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ABSTRACT 
 
 
 

EXPERIMENTAL DESIGN WITH SHORT-TAILED AND LONG-TAILED 
SYMMETRIC ERROR DISTRIBUTIONS  

 
 
 

Yılmaz, Yıldız Elif 

                                              M.S., Department of Statistics 

Supervisor      : Assoc. Prof. Dr. Ay�en (Dener) Akkaya 

Co-Supervisor: Prof. Dr. Moti Lal Tiku 

 

July 2004, 109 pages 
 
 
 
One-way and two-way classification models in experimental design for both balanced 

and unbalanced cases are considered when the errors have Generalized Secant 

Hyperbolic distribution. Efficient and robust estimators for main and interaction effects 

are obtained by using the modified maximum likelihood estimation (MML) technique. 

The test statistics analogous to the normal-theory F statistics are defined to test main and 

interaction effects and a test  statistic for testing linear contrasts is defined. It is shown 

that test statistics based on MML estimators are efficient and robust. The methodogy 

obtained is also generalized to situations where the error distributions from block to 

block are non-identical. 

 

Keywords:   Experimental  design,    Non-normality,    Generalized  Secant  Hyperbolic, 

          Modified Maximum Likelihood,  Robustness. 
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ÖZ 
 
 
 

KISA VE UZUN KUYRUKLU S�METR�K DA�ILIMA SAH�P HATA TER�M� �LE 
DENEYSEL TASARIM 

 
 
 

Yılmaz, Yıldız Elif 

                 Yüksek Lisans, �statistik 

Tez Yöneticisi          : Doç. Dr. Ay�en (Dener) Akkaya 

Ortak Tez Yöneticisi: Prof. Dr. Moti Lal Tiku 

 

                  Temmuz 2004, 109 sayfa 

 

 

Tek ve çift yönlü bölümlendirilmi� deneysel tasarım modellerinde dengeli ve dengesiz 

durumlar için hata terimlerinin Genelle�tirilmi� Sekant Hiperbolik da�ılımına sahip 

olması durumu dü�ünülmü�tür. Uyarlanmı� en çok olabilirlik metodu ile ana etkiler ve 

etkile�imler için etkin ve sa�lam tahmin ediciler elde edilmi�tir. Ana etkiler veya 

etkile�imler arasında fark olup olmadı�ını test eden, normal teorideki F istatistiklerine 

benzer test istatistikleri ve i�lemlerin do�rusal ba�ıntılarını test eden istatistikler 

tanımlanmı�tır. Uyarlanmı� en çok olabilirlik metodu ile bulunan tahmin edicilere 

dayanan test istatistiklerinin etkin ve sa�lam oldukları gösterilmi�tir. Elde edilen 

yöntembilim hata terimlerinin özde� olmadı�ı duruma genelle�tirilmi�tir.  

 

Anahtar Kelimeler: Deneysel  tasarım,  Normal  olmayan  da�ılımlar,   Genelle�tirilmis  

           Sekant Hiperbolik, Uyarlanmı� en çok olabilirlik, Güçlülük. 
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CHAPTER 1 

 

INTRODUCTION 
 

 

In experimental design, most of the statistical procedures are based on the assumption of 

normality. In practice, however, non-normal distributions occur so frequently. It is, 

therefore, very important to develop statistical procedures which are appropriate and 

efficient for non-normal distributions. A number of studies have been carried out to 

investigate the effect of non-normality on the test statistics used in the analysis of 

variance. The effect of non-normality on Type I error was studied by Pearson (1931), 

Geary (1947), Gayen (1950), Box and Andersen (1955), Hack (1958), Box and Watson 

(1962), Tiku (1964) and the effect of non-normality on Type II error was studied by 

David and Johnson (1951), Srivastava (1959), Donaldson (1968) and Tiku (1971). The 

effect of moderate non-normality on the level of significance is known to be not very 

serious but the power is considerably lower. �eno�lu and Tiku (2001, 2002) studied the 

one-way and two-way classification experimental design models with skewed 

(Generalized Logistic and Weibull) error distributions. Their work does not include 

symmetric error distributions except the logistic one. To complete this study we consider 

the model with error terms having a distribution from Generalized Secant Hyperbolic 

(GSH) family. This family consists of symmetric distributions, with kurtosis ranging 

from 1.8 to infinity i.e., both short- and long-tailed, and includes the logistic as a special 

case, the uniform as a limiting case, and closely approximates  normal and Student t with 

corresponding kurtosis (Vaughan, 2002). Hence it can be considered as a more general 

and flexible one within the symmetric distributions families. 

 

The aim of this thesis is to estimate the parameters of the one-way classification and 

two-way classification with interaction balanced and unbalanced experimental design 
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models when the error components are independently and identically distributed and 

have a distribution in the GSH family, examine the statistical properties of the estimators 

and develop procedures for testing the main and interaction effects and linear contrasts 

which are of enormous interest from a theoretical as well as a practical point of view. 

Furthermore, the distributions of these test statistics are developed and the robustness of 

these statistics is discussed. Finally, the assumption is generalized such that the error 

distributions from block to block are not necessarily identical. 

 

The outline of this thesis is as follows: Chapter 1 briefly presents the Fisher solution of 

the problem of estimating and testing the main and interaction effects under the 

assumption of normality, what has been done in the literature under the assumption of 

non-normality, a brief theoretical background of the technique employed and the 

properties of the Generalized Secant Hyperbolic family. In Chapter 2, the estimators of 

the parameters in one-way classification model, the distribution of F statistic, and the 

test statistic for testing linear contrasts are found. Two-way classification model with 

interaction is given in Chapter 3. In Chapter 4, the methodology used in Chapter 2 is 

generalized to situations where the error distributions from block to block are not 

identical. Finally, real life applications and conclusions are presented in Chapter 5.  

 

1.1 Historical Perspective 

 

1.1.1 Model Description and Test Procedures Under Normality 

 

i) One-way Classification Model 

Consider the one-way classification fixed-effects model 

 

ijiij ey +τ+µ=  n)j1 ,ki1( ≤≤≤≤ ,                                 (1.1.1.1) 
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having k blocks with n observations in each block; yij is the jth observation in the ith 

block, � is the parameter common to all blocks called the overall mean, 	i is the 

parameter unique to the ith block called the ith block effect, and eij is the random error 

component. In the fixed effects model, the block effects 	i are usually defined as 

deviations from the overall mean, so that 

 

0
k

1i
i =τ�

=

.                     (1.1.1.2) 

 

Assume that eij’s are normally and independently distributed with mean zero and 

variance �2. Then, the observations yij’s are also normally and independently distributed 

with mean iτ+µ  and variance �2.  

 

The classical maximum likelihood estimators are 

 

..y~ =µ ,             (1.1.1.3)  

 

...ii yy~ −=τ                                        (1.1.1.4)  

and 

kN

)yy(
~

k

1i

n

1j

2
.iij

2

−

−
=σ
��

= =                       (1.1.1.5) 

 

where �
=

=
n

1j
ij.i y

n
1

y , ��
= =

=
k

1i

n

1j
ij.. y

N
1

y ,  N = kn. 

 

In testing equality of the k block means 

 

k210 ...:H µ==µ=µ   
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ji1 :H µ≠µ  for at least one pair (i,j) ( ii τ+µ=µ , ki1 ≤≤ ),        (1.1.1.6) 

 

if  H0 is true, all blocks have a common mean �. An equivalent way to state the above 

hypotheses is in terms of the block effects 	i 

 

                      0...:H k210 =τ==τ=τ  

                                0:H i1 ≠τ  for at least one i ( ki1 ≤≤ )          (1.1.1.7) 

 

The appropriate procedure for testing the equality of k block means is the analysis of 

variance. The name analysis of variance is derived from the partitioning of total 

variability into its component parts. The total sum of squares 

 

��
= =

−=
k

1i

n

1j

2
..ij )yy(S              (1.1.1.8) 

 

is a measure of overall variability in the data and it can be decomposed as 

 

  

21

k

1i

k

1i

n

1j

2
.iij

2
...i

2
k

1i

n

1j
..ij

S                     S                      S                

)yy()yy(n)yy(

+=

−+−=− � ����
= = == =

                   (1.1.1.9)       

                                      

Under the null hypothesis given in (1.1.1.7), S/�2 is distributed as chi-square with N-1 

degrees of freedom, S1/�2 is distributed as chi-square with k-1 degrees of freedom, S2/�2 

is distributed as chi-square with N-k degrees of freedom irrespective of whether H0 is 

true or not. Since the degrees of freedom for S1 and S2 add to  N-1, the total number of 

degrees of freedom, Cochran’s theorem implies that S1/�2 and S2/�2 are independently 

distributed chi-square random variables. Therefore, if the null hypothesis is true, the 

Neyman-Pearson likelihood ratio statistic, also called the Fisher statistic, is  
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)kN/(S

)1k/(S
F

2

1

−
−

= ,          (1.1.1.10) 

 

and distributed as central F with k-1 and N-k degrees of freedom.  

 

The null hypothesis H0 is rejected if the value of F is found to be greater than the 

tabulated value F
 for a preassigned level of significance 
. Thus, Type I error of the test 

is  

    α=−−≥ α )H)kN,1k(FF(P 0 .        (1.1.1.11) 

 

Under the alternative hypothesis, S1/ �2 is distributed as noncentral chi-square with k-1 

degrees of freedom and noncentrality parameter 2
Fλ , �

=
�
�

�
�
�

�

σ
τ

=λ
k

1i

2
i2

F n , and  S2/�2 is 

distributed as central chi-square with N-k degrees of freedom. Thus, if the alternative 

hypothesis is true, the Fisher statistic is distributed as noncentral F with k-1 and N-k 

degrees of freedom and noncentrality parameter 2
Fλ . The power of the test is given by 

 

β−=−−≥ α 1)H)kN,1k(FF(P 1 .        (1.1.1.12) 

 

ii) Two-way Classification Model 

Consider the two-way classification fixed-effects model 

 

  ijlijjiijl ey +γ+δ+τ+µ=  )nl1 ,cj1 ,ki1( ≤≤≤≤≤≤        (1.1.1.13) 

 

where yijl is the lth observation in the ith block and jth column, � is the overall mean 

effect, 	i is the effect of the ith block, �j is the effect of the jth column, �ij is the effect of 

interaction between the ith block and the jth column, and eijl is a random error component. 

Since both the block effects and the column effects are assumed to be fixed, they are 
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defined as deviations from the overall mean. Therefore, �
=

=τ
k

1i
i 0  and �

=

=δ
c

1j
j 0 . 

Similarly, the interaction effects are fixed and are defined such that � �
= =

=γ=γ
k

1i

c

1j
ijij 0 . 

 

Assume that eijl’s are normally and independently distributed with mean zero and 

variance �2. Then, the observations yijl’s are also normally and independently distributed 

with mean ijji γ+δ+τ+µ  and variance �2.  

 

The maximum likelihood estimators of the parameters in model (1.1.1.13) are 

 

...y~ =µ ,           (1.1.1.14) 

 

µ−=τ ~y~
..ii ,                           (1.1.1.15) 

 

 µ−=δ ~y
~

.j.j ,           (1.1.1.16) 

 

