410.27 66.09 71.16 65.83 1.23 0.01 1.00 1.10 24.45 4.65
inihalf 

std 5.32 33.55 51.40 44.90 1.24 0.55 1.34 0.01 0.01 0.20 0.13 6.50 1.11
avg 4998.48 2372.47 2480.96 2395.59 66.01 71.04 65.85 1.23 0.01 0.99 1.11 23.87 4.65

50
00

 

inirand 
std 7.93 27.32 51.73 38.83 1.15 0.59 1.24 0.01 0.01 0.19 0.14 6.59 1.14

avg 7990.94 2382.96 2456.48 2408.30 66.36 71.58 65.93 1.95 0.01 0.82 1.06 24.63 4.58inifeas 
std 34.42 32.33 44.56 39.55 1.24 0.45 1.35 0.02 0.01 0.19 0.15 7.05 1.04

avg 7983.73 2377.30 2462.27 2405.40 66.12 71.45 65.87 1.95 0.01 0.82 1.06 23.72 4.50
inihalf 

std 48.05 36.19 44.71 42.59 1.24 0.45 1.32 0.02 0.01 0.19 0.14 6.80 1.05
avg 7977.36 2370.95 2442.71 2392.38 66.03 71.33 65.89 1.95 0.01 0.82 1.08 23.75 4.49

80
00

 

inirand 
std 76.28 28.39 42.90 39.48 1.15 0.48 1.24 0.02 0.01 0.19 0.15 7.01 1.14

avg 19947.64 2373.03 2439.00 2395.20 66.71 71.72 65.88 5.39 0.01 0.59 0.85 23.24 4.33inifeas 
std 4669.88 30.81 37.72 34.70 1.34 0.38 1.41 1.39 0.01 0.17 0.16 7.11 1.03

avg 20264.38 2368.78 2431.91 2390.84 66.53 71.61 65.88 5.43 0.01 0.60 0.84 23.34 4.29
inihalf 

std 5223.70 31.86 37.02 36.77 1.27 0.35 1.34 1.55 0.01 0.18 0.16 7.34 1.01
avg 20429.54 2373.76 2435.82 2395.22 66.41 71.49 65.95 5.67 0.01 0.60 0.85 24.69 4.20Fi

xe
db

es
t 

inirand 
std 5242.11 27.90 32.75 29.56 1.26 0.38 1.26 1.67 0.01 0.17 0.17 8.23 0.93
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Table 4.9 Performance of PEN_ADAPT for TSPPD 
 

  GEN FB FA FFEAS IMPb IMPavg IMPfeas fall CPU CPUini EP Cdel Favg DEVb

avg 2000.00 2497.35 3035.70 2503.88 64.36 62.88 64.04 2437.87 0.97 0.01 3.46 1.53 70.09 16.63inifeas std 0.00 78.54 222.54 78.37 1.96 3.34 1.99 51.66 0.13 0.01 0.33 0.11 8.23 6.05
avg 1999.64 2497.91 2996.49 2507.56 64.68 64.67 65.00 2437.10 1.39 0.01 3.34 1.49 54.55 14.10inihalf std 1.98 73.18 216.74 77.04 1.97 2.37 2.09 47.77 0.11 0.01 0.33 0.13 7.58 5.35
avg 1999.32 2459.47 2804.52 2470.94 65.24 67.33 68.83 2420.86 1.69 0.01 2.95 1.42 39.47 10.59

20
00

 

inirand std 2.89 51.82 122.77 57.02 1.51 1.28 2.08 35.17 0.13 0.01 0.29 0.12 9.14 3.54
avg 4953.29 2433.31 2563.33 2438.58 65.46 69.76 65.17 2398.80 2.44 0.01 2.21 1.31 69.19 7.25inifeas std 78.06 55.56 110.08 59.66 1.52 1.20 1.56 38.20 0.44 0.01 0.37 0.16 10.13 2.37
avg 4953.19 2420.34 2536.13 2426.42 65.42 70.03 65.82 2390.30 2.98 0.01 2.12 1.28 61.68 6.88inihalf std 82.21 52.69 96.71 53.64 1.53 0.96 1.53 33.07 0.39 0.01 0.37 0.17 9.92 2.17
avg 4936.36 2442.14 2555.22 2449.78 65.58 70.24 69.46 2410.13 3.23 0.01 1.76 1.25 56.88 7.13

 5
00

0 

inirand std 109.72 46.06 79.22 47.16 1.48 0.80 2.16 33.54 0.44 0.01 0.37 0.18 11.05 2.20
avg 7736.46 2426.67 2513.13 2436.11 65.72 70.68 65.42 2393.36 3.75 0.01 1.56 1.20 70.24 6.46inifeas std 379.07 56.29 93.63 59.48 1.43 0.73 1.47 39.68 0.75 0.01 0.36 0.19 11.71 2.01
avg 7794.34 2446.26 2533.45 2450.87 65.56 70.65 66.01 2397.63 4.24 0.01 1.56 1.21 67.18 6.54inihalf std 248.57 66.07 96.79 67.60 1.43 0.72 1.41 41.54 0.69 0.01 0.37 0.19 11.11 2.07
avg 7694.83 2445.50 2529.18 2451.49 65.57 70.70 69.36 2403.93 4.38 0.01 1.25 1.15 63.84 6.66

80
00

 

inirand std 250.41 54.10 72.99 53.82 1.38 0.61 2.05 40.05 0.71 0.01 0.32 0.17 9.41 1.99
avg 17730.58 2435.67 2500.97 2440.04 65.62 70.94 65.34 2391.36 8.12 0.01 0.80 1.07 76.27 6.31inifeas std 3822.52 47.44 72.46 46.65 1.37 0.60 1.41 35.94 2.40 0.01 0.30 0.20 12.02 1.84
avg 17569.07 2427.05 2468.14 2431.65 65.60 70.96 65.95 2397.52 8.64 0.01 0.79 1.06 74.40 6.35inihalf std 3683.13 48.55 67.84 49.15 1.38 0.58 1.60 36.14 2.35 0.01 0.28 0.21 11.53 1.97
avg 17155.93 2429.65 2483.31 2437.41 65.51 70.95 69.48 2395.15 8.72 0.01 0.67 1.04 73.60 6.53Fi

xe
db

es
t 

inirand std 3665.81 53.89 69.63 56.68 1.44 0.55 1.98 37.41 2.31 0.01 0.26 0.20 11.28 2.07
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4.4.6 Comparison of Strategies  

 

 The overall results of computation time and solution quality for all algorithms 

based on different strategies are provided in Table 4.10 

 

Table 4.10 Overall results for TSPPD* 

REJECT 
S-1 

CONSTRUCT
S-2 

REPAIR 
S-3 

PEN_REPAIR 
S-4 

PEN_ADAPT
S-5 

 CPU DEVb CPU DEVb CPU DEVb CPU DEVb CPU DEVb 

avg 9.43 5.30 0.57 5.74 0.55 4.91 0.51 5.28 0.97 16.63inifeas 
std 3.27 1.30 0.01 1.04 0.01 0.94 0.01 1.23 0.13 6.05

avg 9.33 5.30 0.57 5.75 0.55 4.96 0.51 5.24 1.39 14.1inihalf 
std 3.54 1.30 0.01 1.06 0.01 0.94 0.01 1.21 0.11 5.35

avg 9.7 5.40 0.57 5.85 0.55 4.87 0.51 5.17 1.69 10.59

20
00

 

inirand 
std 3.09 1.30 0.01 1.01 0.01 0.85 0.01 1.24 0.13 3.54

avg 15.14 5.00 1.42 4.70 1.34 4.48 1.23 4.76 2.44 7.25inifeas 
std 7.47 1.20 0.01 0.83 0.01 0.82 0.01 1.1 0.44 2.37

avg 15.19 5.10 1.42 4.76 1.34 4.33 1.23 4.65 2.98 6.88inihalf 
std 8.03 1.30 0.01 0.77 0.01 0.87 0.01 1.11 0.39 2.17

avg 15 5.20 1.42 4.77 1.34 4.38 1.23 4.65 3.23 7.13

50
00

 

inirand 
std 7.35 1.20 0.01 0.81 0.01 0.85 0.01 1.14 0.44 2.2

avg 19.83 5.00 2.24 4.40 2.12 4.21 1.95 4.58 3.75 6.46inifeas 
std 11.32 1.20 0.01 0.77 0.02 0.79 0.02 1.04 0.75 2.01

avg 20.48 5.10 2.24 4.43 2.12 4.13 1.95 4.50 4.24 6.54inihalf 
std 12.54 1.20 0.01 0.71 0.02 0.85 0.02 1.05 0.69 2.07

avg 19.53 5.10 2.24 4.44 2.12 4.31 1.95 4.49 4.38 6.66

80
00

 

inirand 
std 11.39 1.20 0.01 0.72 0.02 0.76 0.02 1.14 0.71 1.99

avg - - 8.59 3.91 6.42 3.94 5.39 4.33 8.12 6.31inifeas 
std - - 2.73 0.66 1.95 0.71 1.39 1.03 2.4 1.84

avg - - 8.3 3.86 6.2 3.93 5.43 4.29 8.64 6.35inihalf 
std - - 2.59 0.67 1.84 0.67 1.55 1.01 2.35 1.97

avg - - 8.19 3.82 6.32 3.96 5.67 4.2 8.72 6.53

Fi
xe

db
es

t 

inirand 
std - - 2.31 0.58 1.72 0.77 1.67 0.93 2.31 2.07

*S-i: strategy i, where i=1,...,5 
 

After analyzing the influence of the experiment factors, we have determined a 

basis for a fair comparison of these algorithms. For some cases, the random initial 

population showed a slight difference but in most cases algorithms deemed 
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insensitive to initial population. Therefore, first we have compared the algorithms 

using the data coming from the inirand experiments, as this is the initial population 

type easiest to generate. For a second look, we used the whole data including all 

initial population types. For each stopping condition, ANOVA is conducted, 

followed by a post-hoc multiple level comparison test, namely Tamhane’s T2 test.  

 Specifically, this test conducts pairwise comparisons with a determined p-

value and constructs indifference groups. However, in order to compute p-value of 

the overall group, the effect of individual grouping should be considered at the same 

time. That is to say, (1-poverall) = (1-p1)* (1-p2)…* (1-pn), where n is the total number 

of comparisons realized and pi is the p value for the ith comparison. The conducted 

tests and the resulting tables are given in Appendix F. 

The resulting indifference groups are summarized in Table 4.11. The numbers 

in cells are the strategy numbers. The groups are ordered according to the superiority 

of the performance measure. In order to explain the meaning of these groups, the 

grouping for the stopping condition 2000 regarding DEVb is described. The first 

group is composed of strategies 3 and 4; the second group is composed of strategies 

4 and 1, and so on. This first two cells of the first row tell that strategy 4 did not yield 

significantly different solutions from 3 and 1, but 3 is significantly better than 1 at a 

significance level of 0.05 

 

Table 4.11 Indifference groups constructed by the result of the Tamhane’s T2 test. 
 

inifeas + inihalf + inirand inirand 
 1st group 2nd group 3rd group 4th group 1st group 2nd group 3rd group

DEVb 3-4 4-1 1-2 5 3-4-1 4-1-2 5 Stopping Condition 
2000 CPU 3-4-2 5 1 - 3-4-2 5 1 

DEVb 3-4-2 2-1 5 - 3-4-2 4-2-1 5 Stopping Condition 
5000 CPU 5 3-2-4 1 - 5 3-2-4 1 

DEVb 3-2-4 1 5 - 3-4-2 4-2-1 5 Stopping Condition 
8000 CPU 5 3-2-4 1 - 5 3-2-4 1 

DEVb 2-3-4 5 - - 2-3-4 5 - Stopping Condition 
Fixedbest CPU 3-4 2 5 - 4-3 2 5 

 

For all of the tests, the overall p value is smaller than 0.05. The overall p 

values are computed for the above example as follows: 
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(1-poverall) = (1-p3-1)* (1-p3-2)* (1-p3-5)* (1-p4-2)* (1-p4-5)* (1-p1-5) 

 

In the equation, pi-j is the p value for comparing strategies i and j. Referring to the p 

values provided in appendices, the overall p for this indifference group is computed. 

In the tableau, the p values are displayed to three significant digits, this rounding 

may cause underestimating the overall p value, therefore p values displayed as 0.000 

are considered to be 0.0005. All of the p values except p2-4 were 0.000 for this group 

and p2-4 is 0.001. With these input, the poverall is computed to be 0.004, which 

indicates significance for the whole group. The actual p-values for the pairwise 

comparisons can be found in Appendix F.  

