
ANALYSIS OF EVOLUTIONARY ALGORITHMS
FOR CONSTRAINED ROUTING PROBLEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ERDEM DEMİR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

JUNE 2004

iv

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Çağlar Güven

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science

 Asst. Prof. Dr. Haldun Süral

 Supervisor

Examining Committee Members

Assoc. Prof. Dr. Nur Evin Özdemirel (METU - IE) ____________________

Prof. Dr. Murat Köksalan (METU - IE) ____________________

Assoc. Prof. Dr. Canan Sepil (METU - IE) ____________________

Assoc. Prof. Dr. Selim Aktürk (Bilkent Uni. - IE) ____________________

Asst. Prof. Dr. Haldun Süral (METU - IE) ____________________

v

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

 Name, Last name : ERDEM DEMİR

Signature :

iv

ABSTRACT

ANALYSIS OF EVOLUTIONARY ALGORITHMS
FOR CONSTRAINED ROUTING PROBLEMS

Demir, Erdem
M.S., Industrial Engineering

Supervisor : Asst. Prof. Dr. Haldun Süral

June 2004, 149 pages

This study focuses on two types of routing problems based on standard

Traveling Salesman Problem, which are TSP with pickup and delivery (TSPPD) and

TSP with backhauls (TSPB). In both of these problems, there are two types of

customers, i.e. “delivery customers” demanding goods from depot and “pickup

customers” sending goods to depot. The objective is to minimize the cost of the tour

that visits every customer once without violating the side constraints. In TSPB,

delivery customers should precede the pickup customers, whereas the vehicle

capacity should not be exceeded in TSPPD.

The aim of the study is to propose good Evolutionary Algorithms (EA) for

these two problems and also analyze the adaptability of an EA, originally designed

for the standard TSP, to the problems with side constraints. This effort includes

commenting on the importance of feasibility of the solutions in the population with

respect to these side constraints. Having this in mind, different EA strategies

involving feasible or infeasible solutions are designed. These strategies are compared

by quantitative experiments realized over a set of problem instances and the results

are given.

Keywords: TSP with Pickup and Delivery, TSP with Backhauls, Evolutionary

algorithms, Heuristics.

v

ÖZ

EVRİMSEL ALGORİTMALARIN YAN KISITLI ROTALAMA
PROBLEMLERİNDE İNCELENMESİ

Demir, Erdem
Yüksek Lisans., Industrial Engineering

Tez Yöneticisi: Y. Doç. Dr. Haldun Süral

Haziran 2004, 149 sayfa

Bu çalışma Gezgin Satıcı Probleminin iki yan kısıtlı hali üzerinde yoğunlaşır.

Bu problemler, Dağıtım ve Toplamalı Güzergah Bulma Problemi (DTGBP) ve Geri

Yüklemeli Gezgin Satıcı Problemi (GYGSP)’dir. Problemlerde iki çeşit müşteri

vardır: ana depodan ürün talep eden “dağıtım müşterileri” ve ana depoya ürün

göndermek isteyen “toplama müşterileri”. Problemlerin amacı yan kısıtları sağlayan

en az maliyetli turu bulmaktır. Uyulması gereken kısıtlar, birinci problemde araç

kapasitesi, ikinci problemde ise sıralama kısıtıdır.

Bu çalışmanın amacı, DTGBP ve GYGSP için iyi evrimsel algoritmalar (EA)

geliştirmenin yanı sıra, kısıtsız problem için iyi işleyen bir EA’nın kıstlı problemlere

uyarlanmasının incelenmesidir. Algoritma için toplumdaki bireylerin yan kısıtlara

göre olurluğunun önemi üzerine yorum yapmak esastır. Bu bakış açısıyla, olurlu ve

olursuz bireylerle çalışan değişik EA’lar önerdik. Bunlar bilgisiyar ortamında yapılan

deneylerle karşılaştırıldı. Sonuçta önerilen EA’ların iyi işlediği görüldü.

Anahtar Kelimeler: Dağıtım ve Toplama Güzergahı Bulma Problemi (DTGBP), Geri

Toplamalı Gezgin Satıcı Problemi (GTGSP), Evrimsel Algoritmalar, Sezgisel

Yöntemler

vi

To Mom and Dad

vii

ACKNOWLEDGEMENTS

Firstly, I would like to express my gratitude to Asst. Prof. Dr. Haldun Süral

for his patient guidance and understanding. I feel myself lucky to have the chance to

work with such a great researcher and a great person. I must add that this work would

not have been such an enjoyable experience without him.

I would like to thank Assoc. Prof. Nur Evin Özdemirel for her help and

guidance in the initial phases of the study. I should also include Prof. Dr. Murat

Köksalan and Assoc. Prof. Dr. Yasemin Serin in the list for their kind and valuable

comments on statistical analyses realized in the study.

My family is always there for me. It is never enough no matter how much I

thank them. Anyway I will repeat once more. I would like to thank my dearest mom,

Cevriye Demir, my dad, İsmail Demir, and my brother, Umut Demir. Their love and

support were with me throughout the study.

I would like to thank all my friends. Special thanks go to Tolga Işıkyıldız for

his existence, for his understanding, support, and care, and Koray Başar for his

valuable company. It is very hard to write what I feel about you guys.

I felt the warm support of my old pals Müge Çavdaroğlu and Özge Şahin all

the time even if they were miles away and I thank them here for what they add to this

study and to my personality as well.

I think the value of this educational experience remains faint compared to

what it brought on the friendship basis. I would like to thank Ertuğrul Yurdakul,

Gökçe İnce, Burcu Yalım, Elvin Karana for what they brought to my life.

In my hardest times METU IE assistants were always near. I would like to

thank all of them especially my roommates Kevser Öztürk, Burcu Balçık, and Selin

Bilgin.

viii

TABLE OF CONTENTS

ABSTRACT..

ÖZ..

ACKNOWLEDGEMENTS..

TABLE OF CONTENTS..

LIST OF TABLES..

LIST OF FIGURES..

CHAPTER

1. INTRODUCTION..…..................

2. LITERATURE SURVEY..…............

2.1 The Traveling Salesman Problem with Pickup and Delivery.......…..........

2.2 The Traveling Salesman Problem with Backhauls.....................…..........

2.3 Relation to Other Routing Problems...

2.4 Applications in Industry...

2.5 Solution Procedures...

2.6 Metaheuristics and Complex Routing Problems...

3. PROPOSED ALGORITHMS..

3.1 General EA Components………………………….................................

3.2 Feasibility Seeking Algorithms..

3.2.1 Rejecting Infeasible Solutions (REJECT)………………….........

3.2.2 Modified Crossover Operator (CONSTRUCT)………………….

3.2.3 Repairing Infeasible Solutions (REPAIR)……………………….

3.3 Infeasibility Penalizing Algorithms…………………………………….

3.3.1 Penalizing by Repairing (PEN_REPAIR)………………………….

3.3.2 Penalizing by Adaptive Penalty Scheme (PEN_ADAPT)……….

4. EXPERIMENTAL RESULTS……………………………………………..

4.1 Experiment Settings…………………………………………………….

4.2 Experimental Factors……………………………………………………

iv

v

vii

viii

x

xiii

1

5

5

7

10

12

13

19

22

23

34

34

37

40

42

44

45

50

50

56

ix

4.3 Results for TSP…………………………………………………………

4.4 Results for TSPPD……………………………………………………….

4.4.1 Results for REJECT (Strategy-1)…………………………………

4.4.2 Results for CONSTRUCT (Strategy-2)…………………………

4.4.3 Results for REPAIR (Strategy-3)…………………………………

4.4.4 Results for PEN_REPAIR (Strategy-4)……………………………

4.4.5 Results for PEN_ADAPT (Strategy-5)…………………………

4.4.6 Comparison of Strategies…………………………………………

4.4.7 Comparison with the Work of Gendreau et al………………..

4.4.8 Comparison with Nearest Neighbor Heuristic with Repair………

4.5 Results for TSPB…………………………………………………………

4.5.1 Results for REJECT (Strategy-1)…………………………………

4.5.2 Results for CONSTRUCT (Strategy-2)…………………………

4.5.3 Results for REPAIR (Strategy-3)…………………………………

4.5.4 Results for PEN_REPAIR (Strategy-4)……………………………

4.5.5 Results for PEN_ADAPT (Strategy-5)…………………………

4.5.6 Comparison of Strategies……………………………………..

4.5.7 Comparison with Nearest Neighbor Heuristic with Repair………

4.5.8 Comparison with Solving Corresponding ATSP Instance……..…

4.6 Concluding Remarks……………………………………………………..

5. CONCLUSION………………………………………………………………

REFERENCES……………………………………………………………………

APPENDIX A………………………………………………………………………

APPENDIX B………………………………………………………………………

APPENDIX C………………………………………………………………………

APPENDIX D………………………………………………………………………

APPENDIX E………………………………………………………………………

APPENDIX F………………………………………………………………………

APPENDIX G………………………………………………………………………

APPENDIX H………………………………………………………………………

APPENDIX I……………………………………………………………………..……

60

63

65

68

69

71

71

75

78

80

81

81

82

84

87

87

91

91

94

95

97

101

107

110

111

126

133

136

140

145

147

x

LIST OF TABLES

TABLE

2.1 The original cost matrix for a TSPB instance .. 8

2.2 The updated cost matrix for the TSPB instance .. 8

3.1 The cost matrix for a symmetric TSP problem .. 29

4.1 Performance measures and statistics used ... 52

4.2 The test problems .. 55

4.3 Performance of EA in TSP when population size is 50 61

4.4 Performance of EA in TSP when population size is 100 62

4.5 Performance of REJECT for TSPPD .. 66

4.6 Performance of CONSTRUCT for TSPPD .. 68

4.7 Performance of REPAIR for TSPPD ... 70

4.8 Performance of PEN_REPAIR for TSPPD ... 73

4.9 Performance of PEN_ADAPT for TSPPD .. 74

4.10 Overall results for TSPPD ... 75

4.11 Indifference groups constructed by the result of the Tamhane’s T2 test 76

4.12 Results of the heuristics of Gendreau et al. and our EA’s 79

4.13 Results of the NN with repair heuristic for TSPPD 80

4.14 Performance of REJECT for TSPB .. 81

4.15 Comparison of REJECT with other strategies regarding computational time and

solution quality for the small test bed ... 82

4.16 Results for CONSTRUCT for TSPB .. 84

4.17 Results for REPAIR for TSPB ... 86

4.18 Results for PEN_REPAIR for TSPB .. 88

4.19 Deviation of the best solution found from the optimal solution value for

different versions of PEN_ADAPT proposed for TSPB 89

4.20 Results for PEN_ADAPT for TSPB .. 90

4.21 Overall results for TSPB .. 92

4.22 Indifference groups constructed by the result of the Tamhane’s T2 test 93

xi

4.23 Results of the NN with repair heuristic for TSPB .. 93

4.23 Overall results and results of TRANS for TSPB 94

B.1 Optimal values for different problem types ... 110

D.1 ANOVA table for strategy-1, when stopping condition 2000 with response

log(DEVb) .. 126

D.2 ANOVA table for strategy-1, when stopping condition 2000 with response

logarithm of CPU ... 127

D.3 ANOVA table for strategy-1, when stopping condition 8000 with response

sqrt(DEVb) ... 128

D.4 ANOVA table for strategy-1, when stopping condition 8000 with response is

log(CPU) .. 128

D.5 ANOVA tables for strategy-2 ... 129

D.6 ANOVA tables for strategy-3 ... 130

D.7 ANOVA tables for strategy-4 ... 131

D.8 ANOVA tables for strategy-5 ... 132

E.1 ANOVA table for strategy-1 (5000-8000), when initial population type used is

inifeas, with response log(DEVb) ... 133

E.2 ANOVA table for strategy-2 (5000-8000), when initial population type used is

inirand, with response log(DEVb) ... 134

E.3 ANOVA table for strategy-3 (5000-8000), when initial population type used is

inirand, with response log(DEVb) ... 134

E.4 ANOVA table for strategy-4 (5000-8000), when initial population type used is

inirand, with response log(DEVb) ... 134

E.5 ANOVA table for strategy-5 (5000-8000), when initial population type used is

inirand, with response log(DEVb) ... 135

F.1 Levene’s test results ... 136

F.2 Tamhane’s test results for stopping condition 2000, when all initial population

types are considered, with responses log(DEVb) and log(CPU) 137

F.3 Tamhane’s test results for stopping condition 5000, when all initial population

types are considered, with responses log(DEVb) and log(CPU) 138

F.4 Tamhane’s test results for stopping condition 8000, when all initial population

types are considered, with responses log(DEVb) and log(CPU) 139

xii

F.5 Tamhane’s test results for stopping condition Fixedbest, when all initial

population types are considered, with responses log(DEVb) and log(CPU) 139

G.1 ANOVA table for strategy-2, when stopping condition 2000 with response

DEVopt ... 140

G.2 ANOVA table for strategy-2, when stopping condition 2000 with response

log(CPU) ... 141

G.3 ANOVA table for strategy-2, when stopping condition Fixedbest with response

DEVopt ... 142

G.4 ANOVA table for strategy-2, when stopping condition Fixedbest with response

log(CPU) ... 142

G.5 ANOVA tables for strategy-3 .. 143

G.6 ANOVA tables for strategy-4 .. 144

H.1 ANOVA table for strategy-2 (5000-8000), when initial population type used is

inifeas, with response log(DEVb) .. 145

H.2 ANOVA table for strategy-3 (5000-8000), when initial population type used is

inifeas, with response log(DEVb) ... 146

H.3 ANOVA table for strategy-4 (5000-8000), when initial population type used is

inifeas, with response log(DEVb) ... 146

I.1 Levene’s test results ... 147

I.2 Tamhane’s test results for stopping condition 2000, when all initial population

types are considered, with responses DEVopt and log(CPU) 148

I.3 Tamhane’s test results for stopping condition 5000, when all initial population

types are considered, with responses DEVopt and log(CPU) 148

I.4 Tamhane’s test results for stopping condition 8000, when all initial population

types are considered, with responses DEVopt and log(CPU) 148

I.5 Tamhane’s test results for stopping condition Fixedbest, when all initial

population types are considered, with responses DEVopt and log(CPU) 149

xiii

LIST OF FIGURES

FIGURE

2.1 (a) A feasible route for TSPPD; (b) a feasible route for TSPB …………… 9

2.2 Relationships among 1/β/γ problems and TSP …………...………………. 11

3.1 The pseudo code of method 1 for initial population generation ……...…... 25

3.2 The pseudo code of method 2 for initial population generation …........….. 26

3.3 The pseudo code of method 3 for initial population generation ………….. 26

3.4 Illustration of reproduction when two parents are the same ……………..... 30

3.5 The flowchart of the general EA ………………………………………….. 33

3.6 Combined SELECTION and REPRODUCTION routines for REJECT ….. 35

3.7 Alternative reproduction schemes in REJECT…………….……………...... 36

3.8 NFN crossover operator routine …………….…………….…………….… 38

3.9 An infeasible TSPPD tour (a) and the repaired TSPPD tour (b) ….………. 41

3.10 An infeasible TSPB tour (a) and the repaired TSPB tour (b) …………….... 43

3.11 Example for computing di(x,B)’s for TSPPD …………….……………....... 48

3.12 Example for computing di(x,B)’s for TSPB …………….………….……... 49

4.1 (a) FB and FA vs. number of generations and (b) CPU vs. number of

generations for CONSTRUCT with inirand for the small problem instance…. 59

4.2 (a) FB and FA vs. number of generations and (b) CPU vs. number of

generations for REPAIR with inirand for the large problem instance………. 60

4.3 CPU vs. number of generations for REJECT in inifeas for p15 67

A.1 An instance of TSPB ... 107

A.2 ATSP instance corresponding to the TSPB instance given ……………….. 108

A.3 STSP instance corresponding to the TSPB instance given ……………….. 109

C.1 Bestog and Avgog vs. number of generations for p00 with strategy-1 for
TSPPD
 ...……..111
C.2 CPU vs. number of generations for p00 with strategy-1 for TSPPD …...…. 112

xiv

C.3 Bestog and Avgog vs. number of generations for p00 with strategy-2 for

TSPPD .. 112

C.4 CPU vs. number of generations for p00 with strategy-2 for TSPPD ………. 112

C.5 Bestog and Avgog vs. number of generations for p00 with strategy-3 for

TSPPD...……... 113

C.6 CPU vs. number of generations for p00 with strategy-3 for TSPPD …........ 113

C.7 Bestog, Avgog, and Bestfeas vs. number of generations for p00 with strategy-4

for TSPPD…….…………….…………….…………….……………….......... 114

C.8 CPU vs. number of generations for p00 with strategy-4 for TSPPD 114

C.9 Bestog, Avgog, and Bestfeas vs. number of generations for p00 with strategy-5

for TSPPD………….…………….…………….……............……….… 115

C.10 CPU vs. number of generations for p00 with strategy-5 for TSPPD 115

C.11 Bestog and Avgog vs. number of generations for p15 with strategy-1 for

TSPPD ...…….. 115

C.12 CPU vs. number of generations for p15 with strategy-1 for TSPPD …...…. 116

C.13 Bestog and Avgog vs. number of generations for p15 with strategy-2 for

TSPPD .. 116

C.14 CPU vs. number of generations for p15 with strategy-2 for TSPPD ………. 116

C.15 Bestog and Avgog vs. number of generations for p15 with strategy-3 for

TSPPD...……... 117

C.16 CPU vs. number of generations for p15 with strategy-3 for TSPPD …........ 117

C.17 Bestog, Avgog, and Bestfeas vs. number of generations for p15 with strategy-4

for TSPPD…….…………….…………….…………….……………….......... 118

C.18 CPU vs. number of generations for p15 with strategy-4 for TSPPD 118

C.19 Bestog, Avgog, and Bestfeas vs. number of generations for p15 with strategy-5

for TSPPD………….…………….…………….……............……….… 118

C.20 CPU vs. number of generations for p15 with strategy-5 for TSPPD 119

C.21 Bestog and Avgog vs. number of generations for p00 with strategy-1 for TSPB

..……................. 119

C.22 CPU vs. number of generations for p00 with strategy-1 for TSPB …...…. 120

C.23 Bestog and Avgog vs. number of generations for p00 with strategy-2 for TSPB

... 120

xv

C.24 CPU vs. number of generations for p00 with strategy-2 for TSPB ………. 120

C.25 Bestog and Avgog vs. number of generations for p00 with strategy-3 for TSPB

..……... 121

C.26 CPU vs. number of generations for p00 with strategy-3 for TSPB ….......... 121

C.27 Bestog, Avgog, and Bestfeas vs. number of generations for p00 with strategy-4

for TSPB…….…………….…………….…………….………………............ 121

C.28 CPU vs. number of generations for p00 with strategy-4 for TSPB 122

C.29 Bestog, Avgog, and Bestfeas vs. number of generations for p00 with strategy-5

for TSPB………….…………….…………….……............……….… 122

C.30 CPU vs. number of generations for p00 with strategy-5 for TSPB 122

C.31 Bestog and Avgog vs. number of generations for p15 with strategy-2 for TSPB

... 123

C.32 CPU vs. number of generations for p15 with strategy-2 for TSPB ………. 123

C.33 Bestog and Avgog vs. number of generations for p15 with strategy-3 for TSPB

..……... 123

C.34 CPU vs. number of generations for p15 with strategy-3 for TSPB …........ 124

C.35 Bestog, Avgog, and Bestfeas vs. number of generations for p15 with strategy-4

for TSPB…….…………….…………….…………….……………….......... 124

C.36 CPU vs. number of generations for p15 with strategy-4 for TSPB 124

C.37 Bestog, Avgog, and Bestfeas vs. number of generations for p15 with strategy-5

for TSPB………….…………….…………….……............……….… 125

C.38 CPU vs. number of generations for p15 with strategy-5 for TSPB 125

D.1 Normality and residual plots for strategy-1, when stopping condition is 2000

with response log(DEVb)……….…………….…………….....……… 126

D.2 Normality and residual plots for strategy-1, when stopping condition is 2000

with response log(CPU)…………….…………….…………….………... 127

D.3 Normality and residual plots for strategy-1, when stopping condition is 8000

with response sqrt(DEVb) …...............…….…………….…………….....……… 127

D.4 Normality and residual plots for strategy-1, when stopping condition is 8000

with response log(CPU)…………….…………….…………….………... 128

E.1 Normality and residual plots for strategy-1, with response log(DEVb) 133

xvi

G.1 Normality and residual plots for strategy-2, when stopping condition is 2000

with response DEVopt .. 140

G.2 Normality and residual plots for strategy-2, when stopping condition is 2000

with response log(CPU) ... 141

G.3 Normality and residual plots for strategy-2, when stopping condition is

Fixedbest with response DEVopt ... 141

G.4 Normality and residual plots for strategy-2, when stopping condition is

Fixedbest with response log(CPU) ... 142

H.1 Normality and residual plots for strategy-2, with response log(DEVb) 145

1

CHAPTER 1

INTRODUCTION

Due to very large costs associated with physical distribution in logistics

systems, the routing problems have been attracting attention of transportation

scientists as well as operational researchers. In past 30 years, many papers have been

devoted to introducing and defining various routing problems, which have different

objectives and constraints, and to developing efficient solution techniques that can be

implemented in real life easily. Bodin and Golden (1981) summarize benefits of

designing and managing the routing systems efficiently and point on significant

savings that can be achieved.

The distribution systems cannot simply be considered as a delivery system.

Generally, distribution of goods involves also collection of some other related goods

such as empty bottles for a brewery distribution company. Further efficiency can be

achieved by integrating these delivery and pickup activities in the same routes. In

literature, this option is commonly called “backhauling”. The term backhaul is also

used interchangeably by “pickup and delivery” in some references. Bodin et al.

(1983) discuss the importance of delivering and picking up in the same routes,

providing its real life applications. Goetschalckx and Jacobs-Blecha (1986) referring

to the report of Kearney, point on the large annual distribution costs for US, and

report potential savings that can be achieved by integrating pickups and deliveries.

They provide an example from the grocery store industry, where the saving due to

this integration is $165 million.

In this study, we have narrowed our attention to the single vehicle routing

problems with pickup and delivery, where only one route is to be designed. Single

vehicle problems constitute a basis for multi-vehicle cases, which are harder to deal

with. Specifically, we have selected the traveling salesman problem with pickup and

delivery (TSPPD) and the traveling salesman problem with backhauls (TSPB). In

both problems, a single vehicle visits two customer sets, namely, delivery and pickup

2

customers, and it satisfies the demands of all customers. The vehicle capacity is the

main constraint in TSPPD. When there is no free capacity on the vehicle, it cannot

visit a pickup customer to collect the goods. The two problems differ from each other

in the sense that in TSPB, pickup customers can only be visited after visiting all

delivery customers. These precedence relations among customers are the main

constraints in TSPB.

The traveling salesman problem (TSP), where a set of customers is to be

visited by a single vehicle, constitutes a natural basis for these problems. We can

refer to this problem as the unconstrained case of our problems, since the vehicle

capacity constraint and the precedence constraint are relaxed and the differentiation

between customer sets is removed. TSP is known to be NP-hard. Since the problems

under consideration are generalization of it, they are also NP-hard, which implies

that they will resist, like TSP, all efforts to find a good optimization algorithm.

 Exact solution algorithms for TSP can solve instances with size up to 3000

customers. However, Rego and Glover (2002) point on the impractical times required

for solving instances of size larger than 1000 at optimality. Even for modest size

problems, exact methods require substantially greater computation time than leading

heuristic methods. Heuristics are capable of finding optimal or very-close to-optimal

solutions for instances larger than those reasonably attempted by exact methods.

Even when the optimal solutions are sought for real life problems despite the large

time requirements, the implementation requires extensive OR and computing

expertise, which consolidate the impracticality of these methods. When side

constraints accompany the standard TSP, like in backhauling case, heuristics gain

importance. The exact methods attempting to solve these constrained cases may not

deal with very large instances at all.

Among the approximation techniques, metaheuristics are gaining popularity.

In both Computer Science and Operations Research literatures, there are many

successful metaheuristic applications for solving TSP. In the second domain,

metaheuristics were also used for the constrained cases of this problem. These

modern methods can provide solutions where the conventional heuristics cannot find,

but they require more time. Specifically, Evolutionary Algorithms (EA), which

incorporate continuous improvement of a population of solutions, proved to give

3

successful results for TSP. However, the literature lacks EA applications for TSP

with side constraints.

Actually, applying EAs to the problems with side constraints is not a trivial

task regarding feasibility. Even for TSP, such algorithms should be modified in order

to eliminate subtours. By the help of problem specific encoding and reproduction

schemes, this problem has been overcame at the expense of the original binary

structure and the initial “Genetic Algorithms” name. For the constrained cases, the

feasibility with respect to these additional constraints makes the problem harder. In

the literature, several constraint handling techniques are reported. Unfortunately, to

our knowledge, no work on comparing these techniques for generalizations of TSP

exists.

In this regard, we tried to analyze and compare these different constraint

handling techniques in the domain of single vehicle routing problems with pickup

and deliveries. Initially, we select an EA that has been proved to work well for the

unconstrained case, i.e., the “naked” TSP. To deal with additional constraints (i.e.,

the capacity constraint for TSPPD and the precedence constraint for TSPB), we

implement several different constraint handling techniques. Our techniques can be

grouped into two. The first group works with feasible solutions only: specifically,

simply rejecting infeasibility, modifying the crossover for ensuring feasibility, and

repairing the infeasible solutions. In the second group infeasible solutions are

permitted to exist in the population, however, the chance for them to pass their

genetic code to a new solution is reduced. This later technique is known as

penalizing infeasible solutions.

 Although we specifically work on TSPPD and TSPB, the work aims at

providing a general insight for the performance of the specific constraint handling

techniques on the routing problems with side constraints. In the solution procedures

proposed, we simply try to find good solutions for the constrained cases while

realizing the search in the solution space of the unconstrained problem. In this

respect, these two problems differ in hardness to find feasible solutions during the

search. The solution space of TSPB is a subset of the solution space of TSPPD, and

therefore, feasibility is harder to maintain for TSPB. Problem focusing on problems

differing in “hardness” of the associated constraints provides a better insight for

4

generalization. Nevertheless, we also want to propose good EAs for these specific

problems at the end.

 In this study, we basically adapt an EA that works well for TSP to solve the

constrained TSP problems. In this adaptation, five versions of the algorithm by

utilizing the constraint handling techniques mentioned above are proposed. In the

first version, the algorithm keeps producing new solutions until a feasible child is

produced. The infeasible solutions are simply discarded. The second version uses a

modified crossover operator, which produces solutions that are feasible with respect

to side constraints. The third one repairs any infeasible solution produced. Fourth and

fifth versions permit infeasible solutions to enter the population, however, penalize

their fitness values with different penalizing schemes. In order to measure the

performance of these strategies, we conduct computational experiments on test beds

taken from the literature. Promising results are obtained for some of the algorithms.

 This study is organized as follows. In Chapter 2, our specific problems,

namely, TSPPD and TSPB, are defined and their related literature is reviewed.

Chapter 3 presents the EA algorithms proposed. Firstly, the features of the general

algorithm are explained and then the specific strategies differing in utilized constraint

handling techniques are explained. The experimental results of these algorithms for

TSPPD and TSPB are provided in Chapter 4. The study is finalized by the conclusive

remarks in Chapter 5.

5

CHAPTER 2

LITERATURE SURVEY

 The traveling salesman problem (TSP) is a well known combinatorial

optimization problem, where n customers are to be visited on a tour of a single

vehicle. The tour should start at the depot. After visiting all of the customers once it

should end at the depot. The objective is to minimize the length of this tour. The

problem can be defined on an undirected complete graph G = (V, E), where V

represents the nodes located at the customer points and the depot, and E represents

the edges between the nodes. For every edge {i,j}∈ E, there is a cost cij associated

with it.

This chapter, focusing on the constrained cases of TSP, provides a literature

survey of related problems and solution approaches. Specifically, the problems

studied are the traveling salesman problem with pickup and delivery (TSPPD) and

the traveling salesman problem with backhauls (TSPB). The main difference

between them and TSP is that there are two sets of customers in these variants: D, the

set of delivery customers, and P, the set of pickup customers.

 In the following sections, the relation of TSPPD and TSPB with the other

constrained routing problems is discussed. The examples of applications are provided

from industry. The chapter also includes the solution approaches proposed in the

literature. The chapter is finalized by a brief overview of metaheuristic applications

for routing problems.

2.1 The Traveling Salesman Problem with Pickup and Delivery

 In the traveling salesman problem with pickup and delivery, each delivery

customer demands di (i∈D) units of load from the central depot; whereas the pickup

customers are required to send pj (j∈P) units of load to the depot. In this problem, a

single vehicle with a capacity Q has to visit every customer once while satisfying the

6

requirements. The main difference from TSP is due to the additional constraint on

vehicle capacity that can not be exceeded. For feasibility, Q should be greater than or

equal to the maximum of total delivery load and total pickup load; otherwise, the

problem is immediately infeasible.

 In the literature, there are two different environments referring to this

problem (Nagy and Salhi 2004). In the first one, each customer is either a delivery

customer or pickup customer (i.e., mixed version). In the other environment, at each

customer the vehicle should leave some amount of load and pick some other amount

at the same visit (i.e., simultaneous version). In fact, the second environment can be

treated as the first one by computing the net demand ti of the customer i as the

difference between the quantity to be picked up from and the quantity to be delivered

to. If the net demand of a customer is negative, then it can be regarded as a delivery

customer, otherwise the customer turns out to be a pickup customer. Note that a

customer with “0” net demand does not influence the vehicle capacity, but still has to

be included in the tour.

 The problem gets harder to solve when the total amount of delivery loads

equals to the total amount of pickup loads and to vehicle capacity. In this case the

vehicle starts the tour with full delivery load, visits every customer, and returns to the

depot with full of pickup loads. In our study, we focused on this setting of the

problem.

 Süral and Bookbinder (2003) proposed a mathematical formulation for the

single vehicle routing problems with backhauls. This formulation can be easily

modified for TSPPD. Let n be the total number of customers, n = |D| + |P|. Let TD

and TP denote the total delivery load and the total pickup load, respectively.

Let xij = 1 if the customer i immediately precedes customer j (i≠ j); 0 otherwise,

 yi = total load on the vehicle to be delivered after serving customer i,

zi = total load picked-up just before serving customer i,

7

Minimize ij ij
i j

c x∑∑ (2.1)

st.

0

1,
=

=∑
n

ij
i

x j∀ (2.2)

0,ij ki
j k

x x− =∑ ∑ i∀ (2.3)

j i ij jy y TDx TD d− + ≤ − , (, 0)i j i j∀ ≠ (2.4)

 i j ij iz z TPx TP p− + ≤ − , (, 0)i j i j∀ ≠ (2.5)

i i i iy z Q d p+ ≤ − − (0)i i∀ ≠ (2.6)

, 0;i i ijy z x≥ = 0 or 1 ,i j∀ (2.7)

The objective function (2.1) gives the total cost of traversed edges. The

constraints (2.2) and (2.3) are the assignment constraints. (2.4) and (2.5) are

adaptations of the Miller Tucker Zemlin subtour elimination constraints for TSP. The

first one updates the delivery load on the vehicle whereas the second updates the

pickup load. Constraints (2.6) restrict the solution to be feasible with respect to

vehicle capacity. Constraints (2.7) are the nonnegativity and integrality constraints.

2.2 The Traveling Salesman Problem with Backhauls

 The traveling salesman problem with backhauls resembles TSPPD in

customer differentiation aspect. However, there is an additional precedence

constraint, which forces any pickup customer to be visited only after all of the

delivery customers are visited. Here, the vehicle capacity is not a restricting factor as

long as the total amount of load to be delivered and picked up does not exceed

vehicle capacity.