  ji.ijij

~~~y~ δ−τ−µ−=γ           (1.1.1.17) 

and 

kcN

)~~~~y(
~

k

1i

c

1j

n

1l

2
ijjiijl

2

−

γ−δ−τ−µ−
=σ
���

= = =                    (1.1.1.18) 

 

where ���
= = =

=
k

1i

c

1j

n

1l
ijl.. y

N
1

y , ��
= =

=
c

1j

n

1l
ijl..i y

cn
1

y , ��
= =

=
k

1i

n

1l
ijl.j. y

kn
1

y  and �
=

=
n

1l
ijl.ij y

n
1

y . 

 

In testing equality of the main and interaction effects 

 

0...:H k2101 =τ==τ=τ , 
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  0...:H c2102 =δ==δ=δ  

and 

  0:H ij03 =γ  for all i = 1, 2,...,k and j = 1, 2,...,c,        (1.1.1.19) 

 

the appropriate procedure is the analysis of variance. 

 

The F statistics based on the LS estimators of the parameters in (1.1.1.14) - (1.1.1.18) for 

testing H01, H02 and H03, respectively, are given by 

 

    2

k

1i

2
i

1 ~)1k(

~cn
F

σ−

τ
=

�
=  ,                     (1.1.1.20) 

 

    2

c

1j

2
i

2 ~)1c(

~
kn

F
σ−

δ
=

�
=            (1.1.1.21) 

and 

    2

k

1i

c

1j

2
ij

3 ~)1c)(1k(

~n
F

σ−−

γ
=

��
= = .          (1.1.1.22) 

 

Under the null hypotheses, the distributions of F1, F2, F3 are central F with degrees of 

freedom (k-1, N-kc), (c-1, N-kc) and ((k-1)(c-1), N-kc), respectively. Under the 

alternative hypotheses, the distributions of F1, F2, F3 are noncentral F with the same 

degrees of freedom and noncentrality parameters  

 

2

k

1i

2
i

2
1

cn

σ

τ
=λ

�
= , 2

c

1j

2
j

2
2

kn

σ

δ
=λ

�
=  and 2

k

1i

c

1j

2
ij

2
3

n

σ

γ
=λ
��

= = ,                    (1.1.1.23) 

 respectively. 
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1.1.2 Robustness   

 

A test is desirable while it is powerful, i.e., sensitive to changes in the specified factors 

under test, it is also robust, i.e., insensitive to changes in extraneous factors. Specifically, 

a test is called robust when its significance level is fairly insensitive to departures from 

the distributional assumption but it maintains high power (Ito, 1980). A statistical 

hypothesis in the classical analysis of variance is usually tested on the assumption that 

the observations are (i) independently and (ii) normally distributed (iii) with a common 

variance. In this study, the observations are assumed to be independently and non-

normally distributed and the usual test criteria F is denoted by W when it is used for 

non-normal distributions. 

 

1.1.3 Non-normality 

 

Analysis of variance procedures have traditionally been based on the assumption of 

normality. In practice, however, non-normal distributions occur so frequently. 

Therefore, a number of studies have been made to investigate the effect of non-

normality on the test statistics used in the analysis of variance.  

 

1.1.4 Type I Error of the F-test Under Non-normality 

 

The effect of non-normality on the frequency distributions of the variance ratios used for 

testing the equality of a set of means in one-way classification analysis of variance was 

first studied by Pearson (1931) by way of sampling experiments. He showed that 

‘between’ and ‘within’ mean squares still continue to provide unbiased estimates of the 

population variance, but they are no longer independently distributed; in fact, their 

variances and covariances contain a term in 4 (standardized fourth cumulant). However, 

in view of the fact that the expressions for the first two moments of their ratio W are, up 

to certain approximations, independent of the population skewness and kurtosis, he 

inferred that the normal theory test will not be seriously invalidated, provided the total 
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number of samples is not too small. In fact, he established that the effect of moderate 

non-normality on the level of significance is not very serious, i.e., the difference 

between  
 and the level of significance of the W-test 
*, 

 

    )H)kN,1k(FW(P 0
* −−>=α α           (1.1.4.1) 

 

is not considerable. 

 

Considering the effect of kurtosis only, Geary (1947) gave an approximate formula for 

the probability correction for W, based on the large sample assumption.  

 

Gayen (1950) derived the mathematical form of the distribution of the test statistic W 

under the null hypothesis for populations characterized by the a priori values of the 

universal ’s and expressed by the first four terms of the Edgeworth series: 

 

)x(
72

)x(
!4

)x(
!3

)x()x(f ij
)6(

2
3

ij
)4(4

ij
)3(3

ijij φ
λ

+φ
λ

+φ
λ

−φ=    (i = 1, 2,…, k; j = 1, 2,…, ni) 

                                                                                                                                (1.1.4.2) 

where 
i

ij
ij

y
x

σ
µ−

= , )x( ijφ  is the density function of the standardized normal 

distribution N(0, 1), )x( ij
)r(φ  its rth derivative, and )�( 13 = , 3)�( 24 −=  are the 

measures of skewness and excess of the universe, respectively. Gayen (1950) derived 

the density function of W in the form: 

 

   )W(b)W(a)H|W(P)H|W(P 2
34000 λ+λ−=          (1.1.4.3) 

 

where )H|W(P 00  is the density function of the central F distribution with k-1 and N-k 

degrees of freedom when the null hypothesis is true, and a(W) and b(W) are corrective 

factors due to nonzero 4 and 3
2, respectively. He remarked that (1.1.4.3) gives the 
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density function of W for samples of any size drawn from the Edgeworth series (1.1.4.2) 

when the terms in cumulants other than 3, 4 and 3
2 are negligible and also that it 

approximates fairly closely to the actual distribution of W for samples drawn from any 

population with finite cumulants provided the samples are so large that terms in N-3 can 

be neglected. He evaluated the value of the level of significance of the W-test as 

follows: 

    BA 2
34

* λ+λ−α=α             (1.1.4.4) 

 

where A and B are certain functions of F
(k-1,N-k) �
=

=
k

1i
i )nN( , k-1, N-k, n1, n2,..., nk 

and k involving incomplete beta function ratios. 

 

Gayen (1950) restricted the population density function to the first four terms of an 

Edgeworth series and he did not consider the case when the error distribution from block 

to block is not identical. Tiku (1964) considered the situation when the distributions of 

xij’s are not necessarily identical from block to block, and assumed that the error terms 

eij have standard cumulants 

    r
ri

ri σ
κ=λ ,      r = 3, 4, ...           (1.1.4.5) 

 

while they are assumed to have the same variance �2. Using Laguerre orthogonal 

polynomials, he expanded the distributions of ‘between’ and ‘within’ sum of the squares 

and derived the distribution of W when the null hypothesis is true, and evaluated the 

value of the significance level of the W-test as follows: 

 

   HEDCBA 2
4

2
46

2
3

2
34

* Λ−λ−λ+Λ+λ+λ−α=α          (1.1.4.6) 

 

where �
=

λ=λ
k

i
rir k

1
,  �

=
λλ−λλ=ΛΛ

k

1i
srsirisr k

1
, and A, B, etc. are certain functions of 

F
(k-1,N-k), k-1, N-k, n1, n2,..., nk and k involving incomplete beta function ratios. If the 
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cumulants vary from block to block, r and �r�s represent their first and second 

moments. 

 

Tiku did not restrict the population to any special form and the terms in the sixth and the 

square of the fourth cumulant are included in addition to the terms in the fourth and the 

square of the third cumulant in Gayen’s formula (1.1.4.3). To compare his results with 

Gayen’s, Tiku provided the corrective terms other than A and B in (1.1.4.6), and 

remarked that larger effects due to nonnormality appear if the skewness is in different 

directions in different groups and that they are appreciable unless the degrees of freedom 

for error, N-k, are fairly large. 

 

1.1.5 Power Function of the F-test Under Non-normality 

 

There have been fewer attempts to investigate the effect of non-normality on the power 

of the F-test. The power function of the W-test under the general non-normal situation is 

 
*

1 1)H)kN,1k(FW(P β−=−−> α            (1.1.5.1) 

 

where �* is the actual Type II error probability. 

 

David and Johnson (1951) studied the distribution of  F when the expectations, the 

variances, and also the higher cumulants of the distributions of the error terms may vary 

from block to block. They obtained the product moments of ‘between’ and ‘within’ sum 

of squares under the most general assumptions of non-normality. However, they did not 

make direct use of the distribution of a non-central variance ratio as is done in the case 

of the normal theory power function.  

 

Srivastava (1959) studied the effect of non-normality on the power of the analysis of 

variance by investigating the non-central distribution of the variance ratio on the 

assumption that the distribution of the error term is represented by the first four terms of 
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the Edgeworth series. He considered the case of k groups of n observations each, and 

derived an expression for �* in terms of confluent hypergeometric functions as follows: 

 

   RQP)1(1 2
343

* λ+λ+λ+β−=β−            (1.1.5.2) 

 

where 1- � is the normal-theory power of the F-test, and P, Q and R are certain functions 

of  F
(k-1,N-k), k, n, N and three noncentrality parameters 

 

  2

k

i

2
i

2

n

σ

τ
=δ
�

= ,  3

k

i

3
i

3

n

σ

τ
=δ
�

=  and  4

k

i

4
i

4

n

σ

τ
=δ
�

= .                     (1.1.5.3) 

 

However, this formulae is useful only in determining the effects of non-normality which 

is not of very serious type because Barton and Dennis (1952) showed that only the 

values of  3 and 4 within certain limits ( 2.02
3 ≤λ , 4.20 4 ≤λ≤ ) can be permitted if the 

Edgeworth series is to represent a positive definite and unimodal frequency function. 

Therefore, the first four terms of an Edgeworth series only represent near-normal 

populations (Durand and Greenwood, 1957). Considering Barton and Dennis’s limits, 

the effect of skewness is not much on the power of the W-test and the presence of a fair 

degree of kurtosis leads to a noticeable change in the power curve particularly in the 

case of small samples. But a small departure from normality in respect of kurtosis again 

does not cause any significant deviation in the power. The effect of non-normality on the 

power diminishes with increasing sample size. As a result, the effect of non-normality 

on the power will not be of much consequence in the case of near-normal populations. 

 

Donaldson (1968) obtained values of the power for exponential and lognormal 

distributions through Monte Carlo simulations.  

 

Tiku (1971) generalized his earlier results to obtain the power function of the W-test 

under the general non-normal situation. Hence he obtained the power function of the F-
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test from Laguerre series expansion of ‘between’ and ‘within’ sum of squares under non-

normal situations. His result is as follows: 

 

 HEDC)BB(A)1(1 2
4635

2
341433

* λ+λ−δλ+λ−δ+λ+δλ−β−=β−          (1.1.5.4) 

 

where 1-� is the power of the normal-theory F-test, A, B, B1, C, D, E and H are 

corrective functions of F
(k-1,N-k), k, n, N, �2, �3 and �4 due to non-normality. Note that 

(1.1.5.4) includes corrections only due to the first few population standard cumulants. 

Srivastava’s equation (1.1.5.2) is similar to (1.1.5.4) but he did not work out the 

corrective terms due to 2
465  , , λλλ . For moderately non-normal populations it is expected 

that the contributions due to higher order standard cumulants will not be important 

especially for large N. This might not be true for extremely non-normal populations in 

which case these cumulants could be very large in magnitude and approximations like 

(1.1.5.4) which ignore these cumulants might not be very useful.   

 

�eno�lu (2000) showed that the power of the W-test above is considerably lower than 

the tests constructed by using the Modified Maximum Likelihood (MML) estimators of 

the parameters. He considered one-way classification and two-way classification 

models, the latter with interaction, under Weibull and Generalized Logistic error 

distributions. He derived the MML estimators of the parameters, the distributions of F 

statistics, and test statistics for testing linear contrasts. 

 

1.2 Theoretical Backround 

 

1.2.1 Generalized Secant Hyperbolic (GSH) Distribution 

 

The properties of a family of distributions generalizing the secant hyperbolic were 

developed by Vaughan (2002). This family consists of symmetric distributions, with 

kurtosis ranging from 1.8 to infinity, and includes the logistic as a special case, the 
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uniform as a limiting case, and closely approximates the normal and Student t 

distributions with corresponding kurtosis. A significant difference between this family 

and Student t is that for any member of the Generalized Secant Hyperbolic family, all 

moments are finite. Thus, technical difficulties associated with evaluating moments of 

Student t are not present with this family. Moreover, the Student t distribution represents 

only long-tailed symmetric distributions, i.e. its kurtosis 2
242 /µµ=β  is greater than 3. 

However, short-tailed symmetric distributions with 32 <β  do also occur in practice. For 

example, Vaughan (2002) showed that an important data set (ages of 100 randomly 

chosen patients in a coronary heart disease study) is modeled by a short-tailed symmetric 

distribution with kurtosis 22 =β . Kendall and Stuart (1968, p. 407) give a number of 

data sets in the context of time series and state that they come from symmetric short-

tailed distributions. To have a unified approach to symmetric non-normal distributions, 

we need a family of distributions which represents both short- and long-tailed 

distributions. GSH distribution is considered as such a family.  

 

1.2.2 Estimation of Parameters for Location-Scale GSH Distribution 

 

Consider the model (Vaughan, 2002) 

 

    ii ey +µ=    )ni1( ≤≤            (1.2.2.1) 

 

where ei are assumed to be iid and have one of the distributions in the family of 