 In general, a few differences regarding the relative orders of algorithms are 

observed between all initial types and random initial type only. However, 

differentiation power of the first is more than the second one as more data points are 

used. Therefore, the discussion is done considering all initial population types. When 

we look at the solution quality, strategy-3 (REPAIR) is always in the first group for 

all stopping conditions. The strategy-2 (CONSTRUCT) is relatively poorer in earlier 

stops, however, performs quite well at the later stopping conditions. The 4th strategy 

(PEN_REPAIR) is also among the good ones. 1st and 5th strategies are not 

performing well relative to others. The difference between strategy-2, strategy-3, and 

strategy-4 is not significant for all stopping conditions except for Fixedbest. 

Strategy-2 can find better solutions but requires more number of generations, i.e., its 

convergence (or getting close to convergence in our case) is slower than the others. 

The GEN values for the Fixedbest stopping conditions support our argument, where 

strategy-2 terminates at 25000th generation on the average, while the other strategies 

halts running around 20000th generation on the average.  

 Computation time values are also fair for strategy-2, 3, and 4. Strategy-5 

performs quickly at the stopping condition 8000, but its performance gets worse for 

Fixedbest. Strategy-1 is not a good alternative both regarding solution quality and 

computational effort. As conclusion, we can say that strategy-2, 3, and 4, performed 

well compared to others. 
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4.4.7 Comparison with the Work of Gendreau et al. 

  

 In the previous section, strategy-2, strategy-3, and strategy-4 are found 

promising to solve TSPPD. However, their performances should be compared with 

the previous works reported in the literature in terms of solution quality and time 

requirement. One prominent work proposing heuristic techniques for TSPPD is the 

work of Gendreau et al. (1999). They proposed three algorithms one of which is 

conventional (HI) and the other two are Tabu Search applications (TS1 and TS2). 

The algorithms reported to give better results relative to the previous heuristics. The 

detailed description of the heuristics is provided in Chapter 2. 

The authors experimented their heuristics on three different test beds. The 

first set is composed of the problems taken from the VRP literature, sizes of which 

are varying between 6 and 261. The distance matrices of all instances are used 

without any change in our experiments. For a customer i, the quantity demanded in 

VRP instance (qi) is taken as the quantity of the delivery load (di) for TSPPD 

instance. For determining the quantity of pickup loads (pi) for each customer, the 

authors used the following equation: 

 

(1 ) *
(1 ) *

i
i

i

q
p

q
β
β

 −  =  +  
 

 

where β is the parameter determining the largeness of the net demand of a customer, 

and n is the problem size. β is reported to be a real non-negative value smaller than 1. 

Note that, if the index of a customer is even, the net demand of the customer (di -pi) 

will be non-positive, which makes the customer a delivery customer. Whereas, 

customers with even index values will be pickup customers.  

The parameter β deserves additional interest. When β is equal to 0.00, since 

pi and di values will be equal for every customer, the resulting instance is an instance 

of TSP. As the value of β increases, quantity of net demand of each customer 

increases and increases in the variety of the loads makes the instance harder to solve. 

When qi’s are all unity in the original instance, the corresponding TSPPD instance 

if i is even 
if i is odd  

i =1, ... ,n,  
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will not have any customers with negative net demand. This time the instance 

becomes a TSP instance also. 

In the work of Gendreau et al. (1999), four different β values, 0.00, 0.05, 

0.10, 0.20, are experimented. We have experimented our heuristics with these β 

values on the test bed defined. For two instances, all of the demand quantities were 1. 

Therefore, these instances are excluded from our experiments with β values different 

than 0. In experiments, we have realized 30 replications for each instance and β value 

pair. The random initial population is utilized and Fixedbest stopping condition is 

used. 

The average results of our heuristics are provided together with the results of 

Gendreau et al. (1999) in Table 4.12. The results show that for higher β values, our 

heuristics find better values than Gendreau et al.’s heuristics. However, for β = 0.00, 

our heuristics were generally worse than their TS heuristics. Our heuristics seem to 

require less computation time, but the difference between the computer properties of 

experiment environments should not be forgotten. The experiments of Gendreau et 

al. were realized on a PC486/66 while ours done on a Pentium 4, 1.6 GHz processor. 

 

Table 4.12 Results of the heuristics of Gendreau et al. and our EAs 
 

  CONSTRUCT REPAIR PEN_REPAIR HI TS1 TS2 
DEVtsp 2.70 1.35 1.37 5.00 1.10 0.70 β = 0.00 

CPU 9.71 5.84 5.72 0.32 24.63 99.69 
DEVtsp 3.65 2.00 2.07 7.90 5.00 3.60 β = 0.05 

CPU 10.16 8.04 9.15 0.18 16.11 68.20 
DEVtsp 4.22 2.30 2.41 8.40 5.80 4.50 β = 0.10 

CPU 10.36 8.53 8.70 0.14 14.44 71.66 
DEVtsp 4.62 3.56 2.85 10.10 7.20 6.30 β = 0.20 

CPU 11.36 10.48 8.74 0.13 15.87 69.78 
 

The comparison revealed a counter result to the general view about the 

superiority of TS and Simulated Annealing over EA for routing problems. In fact, 

our EAs can find better results than TS heuristics of Gendreau et al. (1999) for 

constrained problems. Although this finding is insufficient to derive general 

conclusions about comparison of different metaheuristic techniques, it surely 

provides a particular important example where EA performs better than TS. 
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4.4.8 Comparison with Nearest Neighbor Heuristic with Repair 

 

 The benefit of our metaheuristic can be observed when we look at the results 

of the conventional heuristic results for TSPPD. The heuristic applied here is 

typically the Nearest Neighbor Heuristic appended by a repair algorithm. In this 

heuristic, for a problem, starting from different nodes, N solutions are produced by 

NN, where N is the size of the problem. Then, all of these solutions are repaired with 

the repair algorithm utilized in this work. The best solution found is then reported. In 

Table 4.13, results for the problem set are provided. In the table, “Best” represents 

the best solution found by the heuristic.  

 

Table 4.13 Results of the NN with repair heuristic for TSPPD 

Best CPU DEVb 
p00 344.00 0.00 17.01
p01 567.00 0.02 22.73
p02 545.00 0.00 17.71
p03 701.00 0.02 19.83
p04 761.00 0.00 16.90
p05 821.00 0.03 30.11
p06 105.00 0.00 8.25
p07 69.00 0.00 25.45
p08 109.00 0.00 2.83
p09 4999.00 0.00 12.82
p10 570.00 0.00 17.77
p11 495.00 0.00 23.13
p12 864.00 0.05 6.67
p13 678.00 0.00 12.62
p14 293.00 0.00 16.27
p15 955.00 0.03 19.97
p16 850.00 0.02 19.89
p17 42949.00 0.02 28.01
p18 621.00 0.00 21.53
p19 390.00 0.00 5.41

avg 0.01 17.25
std 0.01 7.39

 

 The results were very poor regarding the solution quality. However, the 

computation time is almost negligible. Results for our best strategies with the earliest 

stopping condition were around 5% of the TSP bound, which is quite less than the 
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results of the conventional heuristic. The additional computation time required is 

around 5-6 seconds, however, it does worth the additional effort, as the improvement 

in solution quality is drastic. 

 

4.5 Results for TSPB 

 

The experiment methodology in the previous section is followed for TSPB 

too. The same problem parameters and same stopping conditions are tried. The 

statistical analyses are carried on similarly to those of TSPPD. The ANOVA tables 

and plots related with the effect of the initial population type and the stopping 

condition on the algorithm’s performance are provided in Appendix G and Appendix 

H, respectively. 

 

4.5.1 Results for REJECT (Strategy-1) 

 

 From the TSPPD results we know that this strategy requires relatively more 

computational effort than the other strategies. As shown in Chapter 3, the solution 

space of TSPB is generally a subspace of TSPPD. Therefore, obtaining feasible 

solutions without any intervention is less likely. When we start the experimentation 

of this strategy, we determined to generate 30 replications for all problems in test bed 

for each stopping conditions. However, due to large computational time required for 

the experiments, we have narrowed our attention to a smaller test bed composed of 

the smallest 10 problems, and only 20 replications are realized here. Table 4.14 

summarizes the results for these 10 problems for only 2000 stopping condition.  

 

Table 4.14 Performance of REJECT for TSPB 
 

  GEN FB FA IMPb IMPavg CPU CPUini EP ENUM DEVopt
avg 2000.00 1013.17 1099.96 44.66 51.37 9.18 0.00 0.87 2.00 3.24inifeas 
std 0.00 18.01 21.66 2.34 0.97 2.23 0.01 0.23 0.51 1.89

avg 2000.00 1021.56 1096.78 45.69 51.62 27.35 0.00 0.77 6.02 4.05inihalf 
std 0.00 23.76 24.30 2.51 1.20 5.65 0.01 0.26 1.25 2.31

avg 

20
00

 

inirand 
std 

No feasible solution obtained 
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CPU figures are extremely large with respect to the results of 2000 stopping 

condition of TSPPD. ENUM results point to another important fact: on the average 

the number of infeasible solutions produced per feasible child is 2 times the problem 

size, when we start with all feasible population. This number increases to 6 times the 

problem size when there are also infeasible solutions in the initial population. When 

we start with a random population, no feasible offspring could be produced and the 

algorithm halts running at the first generation, which is another drawback of this 

strategy.  

  The results of this strategy are compared with the results of the other 

strategies for the smallest 10 problems. In Table 4.15, the summary of the results for 

all strategies on this small test bed is provided. Considering relatively large 

computational requirements for this strategy and the poor solution quality obtained 

with respect to CONSTRUCT, REPAIR, and PEN_REPAIR, this strategy was 

deemed to be a poor one. Therefore, this strategy is taken out of consideration for the 

following analysis.  

 

Table 4.15 Comparison of REJECT with other strategies regarding computational  

time and solution quality for the small test bed 

REJECT CONSTRUCT REPAIR PEN_REPAIR PEN_ADAPT 
CPU DEVopt CPU DEVopt CPU DEVopt CPU DEVopt CPU DEVopt 

avg 9.18 3.24 0.25 1.18 1.40 0.82 0.38 3.21 0.42 24.13inifeas 
std 2.23 1.89 0.01 0.56 0.02 0.46 0.01 1.26 0.01 13.67

avg 27.35 4.05 0.25 1.23 1.47 0.79 0.38 3.08 0.42 29.64inihalf 
std 5.65 2.31 0.01 0.69 0.02 0.53 0.01 1.15 0.01 15.25

avg - - 0.25 1.29 1.53 0.81 0.38 3.03 - - 

20
00

 

inirand 
std - - 0.01 0.68 0.02 0.56 0.01 1.07 - - 

 

 

4.5.2 Results for CONSTRUCT (Strategy-2) 

 

 This strategy is experimented in the regular way defined as TSPPD. All of the 

stopping conditions and all of the initial population types are experimented with the 
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entire problem set realizing 30 replications for each problem. Results of this 

experiment are provided in Table 4.16. 

An important finding is that starting with inirand did not produce any feasible 

solution in any replications. Therefore, percent improvement figures for this initial 

population type can not be computed. 

From the ANOVA tables, we could not detect any significant difference 

regarding solution quality and computation time when we stop early. Although 

ANOVA reports statistical significance for influence of the initial population on 

solution quality in Fixedbest stopping condition, due to poor normality and residual 

plots we cannot be totally sure about the significance. When we include the 

infeasible solutions in the initial population, the algorithms perform worse. The 

difference between 5000 and 8000 regarding solution quality and computation time 

is significant. Looking at overall results, we can say that this strategy is also 

performs well for TSPB. 2% deviations from optimal in approximately 2 seconds is a 

promising result regarding the performances of the previous heuristics such as 

Gendreau et al. (1996).  

When we compare the EP values in Table 4.16 with those in Table 4.6, we 

see that EP values are generally higher for TSPB relative to TSPPD. This case is 

expected as the nearest neighbor approach is a myopic approach in a sense. There 

will be many cases, in which the algorithm cannot proceed to an unvisited node using 

the union graph edges. This increase in the EP value with respect to TSPPD case, can 

be interpreted as the hardness of this constraint relative to the former constraint as 

well. 