 The formulation given for TSPPD can be used for TSPB also. However, an

additional constraint should be introduced into the formulation, which rejects any

tour including an edge from a pickup node to a delivery node. Therefore, the model

should include (2.1) - (2.5), (2.7), and the following additional constraint.

8

ijx = 0 , (,)i j i P j D∀ ∈ ∈ (2.8)

 TSPB can also be formulated as an asymmetric TSP by updating the cost

matrix (Gendreau et al. 1997). When the costs of edges directed from any pickup

node to any delivery node are penalized by adding a sufficiently large number to the

initial costs of these edges, the optimal TSP tour will surely be free from these

unattractive edges, and will make the resulting tour feasible with respect to

precedence constraints.

To give an example, the following cost matrix is provided in Table 2.1 for a

TSPB instance. Node 0 represents the depot. Nodes 1, 2, and 3 stand for the delivery

customers while nodes 4 and 5 stand for the pickup customers. Table 2.2 shows the

updated cost matrix where entries indicate that the edges directed from pickups to

deliveries are penalized by a constant M. M should be large enough in order to make

any solution violating “the precedence constraint” worse than the optimal solution to

TSPB. An immediate value for M is the sum of row maximums of the matrix. A

looser value for M can be defined as the sum of all nonnegative edge costs.

Table 2.1 The original cost matrix for a TSPB instance

 0 1 2 3 4 5

0 - 12 6 4 3 5

1 9 - 8 7 12 4

2 16 7 - 3 13 8

3 12 3 11 - 9 12

4 11 8 4 9 - 11

5 2 13 17 6 6 -

Table 2.2 The updated cost matrix for the TSPB instance

 0 1 2 3 4 5

0 - 12 6 4 3 5

1 9 - 8 7 12 4

2 16 7 - 3 13 8

3 12 3 11 - 9 12

4 11 8+M 4+M 9+M - 11

9

5 2 13+M 17+M 6+M 6 -

 If the updated cost matrix is solved by an exact TSP solver, any solution that

uses a penalized edge ceases to be optimal TSP tour. The solutions that do not use

these edges will surely be feasible with respect to the TSPB constraints. Therefore,

the optimal TSP tour for this cost matrix equals the optimal TSPB tour.

In Figure 2.1, tours for TSPPD and TSPB are provided for an example

problem instance involving 10 customers. White nodes and black nodes represent

delivery and pickup customers, respectively. The white box represents the depot. The

black numbers around nodes represent the net quantity demanded. The gray numbers

on arcs represent the total load on vehicle while traversing that edge.

Figure 2.1 (a) A feasible route for TSPPD; (b) a feasible route for TSPB

10 7

8

7

9
5

8
7

8
7

10
(a)

+3

+2

+1
+1

+3

-4

-3

-1

-1

-1

(b)

+3

+2

+1
+1

+3

-4

-3

-1

-1

-1

10

9

8

4

0 3

1

3

6

7
10

10

2.3 Relation to Other Routing Problems

 TSPPD and TSPB are important sub-problems for multi-vehicle routing

applications. If a cluster first-route second approach is considered to solve the multi-

vehicle case, the routing problem in each cluster can be regarded as a TSPPD or

TSPB.

 Süral and Bookbinder (2003) provide a classification of the routing problems

with backhaul options. In their α/β/γ representation, α stands for the number of

vehicles associated, β refers to backhaul service options and γ identifies whether a

precedence restriction between pickup and delivery customers exists or not. The

problems under consideration for our work are of “α=1 and β=must” type, which

implies that only one vehicle is utilized and all of the pickup customers are to be

serviced. Other than these problems, the authors also investigated “β=free” problems,

referring to the cases where visiting pickup nodes is optional. The vehicle collects

revenue from each pickup customer and only the profitable pickup nodes are

included in the tour. The assumption beneath this type of environments is that

discarded nodes are to be served by common carriers. In “γ=any” problems, there is

no precedence relationship between delivery and pickup customers. However, in

“γ=prec” type problems, the delivery customers should precede pickup customers.

Following this notation, TSPPD and TSPB can be referred as 1/must/any and

1/must/prec, respectively.

 In their work, Süral and Bookbinder (2003) also investigate the relationship

between these variants and TSP. Figure 2.2 provides a schematic representation of

the relationship between these problems. In this figure, an arrow means that the

problem which it emanates from is a special case of the problem that the arrow

points. Therefore, any algorithm that can be used to solve the pointed problem can

also solve the pointing problem. In this sense, TSP can be regarded as a special case

of TSPPD and TSPB, where one of customer sets is empty. Hence any algorithm that

solves these problems in linear time can also solve TSP, which proves that both

problems are NP-hard problems. 1/must/any problems can be transformed to

1/must/prec problems by adding a large constant M on the cost of between delivery

11

and pickup nodes and of arcs from depot to pickup nodes. Any algorithm that can

solve 1/free/any problem can also solve 1/must/any as the former problem can be

transformed to the later one by adding sufficiently large constant M to the revenues

of the pickup customers.

Figure 2.2 Relationships among 1/β/γ problems and TSP

 1/free/prec is not discussed in Süral and Bookbinder (2003). For the sake of

completeness, we introduce the 1/free/prec problem and relate it to the other variants

in this work. 1/must/prec is a special case of 1/free/prec where the revenues to be

gathered from pickup customers are irresistibly large. In this case, any algorithm that

can solve 1/free/prec can also solve 1/must/prec. Therefore, we add a new arrow

(shown in gray) pointing 1/free/prec from 1/must/prec. One can also transform

1/free/any into 1/free/prec by adding a sufficiently large M value to the costs of those

arcs from pickup nodes to delivery nodes and also to those from depot to pickup

nodes. The arrow between 1/free/any and 1/free/prec represents the possibility of

such a transformation.

 The TSPPD can find fairly short tours but visiting pickup customers at any

order along the tour may create inefficiencies regarding loading/unloading activities.

On the other extreme, when pickups constrained to be visited after finishing all

deliveries, loading and unloading can be realized easily, However, this time tour

length increases considerably. Wade and Salhi (2002) introduce a problem between

TSPPD and TSPB, where a vehicle can start to visit pickups only after visiting some

deliveries. By this way it is possible to obtain a tour not as inefficient as a TSPPD

TSP

1/free/any

1/must/prec

1/must/any

1/free/prec

12

tour can be regarding loading and unloading, and not as poor as a TSPB tour

regarding the tour length. Another variant of these problems is studied by Daganzo

and Hall (1993), where a vehicle can not visit more than a particular number of

deliveries but pickups.

 Both TSPPD and TSPB can be related to the general pickup and delivery

problem. The general framework provided by Savelsbergh and Sol (1995) is capable

of handling various problems including the pickup and delivery problem, the dial-a-

ride problem, and the vehicle routing problem. The first two problems can also be

referred as one-to-one type problems, However, the third one is an one-to-many (or

many-to-one) type problem. If TSPPD and TSPB are problems where two

commodities are to be transported, then they can be classified as one-to-many/many-

to-one type problems. The central depot represents the first commodity’s supplier

and delivery customers are “demanders”, whereas pickup customers are the suppliers

for the second commodity and only demand point is located on the depot.

 Anily and Bramel (1999) study the capacitated TSPPD to transport a

commodity from a set of suppliers to a set of demand points. At each supplier one

unit of commodity is supplied while the requirement amount is one unit at demand

points. In Moon et al. (2002), the traveling salesman problem with precedence

constraints is defined. In the problem for a node to be visited, all of its predecessors

should be visited in advance. A looser version of this problem is clustered TSP

(Jongens and Volgenant 1985), where precedence relations are not defined on

individual nodes but on clusters. TSPB can be seen as a clustered TSP having only

two clusters.

2.4 Applications in Industry

The routing problems with pickup and delivery or with backhauls are highly

important for distribution systems (Bodin et al. 1983). In practice, if vehicles do not

permit loading/unloading to be realized quickly and efficiently, it is more appropriate

to design a route in which its total load is delivered first and then the goods are

picked up. However, if a vehicle with side-loading capabilities is utilized, the pickup

customers can well be visited along any order, without consuming too much time for

13

loading and unloading (Süral and Bookbinder 2003). So, both problems can be

observed in the same distribution system differing according to the vehicles used.

These type of problems can be observed in supply chains like grocery store

chains, retail department store chains, quality stores, where the vehicles transporting

goods to customers can be also used for gathering materials or inbound products

from suppliers (Yano et al. 1987, Goetschalckx and Jacobs-Blecha 1989, Potvin et al.

1996, Toth and Vigo 1997, Ghaziri and Osman 2003). Gendreau et al. (1999)

mention a similar example for beer and soft drinks delivery system. In this example,

full bottles should be delivered to customers and empty bottles should be collected

from customers.

As a specific example of TSPPD, Mosheiov (1994) discusses an application

for the transportation of under-privileged children. In his example, the aim of a non-

profit organization is to provide under privileged children two-week long vacation

opportunities. Since the visiting dates are determined in advance, it is possible to

carry back the children finishing their vacations and to pickup the ones who are just

starting their vacation with the same vehicle. In this TSPPD, the depot is the main

vacation site, the delivery customers are the families of the children ending their

vacation and pick up customers are the families of the other children. Anily and

Mosheiov (1994) provide another application from mailing parcel systems, such as

UPS, where the mail processed at the depot is to be delivered to recipients, while

picking up the mail from senders for processing at the depot. Anily and Bramel

(1999) mention about the importance of TSPPD in the context of inventory

repositioning. The specific examples of TSPB can be seen in automated warehouse

routing and in operation sequencing on numerically controlled machines (Gendreau

et al. 1996).

2.5 Solution Procedures

Due to the complexity of TSPPD and TSPB problems, studies in the literature

generally focused on the approximation algorithms. However, there also exist some

exact solution procedures for each problem. Since TSPB appears before in literature,

the related works are more compared to those of TSPPD. Amount of works on

14

TSPPD has increased with introduction of trucks with side-loading capabilities. In

the following section, the solution algorithms for TSPPD, TSPB, and multi-vehicle

cases of these problems are summarized.

Solution procedures for TSPPD

 The works intending to solve TSPPD at optimality are infrequent in the

literature. One can refer to the commodity flow formulation of Mosheiov (1994) or

general MIP formulation of Süral and Bookbinder (2003) for solving the problems

with modest sizes by commercial MIP solvers. However, as problem sizes get larger,

these formulations are not very successful. Baldacci et al. (2003) introduce of new

valid inequalities namely, flow, subtour, and capacity inequalities, and propose lower

bounds for the problem. The tightness of the lower bounds reported are comparable

with that of TSP lower bounds. These lower bounds are used in their exact algorithm

based on branch and cut. For Euclidean instances, they could solve problems with

199 customers within one hour, whereas the solvable size decreases to 100 customers

for randomly generated problems. In this work, the authors also mention about a

genetic algorithm that is used to find good upper bounds for the exact method.

However, no algorithmic details are presented in the paper. In personal contact, the

authors stated that the heuristic was designed just for obtaining bounds and it should

not be considered as a practical solution method.

The first example of heuristic methods for TSPPD comes from Mosheiov

(1994). Considering the similarities between TSP and TSPPD, Mosheiov adapts TSP

heuristics for TSPPD. Pickup and delivery along optimal tour (PDOT) heuristic starts

with constructing the optimal TSP tour along customer nodes. The depot is then

inserted to any location that makes the resulting tour feasible. The worst case bound

of this heuristic was stated to be 2. For the cases in which it is very hard to find an

optimal subtour, the author proposes PαDT, where the subtour is obtained by a TSP

heuristic. The worst case bound “α” of the heuristic used for finding the initial

subtour would also be valid for the resulting TSPPD tour.

Cheapest Feasible Insertion (CFI), another heuristic proposed in the same

work, starts with construction of an α-optimal tour visiting every delivery customers

and depot. At the next step, pickup nodes are inserted into the tour. At each iteration,

15

the node increasing the total cost least while not disturbing the feasibility is selected.

Although the worst case bound was reported to be infinity for CFI, the computational

experiments revealed that there is no significant dominance between PαDT and CFI

for problems of size varying between 60 and 200 customers.

Anily and Mosheiov (1994), with a motivation to reduce these worst case

bounds, adapt the Christofides heuristic of TSP for this problem. Their heuristic first

finds the minimum-spanning tree rooted at the depot node. After doubling all of the

arcs, a Hamiltonian cycle starting and finishing at the root node is constructed. The

algorithm gives priority for the subtrees with smaller total net demand for visiting. In

such a subtree a delivery customer is satisfied immediately. A pickup customer

should be a leaf node or all nodes along its subtree should be satisfied before this

customer is satisfied. Although this heuristic has a worst case bound of 2, the

computational results showed that it is not better than CFI in terms of solution

quality.

Gendreau et al. (1999) propose a linear time algorithm for finding the optimal

TSPPD on a cycle. Their heuristic firstly finds a TSP cycle using the Christofides

heuristic, and then uses this linear time algorithm to find the optimal TSPPD tour on

this cycle. A feasible 2-edge exchange procedure is utilized for improvement

purposes. The heuristic outperformed PαDT and CFI, regarding the solution quality

and time, for Euclidean instances. The authors also propose a tabu search procedure

in this work. The tabu search produced slightly better results than all heuristics in

term of solution quality at the expense of significantly more time.

Demirel (2001) proposes efficient improvements on the PDOT algorithm of

Mosheiov. After a tour for all customers is constructed, it is improved by 2-edge

exchange heuristic and then the depot is inserted into the best feasible location. The

results showed that the improvement steps improved the solutions by 10.7% on the

average. In this work, the adaptations of TSP heuristics are introduced, called

Nearest Feasible Insertion and Farthest Feasible Insertion. A delivery tour is

constructed via Nearest Neighborhood (or Farthest Insertion) heuristic. Then pickup

customers are inserted into the tour as it is realized in CFI. Modified versions of

insertion heuristics are also experimented for which the entire tour is constructed at

once inserting all customers one by one without violating the feasibility. The farthest

16

insertion heuristic performed better than cheapest insertion in construction of the

initial delivery tour.

Solution Procedures for TSPB

 Since TSPB can be transformed to an asymmetric TSP, any algorithm that

can be used to solve TSP solves TSPB.

 In Gendreau et al. (1996) a TSP heuristic, GENIUS, is introduced. At the first

part of the heuristic (GENI) a tour is constructed by inserting nodes one at a time.

GENI differs from regular insertion schemes as it performs a local optimization

scheme at each iteration. First, it selects an unvisited node v arbitrarily, and then

evaluates several insertion moves. These moves involve deletion of three edges from

the tour and addition of four new edges. Two of the new edges are introduced due to

connecting v to two nodes in the tour, vr and vs. The other two nodes vr+1 and vs+1

previously incident to vr and vs are connected to nodes vk and vk+1, which are already

on the tour. Due to time considerations, the possible moves are restricted with the

notion of p-neighborhood. That is to say, vr and vs are selected from the closest p

nodes to v. Likely vk should be among the closest p nodes to vs+1. For different

selections of vr, vs, and vk, alternative moves can be obtained. From the possible

moves the best one is selected, and the algorithm continues until a complete tour is

obtained. GENI is succeeded by the improvement step, US. Here, each node is in

turn removed from the complete tour using reverse GENI algorithm and reinserted in

the tour using GENI. The algorithm halts when no further improvement can be

obtained.

Gendreau et al. (1996), having previously satisfied by the performance of

GENIUS for TSP, develop its six different versions for TSPB. H1 solves the

corresponding TSP instance of TSPB with updated cost matrix. H2 constructs two

cycles for delivery nodes and pickup nodes separately using GENIUS algorithm.

These two cycles and the depot are combined by the best possible way. H3 slightly

differs from H2 so that the initial cycles include the depot this time. One edge

connected to the depot is removed from each cycle and the resulting paths are

combined into a tour by introducing an edge between end nodes of the paths. H4

utilizes cheapest feasible insertion scheme for tour construction and US for tour

17

improvement. The authors also propose a feasible Or-opt improvement algorithm.

H5 and H6 use this algorithm for improvement. In H5 tour is constructed by GENI,

while it is constructed by cheapest feasible insertion in H6.

In their computational studies, GENI turned out to be a better construction

heuristic than cheapest feasible insertion, and also US is indicated to dominate

feasible Or-opt procedure. In overall H1 is performed well in terms of solution

quality and time for problems of size 100 and 200 customers. As problem size

increases H2, H3, and H4 show more or less the same performance.

 Gendreau et al. (1997) present an adaptation of the Christofides TSP heuristic

to TSPB with the worst case bound of 3/2. No metaheuristic application is reported

in the literature for TSPB. In the work of Ghaziri and Osman (2003), a neural

network algorithm is adapted to TSPB. Its performance is compared with the

heuristic proposed in Gendreau et al. (1996). The results show that the proposed

algorithm produces competitive results with these algorithms but require much more

time.

Solution Procedures for VRPPD

 In vehicle routing problem with pickup and delivery (VRPPD), instead of one

vehicle, a fleet of vehicles are to satisfy the requirements of pickup and delivery

customers. VRPPD is an extremely hard problem to solve. Tzoreff et al. (2002) study

the VRPPD problem on special graphs such as path, tree, cycle and so on. Using

graph theoretical properties of these structures, the authors propose exact algorithms

for these special cases.

Dethloff (2002) proposes an insertion heuristic for the VRPPD. The heuristic

differs from the traditional saving based insertion heuristics in determining the

saving value. Here, aside from the traditional criterion based on increase of the tour

length, excess vehicle capacity after the insertion of the candidate node, and its

distance to the depot are also taken into account while determining the node to be

inserted.

A thorough review for the multi-vehicle routing with pickup and delivery is

provided by Nagy and Salhi (2004). They first classify the problems into three main

categories: simultaneous pickup and deliveries, mixed pickup and deliveries, which

18

correspond to VRPPD according to the nomenclature used in our work, and delivery-

first pickup second VRPPD, which we call VRPB. Their work is primarily related

with the first two types. They proposed a route first-cluster second algorithm. Firstly

a giant tour including every customer node and depot is constructed via TSP

heuristics. Then, with the help of a direct cost network representing the length of the

paths on this giant tour, the clustering, is achieved in best possible way. During this

clustering the maximum of total pickup load and delivery load is sought to be less

than the vehicle capacity. Nevertheless the resulting tours may result in a weakly

feasible tour. Therefore, the authors propose several improvement procedures with

feasibility maintaining, such as 2-opt, 3-opt, node shift, node exchange, etc. They

also adapt the heuristic to be capable of handling the multi depot case. The results of

the heuristic integrated with different improvement modules prove to dominate the

previously proposed algorithms for VRPPD both for single depot and for multi depot

case.

Solution Procedures for VRPB

 For the multi-vehicle case of TSPB, there are a number of exact methods

proposed in the literature. Toth and Vigo (1997) propose a branch and bound

algorithm for both symmetric and asymmetric cases of the problem. With variable

reduction and feasibility check the algorithm’s performance is enhanced. It is

reported that the algorithm solves instances with 100 customers at optimality.

 In the work of Mingozzi et al. (1999), a new BIP model for VRPB is

developed. The model is based on defining feasible path sets. Two heuristics for

finding a feasible solution to the dual problem are proposed and the solutions found

are used in variable reduction in the exact solution method. Their method was able to

solve problems up to 100 customers within a time limit of 25,000 seconds.

Very first example of heuristic methods for this problem is given in

Goetschalckx and Jacobs-Blecha (1989). The authors use a space filling curve

methodology for both clustering and routing decisions. The algorithm provides initial

solutions efficiently. The routing subproblems in clusters are improved with 2-opt

and 3-opt, and the resulting tours are within 1% of optimal tour values.

19

Toth and Vigo (1999) propose a cluster first-route second algorithm for the

problem. K delivery clusters and K linehaul clusters are formed at the end of the

clustering phase based on Lagrangian relaxation. Afterwards, the delivery and pickup

clusters are merged according to the edges included in the Lagrangian solution or the

results of an assignment problem. At the last phase, a TSPB for each cluster is solved

using the farthest insertion heuristic. The results of heuristics were better than those

of Goetschalckx and Jacobs-Blecha.

There are also metaheuristic applications for VRPB in the literature. Genetic

algorithm of Potvin et al. (1996) and Tabu search of Osman and Wassan (2002) can

be mentioned as examples. In Potvin et al., VRPB with time windows is studied. An

algorithm is proposed to construct a VRPB tour by inserting the nodes one by one

according to a specified order. This algorithm is incorporated into a GA scheme

where “order of insertion” is evolved throughout generations. The results provided

were 1% of the optimum. In reactive tabu search of Osman and Wassan (2002), there

are mainly two types of moves. The 1-interchange mechanism shifts one single

customer from one route to another or exchanges two nodes, whereas the 2-

consecutive-node interchange mechanism shifts or exchanges two-consecutive nodes

between the route pairs. The initial tours are constructed using saving insertion

heuristic and saving assignment heuristic.

2.6 Metaheuristics and Complex Routing Problems

 There is a vast literature about the metaheuristics proposed for the standard

routing problems, TSP and VRP. The most commonly used metaheuristics are

Simulated Annealing (SA), Tabu Search (TS), and Genetic Algorithms (GA). The

reader is referred to Johnson and McGeoch (1997), Rego and Glover (2002) for

general discussions about metaheuristics for TSP, and Golden et al. (1998) for VRP.

For a detailed discussion of GAs that work well for the TSP, the reader can refer

Sönmez (2003). In general, SA and TS work better than GA for VRP (Golden et al.

1998). For TSP, good genetic algorithms are also reported by many works (Johnson

and McGeoch 1997, Nagata and Kobayashi 1997, Sönmez 2003).

20

The literature lacks a general reference for metaheuristics for constrained

routing problems, including our problems. The work of Van Breedam (2001)

provides a general comparison scheme for improvement heuristics. The author

compares several metaheuristics, specifically TS and SA, with conventional

improvement heuristics based on descent methods (DH), for VRP. All heuristics

analyzed use the same basic moves, which are string cross, string exchange, string

relocation and string mix. Extensive experiments are performed with different

parameters on general characteristics (i.e., geometry of node locations, side

constraints on the problem, etc.), and on algorithmic characteristics (i.e., move type,

initial solutions, etc.). According to the experimental results, it is reported that DH

halts execution more quickly than SA and TS and the best solution of DH is better

than the intermediate solutions that are produced with more or less the same effort.

However, TS and SA produce better results as they proceed. No superiority is

reported for one over the other among these two metaheuristics. Although VRPPD is

included in the experiments as a problem type variant, no specific results are

provided for it.

 When we narrowed our attention to the realm of GAs, we see that a need

exists for a general analysis of GAs for constrained problems. The main difficulty in

applying GAs to even standard combinatorial optimization problems, like TSP, is the

problem of feasibility of produced solutions. The generic crossover operators are

incapable of handling the constraints of combinatorial optimization problems.

Reeves (1997) summarizes major strategies to handle constraints in GAs. By

modifying operators, repairing or penalizing infeasible solutions, using multiple

objectives or modifying the formulation, GAs can tackle the feasibility problems. For

TSP a common approach is to modify crossover operators while using proper

solution representation schemes (Michalewicz and Fogel 1998). The solution

representation schemes alienating to the original schemes proposed of Holland

(1975) and crossover operators getting more complex, caused the algorithms to be

differentiated as Evolutionary Algorithms (EA) by conservative GA theorists.

The feasibility issue for constrained routing problems gains more importance.

If we adapt EAs originally designed for standard routing problems to constrained

routing problems, the additional constraints will probably be violated even the basic

21

subtour elimination constraints are satisfied. Fortunately the strategies summarized

by Reeves (1997) can be applied here also. In the literature, there are some EA

applications on the specific constrained routing problems such as Potvin et al.

(1996), Moon et al. (2002), preserving feasibility of the solutions by using one of the

formerly stated ways. However, the author could not note any work comparing the

performance of feasibility maintaining methods in EAs for constrained routing

problems. This deficiency of literature constitutes the core motivation of our study.

22

CHAPTER 3

PROPOSED ALGORITHMS

 As it is mentioned before, EA, when designed appropriately, is a dependable

tool for solving TSP. There are various successful EA algorithms proposed for this

problem in the literature. However, the problem is defined with inevitable

accompanying constraints in many real life applications and the algorithms that are

specialized in solving the standard case is of limited use for industry. Kilby et al.

(2000) mention about the necessity for the standard procedures for handling the

additional constraints on routing problems. They also note the unstable and

unpredictable nature of these side constraints. We believe that the standard

procedures provide a natural base for the constrained cases. Through this respect, in

our study, we adapt an EA that works well for TSP to the constrained cases.

In the previous section, the main handicaps of this adaptation and overcoming

efforts are stated briefly. The feasibility regarding the side constraints are the main

difficulties during this process. From now on, both of the terms of “feasibility” and

“infeasibility” will be referred with respect to these side constraints instead of the

regular tour constraints of TSP.

Michalewicz and Fogel (2000) provide a broad investigation of constraint

handling techniques in EA. The methods can be classified in two classes: feasibility

seeking methods and infeasibility penalizing methods. The most common feasibility

seeking methods are rejecting infeasible solutions, repairing infeasible solutions and

maintaining a feasible population using special representations and variation

operators. The authors note that the global optimum may generally occur at the

boundaries of the solution space and to accept some attractive infeasible solutions in

the population may be a good method for some problems. In this context, the

problem of evaluating the attractiveness of infeasible solutions arises. The general

evaluation method is to utilize the penalty functions to decrease the attractiveness of

these individuals. The most attractive penalizing functions are the adaptive ones

23

(Reeves 1997). These functions update the penalizing coefficients throughout

generations considering the difference between best infeasible and best feasible

solutions found so far. In this study, we restrict ourselves to deal with only these

most common infeasibility handling strategies. In order to provide a fair comparison

basis, we apply these strategies in the simplest and the basic form.

In the following subsections, the algorithms are defined for the two

constrained routing problems, namely TSPPD and TSPB. The chapter starts with

identifying the general EA components and providing the algorithm for the

unconstrained problem. Then, this algorithm is modified to the constrained problems

for each constraint handling strategy in the following sections. In each section, we

first outline the implementation of the specific strategy and then give the general

algorithm that provides basic structures that can be adapted to different side

constraints without too much effort. Each section includes specific modification of

general algorithms for TSPPD and TSPB also.

3.1 General EA components

 The main components of EAs can be itemized as coding scheme, fitness

function, initial population, selection strategy, reproduction operators, replacement

strategy, and stopping criteria. Beasley et al. (1993) provide a summary for these

general components. Sönmez (2003) proposes an EA for TSP, which finds high

quality solutions in reasonably small time. This study constitutes the basis of ours.

Most of the components of our EA are decided according to the findings and

discussions in Sönmez (2003).

Coding Scheme

 Sönmez (2003) provides a thorough listing of representation schemes for

TSP. These representation schemes are grouped into two major categories: Vector

and matrix representations. Binary, path, adjacency, ordinal, and rank representations

are mentioned under the vector representations group. Among the listed alternatives

the path representation is the most natural and logical one for TSP. A feasible TSP

tour is represented by a sequence of numbers indicating the sites to be visited. Many

24

successful EAs utilize this scheme (Nagata and Kobayashi 1997). Therefore, the path

representation is selected in our study.

Fitness Function

 The core of EAs is providing reproduction chances for the good solutions,

which are expected to yield better ones. For this purpose one should evaluate the

goodness of the solutions, which are generally realized by fitness functions.

Although there are examples of works questioning the benefits of using fitness

functions (Chen et al. 1999), commonly they are among the key features of EAs. We

used the length of the tour as the fitness value of a solution, as it is the most sensible

alternative.

Initial Population

 One of the main components of an EA is the initial population that is

composed of a certain number of solutions, which are produced in advance with any

procedure. Two characteristics regarding the initial population should be decided in

the very beginning. The first one is the population size, which generally remains

constant throughout the generations. The second one is the nature of starting

solutions, i.e., the procedure used to produce these solutions. Sönmez (2003)

experimented with different population sizes varying from 50 to 200 for the

algorithm she proposed. The finding was that a population size of 50 was appropriate

for the problems with sizes up to 250 customers. Sönmez uses a population of 100

individuals for the larger problems. As we utilized a different reproduction scheme,

namely, steady-state reproduction scheme, we did not use a population size as it is

suggested in Sönmez (2003). We have realized a preliminary experiment about the

influence of the population size on the solution quality for TSP instances. According

to this experiment, the larger number is set as the size of population in our study. The

results are provided in Section 4.3.

 The solutions in initial population may be produced as the good starting

solutions or they can simply be produced randomly. For the sake of simplicity in this

study the initial solutions are produced randomly. By this way, we can focus on the

core of the study and compare the performances of the proposed constraint handling

25

strategies without any other effect. When good solutions are also included in the

population, it can be quite complex to identify the underlying reason for superiority

of one strategy over another. We proposed three methods to generate initial

solutions, each of which is differing in the treatment of feasibility.

In method 1 only the feasible solutions are produced. It first constructs

random solutions and then the resulting solutions are repaired if necessary. The

general method is provided in Figure 3.1. Please refer to Section 3.2.3 for the repair

algorithms utilized for TSPPD and TSPB.

Figure 3.1 The pseudo code of method 1 for initial population generation

Method 2 produces feasible solutions also. However, this time, the feasibility is

sought during construction of the tour. In order to explain the steps of this algorithm

let’s turn back to network definition of the problem, where the customers and the

depot are represented by the nodes. The algorithm starts with the depot node. Among

the customer nodes whose additions do not violate feasibility, one is randomly

selected to place at the end of the path. The procedure is repeated until no node is

left. The algorithms of this method for TSPPD and TSPB are provided in Figure 3.2.

In the figure, the variable, vehicle_load keeps the amount of the load on vehicle.

Method 3 constructs the tour by randomly selecting the nodes. As it can be

guessed, this method does not guarantee feasibility. For tightly constrained cases

such as in TSPB, a great portion of the solutions produced are expected to be

infeasible because solution space of the constrained problem is much smaller than

the standard case.

(a) Procedure_method1

 Start with the depot node

 Repeat until all nodes are visited

 Pick an unvisited node randomly add it to the end of the chain

 Repair the resulting tour if necessary

26

Figure 3.2 The pseudo code of method 2 for initial population generation

Figure 3.3 The pseudo code of method 3 for initial population generation

In our experiments, we investigate three initial population settings. In the first

setting, all solutions are feasible ones: half of the population is produced by method 1

and the remainder is produced by method 2. In the second setting, each of method 1

and method 2 produces a quarter of the population. The remaining half is produced

by method 3. This type is expected to have infeasible solutions in the initial

population. The third setting, in which the number of infeasible solutions is expected

to be larger than the former two settings, is produced by method 3 only.

(a) Procedure_method2_for_TSPPD

 Start with the depot node

 Assign the vehicle_load as the total delivery load

 Repeat until all nodes are visited

 Pick an unvisited node if its addition does not violate capacity randomly and add it to

the end of the chain

 Update the load on the vehicle

(b) Procedure_method2_for_TSPB

 Start with the depot

 Repeat until all nodes are visited

 If all delivery nodes are not visited

Pick an unvisited delivery node randomly

Else

Pick an unvisited pickup node randomly

Add the node at the end of the chain

(a) Procedure_method3

 Start with the depot node

 Repeat until all nodes are visited

 Pick an unvisited node randomly and add it to the end of the chain

27

Selection Strategy

In each iteration, EAs select parents from which new solutions are to be

generated. The basic consideration in selection is to favor the good solutions in

providing chance to reproduction; therefore the common approach selects parents

from the population according to their fitness. However, there are examples of

random selection strategies in literature.