Generalized Secant Hyperbolic )t( ∞<<π−  

 

GSH(0, �; t): 
1)/ecexp(a2)/ec2exp(

)/ecexp(c
)e(f

i2i2

i21
i +σ+σ

σ
σ

=   (-�<ei<�)              (1.2.2.2) 

 

where for :0t ≤<π−  
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)tcos(a = , 3)t(c 22
2 −π=  and 21 c

t
)tsin(

c =  

and for :0t >  

)tcosh(a = , 3)t(c 22
2 +π=  and 21 c

t
)tsinh(

c = . 

 

For t > π, t < π and t = π, GSH(0, σ; t) represents short-tailed, long-tailed and 

approximately normal distributions, respectively. 

 

The coefficient of kurtosis, 2
242 / µµ=β , for a few representative values of the shape 

parameter t is given below: 

 

t   = 3/2π−  2/π−  0 π  11π  ∞  

=β2  9.0 5.0 4.2 3.0 2.0 1.8 
 

i) Maximum Likelihood Estimation 

 

Given a random sample y1, y2,…, yn of size n from GSH distribution, the Fisher 

likelihood function is 

 

   
[ ]∏

�
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=

++

�
�

�
�
�

�

= n

1i
i2i2

n

1i
i2

n
1

1)zcexp(a2)zc2exp(

zcexp
cL           (1.2.2.3) 

 

where  
σ

µ−
= i

i
y

z   )ni1( ≤≤ . 

 

The likelihood equations for estimating � and � are 
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where  
1)zcexp(a2)zc2exp(

)zcexp(a)zc2exp(
)z(g

i2i2

i2i2
i ++

+
= . 

 

Equations (1.2.2.4) and (1.2.2.5) have no explicit solutions since the terms involve the 

nonlinear function g(zi). An iterative process can be used to solve these equations, but 

without extensive simulations, the properties of the resulting maximum likelihood 

estimates are difficult to determine, especially for small samples. An alternative 

estimation procedure called the modified maximum likelihood overcomes the difficulties 

mentioned above.  

 

ii) Modified Maximum Likelihood Estimation 

 

Tiku and Suresh (1992) introduced modified maximum likelihood estimation for 

location-scale models, with the following properties: 

 

1. The estimates are explicit functions of sample observations and are easier to 

compute than the maximum likelihood estimates. 

2. It is aymptotically equivalent to maximum likelihood when regularity conditions 

hold (Tiku et al., 1986; Vaughan and Tiku, 2000 and Bhattacharyya, 1985). 

3. The estimates are almost fully efficient in terms of the Minimum Variance 

Bounds (MVBs) even for small samples. 

4. The estimates have little or no bias. 
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5. The method is essentially self-censoring, since it assigns small weights to 

extremes. 

 

For these reasons, Vaughan (2002) used modified maximum likelihood estimation 

technique in his analysis. 

 

Tiku’s Modified Maximum Likelihood methodology proceeds in three steps as follows: 

1. Express the likelihood equations in terms of ordered variates 
σ

µ−
= )i(

)i(

y
z  

),ni1( ≤≤  

2. linearize the intractable terms in the likelihood equations by using the first two 

terms of the Taylor series expansion and 

3. solve the resulting equations to get the modified maximum likelihood estimators. 

 

Since complete sums are invariant to ordering, the likelihood equations can be written as 

follows: 

   �
=

=
σ

+
σ

−=
µ∂

∂ n

1i
)i(

22 0)z(g
c

2
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n
Lln

           (1.2.2.6) 
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n
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2z
c1

n
Lln

.         (1.2.2.7) 

 

Let )z(Et )i()i( = , t(i) )ni1( ≤≤  are the expected values of the standardized ordered 

variates. For large n, the values of t(i) can be found as follows: 
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For small n, the values of t(i) can be found by using the formula of E(y(i)) given by 

Vaughan (2002). 

 

Since z(i) is located in the vicinity of t(i), it is approximated by the Taylor series 

expansion 

    )t(g)tz()t(g)z(g )i()i()i()i()i( ′−+≅  

                )i()i()i( zβ+α=            (1.2.2.9) 

 

where 

  )i()i(
)i(2)i(2

)i(2)i(2
)i( t

1)tcexp(a2)tc2exp(

)tcexp(a)tc2exp(
β−

++
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  [ ]2
)i(2)i(2
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1)tcexp(a2)tc2exp(

)tcexp(ac)tc2exp(c2)tc3exp(ac

++
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Since )1in()i( tt +−−=  from symmetry, �
=

=α
n

1i
)i( 2

n
 and �

=

=β
n

1i
)i()i( 0t . 

 

The following modified likelihood equations are obtained by incorporating (1.2.2.9) in 

(1.2.2.6) and (1.2.2.7): 
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The simultaneous solutions of the equations (1.2.2.10) and (1.2.2.11) are the MML 

estimators: 
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The divisor n in the original expression for σ̂  is replaced by )1n(n −  to reduce the 

bias.  

 

It may be noted that (1.2.2.9) is an asymptotically strict equality. Moreover, in the limit 

when n tends to infinity 

 

0
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Consequently, the MML estimators µ̂  and σ̂  above are asymptotically equivalent to ML 

estimators and, thus, µ̂  and σ̂  are asymptotically unbiased and efficient, at least 

heuristically. Note, however, that µ̂  is unbiased for all n due to symmetry. 
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CHAPTER 2 

 

ONE-WAY CLASSIFICATION 

 

 

In this chapter parameters of the one-way classification model for balanced and 

unbalanced designs are estimated under the assumption of Generalized Secant 

Hyperbolic (GSH) ditributed error terms. Statistical properties of the estimators are 

studied, the test statistics for testing the block effects and linear contrasts are developed 

and the robustness of the test statistics are examined. 

 

2.1 Balanced Design 

Consider the one-way classification fixed-effects model 

 

  ijiij ey +τ+µ=  (i = 1, 2,…, k; j = 1, 2,…, n),             (2.1.1) 

 

having k blocks with n observations in each block. Without loss of generality assume 

that 

    0
k

1i
i =τ�

=

.                (2.1.2) 

 

In (2.1.1), suppose that the errors eij are iid and have one of the distributions in the 

family of GSH distribution given in (1.2.2.2).  
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2.1.1 Maximum Likelihood Estimation 

 

The Fisher likelihood function is 
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The likelihood equations for estimating �, 	i (1 � i � k) and � are 
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The Fisher information matrix is 
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The variance-covariance matrix is V =I-1 = (Vij ), where 
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Equations (2.1.1.2)-(2.1.1.4) do not admit explicit solutions because of the terms 

involving the nonlinear function g(z). Solving these equations by iteration is difficult 

and time consuming since there are k+1 equations to solve simultaneously. Even if these 

equations can be solved by iteration, without extensive simulations the properties of the 

resulting maximum likelihood estimates are difficult to determine, especially for small 

samples (Vaughan, 2002). To alleviate these difficulties, the method of modified 

maximum likelihood is used (Tiku, 1967, 1968; Tiku and Suresh, 1992). This method 
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gives explicit and highly efficient estimators (Smith et al., 1973; Tan, 1985; Vaughan, 

1992, 2002). 

 

2.1.2 Modified Maximum Likelihood Estimation 

 

Let 

   )n(i)2(i)1(i y...yy ≤≤≤         (1 � i � k)           (2.1.2.1) 

 

be the order statistics of the n observations yij (1 � j � n) in the ith block. Then 

 

   
σ

τ−µ−
= i)j(i

)j(i

y
z     (1 � i � k)           (2.1.2.2) 

 

are the ordered zij (1 � j � n) variates. Since complete sums are invariant to ordering, the 

likelihood equations are obtained by replacing zij by zi(j). Hence the likelihood equations 
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Since the function g(z) is almost linear in small intervals a < z < b (Tiku, 1967, 1968)            

and zi(j) is located in the vicinity of ti(j) = E(zi(j)) at any rate for large n, an appropriate 

linear approximation for g(zi(j)) (1 � i � k) is obtained by using the first two terms of a 

Taylor series expansion, namely 
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  )tz)(t(g)t(g)z(g )j(i)j(i)j(i)j(i)j(i −′+≅  

  )j(i)j(i)j(i zβ+α=  (1 � j � n)           (2.1.2.6) 

 

where )z(Et )j(i)j(i =  is the expected value of the jth order statistic zi(j) in the ith block, 

           )j(i)j(i)j(i)j(i t)t(g β−=α  and  )t(g )j(i)j(i ′=β . 

 

Here, 

  )j()j(k)j(2)j(1 tt...tt ====   

)j()j(k)j(2)j(1 ... α=α==α=α    

)j()j(k)j(2)j(1 ... β=β==β=β   for all j = 1,2,…,n           (2.1.2.7) 

and 

  )j(j
)j(2)j(2

)j(2)j(2
)j( t

1)tcexp(a2)tc2exp(

)tcexp(a)tc2exp(
β−

++
+

=α ,          (2.1.2.8) 

 

  [ ]2
)j(2)j(2

)j(22)j(22)j(22
)j(

1)tcexp(a2)tc2exp(

)tcexp(ac)tc2exp(c2)tc3exp(ac

++

++
=β .         (2.1.2.9) 

 

When �(j) < 0,  we set �(j) = 0 (Vaughan, 2002). Thus, σ̂  is always real and positive. 

Here 
2
nn
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Remark: It may be noted that the coefficients �(j) have inverted umbrella ordering, i.e., 

they decrease until the middle value and then increase in a symmetric fashion when the 

GSH(0, σ; t) represents short-tailed distributions. The coefficients �(j)  have umbrella 

ordering when the GSH(0, σ; t) represents long-tailed and approximately normal 

distributions. This gives MML estimators excellent robustness properties. 
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Although the formulation to find the exact values of expected values t(j), 1 � j � n, is 

available (Vaughan, 2002), it is not practical. Thus, we can safely use their approximate 

values for n � 10 such that 
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where qj = j/(n+1). 

 

The use of these approximate values in place of the exact values does not affect the 

efficiency of the MML estimators in any substantial way. 

 

Incorporating (2.1.2.6) into (2.1.2.3)-(2.1.2.5), the following modified likelihood 

equations are obtained 
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These equations are asymptotically equivalent to the corresponding likelihood equations 

(2.1.2.3)-(2.1.2.5) and their solutions yield the following MML estimators: 

 

..ˆˆ µ=µ ,           (2.1.2.14) 

 

µ−µ=τ ˆˆˆ .ii            (2.1.2.15) 

and 

)kN(N2
NC4BBˆ

2

−
++−=σ                                  (2.1.2.16) 

where 
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Note that σ̂  is the bias-corrected estimator of �.  The estimators are explicit functions of 

sample observations and, therefore easy to compute.  

 

Lemma 2.1: Asymptotically, the estimator .ii ˆˆ µ=µ  is the MVB estimator of iµ  

)( iτ+µ=  and is normally distributed with variance  

 

2

2

i mc2
)ˆ(V

σ≅µ .          (2.1.2.17) 
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Proof: Since i
* /Lln µ∂∂  is asymptotically equivalent to i/Lln µ∂∂  and assumes the 

form 

    )ˆ(
mc2Lln

ii2
2

i

*

µ−µ
σ

=
µ∂

∂
,         (2.1.2.18) 

 

(2.1.2.17) is obtained. By dividing both sides of (2.1.2.18) by n, we can apply central 

limit theorem and since 0
Lln

E r
i

*r

=�
	



�
�



µ∂
∂

 for all 3r ≥ , iµ̂  is asymptotically normally 

distributed. 

 

Corollary 2.1: Asymptotically, the estimator µ−µ=τ ˆˆˆ .ii  is the MVB estimator of iτ  

and is normally distributed with variance 

 

    
2

2

i mc2
)ˆ(V

σ≅τ .          (2.1.2.19) 

 

Proof: As in Lemma 2.1, since i
* /Lln τ∂∂  is asymptotically equivalent to i/Lln τ∂∂  

and assumes the form 
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,         (2.1.2.20) 

 

(2.1.2.19) is obtained and since 0
Lln

E r
i

*r

=�
	



�
�



τ∂
∂

 for all 3r ≥ , iτ̂  is asymptotically 

normally distributed. 

 

Corollary 2.2: Asymptotically, the estimator ..ˆˆ µ=µ  is the MVB estimator of � and is 

normally distributed with variance 
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2

2

kmc2
)ˆ(V

σ≅µ .          (2.1.2.21) 

 

Proof: As in Lemma 2.1, since µ∂∂ /Lln *  is asymptotically equivalent to µ∂∂ /Lln  

and assumes the form 
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(2.1.2.21) is obtained and since 0
Lln

E r
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µ∂
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 for all 3r ≥ , µ̂  is asymptotically 

normally distributed. 

 

Corollary 2.3: Since iµ̂  (1 � i � k) are independent of each other and �
=

µ=µ
k

1i
iˆ

k
1ˆ , 

 

    
2
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Remark: The estimators iτ̂  and σ̂  are uncorrelated and since 0
Lln

E
sr

i

*sr

=��
�

�
�
�
�

�

σ∂τ∂
∂ +

 for all 

1r ≥  and 1s ≥ , asymptotically, they are independent of each other. 

 

Lemma 2.2: Asymptotically, 2
i

2 )(ˆN
σ

µσ
is conditionally ( ii τ+µ=µ ) distributed as chi-

square with N degrees of freedom. 
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Proof: For large n, 0
nC

B ≅  where ��
= =

µ−β=
k

1i

2
i)j(i

n

1j
j2 )y(c2C . Therefore, it can be 

shown that 
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Asymptotically, 
N
C

 is the MVB estimator of 2σ . Evaluation of the cumulants of 
σ∂

∂ *Lln
 

in terms of the expected values of the derivatives of 
σ∂

∂ *Lln
 immediately leads to the 

result that 2
i

2 )(ˆN
σ

µσ
 is distributed as chi-square with N degrees of freedom (Bartlett, 

1953). 

 

Corollary 2.4: Asymptotically, 2

2ˆN
σ
σ

is distributed as chi-square with N-k degrees of 

freedom. 

 

2.1.3 Efficiency Properties 

 

The estimator iµ̂  is unbiased, in fact, it is asymptotically minimum variance bound 

(MVB) estimator of iµ , and is normally distributed. Therefore, iµ̂  is BAN estimator. 

The MVB for estimating iµ  is as follows: 

 

for 0t ≤<π−  

  
)tcostsint(nc

tsint2
)(MVB 2

2

22

i −
σ=µ ,            (2.1.3.1) 

for 0t ≥  
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)ttcosht(sinhnc
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)(MVB 2
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σ=µ .            (2.1.3.2) 

 

The estimator 2σ̂  is asymptotically the MVB estimator of 2σ  and is distributed as a 