Cdel decreases as the number of generations increases. A possible reason 

could be similar to the explanation in TSPPD case.  
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Table 4.16 Results for CONSTRUCT for TSPB 
 

  GEN FB FA IMPb IMPavg CPU CPUini EP Cdel DEVopt

avg 2000.00 3274.12 3564.40 57.95 61.77 0.54 0.01 8.93 1.49 2.72inifeas 
std 0.00 25.37 76.21 1.54 0.70 0.01 0.01 0.27 0.03 0.74

avg 2000.00 3271.27 3509.43 58.87 62.42 0.54 0.01 8.95 1.49 2.77inihalf 
std 0.00 28.71 61.99 1.53 0.71 0.01 0.01 0.28 0.03 0.82

avg 2000.00 3278.24 3404.37 - - 0.54 0.01 9.03 1.49 2.81

20
00

 

inirand 
std 0.00 27.48 28.47 - - 0.01 0.01 0.26 0.03 0.83

avg 5000.00 3257.19 3394.46 58.10 63.03 1.34 0.01 8.72 1.60 2.21inifeas 
std 0.00 29.12 50.83 1.51 0.54 0.01 0.01 0.29 0.03 0.61

avg 5000.00 3256.45 3390.60 59.02 63.17 1.34 0.01 8.71 1.60 2.28inihalf 
std 0.00 27.90 60.26 1.52 0.53 0.01 0.01 0.30 0.04 0.69

avg 5000.00 3261.46 3364.67 - - 1.34 0.01 8.74 1.60 2.35

50
00

 

inirand 
std 0.00 31.07 28.76 - - 0.01 0.01 0.30 0.04 0.73

avg 8000.00 3254.82 3373.31 58.14 63.29 2.13 0.01 8.66 1.63 2.10inifeas 
std 0.00 29.40 40.44 1.50 0.43 0.01 0.01 0.29 0.04 0.56

avg 8000.00 3249.07 3365.81 59.06 63.32 2.13 0.01 8.64 1.63 2.15inihalf 
std 0.00 29.22 45.96 1.51 0.47 0.01 0.01 0.31 0.04 0.69

avg 8000.00 3258.44 3360.15 - - 2.13 0.01 8.66 1.63 2.24

80
00

 

inirand 
std 0.00 30.68 35.51 - - 0.01 0.01 0.30 0.04 0.66

avg 20878.61 3240.95 3347.84 58.18 63.39 6.45 0.01 8.53 1.66 1.93inifeas 
std 4893.86 28.25 29.39 1.53 0.38 1.84 0.01 0.29 0.04 0.63

avg 20424.91 3248.69 3352.96 58.97 63.38 6.28 0.01 8.55 1.66 2.01inihalf 
std 4579.40 32.85 33.53 1.55 0.42 1.73 0.01 0.31 0.04 0.68

avg 20420.64 3257.93 3355.69 - - 6.23 0.01 8.57 1.66 2.01

Fi
xe

db
es

t 

inirand 
std 4592.08 28.25 30.39 - - 1.66 0.01 0.28 0.04 0.64

 

 

4.5.3 Results for REPAIR (Strategy-3) 

 

 Our standard experiment setting is realized for REPAIR. Like CONSTRUCT, 

no feasible solution exists in the initial population when it is produced by inirand 

method. For either 2000 or Fixedbest stopping conditions, the solution quality does 

not differ among initial population types. However, the computation time reveals 

significant difference in both stopping conditions. Therefore, it is advisable to use all 

feasible initial population. Despite the poor ANOVA plots, the stopping condition 

8000 turned out to yield significantly better solutions in significantly more time with 

respect to stopping condition 2000. When we look at the average figures, for this 
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approximately 0.05% improvement in solution, we should wait for 4 more seconds 

on the average. The overall results for REPAIR given in Table 4.17, reveals a 

performance close to CONSTRUCT. The solution quality is approximately 0.2% 

better but time requirement is considerably more, almost by 7.5 seconds. 

The most surprising outcome of this experiment was the small number of 

total repaired children relative to the case in TSPPD. However, we could not supply 

a convincing reasoning for this outcome. Another finding is that this quantity 

depends on the initial population type. This finding is logical when we accept that the 

probability of generating a feasible solution from feasible parents is high. In fact, as 

the number of generations increases, the feasible solutions are expected to dominate 

the population and hence, these values become almost equal.  

Cdel is relatively smaller than that of TSPPD and decreases further as the 

number of generations increases, which implies that this strategy has a lower 

probability of producing worse children than the other strategies. As expected, the 

percent of edges added due to repair operation is more than that of TSPPD. On the 

average, 10 % of the edges in an infeasible solution is replaced by the edges coming 

from the repair operation.  
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Table 4.17 Results for REPAIR for TSPB 
 

  GEN FB FA IMPb IMPavg CPU CPUini EP EDGErep TOTREP Cdel DEVopt

avg 2000.00 3284.44 3551.76 58.02 62.74 2.36 0.01 11.82 11.25 2850.64 0.91 2.22inifeas 
std 0.00 36.83 80.47 1.63 0.77 0.06 0.01 1.54 0.60 215.59 0.18 0.75

avg 2000.00 3282.51 3481.33 59.02 63.46 2.52 0.01 12.30 11.81 2866.02 0.91 2.16inihalf std 0.00 42.36 71.27 1.58 0.72 0.05 0.01 1.45 0.54 206.21 0.18 0.80
avg 2000.00 3280.70 3397.12 - - 2.69 0.01 12.86 12.35 2889.51 0.92 2.22

20
00

 

inirand std 0.00 40.48 39.94 - - 0.06 0.01 1.58 0.53 217.31 0.17 0.80
avg 5000.00 3273.47 3377.86 58.11 64.30 5.91 0.01 8.95 10.56 6184.17 0.74 1.87inifeas 
std 0.00 37.12 51.26 1.62 0.55 0.13 0.01 1.55 8.58 599.98 0.64 0.71

avg 4997.34 3267.59 3364.85 59.12 64.45 6.30 0.01 9.20 10.41 6202.72 0.69 1.83inihalf std 14.57 41.58 46.47 1.56 0.53 0.14 0.01 1.47 8.53 581.74 0.47 0.70
avg 5000.00 3272.02 3344.19 - - 6.73 0.01 9.47 10.82 6244.33 0.73 1.92

50
00

 

inirand std 0.00 41.56 38.67 - - 0.14 0.01 1.68 9.21 638.57 0.67 0.75
avg 7999.15 3271.71 3345.97 58.12 64.63 9.47 0.01 8.02 9.74 9360.65 0.56 1.84inifeas 
std 4.66 37.38 36.33 1.61 0.44 0.21 0.01 1.51 0.74 947.07 0.23 0.70

avg 7986.41 3266.44 3335.12 59.12 64.67 10.09 0.01 8.22 9.97 9376.98 0.56 1.81inihalf std 56.95 41.34 33.87 1.56 0.45 0.23 0.01 1.47 0.72 963.48 0.24 0.70
avg 7986.72 3270.52 3331.58 - - 10.77 0.01 8.39 10.14 9416.32 0.57 1.87

80
00

 

inirand std 34.01 42.52 40.38 - - 0.24 0.01 1.66 0.74 1032.18 0.25 0.75
avg 17133.26 3263.42 3316.96 58.31 64.84 17.30 0.01 7.02 9.26 17015.64 0.41 1.79inifeas 
std 2405.36 36.68 36.23 1.48 0.35 3.22 0.01 1.37 0.73 3032.73 0.22 0.71

avg 17377.55 3249.18 3302.57 59.07 64.80 20.85 0.01 7.28 9.38 17609.84 0.42 1.79inihalf std 2719.01 35.03 31.91 1.53 0.45 3.86 0.01 1.47 0.73 3528.53 0.23 0.71
avg 17167.60 3259.75 3313.59 - - 23.99 0.01 7.46 9.63 17472.86 0.45 1.82Fi

xe
db

es
t 

inirand std 2470.89 35.37 32.26 - - 4.03 0.01 1.58 0.87 3535.26 0.26 0.74
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4.5.4 Results for PEN_REPAIR (Strategy-4) 

 

 Our standard experiment setting is tried for this strategy also. In stopping 

condition 2000, the statistical analyses yield significant differences in computation 

time regarding the initial population type used. SS value for initial population type is 

fairly small, however, as this value is smaller for the error coefficient, the hypothesis 

of equivalence of means is rejected. However, no considerable difference is observed 

when we look at the average values with two significant digits. Therefore, this 

statistical difference is discarded. There is no significance of initial population for 

neither solution quality nor CPU for other stopping condition. When we stop at 8000, 

we have significantly better solutions than stopping at 5000, however, the time 

requirement is more for 8000. The solutions of this strategy are deviating 4.3% from 

the optimal solutions on the average, which is a worse result. However, regarding 

both solution quality and computation time, this strategy is still a reasonable one to 

use, and therefore requires additional experimentation. 

 Table 4.18 summarizes the results for this strategy. One of the important 

findings is the low value of average number of infeasible solutions. In fact, the value 

of Favg drops to one digit numbers for TSPB, from two digit numbers for TSPPD. 

Similarly, the relative performance regarding solution quality gets worse, which may 

be interpreted that the benefit of working with infeasible solutions is less and the 

value of feasible for finding good solutions is more for TSPB.  

 

4.5.5 Results for PEN_ADAPT (Strategy-5) 

 

 For this strategy, the standard experiment is realized. However, the solution 

quality that can be achieved were surprisingly poor. The deviation of the resulting 

solution from the optimal solution is around 100% in general, which is totally 

unacceptable. The other drawback of this strategy is its imprudence in finding the 

feasible solutions when started with a random initial population. No feasible solution 

is obtained for inirand for all of the replications.  
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Table 4.18 Results for PEN_REPAIR for TSPB 
 

  GEN FB FA FFEAS IMPb IMPavg IMPfeas CPU CPUini EP Cdel Favg DEVopt

avg 2000 2411.99 2733 3346.33 67.19 69.83 56.88 0.82 0.01 2.58 0.98 9.22 5.16inifeas 
std 0 40.07 95.15 66.48 1.22 0.85 1.72 0.01 0.01 0.4 0.15 0.97 1.28

avg 2000 2412.88 2746.85 3357.24 66.52 69.29 56.54 0.82 0.01 2.53 0.98 6.63 5.19inihalf 
std 0 35.37 108.39 66.94 1.26 0.85 1.71 0.01 0.01 0.37 0.13 1.12 1.23

avg 2000 2404.56 2741.61 3366.64 66.24 68.76 56.22 0.82 0.02 2.5 0.97 3.58 5.15

20
00

 

inirand 
std 0 35.18 95.32 70.44 1.14 0.87 1.66 0.01 0.01 0.39 0.14 0.90 1.21

avg 5000 2409.1 2580.81 3330.73 67.24 71.16 57.04 2.01 0.01 1.51 0.74 4.28 4.6inifeas 
std 0 40.51 78.79 68.85 1.22 0.7 1.7 0.01 0.01 0.41 0.21 0.63 1.22

avg 5000 2409.93 2591.99 3332.79 66.57 70.59 56.73 2.01 0.01 1.51 0.74 3.06 4.57inihalf 
std 0 36.32 83.3 58.85 1.25 0.64 1.68 0.01 0.01 0.37 0.19 0.67 1.11

avg 5000 2399.59 2598.31 3343.96 66.28 69.99 56.4 2.01 0.02 1.48 0.74 1.58 4.58

50
00

 

inirand 
std 0 34.73 79.56 67.52 1.13 0.68 1.64 0.01 0.01 0.38 0.20 0.50 1.1

avg 7999.95 2408.5 2552.81 3327.85 67.25 71.46 57.08 3.19 0.01 1.13 0.60 2.78 4.49inifeas 
std 0.26 40.95 81.69 67.84 1.21 0.61 1.7 0.01 0.01 0.4 0.23 0.49 1.21

avg 8000 2409.74 2552.41 3329.9 66.58 70.89 56.76 3.19 0.01 1.13 0.60 1.99 4.47inihalf 
std 0 36.22 67.46 60.51 1.24 0.55 1.68 0.01 0.01 0.36 0.21 0.48 1.11

avg 7997.48 2398.99 2563.91 3339.87 66.29 70.27 56.43 3.19 0.02 1.11 0.59 1.02 4.49

80
00

 

inirand 
std 13.82 35.25 71.5 68.14 1.13 0.58 1.63 0.02 0.01 0.36 0.21 0.36 1.09

avg 18041.1 2402.48 2546.71 3317.94 67.38 71.58 57.26 7.58 0.01 0.67 0.26 0.49 4.41inifeas 
std 2999.85 42.6 69.36 50.88 1.08 0.56 1.51 1.52 0 0.33 0.14 0.70 1.18

avg 18234.05 2402.12 2568.45 3316.05 66.55 70.99 56.63 7.65 0.01 0.69 0.26 0.40 4.3inihalf 
std 2669.94 31.41 67.05 54.56 1.24 0.5 1.69 1.36 0 0.29 0.14 0.45 1.16

avg 18279.94 2410.09 2547.69 3311.41 66.27 70.44 56.43 7.7 0.02 0.67 0.25 0.26 4.34Fi
xe

db
es

t 

inirand 
std 3003.82 36.98 57.81 56.04 1.2 0.52 1.68 1.56 0 0.31 0.14 0.23 1.16



 
 
 

89

Considering the poor results of this strategy, we have designed another 

penalizing scheme, V2, in which the total constraint violation is multiplied with the 

difference between unpenalized value of the infeasible solution and the best feasible 

solution found so far, which is a milder penalizing scheme. The results were worse 

than the previous case. Finally in order to comment on closeness of the infeasible 

solutions in the final population to the feasible search space, we designed a scheme, 

Vrep, where all infeasible solutions in the population are repaired at termination. The 

results were not very promising either. All deviation results are provided in Table 

4.19. The original version is referred as V1 in the table. 

 