The selection methods mentioned in Sönmez (2003) were roulette selection,

tournament selection, and GENIE selection. The comparisons between these

selection schemes yield that ranking and tournament schemes give better results than

the regular roulette scheme. In fact, both of these schemes are appreciable as they do

not require any rescaling procedures to overcome the effect of the fairly good

solutions to dominate the populations, which is a problem in roulette selection. The

examples of good algorithms using ranking schemes are available in literature, such

as Whitley’s GENITOR (1989). The GENIE selection strategy of Chen is given as an

example for random selection in Sönmez (2003). Due to the improvement capability

of the crossover operator, the fitness information is disregarded for selection in this

heuristic.

Among the selection strategies summarized here, ranking based strategies can

be implemented easily. We use the linear fitness function scheme as proposed in

Reeves (1995). All solutions in the population are ordered according to the fitness

function values (i.e., in non-decreasing order of the tour length). The probability of

selecting a solution is assigned a value, inversely proportional to the rank of the

solution, where the probability mass function follows a decreasing trend for

increasing ranks. Specifically, let pi be the probability of selecting the solution of

rank i as a parent, and let n be the size of candidate population. The value of pi can

be computed as:

i n

k 1

(n 1) ip
k

=

+ −
=

∑

28

After the first parent is selected, the corresponding solution is taken out of

consideration, the size of the candidate population is decreased by one, and the

probabilities are computed again in the same fashion for selecting the second parent.

Reproduction Operators

The reproduction operators can be analyzed under two main classes:

crossover operators and mutation operators. Crossover operators basically generate

combinations of two solutions (named as parents). Usually, applying the crossover

operator to selected two parents, two new solutions (named as offspring or children)

are produced. In the literature there is a vast source on crossover operators for TSP.

Sönmez (2003) provides a classification of these operators according to the

preservation characteristics of operators. These groups are stated as position, order,

and edge preserving crossover operators. Edge preserving operators are found more

appropriate as the edges are agents directly affecting the solution quality. The order

and position are of little use in speaking of the goodness of a solution.

In Sönmez (2003), the idea of using conventional heuristics as the crossover

operators is proposed. The crossover proposed mainly constructs a union graph of

selected parent solutions and applies the nearest neighbor (NN), the greedy and the

insertion type TSP heuristics on that union graph. The experiments of Sönmez

revealed that the NN works better than the others regarding solution quality and time;

therefore it is taken as the crossover operator of our algorithm.

The NN operator firstly selects a random starting node from the union graph.

At each iteration the nearest reachable unvisited node is added to the tour. Whenever

the partial graph cannot yield to an unvisited node, the nearest unvisited node is

selected using the edges of the complete graph. The algorithm halts if all nodes are

visited. This is the deterministic version of NN. The stochastic version uses a

probability scheme to decide which node to visit next. The probability figures are

inversely proportional to the distance of the unvisited nodes to the current one on the

tour. As it is noted in Sönmez, the initial edges traversed in this operator are

relatively shorter ones. As the algorithm goes on, since the number of alternative

routes to proceed decreases, the edges added may get worse. In fact, the two edges

that connect the last node to be added to the tour do not involve any distance

29

consideration. If the parent solutions are the same solutions, the operator cannot

produce a solution different from these parents.

In this work, from two parents, two children are produced by applying the NN

crossover operator twice. The first child is produced starting with a random point.

The last node added to this tour is used as the starting node in the production of the

second child. To illustrate we provide an example with the following symmetric cost

matrix in Table 3.1.

Table 3.1 The cost matrix for a symmetric TSP problem

Nodes 0 1 2 3 4 5

0 - 6 9 7 5 6

1 - 12 4 5 9

2 - 8 11 14

3 - 3 13

4 - 15

5 -

Example:

Parent 1: 0 1 2 3 4 5

Parent 2: 0 2 1 3 5 4

Let node 1 be the starting node for the procedure

Offspring 1: 1 3 4 0 5 2, where edge 5-2 is taken from the complete

graph.

Since node 2 is the last node, it will be the starting node in offspring 2.

Offspring 2: 2 3 4 0 1 5, where edges 1-5 and 2-5 are taken from the

complete graph.

 If two parents are the same, the union graph constructed cannot allow any

other solution to be produced. Only the direction of the resulting tour may change.

This case is illustrated in Figure 3.4. In the construction of the first child, the

30

algorithm starts with node 1. In a case where node 0 is closer to node 1 than node 2,

the resulting child follows the sequence of the parents in the opposite direction. In

construction of child 2, obtaining a tour same as the parents is exemplified. Here the

starting node is node 4. If node 5 is closer to node 4 than the other alternative (i.e.,

node 3), the same tour as the parent tours is obtained.

Figure 3.4 Illustration of reproduction when two parents are the same

In general, mutation operators that alter the genes of the solution randomly can

be seen as operators that produce a new solution from an initial solution. They are

essential in maintaining variability in population and in preventing premature

convergence to a sub-optimal solution (Beasley et al. 1993). It is very convenient and

common way of using mutation operators for improvement purposes (Jog et al.

1989). The results of Sönmez (2003) reveal that when EA starts with random

population it is possible to improve the solution by 4% with a proper mutation

operator. Although the results will most probably get better due to usage of a good

1

3

5

4

0

2

Parent 1

2

1

3

5

4

0

Parent 2

1

3

5

4

0

2

Union Graph

1

3

5

4

0

2

Child 1

1

3

5

4

0

2

Child 2

31

mutation operator, in our study no such operator is used, as the main purpose of this

study is to compare the raw strategies.

Replacement Strategy

 Beasley et al. (1993) define the concept of “generational gap” corresponding

to “the proportion of individuals in the population which are replaced in each

generation”. The traditional algorithms, which are called “generational algorithms”,

use a generational gap of 1. A new population is produced and this new population

replaces the old one, in these algorithms. In a relatively newer scheme, at each

generation only two solutions are produced per generation and new solutions replace

two solutions of the population. This strategy, which is called “Steady State”

replacement strategy, is proved to work well by many examples (Whitley 1989,

Davis 1991).

 There are many replacement strategies proposed for steady state algorithms.

Beasley et al. (1993) summarizes the two of them: (i) selecting the leaving

individuals randomly, or (ii) considering their fitness values. In GENITOR of

Whitley (1989), which is a steady state algorithm, the worst two individuals of the

population are dismissed from population, and the offspring directly enter to the

population.

 In our study, we use a steady-state replacement strategy, where only two

children are produced from two parents at each generation. When we applied the

replacement strategy as applied in GENITOR our preliminary results were

unimpressive. Then we revised it. In the revised case, we select the solutions to be

removed from the population among the parent pair and the children. The solutions

are basically sorted and the best two solutions enter the population. The other two are

deleted. To slow down the convergence, we try to delete the parents that are the same

as either one of the children. In this stage, we assumed that two solutions having the

same tour length are the same, which may not be the case. Actually, this strategy

may dismiss a parent solution of same length with the child, despite the difference

between the two. This drawback may be overcome by devoting additional effort for

identifying the sameness. However, as this scheme provided fairly good results in the

preliminary experiments, we gave up the additional effort of identifying sameness.

32

Note that after deleting these parents directly, there may be less than four solutions to

be sorted. This replacement scheme may cause population average to get worse; if

two fairly good parents, both having a fitness value F, produce one child with the

same fitness value and one child with the poorer fitness value K (K > F), both

parents are removed and both children enter into the population and finally

population average gets worse.

Stopping Criteria

 Sönmez (2003) provides a list of stopping conditions. These conditions are

number of generations, computation time, fitness threshold, and population

convergence. There are various ways to decide on the population convergence. Some

of these are differences between population best and population worst or population

average.

 In this work, we used several stopping conditions. In one group of

experiments the number of generations is fixed. In the other group, the algorithms

halt when the population best does not change for a fixed number of generations.

Both of the stopping conditions are equipped with an additional criterion examining

the population convergence. The algorithm terminates whenever the value of the

population average deviates from the value of the population best by no more than

0.1%.

General algorithm

 In Figure 3.5, the flowchart of the general structure of our EA is provided.

The iterations start just after the generation of initial population

(INITIALIZATION). At every iteration, two parents are selected from the population

(SELECTION), crossover operator is applied and two children are produced

(REPRODUCTION). The parents and the children are sorted. While the worst two

leave the population, the good ones enter the population (REPLACEMENT). In this

step, if a child has the same tour value with a parent (i.e., if a tie occurs), the parent is

removed from the population. The resultant population is ordered and the algorithm

proceeds to the next iteration, unless the one of the stopping criteria is met.

33

INITIALIZATION

0. Generate initial population P

using method 1, 2 or 3

SELECTION

1. Select two parents using

linear fitness ranking scheme

REPRODUCTION

2. Apply crossover operator to

produce two offspring

REPLACEMENT

3. Sort parents and offspring.

Keep the best two of these four

in the population

Figure 3.5 The flowchart of the general EA

Do stopping
conditions hold?

Yes

GA

STOP

No

34

3.2 Feasibility Seeking Algorithms

In this section, our algorithms proceeding with feasible populations are

proposed. The problems for which the feasible solutions are hard to obtain from

infeasible solutions, spending time with infeasible solutions may not be worthwhile.

The strategies that insist on producing feasible solutions may be a proper way of

treating these problems. Unfortunately, for many cases, it is not known in advance

whether keeping only feasible solutions in the population should be forced or not. In

addition, to our knowledge, there is no work discussing the benefits of dealing with

only feasible solutions for the constrained routing problems in literature. Therefore,

three main feasibility seeking approaches are proposed in the study: namely,

rejecting the infeasible solutions until finding a feasible solution, using a modified

crossover operator approaches, and repairing the infeasible solutions to make them

feasible. Note that the second and third approaches produce feasible offspring

directly even if the parent solutions are infeasible. Following subsections discuss

these approaches in detail.

3.2.1 Rejecting Infeasible Solutions (REJECT)

 Rejecting infeasible solutions, as “death penalty” (Michalewicz and Fogel

2000), is the simplest and easiest approach that can be used for handling constraints.

This strategy can be adapted to a variety of side constraints by just changing the

feasibility checking procedures. Hence, it provides a common ground for all of the

side constraint classes. However, this strategy works well when the feasible solution

space is convex and constitutes a larger portion of the solution space without side

constraints. Convex feasible solution space exists when it is guaranteed to produce

feasible solutions provided that the parents are feasible. The approach is not very

beneficial for which the solution spaces of the standard and the constrained problems

rarely coincide.

 The algorithm, called REJECT, enumerates all possible starting points and

parent combinations in order to find two new feasible solutions. If a parent

combination yields less than two feasible solutions after trying every node as the

35

starting node, the other parent combinations are tried until two solutions are found.

The algorithm iterates if more than one solution is found, otherwise it terminates.

The general structure given in Figure 3.5 can be updated for this strategy by simply

implementing SELECTION and REPRODUCTION routines recursively and in a

combined fashion, until finding two feasible solutions. Let starting_node denote the

random node used as the starting node in the crossover operator and feas_child keep

the number of feasible children found in an iteration. Also let not_mated be the set of

individuals that are not tried before. Define parent1 and parent2 as the individuals

selected to be first and second parents respectively. Figure 3.6 provides the combined

SELECTION and REPRODUCTION routines for adapting the general EA for

REJECT. The complete REJECT algorithm can be obtained by replacing

SELECTION and REPRODUCTION routines in Figure 3.5 with the one provided in

this figure.

Figure 3.6 Combined SELECTION and REPRODUCTION routines for REJECT

 Initialization: not_mated = P, feas_child = 0

 Repeat until () or (not_mated = { })

 Choose parent1 from not_mated according to linear fitness ranking, update

not_mated

 Repeat until (feas_child = 2) or all other parents are tried with parent1

 Choose parent2 from not_mated according to linear fitness ranking, so that

parent2 is not mated with parent1 previously

 Construct the union graph

 Choose starting_node which is not tried before

 Repeat until (feas_child = 2) or all nodes are used as a starting point

 Apply standard NN crossover operator

 If the solution is feasible with respect to the side constraint then
 feas_child = feas_child + 1

 If (feas_child < 2) then choose a random starting_node which is not

tried before

36

 In this strategy, the reproduction is more complex than it is in general EA and

can result in one of three cases. The regular case occurs when two feasible children

are found from the same parent pair. The second case occurs when a specific pair can

yield only one feasible child. If this is the case, the algorithm tries to mate the first

parent (parent1) with other individuals. If the algorithm finds another feasible

solution in these trials then there will be three parents and two children. The last case

may occur when the children are produced from different parent pairs. All of these

cases are shown in Figure 3.7.

*Pi denotes parent i and Cj denotes child j.

Figure 3.7 Alternative reproduction schemes in REJECT

 For case (a) the replacement scheme is already discussed in page 30. In case

(b) is realized, if the fitness value of a parent is equal to that of either children, this

parent is removed from the population. However, if all three parents have the same

value as the child, then only two of them are removed. After removing these parents,

if there exist at all, the remaining parents and children are ordered and best three are

selected to join the population. In the overall two of five solutions are dismissed. For

case (c), as there are two separate groups ordering is realized separately. The best

two of each group join the population.

The sole modification required in the combined SELECTION and

REPRODUCTION routine to apply the algorithm for TSPPD and TSPB is related

with determining the feas_child value. Actually, when a child is produced its

feasibility is checked regarding the side constraints associated. If it is found feasible

feas_child is increased by one. For TSPPD, a feasible child is recognized by

P1 P2

C1 C2

(a)

P1 P2 P3

C1 C2

(b)

P1 P2 P3 P4

C1 C2

(c)

37

checking the vehicle load after visiting each node along the tour. Whenever, this

quantity exceeds vehicle capacity, the algorithm marks the solution as “infeasible”.

Whereas for TSPB, detection of a pickup node to be visited before all of the delivery

nodes are visited is sufficient to deem the solution infeasible.

 Let ΩTSP, ΩTSPPD, and ΩTSPB be solution spaces of TSP, TSPPD, and

TSPB respectively. In an environment where both pickup load and delivery load do

not exceed the vehicle capacity we can set the following relationship:

ΩTSP ⊇ ΩTSPPD ⊇ ΩTSPB

 Therefore, considering the time consumed for the infeasible solutions, we can

say that REJECT algorithm will surely work faster for TSPPD than it works for

TSPB, as the solution space of TSPB is a subset of TSPPD. For a TSP where there

are p + d many customer nodes, there are (p + d)!/ 2 solutions in the solution space.

Whereas the solution space of TSPB consists of p!*d! many solutions.

3.2.2 Modified Crossover Operator (CONSTRUCT)

This strategy is a problem specific approach of handling side constraints, which

exploits the problem’s side constraint characteristics. The solution is constructed

from scratch without violating the side constraints. The crossover operator includes a

feasibility-check procedure in which at each step a node is included into the tour. For

different constraints the feasibility check in this procedure should be updated.

The algorithm CONSTRUCT is the general EA algorithm provided in Figure

3.5 with the modified crossover operator. The crossover operator, called Nearest

Feasible Neighbor (NFN), searches for the nearest unvisited feasible nodes on the

union graph. If there are multiple nodes that can be added to the tour without

violating feasibility, then the nearest one is selected. When no such node can be

reached through the edges of union graph, the edges of complete graph are used. The

algorithm starts with the depot, than a feasible node is picked depending on the

distance of the nodes to the depot. The probability of picking a node among all

possible nodes is the inverse distance of this node to the depot over the sum of

38

inverse distances of all feasible nodes. The pseudo code of the updated

REPRODUCTION routine for this strategy is provided in Figure 3.8.

Figure 3.8 NFN crossover operator routine

 In the preliminary experiments, several settings are tried for selecting the

starting_node. One of them was pure random selection among the possible nodes.

The other was selection depending on the square of the inverse distance. However,

these alternatives turned out to give results worse than the previously stated setting.

 Another thing to mention here is the construction of two different children.

For the first child the algorithm executes in a forward fashion, i.e., the later a node is

added to the partial tour in the construction phase, the later it is visited in the

resulting tour. Whereas the second child is constructed by the backward execution of

the crossover operator, i.e., the later a node is added in construction, the earlier it is

visited in the final tour.

 The feasibility checking procedure should be updated in order to adapt this

general operator for TSPPD. Generally, the algorithm should keep the vehicle load

information at each iteration and the load should never be more than the vehicle

capacity. The procedure differs among the children construction. For the first child,

the nodes are added in a forward fashion. The feasible nodes to be added at the end

of the chain satisfy the following inequality:

Vload_a [i] ≤ Q

 Construct the union graph of parent1 and parent2

 Select a feasible starting_node considering the distance, connect this node to the depot,

 Repeat until all nodes are visited

 If there is an unvisited feasible node that can be reached from the current via the

edges of the union graph go to this node

Else go to the nearest unvisited feasible node by using complete graph edges

 Connect the lastly added node and the depot

39

where Vload_a [i] denotes the load on the vehicle after visiting node i. Vload_a [0]

is the total delivery load. If node i is visited just after node j, Vload_a [i] is

computed as follows:

Vload_a [i] = Vload_a [j] + load [i]

where load[i] keeps the demand information for customer i. Note that for delivery

customer i, load[i] ≤ 0.

 During the construction of the first child the delivery customers can be visited

at any step. Provided that Vload_a is currently less than Q, it can never exceed Q

after adding any delivery node because load entries are nonpositive for these nodes.

 In the construction of the second child, the algorithm proceeds backward.

Hence, Vload_b keeps the load on the vehicle before visiting the nodes.

Consequently, the inequality restricting the feasible nodes is updated similarly:

Vload_b [i] ≤ Q

The inequality ensures the capacity feasibility on the edge just before visiting

any candidate node. Vload_b [0] keeps the total pickup load. If node j is currently

the first node of the chain, Vload_b value or candidate node i can be computed as

follows:

Vload_b [i] = Vload_b [j] - load [i]

 Here the pickup nodes can be visited any time, however, the delivery loads

should be less than the excess capacity on vehicle.

 TSPB requires a simpler feasibility check procedure. For the first child, the

feasible nodes are the delivery nodes unless all delivery nodes are included in the

chain. When all delivery nodes are visited, all pickup nodes become feasible to add

in the tour. For the second child, the pickup nodes are initially feasible and whenever

there is no pickup node left to add, all delivery nodes become feasible.

40

3.2.3 Repairing Infeasible Solutions (REPAIR)

Repairing is a commonly used method for handling constraints. In this strategy

the infeasible solutions are replaced by their repaired versions. This approach relates

to Lamarckian evolution, which states that improvements gained during lifetime of

an individual are coded back into genetics of that individual. In literature, there are

examples of successful EAs for individual problems which utilize repairing (Ulusoy

et al. 1997, Erdem and Özdemirel 2003). However, it is almost impossible to design

a general repair algorithm that can handle different constraint types. In some cases

like nonlinear transportation problems, repairing itself is a complex task

(Michaelwicz and Fogel 2000).

Although there are some applications where only a portion of repaired

individuals replace their infeasible origins, we replaced all infeasible solutions in this

work. Michaelwicz and Fogel (2000) state a 5-percent rule which works well for

many combinatorial optimization problems. However, the authors also state that this

cannot be generalized to the realm of combinatorial optimization. Reeves (1997)

reports the algorithm of Orvosh and Davis (1993), where the repaired version

replaces the infeasible solution with a probability.

 A repairing procedure is needed in the

REPRODUCTION routine of the general EA algorithm of Figure 3.5 in order to

adapt the algorithm to this strategy. After two children are constructed by the

standard crossover operator, if necessary, they are repaired.

The repair algorithm of TSPPD is based on a result due to Mosheiov (1994).

The author showed that for every tour, there is at least one specific starting node and

direction to follow, which makes the tour feasible with respect to capacity

constraints. That is to say, any tour can be made feasible by deleting the depot from

its current location and inserting it to this specific location. An example is provided

in Figure 3.9. In this example, white and black nodes represent delivery and pickup

customers, respectively. The black numbers around nodes represent the net quantity

supplied in the node and the the gray numbers on arcs represent the total load on

vehicle while traversing that edge. The vehicle capacity is 10. In Figure 3.9 (a), the

bold black numbers represent the vehicle load on the edges causing infeasibility. The

41

load on vehicle exceeds capacity if the pickup customer with a supply of 3 is visited

at the second place. Also after visiting the pickup customer visited in sixth order, the

load exceeds the capacity. In Figure 3.9 (b), a repaired version for this tour is

presented. By simply changing two incident nodes of the depot, all of these

infeasibilities are avoided.

Figure 3.9 An infeasible TSPPD tour (a) and the repaired TSPPD tour (b)

 Actually in the above example, there is more than one possible location to

insert the depot. The illustrated repaired tour in (b) is just one of them. In our

application the depot is inserted into the best location, if more than one alternative

exists. By this way, this strategy is made comparable with the other alternatives. As

the lastly added two edges do not consider any distance information, the repaired

+3

+2

+1
+1

+3

-4

-3

-1

-1

-1
7

9

11

10

10
9

10

12

(a)

9

9

10

+3

+2

+1
+1

+3

-4

-3

-1

-1

-1
5

7

9

10

8
7

8

(b)

7

7

8

10

42

solutions may be very poor. To prevent this bias and to get the approach closer to the

nearest neighbor notion, the best possible location is taken.

 In TSPB, a repair algorithm, which is expected to work well on the Euclidean

instances, is proposed. The basis of the algorithm is to preserve the relative order of

delivery (pickup) nodes on the initial tour. The underlying assumption is that if two

nodes are visited consecutively in a good solution then probably they are close to

each other. The algorithm mainly constructs two separate chains: delivery chain and

pickup chain. It starts from the depot, adds nodes one by one to the chain of their

type in the order of the initial tour. Then these two chains and the depot are

combined. Among four alternatives the one yielding the minimum tour length is

taken. In Figure 3.10, the result of the TSPB repair algorithm is illustrated on an

example in (b). Again white and black nodes represent the delivery and pickup

customers, respectively. In this example, firstly, a white chain and a black chain are

produced regarding the order of the nodes in (a). Then these two chains and the depot

are connected in best possible way. For the example, this best alternative requires

reversing of the pickup chain originally produced by following the order of (b).

3.3 Infeasibility Penalizing Algorithms

 In penalizing strategies, infeasible solutions are allowed to exist in the

population. However, by manipulating fitness values, their probability of survival in

the coming generations is decreased. This strategy, different from rejecting strategy,

may take advantage of keeping several infeasible solutions in population as they can

yield good feasible offspring through little modification. For the problems where the

optimal solution is at the boundaries of the feasible solution space, this method may

yield good results (Reeves 1997). In order to benefit from these infeasible solutions

the penalizing scheme should be designed carefully. If the penalty coefficients are

selected to be insufficiently small, the search may get far from the feasible solution

space. In these cases, the algorithm may even cease to find a feasible solution at the

end. On the other hand, if the coefficients are unnecessarily large, the boundaries of

feasible solution space may be left unexplored. Generally, these coefficients are set

43

regarding the closeness of the solution to the feasible region, which requires a

feasibility distance metric.

Figure 3.10 An infeasible TSPB tour (a) and the repaired TSPB tour (b)

Two examples in the literature use the amount of violation of the constraints or

the number of violated constraints as the distance metric. (Beasley and Chu 1996,

Coit et al. 1996). These penalizing schemes are general schemes and can be adapted

to different side constraints with little effort. The general structure of the EA will not

change, only the procedures computing the amount of infeasibility should be added.

Hence, like rejecting strategy this scheme provides a general basis for solving the

problems with side constraints.

Michalewicz and Fogel (2000) consider the effort required to repair an

infeasible individual as penalizing basis. Although this infeasibility metric is intuitive

+3

+2

+1
+1

+3

-4

-3

-1

-1

-1

(a)

+3

+2

+1
+1

+3

-4

-3

-1

-1

-1

(b)

44

and logical as it requires specific repairing procedures for each side constraint type, it

cannot be considered as a general approach for problems with different side

constraints.

According to Michalewicz and Fogel (2000), the appropriate penalizing

method should consider the problem specific properties like the solution space

topology (i.e., convexity of the feasible solution space) and the ratio between sizes of

the feasible and the whole search space. If a distance metric based on constraint

violation is to be used, the modeling related properties of the problem (i.e., the

number of variables and constraints) and type of the constraints should also be

considered in order to come up with a proper penalizing function.

The general EA algorithm that is using penalizing schemes does not differ from

the one given in Figure 3.2. The REPRODUCTION routine is enlarged by feasibility

checking and penalizing procedures. Then, the penalized fitness values are used for

selection and replacement.

 In our work two penalizing methods are proposed for TSPPD and TSPB. The

first method uses the effort to repair the infeasible solution as the penalizing basis as

in Michalewicz and Fogel (2000). The value of the repaired infeasible solution is set

as the penalized fitness value. The second method is an adaptation of the penalizing

scheme proposed by Coit et al. (1996) to our problems.

3.3.1 Penalizing by Repairing (PEN_REPAIR)

It utilizes a direct infeasibility metric. The distance of the infeasible solution to

the feasible solution space is taken as the difference between the original infeasible

solution value and the value of the repaired value solution. Hence, the penalized

fitness value of a solution is

Fp(x) = REP(F(x))

where Fp(x) is the penalized value of an infeasible solution, F(x) is the original

solution value and REP function returns the value of the repaired solution. If the

solution is feasible the function returns the original solution value.

45

 Using the repair algorithms explained in Section 3.2.3, the penalizing

function repairs any infeasible solution produced. The repaired solution replaces the

original solution if it is shorter than the original solution.

3.3.2 Penalizing by Adaptive Penalizing Scheme (PEN_ADAPT)

 As it is noted by Reeves (1997), static and naive penalty schemes are capable

of finding good results. Coit et al. (1996) provide the example of Siedlecki and

Sklansky (1989) of dynamic updating scheme for the penalty coefficients. In the

earlier stages of evolution, the infeasible solutions are penalized less. However, as

the algorithm proceeds the coefficients are increased in order to shift the population

to the feasible solution space.

 The more sensitive approach is to use adaptive penalizing schemes in which

the history and the current state of the evolution are incorporated in deciding

penalizing coefficients. Coit et al. (1996) proposed a general adaptive penalty

method for constrained combinatorial problems; The infeasible solutions are

penalized considering the difference between best feasible and best overall solution

found so far, and the remoteness of the infeasible solution to the feasible solution

space.

Using their terminology, an adaptive penalizing method is designed here. The

penalized values are computed as follows:

Fp(x) = F(x) + (Ffeas - Fall)
()

1

, iK
n

i

i i

d x B
NFT=

∑

where Ffeas is the value of the best feasible solution value found so far , and Fall is the

value of the best solution, not necessarily feasible, found so far. The distance of the

solution to the feasible area is kept with di(x,B) considering the ith constraint of type

B. This metric should be defined separately for different constraint types. NFTi is the

Near Feasible Threshold value for the ith constraint, which sets the boundary for the

acceptable feasible solutions. And Ki is the severity index for the ith constraint. Note

that if Ki >1 then the “near” infeasible solutions are penalized less than the distant

46

ones. If the current best solution is feasible, the infeasible solutions are not penalized

at all. When the search finds some better infeasible values, the function begins to

penalize them.

 NFT can be used as a static parameter where it is possible. However, in most

cases, there is not a standard, well-defined NFT value that can be set in advance. In

such cases, it can be initialized to a reasonably large value, and can be decreased

through the generations. Coit et al. (1996) provided the following equation for this

dynamic setting of NFT.

0

1
NFT

NFT
gλ

=
+

where g stands for the generation number, and NFT0 is the initial value. In this

setting NFT is a monotonically decreasing function of the generation number for the

positive values of λ . In our work, this dynamic approach is used for NFT. This

penalizing setting is originally used for the Unequal Area Shape Constrained Layout

Problem and Redundancy Allocation Problem. In the first one, the objective is to

minimize the total cost of flow among the rectangular facilities located on a

rectangular area. For any facility, the proportion of width to length should be in some

predetermined range. The facilities with the proportion value out of this range are

deemed infeasible. Here the distance metric is based on the number of facilities

violating the shape constraints. The authors used a static NFT value of 2. In the

second problem, where the reliability of a system is to be maximized using parallel

components, there are two restrictions regarding cost and weight. For this problem,

the distance of the solution to the feasible space is exceeded the amount of

constraints. Since the appropriate NFT value cannot be foreseen, the authors used a

dynamic NFT for this case. Large NFT0 values such as 70% of the constraints, and

slow cooling schemes such as λ =0.04 found to give better results.

 The algorithm for this strategy for specific side constraints is as provided in

Figure 3.5. The children are produced and penalized using Ffeas and Fall values of the

previous generation. Also Ffeas and Fall values are not updated until the solutions that

are better than these values enter the population. That is to say, if an infeasible

47

solution with a value better than Fall is penalized highly and dismissed directly, we

do not update the value of Fall. When an update of these values occurs with the

introduction of new solutions to the population, the penalized values, which are

computed using the previous values of Ffeas and Fall, are recomputed using the

updated values. Therefore all of the infeasible solutions in the population should be

penalized again before proceeding to the next generation.

In order to adapt the general strategy for TSPPD, first of all, a suitable distance

metric should be defined. The distance metric used is the total exceeding of the

capacity constraint. It can be computed by using the positive difference between the

vehicle load and the capacity after visiting each node. But this can cause unfair

penalization of the solutions. Let us think of an instance in which there is only one

pickup customer with load m, and m delivery customers with unity demands. When

the vehicle visits the pickup customer first, the vehicle capacity is exceeded along

every node of the tour. Hence the solution is penalized highly although it can be

repaired with small modifications on its structure. In order to cope with this

cumulative effect, the individual effects of the nodes are considered in computing the

distance of the solution to feasibility. Since visiting a delivery node decreases the

capacity violation this node is excluded in computing di(x,B). If visiting a pickup

node causes the load on vehicle to exceed capacity, then the exceeded amount is

taken as the constraint violation for this node. When we come to a pickup node,

having already exceeded the capacity, after visiting this pickup node, the exceeding

will increase. Instead of considering the total violation, we take only the contribution

of this node to the total violation in computing di(x,B). The general formulation for

di(x,B) can be generalized as follows:

 0, if i ∈ D

 di(x,B) = load[i] if i ∈ P and Vloadb[i] ≥ Q

 max(0,Vloadb[i] + load[i] - Q) if i ∈ P and Vloadb[i] ≤ Q

where B denotes the capacity exceeding constraint. Here Vloadb[i] keeps the

quantity of load on vehicle just before visiting node i.

48

The following example illustrates the computation of d(x,B). For the instance

provided in Figure 3.11, the encircled pickup nodes cause infeasibility. Let the first

encircled node be indexed as a and the second one be indexed as b. After visiting

these nodes, the vehicle capacity is exceeded by 2 for a and by 1 for b. Therefore

da(x,B) = 2 and db(x,B) = 1 and di(x,B) = 0 for every other nodes.

Figure 3.11 Example for computing di(x,B)’s for TSPPD

A dynamic NFT is used for this strategy. In the preliminary experiments, NFT0

and λ settings of Coit et al. (1996) are found inappropriate for our problem. The

reason may arise due to the difference in the number of iterations to termination, or

the difference due to the type of crossover operators. The authors terminated the

algorithm after 750,000 iterations, but in our work the algorithm is ended earlier. The

crossover operator used in Coit et al. is a variant of the uniform crossover operator.