multiple of chi-square; see Lemma 2.2. The MVB for estimating 2σ  is as follows: 
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Given in Table 2.1 are the simulated values (based on N=100,000/n Monte Carlo runs) 

of the variances of the MML and LS estimators of iµ  )ki1( ≤≤ , relative efficiency 

(RE) of the LS estimator .ii y~ =µ , the MVB of iµ  and the efficiency (E) of iµ̂ . 

 

It can be seen that iµ̂  is considerably more efficient than i
~µ  even for small sample sizes 

other than approximately normal distribution ( 0.32 =β ). Actually, for approximately 

normal distribution iµ̂  is as efficient as i
~µ . A disconcerting feature of i

~µ  is that its 

relative efficiency decreases as sample size n increases. Realize that both iµ̂  and i
~µ  are 

unbiased estimators of iµ . The parameter � is of much less importance than � in the 

model (2.1.1). It must be said, however, that the MML estimator σ̂  can sometimes have 

larger bias than σ~  for small sample sizes. Thus, deficiency of MML and LS estimators 

are calculated through simulations. 
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              Table 2.1  Variances of the LS and MML estimators of iµ  (1 � i � k); 

                               (1) 2
i /)~(V σµ  (2) 2

i /)ˆ(V σµ  (3) )~(RE iµ = [ ] 100*)~(V/)ˆ(V ii µµ  

                    (4) 2
i /)(MVB σµ  (5) )ˆ(E iµ = [ ] 100*)ˆ(V/)(MVB ii µµ  

 
k = 4       �2 =   2.0  3.0   4.2   5.0   9.0 
n = 6 (1) 0.165 0.165 0.165 0.164 0.166 
 (2) 0.131 0.170 0.158 0.146 0.103 
 (3) 79.82 102.56 95.62 88.88 61.96 
 (4) 0.088 0.162 0.152 0.135 0.076 
 (5) 66.93 76.20 96.30 92.65 74.29 
n = 10 (1) 0.099 0.100 0.100 0.101 0.980 
 (2) 0.070 0.101 0.094 0.086 0.055 
 (3) 70.60 100.44 94.46 85.66 56.59 
 (4) 0.053 0.097 0.091 0.081 0.046 
 (5) 75.54 96.68 96.77 93.69 82.63 
n = 15 (1) 0.066 0.067 0.066 0.065 0.064 
 (2) 0.043 0.068 0.061 0.055 0.033 
 (3) 64.65 100.44 92.54 83.67 52.23 
 (4) 0.035 0.065 0.061 0.054 0.031 
 (5) 82.31 96.09 98.97 98.70 91.34 
n = 20 (1) 0.049 0.050 0.050 0.050 0.049 
 (2) 0.030 0.049 0.046 0.041 0.025 
 (3) 61.14 99.13 92.31 82.43 50.96 
 (4) 0.026 0.049 0.046 0.041 0.023 
 (5) 87.29 98.97 98.85 98.93 91.76 

 

 

Given in Table 2.2 are the simulated values of the deficiencies (Def) of the least square 

estimators .ii y~ =µ  and )kN/()yy(~
k

1i

n

1j

2
.iij

2 −−=σ ��
= =

 and the MML estimators iµ̂  and 

2σ̂ . Note that since iµ̂  and 2σ̂  are uncorrelated with one another and so are the LS 

estimators i
~µ  and 2~σ  (this follows from symmetry), the joint deficiencies can be 

calculated as follows: 

 

   )~(MSE)~(MSE)~,~(Def ii σ+µ=σµ  

)ˆ(MSE)ˆ(MSE)ˆ,ˆ(Def ii σ+µ=σµ .           (2.1.3.5) 
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              Table 2.2  Deficiencies of the LS and MML estimators of �i (1 � i � k) and � 
       (1) Def( σµ ~,~

i )  (2) Def( σµ ˆ,ˆ i ) 
 

k = 4     �2 =  2.0  2.5   3.0   4.2   5.0   7.0   9.0 

n = 7 (1) 0.153 0.160 0.163 0.175 0.182 0.198 0.209 
  (2) 0.146 0.154 0.167 0.177 0.176 0.183 0.223 
n = 10 (1) 0.109 0.114 0.114 0.120 0.125 0.138 0.149 
  (2) 0.084 0.109 0.117 0.119 0.114 0.115 0.135 
n = 15 (1) 0.072 0.074 0.076 0.081 0.085 0.090 0.100 
  (2) 0.048 0.069 0.077 0.077 0.074 0.069 0.079 
n = 20 (1) 0.055 0.056 0.057 0.060 0.064 0.069 0.075 
  (2) 0.035 0.052 0.057 0.057 0.054 0.051 0.054 

 

 

Deficiency of MML estimators are considerably smaller than the defficiency of LS 

estimators even for sample size n = 7 other than approximately normal ( 0.32 =β ), near 

normal (logistic, 2.42 =β ) and very long-tailed ( 0.92 =β ) distributions. However, for n 

� 9 defficiency of MML estimators becomes smaller than that of LS estimators for near 

normal and long-tailed distributions.  

 

2.1.4 Testing Block Effects 

 

To test the equality of block effects, that is, to test the null hypothesis 

 

   0...:H k210 =τ==τ=τ  

 

against the alternative hypothesis 

 

   0:H i1 ≠τ  for at least one i =1,2,...,k, 

 

the following decomposition of sum of squares which is structurally the same as that 

based on the normal samples is obtained: 
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 Under  H0, the MML estimator of � is 
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Under H1, the MML estimator of � is 
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Since for large n, 0
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B ≅ , we have 
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Now, the total sum of squares can be written as 
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Hence, we have the decomposition of the total sum of squares such that 
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Asymptotically, 2
TS

σ
, 2

bS
σ

 and 2
eS

σ
 are distributed as chi-squares with N-1, k-1 and N-k 

degrees of freedom. Since the degrees of freedom for Sb and Se add to N-1, the total 

number of degrees of freedom, Cochran’s theorem implies that 2
bS

σ
 and  2

eS
σ

 are 

independently distributed chi-square random variables. Therefore, if the null hypothesis 

of no difference in block means is true, the ratio 
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is distributed as central F with (k-1, N-k) degrees of freedom for large n. The 

distribution of W under H1 is noncentral F with (k-1, N-k) degrees of freedom and 

noncentrality parameter 
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for large n. Large values of W lead to the rejection of H0 in favour of H1. 

 

Since 2
F

2
W λ>λ , the W-test above is more powerful than F-test. This is expected since 

more efficient estimators are used in W-test. The simulated values of the power of the W 

and F-tests are given in Table 2.3 for various values of d. For d = 0, the power reduces to 

the type I error. The presumed value of the type I error is 0.05.  

 

The W-test is clearly more powerful than the traditional F-test (even for approximately 

normal distribution) and it has considerably higher power when the GSH family 

represents short- and long-tailed distributions.  

 

 

Table 2.3 Values of the power of F and W-tests, στ= 1d , σ−=τ d2 , 043 =τ=τ , 
     k = 4, n = 10   

 
 �2                  d =  0.00          0.25        0.50       0.75         1.00 
2.0  F  0.051 0.131 0.397 0.764 0.963 
 W  0.062 0.168 0.545 0.917 0.995 
3.0  F  0.051 0.126 0.393 0.769 0.958 
 W  0.052 0.129 0.401 0.772 0.960 
4.2  F  0.050 0.129 0.411 0.773 0.954 
 W  0.050 0.132 0.423 0.794 0.962 
5.0  F  0.051 0.128 0.420 0.766 0.952 
 W  0.054 0.147 0.479 0.833 0.976 
9.0  F  0.046 0.133 0.446 0.781 0.944 
 W  0.052 0.210 0.668 0.948 0.996 

 

 

2.1.5 Testing Linear Contrasts 

 

The W-test gives an overall assessment whether block differences exist or not. If W 

statistic is not significantly large, that does not necessarily imply that no block 

differences exist. It is, therefore, always advisable to construct linear contrasts to assesss 

the block effects (Tiku and Akkaya, 2004). A contrast, L, is a comparison involving two 
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or more block means. It is defined as a linear combination of the block means �i where 

the coefficients li sum up to zero: 

 

    � �
= =

µ=τ=
k

1i

k

1i
iiii llL .              (2.1.5.1) 

 

Without loss of generality, assume that �
=

=
k

1i

2
i 1l  in which case L is called a standardized 

linear contrast. Two contrasts 
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1i
ii11 lL  and �

=

µ=
k

1i
ii22 lL            (2.1.5.2) 

 

are called orthogonal if �
=

=
k

1i
i2i1 0ll . A convenient way of constructing standardized 

orthogonal linear contrasts is through Helmert transformation: 

 

   2/)(L 211 µ−µ=  

 

   6/)2(L 3212 µ−µ+µ=  

   . 

   . 

   . 

)1k(k/))1k(...(L k1k11k −µ−−µ++µ= −− .         (2.1.5.3) 

 

Each of these is orthogonal to the mean vector 

 

    k/)...( k1 µ++µ=µ .            (2.1.5.4) 
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Now, the MML estimator of the linear contrast �
=

µ=
k

1i
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µ
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ii ˆl  with variance 
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for large n. Since iµ̂  are asymptotically normally distributed and σ̂  converges to � as n 

becomes large, then the distribution of the statistic 
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is asymptotically normal N(0,1) under the null hypothesis 
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Large values of T  lead to the rejection of H0. The asymptotic power function of the test 

is (with Type I error 
) 
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where Z is a standard normal variate and  
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is the noncentrality parameter. 

 

Now, suppose there are three blocks (k = 3) and consider the first two orthogonal 

contrasts in (2.1.5.3), 

  

2/)(L 211 µ−µ=   and  6/)2(L 3212 µ−µ+µ= . 

 

In testing   

 

H01: L1 = 0  and  H02: L2 = 0                                (2.1.5.10) 

 

the MML estimators of L1 and L2 are 

 

  2/)ˆˆ(L̂ 211 µ−µ=   and  6/)ˆ2ˆˆ(L̂ 3212 µ−µ+µ= .       (2.1.5.11) 

 

To test H01 and H02, the test statistics become 

 

  
σ

=
ˆ

L̂mc2
T 12

1   and  
σ

=
ˆ

L̂mc2
T 22

2 .         (2.1.5.12) 

 

Large values of 1T  and 2T  lead to the rejection of H01 and H02. The asymptotic power 

function of the tests are (with Type I error 
) 

 

   ( )1T2/11 zZP1 λ−≥≅β− α  

and 

   ( )2T2/22 zZP1 λ−≥≅β− α           (2.1.5.13) 

 

with the noncentrality parameters, 
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2
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Lmc2
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=λ .                (2.1.5.14) 

 

If the errors eij are iid normal N(0, �2), then the MLE of L1 and L2 are 
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σ== . Here, �2 is estimated by 2~σ  in (1.1.1.5). Now, the test 

statistics are 
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σ
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n
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The null distributions of the above statistics are Student t with 3(n-1) degrees of freedom 

and their distributions under the alternative hypothesis is noncentral t with 3(n-1) 

degrees of freedom and noncentrality parameter 

 

   2

2
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1t

nL
σ

=λ   and  2

2
22

2t

nL
σ

=λ .                                (2.1.5.17) 

 

Since 2
t

2
T λ>λ , the T-test above is more powerful than t-test. 

 

For  illustration, the  simulated  values  of  the  power  of  the  t and T-tests when l1 =  

1/ ,6  l2 = 1/ 6 , and l3 = 6/2− are given in Table 2.4. For 	 = 0, the power reduces to 

the Type I error. The presumed value of the type I error is 0.050. Without loss of 

generality, � was taken to be equal to 1.0.  
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             Table 2.4  Power values of t and T-tests; τ=τ=τ 31 , τ−=τ 22 ; k = 3, n = 10 
 

 �2           	 =   0.0         0.2          0.4          0.6 
2.0   t  0.057 0.277 0.758 0.981 
  T  0.058 0.360 0.896 0.997 
3.0   t  0.057 0.293 0.763 0.981 
  T  0.057 0.297 0.767 0.981 
4.2   t  0.058 0.290 0.768 0.974 
  T  0.056 0.298 0.789 0.981 
5.0   t  0.055 0.289 0.722 0.971 
  T  0.056 0.327 0.829 0.987 
9.0   t  0.054 0.322 0.782 0.961 
  T  0.058 0.469 0.940 0.997 

 

 

It can be seen that the T-test maintains higher power. 

 

2.1.6  Robustness of Estimators and Tests 

 

In experimental design it is very important to obtain estimators and hypothesis testing 

procedures which have certain optimal properties with respect to an assumed error 

distribution. In spite of our best efforts to identify the underlying distribution through 

graphical techniques (Q-Q plots, for example) or goodness-of-fit tests, in practice, the 

shape parameters might be misspecified or the data might contain outliers (inliers) or be 

contaminated. Thus deviations from an assumed distribution occur. That brings  the 

issue of robustness in focus. An estimator is called robust if it is fully efficient (or nearly 

so) for an assumed distribution but maintains high efficiency for plausible alternatives. 

Also, a test is said to have criterion robustness if its Type I error is not substantially 

higher than a pre-specified level and is said to have efficiency robustness if its power is 

high, at any rate for plausible alternatives to an assumed distribution (Tiku et al., 1986, 

Preface). 
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To show the robustness of both MML estimators and the test procedures (based on 

MMLE) we consider, for illustration, the following plausible alternatives (1)-(4) to the 

assumed distribution GSH in (1.2.2.2) with t = -� / 2: 

 

 (1) Misspecification of the distribution: GSH(�, �, -� / 4) 

 

 (2) Dixon’s outlier model: (n-1) observations come from GSH(�, �, -� / 2) but one   

                                            observation (we do not know which one) comes from  

                                            GSH(�, 4�, -� / 2) 

 

 (3) Mixture model: 0.90 GSH(�, �, -� / 2) + 0.10 GSH(�, 4�, -� / 2) 

 

 (4) Contamination model: 0.90 GSH(�, �, -� / 2) + 0.10 Uniform(-1/2, 1/2)  

 

Note  that  the  coefficients  j  j   and βα  in  (1)-(4)  are  always computed from (2.1.2.8) 

and (2.1.2.9) with t = -� / 2. 

 

The simulated variances of  i
~µ  and iµ̂ , the simulated means of σ~  and σ̂  are given in 

Table 2.5. Also given in this table are the values of the relative efficiency of the LS 

estimators of �i  and �.  

 

 

                Table 2.5  Means, variances and relative efficiencies; n = 10, � = 1 
 
                                     Variance                     Mean                        RE 

Model    i
~µ    iµ̂    σ~    σ̂    i

~µ     σ~  
   (1) 0.059 0.041 0.748 0.774 69.01 81.47 
   (2) 0.250 0.115 1.514 1.448 46.02 63.71 
   (3) 0.631 0.240 2.399 2.212 38.09 79.21 
   (4) 0.089 0.071 0.938 0.997 79.58 84.76 
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It  is obvious that the MML estimators σµ ˆ  and  ˆ i  are remarkably efficient and robust. 

        