Table 4.19 Deviation of the best solution found from the optimal solution value for  

different versions of PEN_ADAPT proposed for TSPB 

Stopping Condition 
2000 

Stopping Condition 
5000 

Stopping Condition 
8000 

Stopping Condition 
Fixedbest   

V1 V2 Vrep V1 V2 Vrep V1 V2 Vrep V1 V2 Vrep 
avg 124.73 144.71 16.20 115.59 139.96 15.91 111.56 138.60 16.01 97.56 132.78 16.05inifeas 
std 24.30 27.10 2.07 24.83 30.37 2.10 26.35 32.05 2.21 31.22 33.23 2.19

avg 136.71 159.41 16.03 125.64 155.79 15.99 120.25 154.11 16.15 110.20 151.25 16.50inihalf 
std 21.23 28.08 1.97 23.78 31.21 2.02 25.66 33.25 2.17 29.77 34.45 2.12

avg - - 17.45 - - 17.08 - - 17.05 - - 17.25inirand 
std - - 2.23 - - 2.32 - - 2.40 - - 2.50

 

 In Table 4.20, overall results for as V1 are provided. Although CPU is 

relatively smaller than the previous algorithms for the same stopping conditions, the 

number of generations are not increased further, as the solution quality offered do not 

seem to increase at the expense of the additional seconds. Due to the poor 

performance of this strategy, no statistical analysis is realized regarding the influence 

of the parameters. This strategy is directly excluded from the final comparison. 
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Table 4.20 Results for PEN_ADAPT for TSPB 
 

  GEN FB FA FFEAS IMPb IMPavg IMPfeas Fall CPU CPUini EP Cdel Favg DEVopt

avg 2000.00 3618.67 5415.00 6119.14 48.76 38.09 30.69 3149.74 0.76 0.01 7.46 1.79 42.20 124.73inifeas 
std 0.00 236.65 503.84 957.08 4.07 3.52 7.12 151.98 0.01 0.01 0.54 0.06 5.22 24.30

avg 2000.00 2966.09 4955.67 6388.98 60.32 46.25 29.28 2758.32 0.76 0.01 7.30 1.73 24.10 136.71inihalf std 0.00 123.33 398.09 923.66 2.19 2.33 7.24 76.90 0.01 0.01 0.40 0.04 3.01 21.23
avg 2000.00 2522.33 2958.57 - 65.69 67.05 - 2458.22 0.71 0.01 4.55 1.51 0.00 - 

20
00

 

inirand std 0.00 54.70 85.17 - 1.37 1.15 - 37.22 0.01 0.01 0.62 0.10 0.00 - 
avg 5000.00 3417.74 4757.75 5891.94 51.82 43.55 31.63 2986.35 1.87 0.01 6.67 1.77 33.50 115.59inifeas 
std 0.00 200.83 332.64 1044.41 3.84 3.06 7.71 137.33 0.02 0.01 0.65 0.08 4.92 24.83

avg 5000.00 2828.48 4328.93 6228.74 61.38 50.56 31.58 2648.50 1.87 0.01 6.61 1.77 20.50 125.64inihalf std 0.00 99.04 229.04 957.37 2.03 2.15 7.30 54.31 0.02 0.01 0.48 0.05 2.98 23.78
avg 5000.00 2525.70 2757.72 - 65.75 68.94 - 2451.03 1.73 0.01 3.15 1.46 0.00 - 

50
00

 

inirand std 0.00 48.94 77.35 - 1.39 1.06 - 36.43 0.03 0.01 0.75 0.17 0.00 - 
avg 8000.00 3325.59 4567.08 5843.53 53.35 45.62 32.20 2917.82 2.98 0.01 6.30 1.76 30.04 111.56inifeas 
std 0.00 210.95 310.96 1043.81 3.75 3.11 7.69 128.12 0.04 0.01 0.71 0.10 4.88 26.35

avg 8000.00 2794.50 4143.69 6165.83 61.76 52.37 32.20 2615.17 2.97 0.01 6.30 1.78 18.95 120.25inihalf std 0.00 83.72 191.82 965.60 1.92 2.06 7.75 51.30 0.03 0.01 0.52 0.06 3.00 25.66
avg 7999.32 2529.69 2715.87 - 65.71 69.34 - 2448.42 2.72 0.01 2.56 1.41 0.00 - 

80
00

 

inirand std 3.72 53.36 68.46 - 1.43 0.98 - 35.88 0.05 0.01 0.76 0.20 0.00 - 
avg 19721.94 3112.72 4184.38 5660.87 57.52 51.95 34.07 2790.49 8.37 0.01 5.64 1.73 22.57 97.56inifeas 
std 4298.49 211.80 378.71 1044.43 3.47 4.64 8.95 114.76 2.22 0.01 0.84 0.11 5.55 31.22

avg 21059.50 2735.42 3901.45 5806.79 62.48 55.65 32.90 2574.09 9.02 0.01 5.79 1.77 16.01 110.20inihalf std 4869.91 73.46 242.39 902.10 1.82 2.82 9.03 38.90 2.49 0.01 0.64 0.08 4.06 29.77
avg 21292.78 2545.34 2718.28 - 65.76 69.61 - 2442.90 8.03 0.01 1.72 1.25 0.00 - Fi

xe
db

es
t 

inirand std 329.93 65.81 103.67 - 1.43 1.04 - 37.23 0.29 0.01 0.67 0.24 0.00 - 
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4.5.6 Comparison of Strategies 

 

 Strategy-1 and Strategy-5 turned out to be impractical to implement and 

excluded from the overall comparison consideration. The overall results for the main 

performance measures for the remaining strategies are provided in Table 4.21. It can 

be seen that REPAIR produces better solutions in general. However, its time 

requirement is also more than the others. CONSTRUCT can give solutions that are 

only 0.2% worse than the solutions of REPAIR in a time, which is less than the one 

third of the time required for REPAIR. 

The statistical analysis that was carried out for TSPPD was repeated for 

TSPB. In fact, the ordering of the strategies were the same for every stopping 

condition. The differences among the algorithms were significant. The best algorithm 

was REPAIR regarding solution quality. It was followed by CONSTRUCT while 

PEN_REPAIR was the worst one among the three. However, the CPU of REPAIR 

was worst. For all tests, the overall p value was less than 0.05 although the worst 

overall p value obtained was 0.03. The results are provided in Table 4.22. The related 

tables are provided in Appendix I. 

 

4.5.7 Comparison with Nearest Neighbor with Repair Heuristic 

 

  Although there are examples of conventional heuristics for TSPB in 

literature, we could not find any metaheuristic applications to this problem. 

Therefore, it would be convenient to analyze the relative improvement of this method 

over the conventional methods due to metaheuristic notion. In Table 4.23, the results 

of the NN with repair heuristic are provided. As it is realized in TSPPD case, the 

same repair algorithm of EA is utilized in this heuristic. All of the starting nodes are 

tried for generating a solution. The results for TSPB were worse than TSPPD. The 

average deviation is 18% which is far more than 3% deviation that can be attained in 

the earlier stops in our algorithms. The results for both TSPPD and TSPB do not 

leave any doubts and questions about the benefit of metaheuristics. For both cases, 

the solution quality improves drastically when the algorithms run a few seconds 

more. 
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Table 4.21 Overall results for TSPB* 

CONSTRUCT
S-2 

REPAIR 
S-3 

PEN_REPAIR 
S-4 

  CPU DEVb CPU DEVb CPU DEVb 
avg 0.54 2.72 2.36 2.22 0.82 5.16 inifeas
std 0.01 0.74 0.06 0.75 0.01 1.28 

avg 0.54 2.77 2.52 2.16 0.82 5.19 inihalf
std 0.01 0.82 0.05 0.8 0.01 1.23 

avg 0.54 2.81 2.69 2.22 0.82 5.15 
20

00
 

inirand
std 0.01 0.83 0.06 0.8 0.01 1.21 

avg 1.34 2.21 5.91 1.87 2.01 4.6 inifeas
std 0.01 0.61 0.13 0.71 0.01 1.22 

avg 1.34 2.28 6.3 1.83 2.01 4.57 inihalf
std 0.01 0.69 0.14 0.7 0.01 1.11 

avg 1.34 2.35 6.73 1.92 2.01 4.58 

50
00

 

inirand
std 0.01 0.73 0.14 0.75 0.01 1.1 

avg 2.13 2.1 9.47 1.84 3.19 4.49 inifeas
std 0.01 0.56 0.21 0.7 0.01 1.21 

avg 2.13 2.15 10.09 1.81 3.19 4.47 inihalf
std 0.01 0.69 0.23 0.7 0.01 1.11 

avg 2.13 2.24 10.77 1.87 3.19 4.49 

80
00

 

inirand
std 0.01 0.66 0.24 0.75 0.02 1.09 

avg 6.45 1.93 17.3 1.79 7.58 4.41 inifeas
std 1.84 0.63 3.22 0.71 1.52 1.18 

avg 6.28 2.01 20.85 1.79 7.65 4.3 inihalf
std 1.73 0.68 3.86 0.71 1.36 1.16 

avg 6.23 2.01 23.99 1.82 7.7 4.34 

Fi
xe

db
es

t 

inirand
std 1.66 0.64 4.03 0.74 1.56 1.16 

*S-i: strategy i, where i=2,3,4 
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Table 4.22 Indifference groups constructed by the result of the Tamhane’s T2 test 

inifeas + inihalf + inirand inifeas 
  1st group 2nd group 3rd group 1st group 2nd group 3rd group

DEVb 3 2 4 3 2 4 Stopping Condition 
2000 CPU 2 4 3 2 4 3 

DEVb 3 2 4 3 2 4 Stopping Condition 
5000 CPU 2 4 3 2 4 3 

DEVb 3 2 4 3 2 4 Stopping Condition 
8000 CPU 2 4 3 2 4 3 

DEVb 3 2 4 3-2 4 - Stopping Condition 
Fixedbest CPU 2 4 3 2 4 3 

 

 

Table 4.23 Results of the NN with repair heuristic for TSPB 
 

Best CPU DEVb 
p00 467.00 0.00 21.30
p01 644.00 0.02 11.03
p02 787.00 0.00 33.62
p03 924.00 0.02 14.36
p04 1103.00 0.00 22.01
p05 1043.00 0.03 19.89
p06 141.00 0.00 14.63
p07 79.00 0.00 16.18
p08 147.00 0.00 14.84
p09 7012.00 0.00 12.30
p10 732.00 0.00 12.27
p11 585.00 0.00 10.38
p12 1402.00 0.05 31.40
p13 993.00 0.00 27.47
p14 343.00 0.00 6.85
p15 1259.00 0.03 9.38
p16 1186.00 0.02 38.07
p17 57579.00 0.02 26.00
p18 700.00 0.00 6.22
p19 567.00 0.00 18.87

avg 0.01 18.35
std 0.01 9.05
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4.5.8 Comparison with Solving Corresponding ATSP Instance 

 

 As stated before, every TSPB instance can be transformed to a TSP instance 

by modifying the cost matrix. Considering this fact, an option for solving TSPB 

problems can be transforming these instances to TSP and solving these instances. We 

are interested in experimenting this option also, as it will reveal the benefit of dealing 

with TSPB instances instead of the corresponding TSP instances. Therefore, we 

experimented the performance of this strategy which solves transformed TSPB 

instances utilizing TSP solving EA. This strategy is called TRANS. The results of 

this strategy and our previous strategies are provided in Table 4.24.  

 

Table 4.24 Overall results and results of TRANS for TSPB 

CONSTRUCT REPAIR PEN_REPAIR TRANS 
  CPU DEVb CPU DEVb CPU DEVb CPU DEVb 

avg 0.54 2.81 2.69 2.22 0.82 5.15 0.34 4.38 2000 
std 0.01 0.83 0.06 0.8 0.01 1.21 0.01 1.39 

avg 1.34 2.35 6.73 1.92 2.01 4.58 0.84 3.64 5000 
std 0.01 0.73 0.14 0.75 0.01 1.1 0.01 1.19 

avg 2.13 2.24 10.77 1.87 3.19 4.49 1.33 3.44 8000 
std 0.01 0.66 0.24 0.75 0.02 1.09 0.02 1.14 

avg 6.23 2.01 23.99 1.82 7.7 4.34 3.91 3.18 Fixedbest 
std 1.66 0.64 4.03 0.74 1.56 1.16 1.23 1.03 

 

TRANS gives worse results than constructing feasible solutions from scratch 

or repairing infeasible solutions. As we are penalizing the edges going from pickups 

to deliveries to realize the transformation, this option can be considered as a static 

penalizing scheme where the penalty costs are reflected to edge costs. Looking 

through this respect, the results of this experiment coincides with the results for the 

previous ones. Again, working with only feasible solutions gives better results than a 

scheme that permits infeasible solutions in the population. However, TRANS finds 

better solutions than PEN_REPAIR. Actually, this reveals the benefit of reflecting 

penalty coefficients to edges. As expected, this strategy works faster than other 

strategies due to absence of additional constraint handling effort. 
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4.6 Concluding Remarks  

 

The main issue in this study is to answer the question “Should we keep 

infeasible solutions in the population for constrained routing problems?”. Looking at 

the performance results of the specific algorithms’ performances we can discuss the 

value of the infeasible solution. 