In our work, the crossover used is based on a conventional heuristic. Therefore, the

probability of having a feasible child from an infeasible parent may vary. Finally, we

set NFT0 and λ very tightly regarding the preliminary experiments: NFT0 = Q / n

and λ = n / (2 * iternum) where n is the number of customers and iternum is the

termination generation. When the generation number equals to iternum, NFT will be

equalized to (2 * Q / n) / (n + 2). The numerator represents the load for a pickup

customer when there are an equal number of pickup and delivery customers with

equal demands. It is mentioned before that the capacity is assumed to be equal to the

total delivery load. When the infeasibility occurs due to the location of just one

+3

+2

+1
+1

+3

-4

-3

-1

-1

-1
7

9

11

10

10
9

10

12 a
9

9

10

b

49

pickup customer, d(x,B) value becomes equal to (2 * Q / n). K parameter is set as 1,

as suggested in Coit et al. (1996).

For TSPB the distance metric can be designed more easily. d(x,B) simply holds

the number of the pickup chains visited before than all delivery customers. Note that

a chain may also be composed of only one customer if it is preceded and appended

by a delivery node. In Figure 3.12, there are three pickup chains, two of which are

visited before than all delivery customers. Chains violating the precedence

constraints of TSPB are encircled on the figure and d(x , B) is equal to 2.

For TSPB the preliminary experiments yielded tight values for the penalizing

function parameters. NFT0 is set to 1 and λ = n / (2 * iternum) as it is in TSPPD.

Figure 3.12 Example for computing di(x,B)’s for TSPB

 In this chapter, five EAs differing in the strategy for handling infeasibility are

proposed for constrained routing problems. These algorithms are then adapted for

TSPPD and TSPB. The following chapter reveals the performance of these

algorithms for TSPPD and TSPB.

+3

+2

+1+1

+3

-4

-3

-1
-1

-1

(a)

50

CHAPTER 4

EXPERIMENTAL RESULTS

The core of this study is to analyze the performance of the EAs proposed in

the previous chapter. “Performance” of a heuristic procedure is generally defined by

the quality of the solutions it provides and its computational time requirement.

However, additional measures can be defined in order to point at specific

considerations.

In order to comment on the performance of our algorithms, several

experiments were designed and carried on computer environment. We first

determined performance measures and identified related statistics, which are

appropriate for our purposes. The related algorithms were then coded using C

programming language. These codes were run on a HP computer with a Pentium 4,

1.6 GHz processor, and 256 MB RAM.

This chapter presents our results and findings of this computational

experiment study. We clarify the experiment environment in Section 4.1. The

performance measures utilized and the problem set are presented. After revealing the

experiment parameters in Section 4.2, the results of our experiments and the analyses

of the algorithms are provided in Section 4.3. The chapter ends with the concluding

remarks given in Section 4.4.

4.1 Experiment Settings

This section explains the setting of our experimental study. First, the

performance measures that are used to analyze the algorithms and the related

statistics that should be collected in these experiments are identified. The section

continues with explanation of the test instances utilized in the study. Then, how the

optimal solutions and bounds for these instances are found is discussed in the last

part of this section.

51

Performance Measures

 As usual, the most important measure is related with the solution quality. The

best solution found by the algorithm is generally present in the final population.

However, in penalizing schemes it may be needed to keep the best feasible solution

separately due to poor penalizing schemes. In such cases, insufficiently penalized

infeasible solutions may dominate the population, which may cause deletion of the

best feasible solution from the population. In either case, it is essential to keep the

best solution information. We also defined several other measures. A complete list of

these measures and statistics are provided in Table 4.1.

DEVopt keeps the percent deviation of the best feasible solution from the

optimal value of the constrained problem. This measure is used for TSPB

experiments, where we could obtain optimal tours for all of the instances. Since it is

not the case in TSPPD, we have used DEVb, the percent deviation of the best feasible

solution from the lower bound value. For the lower bound value optimal TSP tours

are used. FB, Value of the best solution in the final population (FB), and the

population average in the final population (FA) are recorded for analyzing

convergence of algorithms. As the decision on convergence is given depending on

the difference between FB and FA, it is found appropriate to consider the

unpenalized fitness values of infeasible solutions while computing FB and FA in the

penalizing strategies. Therefore it is necessary to keep the value of the best feasible

solution in the final population, which is kept by FFEAS in the penalizing

algorithms.

Another performance measure, which is as important as solution quality, is

the computation time. In our study, average computation time in seconds is given as

CPU. CPU excludes generation of initial population, inputting and outputting times.

The time elapsed for generating initial population is kept by CPUini, in seconds.

Initial population type is one of the experiment parameters in our study. The

performance of the algorithms may differ regarding the population type used.

Although, for all types, the initial populations are generated randomly, the number of

feasible solutions in the population may differ. Hence the probability of including

feasible solutions differs among these types.

52

Table 4.1 Performance measures and statistics used

DEVopt Percent deviation of population best from optimal

DEVb Percent deviation of population best from optimal TSP tour

FB The value of best solution at termination

FA The value of population average at termination

FFEAS1 The value of best feasible solution at termination

IMPb Percent improvement in best solution compared to the best solution

IMPavg
Percent improvement in population average compared to the initial population
average

IMPfeas
1 Percent improvement in best feasible solution compared to the initial best feasible

solution

CPU Computation time for main algorithm (sec.)

CPUini Computation time for generating initial population (sec.)

GEN Number of generations at termination

Cdel Number of deleted children per generation

EP Percent of edges taken from complete graph per child

ENUM2 Number of infeasible solutions produced per feasible child divided by problem size

TOTREP3 Number of total repaired children

EDGErep
3 Percent of edges added due to repairing

LOC3 Percent of depot locations tried per repaired child to problem size

Favg
1 Number of feasible solutions per generation

Fall
4 Value of best solution at termination

1 defined for penalizing strategies, 2 defined for REJECT, 3 defined for REPAIR, 4 defined for PEN_ADAPT,

 Therefore we defined IMPb and IMPavg to keep the percent improvement of

the population best and the population average relative to initial population values,

respectively. When the initial population lacks feasible solutions, which can be the

case when we generate the entire initial population randomly, the improvement value

is not computed. For the penalizing strategies, the former measures include infeasible

solutions and IMPfeas is the percent improvement of the best feasible solution relative

to initial population value.

53

Stopping condition is one of the key features of an EA. For the proposed

algorithms, the difference between population best and population average is used

for determining when to stop, as well as an upper bound on the number of

generations. Since this bound is difficult to set in advance, several numbers of

generations to terminate are experimented in the study. Thus, the number of

generations at termination (GEN) is recorded during the experiments.

In the replacement strategy, the children produced may be deleted directly

when they are poorer than their parents. The effort used for producing children that

are deleted directly is unbeneficial. Therefore, the portion of the children that are

directly deleted from the population is selected as a performance measure to compare

the proposed algorithms. Cdel keeps the number of deleted children per generation.

The total number of solutions produced is typically two times the number of

generations until termination. The number of children that are included in the

population can be computed by subtracting Cdel times the number of generations at

termination from two times the number of generations at termination.

The resemblance of the children to their parents is an important issue in

analyzing the crossover operator. By keeping the percent of edges taken from the

complete graph per child, EP, the resemblance can be measured. This quantity is

expected to vary among strategies. Since the crossover operator itself in

CONSTRUCT checks feasibility, the edges taken from the complete graph is

expected to be more for the other strategies. For the algorithms utilizing repairing,

the edges added to the solution due to this operation are excluded in computing this

measure.

 Apart from general measures, some strategy specific measures were also

computed in the study. The number of infeasible solutions generated until obtaining a

feasible solution is an important indicator for measuring the computational effort to

obtain a feasible solution in REJECT. However, the number of infeasible solutions

produced may be vary with respect to the size of the instance. To provide a general

measure the average number of infeasible solutions per feasible solution is divided

by the size of the instance. ENUM keeps this value for REJECT.

In REPAIR strategy, we are interested in behavior of repairing procedures

utilized. For example, the number of edges added by the repair algorithms should be

54

computed in order to comment on the resemblance of the children to their parents. In

fact, for TSPPD, the repair algorithm introduces at most three new edges and this

quantity does not change the solution much, especially, when the problem size gets

larger. On the other hand, the number of edges added is not fixed and may be very

large for TSPB. Therefore, EDGErep, which keeps the number of edges changed due

to repair operation, is defined for REPAIR strategy for TSPB only. For this strategy,

the total number of children repaired, TOTREP, is also kept. In addition, the repair

algorithm for TSPPD searches for new locations for depot, making the resulting tour

feasible and selects the location, ensuring feasibility at minimum cost. We are

interested in the question of how many such locations exist on the average. If there

are too many alternatives for depot location, instead of picking the best location,

picking the first location may be advisable. For that purpose, LOC keeps the average

number of feasible locations per repaired solution.

The average number of feasible solutions in the population is an important

quantity for penalizing strategies in order to analyze the behavior of the penalizing

schemes and the distance metric. Therefore, during the experiments Favg, keeping this

quantity, is computed for penalizing schemes.

For PEN_ADAPT the value of the best solution found so far should be kept.

Fall is defined for that purpose.

Test Problem Set

 A test bed of 20 small-sized problems is utilized for the first part of our

experiments. These problems are taken from the VRP literature. The sizes of the

problems vary from 20 to 151. Six problems are uniformly generated, two of them

are clustered problems, and the remaining problems are adapted from the real life

problems, which do not have any pattern. The distances between the locations are

made integer by rounding the real valued distance to the next integer. The sources

and sizes of these problems are provided in Table 4.2.

Half of the nodes are selected to be pickup customers randomly for TSPPD.

In cases where there are an odd number of customers, the number of delivery nodes

is larger by one. The total loads are equated by adding the difference between the

initial loads of two sets of customers to the load of customer set with fewer loads.

55

Table 4.2 The test problems

Name Authors Source Size

P00 Christofides, Eilon http://neo.lcc.uma.es/radi-aeb/WebVRP/ 22

P01 Christofides, Eilon http://neo.lcc.uma.es/radi-aeb/WebVRP/ 33

P02 Christofides, Mingozzi, Toth http://neo.lcc.uma.es/radi-aeb/WebVRP/ 51

P03 Christofides, Mingozzi, Toth http://neo.lcc.uma.es/radi-aeb/WebVRP/ 101

P04 Fisher Operations Research 42, (1994) 626-642 45

P05 Christofides, Mingozzi, Toth http://neo.lcc.uma.es/radi-aeb/WebVRP/ 121

P06 Tsigilirides Journal of the Operational Research Society
35, (1984) 797-809 30

P07 Tsigilirides Journal of the Operational Research Society
35, (1984) 797-809 20

P08 Tsigilirides Journal of the Operational Research Society
35, (1984) 797-809 30

P09 Mosheiov European Journal of Operational Research
79, (1994) 299-310 25

P10 Christofides, Eilon http://neo.lcc.uma.es/radi-aeb/WebVRP/ 23

P11 Christofides, Eilon http://neo.lcc.uma.es/radi-aeb/WebVRP/ 30

P12 Christofides, Mingozzi ,Toth http://neo.lcc.uma.es/radi-aeb/WebVRP/ 151

P13 Christofides, Eilon http://neo.lcc.uma.es/radi-aeb/WebVRP/ 76

P14 Fisher http://neo.lcc.uma.es/radi-aeb/WebVRP/ 72

P15 Fisher http://neo.lcc.uma.es/radi-aeb/WebVRP/ 135

P16 Christofides, Mingozzi, Toth http://neo.lcc.uma.es/radi-aeb/WebVRP/ 101

P17 Rinaldi, Yallow http://neo.lcc.uma.es/radi-aeb/WebVRP/ 48

P18 Augerat http://neo.lcc.uma.es/radi-aeb/WebVRP/ 34

P19 Hadjiconstantinou, Christofides,
Mingozzi

www.or.deis.unibo.it/research_pages/Orinsta
nces/VRPLIB/VRP.html 36

56

Finding the Optimal Solutions and Bounds

 For finding the optimal TSP tours on these problem data, CONCORDE

symmetric TSP solver of Applegate et al. (1998) is utilized and optimal tours are

obtained within seconds by this software. Finding optimal TSPPD tours were not that

easy. Formulations of Mosheiov (1994) and Süral and Bookbinder (2003) were run

in CPLEX 8.1. Unfortunately, within a time limit of 24 hours, only ten problems

with smaller sizes could be solved to optimality. When we compared the optimal

values for TSP and TSPPD for these 10 problems, the average deviation of the

optimal TSPPD values from optimal TSP values turned out to be 2.33%.

TSPB instances of the problems are transformed to asymmetric TSP (ATSP).

And then these instances are transformed to symmetric TSP (STSP) instances. The

resulting instances are solved by CONCORDE again. Transforming a TSPB to STSP

is illustrated on example provided in Appendix A.

Values of the optimal TSP and TSPB tours for the entire test bed, and the

optimal TSPPD tours for the smaller 10 instance are provided in Appendix B.

4.2 Experimental Factors

 The main parameters of the experiment are five strategies utilized in handling

the additional constraints, namely, REJECT, CONSTRUCT, REPAIR,

PEN_REPAIR, and PEN_ADAPT. The second parameter is the type of initial

population. Three different initial population types are utilized in this experiment,

which are called inifeas, inihalf and inirand. Entire population is composed of feasible

solutions in inifeas, whereas only half of the population is guaranteed to be feasible in

inihalf, the other half is produced randomly. In inirand, all of the solutions are produced

randomly. The detailed discussion on these initial types was provided in Chapter 3.

 The last experiment parameter is the bound on the stopping condition.

Unfortunately there is not a single appropriate value for this bound. The bound value

can be set according to the trade-off between the computational effort and the

solution quality. If we stop early, we can generate solutions quickly, but these

solutions may be poor in terms of the solution quality. If we wait too much to

terminate, it may take long times to obtain the solutions. For different environments,

57

different measures may gain importance. Therefore, in this study we have tried

several different bounds for stopping conditions.

In order to take the first step in the analysis, a preliminary experiment

revealing the convergence behavior and change of the solution quality through

generations is performed. For this purpose, two TSPPD and TSPB instances were run

for sufficiently large number of generations. A small sized problem, p00 (of size 22),

and a larger sized problem, p15 (of size 135), were selected for the analysis. The next

step was determining the length of this run. In Sönmez (2003), the convergence

analysis has been performed by producing 50,000 new solutions for a TSP instance

with 52 locations. Considering this, we have decided to run the problems 50,000

generations, in which a total of 100,000 solutions was produced. For each strategy

and problem combination, 30 replications were realized. The population bests and

population averages were recorded at every 500 generations. After averaging these

values for 30 replications, they are plotted on graph. These graphs are provided in

Appendix C.

For all of the strategies, the convergence cannot been achieved after 50,000

generations for both problems. For the small problem, there is a constant gap

between the population best and average. The reason of the constant gap and

unnoticeably slow convergence may be the replacement scheme utilized in the

algorithms. The population average may get worse and actually it gets worse for

many cases, which may prevent the convergence. Although the best solution

achieved before 8,000th generation did not improve until the end in general, in

CONSTRUCT, the optimal solution has been found in every replication before 3000

generations, and the population average was 7% higher than the optimal value at the

termination. This example illustrates drawbacks of stopping the algorithm only when

the convergence is obtained. The graphs for the related case are provided in Figure

4.1.

For the larger problem, the gap between population best and average is not

constant and tends to decrease throughout the entire run in many replications.

However, the best solutions at termination are within 1% of the population best at the

8,000th generation. Considering the huge computational effort to achieve this

improvement in solution quality, the solutions found until 8000 generations are

58

deemed good solutions. An example of the convergence behavior for the large

problem is provided in Figure 4.2.

Finally, 8000 is determined to be sufficient for the upper bound on the

number of generations for stopping condition. However, the performance measures

and statistics are recorded for 2000th and 5000th generations also. These three

stopping conditions will be called by their generation number at termination in the

following sections as, stopping condition 2000, stopping condition 5000 and

stopping condition 8000.

We also test another stopping condition, where the algorithm halts when the

population best does not change for a number of generations. This stopping condition

is designed mainly for larger problems where the population best is expected to

improve after 8000 generations. It is set as 15,000 after analyzing convergence plots

for the larger problem. This stopping condition is named as Fixedbest.

59

305

310

315

320

325

330

335

340

345

1

30
00

60
00

90
00

12
00

0

15
00

0

18
00

0

21
00

0

24
00

0

27
00

0

30
00

0

33
00

0

36
00

0

39
00

0

42
00

0

45
00

0

48
00

0

generation number

to
ur

 v
al

ue

FB

FA

Figure 4.1 (a) FB and FA vs. number of generations and (b) CPU vs. number of

generations for CONSTRUCT with inirand for the small problem instance

(a)

0

5

10

15

20

25

30

35

1

30
00

60
00

90
00

12
00

0

15
00

0

18
00

0

21
00

0

24
00

0

27
00

0

30
00

0

33
00

0

36
00

0

39
00

0

42
00

0

45
00

0

48
00

0

generation number

se
co

nd
s

cpu

(b)

60

Figure 4.2 (a) FB and FA vs. number of generations and (b) CPU vs. number of

generations for REPAIR with inirand for the large problem instance

4.3 Results for TSP

 Although the main purpose of this work is to analyze the performance of

various constraint handling techniques for different side constraints on TSP, this

effort would never be complete unless the performance of the EA is analyzed for the

unconstrained case (“naked” TSP). Therefore our experimentation starts with TSP.

When there is no side constraint associated with the problem, differences among the

proposed strategies vanish as the crossover operator utilized assures feasibility

0

10

20

30

40

50

60

1

30
00

60
00

90
00

12
00

0

15
00

0

18
00

0

21
00

0

24
00

0

27
00

0

30
00

0

33
00

0

36
00

0

39
00

0

42
00

0

45
00

0

48
00

0

generation number

se
co

nd
s

cpu

815
820
825
830
835
840
845
850
855
860
865
870
875
880
885

1

35
00

70
00

10
50

0

14
00

0

17
50

0

21
00

0

24
50

0

28
00

0

31
50

0

35
00

0

38
50

0

42
00

0

45
50

0

49
00

0

generation number

to
ur

 v
al

ue FB

FA

(a)

(b)

61

regarding TSP. Only computational time performances may vary among the

algorithms, due to some algorithmic and coding differences. For example, if

CONSTRUCT is to be used, the computational time will be more as a feasibility

check is done at every node addition. Therefore, any proposed algorithm can be used

for observing the performance of EA settings regarding the solution quality. We have

chosen the algorithm based on REPAIR for this experimentation. The initial

population is generated randomly.

 Firstly, the influence of population size is investigated. Two population sizes

experimented in Sönmez (2003), i.e., 50 and 100, are experimented for determining a

proper population size. For the problems given in Table 4.2, 30 replications are

realized for different stopping conditions. For each problem, average, minimum, and

maximum values attained and standard deviation observed during replications are

recorded. Then, these values are averaged for 20 problems. The results for population

size 50 and for population size 100 are given in Table 4.3 and Table 4.4,

respectively.

Table 4.3 Performance of EA in TSP when population size is 50

 GEN FB FA IMPb IMPavg CPU CPUini EP DEVopt

avg 1990.66 2408.46 2441.21 72.01 72.68 0.32 0.00 1.26 2.06
std 37.06 37.21 31.42 1.90 1.45 0.01 0.01 0.39 0.89

min 1816.05 2327.05 2360.06 67.55 69.23 0.30 0.00 0.71 0.65 20
00

max 2000.00 2470.50 2499.60 75.40 75.29 0.34 0.02 2.30 4.13
avg 4482.78 2407.15 2425.92 72.03 72.86 0.73 0.00 0.71 1.98
std 765.26 37.95 31.89 1.90 1.42 0.12 0.01 0.31 0.90

min 2500.70 2326.60 2355.95 67.57 69.48 0.42 0.00 0.33 0.58 50
00

max 5000.00 2470.25 2483.19 75.43 75.45 0.83 0.02 1.65 4.09
avg 6233.11 2406.25 2423.37 72.03 72.89 1.01 0.00 0.60 1.97
std 1769.24 38.37 32.48 1.90 1.42 0.29 0.01 0.30 0.90

min 2650.70 2326.60 2353.54 67.57 69.54 0.43 0.00 0.23 0.58 80
00

max 8000.00 2470.00 2481.92 75.43 75.48 1.32 0.02 1.49 4.06
avg 9925.13 2399.53 2415.60 72.04 72.95 1.68 0.00 0.53 1.93
std 4534.58 36.66 34.21 2.01 1.49 0.80 0.00 0.31 0.85

min 3168.40 2335.70 2343.35 67.42 69.44 0.51 0.00 0.13 0.62

Fi
xe

db
es

t

max 19214.80 2475.25 2479.16 75.73 75.81 3.40 0.02 1.40 3.89

62

Having noticed that the larger population size give better results, we decided

to use a population composed of 100 solutions for analyzing the performance of our

EAs on constrained problems.

Table 4.4 The performance of EA in TSP when population size is 100

 GEN FB FA IMPb IMPavg CPU CPUini EP DEVopt
avg 2000.00 2398.93 2475.16 71.46 72.50 0.52 0.01 2.03 1.64
std 0.00 32.00 42.43 1.76 1.12 0.01 0.00 0.34 0.54

min 2000.00 2347.80 2397.26 67.47 70.00 0.51 0.01 1.39 0.79 20
00

max 2000.00 2453.40 2606.75 74.83 74.80 0.53 0.02 2.79 2.84
avg 4985.54 2388.96 2424.69 71.50 72.89 1.28 0.01 1.09 1.42
std 45.56 31.25 34.47 1.75 1.12 0.01 0.00 0.29 0.50

min 4804.75 2346.95 2374.39 67.53 70.43 1.25 0.01 0.62 0.66 50
00

max 5000.00 2446.40 2542.97 74.85 75.21 1.30 0.02 1.77 2.49
avg 7845.54 2388.31 2414.15 71.51 72.99 2.01 0.01 0.79 1.39
std 363.45 31.58 26.77 1.75 1.10 0.07 0.00 0.26 0.50

min 6559.85 2345.40 2369.48 67.53 70.56 1.71 0.01 0.42 0.64 80
00

max 8000.00 2446.15 2472.42 74.87 75.29 2.05 0.02 1.44 2.44
avg 15186.93 2383.54 2401.62 71.43 73.02 4.01 0.01 0.53 1.33
std 3398.09 27.87 24.77 1.85 1.10 0.92 0.00 0.26 0.54

min 7688.65 2320.80 2348.86 67.24 70.47 1.95 0.01 0.21 0.40

Fi
xe

db
es

t

max 22980.65 2438.20 2449.13 75.01 75.29 6.27 0.02 1.27 2.55

From the reproduction aspect, our algorithms are based on Sönmez (2003);

the crossover operator utilized in the study is taken from her work. However,

regarding selection, replacement, and generational gap aspects, the algorithms are

different. Sönmez’s EA is an example of a generational GA. Specifically, it first

generates a mating pool by replicating each solution in the population twice. Then, it

selects random pairs from the population until all the individuals are mated with

another. From each pair one solution is produced. In total, N new solutions are

produced, where N is the original population size. The population size is doubled

with the addition of these newborns to the population. In order to decrease the

population size back to N, all new solutions and individuals in the current population

are ordered and worst N individuals are deleted from the population.

Sönmez (2003) reports an average deviation of 3.10% of the population best

from the optimal value for the Nearest Neighbor crossover operator. The average

computation time is reported to be 0.38 seconds. The experiment was carried on a set

63

of ten problems from TSP library, sizes of which are varying from 52 to 226.

Although this result is not directly comparable with our results due to size difference

in test beds, it shows that the performance of our EA is at least as good as her

algorithm.

Our EA produced better results even for the early stopping conditions: the

average deviations of the population best from the optimal value are 1.64, 1.42, and

1.39 for the stopping conditions of 2000 generations, 5000 generations and 8000

generations, respectively. The algorithms of Sönmez converge after producing about

2300 solutions on the average. However, even if we stop at 2000th generation, we

produce 4000 solutions. The main reason for our algorithm to give better results may

be that increase in the number of solutions produced. Moreover, the steady state

replacement scheme, or specific selection and replacement schemes used in our study

may be accounted for these better results also. Anyway, we will not concentrate on

the goodness of our algorithm. We will just concentrate on the results. Having found

that our EA performs well for TSP, we thought that it would be worthwhile to test

the performance of handling side constraints on TSPs using our scheme.

4.4 Results for TSPPD

 In this section the performance of the algorithms are tested for TSPPD. 30

replications for each problem in the problem set described in Section 4.1 are realized.

For each algorithm (i.e., the algorithms based on different strategies), four different

stopping conditions (2000, 5000, 8000, and Fixedbest) and three different initial

population types (inifeas, inihalf, and inirand) are experimented. In the following

subsections, we first give the performance measure values in tables for each strategy.

Then the statistical analyses of the two experiment factors are performed for each

algorithm separately. Afterwards the proposed algorithms are compared by again

statistical means. The significance level is considered to be 0.05 for every statistical

analysis.

 We want to determine the effect of the initial population types and indicate

the favorable types if any. Through this respect, Analysis of Variance (ANOVA) is

conducted for the effect of the initial population types on solution quality and time.

64

This analysis is conducted once for the earliest stopping condition, 2000, and once

for the latest stopping condition, Fixedbest, to point on the changes throughout the

generations if any.

 Having determined 8000 as the appropriate stopping condition, we want to

check if there are significant differences among this stopping condition and the

others regarding our main performance measures. The main question was “Can we

stop earlier without a significant decrease in the solution quality?”. Therefore, we

first look at the difference between 5000 and 8000 by conducting ANOVA. When

we look at the average figures, the minimum difference between two stopping

conditions is observed between 5000 and 8000. Hence, once the difference between

5000 and 8000 is found significant, we assume that 8000 is significantly different

from the others also.

For both initial population and stopping condition analyses, ANOVA is

conducted in the same manner. Normality and residual vs. fit plots are drawn in order

to check the validity of the assumptions of ANOVA. The main responses used in the

analyses are DEV, regarding solution quality, and CPU, regarding the computation

time. However, when the plots are found inappropriate for these responses,

logarithms and square roots of these measures are considered in order to conform the

assumptions. For the analyses, General Linear Model option of MINITAB 13.32 is

utilized. Main fixed factor is initial population type and stopping condition in the

first and second analyses. All analyses are realized in randomized block design,

where the instances are taken to be the random effects. The ANOVA tables and plots

of initial population and stopping condition analyses are provided in Appendix D and

Appendix E, respectively.

 The main aim of this study is to compare the effect of different strategies. For

that purpose another ANOVA with randomized block design is conducted. The

algorithms are compared regarding solution quality and time for each stopping

condition and for the initial population types determined before.

Stating that algorithms are significantly “different” from each other is not

sufficient. Therefore, Tamhane’s T2 test, a post-hoc multiple comparison test, which

does not assume equal variances for different factor levels, is used for ordering the

algorithms. The reader is referred to Toothaker (1993) for a discussion on this test.

65

After testing this assumption with Levene’s test, and observing that in all cases the

hypothesis is rejected, we find this type of comparison test to be more appropriate.

This comparison is realized in SPSS 12.0 for Windows. Results of the Levene’s and

Tamhane’s tests are given in Appendix F.

4.4.1 Results for REJECT (Strategy-1)

 For this strategy, because of its large computation time requirements three

stopping conditions and three initial population types are experimented here.

Fixedbest stopping condition was not experimented. Results are given in Table 4.5.

When we look at the effect of initial population for 2000 stopping condition,

inirand seems to be worse than the others on the average. However, statistical

significance could not be achieved. The p-value for the test (when the response was

logarithm of DEVb) was 0.375, which is far from the standard p-value of 0.05.

However, when the response was logarithm of CPU, the p-value decreased to 0.079.

Nevertheless it is still more than 0.05. Therefore, the initial population type is

deemed not influential on the performance for early termination. The p-values get

worse for 8000. Hence, the former decision is valid for this condition too. Note that,

the mentioned responses gave the most appropriate residual plots in the tests.

As the initial population type is determined to be not influential to the

performance of the algorithm, we combined the data coming from every initial

population type for this strategy for comparing this strategy with others. However,

we also realized a comparison using only the results of the experiment with inirand as

it is the most basic and easy to generate type.

The difference between stopping conditions is tested for the inifeas. Logarithm

of DEVb is the response in this test. The p-value of the test was 0.011, which implies

statistical significance. However, the best normality and residual vs. fitted value plots

that could be attained were not very dependable. Therefore, stopping earlier will

cause a significant worsening in the solution quality by 0.30%, but this will decrease

the computation time required by 5 seconds on the average. In cases where

computational time is extremely important, stopping earlier may considered as

feasible alternative for this strategy.

66

Table 4.5 Performance of REJECT for TSPPD

 GEN FB FA IMPb IMPavg CPU CPUini EP ENUM Cdel DEVb

avg 2000.00 2412.50 2651.10 66.42 70.15 9.43 0.01 3.62 0.32 0.81 5.30inifeas std 0.00 1.33 72.96 1.27 0.79 3.27 0.01 0.84 0.13 0.17 1.30
avg 2000.00 2416.00 2579.80 67.01 70.72 9.33 0.01 3.71 0.33 0.82 5.30inihalf std 0.00 1.32 83.16 1.37 0.72 3.54 0.01 1.02 0.12 0.18 1.30
avg 2000.00 2412.80 2505.10 70.44 71.30 9.70 0.01 3.52 0.33 0.79 5.40

20
00

inirand std 0.00 1.33 44.30 1.81 1.22 3.09 0.01 0.89 0.13 0.19 1.30
avg 5000.00 2404.70 2500.10 66.47 71.41 15.14 0.01 2.31 0.25 0.69 5.00inifeas std 0.00 1.23 51.22 1.26 0.57 7.47 0.01 0.86 0.13 0.22 1.20
avg 5000.00 2408.70 2484.70 67.07 71.54 15.19 0.01 2.42 0.25 0.71 5.10inihalf std 0.00 1.28 49.97 1.36 0.54 8.03 0.01 1.06 0.12 0.23 1.30
avg 4996.44 2404.40 2466.20 70.49 71.65 15.00 0.01 2.25 0.25 0.68 5.20

50
00

inirand std 19.52 1.24 37.88 1.80 1.21 7.35 0.01 0.92 0.12 0.24 1.20
avg 7988.41 2404.00 2466.60 66.48 71.69 19.83 0.01 0.78 0.23 0.64 5.00inifeas std 52.15 1.23 41.15 1.26 0.43 11.32 0.01 0.33 0.13 0.24 1.20
avg 7997.44 2407.80 2461.70 67.08 71.72 20.48 0.01 0.82 0.23 0.65 5.10inihalf std 14.05 1.26 39.91 1.36 0.46 12.54 0.01 0.37 0.12 0.24 1.20
avg 7978.46 2403.90 2456.60 70.51 71.74 19.53 0.01 0.78 0.23 0.62 5.10

80
00

inirand std 118.01 1.24 35.70 1.80 1.21 11.39 0.01 0.36 0.12 0.26 1.20

67

Observe that ENUM does not vary among the initial population types even

when all of the solutions in the initial population are feasible. This case seems to be

the indicator of domination of population by the solutions that can give feasible

offspring when NN is applied. That is to say, in the initial steps, it is hard to produce

feasible solutions from the random solutions in population. However, as we proceed,

the solutions having short “feasible” edges begin to exist in the population, and it

becomes easier to find feasible breed from these solutions with NN. The initial effort

for generating solutions that can produce feasible solutions relatively easily, can be

seen on CPU vs. number of generation graphs provided in Appendix C. As it is given

in Figure 4.3, for p15 the rate of change in CPU decreases considerably around

1000th generation. This indicates a decrease in the total infeasible solutions produced

per feasible solution per generation. When we stop at 5000 and 8000, the number of

infeasible solutions per feasible solution decreases for all of the population types. A

similar pattern can be recognized in EP and Cdel. These measures also decrease as the

algorithm runs more. This may indicate that, as we proceed, the children like their

parents are produced in this strategy. Recall that if a child with the same value of its

parent is produced it is accepted to enter the population.