To show the robustness property of  W-test, the simulated values of the type I error and 

the power of the W and F-tests are given in Table 2.6. It may be noted that the W-test 

has a double advantage: it has not only smaller type I error but has also higher power 

than the F-test.  

 

 

          Table 2.6 Values of the type I error and power for the W and F-tests; στ= 1d ,   
                           σ−=τ d2 , 043 =τ=τ ;  � = 1, k = 4, n = 10 
 
                                                         Alternative models                                                       
                  (1)                  (2)                              (3)        (4) 
 
 d F W d F W d F W d F W 
0.0 0.047 0.037 0.0 0.031 0.022 0.0 0.039 0.027 0.0 0.047 0.044 
0.1 0.06 0.06 0.2 0.06 0.05 0.2 0.06 0.05 0.1 0.06 0.06 
0.2 0.14 0.15 0.4 0.14 0.15 0.4 0.15 0.15 0.2 0.10 0.11 
0.3 0.27 0.32 0.6 0.29 0.33 0.6 0.32 0.37 0.3 0.18 0.20 
0.4 0.47 0.55 0.8 0.49 0.60 0.8 0.52 0.61 0.4 0.30 0.35 
0.5 0.65 0.75 1.0 0.67 0.81 1.0 0.68 0.80 0.5 0.45 0.53 
0.6 0.81 0.90 1.2 0.80 0.93 1.2 0.81 0.92 0.6 0.61 0.70 
0.7 0.90 0.96 1.4 0.89 0.98 1.4 0.88 0.97 0.7 0.75 0.83 
0.8 0.99 1.00 1.6 0.94 1.00 1.6 0.93 0.99 0.8 0.86 0.92 

 

 

The T-test based on the MMLE for testing linear contrasts has efficiency and robustness 

properties exactly similar to those in Table 2.6. The simulated values of the type I error 

and the power of the T and t-tests are given in Table 2.7. 
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          Table 2.7 Values of the type I error and power for the T and t-tests; τ=τ=τ 31 ,   
                           τ−=τ 22 ; � = 1, k = 3, n = 10 
 
                                                                         Alternative models                                                                                
                   (1)                    (2)                            (3)                          (4) 
  d    t   T  d    t    T  d    t   T  d    t    T 
0.00 0.060 0.046 0.0 0.054 0.038 0.0 0.055 0.039 0.0 0.048 0.046 
0.05 0.09 0.09 0.1 0.09 0.08 0.1 0.10 0.09 0.1 0.10 0.11 
0.10 0.20 0.22 0.2 0.22 0.24 0.2 0.24 0.26 0.2 0.28 0.32 
0.15 0.37 0.43 0.3 0.41 0.49 0.3 0.41 0.49 0.3 0.54 0.62 
0.20 0.56 0.66 0.4 0.59 0.72 0.4 0.61 0.73 0.4 0.79 0.87 
0.25 0.73 0.83 0.5 0.74 0.88 0.5 0.75 0.87 0.5 0.93 0.97 
0.30 0.85 0.93 0.6 0.84 0.96 0.6 0.84 0.95 0.6 0.98 0.99 

 

 

2.2 Unbalanced Design 

 

Consider now a more general form of the model 

 

  ijiij ey +τ+µ=  (i = 1,2,…,k; j = 1,2,…,ni),             (2.2.1) 

 

with unequal number of observations in the blocks. Without loss of generality, assume 

that 

    �
=

=τ
k

1i
ii 0m                 (2.2.2) 

 

where the constants mi (1 � i � k) will be defined later. 

 

The Fisher likelihood function is 
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n
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N

N
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i

1)zcexp(a2)zc2exp(
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L              (2.2.3) 
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where  �
=

=
k

1i
inN , 

σ
τ−µ−

= iij
ij

y
z   )nj1 ,ki1( i≤≤≤≤ . 

  

The likelihood equations can be written as follows: 
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The linear approximations for g(zi(j)) (1 � i � k, 1 � j � ni) are 

 

  )tz)(t(g)t(g)z(g )j(i)j(i)j(i)j(i)j(i −′+≅  

  )j(i)j(i)j(i zβ+α=  (1 � j � ni)              (2.2.7) 

 

where  )z(Et )j(i)j(i =  is the expected value of the jth order statistic zi(j) in the ith block, 

 )j(i)j(i)j(i)j(i t)t(g β+=α   and  )t(g )j(i)j(i ′=β . 

 

Hence, the coefficients )j(iα  and )j(iβ  are different for i = 1, 2,..., k. 

 

The modified likelihood equations for estimating �, 	i (1 � i � k) and � are 
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The solutions of  (2.2.8)-(2.2.10) are the MML estimators: 

 

..ˆˆ µ=µ ,              (2.2.11) 

 

µ−µ=τ ˆˆˆ .ii               (2.2.12) 

and 
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In testing the equality of block effects, the variance ratio statistic based on the estimators 

(2.2.11)-(2.2.13) is given as 
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The null distribution of W for large ni (1 � i � k) is central F with (k-1, N-k) degrees of 

freedom and the distribution of W under H1 is for large ni (1 � i � k) noncentral F with 

(k-1, N-k) degrees of freedom and noncentrality parameter 
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In testing a linear contrast, the T-test based on the estimators (2.2.11)-(2.2.13) is given 

as 
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The null distribution of T is asymptotically normal N(0, 1). Large values of T  lead to 

the rejection of H0. The asymptotic power function of the test is (with Type I error 
) 
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where Z is a standard normal variate and  
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is the noncentrality parameter. 

 

The MML estimators obtained for unbalanced designs and the test statistics W and T  

based on them  have efficiency and robustness properties similar to those reported in the 

previous sections. Therefore, the details are not given for conciseness.               
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CHAPTER 3 

 

TWO-WAY CLASSIFICATION WITH INTERACTION 
 

 

In this chapter parameters of two-way classification model with interaction for balanced 

and unbalanced designs are estimated under the assumption of Generalized Secant 

Hyperbolic (GSH) ditributed error terms. Statistical properties of the estimators are 

studied and the test statistics analogous to the normal-theory F statistics are defined to 

test block, column and interaction effects. 

 

3.1 Balanced Design 

Consider the two-way classification fixed-effects model 

 

  ijlijjiijl ey +γ+δ+τ+µ=  )nl1 ,cj1 ,ki1( ≤≤≤≤≤≤             (3.1.1) 

 

having k blocks, c columns with n obsevations in each cell. Without loss of generality 

assume that  

� � � �
= = = =

=γ=γ=δ=τ
k

1i

c

1j

k

1i

c

1j
ijijji 0 .                                         (3.1.2) 

 

3.1.1 Maximum Likelihood Estimation 

 

The Fisher likelihood function is 
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The likelihood equations for estimating �, 	i, �j, �ij (1 � i � k, 1 � j � c) and � are 
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3.1.2 Modified Maximum Likelihood Estimation 

 

Let 
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  )n(ij)2(ij)1(ij y...yy ≤≤≤  )cj1 ,ki1( ≤≤≤≤           (3.1.2.1) 

 

be the order statistics of the n observations yijl (1 � l � n) in the (i, j)th cell. Then 

 

  
σ

γ−δ−τ−µ−
= ijji)l(ij

)l(ij

y
z       )cj1 ,ki1( ≤≤≤≤          (3.1.2.2) 

 

are the ordered zijl (1 � l � n) variates. The following likelihood equations are obtained 

by replacing zijl by zij(l): 
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From the linear approximations )cj1 ,ki1( ≤≤≤≤  

 

  )tz)(t(g)t(g)z(g )l(ij)l(ij)l(ij)l(ij)l(ij −′+≅  

 )l(ij)l(ij)l(ij zβ+α=   (1 � l � n)                    (3.1.2.8) 
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where )z(Et )l(ij)l(ij =  is the expected value of the lth order statistic zij(l) in the ith block and 

jth  column, we can obtain 

 

  )l(ij)l(ij)l(ij)l(ij t)t(g β−=α  and  )t(g )l(ij)l(ij ′=β . 

 

Here, 

  )l()l(ij tt =   

)l()l(ij α=α    

)l()l(ij β=β   for all i = 1,2,..., k and j = 1, 2,…, c           (3.1.2.9) 
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Following the same steps explained in Chapter 2, the MML estimators are obtained as 

follows: 

 

...ˆˆ µ=µ ,           (3.1.2.12) 

 

µ−µ=τ ˆˆˆ ..ii ,           (3.1.2.13) 

 

µ−µ=δ ˆˆˆ
.j.j ,            (3.1.2.14) 

 

ji.ijij
ˆˆˆˆˆ δ−τ−µ−µ=γ           (3.1.2.15)  

and    
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Lemma 3.1: Asymptotically, the estimator µ̂  is the MVB estimator of µ  and is 

normally distributed with variance  

 

    
2
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Corollary 3.1: Asymptotically, the estimator iτ̂  is the MVB estimator of iτ  and is 

normally distributed with variance  
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Corollary 3.2: Asymptotically, the estimator jδ̂  is the MVB estimator of jδ  and is 

normally distributed with variance  
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Corollary 3.3: Asymptotically, the estimator ijγ̂  is the MVB estimator of ijγ  and is 

normally distributed with variance  
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Lemma 3.2: Asymptotically, 2

2ˆN
σ
σ

is distributed as chi-square with N-kc degrees of 

freedom. 

 

3.1.3 Efficiency Properties 

 

Since the estimators iτ̂ , jδ̂  and ijγ̂  are linear contrasts of .ijµ̂ , they are unbiased and 

uncorrelated (asymptotically independent) with 2σ̂ . In fact, they are asymptotically the 

MVB estimators and are normally distributed. In other words, they are the BAN 

estimators. The estimator 2σ̂  is also asymptotically the MVB estimator of 2σ  and is 

distributed as a multiple of chi-square; see Lemma 3.2. Since the estimators of 

ii τ+µ=µ  and σ  have efficiency properties similar to those given in Chapter 2, it 

suffices here to consider only the relative efficiencies of the LS estimators j

~δ  and ij
~γ . 

The simulated values of RE( j

~δ ) and RE( ij
~γ ) are given in Table 3.1.  
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Table 3.1 Values of  (1) RE( j
~δ ) (2) RE( ij

~γ ); k = 3, c = 3 
 

                       �2 =      2.0             3.0           4.0             5.0             9.0 
n = 4  (1) 87.19 101.29 97.46 92.05 70.40 
   (2) 88.09 101.34 97.62 91.98 69.51 
n = 5  (1) 82.36 101.53 96.20 90.07 66.66 
   (2) 82.35 101.48 96.35 90.32 65.61 
n = 6  (1) 79.48 101.62 95.66 88.92 63.33 
   (2) 78.71 102.14 95.46 88.50 63.37 
n = 10  (1) 68.85 101.33 93.44 85.68 55.58 
   (2) 69.53 101.22 93.56 84.79 54.83 

 

 

The MML estimators jδ̂  and ijγ̂  are considerably more efficient than LS estimators j

~δ  

and ij
~γ  even for small sample sizes other than approximately normal distribution 

( 0.32 =β ). Note that for approximately normal distribution jδ̂  and ijγ̂  are as efficient as 

j

~δ  and ij
~γ . For short-tailed ( 0.22 =β ) and very long-tailed ( 0.92 =β ) distributions, 

MML estimators are enourmously more efficient than LS estimators. The relative 

efficiencies of j

~δ  and ij
~γ  decreases as sample size n increases.  

 

3.1.4 Testing Block Effects 

 

It is of great practical interest to test the null hypotheses 

 

  0...:H k2101 =τ==τ=τ , 

 

  0...:H c2102 =δ==δ=δ  

and 

  0:H ij03 =γ  for all i = 1, 2,..., k and j = 1, 2,..., c.               (3.1.4.1) 

 

To test these null hypotheses, the corresponding W statistics are 
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respectively. For large n, their null distributions are central F with degrees of freedom 

(�1,�4), (�2,�4) and (�3,�4), respectively; 

 

  �1 = k-1, �2 = c-1,  �3 = (k-1)(c-1)  and  �4 = kc(n-1). 

 

Their non-null distributions are noncentral F with degrees of freedom (�1,�4), (�2,�4) and 

(�3,�4) and noncentrality parameters, 
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respectively, for large n. 

 

For small sample sizes, the simulated values of the probabilities 

  

             3) 2, 1,(i     }H) ,(FF{P    and     }H) ,(FW{P i04i05.0ii04i05.0i =νν≥νν≥  

 

are given in Table 3.2.  
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Table 3.2  The values of  Type I error for Fi and Wi – tests (i =1, 2, 3); k = 3, c = 3 
 

       �2 =   2.0   3.0   4.2   5.0   9.0 
n = 4 F1 0.050 0.050 0.049 0.048 0.043 
 W1 0.034 0.053 0.046 0.047 0.059 
 F2 0.052 0.049 0.049 0.048 0.043 
 W2 0.035 0.053 0.047 0.046 0.058 
 F3 0.051 0.048 0.049 0.048 0.041 
 W3 0.032 0.054 0.046 0.046 0.062 
n = 5 F1 0.050 0.048 0.051 0.047 0.045 
 W1 0.037 0.051 0.049 0.047 0.057 
 F2 0.052 0.048 0.047 0.046 0.048 
 W2 0.035 0.052 0.047 0.049 0.059 
 F3 0.048 0.051 0.049 0.048 0.040 
 W3 0.032 0.054 0.047 0.049 0.059 
n = 6 F1 0.050 0.049 0.048 0.049 0.047 
 W1 0.037 0.052 0.045 0.051 0.053 
 F2 0.051 0.050 0.046 0.045 0.044 
 W2 0.039 0.053 0.044 0.048 0.053 
 F3 0.054 0.049 0.047 0.046 0.044 
 W3 0.041 0.053 0.047 0.050 0.055 
n = 10 F1 0.050 0.050 0.049 0.048 0.045 
 W1 0.055 0.052 0.046 0.050 0.055 
 F2 0.052 0.046 0.047 0.047 0.047 
 W2 0.052 0.049 0.050 0.049 0.054 
 F3 0.051 0.050 0.049 0.049 0.043 
 W3 0.057 0.051 0.045 0.055 0.057 

 

 

Simulation errors being of the order ± 0.01  for n � 10 , the results in Table 3.2 agree 

with the theory. As in one-way classification model, the Wi-tests are more powerful than 

the traditional Fi-tests (i = 1, 2, 3). 

 

3.2 Unbalanced Design 

 

Consider the more general form of the model 

 

ijlijjiijl ey +γ+δ+τ+µ=        )nl1 ,cj1 ,ki1( ij≤≤≤≤≤≤                       (3.2.1) 
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with unequal number of observations in the cells. Without loss of generality, assume that 
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where the constants mij (1 � i � k, 1 � j � c) will be defined later. 

 

The Fisher likelihood function is 
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The likelihood equations can be written as follows: 
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The linear approximations for g(zij(l)) (1 � i � k, 1 � j � c) are 

 

   )tz)(t(g)t(g)z(g )l(ij)l(ij)l(ij)l(ij)l(ij −′+≅  

   )l(ij)l(ij)l(ij zβ+α=  (1 � l � nij)             (3.2.9) 

 

where  )z(Et )l(ij)l(ij =  is the expected value of the lth order statistic zij(l) in the (i, j)th cell, 

 )l(ij)l(ij)l(ij)l(ij t)t(g β+=α   and  )t(g )l(ij)l(ij ′=β . 

 

Hence, the coefficients )l(ijα  and )l(ijβ  are different for i = 1, 2,..., k and j = 1, 2,..., c. 

 

Replacing g(zij(l)) in equations (3.2.4) to (3.2.8) by its linear approximation (3.2.9), the 

following MML estimators are obtained: 

 

...ˆˆ µ=µ ,               (3.2.10) 

 

µ−µ=τ ˆˆˆ ..ii ,               (3.2.11) 

 

µ−µ=δ ˆˆˆ
.j.j ,               (3.2.12) 

 

ji.ijij