Firstly, it should be mentioned that, the answer to the question varies 

according to the side constraints added. In our case, the two side constraints are 

deemed different in hardness. Hardness can be defined by the effort required to find a 

feasible solution with respect to the side constraints when realizing the search in the 

solution space of the unconstrained problem. From this respect, TSPB looks “harder” 

in our case. For TSPPD, one of the schemes working with infeasible solutions, 

namely, PEN_REPAIR, provides fairly good results. For this algorithm, 70-80% of 

the population is composed of the infeasible solutions on the average. However, as 

the side constraint gets harder, the value of the infeasible solutions decreases. 

PEN_REPAIR algorithm, for TSPB, does not produce results as good as REPAIR 

algorithm. In fact, the structures of algorithms resemble to each other. However, the 

repaired version of the infeasible solution replaces the infeasible solution in 

REPAIR, which turns out to give results 3% better than PEN_REPAIR while 90% of 

the population is infeasible on the average. Therefore, for this problem, we can say 

that proceeding with infeasible solutions is not advisable. In fact, the fairly good 

results for the softer constraints may be conceivable. In PEN_REPAIR, all of the 

infeasible solutions are repaired, and the reason for this algorithm to give good 

results may be solely this repairing operation. The influence of keeping infeasible 

solutions on obtaining good solutions may be negligible. In almost all experiments, 

replacing the infeasible solution with its repaired version instead of keeping this 

infeasible solution and penalizing it gave better results. The only exception occurred 

in the test bed of Gendreau et al. (1999), when the problems are generated with β = 

0.20. 

Nevertheless, proceeding with infeasible solutions may be considered for 

softer side constraints as long as penalizing is performed appropriately. The results of 

PEN_ADAPT were unacceptably bad, whereas PEN_REPAIR provides the best 
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results in some stopping conditions for TSPPD. The difference arises due to the 

feasibility distance metric used. The constraint violation used in PEN_ADAPT, 

ceases to be an appropriate measure for defining the distance of the infeasible 

solution to the feasible solution space, especially, when the crossover operator is 

based on a heuristic. In fact, the adaptive penalizing scheme proposed by Coit et. al 

(1996) is experimented with a uniform crossover operator, and to our knowledge, no 

work studying the effects of adaptive penalizing used with heuristic crossover 

methods exist in the literature. The results obtained here implies that simply 

penalizing the solution value does not forces the algorithm to find good feasible 

solutions, as the crossover operator mainly deals with the edges, instead of the value 

of the solution. Actually, it may be a good idea to reflect the penalized value to the 

edges that causes infeasibility for our purposes. However, this may be a more 

complex and time consuming penalizing scheme.  

Another comparison can be realized between the strategies using feasible 

solutions. REJECT strategy has been found insufficient after experiments due to its 

enormous computation time requirement. The remaining two strategies, 

CONSTRUCT and REPAIR, are good strategies. Superiority of one over the other 

has not been observed for the softer side constraint. For the harder side constraint, 

REPAIR yielded significantly better results. However, no persuasive reasoning can 

be stated. 

For both TSPPD and TSPB, computation time required for generation of 

initial population did not differ with respect to population types. However utilizing a 

random population is easier to implement relative to other types. Another general 

outcome is the improvement capabilities of the heuristics proposed. Improvement 

figures do not provide a basis for comparing the strategies, however it surely gives an 

opinion about the value added by the heuristics. For good strategies, the average 

improvement of the best solution relative to the best solution in the initial population 

is around 70% for TSPPD and 60% for TSPB. These figures show only slight 

differences among the initial population types.  
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CHAPTER 5 
 
 

CONCLUSION 

 

 

 In this research, we propose evolutionary algorithms for the traveling 

salesman problem with side constraints. Specifically, we try to adapt an EA that is 

proved to work well for TSP, to TSPPD and TSPB. The algorithm was not a 

traditional Genetic Algorithm but a more sophisticated on utilizing the conventional, 

well known TSP heuristic, called Nearest Neighbor Heuristic as the crossover 

operator. The main difficulty in this adaptation is to ensure the feasibility of the 

solution with respect to the side constraints. The literature proposes several 

constraint handling techniques for EAs. The individual results for these techniques 

are available, however, to our knowledge, a comparison for these techniques has not 

been realized before. Impressed by the versatility of TSP, we intended to make a 

comparison of constraint handling techniques for EAs in the domain of TSP. 

 From the reviewed constraint handling techniques, the most basic ones are 

selected to be compared. The first one is simply rejecting the infeasible solutions. 

Prior to our experimentation, this strategy is already known to be inappropriate for 

the cases in which the solution spaces of the constrained and the unconstrained 

problems rarely coincide. However, in order to quantify the “rareness” for the 

problems of question and to provide a thorough comparison, this strategy is included 

in the study. 

 The second and third ones are modifying the crossover operator to ensure 

feasibility and repairing the infeasible solutions. In the literature, there are successful 

examples for both strategies in dealing with side constraints. However, their relative 

performance is not measured before. 

 The last strategies are penalizing strategies in which the infeasible solutions 

are permitted in the population but the chance for them to pass their genetic material 

to the following generations is reduced by penalizing the fitness value of these 

solutions. There are various penalizing schemes that can be utilized. We, again, 



 
 
 

98

selected the most basic ones. The first of them is taking the repaired value of 

infeasible solutions as the penalized value, whereas the second one, which is an 

adaptive penalizing strategy, utilizes a distance metric based on the constraint 

violation.  

After determining a framework for our comparison, the algorithms for 

constrained single vehicle routing problems are designed. These algorithms are then 

implemented for TSPPD and TSPB, and analyzed by computational experiments on 

a test bed taken from the literature. 

Firstly, the convergence plots of the algorithms are drawn for both TSPPD 

and TSPB. However, no single bound on the stopping condition can be determined. 

Bounds on stopping conditions are considered as experimental factors. The specific 

values of these bounds are determined after analyzing the convergence plots. In 

addition to stopping conditions, three initial population types differing in number of 

feasible solutions in population are experimented in the study. 

 The influence of the factors is analyzed by ANOVA. In our experimentation, 

the algorithms are found to be statistically insensitive to the initial population type 

for most of the cases. However, in some cases, the random population gives slightly 

significant, or close to significant results for TSPPD regarding the solution quality. 

In general, initial population types do not influence solution quality for TSPB. 

However, due to significant differences regarding the computation times, all feasible 

initial population is reported to be better than the others.  

 The results for stopping conditions are analyzed for every strategy 

individually. In almost all cases, the significance regarding the solution quality and 

computation time is obtained between 8000th and 5000th generations. Speaking with 

the average figures, the least difference occurred between these stopping bounds. 

Therefore, the differences between other pairs are assumed to be significant. 

The results of the algorithms are compared by Tamhane’s T2 test. Repairing, 

constructing from scratch, and penalizing by repairing turned out to give better 

results relatively to rejecting and penalizing adaptively strategies for TSPPD. High 

computation time requirement of rejecting infeasible solutions for TSPPD gets 

higher for TSPB, which makes this strategy almost infeasible for TSPB. The 

adaptive penalizing strategy provides inferior solutions regarding the solution quality 
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for TSPPD. For TSPB, the differentiation is more clear. The relative order of five 

strategies from best to worst regarding the solution quality is repairing, constructing 

from scratch and penalizing by repair. However, repairing consumes much more time 

than it consumes for TSPPD case. The solutions produced by penalizing adaptively 

were worse than two times of the optimal solutions, which is totally unacceptable. At 

the end utilizing this scheme with a heuristic crossover is found inappropriate. 

 In general, keeping infeasible solutions in the population may not be a good 

alternative as the side constraints restrict the solution space more. However, by using 

a penalizing scheme incorporating the penalty values to force production of feasible 

children, better results can be found. Penalizing the fitness values of solutions alone 

may not be a good idea to use with a NN crossover operator.  

In the overall, strategy-2, 3 and 4 give solutions deviating from the optimal 

TSP values between 4.2 - 4.5% in about 2 seconds for TSPPD. The solutions for 

TSPB deviate around 2% from the optimal values for strategy-2 and 3. The result of 

strategy-4 is worse than the optimal values by 4.5% on the average. The time 

required for strategy-2 and 4 are 2 - 3 seconds, while strategy-3 requires a time 

around 10 seconds. At the end, we can say that using a modified crossover operator 

that produces feasible solutions and repairing infeasible solutions are better 

alternatives for constrained routing problems. If the side constraint is a milder one, 

allowing the infeasible solutions and penalizing them by using the value of their 

repaired versions is a viable option also. Actually these conclusions are valid for the 

EA structure selected. In order to come up with more general conclusions, other EAs 

working well for TSP should be used in the experimentations. 

 The three constraint handling strategies were better than the other two for 

TSPPD. We compared them with the heuristics of Gendreau et al. (1999). These 

heuristics are one conventional heuristic and two tabu search procedures. Gendreau 

et al. can find better solutions for TSP, but our algorithms provide better results as 

the hardness of the constraints increases. Penalizing by repair gives an average 

deviation 2.8%, and the deviation of the other two are around 3-4%, whereas the best 

heuristic of Gendreau et al., deviates by 6.3%. Although our algorithms may require 

more time than those of Gendreau et al., the improvement in solution quality makes 

our algorithms a better choice. 
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 Designing a mutation operator performing local search is the first item on the 

list of our future research. From Sönmez (2003), we know that the deviation figures 

can be improved by 2% after NN crossover is used with a random initial population 

for TSP. This figure motivates us to analyze the effect of such a mutation operator 

for the constrained cases. An alternative local search may incorporate feasible two 

exchange moves.  

For future research, another immediate study can be adaptation of these 

algorithms to the problems with optional pickups. In this problem, the necessity of 

visiting every pickup customer is removed, and visiting a pickup customer returns a 

profit. The objective of the problem is to minimize the net cost of the tour visiting all 

delivery customers and selected pickup customers. This adaptation can be realized 

very easily by updating the crossover operator utilized in this study. If the costs of 

edges going to pickup customers are decreased by considering the revenue to be 

collected from that customer, and if the tour is constructed by an optional NN 

heuristic with the updated costs, then the optional problems can be solved by the 

algorithm. 

 Another research topic in future is to adapt these algorithms for the multi-

vehicle cases. Actually, by utilizing a cluster first route second approach, the 

algorithms proposed here can be directly applicable. 

 In future research, it might be interesting to design a penalty scheme that can 

work well with the NN crossover operator. Here, the penalty figures can be reflected 

to the cost of edges that cause infeasibility. The children are produced using the 

penalized cost matrix. 

 As our algorithm gives fairly good results for TSP, transforming TSPB to 

STSP and solving this instance with our standard algorithm may give good results. 

The experimentation of this method of solving TSPB’s will be considered in further 

research.  

 A last research topic that can be worked in future may be proposing an 

algorithm that utilizes the better constraint handling techniques in a combined 

fashion. Here, the infeasible solution is treated by one of these techniques according 

to a probability. 
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APPENDIX A 
 
 

TRANSFORMATION OF TSPB TO STSP 
 
 
 

In this appendix, an example for illustrating the transformation of TSPB 

instances to STSP instances is provided. First TSPB instances are transformed to 

asymmetric TSP instances as discussed in Chapter 2. In Figure A.1, a trivial instance 

of TSPB is provided. The square represents the depot (node c), the white node (a) is 

the only delivery customer and the black node (b) is the only pickup customer. This 

instance is transformed into the ATSP instance given in Figure A.2. 

 

 

 

 

 

 

 

 

 

 

Figure A.1 An instance of TSPB  

After obtaining ATSP instances, they are converted to symmetric instances by 

doubling all nodes (Jürgen et al. 1995). A single node i is represented by two nodes 

in this new version, namely, iarrival and ideparture. The arc costs of the updated instance 

should be designed so that the optimal tour in this version gives the optimal tour for 

the asymmetric case. The cost of an edge directed from node i to node j at the 

original instance equals to the cost of the edge between iarrival and ideparture in the 

updated instance. 
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Figure A.2 ATSP instance corresponding to the TSPB instance given 

 

The solution for the updated version should not include any edge between the 

nodes that have the same subscript, i.e., iarrival and jarrival, or ideparture and jdeparture. 