0

20

40

60

80

100

120

140

160

1

30
00

60
00

90
00

12
00

0

15
00

0

18
00

0

21
00

0

24
00

0

27
00

0

30
00

0

33
00

0

36
00

0

39
00

0

42
00

0

45
00

0

48
00

0

generation number

se
co

nd
s

cpu

Figure 4.3 CPU vs. number of generations for REJECT in inifeas for p15

68

4.4.2 Results for CONSTRUCT (Strategy-2)

 There is no statistical evidence that the initial population types differ in

performance when the stopping condition is 2000 for CONSTRUCT. When we used

Fixedbest as the stopping condition, a close to significant p-value of 0.060 is

observed for DEVb. In this stopping condition inirand gives slightly better results

regarding solution quality. However, at the end we state that the initial population

type is insignificant for this algorithm. Results for CONSTRUCT algorithm is

provided in Table 4.6.

Table 4.6 Performance of CONSTRUCT for TSPPD

 GEN FB FA IMPb IMPavg CPU EP Cdel DEVb

avg 2000 2435.9 2775.3 66.35 68.57 0.57 11.7 1.55 5.74inifeas std 0 34.44 86.83 1.33 0.76 0.01 0.34 0.02 1.04
avg 2000 2441.6 2715.7 67.01 69.24 0.57 11.7 1.55 5.75inihalf std 0 36.28 78.71 1.39 0.76 0.01 0.35 0.02 1.06
avg 2000 2442.2 2623.9 70.46 69.94 0.57 11.7 1.55 5.85

20
00

inirand std 0 25.35 35.91 1.87 1.26 0.01 0.33 0.02 1.01
avg 5000 2411.3 2607.2 66.59 70.09 1.42 11.62 1.67 4.7inifeas std 0 30.23 57.54 1.3 0.54 0.01 0.41 0.03 0.83
avg 5000 2420.1 2599.6 67.24 70.26 1.42 11.59 1.67 4.76inihalf
std 0 26.64 45.61 1.37 0.5 0.01 0.44 0.03 0.77

avg 5000 2422.7 2578.9 70.67 70.42 1.42 11.6 1.67 4.77

50
00

inirand std 0 25.48 31.94 1.85 1.25 0.01 0.42 0.02 0.81
avg 8000 2406.4 2572 66.66 70.44 2.24 11.57 1.7 4.4inifeas std 0 29.16 34.42 1.29 0.41 0.01 0.44 0.03 0.77
avg 8000 2412.3 2576.3 67.31 70.48 2.24 11.53 1.7 4.43inihalf std 0 27.64 31.36 1.36 0.42 0.01 0.46 0.03 0.71
avg 8000 2417.7 2572.6 70.73 70.73 2.24 11.55 1.71 4.44

80
00

inirand
std 0 25.5 21.44 1.85 1.6 0.01 0.45 0.03 0.72

avg 25246.2 2398.8 2556.4 66.74 70.63 8.59 11.37 1.74 3.91inifeas std 7236.59 25.37 27.59 1.36 0.31 2.73 0.46 0.03 0.66
avg 24776.7 2391.8 2544.6 67.37 70.64 8.3 11.39 1.74 3.86inihalf std 6849.74 29.25 30.42 1.31 0.36 2.59 0.48 0.03 0.67
avg 24951.1 2392.4 2555.4 70.94 70.68 8.19 11.37 1.75 3.82Fi

xe
db

es
t

inirand std 6451.1 20.22 25.66 1.75 1.16 2.31 0.46 0.03 0.58

69

The difference between the stopping conditions is tested for the inirand. If we

decide to stop earlier, the solution quality gets worse by 0.3%, and this decrease is

statistically significant. As the difference between 5000 and 8000 in computation

time is only 1 second, waiting for additional generations is an appropriate way. In

fact, when we stop with Fixedbest, we wait for 6 more seconds on the average, and

achieve a decrease about 0.5-0.6%. Stopping with Fixedbest takes less than 10

seconds for this strategy, which is equal to the time required by stopping with 2000

at strategy-1. Therefore stopping with Fixedbest is also a feasible alternative.

Differences between 5000 and 8000 are reported significant, but the best plots are

doubtful about the validation of the assumptions.

Looking at the overall, the algorithm produces competitive results. On the

average, values deviate 4.4% from TSP optimal values. Recalling the difference

between TSP and TSPPD optimal for 10 small problems (i.e., 2.33%) it can be

assumed that the solutions deviate from optimal values around 2 and 2.5% on the

average.

There is a slight decrease in EP values and a considerable increase in Cdel, as

the number of generations increases. The increase in EP is expected, since good

solutions dominate the population as the number of generation increases. However,

as the parents get better it is harder to find better children. Its reason could be the

edge added between the first visited node (last visited for the second child) and the

depot. Recall that this edge is necessary to be able to produce children different from

their parents.

4.4.3 Results for REPAIR (Strategy-3)

Initial population type is not influential. For the stopping condition analysis,

the results of inirand are utilized. There is no significant difference between 5000 and

8000 as a result of the analysis. Although statistical tests could not differentiate the

solution quality of these two stopping conditions, average falls by 0.2%. If we are

looking for computational efficiency we can stop at 5000, which improves the time

by 1 second on the average. However, Fixedbest produces better results than 5000.

The results of our third strategy are provided in Table 4.7.

70

Table 4.7 Performance of REPAIR for TSPPD

 GEN FB FA IMPb IMPavg CPU CPUini EP LOC TOTREP Cdel DEVb

avg 2000.00 2447.09 2754.32 66.49 69.11 0.55 0.01 3.08 2.91 2931.85 1.22 4.91inifeas std 0.00 33.61 95.14 1.39 1.44 0.01 0.01 0.38 0.1 189.34 0.09 0.94
avg 2000.00 2448.88 2668.51 67.22 69.75 0.55 0.01 3.04 2.91 2929.75 1.23 4.96inihalf std 0.00 35.61 72.00 1.47 0.76 0.01 0.01 0.38 0.1 187.32 0.09 0.94
avg 2000.00 2447.91 2601.47 70.53 70.34 0.55 0.01 3.05 2.91 2939.45 1.23 4.87

20
00

inirand std 0.00 31.63 39.27 1.74 1.22 0.01 0.01 0.36 0.09 187.27 0.08 0.85
avg 5000.00 2429.94 2600.30 66.47 70.36 1.34 0.01 2.15 2.9 6689.86 1.18 4.48inifeas std 0.00 32.82 52.03 1.43 1.17 0.01 0.01 0.33 0.08 500.71 0.12 0.82
avg 5000.00 2418.33 2562.94 67.26 70.55 1.34 0.01 2.13 2.9 6635.42 1.19 4.33inihalf std 0.00 34.89 41.30 1.35 0.54 0.01 0.01 0.35 0.1 504.53 0.13 0.87
avg 5000.00 2431.11 2562.94 70.75 70.68 1.34 0.01 2.13 2.9 6662.52 1.19 4.38

50
00

inirand std 0.00 35.52 36.70 1.74 1.22 0.01 0.01 0.35 0.09 501.19 0.12 0.85
avg 8000.00 2429.81 2567.41 66.79 70.67 2.12 0.01 1.87 2.89 10330.96 1.15 4.21inifeas std 0.00 32.4 45.16 1.26 1 0.02 0.01 0.34 0.08 829.35 0.13 0.79
avg 8000.00 2420.82 2549.41 67.38 70.71 2.12 0.01 1.87 2.89 10349.78 1.16 4.13inihalf std 0.00 31.53 35.81 1.28 0.45 0.02 0.01 0.35 0.1 885.56 0.14 0.85
avg 8000.00 2429.61 2558.23 70.52 70.56 2.12 0.01 1.84 2.89 10304.77 1.16 4.31

80
00

inirand std 0.00 28.03 31.04 1.78 1.3 0.02 0.01 0.32 0.09 815.82 0.12 0.76
avg 21610.23 2422.13 2542.03 66.78 70.78 6.42 0.01 1.58 2.87 28268.92 1.14 3.94inifeas std 5445.37 33.02 42.05 1.3 1.25 1.95 0.01 0.3 0.09 8923.4 0.14 0.71
avg 20983.85 2417.24 2523.15 67.29 70.79 6.2 0.01 1.57 2.87 27159.26 1.13 3.93inihalf std 5125 38.42 33.47 1.36 0.4 1.84 0.01 0.28 0.12 7678.23 0.14 0.67
avg 21097.46 2421.65 2534.78 70.87 70.81 6.32 0.01 1.57 2.87 27357.31 1.15 3.96Fi

xe
db

es
t

inirand std 4871.88 32.36 34.98 1.74 1.19 1.72 0.01 0.31 0.11 7446.28 0.14 0.77

71

The results of this strategy is promising like the previous one. On the average

solutions deviate by 4.2% from the TSP optimal. The computation time is again

reasonably less compared to REJECT strategy.

 The average value for LOC is around 3, which shows that taking the best

location is an appropriate repairment procedure. Referring to TOTREP we can say in

general, 70% of the population is repaired at the early stages of the algorithm. This

number decreases as the number of generations increases, which indicates that the

probability of obtaining feasible solutions increases as the better feasible solutions

increases in the population.

4.4.4 Results for PEN_REPAIR (Strategy-4)

 The effect of the initial population types resembles to REPAIR algorithm. No

evidence could be obtained for stating that the initial population types differ widely

for solution quality and CPU. Again the difference between the stopping conditions

5000 and 8000 is significant with a p-value of 0.000 when the results of inirand are

used. The time can be improved by approximately 2.5 second, giving up 0.15% of

the solution quality on the average by stopping at 5000 instead of 8000. If we stop

with Fixedbest condition, improvements around 0.2% - 0.3% can be obtained at the

expense of approximately 3.5 seconds. This stopping condition can be utilized where

solution quality is more important. The results of PEN_REPAIR are given in Table

4.8.

 As the number of generations increases EP and Cdel decrease. On the average,

25% of the population is composed of the feasible solutions throughout the entire

evolution. The number of the feasible solutions differs for initial population types for

earlier stopping conditions. However, this quantity is equalized for all types in longer

runs.

4.4.5 Results for PEN_ADAPT (Strategy-5)

 For all of the stopping conditions the iternum is taken as 8000. Therefore the

cooling parameter λ equals to n/16000, which decreases NFT in a fairly slow rate.

72

The influence of the initial population type for PEN_ADAPT has the most

interesting pattern. When we stop the algorithm early, the difference between the

initial population types regarding both solution quality and computation time is

significant. When we look at the averages, inirand gives the smallest deviation and the

largest computation time. inifeas is the worst at solution quality and the best at the

computation time.

If we wait more and stop with Fixedbest criterion, the statistical significance

vanishes regarding solution quality, but remains intact regarding the computation

time. In this case, inirand gives the worst and inifeas gives the best average values

indicating solution quality. The ordering in the computation time remains the same.

For the analyses of stopping condition, the results of inirand were used. Like in many

cases, the difference between the stopping conditions 5000 and 8000 regarding the

solution quality is significant. Results of PEN_ADAPT are given in Table 4.9.

 EP is relatively higher at the initial stopping condition, but decreases as the

number of generations increases. The average number of feasible solutions is higher

than the previous penalizing algorithm. For early stopping conditions, there is a

considerable difference among the initial population types, which vanishes in the

later stopping conditions, for this quantity. On the average, 70% of the population is

feasible throughout the entire evolution process. In fact, this value is far from the

value of the other algorithm.

When we look at the solution qualities of these two strategies, the benefit that

can be gained from these feasible individuals are questionable. The strategy give

solutions deviating between 6.3% - 6.5% from the TSP optimal on the average even

for the latest stopping condition. This point indicates that an inappropriate penalizing

scheme is utilized. Most probably, the infeasible solutions, which are penalized

according to the constraint violation values, are harshly penalized. However, milder

penalizing schemes did not yield better results in preliminary experiments.

73

Table 4.8 Performance of PEN_REPAIR for TSPPD

 GEN FB FA FFEAS IMPb IMPavg IMPfeas CPU CPUini EP Cdel Favg DEVb

avg 2000.00 2396.42 2654.60 2428.97 66.26 69.88 65.76 0.51 0.01 1.52 1.16 28.38 5.28inifeas
std 0.00 33.47 74.14 44.77 1.25 0.79 1.38 0.01 0.01 0.20 0.11 6.55 1.23

avg 2000.00 2397.17 2636.74 2423.65 66.01 69.72 65.69 0.51 0.01 1.53 1.16 25.93 5.24
inihalf

std 0.00 32.96 88.70 42.92 1.25 0.76 1.36 0.01 0.01 0.20 0.10 5.75 1.21
avg 2000.00 2387.08 2658.70 2413.51 65.94 69.58 65.74 0.51 0.01 1.52 1.15 23.78 5.17

20
00

inirand
std 0.00 29.39 65.65 43.69 1.15 0.82 1.25 0.01 0.01 0.20 0.11 5.49 1.24

avg 5000.00 2386.20 2494.57 2414.58 66.33 71.28 65.88 1.23 0.01 0.99 1.10 25.73 4.76inifeas
std 0.00 30.66 50.44 38.00 1.24 0.56 1.36 0.01 0.01 0.19 0.14 7.07 1.10

avg 4999.03 2382.88 2491.09 2410.27 66.09 71.16 65.83 1.23 0.01 1.00 1.10 24.45 4.65
inihalf

std 5.32 33.55 51.40 44.90 1.24 0.55 1.34 0.01 0.01 0.20 0.13 6.50 1.11
avg 4998.48 2372.47 2480.96 2395.59 66.01 71.04 65.85 1.23 0.01 0.99 1.11 23.87 4.65

50
00

inirand
std 7.93 27.32 51.73 38.83 1.15 0.59 1.24 0.01 0.01 0.19 0.14 6.59 1.14

avg 7990.94 2382.96 2456.48 2408.30 66.36 71.58 65.93 1.95 0.01 0.82 1.06 24.63 4.58inifeas
std 34.42 32.33 44.56 39.55 1.24 0.45 1.35 0.02 0.01 0.19 0.15 7.05 1.04

avg 7983.73 2377.30 2462.27 2405.40 66.12 71.45 65.87 1.95 0.01 0.82 1.06 23.72 4.50
inihalf

std 48.05 36.19 44.71 42.59 1.24 0.45 1.32 0.02 0.01 0.19 0.14 6.80 1.05
avg 7977.36 2370.95 2442.71 2392.38 66.03 71.33 65.89 1.95 0.01 0.82 1.08 23.75 4.49

80
00

inirand
std 76.28 28.39 42.90 39.48 1.15 0.48 1.24 0.02 0.01 0.19 0.15 7.01 1.14

avg 19947.64 2373.03 2439.00 2395.20 66.71 71.72 65.88 5.39 0.01 0.59 0.85 23.24 4.33inifeas
std 4669.88 30.81 37.72 34.70 1.34 0.38 1.41 1.39 0.01 0.17 0.16 7.11 1.03

avg 20264.38 2368.78 2431.91 2390.84 66.53 71.61 65.88 5.43 0.01 0.60 0.84 23.34 4.29
inihalf

std 5223.70 31.86 37.02 36.77 1.27 0.35 1.34 1.55 0.01 0.18 0.16 7.34 1.01
avg 20429.54 2373.76 2435.82 2395.22 66.41 71.49 65.95 5.67 0.01 0.60 0.85 24.69 4.20Fi

xe
db

es
t

inirand
std 5242.11 27.90 32.75 29.56 1.26 0.38 1.26 1.67 0.01 0.17 0.17 8.23 0.93

74

Table 4.9 Performance of PEN_ADAPT for TSPPD

 GEN FB FA FFEAS IMPb IMPavg IMPfeas fall CPU CPUini EP Cdel Favg DEVb

avg 2000.00 2497.35 3035.70 2503.88 64.36 62.88 64.04 2437.87 0.97 0.01 3.46 1.53 70.09 16.63inifeas std 0.00 78.54 222.54 78.37 1.96 3.34 1.99 51.66 0.13 0.01 0.33 0.11 8.23 6.05
avg 1999.64 2497.91 2996.49 2507.56 64.68 64.67 65.00 2437.10 1.39 0.01 3.34 1.49 54.55 14.10inihalf std 1.98 73.18 216.74 77.04 1.97 2.37 2.09 47.77 0.11 0.01 0.33 0.13 7.58 5.35
avg 1999.32 2459.47 2804.52 2470.94 65.24 67.33 68.83 2420.86 1.69 0.01 2.95 1.42 39.47 10.59

20
00

inirand std 2.89 51.82 122.77 57.02 1.51 1.28 2.08 35.17 0.13 0.01 0.29 0.12 9.14 3.54
avg 4953.29 2433.31 2563.33 2438.58 65.46 69.76 65.17 2398.80 2.44 0.01 2.21 1.31 69.19 7.25inifeas std 78.06 55.56 110.08 59.66 1.52 1.20 1.56 38.20 0.44 0.01 0.37 0.16 10.13 2.37
avg 4953.19 2420.34 2536.13 2426.42 65.42 70.03 65.82 2390.30 2.98 0.01 2.12 1.28 61.68 6.88inihalf std 82.21 52.69 96.71 53.64 1.53 0.96 1.53 33.07 0.39 0.01 0.37 0.17 9.92 2.17
avg 4936.36 2442.14 2555.22 2449.78 65.58 70.24 69.46 2410.13 3.23 0.01 1.76 1.25 56.88 7.13

 5
00

0

inirand std 109.72 46.06 79.22 47.16 1.48 0.80 2.16 33.54 0.44 0.01 0.37 0.18 11.05 2.20
avg 7736.46 2426.67 2513.13 2436.11 65.72 70.68 65.42 2393.36 3.75 0.01 1.56 1.20 70.24 6.46inifeas std 379.07 56.29 93.63 59.48 1.43 0.73 1.47 39.68 0.75 0.01 0.36 0.19 11.71 2.01
avg 7794.34 2446.26 2533.45 2450.87 65.56 70.65 66.01 2397.63 4.24 0.01 1.56 1.21 67.18 6.54inihalf std 248.57 66.07 96.79 67.60 1.43 0.72 1.41 41.54 0.69 0.01 0.37 0.19 11.11 2.07
avg 7694.83 2445.50 2529.18 2451.49 65.57 70.70 69.36 2403.93 4.38 0.01 1.25 1.15 63.84 6.66

80
00

inirand std 250.41 54.10 72.99 53.82 1.38 0.61 2.05 40.05 0.71 0.01 0.32 0.17 9.41 1.99
avg 17730.58 2435.67 2500.97 2440.04 65.62 70.94 65.34 2391.36 8.12 0.01 0.80 1.07 76.27 6.31inifeas std 3822.52 47.44 72.46 46.65 1.37 0.60 1.41 35.94 2.40 0.01 0.30 0.20 12.02 1.84
avg 17569.07 2427.05 2468.14 2431.65 65.60 70.96 65.95 2397.52 8.64 0.01 0.79 1.06 74.40 6.35inihalf std 3683.13 48.55 67.84 49.15 1.38 0.58 1.60 36.14 2.35 0.01 0.28 0.21 11.53 1.97
avg 17155.93 2429.65 2483.31 2437.41 65.51 70.95 69.48 2395.15 8.72 0.01 0.67 1.04 73.60 6.53Fi

xe
db

es
t

inirand std 3665.81 53.89 69.63 56.68 1.44 0.55 1.98 37.41 2.31 0.01 0.26 0.20 11.28 2.07

75

4.4.6 Comparison of Strategies

 The overall results of computation time and solution quality for all algorithms

based on different strategies are provided in Table 4.10

Table 4.10 Overall results for TSPPD*

REJECT
S-1

CONSTRUCT
S-2

REPAIR
S-3

PEN_REPAIR
S-4

PEN_ADAPT
S-5

 CPU DEVb CPU DEVb CPU DEVb CPU DEVb CPU DEVb

avg 9.43 5.30 0.57 5.74 0.55 4.91 0.51 5.28 0.97 16.63inifeas
std 3.27 1.30 0.01 1.04 0.01 0.94 0.01 1.23 0.13 6.05

avg 9.33 5.30 0.57 5.75 0.55 4.96 0.51 5.24 1.39 14.1inihalf
std 3.54 1.30 0.01 1.06 0.01 0.94 0.01 1.21 0.11 5.35

avg 9.7 5.40 0.57 5.85 0.55 4.87 0.51 5.17 1.69 10.59

20
00

inirand
std 3.09 1.30 0.01 1.01 0.01 0.85 0.01 1.24 0.13 3.54

avg 15.14 5.00 1.42 4.70 1.34 4.48 1.23 4.76 2.44 7.25inifeas
std 7.47 1.20 0.01 0.83 0.01 0.82 0.01 1.1 0.44 2.37

avg 15.19 5.10 1.42 4.76 1.34 4.33 1.23 4.65 2.98 6.88inihalf
std 8.03 1.30 0.01 0.77 0.01 0.87 0.01 1.11 0.39 2.17

avg 15 5.20 1.42 4.77 1.34 4.38 1.23 4.65 3.23 7.13

50
00

inirand
std 7.35 1.20 0.01 0.81 0.01 0.85 0.01 1.14 0.44 2.2

avg 19.83 5.00 2.24 4.40 2.12 4.21 1.95 4.58 3.75 6.46inifeas
std 11.32 1.20 0.01 0.77 0.02 0.79 0.02 1.04 0.75 2.01

avg 20.48 5.10 2.24 4.43 2.12 4.13 1.95 4.50 4.24 6.54inihalf
std 12.54 1.20 0.01 0.71 0.02 0.85 0.02 1.05 0.69 2.07

avg 19.53 5.10 2.24 4.44 2.12 4.31 1.95 4.49 4.38 6.66

80
00

inirand
std 11.39 1.20 0.01 0.72 0.02 0.76 0.02 1.14 0.71 1.99

avg - - 8.59 3.91 6.42 3.94 5.39 4.33 8.12 6.31inifeas
std - - 2.73 0.66 1.95 0.71 1.39 1.03 2.4 1.84

avg - - 8.3 3.86 6.2 3.93 5.43 4.29 8.64 6.35inihalf
std - - 2.59 0.67 1.84 0.67 1.55 1.01 2.35 1.97

avg - - 8.19 3.82 6.32 3.96 5.67 4.2 8.72 6.53

Fi
xe

db
es

t

inirand
std - - 2.31 0.58 1.72 0.77 1.67 0.93 2.31 2.07

*S-i: strategy i, where i=1,...,5

After analyzing the influence of the experiment factors, we have determined a

basis for a fair comparison of these algorithms. For some cases, the random initial

population showed a slight difference but in most cases algorithms deemed

76

insensitive to initial population. Therefore, first we have compared the algorithms

using the data coming from the inirand experiments, as this is the initial population

type easiest to generate. For a second look, we used the whole data including all

initial population types. For each stopping condition, ANOVA is conducted,

followed by a post-hoc multiple level comparison test, namely Tamhane’s T2 test.

 Specifically, this test conducts pairwise comparisons with a determined p-

value and constructs indifference groups. However, in order to compute p-value of

the overall group, the effect of individual grouping should be considered at the same

time. That is to say, (1-poverall) = (1-p1)* (1-p2)…* (1-pn), where n is the total number

of comparisons realized and pi is the p value for the ith comparison. The conducted

tests and the resulting tables are given in Appendix F.

The resulting indifference groups are summarized in Table 4.11. The numbers

in cells are the strategy numbers. The groups are ordered according to the superiority

of the performance measure. In order to explain the meaning of these groups, the

grouping for the stopping condition 2000 regarding DEVb is described. The first

group is composed of strategies 3 and 4; the second group is composed of strategies

4 and 1, and so on. This first two cells of the first row tell that strategy 4 did not yield

significantly different solutions from 3 and 1, but 3 is significantly better than 1 at a

significance level of 0.05

Table 4.11 Indifference groups constructed by the result of the Tamhane’s T2 test.

inifeas + inihalf + inirand inirand
 1st group 2nd group 3rd group 4th group 1st group 2nd group 3rd group

DEVb 3-4 4-1 1-2 5 3-4-1 4-1-2 5 Stopping Condition
2000 CPU 3-4-2 5 1 - 3-4-2 5 1

DEVb 3-4-2 2-1 5 - 3-4-2 4-2-1 5 Stopping Condition
5000 CPU 5 3-2-4 1 - 5 3-2-4 1

DEVb 3-2-4 1 5 - 3-4-2 4-2-1 5 Stopping Condition
8000 CPU 5 3-2-4 1 - 5 3-2-4 1

DEVb 2-3-4 5 - - 2-3-4 5 - Stopping Condition
Fixedbest CPU 3-4 2 5 - 4-3 2 5

For all of the tests, the overall p value is smaller than 0.05. The overall p

values are computed for the above example as follows:

77

(1-poverall) = (1-p3-1)* (1-p3-2)* (1-p3-5)* (1-p4-2)* (1-p4-5)* (1-p1-5)

In the equation, pi-j is the p value for comparing strategies i and j. Referring to the p

values provided in appendices, the overall p for this indifference group is computed.

In the tableau, the p values are displayed to three significant digits, this rounding

may cause underestimating the overall p value, therefore p values displayed as 0.000

are considered to be 0.0005. All of the p values except p2-4 were 0.000 for this group

and p2-4 is 0.001. With these input, the poverall is computed to be 0.004, which

indicates significance for the whole group. The actual p-values for the pairwise

comparisons can be found in Appendix F.

 In general, a few differences regarding the relative orders of algorithms are

observed between all initial types and random initial type only. However,

differentiation power of the first is more than the second one as more data points are

used. Therefore, the discussion is done considering all initial population types. When

we look at the solution quality, strategy-3 (REPAIR) is always in the first group for

all stopping conditions. The strategy-2 (CONSTRUCT) is relatively poorer in earlier

stops, however, performs quite well at the later stopping conditions. The 4th strategy

(PEN_REPAIR) is also among the good ones. 1st and 5th strategies are not

performing well relative to others. The difference between strategy-2, strategy-3, and

strategy-4 is not significant for all stopping conditions except for Fixedbest.

Strategy-2 can find better solutions but requires more number of generations, i.e., its

convergence (or getting close to convergence in our case) is slower than the others.

The GEN values for the Fixedbest stopping conditions support our argument, where

strategy-2 terminates at 25000th generation on the average, while the other strategies

halts running around 20000th generation on the average.

 Computation time values are also fair for strategy-2, 3, and 4. Strategy-5

performs quickly at the stopping condition 8000, but its performance gets worse for

Fixedbest. Strategy-1 is not a good alternative both regarding solution quality and

computational effort. As conclusion, we can say that strategy-2, 3, and 4, performed

well compared to others.

78

4.4.7 Comparison with the Work of Gendreau et al.

 In the previous section, strategy-2, strategy-3, and strategy-4 are found

promising to solve TSPPD. However, their performances should be compared with

the previous works reported in the literature in terms of solution quality and time

requirement. One prominent work proposing heuristic techniques for TSPPD is the

work of Gendreau et al. (1999). They proposed three algorithms one of which is

conventional (HI) and the other two are Tabu Search applications (TS1 and TS2).

The algorithms reported to give better results relative to the previous heuristics. The

detailed description of the heuristics is provided in Chapter 2.

The authors experimented their heuristics on three different test beds. The

first set is composed of the problems taken from the VRP literature, sizes of which

are varying between 6 and 261. The distance matrices of all instances are used

without any change in our experiments. For a customer i, the quantity demanded in

VRP instance (qi) is taken as the quantity of the delivery load (di) for TSPPD

instance. For determining the quantity of pickup loads (pi) for each customer, the

authors used the following equation:

(1) *
(1) *

i
i

i

q
p

q
β
β

 − = +

where β is the parameter determining the largeness of the net demand of a customer,

and n is the problem size. β is reported to be a real non-negative value smaller than 1.

Note that, if the index of a customer is even, the net demand of the customer (di -pi)

will be non-positive, which makes the customer a delivery customer. Whereas,

customers with even index values will be pickup customers.

The parameter β deserves additional interest. When β is equal to 0.00, since

pi and di values will be equal for every customer, the resulting instance is an instance

of TSP. As the value of β increases, quantity of net demand of each customer

increases and increases in the variety of the loads makes the instance harder to solve.

When qi’s are all unity in the original instance, the corresponding TSPPD instance

if i is even
if i is odd

i =1, ... ,n,

79

will not have any customers with negative net demand. This time the instance

becomes a TSP instance also.

In the work of Gendreau et al. (1999), four different β values, 0.00, 0.05,

0.10, 0.20, are experimented. We have experimented our heuristics with these β

values on the test bed defined. For two instances, all of the demand quantities were 1.

Therefore, these instances are excluded from our experiments with β values different

than 0. In experiments, we have realized 30 replications for each instance and β value

pair. The random initial population is utilized and Fixedbest stopping condition is

used.

The average results of our heuristics are provided together with the results of

Gendreau et al. (1999) in Table 4.12. The results show that for higher β values, our

heuristics find better values than Gendreau et al.’s heuristics. However, for β = 0.00,

our heuristics were generally worse than their TS heuristics. Our heuristics seem to

require less computation time, but the difference between the computer properties of

experiment environments should not be forgotten. The experiments of Gendreau et

al. were realized on a PC486/66 while ours done on a Pentium 4, 1.6 GHz processor.

Table 4.12 Results of the heuristics of Gendreau et al. and our EAs

 CONSTRUCT REPAIR PEN_REPAIR HI TS1 TS2
DEVtsp 2.70 1.35 1.37 5.00 1.10 0.70 β = 0.00

CPU 9.71 5.84 5.72 0.32 24.63 99.69
DEVtsp 3.65 2.00 2.07 7.90 5.00 3.60 β = 0.05

CPU 10.16 8.04 9.15 0.18 16.11 68.20
DEVtsp 4.22 2.30 2.41 8.40 5.80 4.50 β = 0.10

CPU 10.36 8.53 8.70 0.14 14.44 71.66
DEVtsp 4.62 3.56 2.85 10.10 7.20 6.30 β = 0.20

CPU 11.36 10.48 8.74 0.13 15.87 69.78

The comparison revealed a counter result to the general view about the

superiority of TS and Simulated Annealing over EA for routing problems. In fact,

our EAs can find better results than TS heuristics of Gendreau et al. (1999) for

constrained problems. Although this finding is insufficient to derive general

conclusions about comparison of different metaheuristic techniques, it surely

provides a particular important example where EA performs better than TS.

80

4.4.8 Comparison with Nearest Neighbor Heuristic with Repair

 The benefit of our metaheuristic can be observed when we look at the results

of the conventional heuristic results for TSPPD. The heuristic applied here is

typically the Nearest Neighbor Heuristic appended by a repair algorithm. In this

heuristic, for a problem, starting from different nodes, N solutions are produced by

NN, where N is the size of the problem. Then, all of these solutions are repaired with

the repair algorithm utilized in this work. The best solution found is then reported. In

Table 4.13, results for the problem set are provided. In the table, “Best” represents

the best solution found by the heuristic.

Table 4.13 Results of the NN with repair heuristic for TSPPD

Best CPU DEVb
p00 344.00 0.00 17.01
p01 567.00 0.02 22.73
p02 545.00 0.00 17.71
p03 701.00 0.02 19.83
p04 761.00 0.00 16.90
p05 821.00 0.03 30.11
p06 105.00 0.00 8.25
p07 69.00 0.00 25.45
p08 109.00 0.00 2.83
p09 4999.00 0.00 12.82
p10 570.00 0.00 17.77
p11 495.00 0.00 23.13
p12 864.00 0.05 6.67
p13 678.00 0.00 12.62
p14 293.00 0.00 16.27
p15 955.00 0.03 19.97
p16 850.00 0.02 19.89
p17 42949.00 0.02 28.01
p18 621.00 0.00 21.53
p19 390.00 0.00 5.41

avg 0.01 17.25
std 0.01 7.39

 The results were very poor regarding the solution quality. However, the

computation time is almost negligible. Results for our best strategies with the earliest

stopping condition were around 5% of the TSP bound, which is quite less than the

81

results of the conventional heuristic. The additional computation time required is

around 5-6 seconds, however, it does worth the additional effort, as the improvement

in solution quality is drastic.