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In testing the null hypotheses in (3.1.4.1), the W statistics based on the estimators 

(3.2.10)-(3.2.14) are given as 
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respectively. For large n, their null distributions are central F with degrees of freedom 

(�1,�4), (�2,�4) and (�3,�4), respectively; 

 

  �1 = k-1, �2 = c-1,  �3 = (k-1)(c-1)  and  �4 = kc(n-1). 

 

Their non-null distributions are noncentral F with degrees of freedom (�1,�4), (�2,�4) and 

(�3,�4) and noncentrality parameters, 
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respectively, for large n. 

 

The MML estimators obtained for unbalanced designs and the test statistics iW  (i = 1, 2, 

3) based on them  have efficiency and robustness properties similar to those reported in 

the previous sections. Therefore, the details are not given for conciseness.               
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CHAPTER 4 

 

ONE-WAY CLASSIFICATION WITH NON-IDENTICAL ERROR 

DISTRIBUTIONS 

 
 
In this chapter, parameters of the one-way classification model are estimated under the 

assumption of non-identical error distributions. The test statistics for testing the block 

effects and linear contrasts are defined. 

 

4.1 GSH Distributions with Different Shape Parameters When the Variances Are  

      Equal  

 

Consider the one-way classification fixed-effects model in (2.1.1) and suppose the 

distribution of eij (1 � i � k, 1 � j � n) is the Generalized Secant Hyporbolic 
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Without loss of generality assume that 
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where the values of mi will be determined. Following exactly the same steps given in the 

previous chapters, the MML estimators are obtained as follows: 
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Lemma 4.1.1: Asymptotically, the estimator .ii ˆˆ µ=µ  is the MVB estimator of iµ  and is 

normally distributed with variance  

 

ii2

2

i mc2
)ˆ(V

σ≅µ .               (4.1.6) 

 

Corollary 4.1.1: Asymptotically, the estimator µ−µ=τ ˆˆˆ .ii  is the MVB estimator of iτ  

and is normally distributed with variance 
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Corollary 4.1.2: Asymptotically, the estimator ..ˆˆ µ=µ  is the MVB estimator of � and is 

normally distributed with variance 
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Lemma 4.1.2: Asymptotically, 2
i

2 )(ˆN
σ

µσ
 is conditionally ( ii τ+µ=µ ) distributed as 

chi-square with N degrees of freedom. 

 

Corollary 4.1.4: Asymptotically, 2

2ˆN
σ
σ

 is distributed as chi-square with N-k degrees of 

freedom. 

 

4.1.1 Testing Block Effects 

 

When testing the equality of block effects, the following decomposition of sum of 

squares is obtained: 

 

 Under  H0, the MML estimator of � is 
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Under H1, the MML estimator of � is 
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Now, the total sum of squares can be written as 
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Hence, we have the decomposition of the total sum of squares such that 
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Asymptotically, 2
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 are distributed as chi-squares with N-1, k-1 and N-k 

degrees of freedom. Since the degrees of freedom for Sb and Se add to N-1, the total 

number of degrees of freedom, Cochran’s theorem implies that 2
bS

σ
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eS
σ

 are 

independently distributed chi-square random variables. Therefore, if the null hypothesis 

of no difference in block means is true, the ratio 
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is distributed as central F with (k-1, N-k) degrees of freedom for large n. The 

distribution of W under H1 is noncentral F with (k-1, N-k) degrees of freedom and 

noncentrality parameter 
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for large n. Large values of W lead to the rejection of H0 in favour of H1. 

 

4.1.2 Testing Linear Contrasts 

 

To test the linear contrasts, the statistic 
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is defined. Under the null hypothesis (2.1.5.7), it is asymptotically normally N(0,1) 

distributed. Large values of T  lead to the rejection of H0. The asymptotic power 

function of the test is (with Type I error 
) 
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where Z is a standard normal variate and  
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is the noncentrality parameter. 

 

Note that when the error components eij are non-identically distributed as in (4.1.1), the 

formulations for unbalanced design are similar to the balanced design. 

 

4.2 GSH Distributions with Different Shape Parameters When the Variances Are  

       Not Equal 

 

Now, suppose the distribution of eij (1 � i � k, 1 � j � n) is the Generalized Secant 

Hyporbolic  
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Without loss of generality assume that 
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where the values of mi will be determined. 

 

The Fisher likelihood function is 
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Equations (4.2.4)-(4.2.6) do not admit explicit solutions because of the terms involving 

the nonlinear function g(zij). Thus, the MML method is used here. Let 
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The linear approximations for g(zi(j)) (1 � i � k) are given as follows 
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Therefore, incorporating (4.2.12) into (4.2.9)-(4.2.11), the following MML estimators 

are obtained: 
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Lemma 4.2.1: Asymptotically, the estimator .ii ˆˆ µ=µ  is the MVB estimator of iµ  and is 

normally distributed with variance  

 

ii2

2
i

i mc2
)ˆ(V

σ
≅µ .                        (4.2.16) 

 

Corollary 4.2.1: Asymptotically, the estimator µ−µ=τ ˆˆˆ .ii  is the MVB estimator of iτ  

and is normally distributed with variance 
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Corollary 4.2.2: Asymptotically, the estimator ..ˆˆ µ=µ  is the MVB estimator of � and is 

normally distributed with variance 
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Corollary 4.2.3: Since iµ̂  (1 � i � k) are independent of each other and �
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Lemma 4.2.2: Asymptotically, 2
i

2
i )(ˆn
σ

µσ
 is conditionally ( ii τ+µ=µ ) distributed as chi-

square with n degrees of freedom. 
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Corollary 4.2.4: Asymptotically, 2

2
iˆn

σ
σ

is distributed as chi-square with n-1 degrees of 

freedom. 

 

4.2.1 Testing Block Effects 

 

When testing the equality of block effects, the following decomposition of sum of 

squares is obtained: 

 

 Under  H0, the MML estimator of �i is 
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Under H1, the MML estimator of �i is 
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Since for large n, 0
nC

B ≅ , we have 
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   2
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Since the following equation can be written for each block (i = 1, 2,..., k) 
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the total sum of squares can be written as 
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Hence, we have the decomposition of the total sum of squares such that 
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Asymptotically, 2
TS

σ
, 2

bS
σ

 and 2
eS

σ
 are distributed as chi-squares with N-1, k-1 and N-k 

degrees of freedom. Since the degrees of freedom for Sb and Se add to N-1, the total 

number of degrees of freedom, Cochran’s theorem implies that 2
bS

σ
 and  2

eS
σ

 are 
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independently distributed chi-square random variables. Therefore, if the null hypothesis 

of no difference in block means is true, the ratio 
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is distributed as central F with (k-1, N-k) degrees of freedom for large n. The 

distribution of W under H1 is noncentral F with (k-1, N-k) degrees of freedom and 

noncentrality parameter 
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for large n. Large values of W lead to the rejection of H0 in favour of H1. 

 

4.2.2 Testing Linear Contrasts 

 

To test the linear contrasts, the statistic 
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is defined. Under the null hypothesis (2.1.5.7), it is asymptotically normally N(0,1) 

distributed. Large values of T  lead to the rejection of H0. The asymptotic power 

function of the test is (with Type I error 
) 
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    ( )T2/zZP1 λ−≥≅β− α            (4.2.2.2) 

 

where Z is a standard normal variate and  
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is the noncentrality parameter. 
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CHAPTER 5 

 

APPLICATIONS AND CONCLUSIONS 
 

 

5.1 Applications 

 

Example 5.1: Brian Everitt (private communication) gives weights, in pounds, of young 

girls receiving two different treatments, cognitive behavioral treatment (I) and family 

therapy (II) for anorexia over a fixed period of time with the control group (III) 

receiving the standard treatment. This data is reproduced in Hand et al. (1994, p. 229). 

From the given data, the differences ‘after’ minus ‘before’ weight measurements are 

calculated: 

 

I: 1.7   0.7  -0.1 -0.7 -3.5 17.1 -7.6  1.6 11.7   6.1 

 1.1  -4.0 20.9 -9.1  2.1 -1.4  1.4 -0.3 -3.7  -0.8 

 2.4 12.6   1.9  3.9  0.1 15.4 -0.7    

 

II: 11.4 11.0   5.5 9.4 13.6 -2.9  -0.1 7.4 21.5 -5.3 

 -3.8 13.4 13.1 9.0   3.9  5.7 10.7    

 

III: -0.5 -9.3 -5.4 12.3   -2.0 -10.2 -12.2 11.6 -7.1  6.2 

 -9.2  8.3  3.3 11.3    0.0   -1.0 -10.6 -4.6 -6.7  2.8 

  0.3  1.8  3.7 15.9 -10.2      

 

Clearly the main problem is to compare the methods of treatment. To locate the 

plausible distribution, the Q-Q plot is used and is given in Figure 5.1. 
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Figure 5.1 Weight Gains of Anorexia Patients 

 

 

The Q-Q plot of data indicates an approximately symmetric distribution with short tails.  

 

To locate the most plausible value of t, the MML estimators of �, 	i (i = 1, 2, 3) and � 

are calculated from (2.2.11)-(2.2.13). Then, the values of 
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where 
σ

τ−µ−
=

ˆ

ˆˆy
ẑ iij

ij   (1 � i � 3) 

 

are calculated. The value that maximizes L̂ln  is the most appropriate choice. For the 

given data, we have the following values: 

 

            t =   5/7π       7/17π      5/19π        5π            7π          11π  

      L̂ln =  -246.16       - 245.82       -245.62       -245.56       -245.57      -245.66 
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Therefore, the information provided by Q-Q plot supplemented by the determination of 

the shape parameter (Tiku and Akkaya, 2004) indicates the GSH distribution with t = 

5π  is the most plausible distribution.  

 

The estimates and their standard errors are calculated as follows: 

 

         LSE           MMLE 

 764.2~ =µ      807.3ˆ =µ   

  887.0)~(SE ±=µ     780.0)ˆ(SE ±=µ  

        I:   007.3~
1 =µ      011.5ˆ 1 =µ    

398.1)~(SE 1 ±=µ     221.1)ˆ(SE 1 ±=µ  

       II:  265.7~
2 =µ                                                      630.6ˆ 2 =µ    

476.1)~(SE 2 ±=µ                           627.1)ˆ(SE 2 ±=µ  

        III: 450.0~
3 −=µ      676.0ˆ 3 =µ    

476.1)~(SE 3 ±=µ     293.1)ˆ(SE 3 ±=µ .       

 

The MMLE is clearly more precise. 

 

To test the null hypothesis 

 

                3210 :H µ=µ=µ   

                                        ji1 :H µ≠µ  for at least one pair (i, j)   (i, j = 1, 2, 3; i � j), 

 

the test statistics based on the LSE and MMLE are F = 5.422  and  W = 18.089, 

respectively. Since the tabulated F value is 3.130 for 0.05 significance level, both F and 

W-tests reject the null hypothesis. The W statistic, however, gives a smaller probability 

for H0 to be true.  
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In testing two orthogonal linear contrasts 

 

                 0:H 2110 =µ−µ   and  02:H 32102 =µ−µ+µ , 

 

the statistics for H10 based on the LSE and MMLE are 700.1t1 =  and 438.2T1 = , 

respectively. Since the tabulated Z value is 1.96 for 0.05 significance level, the statistic 

based on the LSE, t1, does not reject H10. However, the statistic based on the MMLE, T1, 

rejects H10. For H02, the statistics based on the LSE and MMLE are 864.2t 2 =  and 

042.2T2 = , respectively. Therefore, both t and T-tests reject the null hypothesis H02. 

 

Example 5.2:  Snedecor and Cochran (1967) gives the following data coming from an 

experiment to study the gain in weight of rats fed on four different diets, distinguished 

by amount of protein (low and high) and by source of protein (beef and cereal): 

 

Weight gains of rats: 

                     Protein source 

                          Beef              Cereal 

 

Low 

 

High 

 

 

The normal Q-Q plot of weight gains of rats is given in Figure 5.2. 

 

 90  76   90   64   86 107  95 97  80 98 

 51  72   90   95   78   74  74 67  89 58 

 73 102 118 104   81   98  74 56 111 95 

107 100  87 117 111   88  82 77  86 92 
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   Figure 5.2 Weight Gains of Rats 

 

    

The Q-Q plot of data indicates an approximately symmetric distribution with short tails. 

The determination of the shape parameter (Tiku and Akkaya, 2004) indicates the GSH 

distribution with t = 3� beautifully models the data. 

 

The estimates and their standard errors are calculated as follows: 

 

        LSE           MMLE 

250.87~ =µ      219.84ˆ =µ    

 364.2)~(SE ±=µ     117.2)ˆ(SE ±=µ  

350.2~~
21 =τ−=τ     904.0ˆˆ 21 =τ−=τ  

344.3)~(SE i ±=τ     993.2)ˆ(SE i ±=τ  

700.5
~~

21 −=δ−=δ     920.5ˆˆ
21 −=δ−=δ   

344.3)
~

(SE j ±=δ     993.2)ˆ(SE j ±=δ  

700.4~~~~
22211211 −=γ=γ−=γ−=γ   211.5ˆˆˆˆ 22211211 −=γ=γ−=γ−=γ

 729.4)~(SE ij ±=γ     233.4)ˆ(SE ij ±=γ  