Therefore, their costs are set to sufficiently large values of M. Once the tour reaches 

to node icoming, the tour should continue with visiting igoing. Note that, the cost of the 

edges between the duplicates of nodes of the original problem are irresistibly small, 

i.e., 0. The STSP instance corresponding to the initial example is provided in Figure 

A.3. Note that, M1, M2, and M3 should be set far larger than the cost of the original 

edges. For this case, an M value of 100 will be appropriate for obtaining a valid 

TSPB tour from this instance.  
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Figure A.3 STSP instance corresponding to the TSPB instance given 
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APPENDIX B 
 
 

OPTIMAL TOUR VALUES 
 
 
 

In Table B.1, the optimal tour values are provided for the test bed. TSPopt, 

TSPPDopt, and TSPBopt represent the optimal solution values for TSP, TSPPD and 

TSPB, respectively. 

 

Table B.1 Optimal values for different problem types 

Name TSPopt TSPPDopt TSPBopt 

P00 294 310 385 

P01 462 479 580 

P02 463 - 589 

P03 585 - 808 

P04 651 - 904 

P05 631 - 870 

P06 97 100 123 

P07 55 55 68 

P08 106 106 128 

P09 4431 4488 6244 

P10 484 502 652 

P11 402 408 530 

P12 810 - 1067 

P13 602 - 779 

P14 252 - 321 

P15 796 - 1151 

P16 709 - 859 

P17 33551 - 45697 

P18 511 529 659 

P19 377 381 477 
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APPENDIX C 
 
 

CONVERGENCE PLOTS 
 
 
 

In this appendix, the convergence plots of five strategies for problems p00 

and p15 are provided. Firstly, the plots for TSPPD algorithms and then the plots for 

TSPB algorithms are provided.  For TSPPD plots, the initial population type utilized 

is inirand whereas inifeas is utilized for TSPB. In the figures, “bestog” stands for the 

best solution averages for 30 replications. Similarly, “avgog” keeps the average of 

population averages and “cpu” keeps the average computation time. For penalizing 

strategies, “bestfeas” keeps the average of best feasible solution.  
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Figure C.1 Bestog and Avgog vs. number of generations for p00 with strategy-1 for 

TSPPD 
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Figure C.2 CPU vs. number of generations for p00 with strategy-1 for TSPPD 
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Figure C.3 Bestog and Avgog vs. number of generations for p00 with strategy-2 for 

TSPPD 
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Figure C.4 CPU vs. number of generations for p00 with strategy-2 for TSPPD 



 
 
 

113

305
310
315
320
325
330
335
340
345

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

generation number
to

ur
 v

al
ue

bestog
avgog

 
Figure C.5 Bestog and Avgog vs. number of generations for p00 with strategy-3 for 

TSPPD 
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Figure C.6 CPU vs. number of generations for p00 with strategy-3 for TSPPD 
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Figure C.7 Bestog, Avgog, and Bestfeas vs. number of generations for p00 with 

strategy-4 for TSPPD 
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Figure C.8 CPU vs. number of generations for p00 with strategy-4 for TSPPD 
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Figure C.9 Bestog, Avgog, and Bestfeas vs. number of generations for p00 with 

strategy-5 for TSPPD 
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Figure C.10 CPU vs. number of generations for p00 with strategy-5 for TSPPD 
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Figure C.11 Bestog and Avgog vs. number of generations for p15 with strategy-1 for 

TSPPD 
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Figure C.12 CPU vs. number of generations for p15 with strategy-1 for TSPPD 
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Figure C.13 Bestog and Avgog vs. number of generations for p15 with strategy-2 for 

TSPPD 
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Figure C.14 CPU vs. number of generations for p15 with strategy-2 for TSPPD 
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Figure C.15 Bestog and Avgog vs. number of generations for p15 with strategy-3 for 

TSPPD 
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Figure C.16 CPU vs. number of generations for p15 with strategy-3 for TSPPD 
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Figure C.17 Bestog, Avgog, and Bestfeas vs. number of generations for p15 with 

strategy-4 for TSPPD 
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Figure C.18 CPU vs. number of generations for p15 with strategy-4 for TSPPD 
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Figure C.19 Bestog, Avgog, and Bestfeas vs. number of generations for p15 with 

strategy-5 for TSPPD 
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Figure C.20 CPU vs. number of generations for p15 with strategy-5 for TSPPD 
 

Due to large computational requirements of REJECT for TSPB, the convergence 

experiment could not be realized for problem p15. For the smaller problem p00, we 

stop earlier, at 10000th generation, because of the same reason. 
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Figure C.21 Bestog and Avgog vs. number of generations for p00 with strategy-1 for 

TSPB 
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Figure C.22 CPU vs. number of generations for p00 with strategy-1 for TSPB 
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Figure C.23 Bestog and Avgog vs. number of generations for p00 with strategy-2 for 

TSPB 
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Figure C.24 CPU vs. number of generations for p00 with strategy-2 for TSPB 
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Figure C.25 Bestog and Avgog vs. number of generations for p00 with strategy-3 for 

TSPB 
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Figure C.26 CPU vs. number of generations for p00 with strategy-3 for TSPB 
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Figure C.27 Bestog, Avgog, and Bestfeas vs. number of generations for p00 with 

strategy-4 for TSPB 
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Figure C.28 CPU vs. number of generations for p00 with strategy-4 for TSPB 
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Figure C.29 Bestog, Avgog, and Bestfeas vs. number of generations for p00 with 

strategy-5 for TSPB 
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Figure C.30 CPU vs. number of generations for p00 with strategy-5 for TSPB 
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Figure C.31 Bestog and Avgog vs. number of generations for p15 with strategy-2 for 

TSPB 
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Figure C.32 CPU vs. number of generations for p15 with strategy-2 for TSPB 
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Figure C.33 Bestog and Avgog vs. number of generations for p15 with strategy-3 for 

TSPB 
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Figure C.34 CPU vs. number of generations for p15 with strategy-3 for TSPB 
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Figure C.35 Bestog, Avgog, and Bestfeas vs. number of generations for p15 with 

strategy-4 for TSPB 
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Figure C.36 CPU vs. number of generations for p15 with strategy-4 for TSPB 
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Figure C.37 Bestog, Avgog, and Bestfeas vs. number of generations for p15 with 

strategy-5 for TSPB 
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Figure C.38 CPU vs. number of generations for p15 with strategy-5 for TSPB 
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APPENDIX D 
 
 

STATISTICAL ANALYSES REGARDING THE EFFECT OF INITIAL 

 POPULATION FOR TSPPD 
 
 
 
In this appendix, ANOVA tables and related plots for determining the effect 

of initial population type on solution quality and computation time are provided for 

each strategy when the stopping conditions are 2000 and Fixedbest. 

 

 

Figure D.1 Normality and residual plots for strategy-1, when stopping condition is 

2000 with response log(DEVb) 

 

 

 

Table D.1 ANOVA table for strategy-1, when stopping condition 2000 with response 

log(DEVb) 

 

 

Analysis of Variance for logdev, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.0105     0.0105     0.0053    0.95  0.395 
problem           19   124.9644   124.9644     6.5771 1189.96  0.000 
initype*problem   38     0.2100     0.2100     0.0055    0.64  0.959 
Error           1740    15.1215    15.1215     0.0087 
Total           1799   140.3065 
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Figure D.2 Normality and residual plots for strategy-1, when stopping condition is 

2000 with response log(CPU) 

 

Table D.2 ANOVA table for strategy-1, when stopping condition 2000 with response 

log(CPU) 

 
Analysis of Variance for logCPU, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2      0.139      0.139      0.069    2.72  0.079 
problem           19    663.173    663.173     34.904 1369.80  0.000 
initype*problem   38      0.968      0.968      0.025    1.26  0.132 
Error           1740     35.119     35.119      0.020 
Total           1799    699.399   
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Figure D.3 Normality and residual plots for strategy-1, when stopping condition is 

8000 with response sqrt(DEVb) 
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Table D.3 ANOVA table for strategy-1, when stopping condition 8000 with response 

sqrt(DEVb) 
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Figure D.4 Normality and residual plots for strategy-1, when stopping condition is 

8000 with response log(CPU) 

 

Table D.4 ANOVA table for strategy-1, when stopping condition 8000 with response 

is log(CPU) 

 
Analysis of Variance for logCPU, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.0548     0.0548     0.0274    0.66  0.523 
problem           19   508.0761   508.0761    26.7408  644.12  0.000 
initype*problem   38     1.5776     1.5776     0.0415    1.10  0.317 
Error           1740    65.8683    65.8683     0.0379 
Total           1799   575.5768   

 

 

 

 

 

Analysis of Variance for sqrtdev, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2      0.069      0.069      0.035    0.49  0.619 
problem           19   1052.986   1052.986     55.420  777.03  0.000 
initype*problem   38      2.710      2.710      0.071    0.86  0.719 
Error           1740    145.061    145.061      0.083 
Total           1799   1200.826   
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Table D.5 ANOVA tables for strategy-2 

 

Stopping condition 2000 
Analysis of Variance for dev, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2       3.97       3.97       1.99    1.06  0.356 
problem           19   18218.63   18218.63     958.88  512.04  0.000 
initype*problem   38      71.16      71.16       1.87    1.32  0.090 
Error           1740    2459.64    2459.64       1.41 
Total           1799   20753.40 
Stopping condition 2000 
Analysis of Variance for CPU, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.0001     0.0001     0.0001    2.45  0.100 
problem           19   311.6065   311.6065    16.4003 7.0E+05  0.000 
initype*problem   38     0.0009     0.0009     0.0000    0.52  0.993 
Error           1740     0.0781     0.0781     0.0000 
Total           1799   311.6856   
Stopping Condition Fixedbest  
Analysis of Variance for dev, using Adjusted SS for Tests  

 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2       2.57       2.57       1.29    3.03  0.060 
problem           19    6671.18    6671.18     351.11  827.05  0.000 
initype*problem   38      16.13      16.13       0.42    0.70  0.918 
Error           1740    1059.70    1059.70       0.61 
Total           1799    7749.59   
Stopping Condition Fixedbest  
Analysis of Variance for logCPU, using Adjusted SS for Tests  

 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.0121     0.0121     0.0060    0.37  0.696 
problem           19   302.7415   302.7415    15.9338  965.42  0.000 
initype*problem   38     0.6272     0.6272     0.0165    1.41  0.049 
Error           1740    20.3176    20.3176     0.0117 
Total           1799   323.6984   
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Table D.6 ANOVA tables for strategy-3 

 
Stopping Condition 2000 
Analysis of Variance for logdev, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.0043     0.0043     0.0021    0.38  0.683 
problem           19   142.6518   142.6518     7.5080 1352.88  0.000 
initype*problem   38     0.2109     0.2109     0.0055    1.21  0.182 
Error           1740     8.0012     8.0012     0.0046 
Total           1799   150.8681 
Stopping Condition 2000 
Analysis of Variance for logCPU, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.0006     0.0006     0.0003    1.74  0.189 
problem           19   150.7840   150.7840     7.9360 4.6E+04  0.000 
initype*problem   38     0.0066     0.0066     0.0002    1.64  0.008 
Error           1740     0.1845     0.1845     0.0001 
Total           1799   150.9756   
Stopping Condition Fixedbest 
Analysis of Variance for logdev, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.0019     0.0019     0.0009    0.19  0.826 
problem           19   113.9628   113.9628     5.9980 1236.19  0.000 
initype*problem   38     0.1844     0.1844     0.0049    1.05  0.394 
Error           1740     8.0715     8.0715     0.0046 
Total           1799   122.2206   
Stopping Condition Fixedbest 
Analysis of Variance for logCPU, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.0006     0.0006     0.0003    1.74  0.189 
problem           19   150.7840   150.7840     7.9360 4.6E+04  0.000 
initype*problem   38     0.0066     0.0066     0.0002    1.64  0.008 
Error           1740     0.1845     0.1845     0.0001 
Total           1799   150.9756   
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Table D.7 ANOVA tables for strategy-4 

 
Stopping Condition 2000 
Analysis of Variance for logdev, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.0080     0.0080     0.0040    0.45  0.639 
problem           19   143.8101   143.8101     7.5690  859.66  0.000 
initype*problem   38     0.3346     0.3346     0.0088    1.28  0.120 
Error           1740    11.9813    11.9813     0.0069 
Total           1799   156.1340   
Stopping Condition 2000 
Analysis of Variance for sqrtcpu, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.0001     0.0001     0.0001    2.22  0.122 
problem           19   115.4462   115.4462     6.0761 2.2E+05  0.000 
initype*problem   38     0.0010     0.0010     0.0000    0.84  0.751 
Error           1740     0.0569     0.0569     0.0000 
Total           1799   115.5043    
Stopping Condition Fixedbest 
Analysis of Variance for sqrtdev, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2      0.281      0.281      0.141    2.42  0.103 
problem           19   1038.689   1038.689     54.668  940.46  0.000 
initype*problem   38      2.209      2.209      0.058    0.87  0.695 
Error           1740    116.156    116.156      0.067 
Total           1799   1157.335    
Stopping Condition Fixedbest 
Analysis of Variance for logcpu, using Adjusted SS for Tests 
 

Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.0289     0.0289     0.0144    1.39  0.262 
problem           19   258.1284   258.1284    13.5857 1307.49  0.000 
initype*problem   38     0.3948     0.3948     0.0104    0.93  0.587 
Error           1740    19.3732    19.3732     0.0111 
Total           1799   277.9252    
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Table D.8 ANOVA tables for strategy-5 

 
Stopping Condition 2000 
Analysis of Variance for logdev, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     1.6686     1.6686     0.8343    4.36  0.020 
problem           19   308.7941   308.7941    16.2523   84.99  0.000 
initype*problem   38     7.2663     7.2663     0.1912   10.43  0.000 
Error           1740    31.9035    31.9035     0.0183 
Total           1799   349.6325  
Stopping Condition 2000 
Analysis of Variance for cpu, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2    205.487    205.487    102.744   16.13  0.000 
problem           19   2391.308   2391.308    125.858   19.76  0.000 
initype*problem   38    242.059    242.059      6.370  278.13  0.000 
Error           1740     39.852     39.852      0.023 
Total           1799   2878.705    
Stopping Condition Fixedbest 
Analysis of Variance for logdev, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.0148     0.0148     0.0074    0.49  0.616 
problem           19   142.2806   142.2806     7.4885  495.90  0.000 
initype*problem   38     0.5738     0.5738     0.0151    1.07  0.351 
Error           1740    24.4778    24.4778     0.0141 
Total           1799   167.3471   
Stopping Condition Fixedbest 
Analysis of Variance for logcpu, using Adjusted SS for Tests 
 

Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.1341     0.1341     0.0670    4.56  0.017 
problem           19   269.1023   269.1023    14.1633  962.54  0.000 
initype*problem   38     0.5591     0.5591     0.0147    1.06  0.379 
Error           1740    24.2570    24.2570     0.0139 
Total           1799   294.0525   
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APPENDIX E 
 
 

STATISTICAL ANALYSES REGARDING THE EFFECT OF STOPPING 
CONDITION FOR TSPPD 

 
 
 
In this appendix, ANOVA tables and related plots for determining the effect 

of stopping condition on solution quality and computation time are provided for each 

strategy when data from the stated initial population types is considered. 
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Figure E.1 Normality and residual plots for strategy-1, with response log(DEVb) 

 

Table E.1 ANOVA table for strategy-1 (5000-8000), when initial population type 

used is inifeas, with response log(DEVb) 

 
Analysis of Variance for logdev, using Adjusted SS for Tests 
 
Source        DF     Seq SS     Adj SS     Adj MS       F      P 
gen            1     0.0013     0.0013     0.0013    8.03  0.011 
problem       19    79.5134    79.5134     4.1849 2.7E+04  0.000 
gen*problem   19     0.0030     0.0030     0.0002    0.02  1.000 
Error       1160     9.1058     9.1058     0.0078 
Total       1199    88.6234   
 
 

 

 

 



 
 
 

134

 

 

Table E.2 ANOVA table for strategy-2 (5000-8000), when initial population type 

used is inirand, with response log(DEVb) 

 

Analysis of Variance for logdev, using Adjusted SS for Tests 
 
 
Source        DF     Seq SS     Adj SS     Adj MS       F      P 
gen            1      28.08      28.08      28.08   20.98  0.000 
problem       19    6147.72    6147.72     323.56  241.77  0.000 
gen*problem   19      25.43      25.43       1.34    1.41  0.111 
Error       1160    1097.93    1097.93       0.95 
Total       1199    7299.16   

 

 

Table E.3 ANOVA table for strategy-3 (5000-8000), when initial population type 

used is inirand, with response log(DEVb) 

 
Source        DF     Seq SS     Adj SS     Adj MS       F      P 
gen            1     0.0037     0.0037     0.0037    1.18  0.292 
problem       19    83.1659    83.1659     4.3772 1398.59  0.000 
gen*problem   19     0.0595     0.0595     0.0031    0.73  0.790 
Error       1160     4.9705     4.9705     0.0043 
Total       1199    88.199 

 

 

Table E.4 ANOVA table for strategy-4 (5000-8000), when initial population type 

used is inirand, with response log(DEVb) 

 
Analysis of Variance for logdev, using Adjusted SS for Tests 
 
Source        DF     Seq SS     Adj SS     Adj MS       F      P 
gen            1     0.0334     0.0334     0.0334   24.40  0.000 
problem       19    84.3398    84.3398     4.4389 3243.41  0.000 
gen*problem   19     0.0260     0.0260     0.0014    0.19  1.000 
Error       1160     8.1489     8.1489     0.0070 
Total       1199    92.5481 
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Table E.5 ANOVA table for strategy-5 (5000-8000), when initial population type 

used is inirand, with response log(DEVb) 

 
Analysis of Variance for logdev, using Adjusted SS for Tests 
 
Source        DF     Seq SS     Adj SS     Adj MS       F      P 
gen            1     0.1084     0.1084     0.1084    5.32  0.033 
problem       19   105.6677   105.6677     5.5615  272.91  0.000 
gen*problem   19     0.3872     0.3872     0.0204    1.52  0.071 
Error       1160    15.5668    15.5668     0.0134 
Total       1199   121.7301   
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APPENDIX F 
 
 

STATISTICAL ANALYSES FOR COMPARING STRATEGIES FOR TSPPD 

 
 
 
In this appendix, the resulting tables of the stattistical tests comducted for 

comparing the five strategy are given. The results of the Levene’s homogeneity test 

and Tamhane’s multiple comparison test are provided.  
  

Table F.1 Levene’s test results  
 

Stopping 
Condition 

Initial 
Population Response F df1 df2 Sig. 

2000 all Log(DEVb) 43.627 99 8900 0.000 
2000 all Log(CPU) 108.556 99 8900 0.000 
2000 inirand Log(DEVb) 13.109 99 2900 0.000 
2000 inirand Log(CPU) 37.394 99 2900 0.000 
5000 all Log(DEVb) 35.409 99 8900 0.000 
5000 all Log(CPU) 112.835 99 8900 0.000 
5000 inirand Log(DEVb) 11.660 99 2900 0.000 
5000 inirand Log(CPU) 41.323 99 2900 0.000 
8000 all Log(DEVb) 31.466 99 8900 0.000 
8000 all Log(CPU) 121.425 99 8900 0.000 
8000 inirand Log(DEVb) 12.443 99 2900 0.000 
8000 inirand Log(CPU) 43.795 99 2900 0.000 

Fixedbest all Log(DEVb) 40.760 79 7120 0.000 
Fixedbest all Log(CPU) 37.268 79 7120 0.000 
Fixedbest inirand Log(DEVb) 16.526 79 2320 0.000 
Fixedbest inirand Log(CPU) 14.017 79 2320 0.000 
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Table F.2 Tamhane’s test results for stopping condition 2000, when all initial 

population types are considered, with responses log(DEVb) and log(CPU) 

 

log(DEVb) log(CPU) 
(I) (J) Mean (I-J) Std. Error Sig. (I) (J) Mean (I-J) Std. Error Sig. 

2 -0.020 0.010 0.329 2 0.870 0.016 0.000 
3 0.039 0.009 0.000 3 0.889 0.016 0.000 
4 0.018 0.010 0.450 4 0.882 0.016 0.000 

1 

5 -0.224 0.012 0.000

1 

5 0.482 0.017 0.000 
1 0.020 0.010 0.329 1 -0.870 0.016 0.000 
3 0.059 0.010 0.000 3 0.019 0.010 0.385 
4 0.038 0.010 0.001 4 0.012 0.010 0.917 

2 

5 -0.204 0.013 0.000

2 

5 -0.388 0.010 0.000 
1 -0.039 0.009 0.000 1 -0.889 0.016 0.000 
2 -0.059 0.010 0.000 2 -0.019 0.010 0.385 
4 -0.021 0.010 0.287 4 -0.007 0.010 0.998 

3 

5 -0.263 0.012 0.000

3 

5 -0.407 0.010 0.000 
1 -0.018 0.010 0.450 1 -0.882 0.016 0.000 
2 -0.038 0.010 0.001 2 -0.012 0.010 0.917 
3 0.021 0.010 0.287 3 0.007 0.010 0.998 

4 

5 -0.242 0.012 0.000

4 

5 -0.400 0.010 0.000 
1 0.224 0.012 0.000 1 -0.482 0.017 0.000 
2 0.204 0.013 0.000 2 0.388 0.010 0.000 
3 0.263 0.012 0.000 3 0.407 0.010 0.000 

5 

4 0.242 0.012 0.000

5 

4 0.400 0.010 0.000 
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Table F.3 Tamhane’s test results for stopping condition 5000, when all initial 

population types are considered, with responses log(DEVb) and log(CPU) 

 

log(DEVb) log(CPU) 
(I) (J) Mean (I-J) Std. Error Sig. (I) (J) Mean (I-J) Std. Error Sig. 

2 0.028 0.009 0.020 2 0.721 0.015 0.000 
3 0.058 0.009 0.000 3 0.747 0.015 0.000 
4 0.038 0.009 0.001 4 0.738 0.015 0.000 

1 

5 -0.096 0.010 0.000

1 

5 0.394 0.016 0.000 
1 -0.028 0.009 0.020 1 -0.721 0.015 0.000 
3 0.029 0.009 0.014 3 0.026 0.010 0.076 
4 0.009 0.009 0.982 4 0.017 0.010 0.586 

2 

5 -0.125 0.010 0.000

2 

5 -0.327 0.010 0.000 
1 -0.058 0.009 0.000 1 -0.747 0.015 0.000 
2 -0.029 0.009 0.014 2 -0.026 0.010 0.076 
4 -0.020 0.009 0.239 4 -0.009 0.010 0.988 

3 

5 -0.154 0.010 0.000

3 

5 -0.352 0.010 0.000 
1 -0.038 0.009 0.001 1 -0.738 0.015 0.000 
2 -0.009 0.009 0.982 2 -0.017 0.010 0.586 
3 0.020 0.009 0.239 3 0.009 0.010 0.988 

4 

5 -0.134 0.010 0.000

4 

5 -0.343 0.010 0.000 
1 0.096 0.010 0.000 1 -0.394 0.016 0.000 
2 0.125 0.010 0.000 2 0.327 0.010 0.000 
3 0.154 0.010 0.000 3 0.352 0.010 0.000 

5 

4 0.134 0.010 0.000

5 

4 0.343 0.010 0.000 
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Table F.4 Tamhane’s test results for stopping condition 8000, when all initial 

population types are considered, with responses log(DEVb) and log(CPU) 

 

log(DEVb) log(CPU) 
(I) (J) Mean (I-J) Std. Error Sig. (I) (J) Mean (I-J) Std. Error Sig. 

2 0.046 0.009 0.000 2 0.660 0.015 0.000 
3 0.066 0.009 0.000 3 0.685 0.015 0.000 
4 0.045 0.009 0.000 4 0.676 0.015 0.000 

1 

5 -0.079 0.010 0.000

1 

5 0.378 0.015 0.000 
1 -0.046 0.009 0.000 1 -0.660 0.015 0.000 
3 0.019 0.009 0.279 3 0.024 0.010 0.108 
4 -0.001 0.009 1.000 4 0.016 0.010 0.655 

2 

5 -0.125 0.010 0.000

2 

5 -0.282 0.010 0.000 
1 -0.066 0.009 0.000 1 -0.685 0.015 0.000 
2 -0.019 0.009 0.279 2 -0.024 0.010 0.108 
4 -0.020 0.009 0.213 4 -0.008 0.010 0.992 

3 

5 -0.144 0.010 0.000

3 

5 -0.306 0.010 0.000 
1 -0.045 0.009 0.000 1 -0.676 0.015 0.000 
2 0.001 0.009 1.000 2 -0.016 0.010 0.655 
3 0.020 0.009 0.213 3 0.008 0.010 0.992 

4 

5 -0.124 0.010 0.000

4 

5 -0.298 0.010 0.000 
1 0.079 0.010 0.000 1 -0.378 0.015 0.000 
2 0.125 0.010 0.000 2 0.282 0.010 0.000 
3 0.144 0.010 0.000 3 0.306 0.010 0.000 

5 

4 0.124 0.010 0.000

5 

4 0.298 0.010 0.000 
 

 

Table F.5 Tamhane’s test results for stopping condition Fixedbest, when all initial 

population types are considered,with responses log(DEVb) and log(CPU) 

 

log(DEVb) log(CPU) 
(I) (J) Mean (I-J) Std. Error Sig. (I) (J) Mean (I-J) Std. Error Sig. 