4.5 Results for TSPB

The experiment methodology in the previous section is followed for TSPB

too. The same problem parameters and same stopping conditions are tried. The

statistical analyses are carried on similarly to those of TSPPD. The ANOVA tables

and plots related with the effect of the initial population type and the stopping

condition on the algorithm’s performance are provided in Appendix G and Appendix

H, respectively.

4.5.1 Results for REJECT (Strategy-1)

 From the TSPPD results we know that this strategy requires relatively more

computational effort than the other strategies. As shown in Chapter 3, the solution

space of TSPB is generally a subspace of TSPPD. Therefore, obtaining feasible

solutions without any intervention is less likely. When we start the experimentation

of this strategy, we determined to generate 30 replications for all problems in test bed

for each stopping conditions. However, due to large computational time required for

the experiments, we have narrowed our attention to a smaller test bed composed of

the smallest 10 problems, and only 20 replications are realized here. Table 4.14

summarizes the results for these 10 problems for only 2000 stopping condition.

Table 4.14 Performance of REJECT for TSPB

 GEN FB FA IMPb IMPavg CPU CPUini EP ENUM DEVopt
avg 2000.00 1013.17 1099.96 44.66 51.37 9.18 0.00 0.87 2.00 3.24inifeas
std 0.00 18.01 21.66 2.34 0.97 2.23 0.01 0.23 0.51 1.89

avg 2000.00 1021.56 1096.78 45.69 51.62 27.35 0.00 0.77 6.02 4.05inihalf
std 0.00 23.76 24.30 2.51 1.20 5.65 0.01 0.26 1.25 2.31

avg

20
00

inirand
std

No feasible solution obtained

82

CPU figures are extremely large with respect to the results of 2000 stopping

condition of TSPPD. ENUM results point to another important fact: on the average

the number of infeasible solutions produced per feasible child is 2 times the problem

size, when we start with all feasible population. This number increases to 6 times the

problem size when there are also infeasible solutions in the initial population. When

we start with a random population, no feasible offspring could be produced and the

algorithm halts running at the first generation, which is another drawback of this

strategy.

 The results of this strategy are compared with the results of the other

strategies for the smallest 10 problems. In Table 4.15, the summary of the results for

all strategies on this small test bed is provided. Considering relatively large

computational requirements for this strategy and the poor solution quality obtained

with respect to CONSTRUCT, REPAIR, and PEN_REPAIR, this strategy was

deemed to be a poor one. Therefore, this strategy is taken out of consideration for the

following analysis.

Table 4.15 Comparison of REJECT with other strategies regarding computational

time and solution quality for the small test bed

REJECT CONSTRUCT REPAIR PEN_REPAIR PEN_ADAPT
CPU DEVopt CPU DEVopt CPU DEVopt CPU DEVopt CPU DEVopt

avg 9.18 3.24 0.25 1.18 1.40 0.82 0.38 3.21 0.42 24.13inifeas
std 2.23 1.89 0.01 0.56 0.02 0.46 0.01 1.26 0.01 13.67

avg 27.35 4.05 0.25 1.23 1.47 0.79 0.38 3.08 0.42 29.64inihalf
std 5.65 2.31 0.01 0.69 0.02 0.53 0.01 1.15 0.01 15.25

avg - - 0.25 1.29 1.53 0.81 0.38 3.03 - -

20
00

inirand
std - - 0.01 0.68 0.02 0.56 0.01 1.07 - -

4.5.2 Results for CONSTRUCT (Strategy-2)

 This strategy is experimented in the regular way defined as TSPPD. All of the

stopping conditions and all of the initial population types are experimented with the

83

entire problem set realizing 30 replications for each problem. Results of this

experiment are provided in Table 4.16.

An important finding is that starting with inirand did not produce any feasible

solution in any replications. Therefore, percent improvement figures for this initial

population type can not be computed.

From the ANOVA tables, we could not detect any significant difference

regarding solution quality and computation time when we stop early. Although

ANOVA reports statistical significance for influence of the initial population on

solution quality in Fixedbest stopping condition, due to poor normality and residual

plots we cannot be totally sure about the significance. When we include the

infeasible solutions in the initial population, the algorithms perform worse. The

difference between 5000 and 8000 regarding solution quality and computation time

is significant. Looking at overall results, we can say that this strategy is also

performs well for TSPB. 2% deviations from optimal in approximately 2 seconds is a

promising result regarding the performances of the previous heuristics such as

Gendreau et al. (1996).

When we compare the EP values in Table 4.16 with those in Table 4.6, we

see that EP values are generally higher for TSPB relative to TSPPD. This case is

expected as the nearest neighbor approach is a myopic approach in a sense. There

will be many cases, in which the algorithm cannot proceed to an unvisited node using

the union graph edges. This increase in the EP value with respect to TSPPD case, can

be interpreted as the hardness of this constraint relative to the former constraint as

well.

Cdel decreases as the number of generations increases. A possible reason

could be similar to the explanation in TSPPD case.

84

Table 4.16 Results for CONSTRUCT for TSPB

 GEN FB FA IMPb IMPavg CPU CPUini EP Cdel DEVopt

avg 2000.00 3274.12 3564.40 57.95 61.77 0.54 0.01 8.93 1.49 2.72inifeas
std 0.00 25.37 76.21 1.54 0.70 0.01 0.01 0.27 0.03 0.74

avg 2000.00 3271.27 3509.43 58.87 62.42 0.54 0.01 8.95 1.49 2.77inihalf
std 0.00 28.71 61.99 1.53 0.71 0.01 0.01 0.28 0.03 0.82

avg 2000.00 3278.24 3404.37 - - 0.54 0.01 9.03 1.49 2.81

20
00

inirand
std 0.00 27.48 28.47 - - 0.01 0.01 0.26 0.03 0.83

avg 5000.00 3257.19 3394.46 58.10 63.03 1.34 0.01 8.72 1.60 2.21inifeas
std 0.00 29.12 50.83 1.51 0.54 0.01 0.01 0.29 0.03 0.61

avg 5000.00 3256.45 3390.60 59.02 63.17 1.34 0.01 8.71 1.60 2.28inihalf
std 0.00 27.90 60.26 1.52 0.53 0.01 0.01 0.30 0.04 0.69

avg 5000.00 3261.46 3364.67 - - 1.34 0.01 8.74 1.60 2.35

50
00

inirand
std 0.00 31.07 28.76 - - 0.01 0.01 0.30 0.04 0.73

avg 8000.00 3254.82 3373.31 58.14 63.29 2.13 0.01 8.66 1.63 2.10inifeas
std 0.00 29.40 40.44 1.50 0.43 0.01 0.01 0.29 0.04 0.56

avg 8000.00 3249.07 3365.81 59.06 63.32 2.13 0.01 8.64 1.63 2.15inihalf
std 0.00 29.22 45.96 1.51 0.47 0.01 0.01 0.31 0.04 0.69

avg 8000.00 3258.44 3360.15 - - 2.13 0.01 8.66 1.63 2.24

80
00

inirand
std 0.00 30.68 35.51 - - 0.01 0.01 0.30 0.04 0.66

avg 20878.61 3240.95 3347.84 58.18 63.39 6.45 0.01 8.53 1.66 1.93inifeas
std 4893.86 28.25 29.39 1.53 0.38 1.84 0.01 0.29 0.04 0.63

avg 20424.91 3248.69 3352.96 58.97 63.38 6.28 0.01 8.55 1.66 2.01inihalf
std 4579.40 32.85 33.53 1.55 0.42 1.73 0.01 0.31 0.04 0.68

avg 20420.64 3257.93 3355.69 - - 6.23 0.01 8.57 1.66 2.01

Fi
xe

db
es

t

inirand
std 4592.08 28.25 30.39 - - 1.66 0.01 0.28 0.04 0.64

4.5.3 Results for REPAIR (Strategy-3)

 Our standard experiment setting is realized for REPAIR. Like CONSTRUCT,

no feasible solution exists in the initial population when it is produced by inirand

method. For either 2000 or Fixedbest stopping conditions, the solution quality does

not differ among initial population types. However, the computation time reveals

significant difference in both stopping conditions. Therefore, it is advisable to use all

feasible initial population. Despite the poor ANOVA plots, the stopping condition

8000 turned out to yield significantly better solutions in significantly more time with

respect to stopping condition 2000. When we look at the average figures, for this

85

approximately 0.05% improvement in solution, we should wait for 4 more seconds

on the average. The overall results for REPAIR given in Table 4.17, reveals a

performance close to CONSTRUCT. The solution quality is approximately 0.2%

better but time requirement is considerably more, almost by 7.5 seconds.

The most surprising outcome of this experiment was the small number of

total repaired children relative to the case in TSPPD. However, we could not supply

a convincing reasoning for this outcome. Another finding is that this quantity

depends on the initial population type. This finding is logical when we accept that the

probability of generating a feasible solution from feasible parents is high. In fact, as

the number of generations increases, the feasible solutions are expected to dominate

the population and hence, these values become almost equal.

Cdel is relatively smaller than that of TSPPD and decreases further as the

number of generations increases, which implies that this strategy has a lower

probability of producing worse children than the other strategies. As expected, the

percent of edges added due to repair operation is more than that of TSPPD. On the

average, 10 % of the edges in an infeasible solution is replaced by the edges coming

from the repair operation.

86

Table 4.17 Results for REPAIR for TSPB

 GEN FB FA IMPb IMPavg CPU CPUini EP EDGErep TOTREP Cdel DEVopt

avg 2000.00 3284.44 3551.76 58.02 62.74 2.36 0.01 11.82 11.25 2850.64 0.91 2.22inifeas
std 0.00 36.83 80.47 1.63 0.77 0.06 0.01 1.54 0.60 215.59 0.18 0.75

avg 2000.00 3282.51 3481.33 59.02 63.46 2.52 0.01 12.30 11.81 2866.02 0.91 2.16inihalf std 0.00 42.36 71.27 1.58 0.72 0.05 0.01 1.45 0.54 206.21 0.18 0.80
avg 2000.00 3280.70 3397.12 - - 2.69 0.01 12.86 12.35 2889.51 0.92 2.22

20
00

inirand std 0.00 40.48 39.94 - - 0.06 0.01 1.58 0.53 217.31 0.17 0.80
avg 5000.00 3273.47 3377.86 58.11 64.30 5.91 0.01 8.95 10.56 6184.17 0.74 1.87inifeas
std 0.00 37.12 51.26 1.62 0.55 0.13 0.01 1.55 8.58 599.98 0.64 0.71

avg 4997.34 3267.59 3364.85 59.12 64.45 6.30 0.01 9.20 10.41 6202.72 0.69 1.83inihalf std 14.57 41.58 46.47 1.56 0.53 0.14 0.01 1.47 8.53 581.74 0.47 0.70
avg 5000.00 3272.02 3344.19 - - 6.73 0.01 9.47 10.82 6244.33 0.73 1.92

50
00

inirand std 0.00 41.56 38.67 - - 0.14 0.01 1.68 9.21 638.57 0.67 0.75
avg 7999.15 3271.71 3345.97 58.12 64.63 9.47 0.01 8.02 9.74 9360.65 0.56 1.84inifeas
std 4.66 37.38 36.33 1.61 0.44 0.21 0.01 1.51 0.74 947.07 0.23 0.70

avg 7986.41 3266.44 3335.12 59.12 64.67 10.09 0.01 8.22 9.97 9376.98 0.56 1.81inihalf std 56.95 41.34 33.87 1.56 0.45 0.23 0.01 1.47 0.72 963.48 0.24 0.70
avg 7986.72 3270.52 3331.58 - - 10.77 0.01 8.39 10.14 9416.32 0.57 1.87

80
00

inirand std 34.01 42.52 40.38 - - 0.24 0.01 1.66 0.74 1032.18 0.25 0.75
avg 17133.26 3263.42 3316.96 58.31 64.84 17.30 0.01 7.02 9.26 17015.64 0.41 1.79inifeas
std 2405.36 36.68 36.23 1.48 0.35 3.22 0.01 1.37 0.73 3032.73 0.22 0.71

avg 17377.55 3249.18 3302.57 59.07 64.80 20.85 0.01 7.28 9.38 17609.84 0.42 1.79inihalf std 2719.01 35.03 31.91 1.53 0.45 3.86 0.01 1.47 0.73 3528.53 0.23 0.71
avg 17167.60 3259.75 3313.59 - - 23.99 0.01 7.46 9.63 17472.86 0.45 1.82Fi

xe
db

es
t

inirand std 2470.89 35.37 32.26 - - 4.03 0.01 1.58 0.87 3535.26 0.26 0.74

87

4.5.4 Results for PEN_REPAIR (Strategy-4)

 Our standard experiment setting is tried for this strategy also. In stopping

condition 2000, the statistical analyses yield significant differences in computation

time regarding the initial population type used. SS value for initial population type is

fairly small, however, as this value is smaller for the error coefficient, the hypothesis

of equivalence of means is rejected. However, no considerable difference is observed

when we look at the average values with two significant digits. Therefore, this

statistical difference is discarded. There is no significance of initial population for

neither solution quality nor CPU for other stopping condition. When we stop at 8000,

we have significantly better solutions than stopping at 5000, however, the time

requirement is more for 8000. The solutions of this strategy are deviating 4.3% from

the optimal solutions on the average, which is a worse result. However, regarding

both solution quality and computation time, this strategy is still a reasonable one to

use, and therefore requires additional experimentation.

 Table 4.18 summarizes the results for this strategy. One of the important

findings is the low value of average number of infeasible solutions. In fact, the value

of Favg drops to one digit numbers for TSPB, from two digit numbers for TSPPD.

Similarly, the relative performance regarding solution quality gets worse, which may

be interpreted that the benefit of working with infeasible solutions is less and the

value of feasible for finding good solutions is more for TSPB.

4.5.5 Results for PEN_ADAPT (Strategy-5)

 For this strategy, the standard experiment is realized. However, the solution

quality that can be achieved were surprisingly poor. The deviation of the resulting

solution from the optimal solution is around 100% in general, which is totally

unacceptable. The other drawback of this strategy is its imprudence in finding the

feasible solutions when started with a random initial population. No feasible solution

is obtained for inirand for all of the replications.

88

Table 4.18 Results for PEN_REPAIR for TSPB

 GEN FB FA FFEAS IMPb IMPavg IMPfeas CPU CPUini EP Cdel Favg DEVopt

avg 2000 2411.99 2733 3346.33 67.19 69.83 56.88 0.82 0.01 2.58 0.98 9.22 5.16inifeas
std 0 40.07 95.15 66.48 1.22 0.85 1.72 0.01 0.01 0.4 0.15 0.97 1.28

avg 2000 2412.88 2746.85 3357.24 66.52 69.29 56.54 0.82 0.01 2.53 0.98 6.63 5.19inihalf
std 0 35.37 108.39 66.94 1.26 0.85 1.71 0.01 0.01 0.37 0.13 1.12 1.23

avg 2000 2404.56 2741.61 3366.64 66.24 68.76 56.22 0.82 0.02 2.5 0.97 3.58 5.15

20
00

inirand
std 0 35.18 95.32 70.44 1.14 0.87 1.66 0.01 0.01 0.39 0.14 0.90 1.21

avg 5000 2409.1 2580.81 3330.73 67.24 71.16 57.04 2.01 0.01 1.51 0.74 4.28 4.6inifeas
std 0 40.51 78.79 68.85 1.22 0.7 1.7 0.01 0.01 0.41 0.21 0.63 1.22

avg 5000 2409.93 2591.99 3332.79 66.57 70.59 56.73 2.01 0.01 1.51 0.74 3.06 4.57inihalf
std 0 36.32 83.3 58.85 1.25 0.64 1.68 0.01 0.01 0.37 0.19 0.67 1.11

avg 5000 2399.59 2598.31 3343.96 66.28 69.99 56.4 2.01 0.02 1.48 0.74 1.58 4.58

50
00

inirand
std 0 34.73 79.56 67.52 1.13 0.68 1.64 0.01 0.01 0.38 0.20 0.50 1.1

avg 7999.95 2408.5 2552.81 3327.85 67.25 71.46 57.08 3.19 0.01 1.13 0.60 2.78 4.49inifeas
std 0.26 40.95 81.69 67.84 1.21 0.61 1.7 0.01 0.01 0.4 0.23 0.49 1.21

avg 8000 2409.74 2552.41 3329.9 66.58 70.89 56.76 3.19 0.01 1.13 0.60 1.99 4.47inihalf
std 0 36.22 67.46 60.51 1.24 0.55 1.68 0.01 0.01 0.36 0.21 0.48 1.11

avg 7997.48 2398.99 2563.91 3339.87 66.29 70.27 56.43 3.19 0.02 1.11 0.59 1.02 4.49

80
00

inirand
std 13.82 35.25 71.5 68.14 1.13 0.58 1.63 0.02 0.01 0.36 0.21 0.36 1.09

avg 18041.1 2402.48 2546.71 3317.94 67.38 71.58 57.26 7.58 0.01 0.67 0.26 0.49 4.41inifeas
std 2999.85 42.6 69.36 50.88 1.08 0.56 1.51 1.52 0 0.33 0.14 0.70 1.18

avg 18234.05 2402.12 2568.45 3316.05 66.55 70.99 56.63 7.65 0.01 0.69 0.26 0.40 4.3inihalf
std 2669.94 31.41 67.05 54.56 1.24 0.5 1.69 1.36 0 0.29 0.14 0.45 1.16

avg 18279.94 2410.09 2547.69 3311.41 66.27 70.44 56.43 7.7 0.02 0.67 0.25 0.26 4.34Fi
xe

db
es

t

inirand
std 3003.82 36.98 57.81 56.04 1.2 0.52 1.68 1.56 0 0.31 0.14 0.23 1.16

89

Considering the poor results of this strategy, we have designed another

penalizing scheme, V2, in which the total constraint violation is multiplied with the

difference between unpenalized value of the infeasible solution and the best feasible

solution found so far, which is a milder penalizing scheme. The results were worse

than the previous case. Finally in order to comment on closeness of the infeasible

solutions in the final population to the feasible search space, we designed a scheme,

Vrep, where all infeasible solutions in the population are repaired at termination. The

results were not very promising either. All deviation results are provided in Table

4.19. The original version is referred as V1 in the table.

Table 4.19 Deviation of the best solution found from the optimal solution value for

different versions of PEN_ADAPT proposed for TSPB

Stopping Condition
2000

Stopping Condition
5000

Stopping Condition
8000

Stopping Condition
Fixedbest

V1 V2 Vrep V1 V2 Vrep V1 V2 Vrep V1 V2 Vrep
avg 124.73 144.71 16.20 115.59 139.96 15.91 111.56 138.60 16.01 97.56 132.78 16.05inifeas
std 24.30 27.10 2.07 24.83 30.37 2.10 26.35 32.05 2.21 31.22 33.23 2.19

avg 136.71 159.41 16.03 125.64 155.79 15.99 120.25 154.11 16.15 110.20 151.25 16.50inihalf
std 21.23 28.08 1.97 23.78 31.21 2.02 25.66 33.25 2.17 29.77 34.45 2.12

avg - - 17.45 - - 17.08 - - 17.05 - - 17.25inirand
std - - 2.23 - - 2.32 - - 2.40 - - 2.50

 In Table 4.20, overall results for as V1 are provided. Although CPU is

relatively smaller than the previous algorithms for the same stopping conditions, the

number of generations are not increased further, as the solution quality offered do not

seem to increase at the expense of the additional seconds. Due to the poor

performance of this strategy, no statistical analysis is realized regarding the influence

of the parameters. This strategy is directly excluded from the final comparison.

90

Table 4.20 Results for PEN_ADAPT for TSPB

 GEN FB FA FFEAS IMPb IMPavg IMPfeas Fall CPU CPUini EP Cdel Favg DEVopt

avg 2000.00 3618.67 5415.00 6119.14 48.76 38.09 30.69 3149.74 0.76 0.01 7.46 1.79 42.20 124.73inifeas
std 0.00 236.65 503.84 957.08 4.07 3.52 7.12 151.98 0.01 0.01 0.54 0.06 5.22 24.30

avg 2000.00 2966.09 4955.67 6388.98 60.32 46.25 29.28 2758.32 0.76 0.01 7.30 1.73 24.10 136.71inihalf std 0.00 123.33 398.09 923.66 2.19 2.33 7.24 76.90 0.01 0.01 0.40 0.04 3.01 21.23
avg 2000.00 2522.33 2958.57 - 65.69 67.05 - 2458.22 0.71 0.01 4.55 1.51 0.00 -

20
00

inirand std 0.00 54.70 85.17 - 1.37 1.15 - 37.22 0.01 0.01 0.62 0.10 0.00 -
avg 5000.00 3417.74 4757.75 5891.94 51.82 43.55 31.63 2986.35 1.87 0.01 6.67 1.77 33.50 115.59inifeas
std 0.00 200.83 332.64 1044.41 3.84 3.06 7.71 137.33 0.02 0.01 0.65 0.08 4.92 24.83

avg 5000.00 2828.48 4328.93 6228.74 61.38 50.56 31.58 2648.50 1.87 0.01 6.61 1.77 20.50 125.64inihalf std 0.00 99.04 229.04 957.37 2.03 2.15 7.30 54.31 0.02 0.01 0.48 0.05 2.98 23.78
avg 5000.00 2525.70 2757.72 - 65.75 68.94 - 2451.03 1.73 0.01 3.15 1.46 0.00 -

50
00

inirand std 0.00 48.94 77.35 - 1.39 1.06 - 36.43 0.03 0.01 0.75 0.17 0.00 -
avg 8000.00 3325.59 4567.08 5843.53 53.35 45.62 32.20 2917.82 2.98 0.01 6.30 1.76 30.04 111.56inifeas
std 0.00 210.95 310.96 1043.81 3.75 3.11 7.69 128.12 0.04 0.01 0.71 0.10 4.88 26.35

avg 8000.00 2794.50 4143.69 6165.83 61.76 52.37 32.20 2615.17 2.97 0.01 6.30 1.78 18.95 120.25inihalf std 0.00 83.72 191.82 965.60 1.92 2.06 7.75 51.30 0.03 0.01 0.52 0.06 3.00 25.66
avg 7999.32 2529.69 2715.87 - 65.71 69.34 - 2448.42 2.72 0.01 2.56 1.41 0.00 -

80
00

inirand std 3.72 53.36 68.46 - 1.43 0.98 - 35.88 0.05 0.01 0.76 0.20 0.00 -
avg 19721.94 3112.72 4184.38 5660.87 57.52 51.95 34.07 2790.49 8.37 0.01 5.64 1.73 22.57 97.56inifeas
std 4298.49 211.80 378.71 1044.43 3.47 4.64 8.95 114.76 2.22 0.01 0.84 0.11 5.55 31.22

avg 21059.50 2735.42 3901.45 5806.79 62.48 55.65 32.90 2574.09 9.02 0.01 5.79 1.77 16.01 110.20inihalf std 4869.91 73.46 242.39 902.10 1.82 2.82 9.03 38.90 2.49 0.01 0.64 0.08 4.06 29.77
avg 21292.78 2545.34 2718.28 - 65.76 69.61 - 2442.90 8.03 0.01 1.72 1.25 0.00 - Fi

xe
db

es
t

inirand std 329.93 65.81 103.67 - 1.43 1.04 - 37.23 0.29 0.01 0.67 0.24 0.00 -

91

4.5.6 Comparison of Strategies

 Strategy-1 and Strategy-5 turned out to be impractical to implement and

excluded from the overall comparison consideration. The overall results for the main

performance measures for the remaining strategies are provided in Table 4.21. It can

be seen that REPAIR produces better solutions in general. However, its time

requirement is also more than the others. CONSTRUCT can give solutions that are

only 0.2% worse than the solutions of REPAIR in a time, which is less than the one

third of the time required for REPAIR.

The statistical analysis that was carried out for TSPPD was repeated for

TSPB. In fact, the ordering of the strategies were the same for every stopping

condition. The differences among the algorithms were significant. The best algorithm

was REPAIR regarding solution quality. It was followed by CONSTRUCT while

PEN_REPAIR was the worst one among the three. However, the CPU of REPAIR

was worst. For all tests, the overall p value was less than 0.05 although the worst

overall p value obtained was 0.03. The results are provided in Table 4.22. The related

tables are provided in Appendix I.

4.5.7 Comparison with Nearest Neighbor with Repair Heuristic

 Although there are examples of conventional heuristics for TSPB in

literature, we could not find any metaheuristic applications to this problem.

Therefore, it would be convenient to analyze the relative improvement of this method

over the conventional methods due to metaheuristic notion. In Table 4.23, the results

of the NN with repair heuristic are provided. As it is realized in TSPPD case, the

same repair algorithm of EA is utilized in this heuristic. All of the starting nodes are

tried for generating a solution. The results for TSPB were worse than TSPPD. The

average deviation is 18% which is far more than 3% deviation that can be attained in

the earlier stops in our algorithms. The results for both TSPPD and TSPB do not

leave any doubts and questions about the benefit of metaheuristics. For both cases,

the solution quality improves drastically when the algorithms run a few seconds

more.

92

Table 4.21 Overall results for TSPB*

CONSTRUCT
S-2

REPAIR
S-3

PEN_REPAIR
S-4

 CPU DEVb CPU DEVb CPU DEVb
avg 0.54 2.72 2.36 2.22 0.82 5.16 inifeas
std 0.01 0.74 0.06 0.75 0.01 1.28

avg 0.54 2.77 2.52 2.16 0.82 5.19 inihalf
std 0.01 0.82 0.05 0.8 0.01 1.23

avg 0.54 2.81 2.69 2.22 0.82 5.15
20

00

inirand
std 0.01 0.83 0.06 0.8 0.01 1.21

avg 1.34 2.21 5.91 1.87 2.01 4.6 inifeas
std 0.01 0.61 0.13 0.71 0.01 1.22

avg 1.34 2.28 6.3 1.83 2.01 4.57 inihalf
std 0.01 0.69 0.14 0.7 0.01 1.11

avg 1.34 2.35 6.73 1.92 2.01 4.58

50
00

inirand
std 0.01 0.73 0.14 0.75 0.01 1.1

avg 2.13 2.1 9.47 1.84 3.19 4.49 inifeas
std 0.01 0.56 0.21 0.7 0.01 1.21

avg 2.13 2.15 10.09 1.81 3.19 4.47 inihalf
std 0.01 0.69 0.23 0.7 0.01 1.11

avg 2.13 2.24 10.77 1.87 3.19 4.49

80
00

inirand
std 0.01 0.66 0.24 0.75 0.02 1.09

avg 6.45 1.93 17.3 1.79 7.58 4.41 inifeas
std 1.84 0.63 3.22 0.71 1.52 1.18

avg 6.28 2.01 20.85 1.79 7.65 4.3 inihalf
std 1.73 0.68 3.86 0.71 1.36 1.16

avg 6.23 2.01 23.99 1.82 7.7 4.34

Fi
xe

db
es

t

inirand
std 1.66 0.64 4.03 0.74 1.56 1.16

*S-i: strategy i, where i=2,3,4

93

Table 4.22 Indifference groups constructed by the result of the Tamhane’s T2 test

inifeas + inihalf + inirand inifeas
 1st group 2nd group 3rd group 1st group 2nd group 3rd group

DEVb 3 2 4 3 2 4 Stopping Condition
2000 CPU 2 4 3 2 4 3

DEVb 3 2 4 3 2 4 Stopping Condition
5000 CPU 2 4 3 2 4 3

DEVb 3 2 4 3 2 4 Stopping Condition
8000 CPU 2 4 3 2 4 3

DEVb 3 2 4 3-2 4 - Stopping Condition
Fixedbest CPU 2 4 3 2 4 3

Table 4.23 Results of the NN with repair heuristic for TSPB

Best CPU DEVb
p00 467.00 0.00 21.30
p01 644.00 0.02 11.03
p02 787.00 0.00 33.62
p03 924.00 0.02 14.36
p04 1103.00 0.00 22.01
p05 1043.00 0.03 19.89
p06 141.00 0.00 14.63
p07 79.00 0.00 16.18
p08 147.00 0.00 14.84
p09 7012.00 0.00 12.30
p10 732.00 0.00 12.27
p11 585.00 0.00 10.38
p12 1402.00 0.05 31.40
p13 993.00 0.00 27.47
p14 343.00 0.00 6.85
p15 1259.00 0.03 9.38
p16 1186.00 0.02 38.07
p17 57579.00 0.02 26.00
p18 700.00 0.00 6.22
p19 567.00 0.00 18.87

avg 0.01 18.35
std 0.01 9.05

94

4.5.8 Comparison with Solving Corresponding ATSP Instance

 As stated before, every TSPB instance can be transformed to a TSP instance

by modifying the cost matrix. Considering this fact, an option for solving TSPB

problems can be transforming these instances to TSP and solving these instances. We

are interested in experimenting this option also, as it will reveal the benefit of dealing

with TSPB instances instead of the corresponding TSP instances. Therefore, we

experimented the performance of this strategy which solves transformed TSPB

instances utilizing TSP solving EA. This strategy is called TRANS. The results of

this strategy and our previous strategies are provided in Table 4.24.

Table 4.24 Overall results and results of TRANS for TSPB

CONSTRUCT REPAIR PEN_REPAIR TRANS
 CPU DEVb CPU DEVb CPU DEVb CPU DEVb

avg 0.54 2.81 2.69 2.22 0.82 5.15 0.34 4.38 2000
std 0.01 0.83 0.06 0.8 0.01 1.21 0.01 1.39

avg 1.34 2.35 6.73 1.92 2.01 4.58 0.84 3.64 5000
std 0.01 0.73 0.14 0.75 0.01 1.1 0.01 1.19

avg 2.13 2.24 10.77 1.87 3.19 4.49 1.33 3.44 8000
std 0.01 0.66 0.24 0.75 0.02 1.09 0.02 1.14

avg 6.23 2.01 23.99 1.82 7.7 4.34 3.91 3.18 Fixedbest
std 1.66 0.64 4.03 0.74 1.56 1.16 1.23 1.03

TRANS gives worse results than constructing feasible solutions from scratch

or repairing infeasible solutions. As we are penalizing the edges going from pickups

to deliveries to realize the transformation, this option can be considered as a static

penalizing scheme where the penalty costs are reflected to edge costs. Looking

through this respect, the results of this experiment coincides with the results for the

previous ones. Again, working with only feasible solutions gives better results than a

scheme that permits infeasible solutions in the population. However, TRANS finds

better solutions than PEN_REPAIR. Actually, this reveals the benefit of reflecting

penalty coefficients to edges. As expected, this strategy works faster than other

strategies due to absence of additional constraint handling effort.

95

4.6 Concluding Remarks

The main issue in this study is to answer the question “Should we keep

infeasible solutions in the population for constrained routing problems?”. Looking at

the performance results of the specific algorithms’ performances we can discuss the

value of the infeasible solution.

Firstly, it should be mentioned that, the answer to the question varies

according to the side constraints added. In our case, the two side constraints are

deemed different in hardness. Hardness can be defined by the effort required to find a

feasible solution with respect to the side constraints when realizing the search in the

solution space of the unconstrained problem. From this respect, TSPB looks “harder”

in our case. For TSPPD, one of the schemes working with infeasible solutions,

namely, PEN_REPAIR, provides fairly good results. For this algorithm, 70-80% of

the population is composed of the infeasible solutions on the average. However, as

the side constraint gets harder, the value of the infeasible solutions decreases.