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where i = 1, 2 and j = 1, 2.      

 

Again MMLE are more efficient. To test the hypothesis 

 

                                0:H 2101 =τ=τ , 

 

the test statistics based on the LSE and MMLE are F1 = 0.988 and W1 = 0.182, 

respectively. Since the tabulated F value is 4.113 for 0.05 significance level, both F and 

W-tests fail to reject the null hypothesis. Furthermore, to test the hypothesis 

 

                                   0:H 2102 =δ=δ , 

 

the test statistics based on the LSE and MMLE are F2 = 5.812 and W2 = 7.822, 

respectively. Therefore, both F and W-tests reject the null hypothesis. The W statistic 

gives a smaller probability for H02 to be true. However, in testing the hypothesis 

 

                      0:H ij03 =γ  for all i = 1, 2 and j = 1, 2, 

 

the test statistics based on the LSE and MMLE are F3 = 3.952 and W3 = 6.062, 

respectively. Hence F-test fails to reject the null hypothesis but W-test rejects the null 

hypothesis. 

 

5.2 Summary and Conclusions 

 

In the framework of one-way and two-way classification models for both balanced and 

unbalanced cases in experimental design under the assumption of GSH distributed error 

terms, the model parameters are estimated by using the MML estimation method. MML 

method  is theoretically and computationally straightforward besides being flexible in 

the sense that it can be used for any location-scale distributions, symmetric or skew. It 
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also provides explicit solutions for the likelihood equations when Fisher method of 

maximum likelihood becomes intractable.  

 

The W statistics for testing the main and interaction effects and the T statistics for 

testing the linear contrasts in both balanced and unbalanced cases are developed. To 

analyze the efficiency and robustness of the estimators as well as test statistics, the 

simulation study is conducted. 

 

The estimation and test procedures developed for the one-way classification with 

identical error distributions is generalized to the non-identical error distributions, i.e., the 

error terms are assummed to have GSH distribution with different shape parameters and 

variances in each block. 

 

On the basis of this research the following conclusions could be stated: 

 

1. The MML estimators,  ˆ  and  ˆ  ,ˆ  ,ˆ ijji γδτµ  are found to be more efficient than the  

corresponding LS estimators even for small sample sizes other than approximately 

normal distribution ( 0.32 =β ). The LS estimators have a disconcerting feature, i.e., their 

relative efficiency decreases as the sample size, n increases. The same efficiency 

properties hold for σ̂  although for small sample sizes it has larger bias than σ~ . Thus, 

defficiency of MML and LS estimators are calculated through simulations. Deficiency 

of MML estimators are found to be considerably smaller than the defficiency of LS 

estimators even for small sample size other than approximately normal ( 0.32 =β ), near 

normal (logistic, 2.42 =β ) and very long-tailed ( 0.92 =β ) distributions. However, for n 

� 9 defficiency of MML estimators becomes smaller than that of LS estimators for near 

normal and long-tailed distributions.  
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2. Since 
θ∂

∂ Lln
  is asymptotically equivalent to 

θ∂
∂ *Lln

 (θ is any parameter), the MML 

estimators are asymptotically MVB estimators (in fact, BAN). 

 

3. The MML estimators are robust. 

 

4. Under the null hypotheses in (3.1.4.1), the distributions of  W-tests used for testing 

the main and interaction effects of the model are found to be central F with (k-1, kc(n-

1)), (c-1, kc(n-1)) and ((k-1)(c-1), kc(n-1)) degrees of freedoms for large sample sizes, 

respectively. Under the alternative hypotheses, their distributions are found to be 

noncentral F with the same degrees of freedoms and the noncentrality parameters given 

in (3.1.4.5). 

 

5. Although type I error of the W-test is larger than that of F-test for short-tailed 

distributions, the W-test is clearly more powerful than the traditional F-test (even for 

approximately normal). W-test has considerably higher power when the GSH family 

represents short- and long-tailed distributions.  

 

6. Under the null hypothesis in (2.1.5.7), the distribution of  T-test used for testing the 

linear contrasts of the model is found to be normal for large sample sizes.  

 

7. The power of  T-test is shown to be considerably higher than that of  t-test.  

 

8. The W and T-tests have both criterion and inference robustness. 
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APPENDIX 
 

 

LISTING OF COMPUTER PROGRAMS DEVELOPED IN THE STUDY 

 

1. SIMULATION OF ONE-WAY CLASSIFICATION MODEL 

 

PROGRAM ONE_WAY 
  

USE NUMERICAL_LIBRARIES 
  

REAL B2,T,A,C1,C2,PI,MU,GAM(10),SIGMA,T1(100),ALFA(100) 
REAL BET(100),M,G(100),E(10,100),Y(10,100),U1(100) 
REAL U2(100),X(10,100),MLMU,MLMI(10),XBAR,XABAR,B,C 
REAL MLSIGMA,LSMU,LSMI(10),LSSIGMA,LSMUMEAN,MLMUMEAN 
REAL LSMIMEAN(10),MLMIMEAN(10),LSSIGMAMEAN 
REAL MLSIGMAMEAN,LSMUVAR,LSMIVAR(10),LSSIGMAVAR 
REAL MLMUVAR,MLMIVAR(10),MLSIGMAVAR 
REAL FML,FLS,POWERML,POWERLS,F,W 

 REAL REMU,REMI(10),RESIGMA,I11,I22,MVBMI,MVBSIGMA 
 REAL EMLMI(10),EMLSIGMA,L1ML,TML1,L2ML,TML2,S,L1LS,TLS1 

REAL L2LS,TLS2,POWERML1,POWERML2,POWERLS1,POWERLS2 
REALLSSIGMAMSE,LSMIMSE(10),MLMIMSE(10),MLSIGMAMSE 
REAL DEFLS(10),DEFML(10) 

 INTEGER K,N,NSUM,NN 
  

OPEN (unit=1,file='c:\Concon\Documents\output.txt') 
  

PI=22.0/7.0 
PRINT *,'ENTER THE KURTOSIS' 

 READ *,B2 
 IF (B2.GT.4.2) THEN 
 T=-PI*SQRT((5.0*B2-21.0)/(5.0*B2-9.0)) 
 ELSE IF (B2.EQ.4.2) THEN 
    T=0.0 
 ELSE IF (B2.LT.4.2.AND.B2.GT.1.8) THEN 
    T=PI*SQRT((21.0-5.0*B2)/(5.0*B2-9.0)) 

ENDIF 
 WRITE(1,*)'SHAPE PARAMETER=',T 
 
 PRINT *,'INPUT THE NUMBER OF TREATMENTS' 
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 READ *,K 
 WRITE(1,*) 'NUMBER OF TREATMENTS=',K 
 
 PRINT*,'INPUT THE SAMPLE SIZE IN THE BLOCK' 
 READ*,N    
 WRITE(1,*) 'SAMPLE SIZE IN THE BLOCK=',N 
 NSUM=N*K 
 
 DFN=K*1.0-1.0 
 DFD=NSUM*1.0-K*1.0 
 F=FIN(0.95,DFN,DFD) 
 S=ANORIN(0.975) 
 
 PRINT*,'INPUT THE OVERALL MEAN' 
 READ*,MU 
 WRITE(1,*) 'OVERALL MEAN=',MU 
 
 PRINT*,'INPUT THE BLOCK EFFECTS' 
 DO 2 I=1,K 
    READ*,GAM(I) 
    WRITE(1,*) I,'TH BLOCK EFFECT=',GAM(I) 
    2      CONTINUE 
 

SIGMA=1.0 
 
 IF (T.GT.(-1.0*PI).AND.T.LE.0.0) THEN 
    A=COS(T) 
    C2=SQRT((PI*PI-T*T)/3.0) 
    C1=(SIN(T)/T)*C2 
 ELSE IF (T.GT.0.0) THEN 
 A=COSH(T) 
    C2=SQRT((PI*PI+T*T)/3.0) 
    C1=(SINH(T)/T)*C2 
 ENDIF 
 
            IF (T.GT.(-PI).AND.T.LT.0.0) THEN 
               DO 10 J=1,N 
 V2=J 
       V1=V2/(N*1.0+1.0) 
       T1(J)=LOG(SIN(T*V1)/SIN(T*(1.0-V1)))/C2 
   10        CONTINUE 
            ELSE IF (T.EQ.0.0) THEN 
               DO 12 J=1,N 
       V2=J 
       V1=V2/(N*1.0+1.0) 
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       W=(V1)/(1.0-V1) 
       T1(J)=(SQRT(3.0)/PI)*LOG(W) 
   12        CONTINUE 
            ELSE IF (T.GT.0.0) THEN 
               DO 14 J=1,N 
 V2=J 
       V1=V2/(N*1.0+1.0) 
       T1(J)=LOG(SINH(T*V1)/SINH(T*(1.0-V1)))/C2 
   14        CONTINUE 
 ENDIF 
 
 DO 16 J=1,N  
     BET(J)=2.0*C2*EXP(2.0*C2*T1(J))+A*C2*EXP(3.0*C2*T1(J)) 
    BET(J)=BET(J)+A*C2*EXP(C2*T1(J)) 
    BET(J)=BET(J)/(EXP(2.0*C2*T1(J))+2.0*A*EXP(C2*T1(J))+1.0)**2 
    ALFA(J)=EXP(2.0*C2*T1(J))+A*EXP(C2*T1(J)) 
    ALFA(J)=ALFA(J)/(EXP(2.0*C2*T1(J))+2.0*A*EXP(C2*T1(J))+1.0) 
    ALFA(J)=ALFA(J)-BET(J)*T1(J) 
   16    CONTINUE 
  
 DO 17 J=1,N 
    IF (BET(J).LT.0.0) THEN 
      BET(J)=0.0 
      ALFA(J)=EXP(2.0*C2*T1(J))+A*EXP(C2*T1(J)) 
      ALFA(J)=ALFA(J)/(EXP(2.0*C2*T1(J))+2.0*A*EXP(C2*T1(J))+1.0) 
    ENDIF 
   17     CONTINUE 
 
 M=0.0 
 DO 18 J=1,N 
    M=M+BET(J) 
   18 CONTINUE 
 
 LSMUMEAN=0.0 
 LSMUVAR=0.0 
 MLMUMEAN=0.0 
 MLMUVAR=0.0 
 DO 19 I=1,K 
               LSMIMEAN(I)=0.0 
    LSMIVAR(I)=0.0 
    MLMIMEAN(I)=0.0 
    MLMIVAR(I)=0.0 
   19     CONTINUE 
 LSSIGMAMEAN=0.0 
 MLSIGMAMEAN=0.0 
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 LSSIGMAVAR=0.0 
 MLSIGMAVAR=0.0 
 

POWERLS=0.0 
 POWERML=0.0 
 POWERML1=0.0 
 POWERML2=0.0 
 POWERLS1=0.0 
 POWERLS2=0.0 
 
 NN=100000/N 
 

DO 100 L=1,NN 
 
 DO 20 I=1,K 
    CALL RNUN(N,G) 
    IF (T.GT.(-PI).AND.T.LT.0.0) THEN 
    DO 21 J=1,N 
                     E(I,J)=LOG(SIN(T*G(J))/SIN(T*(1.0-G(J))))/C2 
   21       CONTINUE 
               ELSE IF (T.EQ.0.0) THEN 
       DO 22 J=1,N 
          E(I,J)=(SQRT(3.0)/PI)*LOG(G(J)/(1.0-G(J))) 
   22       CONTINUE 
        ELSE IF (T.GT.0.0) THEN 
                  DO 23 J=1,N 
          E(I,J)=LOG(SINH(T*G(J))/SINH(T*(1.0-G(J))))/C2 
   23           CONTINUE 
   ENDIF 
   20     CONTINUE 
  

DO 25 I=1,K 
   DO 26 J=1,N 

       Y(I,J)=E(I,J)+MU+GAM(I) 
   26        CONTINUE 
   25     CONTINUE 
 
 
C FINDING MMLE 
 

DO 30 I=1,K 
   DO 31 J=1,N 

       U1(J)=Y(I,J) 
   31        CONTINUE 
    CALL SVRGN(N,U1,U2) 
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    DO 32 J=1,N 
       X(I,J)=U2(J) 
   32        CONTINUE 
   30     CONTINUE 
 
 MLMU=0.0 
 DO 35 I=1,K 
    DO 36 J=1,N 
        MLMU=MLMU+BET(J)*X(I,J) 
   36        CONTINUE 
   35     CONTINUE 
 MLMU=MLMU/(K*M*1.0) 
 MLMUMEAN=MLMUMEAN+MLMU 
 MLMUVAR=MLMUVAR+MLMU**2 
 
 
 DO 40 I=1,K 
    MLMI(I)=0.0 
    DO 41 J=1,N 
        MLMI(I)=MLMI(I)+BET(J)*X(I,J) 
   41        CONTINUE 
    MLMI(I)=MLMI(I)/M 
    MLMIMEAN(I)=MLMIMEAN(I)+MLMI(I) 
    MLMIVAR(I)=MLMIVAR(I)+MLMI(I)**2 
   40     CONTINUE 
 
 XBAR=0.0 
 XABAR=0.0 
 DO 45 I=1,K 
    DO 46 J=1,N 
       XBAR=XBAR+X(I,J) 
       XABAR=XABAR+X(I,J)*ALFA(J) 
   46        CONTINUE 
   45     CONTINUE 
 XBAR=XBAR/(NSUM*1.0) 
 XABAR=XABAR*2.0/(1.0*NSUM) 
 B=C2*NSUM*(XBAR-XABAR) 
 C=0.0 
 DO 50 I=1,K 
    DO 51 J=1,N 
         C=C+BET(J)*(X(I,J)-MLMI(I))**2 
   51        CONTINUE 
   50     CONTINUE 
 C=C*2.0*C2 
 MLSIGMA=(-B+SQRT(B**2+4.0*NSUM*C)) 
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 MLSIGMA=MLSIGMA/(2.0*SQRT(NSUM*(NSUM-K)*1.0)) 
 MLSIGMAMEAN=MLSIGMAMEAN+MLSIGMA 
 MLSIGMAVAR=MLSIGMAVAR+MLSIGMA**2 
 
 FML=0.0 
 DO 55 I=1,K 
    FML=FML+(MLMI(I)-MLMU)**2 
   55     CONTINUE 
 FML=FML*2.0*C2*M/((K*1.0-1.0)*MLSIGMA**2) 
 IF (FML.GT.F) THEN 
    POWERML=POWERML+1.0 
 ENDIF 
 
 L1ML=(MLMI(1)-MLMI(2))/SQRT(2.0) 
 TML1=SQRT(2.0*M*C2)*L1ML/MLSIGMA 
 L2ML=(MLMI(1)+MLMI(2)-2.0*MLMI(3))/SQRT(6.0) 
 TML2=SQRT(2.0*M*C2)*L2ML/MLSIGMA 
 IF (ABS(TML1).GT.S) THEN 
    POWERML1=POWERML1+1.0 
 ENDIF 
 IF (ABS(TML2).GT.S) THEN 
    POWERML2=POWERML2+1.0 
 ENDIF 
 
C FINDING LSE 
 
 LSMU=XBAR 
 LSMUMEAN=LSMUMEAN+LSMU 
 LSMUVAR=LSMUVAR+LSMU**2 
 
 DO 60 I=1,K 
 LSMI(I)=0.0 
    DO 61 J=1,N 
 LSMI(I)=LSMI(I)+Y(I,J) 
   61        CONTINUE 
    LSMI(I)=LSMI(I)/(N*1.0) 
    LSMIMEAN(I)=LSMIMEAN(I)+LSMI(I) 
    LSMIVAR(I)=LSMIVAR(I)+LSMI(I)**2 
   60     CONTINUE 
  
 LSSIGMA=0.0 
 DO 65 I=1,K 
    DO 66 J=1,N 
    LSSIGMA=LSSIGMA+(Y(I,J)-LSMI(I))**2 
   66        CONTINUE 
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   65     CONTINUE 
 LSSIGMA=LSSIGMA/((NSUM-K)*1.0) 
 LSSIGMA=SQRT(LSSIGMA) 
 LSSIGMAMEAN=LSSIGMAMEAN+LSSIGMA 
 LSSIGMAVAR=LSSIGMAVAR+LSSIGMA**2 
 
 FLS=0.0 
 DO 70 I=1,K 
    FLS=FLS+N*(LSMI(I)-LSMU)**2 
   70     CONTINUE 
  FLS=FLS/((LSSIGMA**2)*(K*1.0-1.0)) 
  IF (FLS.GT.F) THEN 
    POWERLS=POWERLS+1.0 
  ENDIF 
 
  L1LS=(LSMI(1)-LSMI(2))/SQRT(2.0) 
  TLS1=SQRT(N*1.0)*L1LS/LSSIGMA 
  L2LS=(LSMI(1)+LSMI(2)-2.0*LSMI(3))/SQRT(6.0) 
  TLS2=SQRT(N*1.0)*L2LS/LSSIGMA 
  IF (ABS(TLS1).GT.S) THEN 
    POWERLS1=POWERLS1+1.0 
  ENDIF 
  IF (ABS(TLS2).GT.S) THEN 
    POWERLS2=POWERLS2+1.0 
  ENDIF 
 
  100    CONTINUE   
  
 LSMUMEAN=LSMUMEAN/(NN*1.0) 
 LSMUVAR=LSMUVAR/(NN*1.0)-LSMUMEAN**2 
 MLMUMEAN=MLMUMEAN/(NN*1.0) 
 MLMUVAR=MLMUVAR/(NN*1.0)-MLMUMEAN**2 
 DO 80 I=1,K 
 LSMIMEAN(I)=LSMIMEAN(I)/(NN*1.0) 
    LSMIVAR(I)=LSMIVAR(I)/(NN*1.0)-LSMIMEAN(I)**2 
    MLMIMEAN(I)=MLMIMEAN(I)/(NN*1.0) 
    MLMIVAR(I)=MLMIVAR(I)/(NN*1.0)-MLMIMEAN(I)**2 
   80     CONTINUE 
 LSSIGMAMEAN=LSSIGMAMEAN/(NN*1.0) 
 LSSIGMAVAR=LSSIGMAVAR/(NN*1.0)-LSSIGMAMEAN**2 
 MLSIGMAMEAN=MLSIGMAMEAN/(NN*1.0) 
 MLSIGMAVAR=MLSIGMAVAR/(NN*1.0)-MLSIGMAMEAN**2 
 
 WRITE(1,*)'LSE OF M=',LSMUMEAN 
 DO 90 I=1,K 
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   WRITE(1,*)'LSE OF M',I,'=',LSMIMEAN(I) 
   90     CONTINUE 
 WRITE(1,*)'LSE OF SIGMA=',LSSIGMAMEAN 
 WRITE(1,*)'MMLE OF M=',MLMUMEAN 
 DO 91 I=1,K 
    WRITE(1,*)'MMLE OF M',I,'=',MLMIMEAN(I) 
   91     CONTINUE 
 WRITE(1,*)'MMLE OF SIGMA=',MLSIGMAMEAN 
  
 WRITE(1,*)'VAR OF LSE OF M=',LSMUVAR 
 DO 92 I=1,K 
    WRITE(1,*)'VAR OF LSE OF M',I,'=',LSMIVAR(I) 
   92     CONTINUE 
 WRITE(1,*)'VAR OF LSE OF SIGMA=',LSSIGMAVAR 
 
 WRITE(1,*)'VAR OF MML OF M=',MLMUVAR 
 DO 93 I=1,K 
    WRITE(1,*)'VAR OF MML OF M',I,'=',MLMIVAR(I) 
   93     CONTINUE 
 WRITE(1,*)'VAR OF MML OF SIGMA=',MLSIGMAVAR 
 
 LSSIGMAMSE=LSSIGMAVAR+(LSSIGMAMEAN-1.0)**2 
 MLSIGMAMSE=MLSIGMAVAR+(MLSIGMAMEAN-1.0)**2 
 DO 94 I=1,K 
 LSMIMSE(I)=LSMIVAR(I)+LSMIMEAN(I)**2 
    MLMIMSE(I)=MLMIVAR(I)+MLMIMEAN(I)**2 
    DEFLS(I)=LSMIMSE(I)+LSSIGMAMSE 
    DEFML(I)=MLMIMSE(I)+MLSIGMAMSE 
    WRITE(1,*)'DEFLS=',DEFLS(I) 
    WRITE(1,*)'DEFML=',DEFML(I) 
   94   CONTINUE 
 
 REMU=(MLMUVAR/LSMUVAR)*100.0 
 DO 95 I=1,K 
    REMI(I)=(MLMIVAR(I)/LSMIVAR(I))*100.0 
   95     CONTINUE 
            RESIGMA=(MLSIGMAMSE/LSSIGMAMSE)*100 
 
 WRITE(1,*)'RELATIVE EFFICIENCY OF M=',REMU 
 DO 96 I=1,K 
   WRITE(1,*)''RELATIVE EFFICIENCY OF M',I,'=',REMI(I) 
   96     CONTINUE 
 WRITE(1,*)''RELATIVE EFFICIENCY OF SIGMA=',RESIGMA 
 
 POWERLS=POWERLS/(NN*1.0) 
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 POWERML=POWERML/(NN*1.0) 
 
 WRITE(1,*) 'POWER OF F-TEST=',POWERLS 
 WRITE(1,*) 'POWER OF W-TEST=',POWERML 
 
 IF (T.GT.-PI.AND.T.LT.0.0) THEN 
   I11=-N*(C2**2)*(T-SIN(T)*COS(T))/(2.0*(SIGMA**2)*T*SIN(T)**2) 
   I22=(PI**2-T**2)/(SIN(T)**2) 
   I22=I22-((PI**2-3.0*T**2)*COS(T)/(T*SIN(T))) 
   I22=-NSUM*I22/(6.0*SIGMA**2) 
 ELSE IF (T.GT.0.0) THEN 
   I11=-N*(C2**2)*(SINH(T)*COSH(T)-T)/(2.0*SIGMA**2*T*SINH(T)**2) 
   I22=(PI**2+3.0*T**2)*COSH(T)/(T*SINH(T)) 
   I22=I22-((PI**2+T**2)/(SINH(T)**2)) 
   I22=-NSUM*I22/(6.0*SIGMA**2) 
 ELSE IF (T.EQ.0.0) THEN 
   I11=-N*(C2**2)/(3.0*SIGMA**2) 
   I22=-NSUM*(PI**2+3.0)/(9.0*SIGMA**2) 
 ENDIF 
 
 MVBMI=-1.0/I11 