3 -0.003 0.009 0.999 3 0.082 0.013 0.000 
4 -0.026 0.009 0.020 4 0.090 0.014 0.000 

2 

5 -0.160 0.009 0.000

2 

5 -0.093 0.014 0.000 
2 0.003 0.009 0.999 2 -0.082 0.013 0.000 
4 -0.022 0.009 0.066 4 0.007 0.013 0.993 

3 

5 -0.156 0.009 0.000

3 

5 -0.175 0.013 0.000 
2 0.026 0.009 0.020 2 -0.090 0.014 0.000 
3 0.022 0.009 0.066 3 -0.007 0.013 0.993 

4 

5 -0.134 0.010 0.000

4 

5 -0.183 0.013 0.000 
2 0.160 0.009 0.000 2 0.093 0.014 0.000 
3 0.156 0.009 0.000 3 0.175 0.013 0.000 

5 

4 0.134 0.010 0.000

5 

4 0.183 0.013 0.000 
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APPENDIX G 
 
 

STATISTICAL ANALYSES REGARDING THE EFFECT OF INITIAL 

 POPULATION FOR TSPB 
 
 
 
In this appendix, ANOVA tables and related plots for determining the effect 

of initial population type on solution quality and computation time are provided for 

each strategy when the stopping conditions are 2000 and Fixedbest. 
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Figure G.1 Normality and residual plots for strategy-2, when stopping condition is 

2000 with response DEVopt 

 

 

Table G.1 ANOVA table for strategy-2, when stopping condition 2000 with response 

DEVopt 

 
Analysis of Variance for dev, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2       2.77       2.77       1.39    1.48  0.241 
problem           19    9414.81    9414.81     495.52  528.03  0.000 
initype*problem   38      35.66      35.66       0.94    1.03  0.416 
Error           1740    1581.34    1581.34       0.91 
Total           1799   11034.58   
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Figure G.2 Normality and residual plots for strategy-2, when stopping condition is 

2000 with response log(CPU) 

 

Table G.2 ANOVA table for strategy-2, when stopping condition 2000 with response 

log(CPU) 

 
Analysis of Variance for logCPU, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2    0.00000    0.00000    0.00000    0.16  0.852 
problem           19   17.74282   17.74282    0.93383 2.4E+05  0.000 
initype*problem   38    0.00015    0.00015    0.00000    1.00  0.466 
Error           1740    0.00685    0.00685    0.00000 
Total           1799   17.74982   

 

 
 

Figure G.3 Normality and residual plots for strategy-2, when stopping condition is 

Fixedbest with response DEVopt 
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Table G.3 ANOVA table for strategy-2, when stopping condition Fixedbest with 

response DEVopt 

 
Analysis of Variance for dev, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2      2.688      2.688      1.344    3.88  0.029 
problem           19   4216.431   4216.431    221.917  640.06  0.000 
initype*problem   38     13.175     13.175      0.347    0.62  0.969 
Error           1740    979.526    979.526      0.563 
Total           1799   5211.820   

 

 

 
Figure G.4 Normality and residual plots for strategy-2, when stopping condition is 

Fixedbest with response log(CPU) 

 

 

Table G.4 ANOVA table for strategy-2, when stopping condition Fixedbest with 

response log(CPU) 

 
Analysis of Variance for logCPU, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.0160     0.0160     0.0080    1.82  0.176 
problem           19   173.5177   173.5177     9.1325 2073.89  0.000 
initype*problem   38     0.1673     0.1673     0.0044    0.71  0.910 
Error           1740    10.8451    10.8451     0.0062 
Total           1799   184.5462   
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Table G.5 ANOVA tables for strategy-3 

 

Stopping Condition 2000 
Analysis of Variance for dev, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2       1.25       1.25       0.63    0.68  0.514 
problem           19    6253.58    6253.58     329.14  356.36  0.000 
initype*problem   38      35.10      35.10       0.92    1.06  0.370 
Error           1740    1514.76    1514.76       0.87 
Total           1799    7804.69   

Stopping Condition 2000 
Analysis of Variance for logCPU, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.3963     0.3963     0.1981   96.89  0.000 
problem           19    88.9540    88.9540     4.6818 2289.59  0.000 
initype*problem   38     0.0777     0.0777     0.0020   43.22  0.000 
Error           1740     0.0823     0.0823     0.0000 
Total           1799    89.5103   

Stopping Condition Fixedbest 
Analysis of Variance for logdev, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.0001     0.0001     0.0001    0.00  0.997 
problem           19   104.5358   104.5358     5.5019  288.83  0.000 
initype*problem   38     0.7239     0.7239     0.0190    1.48  0.031 
Error           1740    22.4291    22.4291     0.0129 
Total           1799   127.6888   

Stopping Condition Fixedbest 
Analysis of Variance for logCPU, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     5.2165     5.2165     2.6083   75.35  0.000 
problem           19   246.8849   246.8849    12.9939  375.40  0.000 
initype*problem   38     1.3153     1.3153     0.0346    7.79  0.000 
Error           1740     7.7325     7.7325     0.0044 
Total           1799   261.1492   
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Table G.6 ANOVA tables for strategy-4 

 
Stopping Condition 2000 
Analysis of Variance for dev, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2       0.50       0.50       0.25    0.12  0.887 
problem           19   26520.46   26520.46    1395.81  676.13  0.000 
initype*problem   38      78.45      78.45       2.06    0.97  0.530 
Error           1740    3718.57    3718.57       2.14 
Total           1799   30317.97   
Stopping Condition 2000 
Analysis of Variance for logCPU, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2    0.00005    0.00005    0.00003    9.08  0.001 
problem           19   28.30425   28.30425    1.48970 5.1E+05  0.000 
initype*problem   38    0.00011    0.00011    0.00000    0.80  0.803 
Error           1740    0.00639    0.00639    0.00000 
Total           1799   28.31081 
Stopping Condition Fixedbest 
Analysis of Variance for logdev, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.0465     0.0465     0.0232    1.37  0.266 
problem           19   152.6431   152.6431     8.0338  474.53  0.000 
initype*problem   38     0.6433     0.6433     0.0169    1.07  0.351 
Error           1740    27.4444    27.4444     0.0158 
Total           1799   180.7774   

 
Stopping Condition Fixedbest 
Analysis of Variance for logCPU, using Adjusted SS for Tests 
 
Source            DF     Seq SS     Adj SS     Adj MS       F      P 
initype            2     0.0068     0.0068     0.0034    1.06  0.356 
problem           19   142.8089   142.8089     7.5163 2350.12  0.000 
initype*problem   38     0.1215     0.1215     0.0032    0.91  0.625 
Error           1740     6.1046     6.1046     0.0035 

Total           1799   149.0419   
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APPENDIX H 
 
 

STATISTICAL ANALYSES REGARDING THE EFFECT OF STOPPING  

CONDITION FOR TSPB 
 
 
 
In this appendix, ANOVA tables and related plots for determining the effect 

of stopping condition on solution quality and computation time are provided for each 

strategy when data from the stated initial population types is considered. 

 

 
Figure H.1 Normality and residual plots for strategy-2, with response log(DEVb) 

 

 

Table H.1 ANOVA table for strategy-2 (5000-8000), when initial population type 

used is inifeas, with response log(DEVb) 

 
Analysis of Variance for logdev, using Adjusted SS for Tests 
 
Source        DF     Seq SS     Adj SS     Adj MS       F      P 
gen            1     0.1407     0.1407     0.1407   23.34  0.000 
problem       19   241.2442   241.2442    12.6971 2107.17  0.000 
gen*problem   19     0.1145     0.1145     0.0060    0.55  0.938 
Error       3560    38.7211    38.7211     0.0109 
Total       3599   280.2204   
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Table H.2 ANOVA table for strategy-3 (5000-8000), when initial population type 

used is inifeas, with response log(DEVb) 

 

Analysis of Variance for logdev, using Adjusted SS for Tests 
 
Source        DF     Seq SS     Adj SS     Adj MS       F      P 
gen            1     0.0148     0.0148     0.0148   23.70  0.000 
problem       19   215.8703   215.8703    11.3616 1.8E+04  0.000 
gen*problem   19     0.0119     0.0119     0.0006    0.05  1.000 
Error       3560    46.4143    46.4143     0.0130 
Total       3599   262.3112   

 

 

Table H.3 ANOVA table for strategy-4 (5000-8000), when initial population type 

used is inifeas, with response log(DEVb) 

 
Analysis of Variance for logdev, using Adjusted SS for Tests 
 
Source        DF     Seq SS     Adj SS     Adj MS       F      P 
gen            1     0.0342     0.0342     0.0342   24.27  0.000 
problem       19   311.9561   311.9561    16.4187 1.2E+04  0.000 
gen*problem   19     0.0268     0.0268     0.0014    0.09  1.000 
Error       3560    54.0542    54.0542     0.0152 
Total       3599   366.0713   
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APPENDIX I 
 
 

STATISTICAL ANALYSES FOR COMPARING STRATEGIES FOR TSPB 
 
 
 
In this appendix, the resulting tables of the stattistical tests comducted for 

comparing the five strategy are given. The results of the Levene’s homogeneity test 

and Tamhane’s multiple comparison test are provided.  

 
Table I.1 Levene’s test results  

 

Stopping 
Condition 

Initial 
Population Response F df1 df2 Sig. 

2000 all DEVopt 57.150 59 5340 .000 
2000 all Log(CPU) 152.275 59 5340 .000 
2000 inifeas DEVopt 23.907 59 1740 .000 
2000 inifeas Log(CPU) 27.486 59 1740 .000 
5000 all DEVopt 50.272 59 5340 .000 
5000 all Log(CPU) 155.339 59 5340 .000 
5000 inifeas DEVopt 22.010 59 1740 .000 
5000 inifeas Log(CPU) 34.449 59 1740 .000 
8000 all DEVopt 51.656 59 5340 .000 
8000 all Log(CPU) 122.764 59 5340 .000 
8000 inifeas DEVopt 20.743 59 1740 .000 
8000 inifeas Log(CPU) 37.413 59 1740 .000 

Fixedbest all DEVopt 50.909 59 5340 .000 
Fixedbest all Log(CPU) 43.114 59 5340 .000 
Fixedbest inifeas DEVopt 18.533 59 1740 .000 
Fixedbest inifeas Log(CPU) 15.066 59 1740 .000 
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Table I.2 Tamhane’s test results for stopping condition 2000, when all initial 

population types are considered, with responses DEVopt and log(CPU) 

 

DEVb log(CPU) 
(I) (J) Mean (I-J) Std. Error Sig. (I) (J) Mean (I-J) Std. Error Sig. 

3 0.568 0.076 0.000 3 0.066 0.010 0.000 2 
4 -2.397 0.113 0.000

2 
4 -0.201 0.011 0.000 

2 -0.568 0.076 0.000 2 -0.066 0.010 0.000 3 
4 -2.965 0.109 0.000

3 
4 -0.267 0.010 0.000 

2 2.397 0.113 0.000 2 0.201 0.011 0.000 4 
3 2.965 0.109 0.000

4 
3 0.267 0.010 0.000 

 
 
 

Table I.3 Tamhane’s test results for stopping condition 5000, when all initial 

population types are considered, with responses DEVopt and log(CPU) 

 

DEVb log(CPU) 
(I) (J) Mean (I-J) Std. Error Sig. (I) (J) Mean (I-J) Std. Error Sig. 

3 0.409 0.062 0.000 3 -0.438 0.008 0.000 2 
4 -2.300 0.095 0.000

2 
4 -0.099 0.006 0.000 

2 -0.409 0.062 0.000 2 0.438 0.008 0.000 3 
4 -2.709 0.092 0.000

3 
4 0.339 0.008 0.000 

2 2.300 0.095 0.000 2 0.099 0.006 0.000 4 
3 2.709 0.092 0.000

4 
3 -0.339 0.008 0.000 

 
 

Table I.4 Tamhane’s test results for stopping condition 8000, when all initial 

population types are considered, with responses DEVopt and log(CPU) 

 

DEVb log(CPU) 
(I) (J) Mean (I-J) Std. Error Sig. (I) (J) Mean (I-J) Std. Error Sig. 

3 0.325 0.060 0.000 3 -0.492 0.009 0.000 2 
4 -2.319 0.092 0.000

2 
4 -0.116 0.007 0.000 

2 -0.325 0.060 0.000 2 0.492 0.009 0.000 3 
4 -2.644 0.090 0.000

3 
4 0.376 0.009 0.000 

2 2.319 0.092 0.000 2 0.116 0.007 0.000 4 
3 2.644 0.090 0.000

4 
3 -0.376 0.009 0.000 
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Table I.5 Tamhane’s test results for stopping condition Fixedbest, when all initial 

population types are considered, with responses DEVopt and log(CPU) 

 

DEVb log(CPU) 
(I) (J) Mean (I-J) Std. Error Sig. (I) (J) Mean (I-J) Std. Error Sig. 

3 0.183 0.056 0.003 3 -0.447 0.012 0.000 2 
4 -2.368 0.088 0.000

2 
4 -0.106 0.010 0.000 

2 -0.183 0.056 0.003 2 0.447 0.012 0.000 3 
4 -2.551 0.088 0.000

3 
4 0.341 0.011 0.000 

2 2.368 0.088 0.000 2 0.106 0.010 0.000 4 
3 2.551 0.088 0.000

4 
3 -0.341 0.011 0.000 

 
 
 