PEN_REPAIR algorithm, for TSPB, does not produce results as good as REPAIR

algorithm. In fact, the structures of algorithms resemble to each other. However, the

repaired version of the infeasible solution replaces the infeasible solution in

REPAIR, which turns out to give results 3% better than PEN_REPAIR while 90% of

the population is infeasible on the average. Therefore, for this problem, we can say

that proceeding with infeasible solutions is not advisable. In fact, the fairly good

results for the softer constraints may be conceivable. In PEN_REPAIR, all of the

infeasible solutions are repaired, and the reason for this algorithm to give good

results may be solely this repairing operation. The influence of keeping infeasible

solutions on obtaining good solutions may be negligible. In almost all experiments,

replacing the infeasible solution with its repaired version instead of keeping this

infeasible solution and penalizing it gave better results. The only exception occurred

in the test bed of Gendreau et al. (1999), when the problems are generated with β =

0.20.

Nevertheless, proceeding with infeasible solutions may be considered for

softer side constraints as long as penalizing is performed appropriately. The results of

PEN_ADAPT were unacceptably bad, whereas PEN_REPAIR provides the best

96

results in some stopping conditions for TSPPD. The difference arises due to the

feasibility distance metric used. The constraint violation used in PEN_ADAPT,

ceases to be an appropriate measure for defining the distance of the infeasible

solution to the feasible solution space, especially, when the crossover operator is

based on a heuristic. In fact, the adaptive penalizing scheme proposed by Coit et. al

(1996) is experimented with a uniform crossover operator, and to our knowledge, no

work studying the effects of adaptive penalizing used with heuristic crossover

methods exist in the literature. The results obtained here implies that simply

penalizing the solution value does not forces the algorithm to find good feasible

solutions, as the crossover operator mainly deals with the edges, instead of the value

of the solution. Actually, it may be a good idea to reflect the penalized value to the

edges that causes infeasibility for our purposes. However, this may be a more

complex and time consuming penalizing scheme.

Another comparison can be realized between the strategies using feasible

solutions. REJECT strategy has been found insufficient after experiments due to its

enormous computation time requirement. The remaining two strategies,

CONSTRUCT and REPAIR, are good strategies. Superiority of one over the other

has not been observed for the softer side constraint. For the harder side constraint,

REPAIR yielded significantly better results. However, no persuasive reasoning can

be stated.

For both TSPPD and TSPB, computation time required for generation of

initial population did not differ with respect to population types. However utilizing a

random population is easier to implement relative to other types. Another general

outcome is the improvement capabilities of the heuristics proposed. Improvement

figures do not provide a basis for comparing the strategies, however it surely gives an

opinion about the value added by the heuristics. For good strategies, the average

improvement of the best solution relative to the best solution in the initial population

is around 70% for TSPPD and 60% for TSPB. These figures show only slight

differences among the initial population types.

97

CHAPTER 5

CONCLUSION

 In this research, we propose evolutionary algorithms for the traveling

salesman problem with side constraints. Specifically, we try to adapt an EA that is

proved to work well for TSP, to TSPPD and TSPB. The algorithm was not a

traditional Genetic Algorithm but a more sophisticated on utilizing the conventional,

well known TSP heuristic, called Nearest Neighbor Heuristic as the crossover

operator. The main difficulty in this adaptation is to ensure the feasibility of the

solution with respect to the side constraints. The literature proposes several

constraint handling techniques for EAs. The individual results for these techniques

are available, however, to our knowledge, a comparison for these techniques has not

been realized before. Impressed by the versatility of TSP, we intended to make a

comparison of constraint handling techniques for EAs in the domain of TSP.

 From the reviewed constraint handling techniques, the most basic ones are

selected to be compared. The first one is simply rejecting the infeasible solutions.

Prior to our experimentation, this strategy is already known to be inappropriate for

the cases in which the solution spaces of the constrained and the unconstrained

problems rarely coincide. However, in order to quantify the “rareness” for the

problems of question and to provide a thorough comparison, this strategy is included

in the study.

 The second and third ones are modifying the crossover operator to ensure

feasibility and repairing the infeasible solutions. In the literature, there are successful

examples for both strategies in dealing with side constraints. However, their relative

performance is not measured before.

 The last strategies are penalizing strategies in which the infeasible solutions

are permitted in the population but the chance for them to pass their genetic material

to the following generations is reduced by penalizing the fitness value of these

solutions. There are various penalizing schemes that can be utilized. We, again,

98

selected the most basic ones. The first of them is taking the repaired value of

infeasible solutions as the penalized value, whereas the second one, which is an

adaptive penalizing strategy, utilizes a distance metric based on the constraint

violation.

After determining a framework for our comparison, the algorithms for

constrained single vehicle routing problems are designed. These algorithms are then

implemented for TSPPD and TSPB, and analyzed by computational experiments on

a test bed taken from the literature.

Firstly, the convergence plots of the algorithms are drawn for both TSPPD

and TSPB. However, no single bound on the stopping condition can be determined.

Bounds on stopping conditions are considered as experimental factors. The specific

values of these bounds are determined after analyzing the convergence plots. In

addition to stopping conditions, three initial population types differing in number of

feasible solutions in population are experimented in the study.

 The influence of the factors is analyzed by ANOVA. In our experimentation,

the algorithms are found to be statistically insensitive to the initial population type

for most of the cases. However, in some cases, the random population gives slightly

significant, or close to significant results for TSPPD regarding the solution quality.

In general, initial population types do not influence solution quality for TSPB.

However, due to significant differences regarding the computation times, all feasible

initial population is reported to be better than the others.

 The results for stopping conditions are analyzed for every strategy

individually. In almost all cases, the significance regarding the solution quality and

computation time is obtained between 8000th and 5000th generations. Speaking with

the average figures, the least difference occurred between these stopping bounds.

Therefore, the differences between other pairs are assumed to be significant.

The results of the algorithms are compared by Tamhane’s T2 test. Repairing,

constructing from scratch, and penalizing by repairing turned out to give better

results relatively to rejecting and penalizing adaptively strategies for TSPPD. High

computation time requirement of rejecting infeasible solutions for TSPPD gets

higher for TSPB, which makes this strategy almost infeasible for TSPB. The

adaptive penalizing strategy provides inferior solutions regarding the solution quality

99

for TSPPD. For TSPB, the differentiation is more clear. The relative order of five

strategies from best to worst regarding the solution quality is repairing, constructing

from scratch and penalizing by repair. However, repairing consumes much more time

than it consumes for TSPPD case. The solutions produced by penalizing adaptively

were worse than two times of the optimal solutions, which is totally unacceptable. At

the end utilizing this scheme with a heuristic crossover is found inappropriate.

 In general, keeping infeasible solutions in the population may not be a good

alternative as the side constraints restrict the solution space more. However, by using

a penalizing scheme incorporating the penalty values to force production of feasible

children, better results can be found. Penalizing the fitness values of solutions alone

may not be a good idea to use with a NN crossover operator.

In the overall, strategy-2, 3 and 4 give solutions deviating from the optimal

TSP values between 4.2 - 4.5% in about 2 seconds for TSPPD. The solutions for

TSPB deviate around 2% from the optimal values for strategy-2 and 3. The result of

strategy-4 is worse than the optimal values by 4.5% on the average. The time

required for strategy-2 and 4 are 2 - 3 seconds, while strategy-3 requires a time

around 10 seconds. At the end, we can say that using a modified crossover operator

that produces feasible solutions and repairing infeasible solutions are better

alternatives for constrained routing problems. If the side constraint is a milder one,

allowing the infeasible solutions and penalizing them by using the value of their

repaired versions is a viable option also. Actually these conclusions are valid for the

EA structure selected. In order to come up with more general conclusions, other EAs

working well for TSP should be used in the experimentations.

 The three constraint handling strategies were better than the other two for

TSPPD. We compared them with the heuristics of Gendreau et al. (1999). These

heuristics are one conventional heuristic and two tabu search procedures. Gendreau

et al. can find better solutions for TSP, but our algorithms provide better results as

the hardness of the constraints increases. Penalizing by repair gives an average

deviation 2.8%, and the deviation of the other two are around 3-4%, whereas the best

heuristic of Gendreau et al., deviates by 6.3%. Although our algorithms may require

more time than those of Gendreau et al., the improvement in solution quality makes

our algorithms a better choice.

100

 Designing a mutation operator performing local search is the first item on the

list of our future research. From Sönmez (2003), we know that the deviation figures

can be improved by 2% after NN crossover is used with a random initial population

for TSP. This figure motivates us to analyze the effect of such a mutation operator

for the constrained cases. An alternative local search may incorporate feasible two

exchange moves.

For future research, another immediate study can be adaptation of these

algorithms to the problems with optional pickups. In this problem, the necessity of

visiting every pickup customer is removed, and visiting a pickup customer returns a

profit. The objective of the problem is to minimize the net cost of the tour visiting all

delivery customers and selected pickup customers. This adaptation can be realized

very easily by updating the crossover operator utilized in this study. If the costs of

edges going to pickup customers are decreased by considering the revenue to be

collected from that customer, and if the tour is constructed by an optional NN

heuristic with the updated costs, then the optional problems can be solved by the

algorithm.

 Another research topic in future is to adapt these algorithms for the multi-

vehicle cases. Actually, by utilizing a cluster first route second approach, the

algorithms proposed here can be directly applicable.

 In future research, it might be interesting to design a penalty scheme that can

work well with the NN crossover operator. Here, the penalty figures can be reflected

to the cost of edges that cause infeasibility. The children are produced using the

penalized cost matrix.

 As our algorithm gives fairly good results for TSP, transforming TSPB to

STSP and solving this instance with our standard algorithm may give good results.

The experimentation of this method of solving TSPB’s will be considered in further

research.

 A last research topic that can be worked in future may be proposing an

algorithm that utilizes the better constraint handling techniques in a combined

fashion. Here, the infeasible solution is treated by one of these techniques according

to a probability.

101

REFERENCES

Anily, S. and G. Mosheiov (1994), The Traveling Salesman Problem with Delivery

and Backhauls, Operations Research Letters 16, 11-18.

Anily, S. and J. Bramel (1999), Approximation Algorithms for the Capacitated

Traveling Salesman Problem with Pickups and Delivers, Naval Research

Logistics 46, 654-670.

Applegate, D., R. Bixby, V. Chavatal, and W. Cook (1998), On the Solution of

Traveling Salesman Problems, Documenta Mathematica, Journal der Deutschen

Mathematiker-Vereinigung, 645-656.

Baldacci R., E. Hadjiconstantinou and A Mingozzi (2003), An Exact Algorithm for

the Traveling Salesman Problem with Deliveries and Collections, Networks 42

(1), 26-41.

Beasley, D., D. R. Bull and R. R. Martin (1993), An Overview of Genetic

Algorithms: Part 1, Fundamentals, University of Computing 15 (2), 58-69.

Beasley, J. E., and P. C. Chu (1996), A Genetic Algorithm for the Set Covering

Problem, European Journal of Operational Research 94, 392-404.

Bodin, L. and B. Golden (1981), Classification in Vehicle Routing and Scheduling,

Networks 11, 97-108.

Bodin L., B. Golden, A. Assad and M. Ball (1983), Routing and Scheduling of

Vehicles and Crews – State of the Art, Computers & Operations Research 10 (2),

63-211.

Chen, S., S. Smith and C. Guerra-Salcedo (1999), The Genie is Out! (Who Needs

Fitness to Evolve?) in Proceedings of the Congress on Evolutionary Computation

3, 2102-2108.

102

Coit D. W., A. E. Smith and D. M. Tate (1996), Adaptive Penalty Methods for

Genetic Optimization of Constrained Combinatorial Problems, Journal of

Computing 8 (2), 173-182.

Daganzo, C. F. and R. W. Hall (1993), A Routing Model for Pickups and Delivers:

No Capacity Restrictions on the Secondary Items, Transportation Science 27 (4),

315-329.

Davis, L. (1991), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New

York.

Demirel, Ö. (2001), Heuristic Algorithms for the Routing Problems with Backhauls,

MSc Thesis, Ankara, METU.

Dethloff, J. (2002), Relation between Vehicle Routing Problems: An Insertion

Heuristic for the Vehicle Routing Problem with Simultaneous Delivery and Pick-

Up Applied to the Vehicle Routing Problem with Backhauls, Journal of the

Operational Research Society 53, 13-118.

Erdem, E., N. E. Özdemirel (2003), An Evolutionary Approach for the Target

Allocation Problem, Journal of the Operational Research Society 54, 958-969.

Fisher, M. (1994), Optimal Solution of Vehicle Routing Problems Using Minimum

K-Trees, Operations Research 42, 626-642.

Gendreau, M., A. Hertz and G. Laporte (1996), The Traveling Salesman Problem

with Backhauls, Computers & Operations Research 23 (5), 501-508.

Gendreau, M., G. Laporte and A. Hertz (1997), An Approximation Algorithm for the

Traveling Salesman Problem with Backhauls, Operations Research 45 (4), 639-

641.

Gendreau, M., G. Laporte and D. Vigo (1999), Heuristics for the Traveling Salesman

Problem with Pickup and Delivery, Computers & Operations Research 26, 699-

714.

103

Ghaziri, H. and I. H. Osman (2003), A Neural Network Algorithms for the Traveling

Salesman Problem with Backhauls, Computers & Industrial Engineering 44, 267-

281.

Goetschalckx, M. and C. Jacobs-Blecha (1989), The Vehicle Routing Problem with

Backhauls, European Journal of Operational Research 42, 39-51.

Golden, B. L., E. A. Wasil, J. P. Kelly and I Chao (1998), The Impact of

Metaheuristics on Solving the Vehicle Routing Problem: Algorithms, Problem

Sets, and Computational Results in Crainic T. and G. Laporte (eds.) Fleet

Management and Logistics, Kluwer Academic Publishers, Boston MA, 33-56.

Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, Ann Arbor, MI,

University of Michigan Press.

Jog, P., J. Y. Suh and D. V. Gucht (1989), The Effects of Population Size, Heuristic

Crossover and Local Improvement on a Genetic Algorithm for the Traveling

Salesman Problem in Schaffer, D. J. (ed.), Proceedings 36 of the Third

International Conference of Genetic Algorithms, Morgan Kaufmann Publishers,

San Mateo, CA, 110-115.

Johnson, D. S. and L. A. McGeoch (1997), The Traveling Salesman: A Case Study

in Aarts, E. and J. K. Lenstra (eds.), Local Search in Combinatorial Optimization,

John Wiley & Sons, New York, 215-310.

Jongens, K. and T. Volgenant (1985), The Symmetric Clustered Traveling Salesman

Problem, European Journal of Operational Research 19, 68-75.

Jürgen, M., G. Reinelt and G. Rinaldi (1995), The Traveling Salesman Problem, in

Ball M. O. et al. (eds.) Handbooks in OR & MS 7, Elsevier Science, 235-329.

Kilby P., P. Prosser and P. Shaw (2000), A Comparison of Traditional and

Constraint-based Heuristic Methods on Vehicle Routing Problems with Side

Constraints, Constraints 5, 389-414.

104

Michalewicz Z. and D. B. Fogel (2000), How to Solve It: Modern Heuristics,

Springer, Berlin.

Mingozzi, A., S. Giorgi and R. Baldacci (1999), An Exact Method for the Vehicle

Routing Problem with Backhauls, Transportation Science 33 (3), 315 329.

Mosheiov, G. (1994), The Traveling Salesman Problem with Pick-up and Delivery,

European Journal of Operational Research 79, 299-310.

Nagata, Y. and S. Kobayashi (1997), Edge Assembly Crossover: A High-Power

Genetic Algorithm for the Traveling Salesman Problem, in Proceedings of the 7th

International Conference on Genetic Algorithms, 450-457.

Nagy, G. and S. Salhi (2004), Heuristic Algorithms for Single and Multiple Depot

Vehicle Routing Problems with Pickups and Deliveries, European Journal of

Operational Research, in press.

Orvosh, D. and L. Davis (1993), Shall We Repair? Genetic Algorithms,

Combinatorial Optimization and Feasibility Constraints, in Forrest, S. (ed.)

Proceedings of 5th International Conference on Genetic Algorithms, Morgan

Kaufmann, San Mateo, CA, p. 650.

Osman, I. H. and N. A. Wassan (2002), A Reactive Tabu Search Meta-heuristic for

the Vehicle Routing Problem with Backhauls, Journal of Scheduling 5, 263-285.

Reeves, R. C. (1995), A Genetic Algorithm for Flowshop Sequencing, Computers &

Operations Research 22, 5-13.

Reeves, R. C. (1997), Genetic Algorithms for the Operations Researchers, Journal of

Computing, 9 (3), 231-250.

Rego, C. and F. Glover (2002), Local Search and Metaheuristics in Gutin, G. and A.

P. Punnen (eds.), The Traveling Salesman Problem and Its Variations, Kluwer

Academic Publishers, Dordrecht, Netherlands, 309-368.

105

Savelsbergh M. W. P. and M. Sol (1995), The General Pickup and Delivery Problem,

Transportation Science 29 (1), 17-29.

Sönmez, M. (2003), An Evolutionary Approach to TSP: Crossover with

Conventional Heuristics, MSc Thesis, Ankara, METU.

Süral, H. and J. H. Bookbinder (2003), The Single-Vehicle Routing Problem with

Unrestricted Backhauls, Networks 41 (13), 127-136.

Toothacker, L. E. (1993), Multiple comparisons procedures, CA: Sage Publications,

Inc, Newbury Park.

Toth P. and D. Vigo (1997), An Exact Algorithm for the Vehicle Routing Problem

with Backhauls, Transportation Science 31 (4), 372-385.

Toth, P. and D. Vigo (1999), A Heuristic Algorithm for the Symmetric and

Asymmetric Vehicle Routing Problems with Backhauls, European Journal of

Operational Research 113, 528-543.

Tsiligirides, T. (1984) Heuristic Methods Applied to Orienteering, Journal of the

Operational Research Society 35, 797-809.

Tzoreff, T. E., D. Granot, F. Granot and G. Sosic (2002), The Vehicle Routing

Problem with Pickups and Deliveries on Some Special Graphs, Discrete Applied

Mathematics 116, 193-229.

Ulusoy, G., F. Sivrikaya-Şerifoğlu, Ü. Bilge (1997), A Genetic Algorithm Approach

to Simultaneous Scheduling of the Machines and Automated Guided Vehicles,

Computers & Operations Research 24 (4), 335-351.

Van Breedam, A. (2001), Comparing Descent Heuristics and Metaheuristics for the

Vehicle Routing Problem, Computers & Operations Research 28, 289-315.

Wade, A. C. and S. Salhi (2002), An Investigation into a New Class of Vehicle

Routing Problem with Backhauls, Omega 30, 479-487.

106

Whitley, D. (1989), The Genitor Algorithm and Selection Pressure: Why Rank-based

Allocation of Reproductive Trials is Best, in Proceedings of Third International

Conference on Genetic Algorithms, Morgan Kaufmann Publishers, 116-121.

Yano, C. A., T. J. Chan, L. K. Richter, T. Cutler, K. G. Mutry and D. Mcgettigan

(1987), Vehicle Routing at Quality Stores, Interfaces 17, 52-63.

107

APPENDIX A

TRANSFORMATION OF TSPB TO STSP

In this appendix, an example for illustrating the transformation of TSPB

instances to STSP instances is provided. First TSPB instances are transformed to

asymmetric TSP instances as discussed in Chapter 2. In Figure A.1, a trivial instance

of TSPB is provided. The square represents the depot (node c), the white node (a) is

the only delivery customer and the black node (b) is the only pickup customer. This

instance is transformed into the ATSP instance given in Figure A.2.

Figure A.1 An instance of TSPB

After obtaining ATSP instances, they are converted to symmetric instances by

doubling all nodes (Jürgen et al. 1995). A single node i is represented by two nodes

in this new version, namely, iarrival and ideparture. The arc costs of the updated instance

should be designed so that the optimal tour in this version gives the optimal tour for

the asymmetric case. The cost of an edge directed from node i to node j at the

original instance equals to the cost of the edge between iarrival and ideparture in the

updated instance.

3 4

5

c

a b

108

Figure A.2 ATSP instance corresponding to the TSPB instance given

The solution for the updated version should not include any edge between the

nodes that have the same subscript, i.e., iarrival and jarrival, or ideparture and jdeparture.

Therefore, their costs are set to sufficiently large values of M. Once the tour reaches

to node icoming, the tour should continue with visiting igoing. Note that, the cost of the

edges between the duplicates of nodes of the original problem are irresistibly small,

i.e., 0. The STSP instance corresponding to the initial example is provided in Figure

A.3. Note that, M1, M2, and M3 should be set far larger than the cost of the original

edges. For this case, an M value of 100 will be appropriate for obtaining a valid

TSPB tour from this instance.

3 4

5

c

a b5+M1

3+M1 4+M1

109

Figure A.3 STSP instance corresponding to the TSPB instance given

aarrival

adeparture barrival

cdeparture carrival

3

4

3+M1

4+M1

5

5+M1

M2

-M3

M2

M2

M2

M2

-M3 -M3

110

APPENDIX B

OPTIMAL TOUR VALUES

In Table B.1, the optimal tour values are provided for the test bed. TSPopt,

TSPPDopt, and TSPBopt represent the optimal solution values for TSP, TSPPD and

TSPB, respectively.

Table B.1 Optimal values for different problem types

Name TSPopt TSPPDopt TSPBopt

P00 294 310 385

P01 462 479 580

P02 463 - 589

P03 585 - 808

P04 651 - 904

P05 631 - 870

P06 97 100 123

P07 55 55 68

P08 106 106 128

P09 4431 4488 6244

P10 484 502 652

P11 402 408 530

P12 810 - 1067

P13 602 - 779

P14 252 - 321

P15 796 - 1151

P16 709 - 859

P17 33551 - 45697

P18 511 529 659

P19 377 381 477

111

APPENDIX C

CONVERGENCE PLOTS

In this appendix, the convergence plots of five strategies for problems p00

and p15 are provided. Firstly, the plots for TSPPD algorithms and then the plots for

TSPB algorithms are provided. For TSPPD plots, the initial population type utilized

is inirand whereas inifeas is utilized for TSPB. In the figures, “bestog” stands for the

best solution averages for 30 replications. Similarly, “avgog” keeps the average of

population averages and “cpu” keeps the average computation time. For penalizing

strategies, “bestfeas” keeps the average of best feasible solution.

310
315
320
325
330
335
340
345

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

generation number

to
ur

 v
al

ue

bestog
avgog

Figure C.1 Bestog and Avgog vs. number of generations for p00 with strategy-1 for

TSPPD

112

0

5

10

15

20

25

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

generation number
se

co
nd

s

cpu

Figure C.2 CPU vs. number of generations for p00 with strategy-1 for TSPPD

305
310
315
320
325
330
335
340
345

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

generation number

to
ur

 v
al

ue

bestog
avgog

Figure C.3 Bestog and Avgog vs. number of generations for p00 with strategy-2 for

TSPPD

0

5

10

15

20

25

30

35

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

generation number

se
co

nd
s

cpu

Figure C.4 CPU vs. number of generations for p00 with strategy-2 for TSPPD

113

305
310
315
320
325
330
335
340
345

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

generation number
to

ur
 v

al
ue

bestog
avgog

Figure C.5 Bestog and Avgog vs. number of generations for p00 with strategy-3 for

TSPPD

0
1
2
3
4
5
6
7
8

1

35
00

70
00

10
50

0

14
00

0

17
50

0

21
00

0

24
50

0

28
00

0

31
50

0

35
00

0

38
50

0

42
00

0

45
50

0

49
00

0
generation number

se
co

nd
s

cpu

Figure C.6 CPU vs. number of generations for p00 with strategy-3 for TSPPD

114

290

295

300

305

310

315

320

325

330

1

35
00

70
00

10
50

0

14
00

0

17
50

0

21
00

0

24
50

0

28
00

0

31
50

0

35
00

0

38
50

0

42
00

0

45
50

0

49
00

0

generation num ber

to
ur

 v
al

ue

bestog
avgog
bestfeas

Figure C.7 Bestog, Avgog, and Bestfeas vs. number of generations for p00 with

strategy-4 for TSPPD

0

1

2

3

4

5

6

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

generation number

se
co

nd
s

cpu

Figure C.8 CPU vs. number of generations for p00 with strategy-4 for TSPPD

115

305
310
315
320
325
330
335
340
345

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

generation number
to

ur
 v

al
ue

bestog
avgog
bestfeas

Figure C.9 Bestog, Avgog, and Bestfeas vs. number of generations for p00 with

strategy-5 for TSPPD

0
1
2
3
4
5
6
7
8
9

1

35
00

70
00

10
50

0

14
00

0

17
50

0

21
00

0

24
50

0

28
00

0

31
50

0

35
00

0

38
50

0

42
00

0

45
50

0

49
00

0

generation number

se
co

nd
s

cpu

Figure C.10 CPU vs. number of generations for p00 with strategy-5 for TSPPD

825
830
835
840
845
850
855
860
865

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

generation number

to
ur

 v
al

ue bestog
avgog

Figure C.11 Bestog and Avgog vs. number of generations for p15 with strategy-1 for

TSPPD

116

0
50

100
150
200
250
300
350

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

generation number

se
co

nd
s

cpu

Figure C.12 CPU vs. number of generations for p15 with strategy-1 for TSPPD

825
830
835
840
845
850
855
860
865

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0
generation number

to
ur

 v
al

ue

bestog
avgog

Figure C.13 Bestog and Avgog vs. number of generations for p15 with strategy-2 for

TSPPD

0
5

10
15
20
25
30
35

1

45
00

90
00

13
50

0

18
00

0

22
50

0

27
00

0

31
50

0

36
00

0

40
50

0

45
00

0

49
50

0

generation number

se
co

nd
s

cpu

Figure C.14 CPU vs. number of generations for p15 with strategy-2 for TSPPD

117

820
825
830
835
840
845
850
855
860
865
870
875
880

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

generation number
to

ur
 v

al
ue

bestog
avgog

Figure C.15 Bestog and Avgog vs. number of generations for p15 with strategy-3 for

TSPPD

0

10

20

30

40

50

60

1

35
00

70
00

10
50

0

14
00

0

17
50

0

21
00

0

24
50

0

28
00

0

31
50

0

35
00

0

38
50

0

42
00

0

45
50

0

49
00

0
generation number

se
co

nd
s

cpu

Figure C.16 CPU vs. number of generations for p15 with strategy-3 for TSPPD

118

805
810
815
820
825
830
835
840
845
850
855

1

35
00

70
00

10
50

0

14
00

0

17
50

0

21
00

0

24
50

0

28
00

0

31
50

0

35
00

0

38
50

0

42
00

0

45
50

0

49
00

0

generation number
to

ur
 v

al
ue

bestog
avgog
bestfeas

Figure C.17 Bestog, Avgog, and Bestfeas vs. number of generations for p15 with

strategy-4 for TSPPD

0
5

10
15
20
25
30
35

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0
generation number

se
co

nd
s

cpu

Figure C.18 CPU vs. number of generations for p15 with strategy-4 for TSPPD

830
835
840
845
850
855
860
865
870
875

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

generation number

to
ur

 v
al

ue

bestog
avgog
bestfeas

Figure C.19 Bestog, Avgog, and Bestfeas vs. number of generations for p15 with

strategy-5 for TSPPD

119

0

10

20

30

40

50

60

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

generation number
se

co
nd

s

cpu

Figure C.20 CPU vs. number of generations for p15 with strategy-5 for TSPPD

Due to large computational requirements of REJECT for TSPB, the convergence

experiment could not be realized for problem p15. For the smaller problem p00, we

stop earlier, at 10000th generation, because of the same reason.

So
lu

tio
n

V
al

ue

400

450

500

550

600

650

700

1

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Number of Generations

FB

FA

Figure C.21 Bestog and Avgog vs. number of generations for p00 with strategy-1 for

TSPB

120

0

5

10

15

20

1

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Number of Generations

Se
co

nd
s

CPU

Figure C.22 CPU vs. number of generations for p00 with strategy-1 for TSPB

350

400

450

500

550

600

650

1

45
00

90
00

13
50

0

18
00

0

22
50

0

27
00

0

31
50

0

36
00

0

40
50

0

45
00

0

49
50

0

Number of Generations

So
lu

tio
n

V
al

ue FB

FA

Figure C.23 Bestog and Avgog vs. number of generations for p00 with strategy-2 for

TSPB

0
0.5

1
1.5

2
2.5

3
3.5

4

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

Number of Generations

Se
co

nd
s

CPU

Figure C.24 CPU vs. number of generations for p00 with strategy-2 for TSPB

121

350

400

450

500

550

600

650

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

Number of Generations

So
lu

tio
n

V
al

ue FB

FA

Figure C.25 Bestog and Avgog vs. number of generations for p00 with strategy-3 for

TSPB

0
1
2
3
4
5
6
7
8

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

Number of Generations

Se
co

nd
s

CPU

Figure C.26 CPU vs. number of generations for p00 with strategy-3 for TSPB

250

300

350

400

450

500

550

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

Number of Generations

So
lu

tio
n

V
al

ue

FB

FA

Ffeas

Figure C.27 Bestog, Avgog, and Bestfeas vs. number of generations for p00 with

strategy-4 for TSPB

122

0
1
2
3
4
5
6

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

Number of Generations

Se
co

nd
s

CPU

Figure C.28 CPU vs. number of generations for p00 with strategy-4 for TSPB

320
340
360
380
400
420
440
460
480
500

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

Number of Generations

So
lu

tio
n

V
al

ue

FB

FA

Ffeas

Figure C.29 Bestog, Avgog, and Bestfeas vs. number of generations for p00 with

strategy-5 for TSPB

0
1
2
3
4
5
6

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

Number of Generations

Se
co

nd
s

CPU

Figure C.30 CPU vs. number of generations for p00 with strategy-5 for TSPB

123

1100
1150
1200
1250
1300
1350
1400
1450
1500

1

45
00

90
00

13
50

0

18
00

0

22
50

0

27
00

0

31
50

0

36
00

0

40
50

0

45
00

0

49
50

0

Number of Generations

So
lu

tio
n

V
al

ue

FB

FA

Figure C.31 Bestog and Avgog vs. number of generations for p15 with strategy-2 for

TSPB

0
5

10
15
20
25
30
35

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

Number of Generations

Se
co

nd
s

CPU

Figure C.32 CPU vs. number of generations for p15 with strategy-2 for TSPB

1100
1150
1200
1250
1300
1350
1400
1450
1500

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

Number of Generations

So
lu

tio
n

V
al

ue FB

FA

Figure C.33 Bestog and Avgog vs. number of generations for p15 with strategy-3 for

TSPB

124

0
10
20
30
40
50

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

Number of Generations

Se
co

nd
s

CPU

Figure C.34 CPU vs. number of generations for p15 with strategy-3 for TSPB

750

850

950

1050

1150

1250

1350

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

Number of Generations

So
lu

tio
n

V
al

ue

FB

FA

Ffeas

Figure C.35 Bestog, Avgog, and Bestfeas vs. number of generations for p15 with

strategy-4 for TSPB

0
5

10
15
20
25
30
35

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

Number of Generations

Se
co

nd
s

CPU

Figure C.36 CPU vs. number of generations for p15 with strategy-4 for TSPB

125

2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500

1

45
00

90
00

13
50

0

18
00

0

22
50

0

27
00

0

31
50

0

36
00

0

40
50

0

45
00

0

49
50

0

Number of Generations
So

lu
tio

n
V

al
ue

FB

FA

Ffeas

Figure C.37 Bestog, Avgog, and Bestfeas vs. number of generations for p15 with

strategy-5 for TSPB

0
5

10
15
20
25
30

1

40
00

80
00

12
00

0

16
00

0

20
00

0

24
00

0

28
00

0

32
00

0

36
00

0

40
00

0

44
00

0

48
00

0

Number of Generations

Se
co

nd
s

CPU

Figure C.38 CPU vs. number of generations for p15 with strategy-5 for TSPB

126

APPENDIX D

STATISTICAL ANALYSES REGARDING THE EFFECT OF INITIAL

 POPULATION FOR TSPPD

In this appendix, ANOVA tables and related plots for determining the effect

of initial population type on solution quality and computation time are provided for

each strategy when the stopping conditions are 2000 and Fixedbest.