 MVBSIGMA=-1.0/I22 
 
 WRITE(1,*)'MVB OF MI=',MVBMI 
 WRITE(1,*)'MVB OF SIGMA=',MVBSIGMA 
  
 DO 300 I=1,K 
   EMLMI(I)=(MVBMI/MLMIVAR(I))*100.0 
   WRITE(1,*)'EFFICIENCY OF M',I,'=',EMLMI(I) 
  300   CONTINUE 
  
 EMLSIGMA=(MVBSIGMA/MLSIGMAVAR)*100.0 
 WRITE(1,*)'EFFICIENCY OF SIGMA=',EMLSIGMA 
 
 POWERLS1=POWERLS1/(NN*1.0) 
 POWERML1=POWERML1/(NN*1.0) 
 POWERLS2=POWERLS2/(NN*1.0) 
 POWERML2=POWERML2/(NN*1.0) 
 
 WRITE(1,*)'POWER OF t1-TEST=’,POWERLS1 
 WRITE(1,*)'POWER OF t2-TEST=',POWERLS2 
 WRITE(1,*)'POWER OF T1-TEST=',POWERML1 
 WRITE(1,*)'POWER OF T2-TEST=',POWERML2  

END 
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2. SIMULATION OF TWO-WAY CLASSIFICATION MODEL 

 

PROGRAM TWO_WAY 
 

 USE NUMERICAL_LIBRARIES 
 

REAL B2,T,A,C1,C2,PI,MU,TA(10),GAM(10),IN(10,10),SIGMA,T1(100) 
 REAL ALFA(100),BET(100),M,G(100),E(10,10,100),Y(10,10,100) 
 REAL U1(100),U2(100),X(10,10,100),MLMU,MLTA(10),MLGAM(10) 
 REAL MLIN(10,10),XBAR,XABAR,B,MLSIGMA,LSMU,LSTA(10) 

REAL LSGAM(10),LSIN(10,10),LSSIGMA,LSMUMEAN,MLMUMEAN 
REAL LSTAMEAN(10),MLTAMEAN(10),LSGAMMEAN(10) 
REAL MLGAMMEAN(10),LSINMEAN(10,10),MLINMEAN(10,10) 
REAL LSSIGMAMEAN,MLSIGMAMEAN,LSMUVAR,LSTAVAR(10) 

 REAL LSGAMVAR(10),LSINVAR(10,10),LSSIGMAVAR 
REAL MLMUVAR,MLTAVAR(10),MLGAMVAR(10),MLINVAR(10,10) 
REAL MLSIGMAVAR,REMU,RETA(10),REGAM(10),REIN(10,10) 
REAL RESIGMA,W,POWERLS1,POWERLS2,POWERLS3,POWERML1 
REAL POWERML2,POWERML3,DFN1,DFN2,DFN3,DFD 
REAL F1,F2,F3,FML1,FML2,FML3,FLS1,FLS2,FLS3 

 INTEGER K,C,N,NSUM,NN 
  
 OPEN (unit=1,file='c:\Concon\Documents\sonuc.txt') 
 
 PI=22.0/7.0 
 
 PRINT *,'ENTER THE KURTOSIS' 
 READ *,B2 
 IF (B2.GT.4.2) THEN 
 T=-PI*SQRT((5.0*B2-21.0)/(5.0*B2-9.0)) 
 ELSE IF (B2.EQ.4.2) THEN 
    T=0.0 
 ELSE IF (B2.LT.4.2.AND.B2.GT.1.8) THEN 
    T=PI*SQRT((21.0-5.0*B2)/(5.0*B2-9.0)) 
 ENDIF 
 WRITE(1,*) 'SHAPE PARAMETER=',T 
 
 PRINT *,'INPUT THE NUMBER OF BLOCKS' 
 READ *,K 
 WRITE(1,*) 'NUMBER OF BLOCKS=',K 
 
 PRINT *,'INPUT THE NUMBER OF ROWS' 
 READ *,C 
 WRITE(1,*) 'NUMBER OF ROWS=',C 
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 PRINT*,'INPUT THE SAMPLE SIZE IN THE CELL' 
 READ*,N    
 WRITE(1,*) 'SAMPLE SIZE IN THE CELL=',N 
 
 NSUM=N*K*C 
  
 DFN1=K*1.0-1.0 
 DFN2=C*1.0-1.0 
 DFN3=(K*1.0-1.0)*(C*1.0-1.0) 
 DFD=(NSUM-K*C)*1.0 
 F1=FIN(0.95,DFN1,DFD) 
 F2=FIN(0.95,DFN2,DFD) 
 F3=FIN(0.95,DFN3,DFD) 
 
 PRINT*,'INPUT THE OVERALL MEAN' 
 READ*,MU 
 WRITE(1,*) 'OVERALL MEAN=',MU 
 
 PRINT*,'INPUT THE BLOCK EFFECTS' 
 DO 1 I=1,K 
    READ*,TA(I) 
    WRITE(1,*) I,'TH BLOCK EFFECT=',TA(I) 
    1      CONTINUE 
 
 PRINT*,'INPUT THE ROW EFFECTS' 
 DO 2 J=1,C 
    READ*,GAM(I) 
    WRITE(1,*) I,'TH ROW EFFECT=',GAM(I) 
    2      CONTINUE 
 
 PRINT*,'INPUT THE INTERACTION EFFECTS' 
 DO 5 I=1,K 
    DO 6 J=1,C 
 READ*,IN(I,J) 
       WRITE(1,*) I,J,'TH INTERACTION EFFECT=',IN(I,J) 
    6         CONTINUE 
    5      CONTINUE 
 
 SIGMA=1.0 
 
 IF (T.GT.(-1.0*PI).AND.T.LE.0.0) THEN 
 A=COS(T) 
    C2=SQRT((PI*PI-T*T)/3.0) 
    C1=(SIN(T)/T)*C2 
 ELSE IF (T.GT.0.0) THEN 
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 A=COSH(T) 
    C2=SQRT((PI*PI+T*T)/3.0) 
    C1=(SINH(T)/T)*C2 
 ENDIF 
 
            IF (T.GT.(-PI).AND.T.LT.0.0) THEN 
 DO 10 L=1,N 
 V2=L 
       V1=V2/(N*1.0+1.0) 
 T1(L)=LOG(SIN(T*V1)/SIN(T*(1.0-V1)))/C2 
   10        CONTINUE 
            ELSE IF (T.EQ.0.0) THEN 
    DO 12 L=1,N 
                  V2=L 
       V1=V2/(N*1.0+1.0) 
       W=V1/(1.0-V1) 
 T1(L)=(SQRT(3.0)/PI)*LOG(W) 
   12    CONTINUE 
            ELSE IF (T.GT.0.0) THEN 
 DO 14 L=1,N 
 V2=L 
       V1=V2/(N*1.0+1.0) 
       T1(L)=LOG(SINH(T*V1)/SINH(T*(1.0-V1)))/C2 
   14        CONTINUE 
 ENDIF 
  
 DO 15 L=1,N  
     BET(L)=2.0*C2*EXP(2.0*C2*T1(L))+A*C2*EXP(3.0*C2*T1(L)) 
    BET(L)=BET(L)+A*C2*EXP(C2*T1(L)) 
    BET(L)=BET(L)/(EXP(2.0*C2*T1(L))+2.0*A*EXP(C2*T1(L))+1.0)**2 
    ALFA(L)=EXP(2.0*C2*T1(L))+A*EXP(C2*T1(L)) 
    ALFA(L)=ALFA(L)/(EXP(2.0*C2*T1(L))+2.0*A*EXP(C2*T1(L))+1.0) 
    ALFA(L)=ALFA(L)-BET(L)*T1(L) 
   15     CONTINUE 
 
 DO 16 L=1,N 
  IF (BET(L).LT.0.0) THEN 
 BET(L)=0.0 
       ALFA(L)=EXP(2.0*C2*T1(L))+A*EXP(C2*T1(L)) 
    ALFA(L)=ALFA(L)/(EXP(2.0*C2*T1(L))+2.0*A*EXP(C2*T1(L))+1.0) 
    ENDIF 
   16     CONTINUE   
 
 M=0.0 
 DO 17 L=1,N 
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    M=M+BET(L) 
   17 CONTINUE 
 
 LSMUMEAN=0.0 
 LSMUVAR=0.0 
 MLMUMEAN=0.0 
 MLMUVAR=0.0 
 DO 18 I=1,K 
               LSTAMEAN(I)=0.0 
    LSTAVAR(I)=0.0 
    MLTAMEAN(I)=0.0 
    MLTAVAR(I)=0.0 
   18     CONTINUE 
 DO 19 J=1,C 
    LSGAMMEAN(J)=0.0 
    LSGAMVAR(J)=0.0 
    MLGAMMEAN(J)=0.0 
       MLGAMVAR(J)=0.0 
   19     CONTINUE 
 DO 20 I=1,K 
 DO 21 J=1,C 
       LSINMEAN(I,J)=0.0 
       LSINVAR(I,J)=0.0 
       MLINMEAN(I,J)=0.0 
 MLINVAR(I,J)=0.0 
   21        CONTINUE 
   20     CONTINUE 
 LSSIGMAMEAN=0.0 
 MLSIGMAMEAN=0.0 
 LSSIGMAVAR=0.0 
 MLSIGMAVAR=0.0 
 

POWERLS1=0.0 
 POWERLS2=0.0 
 POWERLS3=0.0 
 POWERML1=0.0 
 POWERML2=0.0 
 POWERML3=0.0 
 
 NN=100000/N 
 
 DO 300 L1=1,NN 
 
 DO 25 I=1,K 
 DO 26 J=1,C 
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       CALL RNUN(N,G) 
 IF (T.GT.(-PI).AND.T.LT.0.0) THEN 
          DO 27 L=1,N 
                        E(I,J,L)=LOG(SIN(T*G(L))/SIN(T*(1.0-G(L))))/C2 
   27              CONTINUE 
                  ELSE IF (T.EQ.0.0) THEN 
          DO 28 L=1,N 
  E(I,J,L)=(SQRT(3.0)/PI)*LOG(G(L)/(1.0-G(L))) 
   28          CONTINUE 
            ELSE IF (T.GT.0.0) THEN 
                     DO 29 L=1,N 
  E(I,J,L)=LOG(SINH(T*G(L))/SINH(T*(1.0-G(L))))/C2 
   29          CONTINUE 
 ENDIF 
   26        CONTINUE 
   25     CONTINUE 
  
 DO 30 I=1,K 
 DO 31 J=1,C 
       DO 32 L=1,N 
         Y(I,J,L)=E(I,J,L)+MU+TA(I)+GAM(J)+IN(I,J) 
   32          CONTINUE 
   31        CONTINUE 
   30     CONTINUE 
 
C FINDING MMLE 
 
 DO 33 I=1,K 
    DO 34 J=1,C 
       DO 35 L=1,N 
          U1(L)=Y(I,J,L) 
   35           CONTINUE 
       CALL SVRGN(N,U1,U2) 
       DO 36 L=1,N 
          X(I,J,L)=U2(L) 
   36           CONTINUE 
   34        CONTINUE 
   33     CONTINUE 
 
 MLMU=0.0 
 DO 37 I=1,K 
 DO 38 J=1,C 
 DO 39 L=1,N 
          MLMU=MLMU+BET(L)*X(I,J,L) 
   39           CONTINUE 
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   38        CONTINUE 
   37     CONTINUE 
 MLMU=MLMU/(K*C*M*1.0) 
 MLMUMEAN=MLMUMEAN+MLMU 
 MLMUVAR=MLMUVAR+MLMU**2 
 
 DO 40 I=1,K 
    MLTA(I)=0.0 
    DO 41 J=1,C 
       DO 42 L=1,N 
           MLTA(I)=MLTA(I)+BET(L)*X(I,J,L) 
   42           CONTINUE 
   41        CONTINUE 
    MLTA(I)=MLTA(I)/(C*M*1.0)-MLMU 
    MLTAMEAN(I)=MLTAMEAN(I)+MLTA(I) 
    MLTAVAR(I)=MLTAVAR(I)+MLTA(I)**2 
   40     CONTINUE 
 
 DO 43 J=1,C 
    MLGAM(J)=0.0 
    DO 44 I=1,K 
       DO 45 L=1,N 
           MLGAM(J)=MLGAM(J)+BET(L)*X(I,J,L) 
   45           CONTINUE 
   44        CONTINUE 
               MLGAM(J)=MLGAM(J)/(K*M*1.0)-MLMU 
    MLGAMMEAN(J)=MLGAMMEAN(J)+MLGAM(J) 
    MLGAMVAR(J)=MLGAMVAR(J)+MLGAM(J)**2 
   43     CONTINUE 
 
 DO 46 I=1,K 
    DO 47 J=1,C 
 MLIN(I,J)=0.0 
       DO 48 L=1,N 
          MLIN(I,J)=MLIN(I,J)+BET(L)*X(I,J,L) 
   48           CONTINUE 
                  MLIN(I,J)=(MLIN(I,J)/M)-MLMU-MLTA(I)-MLGAM(J) 
       MLINMEAN(I,J)=MLINMEAN(I,J)+MLIN(I,J) 
    MLINVAR(I,J)=MLINVAR(I,J)+MLIN(I,J)**2 
   47        CONTINUE 
   46    CONTINUE 
 
 XBAR=0.0 
 XABAR=0.0 
 DO 49 I=1,K 
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    DO 50 J=1,C 
       DO 51 L=1,N 
 XBAR=XBAR+X(I,J,L) 
          XABAR=XABAR+X(I,J,L)*ALFA(L) 
   51           CONTINUE 
   50        CONTINUE 
   49     CONTINUE 
 XBAR=XBAR/(NSUM*1.0) 
 XABAR=XABAR*2.0/(1.0*NSUM) 
 B=C2*NSUM*(XBAR-XABAR) 
 CC=0.0 
 DO 52 I=1,K 
    DO 53 J=1,C 
       DO 54 L=1,N 
          CC=CC+BET(L)*(X(I,J,L)-MLMU-MLTA(I)-MLGAM(J)-MLIN(I,J))**2 
   54           CONTINUE 
   53        CONTINUE 
   52     CONTINUE 
 CC=CC*2.0*C2 
 MLSIGMA=(-B+SQRT(B*B+4.0*NSUM*CC)) 
 MLSIGMA=MLSIGMA/(2.0*SQRT(1.0*NSUM*(NSUM-K*C))) 
 MLSIGMAMEAN=MLSIGMAMEAN+MLSIGMA 
 MLSIGMAVAR=MLSIGMAVAR+MLSIGMA**2 
  
 FML1=0.0 
 DO 55 I=1,K 
    FML1=FML1+MLTA(I)**2 
   55     CONTINUE 
 FML1=FML1*2.0*C2*C*M/((K*1.0-1.0)*MLSIGMA**2) 
 IF (FML1.GT.F1) THEN 
    POWERML1=POWERML1+1.0 
 ENDIF 
 
 FML2=0.0 
 DO 56 J=1,C 
    FML2=FML2+MLGAM(J)**2 
   56     CONTINUE 
            FML2=FML2*2.0*C2*K*M/((C*1.0-1.0)*MLSIGMA**2) 
 IF (FML2.GT.F2) THEN 
    POWERML2=POWERML2+1.0 
 ENDIF 
 
 FML3=0.0 
 DO 57 I=1,K 
    DO 58 J=1,C 
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       FML3=FML3+MLIN(I,J)**2 
   58        CONTINUE 
   57     CONTINUE 
            FML3=FML3*2.0*C2*M/((K*1.0-1.0)*(C*1.0-1.0)*MLSIGMA**2) 
            IF (FML3.GT.F3) THEN 
    POWERML3=POWERML3+1.0 
 ENDIF 
 
C FINDING LSE 
 
 LSMU=XBAR  
 LSMUMEAN=LSMUMEAN+LSMU 
 LSMUVAR=LSMUVAR+LSMU**2 
 
 DO 60 I=1,K 
    LSTA(I)=0.0 
    DO 61 J=1,C 
 DO 62 L=1,N 
          LSTA(I)=LSTA(I)+Y(I,J,L) 
   62           CONTINUE 
   61        CONTINUE 
    LSTA(I)=LSTA(I)/(N*C*1.0)-LSMU 
    LSTAMEAN(I)=LSTAMEAN(I)+LSTA(I) 
    LSTAVAR(I)=LSTAVAR(I)+LSTA(I)**2 
   60     CONTINUE 
 
 DO 63 J=1,C 
    LSGAM(J)=0.0 
    DO 64 I=1,K 
       DO 65 L=1,N 
          LSGAM(J)=LSGAM(J)+Y(I,J,L) 
   65           CONTINUE 
   64        CONTINUE 
               LSGAM(J)=LSGAM(J)/(N*K*1.0)-LSMU 
    LSGAMMEAN(J)=LSGAMMEAN(J)+LSGAM(J) 
    LSGAMVAR(J)=LSGAMVAR(J)+LSGAM(J)**2 
   63     CONTINUE 
 
 DO 66 I=1,K 
    DO 67 J=1,C 
       LSIN(I,J)=0.0 
       DO 68 L=1,N 
          LSIN(I,J)=LSIN(I,J)+Y(I,J,L) 
   68           CONTINUE 
       LSIN(I,J)=LSIN(I,J)/(N*1.0)-LSMU-LSTA(I)-LSGAM(J) 
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       LSINMEAN(I,J)=LSINMEAN(I,J)+LSIN(I,J) 
       LSINVAR(I,J)=LSINVAR(I,J)+LSIN(I,J)**2 
   67        CONTINUE 
   66     CONTINUE 
 
 LSSIGMA=0.0 
 DO 69 I=1,K 
    DO 70 J=1,C 
 DO 71 L=1,N 
 LSSIGMA=LSSIGMA+(Y(I,J,L)-LSMU-LSTA(I)-LSGAM(J)-
LSIN(I,J))**2 
   71          CONTINUE 
   70        CONTINUE 
   69     CONTINUE 
 LSSIGMA=LSSIGMA/((NSUM-K*C)*1.0) 
 LSSIGMA=SQRT(LSSIGMA) 
 LSSIGMAMEAN=LSSIGMAMEAN+LSSIGMA 
 LSSIGMAVAR=LSSIGMAVAR+LSSIGMA**2 
 
 FLS1=0.0 
 DO 73 I=1,K 
    FLS1=FLS1+LSTA(I)**2 
   73     CONTINUE 
 FLS1=FLS1*C*N/((K*1.0-1.0)*LSSIGMA**2) 
 IF (FLS1.GT.F1) THEN 
    POWERLS1=POWERLS1+1.0 
 ENDIF 
 
 FLS2=0.0 
 DO 74 J=1,C 
 FLS2=FLS2+LSGAM(J)**2 
   74     CONTINUE 
            FLS2=FLS2*K*N/((C*1.0-1.0)*LSSIGMA**2) 
 IF (FLS2.GT.F2) THEN 
    POWERLS2=POWERLS2+1.0 
 ENDIF 
 
 FLS3=0.0 
 DO 75 I=1,K 
    DO 76 J=1,C 
 FLS3=FLS3+LSIN(I,J)**2 
   76        CONTINUE 
   75     CONTINUE 
            FLS3=FLS3*N/((K*1.0-1.0)*(C*1.0-1.0)*LSSIGMA**2) 
 IF (FLS3.GT.F3) THEN 
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    POWERLS3=POWERLS3+1.0 
 ENDIF 
 
  300 CONTINUE   
  
 LSMUMEAN=LSMUMEAN/(NN*1.0) 
 LSMUVAR=LSMUVAR/(NN*1.0)-LSMUMEAN**2 
 MLMUMEAN=MLMUMEAN/(NN*1.0) 
 MLMUVAR=MLMUVAR/(NN*1.0)-MLMUMEAN**2 
 
 DO 80 I=1,K 
 LSTAMEAN(I)=LSTAMEAN(I)/(NN*1.0) 
    LSTAVAR(I)=LSTAVAR(I)/(NN*1.0)-LSTAMEAN(I)**2 
    MLTAMEAN(I)=MLTAMEAN(I)/(NN*1.0) 
    MLTAVAR(I)=MLTAVAR(I)/(NN*1.0)-MLTAMEAN(I)**2 
   80     CONTINUE 
 
 DO 81 J=1,C 
    LSGAMMEAN(J)=LSGAMMEAN(J)/(NN*1.0) 
    LSGAMVAR(J)=LSGAMVAR(J)/(NN*1.0)-LSGAMMEAN(J)**2 
    MLGAMMEAN(J)=MLGAMMEAN(J)/(NN*1.0) 
    MLGAMVAR(J)=MLGAMVAR(J)/(NN*1.0)-MLGAMMEAN(J)**2 
   81     CONTINUE 
 
 DO 82 I=1,K 
    DO 83 J=1,C 
       LSINMEAN(I,J)=LSINMEAN(I,J)/(NN*1.0) 
       LSINVAR(I,J)=LSINVAR(I,J)/(NN*1.0)-LSINMEAN(I,J)**2 
       MLINMEAN(I,J)=MLINMEAN(I,J)/(NN*1.0) 
       MLINVAR(I,J)=MLINVAR(I,J)/(NN*1.0)-MLINMEAN(I,J)**2 
   83        CONTINUE 
   82     CONTINUE 
 
 LSSIGMAMEAN=LSSIGMAMEAN/(NN*1.0) 
 LSSIGMAVAR=LSSIGMAVAR/(NN*1.0)-LSSIGMAMEAN**2 
 MLSIGMAMEAN=MLSIGMAMEAN/(NN*1.0) 
 MLSIGMAVAR=MLSIGMAVAR/(NN*1.0)-MLSIGMAMEAN**2 
 
 WRITE(1,*)'LSE OF M=',LSMUMEAN 
 DO 90 I=1,K 
    WRITE(1,*)'LSE OF t',I,'=',LSTAMEAN(I) 
   90     CONTINUE 
 DO 91 J=1,C 
    WRITE(1,*)'LSE OF g',J,'=',LSGAMMEAN(J) 
   91     CONTINUE 
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             DO 92 I=1,K 
     DO 93 J=1,C 
        WRITE(1,*)'LSE OF int',I,J,'=',LSINMEAN(I,J) 
   93         CONTINUE 
   92     CONTINUE 
 WRITE(1,*)'LSE OF SIGMA=',LSSIGMAMEAN 
 WRITE(1,*)' ' 
 WRITE(1,*)'MMLE OF M=',MLMUMEAN 
 DO 94 I=1,K 
 WRITE(1,*)'MMLE OF t',I,'=',MLTAMEAN(I) 
   94     CONTINUE 
            DO 95 J=1,C 
    WRITE(1,*)'MMLE OF g',J,'=',MLGAMMEAN(J) 
   95     CONTINUE 
            DO 96 I=1,K 
    DO 97 J=1,C 
 WRITE(1,*)'MMLE OF int',I,J,'=',MLINMEAN(I,J) 
   97        CONTINUE 
   96     CONTINUE 
 WRITE(1,*)'MMLE OF SIGMA=',MLSIGMAMEAN 
 WRITE(1,*)' ' 
  
 WRITE(1,*)'VAR OF LSE OF M=',LSMUVAR 
 DO 98 I=1,K 
    WRITE(1,*)'VAR OF LSE OF t',I,'=',LSTAVAR(I) 
   98     CONTINUE 
 DO 99 J=1,C 
    WRITE(1,*)'VAR OF LSE OF g',J,'=',LSGAMVAR(J) 
   99     CONTINUE 
            DO 100 I=1,K 
    DO 101 J=1,C 
       WRITE(1,*)'VAR OF LSE OF int',I,J,'=',LSINVAR(I,J) 
  101       CONTINUE 
  100    CONTINUE 
 WRITE(1,*)'VAR OF LSE OF SIGMA=',LSSIGMAVAR 
 WRITE(1,*)' ' 
 
 WRITE(1,*)'VAR OF MML OF M=',MLMUVAR 
 DO 102 I=1,K 
    WRITE(1,*)'VAR OF MML OF t',I,'=',MLTAVAR(I) 
  102    CONTINUE 
 DO 103 J=1,C 
    WRITE(1,*)'VAR OF MML OF g',J,'=',MLGAMVAR(J) 
  103    CONTINUE 
            DO 104 I=1,K 
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    DO 105 J=1,C 
       WRITE(1,*)'VAR OF MML OF int',I,J,'=',MLINVAR(I,J) 
  105       CONTINUE 
  104    CONTINUE 
 WRITE(1,*)'VAR OF MML OF SIGMA=',MLSIGMAVAR 
 
 REMU=(MLMUVAR/LSMUVAR)*100.0 
 RETA(1)=(MLTAVAR(1)/LSTAVAR(1))*100.0 
 REGAM(1)=(MLGAMVAR(1)/LSGAMVAR(1))*100.0 
 REIN(1,1)=(MLINVAR(1,1)/LSINVAR(1,1))*100.0 
            RESIGMA=(MLSIGMAVAR/LSSIGMAVAR)*100 
 
 WRITE(1,*)'RELATIVE EFFICIENCY OF M=',REMU 
 WRITE(1,*)'RELATIVE EFFICIENCY OF t=',RETA(1) 
 WRITE(1,*)'RELATIVE EFFICIENCY OF g=',REGAM(1) 
 WRITE(1,*)'RELATIVE EFFICIENCY OF int=',REIN(1,1) 
 WRITE(1,*)'RELATIVE EFFICIENCY OF SIGMA=',RESIGMA 
 
 POWERLS1=POWERLS1/(NN*1.0) 
 POWERML1=POWERML1/(NN*1.0) 
 POWERLS2=POWERLS2/(NN*1.0) 
 POWERML2=POWERML2/(NN*1.0) 
 POWERLS3=POWERLS3/(NN*1.0) 
 POWERML3=POWERML3/(NN*1.0) 
 
 WRITE(1,*)'POWER OF F1-TEST=',POWERLS1 
 WRITE(1,*)'POWER OF F2-TEST=',POWERLS2 
 WRITE(1,*)'POWER OF F3-TEST=',POWERLS3 
 
 WRITE(1,*)'POWER OF W1-TEST=',POWERML1 
 WRITE(1,*)'POWER OF W2-TEST=',POWERML2 
 WRITE(1,*)'POWER OF W3-TEST=',POWERML3 
 END 
 
 
 
 
  
 
  
 