Figure D.1 Normality and residual plots for strategy-1, when stopping condition is

2000 with response log(DEVb)

Table D.1 ANOVA table for strategy-1, when stopping condition 2000 with response

log(DEVb)

Analysis of Variance for logdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.0105 0.0105 0.0053 0.95 0.395
problem 19 124.9644 124.9644 6.5771 1189.96 0.000
initype*problem 38 0.2100 0.2100 0.0055 0.64 0.959
Error 1740 15.1215 15.1215 0.0087
Total 1799 140.3065

127

Figure D.2 Normality and residual plots for strategy-1, when stopping condition is

2000 with response log(CPU)

Table D.2 ANOVA table for strategy-1, when stopping condition 2000 with response

log(CPU)

Analysis of Variance for logCPU, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.139 0.139 0.069 2.72 0.079
problem 19 663.173 663.173 34.904 1369.80 0.000
initype*problem 38 0.968 0.968 0.025 1.26 0.132
Error 1740 35.119 35.119 0.020
Total 1799 699.399

0 1 2 3

-1

0

1

Fitted Value

R
es

id
ua

l

Residuals Versus the Fitted Values
(response is sqrtdev)

-1 0 1

-4

-3

-2

-1

0

1

2

3

4

N
or

m
al

 S
co

re

Residual

Normal Probability Plot of the Residuals
(response is sqrtdev)

Figure D.3 Normality and residual plots for strategy-1, when stopping condition is

8000 with response sqrt(DEVb)

128

Table D.3 ANOVA table for strategy-1, when stopping condition 8000 with response

sqrt(DEVb)

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

-4

-3

-2

-1

0

1

2

3

4

N
or

m
al

 S
co

re

Residual

Normal Probability Plot of the Residuals
(response is logCPU)

0 1 2

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Fitted Value

R
es

id
ua

l

Residuals Versus the Fitted Values
(response is logCPU)

Figure D.4 Normality and residual plots for strategy-1, when stopping condition is

8000 with response log(CPU)

Table D.4 ANOVA table for strategy-1, when stopping condition 8000 with response

is log(CPU)

Analysis of Variance for logCPU, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.0548 0.0548 0.0274 0.66 0.523
problem 19 508.0761 508.0761 26.7408 644.12 0.000
initype*problem 38 1.5776 1.5776 0.0415 1.10 0.317
Error 1740 65.8683 65.8683 0.0379
Total 1799 575.5768

Analysis of Variance for sqrtdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.069 0.069 0.035 0.49 0.619
problem 19 1052.986 1052.986 55.420 777.03 0.000
initype*problem 38 2.710 2.710 0.071 0.86 0.719
Error 1740 145.061 145.061 0.083
Total 1799 1200.826

129

Table D.5 ANOVA tables for strategy-2

Stopping condition 2000
Analysis of Variance for dev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 3.97 3.97 1.99 1.06 0.356
problem 19 18218.63 18218.63 958.88 512.04 0.000
initype*problem 38 71.16 71.16 1.87 1.32 0.090
Error 1740 2459.64 2459.64 1.41
Total 1799 20753.40
Stopping condition 2000
Analysis of Variance for CPU, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.0001 0.0001 0.0001 2.45 0.100
problem 19 311.6065 311.6065 16.4003 7.0E+05 0.000
initype*problem 38 0.0009 0.0009 0.0000 0.52 0.993
Error 1740 0.0781 0.0781 0.0000
Total 1799 311.6856
Stopping Condition Fixedbest
Analysis of Variance for dev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 2.57 2.57 1.29 3.03 0.060
problem 19 6671.18 6671.18 351.11 827.05 0.000
initype*problem 38 16.13 16.13 0.42 0.70 0.918
Error 1740 1059.70 1059.70 0.61
Total 1799 7749.59
Stopping Condition Fixedbest
Analysis of Variance for logCPU, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.0121 0.0121 0.0060 0.37 0.696
problem 19 302.7415 302.7415 15.9338 965.42 0.000
initype*problem 38 0.6272 0.6272 0.0165 1.41 0.049
Error 1740 20.3176 20.3176 0.0117
Total 1799 323.6984

130

Table D.6 ANOVA tables for strategy-3

Stopping Condition 2000
Analysis of Variance for logdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.0043 0.0043 0.0021 0.38 0.683
problem 19 142.6518 142.6518 7.5080 1352.88 0.000
initype*problem 38 0.2109 0.2109 0.0055 1.21 0.182
Error 1740 8.0012 8.0012 0.0046
Total 1799 150.8681
Stopping Condition 2000
Analysis of Variance for logCPU, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.0006 0.0006 0.0003 1.74 0.189
problem 19 150.7840 150.7840 7.9360 4.6E+04 0.000
initype*problem 38 0.0066 0.0066 0.0002 1.64 0.008
Error 1740 0.1845 0.1845 0.0001
Total 1799 150.9756
Stopping Condition Fixedbest
Analysis of Variance for logdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.0019 0.0019 0.0009 0.19 0.826
problem 19 113.9628 113.9628 5.9980 1236.19 0.000
initype*problem 38 0.1844 0.1844 0.0049 1.05 0.394
Error 1740 8.0715 8.0715 0.0046
Total 1799 122.2206
Stopping Condition Fixedbest
Analysis of Variance for logCPU, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.0006 0.0006 0.0003 1.74 0.189
problem 19 150.7840 150.7840 7.9360 4.6E+04 0.000
initype*problem 38 0.0066 0.0066 0.0002 1.64 0.008
Error 1740 0.1845 0.1845 0.0001
Total 1799 150.9756

131

Table D.7 ANOVA tables for strategy-4

Stopping Condition 2000
Analysis of Variance for logdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.0080 0.0080 0.0040 0.45 0.639
problem 19 143.8101 143.8101 7.5690 859.66 0.000
initype*problem 38 0.3346 0.3346 0.0088 1.28 0.120
Error 1740 11.9813 11.9813 0.0069
Total 1799 156.1340
Stopping Condition 2000
Analysis of Variance for sqrtcpu, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.0001 0.0001 0.0001 2.22 0.122
problem 19 115.4462 115.4462 6.0761 2.2E+05 0.000
initype*problem 38 0.0010 0.0010 0.0000 0.84 0.751
Error 1740 0.0569 0.0569 0.0000
Total 1799 115.5043
Stopping Condition Fixedbest
Analysis of Variance for sqrtdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.281 0.281 0.141 2.42 0.103
problem 19 1038.689 1038.689 54.668 940.46 0.000
initype*problem 38 2.209 2.209 0.058 0.87 0.695
Error 1740 116.156 116.156 0.067
Total 1799 1157.335
Stopping Condition Fixedbest
Analysis of Variance for logcpu, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.0289 0.0289 0.0144 1.39 0.262
problem 19 258.1284 258.1284 13.5857 1307.49 0.000
initype*problem 38 0.3948 0.3948 0.0104 0.93 0.587
Error 1740 19.3732 19.3732 0.0111
Total 1799 277.9252

132

Table D.8 ANOVA tables for strategy-5

Stopping Condition 2000
Analysis of Variance for logdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 1.6686 1.6686 0.8343 4.36 0.020
problem 19 308.7941 308.7941 16.2523 84.99 0.000
initype*problem 38 7.2663 7.2663 0.1912 10.43 0.000
Error 1740 31.9035 31.9035 0.0183
Total 1799 349.6325
Stopping Condition 2000
Analysis of Variance for cpu, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 205.487 205.487 102.744 16.13 0.000
problem 19 2391.308 2391.308 125.858 19.76 0.000
initype*problem 38 242.059 242.059 6.370 278.13 0.000
Error 1740 39.852 39.852 0.023
Total 1799 2878.705
Stopping Condition Fixedbest
Analysis of Variance for logdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.0148 0.0148 0.0074 0.49 0.616
problem 19 142.2806 142.2806 7.4885 495.90 0.000
initype*problem 38 0.5738 0.5738 0.0151 1.07 0.351
Error 1740 24.4778 24.4778 0.0141
Total 1799 167.3471
Stopping Condition Fixedbest
Analysis of Variance for logcpu, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.1341 0.1341 0.0670 4.56 0.017
problem 19 269.1023 269.1023 14.1633 962.54 0.000
initype*problem 38 0.5591 0.5591 0.0147 1.06 0.379
Error 1740 24.2570 24.2570 0.0139
Total 1799 294.0525

133

APPENDIX E

STATISTICAL ANALYSES REGARDING THE EFFECT OF STOPPING
CONDITION FOR TSPPD

In this appendix, ANOVA tables and related plots for determining the effect

of stopping condition on solution quality and computation time are provided for each

strategy when data from the stated initial population types is considered.

0.0 0.5 1.0

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

Fitted Value

R
es

id
ua

l

Residuals Versus the Fitted Values
(response is logdev)

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

-3

-2

-1

0

1

2

3
N

or
m

al
 S

co
re

Residual

Normal Probability Plot of the Residuals
(response is logdev)

Figure E.1 Normality and residual plots for strategy-1, with response log(DEVb)

Table E.1 ANOVA table for strategy-1 (5000-8000), when initial population type

used is inifeas, with response log(DEVb)

Analysis of Variance for logdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
gen 1 0.0013 0.0013 0.0013 8.03 0.011
problem 19 79.5134 79.5134 4.1849 2.7E+04 0.000
gen*problem 19 0.0030 0.0030 0.0002 0.02 1.000
Error 1160 9.1058 9.1058 0.0078
Total 1199 88.6234

134

Table E.2 ANOVA table for strategy-2 (5000-8000), when initial population type

used is inirand, with response log(DEVb)

Analysis of Variance for logdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
gen 1 28.08 28.08 28.08 20.98 0.000
problem 19 6147.72 6147.72 323.56 241.77 0.000
gen*problem 19 25.43 25.43 1.34 1.41 0.111
Error 1160 1097.93 1097.93 0.95
Total 1199 7299.16

Table E.3 ANOVA table for strategy-3 (5000-8000), when initial population type

used is inirand, with response log(DEVb)

Source DF Seq SS Adj SS Adj MS F P
gen 1 0.0037 0.0037 0.0037 1.18 0.292
problem 19 83.1659 83.1659 4.3772 1398.59 0.000
gen*problem 19 0.0595 0.0595 0.0031 0.73 0.790
Error 1160 4.9705 4.9705 0.0043
Total 1199 88.199

Table E.4 ANOVA table for strategy-4 (5000-8000), when initial population type

used is inirand, with response log(DEVb)

Analysis of Variance for logdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
gen 1 0.0334 0.0334 0.0334 24.40 0.000
problem 19 84.3398 84.3398 4.4389 3243.41 0.000
gen*problem 19 0.0260 0.0260 0.0014 0.19 1.000
Error 1160 8.1489 8.1489 0.0070
Total 1199 92.5481

135

Table E.5 ANOVA table for strategy-5 (5000-8000), when initial population type

used is inirand, with response log(DEVb)

Analysis of Variance for logdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
gen 1 0.1084 0.1084 0.1084 5.32 0.033
problem 19 105.6677 105.6677 5.5615 272.91 0.000
gen*problem 19 0.3872 0.3872 0.0204 1.52 0.071
Error 1160 15.5668 15.5668 0.0134
Total 1199 121.7301

136

APPENDIX F

STATISTICAL ANALYSES FOR COMPARING STRATEGIES FOR TSPPD

In this appendix, the resulting tables of the stattistical tests comducted for

comparing the five strategy are given. The results of the Levene’s homogeneity test

and Tamhane’s multiple comparison test are provided.

Table F.1 Levene’s test results

Stopping
Condition

Initial
Population Response F df1 df2 Sig.

2000 all Log(DEVb) 43.627 99 8900 0.000
2000 all Log(CPU) 108.556 99 8900 0.000
2000 inirand Log(DEVb) 13.109 99 2900 0.000
2000 inirand Log(CPU) 37.394 99 2900 0.000
5000 all Log(DEVb) 35.409 99 8900 0.000
5000 all Log(CPU) 112.835 99 8900 0.000
5000 inirand Log(DEVb) 11.660 99 2900 0.000
5000 inirand Log(CPU) 41.323 99 2900 0.000
8000 all Log(DEVb) 31.466 99 8900 0.000
8000 all Log(CPU) 121.425 99 8900 0.000
8000 inirand Log(DEVb) 12.443 99 2900 0.000
8000 inirand Log(CPU) 43.795 99 2900 0.000

Fixedbest all Log(DEVb) 40.760 79 7120 0.000
Fixedbest all Log(CPU) 37.268 79 7120 0.000
Fixedbest inirand Log(DEVb) 16.526 79 2320 0.000
Fixedbest inirand Log(CPU) 14.017 79 2320 0.000

137

Table F.2 Tamhane’s test results for stopping condition 2000, when all initial

population types are considered, with responses log(DEVb) and log(CPU)

log(DEVb) log(CPU)
(I) (J) Mean (I-J) Std. Error Sig. (I) (J) Mean (I-J) Std. Error Sig.

2 -0.020 0.010 0.329 2 0.870 0.016 0.000
3 0.039 0.009 0.000 3 0.889 0.016 0.000
4 0.018 0.010 0.450 4 0.882 0.016 0.000

1

5 -0.224 0.012 0.000

1

5 0.482 0.017 0.000
1 0.020 0.010 0.329 1 -0.870 0.016 0.000
3 0.059 0.010 0.000 3 0.019 0.010 0.385
4 0.038 0.010 0.001 4 0.012 0.010 0.917

2

5 -0.204 0.013 0.000

2

5 -0.388 0.010 0.000
1 -0.039 0.009 0.000 1 -0.889 0.016 0.000
2 -0.059 0.010 0.000 2 -0.019 0.010 0.385
4 -0.021 0.010 0.287 4 -0.007 0.010 0.998

3

5 -0.263 0.012 0.000

3

5 -0.407 0.010 0.000
1 -0.018 0.010 0.450 1 -0.882 0.016 0.000
2 -0.038 0.010 0.001 2 -0.012 0.010 0.917
3 0.021 0.010 0.287 3 0.007 0.010 0.998

4

5 -0.242 0.012 0.000

4

5 -0.400 0.010 0.000
1 0.224 0.012 0.000 1 -0.482 0.017 0.000
2 0.204 0.013 0.000 2 0.388 0.010 0.000
3 0.263 0.012 0.000 3 0.407 0.010 0.000

5

4 0.242 0.012 0.000

5

4 0.400 0.010 0.000

138

Table F.3 Tamhane’s test results for stopping condition 5000, when all initial

population types are considered, with responses log(DEVb) and log(CPU)

log(DEVb) log(CPU)
(I) (J) Mean (I-J) Std. Error Sig. (I) (J) Mean (I-J) Std. Error Sig.

2 0.028 0.009 0.020 2 0.721 0.015 0.000
3 0.058 0.009 0.000 3 0.747 0.015 0.000
4 0.038 0.009 0.001 4 0.738 0.015 0.000

1

5 -0.096 0.010 0.000

1

5 0.394 0.016 0.000
1 -0.028 0.009 0.020 1 -0.721 0.015 0.000
3 0.029 0.009 0.014 3 0.026 0.010 0.076
4 0.009 0.009 0.982 4 0.017 0.010 0.586

2

5 -0.125 0.010 0.000

2

5 -0.327 0.010 0.000
1 -0.058 0.009 0.000 1 -0.747 0.015 0.000
2 -0.029 0.009 0.014 2 -0.026 0.010 0.076
4 -0.020 0.009 0.239 4 -0.009 0.010 0.988

3

5 -0.154 0.010 0.000

3

5 -0.352 0.010 0.000
1 -0.038 0.009 0.001 1 -0.738 0.015 0.000
2 -0.009 0.009 0.982 2 -0.017 0.010 0.586
3 0.020 0.009 0.239 3 0.009 0.010 0.988

4

5 -0.134 0.010 0.000

4

5 -0.343 0.010 0.000
1 0.096 0.010 0.000 1 -0.394 0.016 0.000
2 0.125 0.010 0.000 2 0.327 0.010 0.000
3 0.154 0.010 0.000 3 0.352 0.010 0.000

5

4 0.134 0.010 0.000

5

4 0.343 0.010 0.000

139

Table F.4 Tamhane’s test results for stopping condition 8000, when all initial

population types are considered, with responses log(DEVb) and log(CPU)

log(DEVb) log(CPU)
(I) (J) Mean (I-J) Std. Error Sig. (I) (J) Mean (I-J) Std. Error Sig.

2 0.046 0.009 0.000 2 0.660 0.015 0.000
3 0.066 0.009 0.000 3 0.685 0.015 0.000
4 0.045 0.009 0.000 4 0.676 0.015 0.000

1

5 -0.079 0.010 0.000

1

5 0.378 0.015 0.000
1 -0.046 0.009 0.000 1 -0.660 0.015 0.000
3 0.019 0.009 0.279 3 0.024 0.010 0.108
4 -0.001 0.009 1.000 4 0.016 0.010 0.655

2

5 -0.125 0.010 0.000

2

5 -0.282 0.010 0.000
1 -0.066 0.009 0.000 1 -0.685 0.015 0.000
2 -0.019 0.009 0.279 2 -0.024 0.010 0.108
4 -0.020 0.009 0.213 4 -0.008 0.010 0.992

3

5 -0.144 0.010 0.000

3

5 -0.306 0.010 0.000
1 -0.045 0.009 0.000 1 -0.676 0.015 0.000
2 0.001 0.009 1.000 2 -0.016 0.010 0.655
3 0.020 0.009 0.213 3 0.008 0.010 0.992

4

5 -0.124 0.010 0.000

4

5 -0.298 0.010 0.000
1 0.079 0.010 0.000 1 -0.378 0.015 0.000
2 0.125 0.010 0.000 2 0.282 0.010 0.000
3 0.144 0.010 0.000 3 0.306 0.010 0.000

5

4 0.124 0.010 0.000

5

4 0.298 0.010 0.000

Table F.5 Tamhane’s test results for stopping condition Fixedbest, when all initial

population types are considered,with responses log(DEVb) and log(CPU)

log(DEVb) log(CPU)
(I) (J) Mean (I-J) Std. Error Sig. (I) (J) Mean (I-J) Std. Error Sig.

3 -0.003 0.009 0.999 3 0.082 0.013 0.000
4 -0.026 0.009 0.020 4 0.090 0.014 0.000

2

5 -0.160 0.009 0.000

2

5 -0.093 0.014 0.000
2 0.003 0.009 0.999 2 -0.082 0.013 0.000
4 -0.022 0.009 0.066 4 0.007 0.013 0.993

3

5 -0.156 0.009 0.000

3

5 -0.175 0.013 0.000
2 0.026 0.009 0.020 2 -0.090 0.014 0.000
3 0.022 0.009 0.066 3 -0.007 0.013 0.993

4

5 -0.134 0.010 0.000

4

5 -0.183 0.013 0.000
2 0.160 0.009 0.000 2 0.093 0.014 0.000
3 0.156 0.009 0.000 3 0.175 0.013 0.000

5

4 0.134 0.010 0.000

5

4 0.183 0.013 0.000

140

APPENDIX G

STATISTICAL ANALYSES REGARDING THE EFFECT OF INITIAL

 POPULATION FOR TSPB

In this appendix, ANOVA tables and related plots for determining the effect

of initial population type on solution quality and computation time are provided for

each strategy when the stopping conditions are 2000 and Fixedbest.

0 1 2 3 4 5 6 7 8 9 10

-4

-3

-2

-1

0

1

2

3

4

5

Fitted Value

R
es

id
ua

l

Residuals Versus the Fitted Values
(response is dev)

-4 -3 -2 -1 0 1 2 3 4 5

-4

-3

-2

-1

0

1

2

3

4
N

or
m

al
 S

co
re

Residual

Normal Probability Plot of the Residuals
(response is dev)

Figure G.1 Normality and residual plots for strategy-2, when stopping condition is

2000 with response DEVopt

Table G.1 ANOVA table for strategy-2, when stopping condition 2000 with response

DEVopt

Analysis of Variance for dev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 2.77 2.77 1.39 1.48 0.241
problem 19 9414.81 9414.81 495.52 528.03 0.000
initype*problem 38 35.66 35.66 0.94 1.03 0.416
Error 1740 1581.34 1581.34 0.91
Total 1799 11034.58

141

0.1 0.2 0.3 0.4

-0.005

0.000

0.005

Fitted Value

R
es

id
ua

l

Residuals Versus the Fitted Values
(response is logCPU)

-0.005 0.000 0.005

-4

-3

-2

-1

0

1

2

3

4

N
or

m
al

 S
co

re

Residual

Normal Probability Plot of the Residuals
(response is logCPU)

Figure G.2 Normality and residual plots for strategy-2, when stopping condition is

2000 with response log(CPU)

Table G.2 ANOVA table for strategy-2, when stopping condition 2000 with response

log(CPU)

Analysis of Variance for logCPU, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.00000 0.00000 0.00000 0.16 0.852
problem 19 17.74282 17.74282 0.93383 2.4E+05 0.000
initype*problem 38 0.00015 0.00015 0.00000 1.00 0.466
Error 1740 0.00685 0.00685 0.00000
Total 1799 17.74982

Figure G.3 Normality and residual plots for strategy-2, when stopping condition is

Fixedbest with response DEVopt

142

Table G.3 ANOVA table for strategy-2, when stopping condition Fixedbest with

response DEVopt

Analysis of Variance for dev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 2.688 2.688 1.344 3.88 0.029
problem 19 4216.431 4216.431 221.917 640.06 0.000
initype*problem 38 13.175 13.175 0.347 0.62 0.969
Error 1740 979.526 979.526 0.563
Total 1799 5211.820

Figure G.4 Normality and residual plots for strategy-2, when stopping condition is

Fixedbest with response log(CPU)

Table G.4 ANOVA table for strategy-2, when stopping condition Fixedbest with

response log(CPU)

Analysis of Variance for logCPU, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.0160 0.0160 0.0080 1.82 0.176
problem 19 173.5177 173.5177 9.1325 2073.89 0.000
initype*problem 38 0.1673 0.1673 0.0044 0.71 0.910
Error 1740 10.8451 10.8451 0.0062
Total 1799 184.5462

143

Table G.5 ANOVA tables for strategy-3

Stopping Condition 2000
Analysis of Variance for dev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 1.25 1.25 0.63 0.68 0.514
problem 19 6253.58 6253.58 329.14 356.36 0.000
initype*problem 38 35.10 35.10 0.92 1.06 0.370
Error 1740 1514.76 1514.76 0.87
Total 1799 7804.69

Stopping Condition 2000
Analysis of Variance for logCPU, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.3963 0.3963 0.1981 96.89 0.000
problem 19 88.9540 88.9540 4.6818 2289.59 0.000
initype*problem 38 0.0777 0.0777 0.0020 43.22 0.000
Error 1740 0.0823 0.0823 0.0000
Total 1799 89.5103

Stopping Condition Fixedbest
Analysis of Variance for logdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.0001 0.0001 0.0001 0.00 0.997
problem 19 104.5358 104.5358 5.5019 288.83 0.000
initype*problem 38 0.7239 0.7239 0.0190 1.48 0.031
Error 1740 22.4291 22.4291 0.0129
Total 1799 127.6888

Stopping Condition Fixedbest
Analysis of Variance for logCPU, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 5.2165 5.2165 2.6083 75.35 0.000
problem 19 246.8849 246.8849 12.9939 375.40 0.000
initype*problem 38 1.3153 1.3153 0.0346 7.79 0.000
Error 1740 7.7325 7.7325 0.0044
Total 1799 261.1492

144

Table G.6 ANOVA tables for strategy-4

Stopping Condition 2000
Analysis of Variance for dev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.50 0.50 0.25 0.12 0.887
problem 19 26520.46 26520.46 1395.81 676.13 0.000
initype*problem 38 78.45 78.45 2.06 0.97 0.530
Error 1740 3718.57 3718.57 2.14
Total 1799 30317.97
Stopping Condition 2000
Analysis of Variance for logCPU, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.00005 0.00005 0.00003 9.08 0.001
problem 19 28.30425 28.30425 1.48970 5.1E+05 0.000
initype*problem 38 0.00011 0.00011 0.00000 0.80 0.803
Error 1740 0.00639 0.00639 0.00000
Total 1799 28.31081
Stopping Condition Fixedbest
Analysis of Variance for logdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.0465 0.0465 0.0232 1.37 0.266
problem 19 152.6431 152.6431 8.0338 474.53 0.000
initype*problem 38 0.6433 0.6433 0.0169 1.07 0.351
Error 1740 27.4444 27.4444 0.0158
Total 1799 180.7774

Stopping Condition Fixedbest
Analysis of Variance for logCPU, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
initype 2 0.0068 0.0068 0.0034 1.06 0.356
problem 19 142.8089 142.8089 7.5163 2350.12 0.000
initype*problem 38 0.1215 0.1215 0.0032 0.91 0.625
Error 1740 6.1046 6.1046 0.0035

Total 1799 149.0419

145

APPENDIX H

STATISTICAL ANALYSES REGARDING THE EFFECT OF STOPPING

CONDITION FOR TSPB

In this appendix, ANOVA tables and related plots for determining the effect

of stopping condition on solution quality and computation time are provided for each

strategy when data from the stated initial population types is considered.

Figure H.1 Normality and residual plots for strategy-2, with response log(DEVb)

Table H.1 ANOVA table for strategy-2 (5000-8000), when initial population type

used is inifeas, with response log(DEVb)

Analysis of Variance for logdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
gen 1 0.1407 0.1407 0.1407 23.34 0.000
problem 19 241.2442 241.2442 12.6971 2107.17 0.000
gen*problem 19 0.1145 0.1145 0.0060 0.55 0.938
Error 3560 38.7211 38.7211 0.0109
Total 3599 280.2204

146

Table H.2 ANOVA table for strategy-3 (5000-8000), when initial population type

used is inifeas, with response log(DEVb)

Analysis of Variance for logdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
gen 1 0.0148 0.0148 0.0148 23.70 0.000
problem 19 215.8703 215.8703 11.3616 1.8E+04 0.000
gen*problem 19 0.0119 0.0119 0.0006 0.05 1.000
Error 3560 46.4143 46.4143 0.0130
Total 3599 262.3112

Table H.3 ANOVA table for strategy-4 (5000-8000), when initial population type

used is inifeas, with response log(DEVb)

Analysis of Variance for logdev, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
gen 1 0.0342 0.0342 0.0342 24.27 0.000
problem 19 311.9561 311.9561 16.4187 1.2E+04 0.000
gen*problem 19 0.0268 0.0268 0.0014 0.09 1.000
Error 3560 54.0542 54.0542 0.0152
Total 3599 366.0713

147

APPENDIX I

STATISTICAL ANALYSES FOR COMPARING STRATEGIES FOR TSPB

In this appendix, the resulting tables of the stattistical tests comducted for

comparing the five strategy are given. The results of the Levene’s homogeneity test

and Tamhane’s multiple comparison test are provided.

Table I.1 Levene’s test results

Stopping
Condition

Initial
Population Response F df1 df2 Sig.

2000 all DEVopt 57.150 59 5340 .000
2000 all Log(CPU) 152.275 59 5340 .000
2000 inifeas DEVopt 23.907 59 1740 .000
2000 inifeas Log(CPU) 27.486 59 1740 .000
5000 all DEVopt 50.272 59 5340 .000
5000 all Log(CPU) 155.339 59 5340 .000
5000 inifeas DEVopt 22.010 59 1740 .000
5000 inifeas Log(CPU) 34.449 59 1740 .000
8000 all DEVopt 51.656 59 5340 .000
8000 all Log(CPU) 122.764 59 5340 .000
8000 inifeas DEVopt 20.743 59 1740 .000
8000 inifeas Log(CPU) 37.413 59 1740 .000

Fixedbest all DEVopt 50.909 59 5340 .000
Fixedbest all Log(CPU) 43.114 59 5340 .000
Fixedbest inifeas DEVopt 18.533 59 1740 .000
Fixedbest inifeas Log(CPU) 15.066 59 1740 .000

148

Table I.2 Tamhane’s test results for stopping condition 2000, when all initial

population types are considered, with responses DEVopt and log(CPU)

DEVb log(CPU)
(I) (J) Mean (I-J) Std. Error Sig. (I) (J) Mean (I-J) Std. Error Sig.

3 0.568 0.076 0.000 3 0.066 0.010 0.000 2
4 -2.397 0.113 0.000

2
4 -0.201 0.011 0.000

2 -0.568 0.076 0.000 2 -0.066 0.010 0.000 3
4 -2.965 0.109 0.000

3
4 -0.267 0.010 0.000

2 2.397 0.113 0.000 2 0.201 0.011 0.000 4
3 2.965 0.109 0.000

4
3 0.267 0.010 0.000

Table I.3 Tamhane’s test results for stopping condition 5000, when all initial

population types are considered, with responses DEVopt and log(CPU)

DEVb log(CPU)
(I) (J) Mean (I-J) Std. Error Sig. (I) (J) Mean (I-J) Std. Error Sig.

3 0.409 0.062 0.000 3 -0.438 0.008 0.000 2
4 -2.300 0.095 0.000

2
4 -0.099 0.006 0.000

2 -0.409 0.062 0.000 2 0.438 0.008 0.000 3
4 -2.709 0.092 0.000

3
4 0.339 0.008 0.000

2 2.300 0.095 0.000 2 0.099 0.006 0.000 4
3 2.709 0.092 0.000

4
3 -0.339 0.008 0.000

Table I.4 Tamhane’s test results for stopping condition 8000, when all initial

population types are considered, with responses DEVopt and log(CPU)

DEVb log(CPU)
(I) (J) Mean (I-J) Std. Error Sig. (I) (J) Mean (I-J) Std. Error Sig.

3 0.325 0.060 0.000 3 -0.492 0.009 0.000 2
4 -2.319 0.092 0.000

2
4 -0.116 0.007 0.000

2 -0.325 0.060 0.000 2 0.492 0.009 0.000 3
4 -2.644 0.090 0.000

3
4 0.376 0.009 0.000

2 2.319 0.092 0.000 2 0.116 0.007 0.000 4
3 2.644 0.090 0.000

4
3 -0.376 0.009 0.000

149

Table I.5 Tamhane’s test results for stopping condition Fixedbest, when all initial

population types are considered, with responses DEVopt and log(CPU)

DEVb log(CPU)
(I) (J) Mean (I-J) Std. Error Sig. (I) (J) Mean (I-J) Std. Error Sig.

3 0.183 0.056 0.003 3 -0.447 0.012 0.000 2
4 -2.368 0.088 0.000

2
4 -0.106 0.010 0.000

2 -0.183 0.056 0.003 2 0.447 0.012 0.000 3
4 -2.551 0.088 0.000

3
4 0.341 0.011 0.000

2 2.368 0.088 0.000 2 0.106 0.010 0.000 4
3 2.551 0.088 0.000

4
3 -0.341 0.011 0.000

